[genius] Updated Czech translation
- From: Marek Černocký <mcernocky src gnome org>
- To: commits-list gnome org
- Cc:
- Subject: [genius] Updated Czech translation
- Date: Mon, 7 Oct 2013 20:57:33 +0000 (UTC)
commit a045bd702ed1aae0d21d4fea06ac3f9d8d755bb4
Author: Marek Černocký <marek manet cz>
Date: Mon Oct 7 22:57:24 2013 +0200
Updated Czech translation
help/cs/cs.po | 2061 ++++++++++++++++++++++++++++++---------------------------
1 files changed, 1077 insertions(+), 984 deletions(-)
---
diff --git a/help/cs/cs.po b/help/cs/cs.po
index c5d113a..4294a09 100644
--- a/help/cs/cs.po
+++ b/help/cs/cs.po
@@ -1,14 +1,13 @@
# Czech translation for genius.
# Copyright (C) 2011 genius's COPYRIGHT HOLDER
# This file is distributed under the same license as the genius package.
-#
# Marek Černocký <marek manet cz>, 2011, 2012, 2013.
#
msgid ""
msgstr ""
"Project-Id-Version: genius master\n"
-"POT-Creation-Date: 2013-06-25 21:11+0000\n"
-"PO-Revision-Date: 2013-07-07 08:25+0200\n"
+"POT-Creation-Date: 2013-10-03 22:18+0000\n"
+"PO-Revision-Date: 2013-10-07 22:49+0200\n"
"Last-Translator: Marek Černocký <marek manet cz>\n"
"Language-Team: Czech <gnome-cs-list gnome org>\n"
"Language: cs\n"
@@ -223,16 +222,16 @@ msgid "0.2"
msgstr "0.2"
#: C/genius.xml:146(date)
-msgid "June 2013"
-msgstr "červen 2013"
+msgid "October 2013"
+msgstr "říjen 2013"
#: C/genius.xml:148(para)
msgid "Jiri (George) Lebl <email>jirka 5z com</email>"
msgstr "Jiri (George) Lebl <email>jirka 5z com</email>"
#: C/genius.xml:154(releaseinfo)
-msgid "This manual describes version 1.0.17 of Genius."
-msgstr "Tato příručka popisuje aplikaci Genius ve verzi 1.0.17."
+msgid "This manual describes version 1.0.18 of Genius."
+msgstr "Tato příručka popisuje aplikaci Genius ve verzi 1.0.18."
#: C/genius.xml:157(title)
msgid "Feedback"
@@ -417,7 +416,7 @@ msgstr "Upravit"
msgid "Calculator"
msgstr "Kalkulátor"
-#: C/genius.xml:273(guilabel) C/genius.xml:8677(title)
+#: C/genius.xml:273(guilabel) C/genius.xml:8734(title)
msgid "Settings"
msgstr "Nastavení"
@@ -686,7 +685,7 @@ msgstr ""
"program spustí, aniž by se otevírala zvláštní karta. To odpovídá chování "
"příkazu <command>load</command>."
-#: C/genius.xml:434(title) C/genius.xml:8178(title)
+#: C/genius.xml:434(title) C/genius.xml:8216(title)
msgid "Plotting"
msgstr "Vykreslování"
@@ -1318,16 +1317,6 @@ msgid "Slash: \\ Quotes: \" Tabs: \t1\t2\t3\n"
msgstr "Lomítko: \\ Uvozovky: \" Tabulátory: \t1\t2\t3\n"
#: C/genius.xml:800(para)
-#| msgid ""
-#| "Like numbers and Booleans, strings in GEL can be stored as values inside "
-#| "variables and passed to functions. You can also concatenate a string with "
-#| "another value using the plus operator. For example: <placeholder-1/> will "
-#| "create the string: <placeholder-2/> You can also use C-like escape "
-#| "sequences such as <literal>\\n</literal>,<literal>\\t</literal>,<literal>"
-#| "\\b</literal>,<literal>\\a</literal> and <literal>\\r</literal>. To get a "
-#| "<literal>\\</literal> or <literal>\"</literal> into the string you can "
-#| "quote it with a <literal>\\</literal>. For example: <placeholder-3/> will "
-#| "make a string: <placeholder-4/>"
msgid ""
"Like numbers and Booleans, strings in GEL can be stored as values inside "
"variables and passed to functions. You can also concatenate a string with "
@@ -1819,13 +1808,13 @@ msgstr ""
"argumentem, jako <link linkend=\"gel-function-exp\"><function>exp</"
"function></link> nebo <link linkend=\"gel-function-ln\"><function>ln</"
"function></link>, operace s funkcemi. Například <placeholder-1/> vrátí "
-"funkci, která vezme <varname>x</varname> a vrátí <userinput>exp(sin(x)*cos"
-"(x)+4)</userinput>. To funkčně odpovídá tomu, jako byste napsali "
-"<placeholder-2/> Takováto operace může být výhodná, kdy potřebujete rychle "
-"definovat funkci. Například k vytvoření funkce nazvané <varname>f</varname>, "
-"která bude provádět operaci jako výše, prostě napište: <placeholder-3/> "
-"Využít se to dá také při vykreslování grafů. Například k vykreslení druhé "
-"mocniny sinu zadejte: <placeholder-4/>"
+"funkci, která vezme <varname>x</varname> a vrátí "
+"<userinput>exp(sin(x)*cos(x)+4)</userinput>. To funkčně odpovídá tomu, jako "
+"byste napsali <placeholder-2/> Takováto operace může být výhodná, kdy "
+"potřebujete rychle definovat funkci. Například k vytvoření funkce nazvané "
+"<varname>f</varname>, která bude provádět operaci jako výše, prostě napište: "
+"<placeholder-3/> Využít se to dá také při vykreslování grafů. Například k "
+"vykreslení druhé mocniny sinu zadejte: <placeholder-4/>"
#: C/genius.xml:1060(para)
msgid ""
@@ -1971,9 +1960,9 @@ msgstr ""
"to je časově náročné, ne-li nemožné, při práci s většími čísly. Například "
"<userinput>10^(10^10) % 6</userinput> jednoduše nebude pracovat (exponent "
"bude příliš velký), zatímco <userinput>10^(10^10) mod 6</userinput> je "
-"spočteno v mžiku. V prvním příkladu se zkusí vypočítat <userinput>10^(10^10)"
-"</userinput> a pak najít zbytek po dělení 6, zatímco v druhém příkladu se "
-"vyhodnotí vše modulo 6 už na začátku."
+"spočteno v mžiku. V prvním příkladu se zkusí vypočítat "
+"<userinput>10^(10^10)</userinput> a pak najít zbytek po dělení 6, zatímco v "
+"druhém příkladu se vyhodnotí vše modulo 6 už na začátku."
#: C/genius.xml:1144(programlisting)
#, no-wrap
@@ -2690,8 +2679,8 @@ msgstr ""
"Sestavit vektor od <varname>a</varname> do <varname>b</varname> (nebo zadané "
"části řádku, sloupce pro operátor <literal>@</literal>). Například pro "
"získání řádků 2 až 4 z matice <varname>A</varname> byste mohli použít "
-"<placeholder-1/>, kdy <userinput>2:4</userinput> vrátí vektor <userinput>"
-"[2,3,4]</userinput>."
+"<placeholder-1/>, kdy <userinput>2:4</userinput> vrátí vektor "
+"<userinput>[2,3,4]</userinput>."
#: C/genius.xml:1713(synopsis)
#, no-wrap
@@ -2835,18 +2824,18 @@ msgid ""
"The unitary minus operates in a different fashion depending on where it "
"appears. If it appears before a number it binds very closely, if it appears "
"in front of an expression it binds less than the power and factorial "
-"operators. So for example <userinput>-1^k</userinput> is really <userinput>"
-"(-1)^k</userinput>, but <userinput>-foo(1)^k</userinput> is really "
-"<userinput>-(foo(1)^k)</userinput>. So be careful how you use it and if in "
-"doubt, add parentheses."
+"operators. So for example <userinput>-1^k</userinput> is really "
+"<userinput>(-1)^k</userinput>, but <userinput>-foo(1)^k</userinput> is "
+"really <userinput>-(foo(1)^k)</userinput>. So be careful how you use it and "
+"if in doubt, add parentheses."
msgstr ""
"Unární operátor mínus funguje různými způsoby v závislosti na tom, kde se "
"vyskytuje. Když se objeví před číslem, váže se přímo k němu. Když se objeví "
"před výrazem, má slabší vazbu než mocnina a faktoriál. Například "
"<userinput>-1^k</userinput> je ve skutečnosti <userinput>(-1)^k</userinput>, "
-"ale <userinput>-neco(1)^k</userinput> je ve skutečnosti <userinput>-(neco(1)"
-"^k)</userinput>. Takže věnujte pozornost tomu, jak je používáte a pokud máte "
-"pochybnosti, raději přidejte závorky."
+"ale <userinput>-neco(1)^k</userinput> je ve skutečnosti <userinput>-"
+"(neco(1)^k)</userinput>. Takže věnujte pozornost tomu, jak je používáte a "
+"pokud máte pochybnosti, raději přidejte závorky."
#: C/genius.xml:1821(title)
msgid "Programming with GEL"
@@ -3251,13 +3240,13 @@ msgid ""
"Functions are treated exactly like variables. Hence you can locally redefine "
"functions. Normally (on the top level) you cannot redefine protected "
"variables and functions. But locally you can do this. Consider the following "
-"session: <screen><prompt>genius> </prompt><userinput>function f(x) = sin"
-"(x)^2</userinput>\n"
+"session: <screen><prompt>genius> </prompt><userinput>function f(x) = "
+"sin(x)^2</userinput>\n"
"= (`(x)=(sin(x)^2))\n"
"<prompt>genius> </prompt><userinput>function f(x) = sin(x)^2</userinput>\n"
"= (`(x)=(sin(x)^2))\n"
-"<prompt>genius> </prompt><userinput>function g(x) = ((function sin(x)"
-"=x^10);f(x))</userinput>\n"
+"<prompt>genius> </prompt><userinput>function g(x) = ((function "
+"sin(x)=x^10);f(x))</userinput>\n"
"= (`(x)=((sin:=(`(x)=(x^10)));f(x)))\n"
"<prompt>genius> </prompt><userinput>g(10)</userinput>\n"
"= 1e20\n"
@@ -3271,8 +3260,8 @@ msgstr ""
"= (`(x)=(sin(x)^2))\n"
"<prompt>genius> </prompt><userinput>function f(x) = sin(x)^2</userinput>\n"
"= (`(x)=(sin(x)^2))\n"
-"<prompt>genius> </prompt><userinput>function g(x) = ((function sin(x)"
-"=x^10);f(x))</userinput>\n"
+"<prompt>genius> </prompt><userinput>function g(x) = ((function "
+"sin(x)=x^10);f(x))</userinput>\n"
"= (`(x)=((sin:=(`(x)=(x^10)));f(x)))\n"
"<prompt>genius> </prompt><userinput>g(10)</userinput>\n"
"= 1e20\n"
@@ -4561,8 +4550,8 @@ msgstr ""
"= true\n"
"</screen> Vstup <userinput>IsIn(x,X)</userinput> je samozřejmě shodný s "
"<userinput>IsSubset([x],X)</userinput>. Uvědomte si, že vzhledem k tomu, že "
-"prázdná množina je podmnožinou kterékoliv množiny, volání <userinput>IsSubset"
-"(null,X)</userinput> vrátí vždy true (pravda)."
+"prázdná množina je podmnožinou kterékoliv množiny, volání "
+"<userinput>IsSubset(null,X)</userinput> vrátí vždy true (pravda)."
#: C/genius.xml:2797(title)
msgid "List of GEL functions"
@@ -5544,10 +5533,6 @@ msgid "ErrorFunctionTolerance = number"
msgstr "ErrorFunctionTolerance = číslo"
#: C/genius.xml:3338(para)
-#| msgid ""
-#| "Clears the solutions drawn by the <link linkend=\"gel-function-"
-#| "VectorfieldDrawSolution\"><function>VectorfieldDrawSolution</function></"
-#| "link> function."
msgid ""
"Tolerance of the <link linkend=\"gel-function-ErrorFunction"
"\"><function>ErrorFunction</function></link>."
@@ -5595,10 +5580,6 @@ msgid "GaussDistributionTolerance = number"
msgstr "GaussDistributionTolerance = číslo"
#: C/genius.xml:3362(para)
-#| msgid ""
-#| "Clears the solutions drawn by the <link linkend=\"gel-function-"
-#| "VectorfieldDrawSolution\"><function>VectorfieldDrawSolution</function></"
-#| "link> function."
msgid ""
"Tolerance of the <link linkend=\"gel-function-GaussDistribution"
"\"><function>GaussDistribution</function></link> function."
@@ -5647,7 +5628,7 @@ msgstr "<anchor id=\"gel-function-LinePlotDrawLegends\"/>LinePlotDrawLegends"
#: C/genius.xml:3385(synopsis)
#, no-wrap
msgid "LinePlotDrawLegends = true"
-msgstr "LinePlotDrawLegends = číslo"
+msgstr "LinePlotDrawLegends = true"
#: C/genius.xml:3386(para)
msgid ""
@@ -5795,9 +5776,6 @@ msgid "NumericalIntegralSteps = number"
msgstr "NumericalIntegralSteps = číslo"
#: C/genius.xml:3459(para)
-#| msgid ""
-#| "<anchor id=\"gel-function-NumericalIntegralFunction\"/"
-#| ">NumericalIntegralFunction"
msgid ""
"Steps to perform in <link linkend=\"gel-function-NumericalIntegral"
"\"><function>NumericalIntegral</function></link>."
@@ -5954,10 +5932,6 @@ msgid "SumProductNumberOfTries = number"
msgstr "SumProductNumberOfTries = číslo"
#: C/genius.xml:3545(para)
-#| msgid ""
-#| "Sets the limits for <link linkend=\"genius-gel-function-list-plotting"
-#| "\">line plotting functions</link> such as <link linkend=\"gel-function-"
-#| "LinePlot\"><function>LinePlot</function></link>."
msgid ""
"How many iterations to try for <link linkend=\"gel-function-InfiniteSum"
"\"><function>InfiniteSum</function></link> and <link linkend=\"gel-function-"
@@ -5998,10 +5972,6 @@ msgid "SumProductTolerance = number"
msgstr "SumProductTolerance = číslo"
#: C/genius.xml:3561(para)
-#| msgid ""
-#| "Sets the limits for <link linkend=\"genius-gel-function-list-plotting"
-#| "\">line plotting functions</link> such as <link linkend=\"gel-function-"
-#| "LinePlot\"><function>LinePlot</function></link>."
msgid ""
"Tolerance for <link linkend=\"gel-function-InfiniteSum"
"\"><function>InfiniteSum</function></link> and <link linkend=\"gel-function-"
@@ -6252,8 +6222,8 @@ msgstr ""
#: C/genius.xml:3689(para)
msgid ""
-"See <ulink url=\"http://en.wikipedia.org/wiki/E_"
-"(mathematical_constant)\">Wikipedia</ulink> or <ulink url=\"http://"
+"See <ulink url=\"http://en.wikipedia.org/wiki/"
+"E_(mathematical_constant)\">Wikipedia</ulink> or <ulink url=\"http://"
"planetmath.org/encyclopedia/E.html\">Planetmath</ulink> or <ulink url="
"\"http://mathworld.wolfram.com/e.html\">Mathworld</ulink> for more "
"information."
@@ -8401,10 +8371,10 @@ msgstr "MillerRabinTest (n,opak)"
#: C/genius.xml:4888(para)
msgid ""
"Use the Miller-Rabin primality test on <varname>n</varname>, <varname>reps</"
-"varname> number of times. The probability of false positive is <userinput>"
-"(1/4)^reps</userinput>. It is probably usually better to use <link linkend="
-"\"gel-function-IsPrime\"><function>IsPrime</function></link> since that is "
-"faster and better on smaller integers."
+"varname> number of times. The probability of false positive is "
+"<userinput>(1/4)^reps</userinput>. It is probably usually better to use "
+"<link linkend=\"gel-function-IsPrime\"><function>IsPrime</function></link> "
+"since that is faster and better on smaller integers."
msgstr ""
"Použít Millerův-Rabinův test prvočíselnosti na <varname>n</varname>, "
"<varname>opak</varname> udává kolikrát. Pravděpodobnost falešné kladné "
@@ -10575,35 +10545,71 @@ msgid "(See <link linkend=\"gel-function-NullSpace\">NullSpace</link>)"
msgstr "(Viz <link linkend=\"gel-function-NullSpace\">NullSpace</link>)"
#: C/genius.xml:6076(term)
+msgid "<anchor id=\"gel-function-KroneckerProduct\"/>KroneckerProduct"
+msgstr "<anchor id=\"gel-function-KroneckerProduct\"/>KroneckerProduct"
+
+#: C/genius.xml:6078(synopsis)
+#, no-wrap
+msgid "KroneckerProduct (M, N)"
+msgstr "KroneckerProduct (M, N)"
+
+#: C/genius.xml:6079(para)
+msgid "Aliases: <function>TensorProduct</function>"
+msgstr "Alternativní názvy: <function>TensorProduct</function>"
+
+#: C/genius.xml:6080(para)
+msgid ""
+"Compute the Kronecker product (tensor product in standard basis) of two "
+"matrices."
+msgstr ""
+"Spočítat Kroneckerův součin (tenzorový součin ve standardní bázi) dvou matic."
+
+#: C/genius.xml:6084(para)
+msgid ""
+"See <ulink url=\"http://en.wikipedia.org/wiki/Kronecker_product\">Wikipedia</"
+"ulink>, <ulink url=\"http://planetmath.org/encyclopedia/KroneckerProduct.html"
+"\">Planetmath</ulink> or <ulink url=\"http://mathworld.wolfram.com/"
+"KroneckerProduct.html\">Mathworld</ulink> for more information."
+msgstr ""
+"Více informací najdete v encyklopediích <ulink url=\"http://en.wikipedia.org/"
+"wiki/Kronecker_product\">Wikipedia</ulink> (text je v angličtině), <ulink "
+"url=\"http://planetmath.org/encyclopedia/KroneckerProduct.html\">Planetmath</"
+"ulink> (text je v angličtině) nebo <ulink url=\"http://mathworld.wolfram.com/"
+"KroneckerProduct.html\">Mathworld</ulink> (text je v angličtině)."
+
+#: C/genius.xml:6095(term)
msgid "<anchor id=\"gel-function-LUDecomposition\"/>LUDecomposition"
msgstr "<anchor id=\"gel-function-LUDecomposition\"/>LUDecomposition"
-#: C/genius.xml:6078(synopsis)
+#: C/genius.xml:6097(synopsis)
#, no-wrap
msgid "LUDecomposition (A, L, U)"
msgstr "LUDecomposition (A, L, U)"
-#: C/genius.xml:6079(para)
+#: C/genius.xml:6098(para)
msgid ""
-"Get the LU decomposition of <varname>A</varname> and store the result in the "
-"<varname>L</varname> and <varname>U</varname> which should be references. It "
-"returns <constant>true</constant> if successful. For example suppose that A "
-"is a square matrix, then after running: <screen><prompt>genius></prompt> "
-"<userinput>LUDecomposition(A,&L,&U)</userinput>\n"
+"Get the LU decomposition of <varname>A</varname>, that is find a lower "
+"triangular matrix and upper triangular matrix whose product is <varname>A</"
+"varname> Store the result in the <varname>L</varname> and <varname>U</"
+"varname> which should be references. It returns <constant>true</constant> if "
+"successful. For example suppose that A is a square matrix, then after "
+"running: <screen><prompt>genius></prompt> <userinput>LUDecomposition(A,"
+"&L,&U)</userinput>\n"
"</screen> You will have the lower matrix stored in a variable called "
"<varname>L</varname> and the upper matrix in a variable called <varname>U</"
"varname>."
msgstr ""
-"Získat LU rozklad matice <varname>A</varname> a uložit výsledek v "
-"<varname>L</varname> a <varname>U</varname>, což by měly být odkazy na "
-"proměnné. V případě úspěchu vrací <constant>true</constant>. Například "
+"Získat LU rozklad matice <varname>A</varname> tak, že se najde dolní a horní "
+"trojúhelníková matice, jejichž součinem je <varname>A</varname>. Výsledek se "
+"uloží v <varname>L</varname> a <varname>U</varname>, což by měly být odkazy "
+"na proměnné. V případě úspěchu vrací <constant>true</constant>. Například "
"předpokládejme, že A je čtvercová matice, pak po spuštění: "
"<screen><prompt>genius></prompt> <userinput>LUDecomposition(A,&L,&"
"U)</userinput>\n"
"</screen> budete mít dolní matici uloženou v proměnné s názvem <varname>L</"
"varname> a horní matici v proměnné s názvem <varname>U</varname>."
-#: C/genius.xml:6091(para)
+#: C/genius.xml:6112(para)
msgid ""
"This is the LU decomposition of a matrix aka Crout and/or Cholesky "
"reduction. (ISBN 0-201-11577-8 pp.99-103) The upper triangular matrix "
@@ -10615,7 +10621,7 @@ msgstr ""
"diagonálu hodnot 1. Nejedná se o Doolittlovu metodu, která zahrnuje "
"diagonálu jedniček do dolní matice."
-#: C/genius.xml:6099(para)
+#: C/genius.xml:6120(para)
msgid ""
"Not all matrices have LU decompositions, for example <userinput>[0,1;1,0]</"
"userinput> does not and this function returns <constant>false</constant> in "
@@ -10627,33 +10633,35 @@ msgstr ""
"constant> a nastaví <varname>L</varname> a <varname>U</varname> na "
"<constant>null</constant>."
