GLib: embedded list implementation?



Greetings from pre-2000 GLib contributor :)

The Linux kernel has a unique, and useful, doubly-linked list implementation that I find myself constantly copying into the userspace programs that I write. As a frequent user of GLib in my console-based and server applications, I thought it would be nice to have included in GLib proper, and wanted to solicit the opinions of current developers.


Background and description of the Linux kernel's list implementation:

In the kernel, it is critical to operation that memory never leaks, and memory allocations overall are kept to a minimum. To aid in that goal, Linus Torvalds came up with an alternate linked list implementation -- one that you embed inside each object. Not a new idea, but Linus helped popularize it, and added a few changes to the popular implementation.

Once your 'prev' and 'next' pointers are embedded within your object, you are guaranteed several useful attributes, as compared to GList:

* List pointer lifetime and object lifetime are guaranteed to be the same (no separate allocations, or keeping around node free lists, no need for additional mutex locks).
* All list operations except traverse are O(1).
* An object's address may be derived directly from the list node's address, using pointer arithmatic rather than an additional look (memory load). * List node pointers and object are stored in the same cacheline(s), rather than being in separate areas of VM.

Here are some examples...


	struct record {
		char name[30];
		int age;
		struct list_head node;
	}

	static LIST_HEAD(record_list);

Append:
	struct record *rec = ...;
	list_add_tail(&rec->node, &record_list);

Delete:
	list_del(&rec->node);

Iterate over list:
	struct record *tmp;
	list_for_each_entry(tmp, &record_list, node) {
		printf("name %s, age %d\n",
			tmp->name, tmp->age);
	}

Plenty of other possibilities, see the attached header file for the full (yes, really) implementation.

Thanks,

	Jeff



#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H

/*
 * Simple doubly linked list implementation.
 *
 * Some of the internal functions ("__xxx") are useful when
 * manipulating whole lists rather than single entries, as
 * sometimes we already know the next/prev entries and we can
 * generate better code by using them directly rather than
 * using the generic single-entry routines.
 */

struct list_head {
	struct list_head *next, *prev;
};

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) \
	struct list_head name = LIST_HEAD_INIT(name)

#define INIT_LIST_HEAD(ptr) do { \
	(ptr)->next = (ptr); (ptr)->prev = (ptr); \
} while (0)

/*
 * Insert a new entry between two known consecutive entries. 
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_add(struct list_head *new,
			      struct list_head *prev,
			      struct list_head *next)
{
	next->prev = new;
	new->next = next;
	new->prev = prev;
	prev->next = new;
}

/**
 * list_add - add a new entry
 * @new: new entry to be added
 * @head: list head to add it after
 *
 * Insert a new entry after the specified head.
 * This is good for implementing stacks.
 */
static inline void list_add(struct list_head *new, struct list_head *head)
{
	__list_add(new, head, head->next);
}

/**
 * list_add_tail - add a new entry
 * @new: new entry to be added
 * @head: list head to add it before
 *
 * Insert a new entry before the specified head.
 * This is useful for implementing queues.
 */
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
	__list_add(new, head->prev, head);
}

/*
 * Delete a list entry by making the prev/next entries
 * point to each other.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_del(struct list_head *prev, struct list_head *next)
{
	next->prev = prev;
	prev->next = next;
}

/**
 * list_del - deletes entry from list.
 * @entry: the element to delete from the list.
 * Note: list_empty on entry does not return true after this, the entry is in an undefined state.
 */
static inline void list_del(struct list_head *entry)
{
	__list_del(entry->prev, entry->next);
	entry->next = (void *) 0;
	entry->prev = (void *) 0;
}

/**
 * list_del_init - deletes entry from list and reinitialize it.
 * @entry: the element to delete from the list.
 */
static inline void list_del_init(struct list_head *entry)
{
	__list_del(entry->prev, entry->next);
	INIT_LIST_HEAD(entry); 
}

/**
 * list_move - delete from one list and add as another's head
 * @list: the entry to move
 * @head: the head that will precede our entry
 */
static inline void list_move(struct list_head *list, struct list_head *head)
{
        __list_del(list->prev, list->next);
        list_add(list, head);
}