-#: C/genius.xml:6105(para)
+#: C/genius.xml:6126(para)
msgid ""
-"See <ulink url=\"http://planetmath.org/encyclopedia/LUDecomposition.html"
+"See <ulink url=\"http://en.wikipedia.org/wiki/LU_decomposition\">Wikipedia</"
+"ulink>, <ulink url=\"http://planetmath.org/encyclopedia/LUDecomposition.html"
"\">Planetmath</ulink> or <ulink url=\"http://mathworld.wolfram.com/"
"LUDecomposition.html\">Mathworld</ulink> for more information."
msgstr ""
-"Více informací najdete v encyklopediích <ulink url=\"http://planetmath.org/"
-"encyclopedia/LUDecomposition.html\">Planetmath</ulink> (text je v "
-"angličtině) nebo <ulink url=\"http://mathworld.wolfram.com/LUDecomposition."
-"html\">Mathworld</ulink> (text je v angličtině)."
+"Více informací najdete v encyklopediích <ulink url=\"http://en.wikipedia.org/"
+"wiki/LU_decomposition\">Wikipedia</ulink> (text je v angličtině), <ulink url="
+"\"http://planetmath.org/encyclopedia/LUDecomposition.html\">Planetmath</"
+"ulink> (text je v angličtině) nebo <ulink url=\"http://mathworld.wolfram.com/"
+"LUDecomposition.html\">Mathworld</ulink> (text je v angličtině)."
-#: C/genius.xml:6114(term)
+#: C/genius.xml:6136(term)
msgid "<anchor id=\"gel-function-Minor\"/>Minor"
msgstr "<anchor id=\"gel-function-Minor\"/>Minor"
-#: C/genius.xml:6116(synopsis)
+#: C/genius.xml:6138(synopsis)
#, no-wrap
msgid "Minor (M,i,j)"
msgstr "Minor (M,i,j)"
-#: C/genius.xml:6117(para)
+#: C/genius.xml:6139(para)
msgid "Get the <varname>i</varname>-<varname>j</varname> minor of a matrix."
msgstr ""
"Získat subdeterminant (též minor) <varname>i</varname>-<varname>j</varname> "
"matice."
-#: C/genius.xml:6118(para)
+#: C/genius.xml:6140(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/Minor.html\">Planetmath</"
"ulink> for more information."
@@ -10662,46 +10670,46 @@ msgstr ""
"encyclopedia/Minor.html\">Planetmath</ulink> (text je v angličtině) nebo "
"<ulink url=\"http://cs.wikipedia.org/wiki/Subdeterminant\">Wikipedia</ulink>."
-#: C/genius.xml:6126(term)
+#: C/genius.xml:6148(term)
msgid "<anchor id=\"gel-function-NonPivotColumns\"/>NonPivotColumns"
msgstr "<anchor id=\"gel-function-NonPivotColumns\"/>NonPivotColumns"
-#: C/genius.xml:6128(synopsis)
+#: C/genius.xml:6150(synopsis)
#, no-wrap
msgid "NonPivotColumns (M)"
msgstr "NonPivotColumns (M)"
-#: C/genius.xml:6129(para)
+#: C/genius.xml:6151(para)
msgid "Return the columns that are not the pivot columns of a matrix."
msgstr "Vrátit sloupce matice, které nemají pivot."
-#: C/genius.xml:6134(term)
+#: C/genius.xml:6156(term)
msgid "<anchor id=\"gel-function-Norm\"/>Norm"
msgstr "<anchor id=\"gel-function-Norm\"/>Norm"
-#: C/genius.xml:6136(synopsis)
+#: C/genius.xml:6158(synopsis)
#, no-wrap
msgid "Norm (v,p...)"
msgstr "Norm (v,p...)"
-#: C/genius.xml:6137(para)
+#: C/genius.xml:6159(para)
msgid "Aliases: <function>norm</function>"
msgstr "Alternativní názvy: <function>norm</function>"
-#: C/genius.xml:6138(para)
+#: C/genius.xml:6160(para)
msgid "Get the p Norm (or 2 Norm if no p is supplied) of a vector."
msgstr "Získat normu typu p (nebo typu 2, pokud není zadáno p) vektoru."
-#: C/genius.xml:6143(term)
+#: C/genius.xml:6165(term)
msgid "<anchor id=\"gel-function-NullSpace\"/>NullSpace"
msgstr "<anchor id=\"gel-function-NullSpace\"/>NullSpace"
-#: C/genius.xml:6145(synopsis)
+#: C/genius.xml:6167(synopsis)
#, no-wrap
msgid "NullSpace (T)"
msgstr "NullSpace (T)"
-#: C/genius.xml:6146(para)
+#: C/genius.xml:6168(para)
msgid ""
"Get the nullspace of a matrix. That is the kernel of the linear mapping that "
"the matrix represents. This is returned as a matrix whose column space is "
@@ -10711,7 +10719,7 @@ msgstr ""
"představuje. Výsledek se vrací v podobě matice, jejíž sloupcový prostor je "
"nulovým prostorem z <varname>T</varname>."
-#: C/genius.xml:6150(para)
+#: C/genius.xml:6172(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/Nullspace.html"
"\">Planetmath</ulink> for more information."
@@ -10719,20 +10727,20 @@ msgstr ""
"Více informací najdete v encyklopedii <ulink url=\"http://planetmath.org/"
"encyclopedia/Nullspace.html\">Planetmath</ulink> (text je v angličtině)."
-#: C/genius.xml:6158(term)
+#: C/genius.xml:6180(term)
msgid "<anchor id=\"gel-function-Nullity\"/>Nullity"
msgstr "<anchor id=\"gel-function-Nullity\"/>Nullity"
-#: C/genius.xml:6160(synopsis)
+#: C/genius.xml:6182(synopsis)
#, no-wrap
msgid "Nullity (M)"
msgstr "Nullity (M)"
-#: C/genius.xml:6161(para)
+#: C/genius.xml:6183(para)
msgid "Aliases: <function>nullity</function>"
msgstr "Alternativní názvy: <function>nullity</function>"
-#: C/genius.xml:6162(para)
+#: C/genius.xml:6184(para)
msgid ""
"Get the nullity of a matrix. That is, return the dimension of the nullspace; "
"the dimension of the kernel of <varname>M</varname>."
@@ -10740,7 +10748,7 @@ msgstr ""
"Získat nulovost matice. Tzn. vrátit rozměry nulového prostoru; rozměry jádra "
"matice <varname>M</varname>."
-#: C/genius.xml:6164(para)
+#: C/genius.xml:6186(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/Nullity.html"
"\">Planetmath</ulink> for more information."
@@ -10748,29 +10756,29 @@ msgstr ""
"Více informací najdete v encyklopedii <ulink url=\"http://planetmath.org/"
"encyclopedia/Nullity.html\">Planetmath</ulink> (text je v angličtině)."
-#: C/genius.xml:6172(term)
+#: C/genius.xml:6194(term)
msgid "<anchor id=\"gel-function-OrthogonalComplement\"/>OrthogonalComplement"
msgstr "<anchor id=\"gel-function-OrthogonalComplement\"/>OrthogonalComplement"
-#: C/genius.xml:6174(synopsis)
+#: C/genius.xml:6196(synopsis)
#, no-wrap
msgid "OrthogonalComplement (M)"
msgstr "OrthogonalComplement (M)"
-#: C/genius.xml:6175(para)
+#: C/genius.xml:6197(para)
msgid "Get the orthogonal complement of the columnspace."
msgstr "Získat ortogonální doplněk sloupcového prostoru."
-#: C/genius.xml:6180(term)
+#: C/genius.xml:6202(term)
msgid "<anchor id=\"gel-function-PivotColumns\"/>PivotColumns"
msgstr "<anchor id=\"gel-function-PivotColumns\"/>PivotColumns"
-#: C/genius.xml:6182(synopsis)
+#: C/genius.xml:6204(synopsis)
#, no-wrap
msgid "PivotColumns (M)"
msgstr "PivotColumns (M)"
-#: C/genius.xml:6183(para)
+#: C/genius.xml:6205(para)
msgid ""
"Return pivot columns of a matrix, that is columns which have a leading 1 in "
"row reduced form. Also returns the row where they occur."
@@ -10778,16 +10786,16 @@ msgstr ""
"Vrátit sloupce matice s pivoty, tzn. sloupce, které mají 1 v řádkově "
"redukované podobě. Rovněž vrací řádek, ve kterém se vyskytly."
-#: C/genius.xml:6188(term)
+#: C/genius.xml:6210(term)
msgid "<anchor id=\"gel-function-Projection\"/>Projection"
msgstr "<anchor id=\"gel-function-Projection\"/>Projection"
-#: C/genius.xml:6190(synopsis)
+#: C/genius.xml:6212(synopsis)
#, no-wrap
msgid "Projection (v,W,B...)"
msgstr "Projection (v,W,B...)"
-#: C/genius.xml:6191(para)
+#: C/genius.xml:6213(para)
msgid ""
"Projection of vector <varname>v</varname> onto subspace <varname>W</varname> "
"with respect to inner product given by <varname>B</varname>. If <varname>B</"
@@ -10801,23 +10809,23 @@ msgstr ""
"<varname>B</varname> může být buď polybilineární funkce dvou argumentů nebo "
"to může být matice v polybilineární formě."
-#: C/genius.xml:6201(term)
+#: C/genius.xml:6223(term)
msgid "<anchor id=\"gel-function-QRDecomposition\"/>QRDecomposition"
msgstr "<anchor id=\"gel-function-QRDecomposition\"/>QRDecomposition"
-#: C/genius.xml:6203(synopsis)
+#: C/genius.xml:6225(synopsis)
#, no-wrap
msgid "QRDecomposition (A, Q)"
msgstr "QRDecomposition (A, Q)"
-#: C/genius.xml:6204(para)
+#: C/genius.xml:6226(para)
msgid ""
"Get the QR decomposition of a square matrix <varname>A</varname>, returns "
"the upper triangular matrix <varname>R</varname> and sets <varname>Q</"
"varname> to the orthogonal (unitary) matrix. <varname>Q</varname> should be "
"a reference or <constant>null</constant> if you don't want any return. For "
-"example: <screen><prompt>genius></prompt> <userinput>R = QRDecomposition"
-"(A,&Q)</userinput>\n"
+"example: <screen><prompt>genius></prompt> <userinput>R = "
+"QRDecomposition(A,&Q)</userinput>\n"
"</screen> You will have the upper triangular matrix stored in a variable "
"called <varname>R</varname> and the orthogonal (unitary) matrix stored in "
"<varname>Q</varname>."
@@ -10832,28 +10840,34 @@ msgstr ""
"názvem <varname>R</varname> a ortogonální (unitární) matici v <varname>Q</"
"varname>."
-#: C/genius.xml:6218(para)
+#: C/genius.xml:6240(para)
+#| msgid ""
+#| "See <ulink url=\"http://en.wikipedia.org/wiki/Pi\">Wikipedia</ulink> or "
+#| "<ulink url=\"http://planetmath.org/encyclopedia/Pi.html\">Planetmath</"
+#| "ulink> or <ulink url=\"http://mathworld.wolfram.com/Pi.html\">Mathworld</"
+#| "ulink> for more information."
msgid ""
-"See <ulink url=\"http://planetmath.org/encyclopedia/QRDecomposition.html"
-"\">Planetmath</ulink> or <ulink url=\"http://mathworld.wolfram.com/"
+"See <ulink url=\"http://en.wikipedia.org/wiki/QR_decomposition\">Wikipedia</"
+"ulink> or <ulink url=\"http://planetmath.org/encyclopedia/QRDecomposition."
+"html\">Planetmath</ulink> or <ulink url=\"http://mathworld.wolfram.com/"
"QRDecomposition.html\">Mathworld</ulink> for more information."
msgstr ""
-"Více informací najdete v encyklopediích <ulink url=\"http://planetmath.org/"
+"Více informací najdete v encyklopediích <ulink url=\"https://cs.wikipedia."
+"org/wiki/QR_rozklad\">Wikipedia</ulink>, <ulink url=\"http://planetmath.org/"
"encyclopedia/QRDecomposition.html\">Planetmath</ulink> (text je v "
-"angličtině), <ulink url=\"http://mathworld.wolfram.com/QRDecomposition.html"
-"\">Mathworld</ulink> (text je v angličtině) nebo <ulink url=\"http://cs."
-"wikipedia.org/wiki/QR_rozklad\">Wikipedia</ulink>."
+"angličtině) nebo <ulink url=\"http://mathworld.wolfram.com/QRDecomposition."
+"html\">Mathworld</ulink> (text je v angličtině)."
-#: C/genius.xml:6227(term)
+#: C/genius.xml:6250(term)
msgid "<anchor id=\"gel-function-RayleighQuotient\"/>RayleighQuotient"
msgstr "<anchor id=\"gel-function-RayleighQuotient\"/>RayleighQuotient"
-#: C/genius.xml:6229(synopsis)
+#: C/genius.xml:6252(synopsis)
#, no-wrap
msgid "RayleighQuotient (A,x)"
msgstr "RayleighQuotient (A,x)"
-#: C/genius.xml:6230(para)
+#: C/genius.xml:6253(para)
msgid ""
"Return the Rayleigh quotient (also called the Rayleigh-Ritz quotient or "
"ratio) of a matrix and a vector."
@@ -10861,7 +10875,7 @@ msgstr ""
"Vrátit Rayleighův podíl (nazývaný také Rayleighův-Ritzův koeficient nebo "
"podíl) matice a vektoru."
-#: C/genius.xml:6231(para)
+#: C/genius.xml:6254(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/RayleighQuotient.html"
"\">Planetmath</ulink> for more information."
@@ -10870,7 +10884,7 @@ msgstr ""
"encyclopedia/RayleighQuotient.html\">Planetmath</ulink> (text je v "
"angličtině)."
-#: C/genius.xml:6239(term)
+#: C/genius.xml:6262(term)
msgid ""
"<anchor id=\"gel-function-RayleighQuotientIteration\"/"
">RayleighQuotientIteration"
@@ -10878,12 +10892,12 @@ msgstr ""
"<anchor id=\"gel-function-RayleighQuotientIteration\"/"
">RayleighQuotientIteration"
-#: C/genius.xml:6241(synopsis)
+#: C/genius.xml:6264(synopsis)
#, no-wrap
msgid "RayleighQuotientIteration (A,x,epsilon,maxiter,vecref)"
msgstr "RayleighQuotientIteration (A,x,epsilon,maxiter,vecref)"
-#: C/genius.xml:6242(para)
+#: C/genius.xml:6265(para)
msgid ""
"Find eigenvalues of <varname>A</varname> using the Rayleigh quotient "
"iteration method. <varname>x</varname> is a guess at a eigenvector and could "
@@ -10903,7 +10917,7 @@ msgstr ""
"<varname>vecref</varname> by měl být buď <constant>null</constant> nebo "
"odkaz na proměnnou, do které by se měl uložit vlastní vektor."
-#: C/genius.xml:6252(para)
+#: C/genius.xml:6275(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/RayleighQuotient.html"
"\">Planetmath</ulink> for more information on Rayleigh quotient."
@@ -10912,24 +10926,24 @@ msgstr ""
"\"http://planetmath.org/encyclopedia/RayleighQuotient.html\">Planetmath</"
"ulink> (text je v angličtině)."
-#: C/genius.xml:6260(term)
+#: C/genius.xml:6283(term)
msgid "<anchor id=\"gel-function-Rank\"/>Rank"
msgstr "<anchor id=\"gel-function-Rank\"/>Rank"
-#: C/genius.xml:6262(synopsis)
+#: C/genius.xml:6285(synopsis)
#, no-wrap
msgid "Rank (M)"
msgstr "Rank (M)"
-#: C/genius.xml:6263(para)
+#: C/genius.xml:6286(para)
msgid "Aliases: <function>rank</function>"
msgstr "Alternativní názvy: <function>rank</function>"
-#: C/genius.xml:6264(para)
+#: C/genius.xml:6287(para)
msgid "Get the rank of a matrix."
msgstr "Získat hodnost matice."
-#: C/genius.xml:6265(para)
+#: C/genius.xml:6288(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/SylvestersLaw.html"
"\">Planetmath</ulink> for more information."
@@ -10937,16 +10951,16 @@ msgstr ""
"Více informací najdete v encyklopedii <ulink url=\"http://planetmath.org/"
"encyclopedia/SylvestersLaw.html\">Planetmath</ulink> (text je v angličtině)."
-#: C/genius.xml:6273(term)
+#: C/genius.xml:6296(term)
msgid "<anchor id=\"gel-function-RosserMatrix\"/>RosserMatrix"
msgstr "<anchor id=\"gel-function-RosserMatrix\"/>RosserMatrix"
-#: C/genius.xml:6275(synopsis)
+#: C/genius.xml:6298(synopsis)
#, no-wrap
msgid "RosserMatrix ()"
msgstr "RosserMatrix ()"
-#: C/genius.xml:6276(para)
+#: C/genius.xml:6299(para)
msgid ""
"Returns the Rosser matrix, which is a classic symmetric eigenvalue test "
"problem."
@@ -10954,20 +10968,20 @@ msgstr ""
"Vrátit Rosserovu matici, která je klasickým symetrickým problémem testu "
"vlastního čísla."
-#: C/genius.xml:6281(term)
+#: C/genius.xml:6304(term)
msgid "<anchor id=\"gel-function-Rotation2D\"/>Rotation2D"
msgstr "<anchor id=\"gel-function-Rotation2D\"/>Rotation2D"
-#: C/genius.xml:6283(synopsis)
+#: C/genius.xml:6306(synopsis)
#, no-wrap
msgid "Rotation2D (angle)"
msgstr "Rotation2D (úhel)"
-#: C/genius.xml:6284(para)
+#: C/genius.xml:6307(para)
msgid "Aliases: <function>RotationMatrix</function>"
msgstr "Alternativní názvy: <function>RotationMatrix</function>"
-#: C/genius.xml:6285(para)
+#: C/genius.xml:6308(para)
msgid ""
"Return the matrix corresponding to rotation around origin in "
"R<superscript>2</superscript>."
@@ -10975,16 +10989,16 @@ msgstr ""
"Vrátit matici odpovídající otočení okolo počátku v R<superscript>2</"
"superscript>."
-#: C/genius.xml:6290(term)
+#: C/genius.xml:6313(term)
msgid "<anchor id=\"gel-function-Rotation3DX\"/>Rotation3DX"
msgstr "<anchor id=\"gel-function-Rotation3DX\"/>Rotation3DX"
-#: C/genius.xml:6292(synopsis)
+#: C/genius.xml:6315(synopsis)
#, no-wrap
msgid "Rotation3DX (angle)"
msgstr "Rotation3DX (úhel)"
-#: C/genius.xml:6293(para)
+#: C/genius.xml:6316(para)
msgid ""
"Return the matrix corresponding to rotation around origin in "
"R<superscript>3</superscript> about the x-axis."
@@ -10992,16 +11006,16 @@ msgstr ""
"Vrátit matici odpovídající otočení okolo počátku v R<superscript>3</"
"superscript> kolem osy x."
-#: C/genius.xml:6298(term)
+#: C/genius.xml:6321(term)
msgid "<anchor id=\"gel-function-Rotation3DY\"/>Rotation3DY"
msgstr "<anchor id=\"gel-function-Rotation3DY\"/>Rotation3DY"
-#: C/genius.xml:6300(synopsis)
+#: C/genius.xml:6323(synopsis)
#, no-wrap
msgid "Rotation3DY (angle)"
msgstr "Rotation3DY (úhel)"
-#: C/genius.xml:6301(para)
+#: C/genius.xml:6324(para)
msgid ""
"Return the matrix corresponding to rotation around origin in "
"R<superscript>3</superscript> about the y-axis."
@@ -11009,16 +11023,16 @@ msgstr ""
"Vrátit matici odpovídající otočení okolo počátku v R<superscript>3</"
"superscript> kolem osy y."
-#: C/genius.xml:6306(term)
+#: C/genius.xml:6329(term)
msgid "<anchor id=\"gel-function-Rotation3DZ\"/>Rotation3DZ"
msgstr "<anchor id=\"gel-function-Rotation3DZ\"/>Rotation3DZ"
-#: C/genius.xml:6308(synopsis)
+#: C/genius.xml:6331(synopsis)
#, no-wrap
msgid "Rotation3DZ (angle)"
msgstr "Rotation3DZ (úhel)"
-#: C/genius.xml:6309(para)
+#: C/genius.xml:6332(para)
msgid ""
"Return the matrix corresponding to rotation around origin in "
"R<superscript>3</superscript> about the z-axis."
@@ -11026,36 +11040,36 @@ msgstr ""
"Vrátit matici odpovídající otočení okolo počátku v R<superscript>3</"
"superscript> kolem osy z."
-#: C/genius.xml:6314(term)
+#: C/genius.xml:6337(term)
msgid "<anchor id=\"gel-function-RowSpace\"/>RowSpace"
msgstr "<anchor id=\"gel-function-RowSpace\"/>RowSpace"
-#: C/genius.xml:6316(synopsis)
+#: C/genius.xml:6339(synopsis)
#, no-wrap
msgid "RowSpace (M)"
msgstr "RowSpace (M)"
-#: C/genius.xml:6317(para)
+#: C/genius.xml:6340(para)
msgid "Get a basis matrix for the rowspace of a matrix."
msgstr "Získat bázi matice pro prostor řádků matice."
-#: C/genius.xml:6322(term)
+#: C/genius.xml:6345(term)
msgid "<anchor id=\"gel-function-SesquilinearForm\"/>SesquilinearForm"
msgstr "<anchor id=\"gel-function-SesquilinearForm\"/>SesquilinearForm"
-#: C/genius.xml:6324(synopsis)
+#: C/genius.xml:6347(synopsis)
#, no-wrap
msgid "SesquilinearForm (v,A,w)"
msgstr "SesquilinearForm (v,A,w)"
-#: C/genius.xml:6325(para)
+#: C/genius.xml:6348(para)
msgid ""
"Evaluate (v,w) with respect to the sesquilinear form given by the matrix A."
msgstr ""
"Vyhodnotit (v,w) vzhledem k polybilineární formě dané maticí <varname>A</"
"varname>."
-#: C/genius.xml:6330(term)
+#: C/genius.xml:6353(term)
msgid ""
"<anchor id=\"gel-function-SesquilinearFormFunction\"/"
">SesquilinearFormFunction"
@@ -11063,12 +11077,12 @@ msgstr ""
"<anchor id=\"gel-function-SesquilinearFormFunction\"/"
">SesquilinearFormFunction"
-#: C/genius.xml:6332(synopsis)
+#: C/genius.xml:6355(synopsis)
#, no-wrap
msgid "SesquilinearFormFunction (A)"
msgstr "SesquilinearFormFunction (A)"
-#: C/genius.xml:6333(para)
+#: C/genius.xml:6356(para)
msgid ""
"Return a function that evaluates two vectors with respect to the "
"sesquilinear form given by A."
@@ -11076,48 +11090,63 @@ msgstr ""
"Vrátit funkci vyhodnocující dva vektory vzhledem k polybilineární formě dané "
"maticí <varname>A</varname>."
-#: C/genius.xml:6338(term)
+#: C/genius.xml:6361(term)
msgid "<anchor id=\"gel-function-SmithNormalFormField\"/>SmithNormalFormField"
msgstr "<anchor id=\"gel-function-SmithNormalFormField\"/>SmithNormalFormField"
-#: C/genius.xml:6340(synopsis)
+#: C/genius.xml:6363(synopsis)
#, no-wrap
msgid "SmithNormalFormField (A)"
msgstr "SmithNormalFormField (A)"
-#: C/genius.xml:6341(para)
-msgid "Smith Normal Form for fields (will end up with 1's on the diagonal)."
+#: C/genius.xml:6364(para)
+#| msgid "Smith Normal Form for fields (will end up with 1's on the diagonal)."
+msgid ""
+"Returns the Smith normal form of a matrix over fields (will end up with 1's "
+"on the diagonal)."
msgstr ""
-"Smithův kanonický tvar (normální forma) tělesa (bude končit s jedničkami na "
-"diagonále)."
+"Vrátit Smithův kanonický tvar (normální forma) matice nad poli (bude končit "
+"s jedničkami na diagonále)."
-#: C/genius.xml:6346(term)
+#: C/genius.xml:6365(para) C/genius.xml:6377(para)
+msgid ""
+"See <ulink url=\"http://en.wikipedia.org/wiki/Smith_normal_form\">Wikipedia</"
+"ulink> for more information."
+msgstr ""
+"Více informací najdete v encyklopedii <ulink url=\"http://en.wikipedia.org/"
+"wiki/Smith_normal_form\">Wikipedia</ulink> (článek je v angličtině)."
+
+#: C/genius.xml:6373(term)
msgid ""
"<anchor id=\"gel-function-SmithNormalFormInteger\"/>SmithNormalFormInteger"
msgstr ""
"<anchor id=\"gel-function-SmithNormalFormInteger\"/>SmithNormalFormInteger"
-#: C/genius.xml:6348(synopsis)
+#: C/genius.xml:6375(synopsis)
#, no-wrap
msgid "SmithNormalFormInteger (M)"
msgstr "SmithNormalFormInteger (M)"
-#: C/genius.xml:6349(para)
-msgid "Smith Normal Form for square integer matrices (not its characteristic)."
+#: C/genius.xml:6376(para)
+#| msgid ""
+#| "Smith Normal Form for square integer matrices (not its characteristic)."
+msgid ""
+"Return the Smith normal form for square integer matrices over integers (not "
+"its characteristic)."
msgstr ""
-"Smithův kanonický tvar (normální forma) pro čtvercové celočíselné matice (ne "
-"její charakteristika)."
+"Vrátit Smithův kanonický tvar (normální forma) pro čtvercové celočíselné "
+"matice nad celými čísly (ne její charakteristiku)."
-#: C/genius.xml:6354(term)
+#: C/genius.xml:6385(term)
msgid "<anchor id=\"gel-function-SolveLinearSystem\"/>SolveLinearSystem"
msgstr "<anchor id=\"gel-function-SolveLinearSystem\"/>SolveLinearSystem"
-#: C/genius.xml:6356(synopsis)
+#: C/genius.xml:6387(synopsis)
#, no-wrap
msgid "SolveLinearSystem (M,V,args...)"
msgstr "SolveLinearSystem (M,V,argumenty...)"
-#: C/genius.xml:6357(para)
+#: C/genius.xml:6388(para)
msgid ""
"Solve linear system Mx=V, return solution V if there is a unique solution, "
"<constant>null</constant> otherwise. Extra two reference parameters can "
@@ -11127,16 +11156,16 @@ msgstr ""
"řešení, jinak vrátit <constant>null</constant>. Je možné použít dva "
"dodatečné parametry předávané odkazem, ve kterých získáte redukované M a V."
-#: C/genius.xml:6362(term)
+#: C/genius.xml:6393(term)
msgid "<anchor id=\"gel-function-ToeplitzMatrix\"/>ToeplitzMatrix"
msgstr "<anchor id=\"gel-function-ToeplitzMatrix\"/>ToeplitzMatrix"
-#: C/genius.xml:6364(synopsis)
+#: C/genius.xml:6395(synopsis)
#, no-wrap
msgid "ToeplitzMatrix (c, r...)"
msgstr "ToeplitzMatrix (s, r...)"
-#: C/genius.xml:6365(para)
+#: C/genius.xml:6396(para)
msgid ""
"Return the Toeplitz matrix constructed given the first column c and "
"(optionally) the first row r. If only the column c is given then it is "
@@ -11149,54 +11178,58 @@ msgstr ""
"konjugovaná a nekonjugovaná verze, aby se získala hermitovská matice "
"(samozřejmě za předpokladu, že je první prvek reálný)."
-#: C/genius.xml:6369(para)
+#: C/genius.xml:6400(para)
msgid ""
-"See <ulink url=\"http://planetmath.org/encyclopedia/ToeplitzMatrix.html"
+"See <ulink url=\"http://en.wikipedia.org/wiki/Toeplitz_matrix\">Wikipedia</"
+"ulink> or <ulink url=\"http://planetmath.org/encyclopedia/ToeplitzMatrix.html"
"\">Planetmath</ulink> for more information."
msgstr ""
-"Více informací najdete v encyklopedii <ulink url=\"http://planetmath.org/"
-"encyclopedia/ToeplitzMatrix.html\">Planetmath</ulink> (text je v angličtině)."
+"Více informací najdete v encyklopediích <ulink url=\"http://en.wikipedia.org/"
+"wiki/Toeplitz_matrix\">Wikipedia</ulink> (text je v angličtině) nebo <ulink "
+"url=\"http://planetmath.org/encyclopedia/ToeplitzMatrix.html\">Planetmath</"
+"ulink> (text je v angličtině)."
-#: C/genius.xml:6377(term)
+#: C/genius.xml:6409(term)
msgid "<anchor id=\"gel-function-Trace\"/>Trace"
msgstr "<anchor id=\"gel-function-Trace\"/>Trace"
-#: C/genius.xml:6379(synopsis)
+#: C/genius.xml:6411(synopsis)
#, no-wrap
msgid "Trace (M)"
msgstr "Trace (M)"
-#: C/genius.xml:6380(para)
+#: C/genius.xml:6412(para)
msgid "Aliases: <function>trace</function>"
msgstr "Alternativní názvy: <function>trace</function>"
-#: C/genius.xml:6381(para)
+#: C/genius.xml:6413(para)
msgid ""
"Calculate the trace of a matrix. That is the sum of the diagonal elements."
msgstr ""
"Spočítat stopu matice. Jedná se o součet prvků na hlavní diagonále čtvercové "
"matice."
-#: C/genius.xml:6382(para)
+#: C/genius.xml:6414(para)
msgid ""
-"See <ulink url=\"http://planetmath.org/encyclopedia/Trace.html\">Planetmath</"
-"ulink> for more information."
+"See <ulink url=\"http://en.wikipedia.org/wiki/"
+"Trace_(linear_algebra)\">Wikipedia</ulink> or <ulink url=\"http://planetmath."
+"org/encyclopedia/Trace.html\">Planetmath</ulink> for more information."
msgstr ""
-"Více informací najdete v encyklopediích <ulink url=\"http://planetmath.org/"
-"encyclopedia/Trace.html\">Planetmath</ulink> (text je v angličtině) nebo "
-"<ulink url=\"http://cs.wikipedia.org/wiki/Stopa_%28algebra%29\">Wikipedia</"
-"ulink>."
+"Více informací najdete v encyklopediích <ulink url=\"http://cs.wikipedia.org/"
+"wiki/Stopa_%28algebra%29\">Wikipedia</ulink> nebo <ulink url=\"http://"
+"planetmath.org/encyclopedia/Trace.html\">Planetmath</ulink> (text je v "
+"angličtině)."
-#: C/genius.xml:6390(term)
+#: C/genius.xml:6423(term)
msgid "<anchor id=\"gel-function-Transpose\"/>Transpose"
msgstr "<anchor id=\"gel-function-Transpose\"/>Transpose"
-#: C/genius.xml:6392(synopsis)
+#: C/genius.xml:6425(synopsis)
#, no-wrap
msgid "Transpose (M)"
msgstr "Transpose (M)"
-#: C/genius.xml:6393(para)
+#: C/genius.xml:6426(para)
msgid ""
"Transpose of a matrix. This is the same as the <userinput>.'</userinput> "
"operator."
@@ -11204,43 +11237,52 @@ msgstr ""
"Transponovat matici. Funkčně je to stejné, jako operátor <userinput>.'</"
"userinput>."
-#: C/genius.xml:6395(para)
+#: C/genius.xml:6428(para)
msgid ""
-"See <ulink url=\"http://planetmath.org/encyclopedia/Transpose.html"
+"See <ulink url=\"http://en.wikipedia.org/wiki/Transpose\">Wikipedia</ulink> "
+"or <ulink url=\"http://planetmath.org/encyclopedia/Transpose.html"
"\">Planetmath</ulink> for more information."
msgstr ""
-"Více informací najdete v encyklopediích <ulink url=\"http://planetmath.org/"
-"encyclopedia/Transpose.html\">Planetmath</ulink> (text je v angličtině) nebo "
-"<ulink url=\"http://cs.wikipedia.org/wiki/Transpozice_matice\">Wikipedia</"
-"ulink>."
+"Více informací najdete v encyklopediích <ulink url=\"http://cs.wikipedia.org/"
+"wiki/Transpozice_matice\">Wikipedia</ulink> nebo <ulink url=\"http://"
+"planetmath.org/encyclopedia/Transpose.html\">Planetmath</ulink> (text je v "
+"angličtině)."
-#: C/genius.xml:6403(term)
+#: C/genius.xml:6437(term)
msgid "<anchor id=\"gel-function-VandermondeMatrix\"/>VandermondeMatrix"
msgstr "<anchor id=\"gel-function-VandermondeMatrix\"/>VandermondeMatrix"
-#: C/genius.xml:6405(synopsis)
+#: C/genius.xml:6439(synopsis)
#, no-wrap
msgid "VandermondeMatrix (v)"
msgstr "VandermondeMatrix (v)"
-#: C/genius.xml:6406(para)
+#: C/genius.xml:6440(para)
msgid "Aliases: <function>vander</function>"
msgstr "Alternativní názvy: <function>vander</function>"
-#: C/genius.xml:6407(para)
+#: C/genius.xml:6441(para)
msgid "Return the Vandermonde matrix."
msgstr "Vrátit Vandermondovu matici."
-#: C/genius.xml:6412(term)
+#: C/genius.xml:6442(para)
+msgid ""
+"See <ulink url=\"http://en.wikipedia.org/wiki/Vandermonde_matrix"
+"\">Wikipedia</ulink> for more information."
+msgstr ""
+"Více informací najdete v encyklopedii <ulink url=\"http://cs.wikipedia.org/"
+"wiki/Vandermondova_matice\">Wikipedia</ulink>."
+
+#: C/genius.xml:6450(term)
msgid "<anchor id=\"gel-function-VectorAngle\"/>VectorAngle"
msgstr "<anchor id=\"gel-function-VectorAngle\"/>VectorAngle"
-#: C/genius.xml:6414(synopsis)
+#: C/genius.xml:6452(synopsis)
#, no-wrap
msgid "VectorAngle (v,w,B...)"
msgstr "VectorAngle (v,w,B...)"
-#: C/genius.xml:6415(para)
+#: C/genius.xml:6453(para)
msgid ""
"The angle of two vectors with respect to inner product given by <varname>B</"
"varname>. If <varname>B</varname> is not given then the standard Hermitian "
@@ -11252,20 +11294,20 @@ msgstr ""
"hermitovský součin. <varname>B</varname> může být buď polybilineární funkce "
"dvou argumentů nebo to může být matice v polybilineární formě."
-#: C/genius.xml:6424(term)
+#: C/genius.xml:6462(term)
msgid "<anchor id=\"gel-function-VectorSpaceDirectSum\"/>VectorSpaceDirectSum"
msgstr "<anchor id=\"gel-function-VectorSpaceDirectSum\"/>VectorSpaceDirectSum"
-#: C/genius.xml:6426(synopsis)
+#: C/genius.xml:6464(synopsis)
#, no-wrap
msgid "VectorSpaceDirectSum (M,N)"
msgstr "VectorSpaceDirectSum (M,N)"
-#: C/genius.xml:6427(para)
+#: C/genius.xml:6465(para)
msgid "The direct sum of the vector spaces M and N."
msgstr "Přímý součet vektorových prostorů M a N."
-#: C/genius.xml:6432(term)
+#: C/genius.xml:6470(term)
msgid ""
"<anchor id=\"gel-function-VectorSubspaceIntersection\"/"
">VectorSubspaceIntersection"
@@ -11273,56 +11315,56 @@ msgstr ""
"<anchor id=\"gel-function-VectorSubspaceIntersection\"/"
">VectorSubspaceIntersection"
-#: C/genius.xml:6434(synopsis)
+#: C/genius.xml:6472(synopsis)
#, no-wrap
msgid "VectorSubspaceIntersection (M,N)"
msgstr "VectorSubspaceIntersection (M,N)"
-#: C/genius.xml:6435(para)
+#: C/genius.xml:6473(para)
msgid "Intersection of the subspaces given by M and N."
msgstr "Průnik podprostorů daných pomocí M a N"
-#: C/genius.xml:6440(term)
+#: C/genius.xml:6478(term)
msgid "<anchor id=\"gel-function-VectorSubspaceSum\"/>VectorSubspaceSum"
msgstr "<anchor id=\"gel-function-VectorSubspaceSum\"/>VectorSubspaceSum"
-#: C/genius.xml:6442(synopsis)
+#: C/genius.xml:6480(synopsis)
#, no-wrap
msgid "VectorSubspaceSum (M,N)"
msgstr "VectorSubspaceSum (M,N)"
-#: C/genius.xml:6443(para)
+#: C/genius.xml:6481(para)
msgid ""
"The sum of the vector spaces M and N, that is {w | w=m+n, m in M, n in N}."
msgstr "Součet vektorových prostorů M a N, tj. {w | w=m+n, m in M, n in N}."
-#: C/genius.xml:6448(term)
+#: C/genius.xml:6486(term)
msgid "<anchor id=\"gel-function-adj\"/>adj"
msgstr "<anchor id=\"gel-function-adj\"/>adj"
-#: C/genius.xml:6450(synopsis)
+#: C/genius.xml:6488(synopsis)
#, no-wrap
msgid "adj (m)"
msgstr "adj (m)"
-#: C/genius.xml:6451(para)
+#: C/genius.xml:6489(para)
msgid "Aliases: <function>Adjugate</function>"
msgstr "Alternativní názvy: <function>Adjugate</function>"
-#: C/genius.xml:6452(para)
+#: C/genius.xml:6490(para)
msgid "Get the classical adjoint (adjugate) of a matrix."
msgstr "Získat adjungovanou (reciproku) matici."
-#: C/genius.xml:6457(term)
+#: C/genius.xml:6495(term)
msgid "<anchor id=\"gel-function-cref\"/>cref"
msgstr "<anchor id=\"gel-function-cref\"/>cref"
-#: C/genius.xml:6459(synopsis)
+#: C/genius.xml:6497(synopsis)
#, no-wrap
msgid "cref (M)"
msgstr "cref (M)"
-#: C/genius.xml:6460(para)
+#: C/genius.xml:6498(para)
msgid ""
"Aliases: <function>CREF</function><function>ColumnReducedEchelonForm</"
"function>"
@@ -11330,28 +11372,28 @@ msgstr ""
"Alternativní názvy: <function>CREF</function> "
"<function>ColumnReducedEchelonForm</function>"
-#: C/genius.xml:6461(para)
+#: C/genius.xml:6499(para)
msgid "Compute the Column Reduced Echelon Form."
msgstr "Spočítat sloupcově odstupňovaný tvar matice."
-#: C/genius.xml:6466(term)
+#: C/genius.xml:6504(term)
msgid "<anchor id=\"gel-function-det\"/>det"
msgstr "<anchor id=\"gel-function-det\"/>det"
-#: C/genius.xml:6468(synopsis)
+#: C/genius.xml:6506(synopsis)
#, no-wrap
msgid "det (M)"
msgstr "det (M)"
-#: C/genius.xml:6469(para)
+#: C/genius.xml:6507(para)
msgid "Aliases: <function>Determinant</function>"
msgstr "Alternativní názvy: <function>Determinant</function>"
-#: C/genius.xml:6470(para)
+#: C/genius.xml:6508(para)
msgid "Get the determinant of a matrix."
msgstr "Získat determinant matice."
-#: C/genius.xml:6471(para)
+#: C/genius.xml:6509(para)
msgid ""
"See <ulink url=\"http://en.wikipedia.org/wiki/Determinant\">Wikipedia</"
"ulink> or <ulink url=\"http://planetmath.org/encyclopedia/Determinant2.html"
@@ -11362,22 +11404,22 @@ msgstr ""
"nebo <ulink url=\"http://cs.wikipedia.org/wiki/Determinant\">Wikipedia</"
"ulink>."
-#: C/genius.xml:6480(term)
+#: C/genius.xml:6518(term)
msgid "<anchor id=\"gel-function-ref\"/>ref"
msgstr "<anchor id=\"gel-function-ref\"/>ref"
-#: C/genius.xml:6482(synopsis)
+#: C/genius.xml:6520(synopsis)
#, no-wrap
msgid "ref (M)"
msgstr "ref (M)"
-#: C/genius.xml:6483(para)
+#: C/genius.xml:6521(para)
msgid "Aliases: <function>REF</function><function>RowEchelonForm</function>"
msgstr ""
"Alternativní názvy: <function>REF</function> <function>RowEchelonForm</"
"function>"
-#: C/genius.xml:6484(para)
+#: C/genius.xml:6522(para)
msgid ""
"Get the row echelon form of a matrix. That is, apply gaussian elimination "
"but not backaddition to <varname>M</varname>. The pivot rows are divided to "
@@ -11387,7 +11429,7 @@ msgstr ""
"ale bez zpětného dosazování do <varname>M</varname>. Nenulové řádky jsou "
"poděleny, aby všechny pivoty byly 1."
-#: C/genius.xml:6487(para)
+#: C/genius.xml:6525(para)
msgid ""
"See <ulink url=\"http://en.wikipedia.org/wiki/Row_echelon_form\">Wikipedia</"
"ulink> or <ulink url=\"http://planetmath.org/encyclopedia/RowEchelonForm.html"
@@ -11398,23 +11440,23 @@ msgstr ""
"url=\"http://planetmath.org/encyclopedia/RowEchelonForm.html\">Planetmath</"
"ulink> (text je v angličtině)."
-#: C/genius.xml:6496(term)
+#: C/genius.xml:6534(term)
msgid "<anchor id=\"gel-function-rref\"/>rref"
msgstr "<anchor id=\"gel-function-rref\"/>rref"
-#: C/genius.xml:6498(synopsis)
+#: C/genius.xml:6536(synopsis)
#, no-wrap
msgid "rref (M)"
msgstr "rref (M)"
-#: C/genius.xml:6499(para)
+#: C/genius.xml:6537(para)
msgid ""
"Aliases: <function>RREF</function><function>ReducedRowEchelonForm</function>"
msgstr ""
"Alternativní názvy: <function>RREF</function> "
"<function>ReducedRowEchelonForm</function>"
-#: C/genius.xml:6500(para)
+#: C/genius.xml:6538(para)
msgid ""
"Get the reduced row echelon form of a matrix. That is, apply gaussian "
"elimination together with backaddition to <varname>M</varname>."
@@ -11422,7 +11464,7 @@ msgstr ""
"Získat redukovaný řádkově odstupňovaný tvar matice. To jest, použít Gaussovu "
"eliminaci se zpětným dosazováním do <varname>M</varname>."
-#: C/genius.xml:6501(para)
+#: C/genius.xml:6539(para)
msgid ""
"See <ulink url=\"http://en.wikipedia.org/wiki/Reduced_row_echelon_form"
"\">Wikipedia</ulink> or <ulink url=\"http://planetmath.org/encyclopedia/"
@@ -11433,24 +11475,24 @@ msgstr ""
"nebo <ulink url=\"http://planetmath.org/encyclopedia/ReducedRowEchelonForm."
"html\">Planetmath</ulink> (text je v angličtině)."
-#: C/genius.xml:6513(title)
+#: C/genius.xml:6551(title)
msgid "Combinatorics"
msgstr "Kombinatorika"
-#: C/genius.xml:6516(term)
+#: C/genius.xml:6554(term)
msgid "<anchor id=\"gel-function-Catalan\"/>Catalan"
msgstr "<anchor id=\"gel-function-Catalan\"/>Catalan"
-#: C/genius.xml:6518(synopsis)
+#: C/genius.xml:6556(synopsis)
#, no-wrap
msgid "Catalan (n)"
msgstr "Catalan (n)"
-#: C/genius.xml:6519(para)
+#: C/genius.xml:6557(para)
msgid "Get <varname>n</varname>th Catalan number."
msgstr "Získat <varname>n</varname>-té Catalanovo číslo."