/**
 * list_move_tail - delete from one list and add as another's tail
 * @list: the entry to move
 * @head: the head that will follow our entry
 */
static inline void list_move_tail(struct list_head *list,
				  struct list_head *head)
{
        __list_del(list->prev, list->next);
        list_add_tail(list, head);
}

/**
 * list_empty - tests whether a list is empty
 * @head: the list to test.
 */
static inline int list_empty(struct list_head *head)
{
	return head->next == head;
}

static inline void __list_splice(struct list_head *list,
				 struct list_head *head)
{
	struct list_head *first = list->next;
	struct list_head *last = list->prev;
	struct list_head *at = head->next;

	first->prev = head;
	head->next = first;

	last->next = at;
	at->prev = last;
}

/**
 * list_splice - join two lists
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static inline void list_splice(struct list_head *list, struct list_head *head)
{
	if (!list_empty(list))
		__list_splice(list, head);
}

/**
 * list_splice_init - join two lists and reinitialise the emptied list.
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * The list at @list is reinitialised
 */
static inline void list_splice_init(struct list_head *list,
				    struct list_head *head)
{
	if (!list_empty(list)) {
		__list_splice(list, head);
		INIT_LIST_HEAD(list);
	}
}

/**
 * list_entry - get the struct for this entry
 * @ptr:	the &struct list_head pointer.
 * @type:	the type of the struct this is embedded in.
 * @member:	the name of the list_struct within the struct.
 */
#define list_entry(ptr, type, member) \
	((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member)))

/**
 * list_for_each	-	iterate over a list
 * @pos:	the &struct list_head to use as a loop counter.
 * @head:	the head for your list.
 */
#define list_for_each(pos, head) \
	for (pos = (head)->next, prefetch(pos->next); pos != (head); \
        	pos = pos->next, prefetch(pos->next))
/**
 * list_for_each_prev	-	iterate over a list backwards
 * @pos:	the &struct list_head to use as a loop counter.
 * @head:	the head for your list.
 */
#define list_for_each_prev(pos, head) \
	for (pos = (head)->prev, prefetch(pos->prev); pos != (head); \
        	pos = pos->prev, prefetch(pos->prev))
        	
/**
 * list_for_each_safe	-	iterate over a list safe against removal of list entry
 * @pos:	the &struct list_head to use as a loop counter.
 * @n:		another &struct list_head to use as temporary storage
 * @head:	the head for your list.
 */
#define list_for_each_safe(pos, n, head) \
	for (pos = (head)->next, n = pos->next; pos != (head); \
		pos = n, n = pos->next)

/**
 * list_for_each_entry	-	iterate over list of given type
 * @pos:	the type * to use as a loop counter.
 * @head:	the head for your list.
 * @member:	the name of the list_struct within the struct.
 */
#define list_for_each_entry(pos, head, member)				\
	for (pos = list_entry((head)->next, typeof(*pos), member),	\
		     prefetch(pos->member.next);			\
	     &pos->member != (head); 					\
	     pos = list_entry(pos->member.next, typeof(*pos), member),	\
		     prefetch(pos->member.next))

/**
 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 * @pos:	the type * to use as a loop counter.
 * @n:		another type * to use as temporary storage
 * @head:	the head for your list.
 * @member:	the name of the list_struct within the struct.
 */
#define list_for_each_entry_safe(pos, n, head, member)			\
	for (pos = list_entry((head)->next, typeof(*pos), member),	\
		n = list_entry(pos->member.next, typeof(*pos), member);	\
	     &pos->member != (head); 					\
	     pos = n, n = list_entry(n->member.next, typeof(*n), member))

/**
 * list_for_each_entry_continue -       iterate over list of given type
 *                      continuing after existing point
 * @pos:        the type * to use as a loop counter.
 * @head:       the head for your list.
 * @member:     the name of the list_struct within the struct.
 */
#define list_for_each_entry_continue(pos, head, member)			\
	for (pos = list_entry(pos->member.next, typeof(*pos), member),	\
		     prefetch(pos->member.next);			\
	     &pos->member != (head);					\
	     pos = list_entry(pos->member.next, typeof(*pos), member),	\
		     prefetch(pos->member.next))

#endif


[Date Prev][Date Next]   [Thread Prev][Thread Next]   [Thread Index] [Date Index] [Author Index]