-#: C/genius.xml:6520(para)
+#: C/genius.xml:6558(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/CatalanNumbers.html"
"\">Planetmath</ulink> for more information."
@@ -11460,16 +11502,16 @@ msgstr ""
"nebo <ulink url=\"http://cs.wikipedia.org/wiki/Catalanova_%C4%8D%C3%ADsla"
"\">Wikipedia</ulink>."
-#: C/genius.xml:6528(term)
+#: C/genius.xml:6566(term)
msgid "<anchor id=\"gel-function-Combinations\"/>Combinations"
msgstr "<anchor id=\"gel-function-Combinations\"/>Combinations"
-#: C/genius.xml:6530(synopsis)
+#: C/genius.xml:6568(synopsis)
#, no-wrap
msgid "Combinations (k,n)"
msgstr "Combinations (k,n)"
-#: C/genius.xml:6531(para)
+#: C/genius.xml:6569(para)
msgid ""
"Get all combinations of k numbers from 1 to n as a vector of vectors. (See "
"also <link linkend=\"gel-function-NextCombination\">NextCombination</link>)"
@@ -11477,20 +11519,20 @@ msgstr ""
"Získat jako vektor vektorů všechny kombinace k-té třídy z prvků 1 až n. (Viz "
"také <link linkend=\"gel-function-NextCombination\">NextCombination</link>)"
-#: C/genius.xml:6538(term)
+#: C/genius.xml:6576(term)
msgid "<anchor id=\"gel-function-DoubleFactorial\"/>DoubleFactorial"
msgstr "<anchor id=\"gel-function-DoubleFactorial\"/>DoubleFactorial"
-#: C/genius.xml:6540(synopsis)
+#: C/genius.xml:6578(synopsis)
#, no-wrap
msgid "DoubleFactorial (n)"
msgstr "DoubleFactorial (n)"
-#: C/genius.xml:6541(para)
+#: C/genius.xml:6579(para)
msgid "Double factorial: <userinput>n(n-2)(n-4)...</userinput>"
msgstr "Dvojitý faktoriál: <userinput>n(n-2)(n-4)…</userinput>"
-#: C/genius.xml:6542(para)
+#: C/genius.xml:6580(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/DoubleFactorial.html"
"\">Planetmath</ulink> for more information."
@@ -11499,20 +11541,20 @@ msgstr ""
"encyclopedia/DoubleFactorial.html\">Planetmath</ulink> (text je v "
"angličtině)."
-#: C/genius.xml:6550(term)
+#: C/genius.xml:6588(term)
msgid "<anchor id=\"gel-function-Factorial\"/>Factorial"
msgstr "<anchor id=\"gel-function-Factorial\"/>Factorial"
-#: C/genius.xml:6552(synopsis)
+#: C/genius.xml:6590(synopsis)
#, no-wrap
msgid "Factorial (n)"
msgstr "Factorial (n)"
-#: C/genius.xml:6553(para)
+#: C/genius.xml:6591(para)
msgid "Factorial: <userinput>n(n-1)(n-2)...</userinput>"
msgstr "Faktoriál: <userinput>n(n-1)(n-2)…</userinput>"
-#: C/genius.xml:6554(para)
+#: C/genius.xml:6592(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/Factorial.html"
"\">Planetmath</ulink> for more information."
@@ -11521,20 +11563,20 @@ msgstr ""
"encyclopedia/Factorial.html\">Planetmath</ulink> (text je v angličtině) nebo "
"<ulink url=\"http://cs.wikipedia.org/wiki/Faktori%C3%A1l\">Wikipedia</ulink>."
-#: C/genius.xml:6562(term)
+#: C/genius.xml:6600(term)
msgid "<anchor id=\"gel-function-FallingFactorial\"/>FallingFactorial"
msgstr "<anchor id=\"gel-function-FallingFactorial\"/>FallingFactorial"
-#: C/genius.xml:6564(synopsis)
+#: C/genius.xml:6602(synopsis)
#, no-wrap
msgid "FallingFactorial (n,k)"
msgstr "FallingFactorial (n,k)"
-#: C/genius.xml:6565(para)
+#: C/genius.xml:6603(para)
msgid "Falling factorial: <userinput>(n)_k = n(n-1)...(n-(k-1))</userinput>"
msgstr "Klesající faktoriál: <userinput>(n)_k = n(n-1)…(n-(k-1))</userinput>"
-#: C/genius.xml:6566(para)
+#: C/genius.xml:6604(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/FallingFactorial.html"
"\">Planetmath</ulink> for more information."
@@ -11543,30 +11585,31 @@ msgstr ""
"encyclopedia/FallingFactorial.html\">Planetmath</ulink> (text je v "
"angličtině)."
-#: C/genius.xml:6574(term)
+#: C/genius.xml:6612(term)
msgid "<anchor id=\"gel-function-Fibonacci\"/>Fibonacci"
msgstr "<anchor id=\"gel-function-Fibonacci\"/>Fibonacci"
-#: C/genius.xml:6576(synopsis)
+#: C/genius.xml:6614(synopsis)
#, no-wrap
msgid "Fibonacci (x)"
msgstr "Fibonacci (x)"
-#: C/genius.xml:6577(para)
+#: C/genius.xml:6615(para)
msgid "Aliases: <function>fib</function>"
msgstr "Alternativní názvy: <function>fib</function>"
-#: C/genius.xml:6578(para)
+#: C/genius.xml:6616(para)
msgid ""
"Calculate <varname>n</varname>th Fibonacci number. That is the number "
-"defined recursively by <userinput>Fibonacci(n) = Fibonacci(n-1) + Fibonacci"
-"(n-2)</userinput> and <userinput>Fibonacci(1) = Fibonacci(2) = 1</userinput>."
+"defined recursively by <userinput>Fibonacci(n) = Fibonacci(n-1) + "
+"Fibonacci(n-2)</userinput> and <userinput>Fibonacci(1) = Fibonacci(2) = 1</"
+"userinput>."
msgstr ""
"Vypočítat <varname>n</varname>-té Fibonacciho číslo. Tj. číslo definované "
"rekurzivně jako <userinput>Fibonacci(n) = Fibonacci(n-1) + Fibonacci(n-2)</"
"userinput> a <userinput>Fibonacci(1) = Fibonacci(2) = 1</userinput>."
-#: C/genius.xml:6585(para)
+#: C/genius.xml:6623(para)
msgid ""
"See <ulink url=\"http://en.wikipedia.org/wiki/Fibonacci_number\">Wikipedia</"
"ulink> or <ulink url=\"http://planetmath.org/encyclopedia/FibonacciSequence."
@@ -11579,16 +11622,16 @@ msgstr ""
"\">Mathworld</ulink> (text je v angličtině) nebo <ulink url=\"http://cs."
"wikipedia.org/wiki/Fibonacciho_posloupnost\">Wikipedia</ulink>."
-#: C/genius.xml:6595(term)
+#: C/genius.xml:6633(term)
msgid "<anchor id=\"gel-function-FrobeniusNumber\"/>FrobeniusNumber"
msgstr "<anchor id=\"gel-function-FrobeniusNumber\"/>FrobeniusNumber"
-#: C/genius.xml:6597(synopsis)
+#: C/genius.xml:6635(synopsis)
#, no-wrap
msgid "FrobeniusNumber (v,arg...)"
msgstr "FrobeniusNumber (v,arg...)"
-#: C/genius.xml:6598(para)
+#: C/genius.xml:6636(para)
msgid ""
"Calculate the Frobenius number. That is calculate smallest number that "
"cannot be given as a non-negative integer linear combination of a given "
@@ -11601,7 +11644,7 @@ msgstr ""
"jeden vektor. Všechna zadaná čísla by měla mít největšího společného "
"dělitele 1."
-#: C/genius.xml:6605(para)
+#: C/genius.xml:6643(para)
msgid ""
"See <ulink url=\"http://mathworld.wolfram.com/FrobeniusNumber.html"
"\">Mathworld</ulink> for more information."
@@ -11609,32 +11652,32 @@ msgstr ""
"Více informací najdete v encyklopedii <ulink url=\"http://mathworld.wolfram."
"com/FrobeniusNumber.html\">Mathworld</ulink> (text je v angličtině)."
-#: C/genius.xml:6613(term)
+#: C/genius.xml:6651(term)
msgid "<anchor id=\"gel-function-GaloisMatrix\"/>GaloisMatrix"
msgstr "<anchor id=\"gel-function-GaloisMatrix\"/>GaloisMatrix"
-#: C/genius.xml:6615(synopsis)
+#: C/genius.xml:6653(synopsis)
#, no-wrap
msgid "GaloisMatrix (combining_rule)"
msgstr "GaloisMatrix (kombinacni_pravidlo)"
-#: C/genius.xml:6616(para)
+#: C/genius.xml:6654(para)
msgid ""
"Galois matrix given a linear combining rule (a_1*x_+...+a_n*x_n=x_(n+1))."
msgstr ""
"Galoisova matice daná lineárním kombinačním pravidlem (a_1*x_+…+a_n*x_n=x_(n"
"+1))."
-#: C/genius.xml:6621(term)
+#: C/genius.xml:6659(term)
msgid "<anchor id=\"gel-function-GreedyAlgorithm\"/>GreedyAlgorithm"
msgstr "<anchor id=\"gel-function-GreedyAlgorithm\"/>GreedyAlgorithm"
-#: C/genius.xml:6623(synopsis)
+#: C/genius.xml:6661(synopsis)
#, no-wrap
msgid "FrobeniusNumber (n,v)"
msgstr "FrobeniusNumber (n,v)"
-#: C/genius.xml:6624(para)
+#: C/genius.xml:6662(para)
msgid ""
"Find the vector <varname>c</varname> of non-negative integers such that "
"taking the dot product with <varname>v</varname> is equal to n. If not "
@@ -11647,7 +11690,7 @@ msgstr ""
"by měl být předán seřazený ve vzestupném pořadí a měl by se skládat z "
"nezáporných celých čísel."
-#: C/genius.xml:6631(para)
+#: C/genius.xml:6669(para)
msgid ""
"See <ulink url=\"http://mathworld.wolfram.com/GreedyAlgorithm.html"
"\">Mathworld</ulink> for more information."
@@ -11657,20 +11700,20 @@ msgstr ""
"nebo <ulink url=\"http://cs.wikipedia.org/wiki/Hladov%C3%BD_algoritmus"
"\">Wikipedia</ulink>."
-#: C/genius.xml:6639(term)
+#: C/genius.xml:6677(term)
msgid "<anchor id=\"gel-function-HarmonicNumber\"/>HarmonicNumber"
msgstr "<anchor id=\"gel-function-HarmonicNumber\"/>HarmonicNumber"
-#: C/genius.xml:6641(synopsis)
+#: C/genius.xml:6679(synopsis)
#, no-wrap
msgid "HarmonicNumber (n,r)"
msgstr "HarmonicNumber (n,r)"
-#: C/genius.xml:6642(para)
+#: C/genius.xml:6680(para)
msgid "Aliases: <function>HarmonicH</function>"
msgstr "Alternativní názvy: <function>HarmonicH</function>"
-#: C/genius.xml:6643(para)
+#: C/genius.xml:6681(para)
msgid ""
"Harmonic Number, the <varname>n</varname>th harmonic number of order "
"<varname>r</varname>."
@@ -11678,48 +11721,48 @@ msgstr ""
"Harmonické číslo, <varname>n</varname>-té harmonické číslo řádu <varname>r</"
"varname>."
-#: C/genius.xml:6648(term)
+#: C/genius.xml:6686(term)
msgid "<anchor id=\"gel-function-Hofstadter\"/>Hofstadter"
msgstr "<anchor id=\"gel-function-Hofstadter\"/>Hofstadter"
-#: C/genius.xml:6650(synopsis)
+#: C/genius.xml:6688(synopsis)
#, no-wrap
msgid "Hofstadter (n)"
msgstr "Hofstadter (n)"
-#: C/genius.xml:6651(para)
+#: C/genius.xml:6689(para)
msgid ""
-"Hofstadter's function q(n) defined by q(1)=1, q(2)=1, q(n)=q(n-q(n-1))+q(n-q"
-"(n-2))."
+"Hofstadter's function q(n) defined by q(1)=1, q(2)=1, q(n)=q(n-q(n-1))+q(n-"
+"q(n-2))."
msgstr ""
-"Hofstadterova funkce q(n) definovaná jako q(1)=1, q(2)=1, q(n)=q(n-q(n-1))+q"
-"(n-q(n-2))"
+"Hofstadterova funkce q(n) definovaná jako q(1)=1, q(2)=1, q(n)=q(n-"
+"q(n-1))+q(n-q(n-2))"
-#: C/genius.xml:6656(term)
+#: C/genius.xml:6694(term)
msgid ""
"<anchor id=\"gel-function-LinearRecursiveSequence\"/>LinearRecursiveSequence"
msgstr ""
"<anchor id=\"gel-function-LinearRecursiveSequence\"/>LinearRecursiveSequence"
-#: C/genius.xml:6658(synopsis)
+#: C/genius.xml:6696(synopsis)
#, no-wrap
msgid "LinearRecursiveSequence (seed_values,combining_rule,n)"
msgstr "LinearRecursiveSequence (pocatecni_hodnoty,kombinacni_pravidlo,n)"
-#: C/genius.xml:6659(para)
+#: C/genius.xml:6697(para)
msgid "Compute linear recursive sequence using Galois stepping."
msgstr "Spočítat lineární rekurzivní posloupnost pomocí Galoisova krokování."
-#: C/genius.xml:6664(term)
+#: C/genius.xml:6702(term)
msgid "<anchor id=\"gel-function-Multinomial\"/>Multinomial"
msgstr "<anchor id=\"gel-function-Multinomial\"/>Multinomial"
-#: C/genius.xml:6666(synopsis)
+#: C/genius.xml:6704(synopsis)
#, no-wrap
msgid "Multinomial (v,arg...)"
msgstr "Multinomial (v,arg...)"
-#: C/genius.xml:6667(para)
+#: C/genius.xml:6705(para)
msgid ""
"Calculate multinomial coefficients. Takes a vector of <varname>k</varname> "
"non-negative integers and computes the multinomial coefficient. This "
@@ -11731,12 +11774,12 @@ msgstr ""
"koeficientu v homogenním polynomu v <varname>k</varname> proměnných s "
"odpovídajícími mocninami."
-#: C/genius.xml:6676(programlisting)
+#: C/genius.xml:6714(programlisting)
#, no-wrap
msgid "(a+b+c)! / (a!b!c!)\n"
msgstr "(a+b+c)! / (a!b!c!)\n"
-#: C/genius.xml:6673(para)
+#: C/genius.xml:6711(para)
msgid ""
"The formula for <userinput>Multinomial(a,b,c)</userinput> can be written as: "
"<placeholder-1/> In other words, if we would have only two elements, then "
@@ -11750,7 +11793,7 @@ msgstr ""
"<userinput>Binomial(a+b,a)</userinput> nebo <userinput>Binomial(a+b,b)</"
"userinput>."
-#: C/genius.xml:6683(para)
+#: C/genius.xml:6721(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/MultinomialTheorem.html"
"\">Planetmath</ulink>, <ulink url=\"http://mathworld.wolfram.com/"
@@ -11765,16 +11808,16 @@ msgstr ""
"<ulink url=\"http://cs.wikipedia.org/wiki/Multinomick%C3%A1_v%C4%9Bta"
"\">Wikipedia</ulink>."
-#: C/genius.xml:6693(term)
+#: C/genius.xml:6731(term)
msgid "<anchor id=\"gel-function-NextCombination\"/>NextCombination"
msgstr "<anchor id=\"gel-function-NextCombination\"/>NextCombination"
-#: C/genius.xml:6695(synopsis)
+#: C/genius.xml:6733(synopsis)
#, no-wrap
msgid "NextCombination (v,n)"
msgstr "NextCombination (v,n)"
-#: C/genius.xml:6696(para)
+#: C/genius.xml:6734(para)
msgid ""
"Get combination that would come after v in call to combinations, first "
"combination should be <userinput>[1:k]</userinput>. This function is useful "
@@ -11786,7 +11829,7 @@ msgstr ""
"To je užitečné, pokud máte hodně kombinací, které chcete projít a nechcete "
"plýtvat pamětí na uložení všech."
-#: C/genius.xml:6701(para)
+#: C/genius.xml:6739(para)
msgid ""
"For example with Combination you would normally write a loop like: "
"<screen><userinput>for n in Combinations (4,6) do (\n"
@@ -11812,16 +11855,16 @@ msgstr ""
"</screen> Viz <link linkend=\"gel-function-Combinations\">Combinations</"
"link>."
-#: C/genius.xml:6719(term)
+#: C/genius.xml:6757(term)
msgid "<anchor id=\"gel-function-Pascal\"/>Pascal"
msgstr "<anchor id=\"gel-function-Pascal\"/>Pascal"
-#: C/genius.xml:6721(synopsis)
+#: C/genius.xml:6759(synopsis)
#, no-wrap
msgid "Pascal (i)"
msgstr "Pascal (i)"
-#: C/genius.xml:6722(para)
+#: C/genius.xml:6760(para)
msgid ""
"Get the Pascal's triangle as a matrix. This will return an <varname>i</"
"varname>+1 by <varname>i</varname>+1 lower diagonal matrix which is the "
@@ -11831,7 +11874,7 @@ msgstr ""
"matici <varname>i</varname>+1 krát <varname>i</varname>+1, která je "
"Pascalovým trojúhelníkem po <varname>i</varname> iteracích."
-#: C/genius.xml:6726(para)
+#: C/genius.xml:6764(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/PascalsTriangle.html"
"\">Planetmath</ulink> for more information."
@@ -11841,16 +11884,16 @@ msgstr ""
"angličtině) nebo <ulink url=\"http://cs.wikipedia.org/wiki/Pascal%C5%AFv_troj"
"%C3%BAheln%C3%ADk\">Wikipedia</ulink>."
-#: C/genius.xml:6734(term)
+#: C/genius.xml:6772(term)
msgid "<anchor id=\"gel-function-Permutations\"/>Permutations"
msgstr "<anchor id=\"gel-function-Permutations\"/>Permutations"
-#: C/genius.xml:6736(synopsis)
+#: C/genius.xml:6774(synopsis)
#, no-wrap
msgid "Permutations (k,n)"
msgstr "Permutations (k,n)"
-#: C/genius.xml:6737(para)
+#: C/genius.xml:6775(para)
msgid ""
"Get all permutations of <varname>k</varname> numbers from 1 to <varname>n</"
"varname> as a vector of vectors."
@@ -11859,7 +11902,7 @@ msgstr ""
"prvků 1 až <varname>n</varname> prvků, případně permutace pro <varname>k</"
"varname>=<varname>n</varname>."
-#: C/genius.xml:6738(para) C/genius.xml:6827(para)
+#: C/genius.xml:6776(para) C/genius.xml:6865(para)
msgid ""
"See <ulink url=\"http://mathworld.wolfram.com/Permutation.html\">Mathworld</"
"ulink> or <ulink url=\"http://en.wikipedia.org/wiki/Permutation\">Wikipedia</"
@@ -11871,24 +11914,24 @@ msgstr ""
"(permutace) a <ulink url=\"http://cs.wikipedia.org/wiki/Variace_"
"%28kombinatorika%29\">Wikipedia</ulink> (variace)."
-#: C/genius.xml:6747(term)
+#: C/genius.xml:6785(term)
msgid "<anchor id=\"gel-function-RisingFactorial\"/>RisingFactorial"
msgstr "<anchor id=\"gel-function-RisingFactorial\"/>RisingFactorial"
-#: C/genius.xml:6749(synopsis)
+#: C/genius.xml:6787(synopsis)
#, no-wrap
msgid "RisingFactorial (n,k)"
msgstr "RisingFactorial (n,k)"
-#: C/genius.xml:6750(para)
+#: C/genius.xml:6788(para)
msgid "Aliases: <function>Pochhammer</function>"
msgstr "Alternativní názvy: <function>Pochhammer</function>"
-#: C/genius.xml:6751(para)
+#: C/genius.xml:6789(para)
msgid "(Pochhammer) Rising factorial: (n)_k = n(n+1)...(n+(k-1))."
msgstr "(Pochhammerův) stoupacící faktoriál: (n)_k = n(n+1)…(n+(k-1))"
-#: C/genius.xml:6752(para)
+#: C/genius.xml:6790(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/RisingFactorial.html"
"\">Planetmath</ulink> for more information."
@@ -11897,24 +11940,24 @@ msgstr ""
"encyclopedia/RisingFactorial.html\">Planetmath</ulink> (text je v "
"angličtině)."
-#: C/genius.xml:6760(term)
+#: C/genius.xml:6798(term)
msgid "<anchor id=\"gel-function-StirlingNumberFirst\"/>StirlingNumberFirst"
msgstr "<anchor id=\"gel-function-StirlingNumberFirst\"/>StirlingNumberFirst"
-#: C/genius.xml:6762(synopsis)
+#: C/genius.xml:6800(synopsis)
#, no-wrap
msgid "StirlingNumberFirst (n,m)"
msgstr "StirlingNumberFirst (n,m)"
-#: C/genius.xml:6763(para)
+#: C/genius.xml:6801(para)
msgid "Aliases: <function>StirlingS1</function>"
msgstr "Alternativní názvy: <function>StirlingS1</function>"
-#: C/genius.xml:6764(para)
+#: C/genius.xml:6802(para)
msgid "Stirling number of the first kind."
msgstr "Stirlingovo číslo prvního druhu."
-#: C/genius.xml:6765(para)
+#: C/genius.xml:6803(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/"
"StirlingNumbersOfTheFirstKind.html\">Planetmath</ulink> or <ulink url="
@@ -11926,24 +11969,24 @@ msgstr ""
"je v angličtině) nebo <ulink url=\"http://mathworld.wolfram.com/"
"StirlingNumberoftheFirstKind.html\">Mathworld</ulink> (text je v angličtině)."
-#: C/genius.xml:6774(term)
+#: C/genius.xml:6812(term)
msgid "<anchor id=\"gel-function-StirlingNumberSecond\"/>StirlingNumberSecond"
msgstr "<anchor id=\"gel-function-StirlingNumberSecond\"/>StirlingNumberSecond"
-#: C/genius.xml:6776(synopsis)
+#: C/genius.xml:6814(synopsis)
#, no-wrap
msgid "StirlingNumberSecond (n,m)"
msgstr "StirlingNumberSecond (n,m)"
-#: C/genius.xml:6777(para)
+#: C/genius.xml:6815(para)
msgid "Aliases: <function>StirlingS2</function>"
msgstr "Alternativní názvy: <function>StirlingS2</function>"
-#: C/genius.xml:6778(para)
+#: C/genius.xml:6816(para)
msgid "Stirling number of the second kind."
msgstr "Stirlingovo číslo druhého druhu."
-#: C/genius.xml:6779(para)
+#: C/genius.xml:6817(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/"
"StirlingNumbersSecondKind.html\">Planetmath</ulink> or <ulink url=\"http://"
@@ -11956,33 +11999,33 @@ msgstr ""
"StirlingNumberoftheSecondKind.html\">Mathworld</ulink> (text je v "
"angličtině)."
-#: C/genius.xml:6788(term)
+#: C/genius.xml:6826(term)
msgid "<anchor id=\"gel-function-Subfactorial\"/>Subfactorial"
msgstr "<anchor id=\"gel-function-Subfactorial\"/>Subfactorial"
-#: C/genius.xml:6790(synopsis)
+#: C/genius.xml:6828(synopsis)
#, no-wrap
msgid "Subfactorial (n)"
msgstr "Subfactorial (n)"
-#: C/genius.xml:6791(para)
+#: C/genius.xml:6829(para)
msgid "Subfactorial: n! times sum_{k=1}^n (-1)^k/k!."
msgstr "Subfaktoriál: n! krát suma_{k=1}^n (-1)^k/k!"
-#: C/genius.xml:6796(term)
+#: C/genius.xml:6834(term)
msgid "<anchor id=\"gel-function-Triangular\"/>Triangular"
msgstr "<anchor id=\"gel-function-Triangular\"/>Triangular"
-#: C/genius.xml:6798(synopsis)
+#: C/genius.xml:6836(synopsis)
#, no-wrap
msgid "Triangular (nth)"
msgstr "Triangular (n)"
-#: C/genius.xml:6799(para)
+#: C/genius.xml:6837(para)
msgid "Calculate the <varname>n</varname>th triangular number."
msgstr "Spočítat <varname>n</varname>-té trojúhelníkové číslo."
-#: C/genius.xml:6800(para)
+#: C/genius.xml:6838(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/TriangularNumbers.html"
"\">Planetmath</ulink> for more information."
@@ -11992,20 +12035,20 @@ msgstr ""
"angličtině) nebo <ulink url=\"http://cs.wikipedia.org/wiki/Troj%C3%BAheln"
"%C3%ADkov%C3%A9_%C4%8D%C3%ADslo\">Wikipedia</ulink>."
-#: C/genius.xml:6808(term)
+#: C/genius.xml:6846(term)
msgid "<anchor id=\"gel-function-nCr\"/>nCr"
msgstr "<anchor id=\"gel-function-nCr\"/>nCr"
-#: C/genius.xml:6810(synopsis)
+#: C/genius.xml:6848(synopsis)
#, no-wrap
msgid "nCr (n,r)"
msgstr "nCr (n,r)"
-#: C/genius.xml:6811(para)
+#: C/genius.xml:6849(para)
msgid "Aliases: <function>Binomial</function>"
msgstr "Alternativní názvy: <function>Binomial</function>"
-#: C/genius.xml:6812(para)
+#: C/genius.xml:6850(para)
msgid ""
"Calculate combinations, that is, the binomial coefficient. <varname>n</"
"varname> can be any real number."
@@ -12013,7 +12056,7 @@ msgstr ""
"Spočítat kombinace, tj. kombinační číslo. <varname>n</varname> může být "
"libovolné reálné číslo."
-#: C/genius.xml:6814(para)
+#: C/genius.xml:6852(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/Choose.html"
"\">Planetmath</ulink> for more information."
@@ -12023,16 +12066,16 @@ msgstr ""
"<ulink url=\"http://cs.wikipedia.org/wiki/Kombina%C4%8Dn%C3%AD_%C4%8D"
"%C3%ADslo\">Wikipedia</ulink>."
-#: C/genius.xml:6822(term)
+#: C/genius.xml:6860(term)
msgid "<anchor id=\"gel-function-nPr\"/>nPr"
msgstr "<anchor id=\"gel-function-nPr\"/>nPr"
-#: C/genius.xml:6824(synopsis)
+#: C/genius.xml:6862(synopsis)
#, no-wrap
msgid "nPr (n,r)"
msgstr "nPr (n,k)"
-#: C/genius.xml:6825(para)
+#: C/genius.xml:6863(para)
msgid ""
"Calculate the number of permutations of size <varname>r</varname>of numbers "
"from 1 to <varname>n</varname>."
@@ -12041,22 +12084,22 @@ msgstr ""
"<varname>n</varname>, respektive počet permutací při <varname>k</varname> "
"rovno <varname>n</varname>."
-#: C/genius.xml:6839(title)
+#: C/genius.xml:6877(title)
msgid "Calculus"
msgstr "Diferenciální/integrální počet "
-#: C/genius.xml:6842(term)
+#: C/genius.xml:6880(term)
msgid ""
"<anchor id=\"gel-function-CompositeSimpsonsRule\"/>CompositeSimpsonsRule"
msgstr ""
"<anchor id=\"gel-function-CompositeSimpsonsRule\"/>CompositeSimpsonsRule"
-#: C/genius.xml:6844(synopsis)
+#: C/genius.xml:6882(synopsis)
#, no-wrap
msgid "CompositeSimpsonsRule (f,a,b,n)"
msgstr "CompositeSimpsonsRule (f,a,b,n)"
-#: C/genius.xml:6845(para)
+#: C/genius.xml:6883(para)
msgid ""
"Integration of f by Composite Simpson's Rule on the interval [a,b] with n "
"subintervals with error of max(f'''')*h^4*(b-a)/180, note that n should be "
@@ -12066,7 +12109,7 @@ msgstr ""
"podintervaly s chybou podle max(f'''')*h^4*(b-a)/180. Upozorňujeme, že n by "
"mělo být sudé."
-#: C/genius.xml:6846(para) C/genius.xml:6858(para)
+#: C/genius.xml:6884(para) C/genius.xml:6896(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/SimpsonsRule.html"
"\">Planetmath</ulink> for more information."
@@ -12074,7 +12117,7 @@ msgstr ""
"Více informací najdete v encyklopedii <ulink url=\"http://planetmath.org/"
"encyclopedia/SimpsonsRule.html\">Planetmath</ulink> (text je v angličtině)."
-#: C/genius.xml:6854(term)
+#: C/genius.xml:6892(term)
msgid ""
"<anchor id=\"gel-function-CompositeSimpsonsRuleTolerance\"/"
">CompositeSimpsonsRuleTolerance"
@@ -12082,12 +12125,12 @@ msgstr ""
"<anchor id=\"gel-function-CompositeSimpsonsRuleTolerance\"/"
">CompositeSimpsonsRuleTolerance"
-#: C/genius.xml:6856(synopsis)
+#: C/genius.xml:6894(synopsis)
#, no-wrap
msgid "CompositeSimpsonsRuleTolerance (f,a,b,FourthDerivativeBound,Tolerance)"
msgstr "CompositeSimpsonsRuleTolerance (f,a,b,omezeni_ctvrte_derivace,tolerance)"
-#: C/genius.xml:6857(para)
+#: C/genius.xml:6895(para)
msgid ""
"Integration of f by Composite Simpson's Rule on the interval [a,b] with the "
"number of steps calculated by the fourth derivative bound and the desired "
@@ -12096,33 +12139,33 @@ msgstr ""
"Integrovat f složeným Simpsonovým pravidlem na intervalu [a,b] s počtem "
"kroků počítaným podle omezení čtvrté derivace a podle požadované tolerance."
-#: C/genius.xml:6866(term)
+#: C/genius.xml:6904(term)
msgid "<anchor id=\"gel-function-Derivative\"/>Derivative"
msgstr "<anchor id=\"gel-function-Derivative\"/>Derivative"
-#: C/genius.xml:6868(synopsis)
+#: C/genius.xml:6906(synopsis)
#, no-wrap
msgid "Derivative (f,x0)"
msgstr "Derivative (f,x0)"
-#: C/genius.xml:6869(para)
+#: C/genius.xml:6907(para)
msgid ""
"Attempt to calculate derivative by trying first symbolically and then "
"numerically."
msgstr "Zkusit spočítat derivaci, nejprve symbolicky a pak numericky."
-#: C/genius.xml:6874(term)
+#: C/genius.xml:6912(term)
msgid ""
"<anchor id=\"gel-function-EvenPeriodicExtension\"/>EvenPeriodicExtension"
msgstr ""
"<anchor id=\"gel-function-EvenPeriodicExtension\"/>EvenPeriodicExtension"
-#: C/genius.xml:6876(synopsis)
+#: C/genius.xml:6914(synopsis)
#, no-wrap
msgid "EvenPeriodicExtension (f,L)"
msgstr "EvenPeriodicExtension (f,L)"
-#: C/genius.xml:6877(para)
+#: C/genius.xml:6915(para)
msgid ""
"Return a function which is even periodic extension of <function>f</function> "
"with half period <varname>L</varname>. That is a function defined on the "
@@ -12136,7 +12179,7 @@ msgstr ""
"<userinput>[-L,L]</userinput> a pak rozšířená, aby byla periodická s "
"periodou <userinput>2*L</userinput>."
-#: C/genius.xml:6882(para)
+#: C/genius.xml:6920(para)
msgid ""
"See also <link linkend=\"gel-function-OddPeriodicExtension"
"\">OddPeriodicExtension</link> and <link linkend=\"gel-function-"
@@ -12146,36 +12189,37 @@ msgstr ""
"\">OddPeriodicExtension</link> a <link linkend=\"gel-function-"
"PeriodicExtension\">PeriodicExtension</link>."
-#: C/genius.xml:6892(term)
+#: C/genius.xml:6930(term)
msgid ""
"<anchor id=\"gel-function-FourierSeriesFunction\"/>FourierSeriesFunction"
msgstr ""
"<anchor id=\"gel-function-FourierSeriesFunction\"/>FourierSeriesFunction"
-#: C/genius.xml:6894(synopsis)
+#: C/genius.xml:6932(synopsis)
#, no-wrap
msgid "FourierSeriesFunction (a,b,L)"
msgstr "FourierSeriesFunction (a,b,L)"
-#: C/genius.xml:6895(para)
+#: C/genius.xml:6933(para)
msgid ""
"Return a function which is a Fourier series with the coefficients given by "
"the vectors <varname>a</varname> (sines) and <varname>b</varname> (cosines). "
"Note that <userinput>a@(1)</userinput> is the constant coefficient! That is, "
-"<userinput>a@(n)</userinput> refers to the term <userinput>cos(x*(n-1)*pi/L)"
-"</userinput>, while <userinput>b@(n)</userinput> refers to the term "
+"<userinput>a@(n)</userinput> refers to the term <userinput>cos(x*(n-1)*pi/"
+"L)</userinput>, while <userinput>b@(n)</userinput> refers to the term "
"<userinput>sin(x*n*pi/L)</userinput>. Either <varname>a</varname> or "
"<varname>b</varname> can be <constant>null</constant>."
msgstr ""
"Vrátit funkci, která je Fourierovu řadou s koeficienty danými vektory "
"<varname>a</varname> (sinové) a <varname>b</varname> (kosinové). Vezměte na "
"vědomí, že <userinput>a@(1)</userinput> je konstantní koeficient! To "
-"znamená, že <userinput>a@(n)</userinput> odkazuje na člen <userinput>cos(x*"
-"(n-1)*pi/L)</userinput>, zatímco <userinput>b@(n)</userinput> odkazuje na "
-"člen <userinput>sin(x*n*pi/L)</userinput>. Buďto <varname>a</varname> nebo "
-"<varname>b</varname> může být <constant>null</constant>."
+"znamená, že <userinput>a@(n)</userinput> odkazuje na člen "
+"<userinput>cos(x*(n-1)*pi/L)</userinput>, zatímco <userinput>b@(n)</"
+"userinput> odkazuje na člen <userinput>sin(x*n*pi/L)</userinput>. Buďto "
+"<varname>a</varname> nebo <varname>b</varname> může být <constant>null</"
+"constant>."
-#: C/genius.xml:6903(para) C/genius.xml:7005(para) C/genius.xml:7024(para)
+#: C/genius.xml:6941(para) C/genius.xml:7043(para) C/genius.xml:7062(para)
msgid ""
"See <ulink url=\"http://en.wikipedia.org/wiki/Fourier_series\">Wikipedia</"
"ulink> or <ulink url=\"http://mathworld.wolfram.com/FourierSeries.html"
@@ -12186,74 +12230,74 @@ msgstr ""
"nebo <ulink url=\"http://cs.wikipedia.org/wiki/Fourierova_%C5%99ada"
"\">Wikipedia</ulink>."
-#: C/genius.xml:6912(term)
+#: C/genius.xml:6950(term)
msgid "<anchor id=\"gel-function-InfiniteProduct\"/>InfiniteProduct"
msgstr "<anchor id=\"gel-function-InfiniteProduct\"/>InfiniteProduct"
-#: C/genius.xml:6914(synopsis)
+#: C/genius.xml:6952(synopsis)
#, no-wrap
msgid "InfiniteProduct (func,start,inc)"
msgstr "InfiniteProduct (fce,start,prirustek)"
-#: C/genius.xml:6915(para)
+#: C/genius.xml:6953(para)
msgid "Try to calculate an infinite product for a single parameter function."
msgstr "Zkusit spočítat nekonečný součin funkce s jedním parametrem."
-#: C/genius.xml:6920(term)
+#: C/genius.xml:6958(term)
msgid "<anchor id=\"gel-function-InfiniteProduct2\"/>InfiniteProduct2"
msgstr "<anchor id=\"gel-function-InfiniteProduct2\"/>InfiniteProduct2"
-#: C/genius.xml:6922(synopsis)
+#: C/genius.xml:6960(synopsis)
#, no-wrap
msgid "InfiniteProduct2 (func,arg,start,inc)"
msgstr "InfiniteProduct2 (fce,arg,start,prirustek)"
-#: C/genius.xml:6923(para)
+#: C/genius.xml:6961(para)
msgid ""
"Try to calculate an infinite product for a double parameter function with "
"func(arg,n)."
msgstr ""
"Zkusit spočítat nekonečný součin funkce se dvěma parametry s fce (arg,n)."
-#: C/genius.xml:6928(term)
+#: C/genius.xml:6966(term)
msgid "<anchor id=\"gel-function-InfiniteSum\"/>InfiniteSum"
msgstr "<anchor id=\"gel-function-InfiniteSum\"/>InfiniteSum"
-#: C/genius.xml:6930(synopsis)
+#: C/genius.xml:6968(synopsis)
#, no-wrap
msgid "InfiniteSum (func,start,inc)"
msgstr "InfiniteSum (fce,start,prirustek)"
-#: C/genius.xml:6931(para)
+#: C/genius.xml:6969(para)
msgid "Try to calculate an infinite sum for a single parameter function."
msgstr "Zkusit spočítat nekonečný součet funkce s jedním parametrem."
-#: C/genius.xml:6936(term)
+#: C/genius.xml:6974(term)
msgid "<anchor id=\"gel-function-InfiniteSum2\"/>InfiniteSum2"
msgstr "<anchor id=\"gel-function-InfiniteSum2\"/>InfiniteSum2"
-#: C/genius.xml:6938(synopsis)
+#: C/genius.xml:6976(synopsis)
#, no-wrap
msgid "InfiniteSum2 (func,arg,start,inc)"
msgstr "InfiniteSum2 (fce,arg,start,prirustek)"
-#: C/genius.xml:6939(para)
+#: C/genius.xml:6977(para)
msgid ""
-"Try to calculate an infinite sum for a double parameter function with func"
-"(arg,n)."
+"Try to calculate an infinite sum for a double parameter function with "
+"func(arg,n)."
msgstr ""
"Zkusit spočítat nekonečný součet funkce se dvěma parametry s fce (arg,n)."
-#: C/genius.xml:6944(term)
+#: C/genius.xml:6982(term)
msgid "<anchor id=\"gel-function-IsContinuous\"/>IsContinuous"
msgstr "<anchor id=\"gel-function-IsContinuous\"/>IsContinuous"
-#: C/genius.xml:6946(synopsis)
+#: C/genius.xml:6984(synopsis)
#, no-wrap
msgid "IsContinuous (f,x0)"
msgstr "IsContinuous (f,x0)"
-#: C/genius.xml:6947(para)
+#: C/genius.xml:6985(para)
msgid ""
"Try and see if a real-valued function is continuous at x0 by calculating the "
"limit there."
@@ -12261,45 +12305,45 @@ msgstr ""
"Zkusit zjistit pomocí výpočtu limity v x0, jestli je funkce reálné proměnné "
"v tomto bodě spojitá."
-#: C/genius.xml:6952(term)
+#: C/genius.xml:6990(term)
msgid "<anchor id=\"gel-function-IsDifferentiable\"/>IsDifferentiable"
msgstr "<anchor id=\"gel-function-IsDifferentiable\"/>IsDifferentiable"
-#: C/genius.xml:6954(synopsis)
+#: C/genius.xml:6992(synopsis)
#, no-wrap
msgid "IsDifferentiable (f,x0)"
msgstr "IsDifferentiable (f,x0)"
-#: C/genius.xml:6955(para)
+#: C/genius.xml:6993(para)
msgid ""
"Test for differentiability by approximating the left and right limits and "
"comparing."
msgstr ""
"Otestovat na diferencovatelnost aproximací limit zleva a zprava a porovnáním."
-#: C/genius.xml:6960(term)
+#: C/genius.xml:6998(term)
msgid "<anchor id=\"gel-function-LeftLimit\"/>LeftLimit"
msgstr "<anchor id=\"gel-function-LeftLimit\"/>LeftLimit"
-#: C/genius.xml:6962(synopsis)
+#: C/genius.xml:7000(synopsis)
#, no-wrap
msgid "LeftLimit (f,x0)"
msgstr "LeftLimit (f,x0)"
-#: C/genius.xml:6963(para)
+#: C/genius.xml:7001(para)
msgid "Calculate the left limit of a real-valued function at x0."
msgstr "Spočítat limitu zleva funkce reálné proměnné v x0."
-#: C/genius.xml:6968(term)
+#: C/genius.xml:7006(term)
msgid "<anchor id=\"gel-function-Limit\"/>Limit"
msgstr "<anchor id=\"gel-function-Limit\"/>Limit"
-#: C/genius.xml:6970(synopsis)
+#: C/genius.xml:7008(synopsis)
#, no-wrap
msgid "Limit (f,x0)"
msgstr "Limit (f,x0)"
-#: C/genius.xml:6971(para)
+#: C/genius.xml:7009(para)
msgid ""
"Calculate the limit of a real-valued function at x0. Tries to calculate both "
"left and right limits."
@@ -12307,37 +12351,37 @@ msgstr ""
"Spočítat limitu funkce reálné proměnné v x0. Zkusí vypočítat limitu zleva i "
"zprava."
-#: C/genius.xml:6976(term)
+#: C/genius.xml:7014(term)
msgid "<anchor id=\"gel-function-MidpointRule\"/>MidpointRule"
msgstr "<anchor id=\"gel-function-MidpointRule\"/>MidpointRule"
-#: C/genius.xml:6978(synopsis)
+#: C/genius.xml:7016(synopsis)
#, no-wrap
msgid "MidpointRule (f,a,b,n)"
msgstr "MidpointRule (f,a,b,n)"
-#: C/genius.xml:6979(para)
+#: C/genius.xml:7017(para)
msgid "Integration by midpoint rule."
msgstr "Integrovat trojúhelníkovou metodou (pravidlem prostředního bodu)."
-#: C/genius.xml:6984(term)
+#: C/genius.xml:7022(term)
msgid "<anchor id=\"gel-function-NumericalDerivative\"/>NumericalDerivative"
msgstr "<anchor id=\"gel-function-NumericalDerivative\"/>NumericalDerivative"
-#: C/genius.xml:6986(synopsis)
+#: C/genius.xml:7024(synopsis)
#, no-wrap
msgid "NumericalDerivative (f,x0)"
msgstr "NumericalDerivative (f,x0)"
-#: C/genius.xml:6987(para)
+#: C/genius.xml:7025(para)
msgid "Aliases: <function>NDerivative</function>"
msgstr "Alternativní názvy: <function>NDerivative</function>"
-#: C/genius.xml:6988(para)
+#: C/genius.xml:7026(para)
msgid "Attempt to calculate numerical derivative."
msgstr "Zkusit vypočítat numerickou derivaci."
-#: C/genius.xml:6993(term)
+#: C/genius.xml:7031(term)
msgid ""
"<anchor id=\"gel-function-NumericalFourierSeriesCoefficients\"/"
">NumericalFourierSeriesCoefficients"
@@ -12345,12 +12389,12 @@ msgstr ""
"<anchor id=\"gel-function-NumericalFourierSeriesCoefficients\"/"
">NumericalFourierSeriesCoefficients"
-#: C/genius.xml:6995(synopsis)
+#: C/genius.xml:7033(synopsis)
#, no-wrap
msgid "NumericalFourierSeriesCoefficients (f,L,N)"
msgstr "NumericalFourierSeriesCoefficients (f,L,N)"
-#: C/genius.xml:6996(para)
+#: C/genius.xml:7034(para)
msgid ""
"Return a vector of vectors <userinput>[a,b]</userinput> where <varname>a</"
"varname> are the cosine coefficients and <varname>b</varname> are the sine "
@@ -12370,7 +12414,7 @@ msgstr ""
"pomocí <link linkend=\"gel-function-NumericalIntegral"
"\"><function>NumericalIntegral</function></link>."
-#: C/genius.xml:7014(term)
+#: C/genius.xml:7052(term)
msgid ""
"<anchor id=\"gel-function-NumericalFourierSeriesFunction\"/"
">NumericalFourierSeriesFunction"
@@ -12378,12 +12422,12 @@ msgstr ""
"<anchor id=\"gel-function-NumericalFourierSeriesFunction\"/"
">NumericalFourierSeriesFunction"
-#: C/genius.xml:7016(synopsis)
+#: C/genius.xml:7054(synopsis)
#, no-wrap
msgid "NumericalFourierSeriesFunction (f,L,N)"
msgstr "NumericalFourierSeriesFunction (f,L,N)"
-#: C/genius.xml:7017(para)
+#: C/genius.xml:7055(para)
msgid ""
"Return a function which is the Fourier series of <function>f</function> with "
"half-period <varname>L</varname> (that is defined on <userinput>[-L,L]</"
@@ -12394,14 +12438,14 @@ msgid ""
"\"><function>NumericalIntegral</function></link>."
msgstr ""
"Vrátit funkci, která je Fourierovou řadou funkce <function>f</function> s "
-"poloviční periodou <varname>L</varname> (tj. definovanou na <userinput>[-L,L]"
-"</userinput> a periodicky rozšířenou) s numericky spočítanými koeficienty do "
-"<varname>N</varname>-té harmonické. Jde o čistě trigonometrickou řadu "
+"poloviční periodou <varname>L</varname> (tj. definovanou na <userinput>[-L,"
+"L]</userinput> a periodicky rozšířenou) s numericky spočítanými koeficienty "
+"do <varname>N</varname>-té harmonické. Jde o čistě trigonometrickou řadu "
"složenou ze sinů a kosinů. Koeficienty jsou spočítány numerickou integrací "
"pomocí <link linkend=\"gel-function-NumericalIntegral"
"\"><function>NumericalIntegral</function></link>."
-#: C/genius.xml:7033(term)
+#: C/genius.xml:7071(term)
msgid ""
"<anchor id=\"gel-function-NumericalFourierCosineSeriesCoefficients\"/"
">NumericalFourierCosineSeriesCoefficients"
@@ -12409,12 +12453,12 @@ msgstr ""
"<anchor id=\"gel-function-NumericalFourierCosineSeriesCoefficients\"/"
">NumericalFourierCosineSeriesCoefficients"
-#: C/genius.xml:7035(synopsis)
+#: C/genius.xml:7073(synopsis)
#, no-wrap
msgid "NumericalFourierCosineSeriesCoefficients (f,L,N)"
msgstr "NumericalFourierCosineSeriesCoefficients (f,L,N)"
-#: C/genius.xml:7036(para)
+#: C/genius.xml:7074(para)
msgid ""
"Return a vector of coefficients of the cosine Fourier series of <function>f</"
"function> with half-period <varname>L</varname>. That is, we take "
@@ -12424,8 +12468,8 @@ msgid ""
"coefficients are computed by numerical integration using <link linkend=\"gel-"
"function-NumericalIntegral\"><function>NumericalIntegral</function></link>. "
"Note that <userinput>a@(1)</userinput> is the constant coefficient! That is, "
-"<userinput>a@(n)</userinput> refers to the term <userinput>cos(x*(n-1)*pi/L)"
-"</userinput>."
+"<userinput>a@(n)</userinput> refers to the term <userinput>cos(x*(n-1)*pi/"
+"L)</userinput>."
msgstr ""
"Vrátit vektor koeficientů kosinové Fourierovy řady funkce <function>f</"
"function> s poloviční periodou <varname>L</varname>. To jest, vezmeme funkci "
@@ -12438,7 +12482,7 @@ msgstr ""
"konstantní koeficient! To znamená, že <userinput>a@(n)</userinput> odkazuje "
"na člen <userinput>cos(x*(n-1)*pi/L)</userinput>."
-#: C/genius.xml:7048(para) C/genius.xml:7068(para)
+#: C/genius.xml:7086(para) C/genius.xml:7106(para)
msgid ""
"See <ulink url=\"http://en.wikipedia.org/wiki/Fourier_series\">Wikipedia</"
"ulink> or <ulink url=\"http://mathworld.wolfram.com/FourierCosineSeries.html"
@@ -12449,7 +12493,7 @@ msgstr ""
"angličtině) nebo <ulink url=\"http://cs.wikipedia.org/wiki/Fourierova_"
"%C5%99ada\">Wikipedia</ulink>."
-#: C/genius.xml:7057(term)
+#: C/genius.xml:7095(term)
msgid ""
"<anchor id=\"gel-function-NumericalFourierCosineSeriesFunction\"/"
">NumericalFourierCosineSeriesFunction"
@@ -12457,12 +12501,12 @@ msgstr ""
"<anchor id=\"gel-function-NumericalFourierCosineSeriesFunction\"/"
">NumericalFourierCosineSeriesFunction"
-#: C/genius.xml:7059(synopsis)
+#: C/genius.xml:7097(synopsis)
#, no-wrap
msgid "NumericalFourierCosineSeriesFunction (f,L,N)"
msgstr "NumericalFourierCosineSeriesFunction (f,L,N)"
-#: C/genius.xml:7060(para)
+#: C/genius.xml:7098(para)
msgid ""
"Return a function which is the cosine Fourier series of <function>f</"
"function> with half-period <varname>L</varname>. That is, we take "
@@ -12481,7 +12525,7 @@ msgstr ""
"linkend=\"gel-function-NumericalIntegral\"><function>NumericalIntegral</"
"function></link>."
-#: C/genius.xml:7077(term)
+#: C/genius.xml:7115(term)
msgid ""
"<anchor id=\"gel-function-NumericalFourierSineSeriesCoefficients\"/"
">NumericalFourierSineSeriesCoefficients"
@@ -12489,12 +12533,12 @@ msgstr ""
"<anchor id=\"gel-function-NumericalFourierSineSeriesCoefficients\"/"
">NumericalFourierSineSeriesCoefficients"
-#: C/genius.xml:7079(synopsis)
+#: C/genius.xml:7117(synopsis)
#, no-wrap
msgid "NumericalFourierSineSeriesCoefficients (f,L,N)"
msgstr "NumericalFourierSineSeriesCoefficients (f,L,N)"
-#: C/genius.xml:7080(para)
+#: C/genius.xml:7118(para)
msgid ""
"Return a vector of coefficients of the sine Fourier series of <function>f</"
"function> with half-period <varname>L</varname>. That is, we take "
@@ -12512,7 +12556,7 @@ msgstr ""
"Koeficienty jsou spočítány numerickou integrací pomocí <link linkend=\"gel-"
"function-NumericalIntegral\"><function>NumericalIntegral</function></link>."
-#: C/genius.xml:7089(para) C/genius.xml:7109(para)
+#: C/genius.xml:7127(para) C/genius.xml:7147(para)
msgid ""
"See <ulink url=\"http://en.wikipedia.org/wiki/Fourier_series\">Wikipedia</"
"ulink> or <ulink url=\"http://mathworld.wolfram.com/FourierSineSeries.html"
@@ -12523,7 +12567,7 @@ msgstr ""
"angličtině) nebo <ulink url=\"http://cs.wikipedia.org/wiki/Fourierova_"
"%C5%99ada\">Wikipedia</ulink>."
-#: C/genius.xml:7098(term)
+#: C/genius.xml:7136(term)
msgid ""
"<anchor id=\"gel-function-NumericalFourierSineSeriesFunction\"/"
">NumericalFourierSineSeriesFunction"
@@ -12531,12 +12575,12 @@ msgstr ""
"<anchor id=\"gel-function-NumericalFourierSineSeriesFunction\"/"
">NumericalFourierSineSeriesFunction"
-#: C/genius.xml:7100(synopsis)
+#: C/genius.xml:7138(synopsis)
#, no-wrap
msgid "NumericalFourierSineSeriesFunction (f,L,N)"
msgstr "NumericalFourierSineSeriesFunction (f,L,N)"
-#: C/genius.xml:7101(para)
+#: C/genius.xml:7139(para)
msgid ""
"Return a function which is the sine Fourier series of <function>f</function> "
"with half-period <varname>L</varname>. That is, we take <function>f</"
@@ -12554,16 +12598,16 @@ msgstr ""
"Koeficienty jsou spočítány numerickou integrací pomocí <link linkend=\"gel-"
"function-NumericalIntegral\"><function>NumericalIntegral</function></link>."
-#: C/genius.xml:7118(term)
+#: C/genius.xml:7156(term)
msgid "<anchor id=\"gel-function-NumericalIntegral\"/>NumericalIntegral"
msgstr "<anchor id=\"gel-function-NumericalIntegral\"/>NumericalIntegral"
-#: C/genius.xml:7120(synopsis)
+#: C/genius.xml:7158(synopsis)
#, no-wrap
msgid "NumericalIntegral (f,a,b)"
msgstr "NumericalIntegral (f,a,b)"
-#: C/genius.xml:7121(para)
+#: C/genius.xml:7159(para)
msgid ""
"Integration by rule set in NumericalIntegralFunction of f from a to b using "
"NumericalIntegralSteps steps."
@@ -12571,22 +12615,22 @@ msgstr ""
"Integrovat pravidlem nastaveným v NumericalIntegralFunction jako funkcí f od "
"a do b pomocí kroků NumericalIntegralSteps."
-#: C/genius.xml:7126(term)
+#: C/genius.xml:7164(term)
msgid ""
"<anchor id=\"gel-function-NumericalLeftDerivative\"/>NumericalLeftDerivative"
msgstr ""
"<anchor id=\"gel-function-NumericalLeftDerivative\"/>NumericalLeftDerivative"
-#: C/genius.xml:7128(synopsis)
+#: C/genius.xml:7166(synopsis)
#, no-wrap
msgid "NumericalLeftDerivative (f,x0)"
msgstr "NumericalLeftDerivative (f,x0)"
-#: C/genius.xml:7129(para)
+#: C/genius.xml:7167(para)
msgid "Attempt to calculate numerical left derivative."
msgstr "Zkusit vypočítat numerickou levou derivaci."
-#: C/genius.xml:7134(term)
+#: C/genius.xml:7172(term)
msgid ""
"<anchor id=\"gel-function-NumericalLimitAtInfinity\"/"
">NumericalLimitAtInfinity"
@@ -12594,16 +12638,16 @@ msgstr ""
"<anchor id=\"gel-function-NumericalLimitAtInfinity\"/"
">NumericalLimitAtInfinity"
-#: C/genius.xml:7136(synopsis)
+#: C/genius.xml:7174(synopsis)
#, no-wrap
msgid "NumericalLimitAtInfinity (_f,step_fun,tolerance,successive_for_success,N)"
msgstr "NumericalLimitAtInfinity (_f,step_fun,tolerance,serie_pro_uspech,N)"
-#: C/genius.xml:7137(para)
+#: C/genius.xml:7175(para)
msgid "Attempt to calculate the limit of f(step_fun(i)) as i goes from 1 to N."
msgstr "Pokusit se spočítat limitu f(step_fun(i)) pro i od 1 do N."
-#: C/genius.xml:7142(term)
+#: C/genius.xml:7180(term)
msgid ""
"<anchor id=\"gel-function-NumericalRightDerivative\"/"
">NumericalRightDerivative"
@@ -12611,30 +12655,30 @@ msgstr ""
"<anchor id=\"gel-function-NumericalRightDerivative\"/"
">NumericalRightDerivative"
-#: C/genius.xml:7144(synopsis)
+#: C/genius.xml:7182(synopsis)
#, no-wrap
msgid "NumericalRightDerivative (f,x0)"
msgstr "NumericalRightDerivative (f,x0)"
-#: C/genius.xml:7145(para)
+#: C/genius.xml:7183(para)
msgid "Attempt to calculate numerical right derivative."
msgstr "Zkusit vypočítat numerickou pravou derivaci."
-#: C/genius.xml:7150(term)
+#: C/genius.xml:7188(term)
msgid "<anchor id=\"gel-function-OddPeriodicExtension\"/>OddPeriodicExtension"
msgstr "<anchor id=\"gel-function-OddPeriodicExtension\"/>OddPeriodicExtension"
-#: C/genius.xml:7152(synopsis)
+#: C/genius.xml:7190(synopsis)
#, no-wrap
msgid "OddPeriodicExtension (f,L)"
msgstr "OddPeriodicExtension (f,L)"
-#: C/genius.xml:7153(para)
+#: C/genius.xml:7191(para)
msgid ""
"Return a function which is odd periodic extension of <function>f</function> "
"with half period <varname>L</varname>. That is a function defined on the "
-"interval <userinput>[0,L]</userinput> extended to be odd on <userinput>[-L,L]"
-"</userinput> and then extended to be periodic with period <userinput>2*L</"
+"interval <userinput>[0,L]</userinput> extended to be odd on <userinput>[-L,"
+"L]</userinput> and then extended to be periodic with period <userinput>2*L</"
"userinput>."
msgstr ""
"Vrátit funkci, která je lichým periodickým rozšířením <function>f</function> "
@@ -12643,7 +12687,7 @@ msgstr ""
"<userinput>[-L,L]</userinput> a pak rozšířená, aby byla periodická s "
"periodou <userinput>2*L</userinput>."
-#: C/genius.xml:7158(para)
+#: C/genius.xml:7196(para)
msgid ""
"See also <link linkend=\"gel-function-EvenPeriodicExtension"
"\">EvenPeriodicExtension</link> and <link linkend=\"gel-function-"
@@ -12653,7 +12697,7 @@ msgstr ""
"\">EvenPeriodicExtension</link> a <link linkend=\"gel-function-"
"PeriodicExtension\">PeriodicExtension</link>."
-#: C/genius.xml:7168(term)
+#: C/genius.xml:7206(term)
msgid ""
"<anchor id=\"gel-function-OneSidedFivePointFormula\"/"
">OneSidedFivePointFormula"
@@ -12661,16 +12705,16 @@ msgstr ""
"<anchor id=\"gel-function-OneSidedFivePointFormula\"/"
">OneSidedFivePointFormula"
-#: C/genius.xml:7170(synopsis)
+#: C/genius.xml:7208(synopsis)
#, no-wrap
msgid "OneSidedFivePointFormula (f,x0,h)"
msgstr "OneSidedFivePointFormula (f,x0,h)"
-#: C/genius.xml:7171(para)
+#: C/genius.xml:7209(para)
msgid "Compute one-sided derivative using five point formula."
msgstr "Spočítat jednostrannou derivaci pomocí pětibodového vzorce."
-#: C/genius.xml:7176(term)
+#: C/genius.xml:7214(term)
msgid ""
"<anchor id=\"gel-function-OneSidedThreePointFormula\"/"
">OneSidedThreePointFormula"
@@ -12678,25 +12722,25 @@ msgstr ""
"<anchor id=\"gel-function-OneSidedThreePointFormula\"/"
">OneSidedThreePointFormula"
-#: C/genius.xml:7178(synopsis)
+#: C/genius.xml:7216(synopsis)
#, no-wrap
msgid "OneSidedThreePointFormula (f,x0,h)"
msgstr "OneSidedThreePointFormula (f,x0,h)"
-#: C/genius.xml:7179(para)
+#: C/genius.xml:7217(para)
msgid "Compute one-sided derivative using three-point formula."
msgstr "Spočítat jednostrannou derivaci pomocí tříbodového vzorce."
-#: C/genius.xml:7184(term)
+#: C/genius.xml:7222(term)
msgid "<anchor id=\"gel-function-PeriodicExtension\"/>PeriodicExtension"
msgstr "<anchor id=\"gel-function-PeriodicExtension\"/>PeriodicExtension"
-#: C/genius.xml:7186(synopsis)
+#: C/genius.xml:7224(synopsis)
#, no-wrap
msgid "PeriodicExtension (f,a,b)"
msgstr "PeriodicExtension (f,a,b)"
-#: C/genius.xml:7187(para)
+#: C/genius.xml:7225(para)
msgid ""
"Return a function which is the periodic extension of <function>f</function> "
"defined on the interval <userinput>[a,b]</userinput> and has period "
@@ -12706,7 +12750,7 @@ msgstr ""
"definované na intervalu <userinput>[a,b]</userinput> a s periodou "
"<userinput>b-a</userinput>."
-#: C/genius.xml:7190(para)
+#: C/genius.xml:7228(para)
msgid ""
"See also <link linkend=\"gel-function-OddPeriodicExtension"
"\">OddPeriodicExtension</link> and <link linkend=\"gel-function-"
@@ -12716,20 +12760,20 @@ msgstr ""
"\">OddPeriodicExtension</link> a <link linkend=\"gel-function-"
"EvenPeriodicExtension\">EvenPeriodicExtension</link>."
-#: C/genius.xml:7200(term)
+#: C/genius.xml:7238(term)
msgid "<anchor id=\"gel-function-RightLimit\"/>RightLimit"
msgstr "<anchor id=\"gel-function-RightLimit\"/>RightLimit"
-#: C/genius.xml:7202(synopsis)
+#: C/genius.xml:7240(synopsis)
#, no-wrap
msgid "RightLimit (f,x0)"
msgstr "RightLimit (f,x0)"
-#: C/genius.xml:7203(para)
+#: C/genius.xml:7241(para)
msgid "Calculate the right limit of a real-valued function at x0."
msgstr "Spočítat limitu zprava funkce reálné proměnné v x0."
-#: C/genius.xml:7208(term)
+#: C/genius.xml:7246(term)
msgid ""
"<anchor id=\"gel-function-TwoSidedFivePointFormula\"/"
">TwoSidedFivePointFormula"
@@ -12737,16 +12781,16 @@ msgstr ""
"<anchor id=\"gel-function-TwoSidedFivePointFormula\"/"
">TwoSidedFivePointFormula"
-#: C/genius.xml:7210(synopsis)
+#: C/genius.xml:7248(synopsis)
#, no-wrap
msgid "TwoSidedFivePointFormula (f,x0,h)"
msgstr "TwoSidedFivePointFormula (f,x0,h)"
-#: C/genius.xml:7211(para)
+#: C/genius.xml:7249(para)
msgid "Compute two-sided derivative using five-point formula."
msgstr "Spočítat oboustrannou derivaci pomocí pětibodového vzorce."
-#: C/genius.xml:7216(term)
+#: C/genius.xml:7254(term)
msgid ""
"<anchor id=\"gel-function-TwoSidedThreePointFormula\"/"
">TwoSidedThreePointFormula"
@@ -12754,46 +12798,46 @@ msgstr ""
"<anchor id=\"gel-function-TwoSidedThreePointFormula\"/"
">TwoSidedThreePointFormula"
-#: C/genius.xml:7218(synopsis)
+#: C/genius.xml:7256(synopsis)
#, no-wrap
msgid "TwoSidedThreePointFormula (f,x0,h)"
msgstr "TwoSidedThreePointFormula (f,x0,h)"
-#: C/genius.xml:7219(para)
+#: C/genius.xml:7257(para)
msgid "Compute two-sided derivative using three-point formula."
msgstr "Spočítat oboustrannou derivaci pomocí tříbodového vzorce."
-#: C/genius.xml:7227(title)
+#: C/genius.xml:7265(title)
msgid "Functions"
msgstr "Funkce"
-#: C/genius.xml:7230(term)
+#: C/genius.xml:7268(term)
msgid "<anchor id=\"gel-function-Argument\"/>Argument"
msgstr "<anchor id=\"gel-function-Argument\"/>Argument"
-#: C/genius.xml:7232(synopsis)
+#: C/genius.xml:7270(synopsis)
#, no-wrap
msgid "Argument (z)"
msgstr "Argument (z)"
-#: C/genius.xml:7233(para)
+#: C/genius.xml:7271(para)
msgid "Aliases: <function>Arg</function><function>arg</function>"
msgstr "Alternativní názvy: <function>Arg</function><function>arg</function>"
-#: C/genius.xml:7234(para)
+#: C/genius.xml:7272(para)
msgid "argument (angle) of complex number."
msgstr "Argument (orientovaný úhel) komplexního čísla."
-#: C/genius.xml:7239(term)
+#: C/genius.xml:7277(term)
msgid "<anchor id=\"gel-function-BesselJ0\"/>BesselJ0"
msgstr "<anchor id=\"gel-function-BesselJ0\"/>BesselJ0"
-#: C/genius.xml:7241(synopsis)
+#: C/genius.xml:7279(synopsis)
#, no-wrap
msgid "BesselJ0 (x)"
msgstr "BesselJ0 (x)"
-#: C/genius.xml:7242(para)
+#: C/genius.xml:7280(para)
msgid ""
"Bessel function of the first kind of order 0. Only implemented for real "
"numbers."
@@ -12801,8 +12845,8 @@ msgstr ""
"Besselova funkce prvního druhu řádu 0. Je implementována pouze pro reálná "
"čísla."
-#: C/genius.xml:7243(para) C/genius.xml:7255(para) C/genius.xml:7267(para)
-#: C/genius.xml:7279(para) C/genius.xml:7291(para) C/genius.xml:7303(para)
+#: C/genius.xml:7281(para) C/genius.xml:7293(para) C/genius.xml:7305(para)
+#: C/genius.xml:7317(para) C/genius.xml:7329(para) C/genius.xml:7341(para)
msgid ""
"See <ulink url=\"http://en.wikipedia.org/wiki/Bessel_functions\">Wikipedia</"
"ulink> for more information."
@@ -12810,16 +12854,16 @@ msgstr ""
"Více informací najdete v encyklopedii <ulink url=\"http://cs.wikipedia.org/"
"wiki/Besselova_funkce\">Wikipedia</ulink>."
-#: C/genius.xml:7251(term)
+#: C/genius.xml:7289(term)
msgid "<anchor id=\"gel-function-BesselJ1\"/>BesselJ1"
msgstr "<anchor id=\"gel-function-BesselJ1\"/>BesselJ1"
-#: C/genius.xml:7253(synopsis)
+#: C/genius.xml:7291(synopsis)
#, no-wrap
msgid "BesselJ1 (x)"
msgstr "BesselJ1 (x)"
-#: C/genius.xml:7254(para)
+#: C/genius.xml:7292(para)
msgid ""
"Bessel function of the first kind of order 1. Only implemented for real "
"numbers."
@@ -12827,16 +12871,16 @@ msgstr ""
"Besselova funkce prvního druhu řádu 1. Je implementována pouze pro reálná "
"čísla."
-#: C/genius.xml:7263(term)
+#: C/genius.xml:7301(term)
msgid "<anchor id=\"gel-function-BesselJn\"/>BesselJn"
msgstr "<anchor id=\"gel-function-BesselJn\"/>BesselJn"
-#: C/genius.xml:7265(synopsis)
+#: C/genius.xml:7303(synopsis)
#, no-wrap
msgid "BesselJn (n,x)"
msgstr "BesselJn (n,x)"
-#: C/genius.xml:7266(para)
+#: C/genius.xml:7304(para)
msgid ""
"Bessel function of the first kind of order <varname>n</varname>. Only "
"implemented for real numbers."
@@ -12844,16 +12888,16 @@ msgstr ""
"Besselova funkce prvního druhu řádu <varname>n</varname>. Je implementována "
"pouze pro reálná čísla."
-#: C/genius.xml:7275(term)
+#: C/genius.xml:7313(term)
msgid "<anchor id=\"gel-function-BesselY0\"/>BesselY0"
msgstr "<anchor id=\"gel-function-BesselY0\"/>BesselY0"
-#: C/genius.xml:7277(synopsis)
+#: C/genius.xml:7315(synopsis)
#, no-wrap
msgid "BesselY0 (x)"
msgstr "BesselY0 (x)"
-#: C/genius.xml:7278(para)
+#: C/genius.xml:7316(para)
msgid ""
"Bessel function of the second kind of order 0. Only implemented for real "
"numbers."
@@ -12861,16 +12905,16 @@ msgstr ""
"Besselova funkce druhého druhu řádu 0. Je implementována pouze pro reálná "
"čísla."
-#: C/genius.xml:7287(term)
+#: C/genius.xml:7325(term)
msgid "<anchor id=\"gel-function-BesselY1\"/>BesselY1"
msgstr "<anchor id=\"gel-function-BesselY1\"/>BesselY1"
-#: C/genius.xml:7289(synopsis)
+#: C/genius.xml:7327(synopsis)
#, no-wrap
msgid "BesselY1 (x)"
msgstr "BesselY1 (x)"
-#: C/genius.xml:7290(para)
+#: C/genius.xml:7328(para)
msgid ""
"Bessel function of the second kind of order 1. Only implemented for real "
"numbers."
@@ -12878,16 +12922,16 @@ msgstr ""
"Besselova funkce druhého druhu řádu 1. Je implementována pouze pro reálná "
"čísla."
-#: C/genius.xml:7299(term)
+#: C/genius.xml:7337(term)
msgid "<anchor id=\"gel-function-BesselYn\"/>BesselYn"
msgstr "<anchor id=\"gel-function-BesselYn\"/>BesselYn"
-#: C/genius.xml:7301(synopsis)
+#: C/genius.xml:7339(synopsis)
#, no-wrap
msgid "BesselYn (n,x)"
msgstr "BesselYn (n,x)"
-#: C/genius.xml:7302(para)
+#: C/genius.xml:7340(para)
msgid ""
"Bessel function of the second kind of order <varname>n</varname>. Only "
"implemented for real numbers."
@@ -12895,50 +12939,50 @@ msgstr ""
"Besselova funkce druhého druhu řádu <varname>n</varname>. Je implementována "
"pouze pro reálná čísla."
-#: C/genius.xml:7311(term)
+#: C/genius.xml:7349(term)
msgid "<anchor id=\"gel-function-DirichletKernel\"/>DirichletKernel"
msgstr "<anchor id=\"gel-function-DirichletKernel\"/>DirichletKernel"
-#: C/genius.xml:7313(synopsis)
+#: C/genius.xml:7351(synopsis)
#, no-wrap
msgid "DirichletKernel (n,t)"
msgstr "DirichletKernel (n,t)"
-#: C/genius.xml:7314(para)
+#: C/genius.xml:7352(para)
msgid "Dirichlet kernel of order n."
msgstr "Dirichletovo jádro řádu n."
-#: C/genius.xml:7319(term)
+#: C/genius.xml:7357(term)
msgid "<anchor id=\"gel-function-DiscreteDelta\"/>DiscreteDelta"
msgstr "<anchor id=\"gel-function-DiscreteDelta\"/>DiscreteDelta"
-#: C/genius.xml:7321(synopsis)
+#: C/genius.xml:7359(synopsis)
#, no-wrap
msgid "DiscreteDelta (v)"
msgstr "DiscreteDelta (v)"
-#: C/genius.xml:7322(para)
+#: C/genius.xml:7360(para)
msgid "Returns 1 if and only if all elements are zero."
msgstr "Vrátit 1, když a jen když jsou všechny prvky nulové."
-#: C/genius.xml:7327(term)
+#: C/genius.xml:7365(term)
msgid "<anchor id=\"gel-function-ErrorFunction\"/>ErrorFunction"
msgstr "<anchor id=\"gel-function-ErrorFunction\"/>ErrorFunction"
-#: C/genius.xml:7329(synopsis)
+#: C/genius.xml:7367(synopsis)
#, no-wrap
msgid "ErrorFunction (x)"
msgstr "ErrorFunction (x)"
-#: C/genius.xml:7330(para)
+#: C/genius.xml:7368(para)
msgid "Aliases: <function>erf</function>"
msgstr "Alternativní názvy: <function>erf</function>"
-#: C/genius.xml:7331(para)
+#: C/genius.xml:7369(para)
msgid "The error function, 2/sqrt(pi) * int_0^x e^(-t^2) dt."
msgstr "Chybová funkce, 2/sqrt(pi) * int_0^x e^(-t^2) dt."
-#: C/genius.xml:7332(para)
+#: C/genius.xml:7370(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/ErrorFunction.html"
"\">Planetmath</ulink> for more information."
@@ -12946,22 +12990,22 @@ msgstr ""
"Více informací najdete v encyklopedii <ulink url=\"http://planetmath.org/"
"encyclopedia/ErrorFunction.html\">Planetmath</ulink> (text je v angličtině)."
-#: C/genius.xml:7340(term)
+#: C/genius.xml:7378(term)
msgid "<anchor id=\"gel-function-FejerKernel\"/>FejerKernel"
msgstr "<anchor id=\"gel-function-FejerKernel\"/>FejerKernel"
-#: C/genius.xml:7342(synopsis)
+#: C/genius.xml:7380(synopsis)
#, no-wrap
msgid "FejerKernel (n,t)"
msgstr "FejerKernel (n,t)"
-#: C/genius.xml:7343(para)
+#: C/genius.xml:7381(para)
msgid ""
"Fejer kernel of order <varname>n</varname> evaluated at <varname>t</varname>"
msgstr ""
"Fejerovo jádro řádu <varname>n</varname> vyhodnocené v <varname>t</varname>."
-#: C/genius.xml:7345(para)
+#: C/genius.xml:7383(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/FejerKernel.html"
"\">Planetmath</ulink> for more information."
@@ -12969,24 +13013,24 @@ msgstr ""
"Více informací najdete v encyklopedii <ulink url=\"http://planetmath.org/"
"encyclopedia/FejerKernel.html\">Planetmath</ulink> (text je v angličtině)."
-#: C/genius.xml:7353(term)
+#: C/genius.xml:7391(term)
msgid "<anchor id=\"gel-function-GammaFunction\"/>GammaFunction"
msgstr "<anchor id=\"gel-function-GammaFunction\"/>GammaFunction"
-#: C/genius.xml:7355(synopsis)
+#: C/genius.xml:7393(synopsis)
#, no-wrap
msgid "GammaFunction (x)"
msgstr "GammaFunction (x)"
-#: C/genius.xml:7356(para)
+#: C/genius.xml:7394(para)
msgid "Aliases: <function>Gamma</function>"
msgstr "Alternativní názvy: <function>Gamma</function>"
-#: C/genius.xml:7357(para)
+#: C/genius.xml:7395(para)
msgid "The Gamma function. Currently only implemented for real values."
msgstr "Funkce Gama. V současnosti je implementována pouze pro reálná čísla."
-#: C/genius.xml:7358(para)
+#: C/genius.xml:7396(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/GammaFunction.html"
"\">Planetmath</ulink> for more information."
@@ -12996,48 +13040,48 @@ msgstr ""
"nebo <ulink url=\"http://cs.wikipedia.org/wiki/Gama_funkce\">Wikipedia</"
"ulink>."
-#: C/genius.xml:7366(term)
+#: C/genius.xml:7404(term)
msgid "<anchor id=\"gel-function-KroneckerDelta\"/>KroneckerDelta"
msgstr "<anchor id=\"gel-function-KroneckerDelta\"/>KroneckerDelta"
-#: C/genius.xml:7368(synopsis)
+#: C/genius.xml:7406(synopsis)
#, no-wrap
msgid "KroneckerDelta (v)"
msgstr "KroneckerDelta (v)"
-#: C/genius.xml:7369(para)
+#: C/genius.xml:7407(para)
msgid "Returns 1 if and only if all elements are equal."
msgstr "Vrátit 1, když a jen když se všechny prvky rovnají."
-#: C/genius.xml:7374(term)
+#: C/genius.xml:7412(term)
msgid "<anchor id=\"gel-function-MinimizeFunction\"/>MinimizeFunction"
msgstr "<anchor id=\"gel-function-MinimizeFunction\"/>MinimizeFunction"
-#: C/genius.xml:7376(synopsis)
+#: C/genius.xml:7414(synopsis)
#, no-wrap
msgid "MinimizeFunction (func,x,incr)"
msgstr "MinimizeFunction (fce,x,prirust)"
-#: C/genius.xml:7377(para)
+#: C/genius.xml:7415(para)
msgid "Find the first value where f(x)=0."
msgstr "Najít první hodnotu, kdy f(x)=0."
-#: C/genius.xml:7382(term)
+#: C/genius.xml:7420(term)
msgid "<anchor id=\"gel-function-MoebiusDiskMapping\"/>MoebiusDiskMapping"
msgstr "<anchor id=\"gel-function-MoebiusDiskMapping\"/>MoebiusDiskMapping"
-#: C/genius.xml:7384(synopsis)
+#: C/genius.xml:7422(synopsis)
#, no-wrap
msgid "MoebiusDiskMapping (a,z)"
msgstr "MoebiusDiskMapping (a,z)"
-#: C/genius.xml:7385(para)
+#: C/genius.xml:7423(para)
msgid "Moebius mapping of the disk to itself mapping a to 0."
msgstr ""
"Möbiova transformace (lineární lomené zobrazení) kruhu na sebe sama ku 0."
-#: C/genius.xml:7386(para) C/genius.xml:7398(para) C/genius.xml:7410(para)
-#: C/genius.xml:7422(para) C/genius.xml:7434(para)
+#: C/genius.xml:7424(para) C/genius.xml:7436(para) C/genius.xml:7448(para)
+#: C/genius.xml:7460(para) C/genius.xml:7472(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/MobiusTransformation.html"
"\">Planetmath</ulink> for more information."
@@ -13046,16 +13090,16 @@ msgstr ""
"encyclopedia/MobiusTransformation.html\">Planetmath</ulink> (text je v "
"angličtině)."
-#: C/genius.xml:7394(term)
+#: C/genius.xml:7432(term)
msgid "<anchor id=\"gel-function-MoebiusMapping\"/>MoebiusMapping"
msgstr "<anchor id=\"gel-function-MoebiusMapping\"/>MoebiusMapping"
-#: C/genius.xml:7396(synopsis)
+#: C/genius.xml:7434(synopsis)
#, no-wrap
msgid "MoebiusMapping (z,z2,z3,z4)"
msgstr "MoebiusMapping (z,z2,z3,z4)"
-#: C/genius.xml:7397(para)
+#: C/genius.xml:7435(para)
msgid ""
"Moebius mapping using the cross ratio taking z2,z3,z4 to 1,0, and infinity "
"respectively."
@@ -13063,7 +13107,7 @@ msgstr ""
"Möbiova transformace (lineární lomené zobrazení) pomocí dvojpoměrů z2,z3,z4 "
"ku 1,0 a nekonečnu."
-#: C/genius.xml:7406(term)
+#: C/genius.xml:7444(term)
msgid ""
"<anchor id=\"gel-function-MoebiusMappingInftyToInfty\"/"
">MoebiusMappingInftyToInfty"
@@ -13071,12 +13115,12 @@ msgstr ""
"<anchor id=\"gel-function-MoebiusMappingInftyToInfty\"/"
">MoebiusMappingInftyToInfty"
-#: C/genius.xml:7408(synopsis)
+#: C/genius.xml:7446(synopsis)
#, no-wrap
msgid "MoebiusMappingInftyToInfty (z,z2,z3)"
msgstr "MoebiusMappingInftyToInfty (z,z2,z3)"
-#: C/genius.xml:7409(para)
+#: C/genius.xml:7447(para)
msgid ""
"Moebius mapping using the cross ratio taking infinity to infinity and z2,z3 "
"to 1 and 0 respectively."
@@ -13084,7 +13128,7 @@ msgstr ""
"Möbiova transformace (lineární lomené zobrazení) pomocí dvojpoměrů nekonečna "
"ku nekonečnu a z2,z3 ku 1 a 0."
-#: C/genius.xml:7418(term)
+#: C/genius.xml:7456(term)
msgid ""
"<anchor id=\"gel-function-MoebiusMappingInftyToOne\"/"
">MoebiusMappingInftyToOne"
@@ -13092,12 +13136,12 @@ msgstr ""
"<anchor id=\"gel-function-MoebiusMappingInftyToOne\"/"
">MoebiusMappingInftyToOne"
-#: C/genius.xml:7420(synopsis)
+#: C/genius.xml:7458(synopsis)
#, no-wrap
msgid "MoebiusMappingInftyToOne (z,z3,z4)"
msgstr "MoebiusMappingInftyToOne (z,z3,z4)"
-#: C/genius.xml:7421(para)
+#: C/genius.xml:7459(para)
msgid ""
"Moebius mapping using the cross ratio taking infinity to 1 and z3,z4 to 0 "
"and infinity respectively."
@@ -13105,7 +13149,7 @@ msgstr ""
"Möbiova transformace (lineární lomené zobrazení) pomocí dvojpoměrů nekonečna "
"ku 1 a z3,z4 ku 0 a nekonečnu."
-#: C/genius.xml:7430(term)
+#: C/genius.xml:7468(term)
msgid ""
"<anchor id=\"gel-function-MoebiusMappingInftyToZero\"/"
">MoebiusMappingInftyToZero"
@@ -13113,12 +13157,12 @@ msgstr ""
"<anchor id=\"gel-function-MoebiusMappingInftyToZero\"/"
">MoebiusMappingInftyToZero"
-#: C/genius.xml:7432(synopsis)
+#: C/genius.xml:7470(synopsis)
#, no-wrap
msgid "MoebiusMappingInftyToZero (z,z2,z4)"
msgstr "MoebiusMappingInftyToZero (z,z2,z4)"
-#: C/genius.xml:7433(para)
+#: C/genius.xml:7471(para)
msgid ""
"Moebius mapping using the cross ratio taking infinity to 0 and z2,z4 to 1 "
"and infinity respectively."
@@ -13126,54 +13170,54 @@ msgstr ""
"Möbiova transformace (lineární lomené zobrazení) pomocí dvojpoměrů nekonečna "
"ku 0 a z2,z4 ku 1 a nekonečnu."
-#: C/genius.xml:7442(term)
+#: C/genius.xml:7480(term)
msgid "<anchor id=\"gel-function-PoissonKernel\"/>PoissonKernel"
msgstr "<anchor id=\"gel-function-PoissonKernel\"/>PoissonKernel"
-#: C/genius.xml:7444(synopsis)
+#: C/genius.xml:7482(synopsis)
#, no-wrap
msgid "PoissonKernel (r,sigma)"
msgstr "PoissonKernel (r,sigma)"
-#: C/genius.xml:7445(para)
+#: C/genius.xml:7483(para)
msgid ""
"Poisson kernel on D(0,1) (not normalized to 1, that is integral of this is "
"2pi)."
msgstr ""
"Poissonovo jádro na D(0,1) (nenormalizované na 1, tj. integrál je 2pi)."
-#: C/genius.xml:7450(term)
+#: C/genius.xml:7488(term)
msgid "<anchor id=\"gel-function-PoissonKernelRadius\"/>PoissonKernelRadius"
msgstr "<anchor id=\"gel-function-PoissonKernelRadius\"/>PoissonKernelRadius"
-#: C/genius.xml:7452(synopsis)
+#: C/genius.xml:7490(synopsis)
#, no-wrap
msgid "PoissonKernelRadius (r,sigma)"
msgstr "PoissonKernelRadius (r,sigma)"
-#: C/genius.xml:7453(para)
+#: C/genius.xml:7491(para)
msgid "Poisson kernel on D(0,R) (not normalized to 1)."
msgstr "Poissonovo jádro na D(0,R) (nenormalizované na 1)."
-#: C/genius.xml:7458(term)
+#: C/genius.xml:7496(term)
msgid "<anchor id=\"gel-function-RiemannZeta\"/>RiemannZeta"
msgstr "<anchor id=\"gel-function-RiemannZeta\"/>RiemannZeta"
-#: C/genius.xml:7460(synopsis)
+#: C/genius.xml:7498(synopsis)
#, no-wrap
msgid "RiemannZeta (x)"
msgstr "RiemannZeta (x)"
-#: C/genius.xml:7461(para)
+#: C/genius.xml:7499(para)
msgid "Aliases: <function>zeta</function>"
msgstr "Alternativní názvy: <function>zeta</function>"
-#: C/genius.xml:7462(para)
+#: C/genius.xml:7500(para)
msgid "The Riemann zeta function. Currently only implemented for real values."
msgstr ""
"Riemannova funkce zeta. V současnosti je implementována jen pro reálná čísla."
-#: C/genius.xml:7463(para)
+#: C/genius.xml:7501(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/RiemannZetaFunction.html"
"\">Planetmath</ulink> for more information."
@@ -13183,16 +13227,16 @@ msgstr ""
"angličtině) nebo <ulink url=\"http://cs.wikipedia.org/wiki/"
"Riemannova_funkce_zeta\">Wikipedia</ulink>."
-#: C/genius.xml:7471(term)
+#: C/genius.xml:7509(term)
msgid "<anchor id=\"gel-function-UnitStep\"/>UnitStep"
msgstr "<anchor id=\"gel-function-UnitStep\"/>UnitStep"
-#: C/genius.xml:7473(synopsis)
+#: C/genius.xml:7511(synopsis)
#, no-wrap
msgid "UnitStep (x)"
msgstr "UnitStep (x)"
-#: C/genius.xml:7474(para)
+#: C/genius.xml:7512(para)
msgid ""
"The unit step function is 0 for x<0, 1 otherwise. This is the integral of "
"the Dirac Delta function. Also called the Heaviside function."
@@ -13201,7 +13245,7 @@ msgstr ""
"případech. Jedná se o integrál Diracovy funkce delta. Bývá také nazývána "
"Heavisideova funkce."
-#: C/genius.xml:7475(para)
+#: C/genius.xml:7513(para)
msgid ""
"See <ulink url=\"http://en.wikipedia.org/wiki/Unit_step\">Wikipedia</ulink> "
"for more information."
@@ -13209,69 +13253,69 @@ msgstr ""
"Více informací najdete v encyklopedii <ulink url=\"http://cs.wikipedia.org/"
"wiki/Heavisideova_funkce\">Wikipedia</ulink>."
-#: C/genius.xml:7483(term)
+#: C/genius.xml:7521(term)
msgid "<anchor id=\"gel-function-cis\"/>cis"
msgstr "<anchor id=\"gel-function-cis\"/>cis"
-#: C/genius.xml:7485(synopsis)
+#: C/genius.xml:7523(synopsis)
#, no-wrap
msgid "cis (x)"
msgstr "cis (x)"
-#: C/genius.xml:7486(para)
+#: C/genius.xml:7524(para)
msgid ""
-"The <function>cis</function> function, that is the same as <userinput>cos"
-"(x)+1i*sin(x)</userinput>"
+"The <function>cis</function> function, that is the same as "
+"<userinput>cos(x)+1i*sin(x)</userinput>"
msgstr ""
-"Funkce <function>cis</function>, což je to stejné jako <userinput>cos"
-"(x)+1i*sin(x)</userinput>"
+"Funkce <function>cis</function>, což je to stejné jako "
+"<userinput>cos(x)+1i*sin(x)</userinput>"
-#: C/genius.xml:7494(term)
+#: C/genius.xml:7532(term)
msgid "<anchor id=\"gel-function-deg2rad\"/>deg2rad"
msgstr "<anchor id=\"gel-function-deg2rad\"/>deg2rad"
-#: C/genius.xml:7496(synopsis)
+#: C/genius.xml:7534(synopsis)
#, no-wrap
msgid "deg2rad (x)"
msgstr "deg2rad (x)"
-#: C/genius.xml:7497(para)
+#: C/genius.xml:7535(para)
msgid "Convert degrees to radians."
msgstr "Převést stupně na radiány."
-#: C/genius.xml:7502(term)
+#: C/genius.xml:7540(term)
msgid "<anchor id=\"gel-function-rad2deg\"/>rad2deg"
msgstr "<anchor id=\"gel-function-rad2deg\"/>rad2deg"
-#: C/genius.xml:7504(synopsis)
+#: C/genius.xml:7542(synopsis)
#, no-wrap
msgid "rad2deg (x)"
msgstr "rad2deg (x)"
-#: C/genius.xml:7505(para)
+#: C/genius.xml:7543(para)
msgid "Convert radians to degrees."
msgstr "Převést radiány na stupně."
-#: C/genius.xml:7510(term)
+#: C/genius.xml:7548(term)
msgid "<anchor id=\"gel-function-sinc\"/>sinc"
msgstr "<anchor id=\"gel-function-sinc\"/>sinc"
-#: C/genius.xml:7512(synopsis)
+#: C/genius.xml:7550(synopsis)
#, no-wrap
msgid "sinc (x)"
msgstr "sinc (x)"
-#: C/genius.xml:7513(para)
+#: C/genius.xml:7551(para)
msgid ""
"Calculates the unnormalized sinc function, that is <userinput>sin(x)/x</"
"userinput>. If you want the normalized function call <userinput>sinc(pi*x)</"
"userinput>."
msgstr ""
"Vypočítat nenormalizovanou funkci sinc, což je <userinput>sin(x)/x</"
-"userinput>. Jestli chcete normalizovanou funkci, volejte <userinput>sinc"
-"(pi*x)</userinput>."
+"userinput>. Jestli chcete normalizovanou funkci, volejte "
+"<userinput>sinc(pi*x)</userinput>."
-#: C/genius.xml:7516(para)
+#: C/genius.xml:7554(para)
msgid ""
"See <ulink url=\"http://en.wikipedia.org/wiki/Sinc\">Wikipedia</ulink> for "
"more information."
@@ -13279,27 +13323,27 @@ msgstr ""
"Více informací najdete v encyklopedii <ulink url=\"http://en.wikipedia.org/"
"wiki/Sinc\">Wikipedia</ulink> (článek je v angličtině)."
-#: C/genius.xml:7527(title)
+#: C/genius.xml:7565(title)
msgid "Equation Solving"
msgstr "Řešení rovnic"
-#: C/genius.xml:7531(term)
+#: C/genius.xml:7569(term)
msgid "<anchor id=\"gel-function-CubicFormula\"/>CubicFormula"
msgstr "<anchor id=\"gel-function-CubicFormula\"/>CubicFormula"
-#: C/genius.xml:7533(synopsis)
+#: C/genius.xml:7571(synopsis)
#, no-wrap
msgid "CubicFormula (p)"
msgstr "CubicFormula (p)"
-#: C/genius.xml:7534(para)
+#: C/genius.xml:7572(para)
msgid ""
"Compute roots of a cubic (degree 3) polynomial using the cubic formula. The "
"polynomial should be given as a vector of coefficients. That is "
-"<userinput>4*x^3 + 2*x + 1</userinput> corresponds to the vector <userinput>"
-"[1,2,0,4]</userinput>. Returns a column vector of the three solutions. The "
-"first solution is always the real one as a cubic always has one real "
-"solution."
+"<userinput>4*x^3 + 2*x + 1</userinput> corresponds to the vector "
+"<userinput>[1,2,0,4]</userinput>. Returns a column vector of the three "
+"solutions. The first solution is always the real one as a cubic always has "
+"one real solution."
msgstr ""
"Vypočítat kořeny kubického (3. stupně) polynomu pomocí kubické rovnice. "
"Polynom by měl být zadán jako vektor koeficientů. Tj. <userinput>4*x^3 + 2*x "
@@ -13307,7 +13351,7 @@ msgstr ""
"sloupcový vektor tří řešení. První řešení je vždy reálné, protože kubická "
"rovnice má vždy jedno reálné řešení."
-#: C/genius.xml:7543(para)
+#: C/genius.xml:7581(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/CubicFormula.html"
"\">Planetmath</ulink>, <ulink url=\"http://mathworld.wolfram.com/"
@@ -13320,16 +13364,16 @@ msgstr ""
"ulink> (text je v angličtině) nebo <ulink url=\"http://cs.wikipedia.org/wiki/"
"Kubick%C3%A1_rovnice\">Wikipedia</ulink>."
-#: C/genius.xml:7553(term)
+#: C/genius.xml:7591(term)
msgid "<anchor id=\"gel-function-EulersMethod\"/>EulersMethod"
msgstr "<anchor id=\"gel-function-EulersMethod\"/>EulersMethod"
-#: C/genius.xml:7555(synopsis)
+#: C/genius.xml:7593(synopsis)
#, no-wrap
msgid "EulersMethod (f,x0,y0,x1,n)"
msgstr "EulersMethod (f,x0,y0,x1,n)"
-#: C/genius.xml:7556(para)
+#: C/genius.xml:7594(para)
msgid ""
"Use classical Euler's method to numerically solve y'=f(x,y) for initial "
"<varname>x0</varname>, <varname>y0</varname> going to <varname>x1</varname> "
@@ -13341,8 +13385,8 @@ msgstr ""
"<varname>x1</varname> s přírůstky <varname>n</varname>, vrací <varname>y</"
"varname> v <varname>x1</varname>."
-#: C/genius.xml:7562(para) C/genius.xml:7590(para) C/genius.xml:7725(para)
-#: C/genius.xml:7755(para)
+#: C/genius.xml:7600(para) C/genius.xml:7628(para) C/genius.xml:7763(para)
+#: C/genius.xml:7793(para)
msgid ""
"Systems can be solved by just having <varname>y</varname> be a (column) "
"vector everywhere. That is, <varname>y0</varname> can be a vector in which "
@@ -13356,7 +13400,7 @@ msgstr ""
"varname> a vektor stejné velikosti pro druhý argument a mělo by vracet "
"vektor stejné velikosti."
-#: C/genius.xml:7569(para) C/genius.xml:7597(para)
+#: C/genius.xml:7607(para) C/genius.xml:7635(para)
msgid ""
"See <ulink url=\"http://mathworld.wolfram.com/EulerForwardMethod.html"
"\">Mathworld</ulink>, or <ulink url=\"http://en.wikipedia.org/wiki/"
@@ -13367,16 +13411,16 @@ msgstr ""
"angličtině) nebo <ulink url=\"http://cs.wikipedia.org/wiki/Eulerova_metoda"
"\">Wikipedia</ulink>."
-#: C/genius.xml:7578(term)
+#: C/genius.xml:7616(term)
msgid "<anchor id=\"gel-function-EulersMethodFull\"/>EulersMethodFull"
msgstr "<anchor id=\"gel-function-EulersMethodFull\"/>EulersMethodFull"
-#: C/genius.xml:7580(synopsis)
+#: C/genius.xml:7618(synopsis)
#, no-wrap
msgid "EulersMethodFull (f,x0,y0,x1,n)"
msgstr "EulersMethodFull (f,x0,y0,x1,n)"
-#: C/genius.xml:7581(para)
+#: C/genius.xml:7619(para)
msgid ""
"Use classical Euler's method to numerically solve y'=f(x,y) for initial "
"<varname>x0</varname>, <varname>y0</varname> going to <varname>x1</varname> "
@@ -13392,16 +13436,16 @@ msgstr ""
"varname>. Použitelné pro zapojení do <link linkend=\"gel-function-"
"LinePlotDrawLine\">LinePlotDrawLine</link>."
-#: C/genius.xml:7606(term)
+#: C/genius.xml:7644(term)
msgid "<anchor id=\"gel-function-FindRootBisection\"/>FindRootBisection"
msgstr "<anchor id=\"gel-function-FindRootBisection\"/>FindRootBisection"
-#: C/genius.xml:7608(synopsis)
+#: C/genius.xml:7646(synopsis)
#, no-wrap
msgid "FindRootBisection (f,a,b,TOL,N)"
msgstr "FindRootBisection (f,a,b,TOL,N)"
-#: C/genius.xml:7609(para)
+#: C/genius.xml:7647(para)
msgid ""
"Find root of a function using the bisection method. <varname>a</varname> and "
"<varname>b</varname> are the initial guess interval, <userinput>f(a)</"
@@ -13423,18 +13467,18 @@ msgstr ""
"varname> je poslední spočtená hodnota a <varname>iterace</varname> je počet "
"dokončených iterací."
-#: C/genius.xml:7618(term)
+#: C/genius.xml:7656(term)
msgid ""
"<anchor id=\"gel-function-FindRootFalsePosition\"/>FindRootFalsePosition"
msgstr ""
"<anchor id=\"gel-function-FindRootFalsePosition\"/>FindRootFalsePosition"
-#: C/genius.xml:7620(synopsis)
+#: C/genius.xml:7658(synopsis)
#, no-wrap
msgid "FindRootFalsePosition (f,a,b,TOL,N)"
msgstr "FindRootFalsePosition (f,a,b,TOL,N)"
-#: C/genius.xml:7621(para)
+#: C/genius.xml:7659(para)
msgid ""
"Find root of a function using the method of false position. <varname>a</"
"varname> and <varname>b</varname> are the initial guess interval, "
@@ -13456,18 +13500,18 @@ msgstr ""
"varname> je poslední spočtená hodnota a <varname>iterace</varname> je počet "
"dokončených iterací."
-#: C/genius.xml:7630(term)
+#: C/genius.xml:7668(term)
msgid ""
"<anchor id=\"gel-function-FindRootMullersMethod\"/>FindRootMullersMethod"
msgstr ""
"<anchor id=\"gel-function-FindRootMullersMethod\"/>FindRootMullersMethod"
-#: C/genius.xml:7632(synopsis)
+#: C/genius.xml:7670(synopsis)
#, no-wrap
msgid "FindRootMullersMethod (f,x0,x1,x2,TOL,N)"
msgstr "FindRootMullersMethod (f,x0,x1,x2,TOL,N)"
-#: C/genius.xml:7633(para)
+#: C/genius.xml:7671(para)
msgid ""
"Find root of a function using the Muller's method. <varname>TOL</varname> is "
"the desired tolerance and <varname>N</varname> is the limit on the number of "
@@ -13484,16 +13528,16 @@ msgstr ""
"hodnota signalizující úspěch, <varname>hodnota</varname> je poslední "
"spočtená hodnota a <varname>iterace</varname> je počet dokončených iterací."
-#: C/genius.xml:7640(term)
+#: C/genius.xml:7678(term)
msgid "<anchor id=\"gel-function-FindRootSecant\"/>FindRootSecant"
msgstr "<anchor id=\"gel-function-FindRootSecant\"/>FindRootSecant"
-#: C/genius.xml:7642(synopsis)
+#: C/genius.xml:7680(synopsis)
#, no-wrap
msgid "FindRootSecant (f,a,b,TOL,N)"
msgstr "FindRootSecant (f,a,b,TOL,N)"
-#: C/genius.xml:7643(para)
+#: C/genius.xml:7681(para)
msgid ""
"Find root of a function using the secant method. <varname>a</varname> and "
"<varname>b</varname> are the initial guess interval, <userinput>f(a)</"
@@ -13515,16 +13559,16 @@ msgstr ""
"varname> je poslední spočtená hodnota a <varname>iterace</varname> je počet "
"dokončených iterací."
-#: C/genius.xml:7652(term)
+#: C/genius.xml:7690(term)
msgid "<anchor id=\"gel-function-PolynomialRoots\"/>PolynomialRoots"
msgstr "<anchor id=\"gel-function-PolynomialRoots\"/>PolynomialRoots"
-#: C/genius.xml:7654(synopsis)
+#: C/genius.xml:7692(synopsis)
#, no-wrap
msgid "PolynomialRoots (p)"
msgstr "PolynomialRoots (p)"
-#: C/genius.xml:7655(para)
+#: C/genius.xml:7693(para)
msgid ""
"Compute roots of a polynomial (degrees 1 through 4) using one of the "
"formulas for such polynomials. The polynomial should be given as a vector of "
@@ -13534,10 +13578,10 @@ msgid ""
msgstr ""
"Vypočítat kořeny polynomu (1. až 4. stupně) pomocí jedné z rovnic pro "
"takovéto polynomy. Polynom by měl být zadán jako vektor koeficientů. Tj. "
-"<userinput>4*x^3 + 2*x + 1</userinput> odpovídá vektoru <userinput>[1,2,0,4]"
-"</userinput>. Vrací sloupcový vektor řešení."
+"<userinput>4*x^3 + 2*x + 1</userinput> odpovídá vektoru "
+"<userinput>[1,2,0,4]</userinput>. Vrací sloupcový vektor řešení."
-#: C/genius.xml:7664(para)
+#: C/genius.xml:7702(para)
msgid ""
"The function calls <link linkend=\"gel-function-QuadraticFormula"
"\">QuadraticFormula</link>, <link linkend=\"gel-function-CubicFormula"
@@ -13549,28 +13593,28 @@ msgstr ""
"\">CubicFormula</link> a <link linkend=\"gel-function-QuarticFormula"
"\">QuarticFormula</link>."
-#: C/genius.xml:7674(term)
+#: C/genius.xml:7712(term)
msgid "<anchor id=\"gel-function-QuadraticFormula\"/>QuadraticFormula"
msgstr "<anchor id=\"gel-function-QuadraticFormula\"/>QuadraticFormula"
-#: C/genius.xml:7676(synopsis)
+#: C/genius.xml:7714(synopsis)
#, no-wrap
msgid "QuadraticFormula (p)"
msgstr "QuadraticFormula (p)"
-#: C/genius.xml:7677(para)
+#: C/genius.xml:7715(para)
msgid ""
"Compute roots of a quadratic (degree 2) polynomial using the quadratic "
"formula. The polynomial should be given as a vector of coefficients. That is "
-"<userinput>3*x^2 + 2*x + 1</userinput> corresponds to the vector <userinput>"
-"[1,2,3]</userinput>. Returns a column vector of the two solutions."
+"<userinput>3*x^2 + 2*x + 1</userinput> corresponds to the vector "
+"<userinput>[1,2,3]</userinput>. Returns a column vector of the two solutions."
msgstr ""
"Vypočítat kořeny kvadratického (2. stupně) polynomu pomocí kvadratické "
"rovnice. Polynom by měl být zadán jako vektor koeficientů. Tj. "
"<userinput>3*x^2 + 2*x + 1</userinput> odpovídá vektoru <userinput>[1,2,3]</"
"userinput>. Vrací sloupcový vektor dvou řešení."
-#: C/genius.xml:7685(para)
+#: C/genius.xml:7723(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/QuadraticFormula.html"
"\">Planetmath</ulink> or <ulink url=\"http://mathworld.wolfram.com/"
@@ -13581,28 +13625,29 @@ msgstr ""
"angličtině) nebo <ulink url=\"http://mathworld.wolfram.com/QuadraticFormula."
"html\">Mathworld</ulink> (text je v angličtině)."
-#: C/genius.xml:7694(term)
+#: C/genius.xml:7732(term)
msgid "<anchor id=\"gel-function-QuarticFormula\"/>QuarticFormula"
msgstr "<anchor id=\"gel-function-QuarticFormula\"/>QuarticFormula"
-#: C/genius.xml:7696(synopsis)
+#: C/genius.xml:7734(synopsis)
#, no-wrap
msgid "QuarticFormula (p)"
msgstr "QuarticFormula (p)"
-#: C/genius.xml:7697(para)
+#: C/genius.xml:7735(para)
msgid ""
"Compute roots of a quartic (degree 4) polynomial using the quartic formula. "
"The polynomial should be given as a vector of coefficients. That is "
-"<userinput>5*x^4 + 2*x + 1</userinput> corresponds to the vector <userinput>"
-"[1,2,0,0,5]</userinput>. Returns a column vector of the four solutions."
+"<userinput>5*x^4 + 2*x + 1</userinput> corresponds to the vector "
+"<userinput>[1,2,0,0,5]</userinput>. Returns a column vector of the four "
+"solutions."
msgstr ""
"Vypočítat kořeny kvartického (4. stupně) polynomu pomocí kvartické rovnice. "
"Polynom by měl být zadán jako vektor koeficientů. Tj. <userinput>5*x^4 + 2*x "
"+ 1</userinput> odpovídá vektoru <userinput>[1,2,0,0,5]</userinput>. Vrací "
"sloupcový vektor čtyř řešení."
-#: C/genius.xml:7705(para)
+#: C/genius.xml:7743(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/QuarticFormula.html"
"\">Planetmath</ulink>, <ulink url=\"http://mathworld.wolfram.com/"
@@ -13615,16 +13660,16 @@ msgstr ""
"\">Mathworld</ulink> (text je v angličtině) nebo <ulink url=\"http://cs."
"wikipedia.org/wiki/Kvartick%C3%A1_rovnice\">Wikipedia</ulink>."
-#: C/genius.xml:7715(term)
+#: C/genius.xml:7753(term)
msgid "<anchor id=\"gel-function-RungeKutta\"/>RungeKutta"
msgstr "<anchor id=\"gel-function-RungeKutta\"/>RungeKutta"
-#: C/genius.xml:7717(synopsis)
+#: C/genius.xml:7755(synopsis)
#, no-wrap
msgid "RungeKutta (f,x0,y0,x1,n)"
msgstr "RungeKutta (f,x0,y0,x1,n)"
-#: C/genius.xml:7718(para)
+#: C/genius.xml:7756(para)
msgid ""
"Use classical non-adaptive fourth order Runge-Kutta method to numerically "
"solve y'=f(x,y) for initial <varname>x0</varname>, <varname>y0</varname> "
@@ -13636,7 +13681,7 @@ msgstr ""
"<varname>y0</varname> měnící se do <varname>x1</varname> s přírůstky "
"<varname>n</varname>, vrací <varname>y</varname> v <varname>x1</varname>."
-#: C/genius.xml:7732(para) C/genius.xml:7762(para)
+#: C/genius.xml:7770(para) C/genius.xml:7800(para)
msgid ""
"See <ulink url=\"http://mathworld.wolfram.com/Runge-KuttaMethod.html"
"\">Mathworld</ulink>, or <ulink url=\"http://en.wikipedia.org/wiki/Runge-"
@@ -13648,16 +13693,16 @@ msgstr ""
"%C5%99e%C5%A1en%C3%AD_oby%C4%8Dejn%C3%BDch_diferenci%C3%A1ln"
"%C3%ADch_rovnic#Metody_Runge-Kutta\">Wikipedia</ulink>."
-#: C/genius.xml:7741(term)
+#: C/genius.xml:7779(term)
msgid "<anchor id=\"gel-function-RungeKuttaFull\"/>RungeKuttaFull"
msgstr "<anchor id=\"gel-function-RungeKuttaFull\"/>RungeKuttaFull"
-#: C/genius.xml:7743(synopsis)
+#: C/genius.xml:7781(synopsis)
#, no-wrap
msgid "RungeKuttaFull (f,x0,y0,x1,n)"
msgstr "RungeKuttaFull (f,x0,y0,x1,n)"
-#: C/genius.xml:7744(para)
+#: C/genius.xml:7782(para)
msgid ""
"Use classical non-adaptive fourth order Runge-Kutta method to numerically "
"solve y'=f(x,y) for initial <varname>x0</varname>, <varname>y0</varname> "
@@ -13673,20 +13718,20 @@ msgstr ""
"<varname>y</varname>. Použitelné pro zapojení do <link linkend=\"gel-"
"function-LinePlotDrawLine\">LinePlotDrawLine</link>."
-#: C/genius.xml:7775(title)
+#: C/genius.xml:7813(title)
msgid "Statistics"
msgstr "Statistika"
-#: C/genius.xml:7778(term)
+#: C/genius.xml:7816(term)
msgid "<anchor id=\"gel-function-Average\"/>Average"
msgstr "<anchor id=\"gel-function-Average\"/>Average"
-#: C/genius.xml:7780(synopsis)
+#: C/genius.xml:7818(synopsis)
#, no-wrap
msgid "Average (m)"
msgstr "Average (m)"
-#: C/genius.xml:7781(para)
+#: C/genius.xml:7819(para)
msgid ""
"Aliases: <function>average</function><function>Mean</"
"function><function>mean</function>"
@@ -13694,11 +13739,11 @@ msgstr ""
"Alternativní názvy: <function>average</function><function>Mean</"
"function><function>mean</function>"
-#: C/genius.xml:7782(para)
+#: C/genius.xml:7820(para)
msgid "Calculate average of an entire matrix."
msgstr "Vypočítat průměr z celé matice."
-#: C/genius.xml:7783(para) C/genius.xml:7843(para)
+#: C/genius.xml:7821(para) C/genius.xml:7881(para)
msgid ""
"See <ulink url=\"http://mathworld.wolfram.com/ArithmeticMean.html"
"\">Mathworld</ulink> for more information."
@@ -13708,16 +13753,16 @@ msgstr ""
"nebo <ulink url=\"http://cs.wikipedia.org/wiki/Aritmetick%C3%BD_pr%C5%AFm"
"%C4%9Br\">Wikipedia</ulink>."
-#: C/genius.xml:7791(term)
+#: C/genius.xml:7829(term)
msgid "<anchor id=\"gel-function-GaussDistribution\"/>GaussDistribution"
msgstr "<anchor id=\"gel-function-GaussDistribution\"/>GaussDistribution"
-#: C/genius.xml:7793(synopsis)
+#: C/genius.xml:7831(synopsis)
#, no-wrap
msgid "GaussDistribution (x,sigma)"
msgstr "GaussDistribution (x,sigma)"
-#: C/genius.xml:7794(para)
+#: C/genius.xml:7832(para)
msgid ""
"Integral of the GaussFunction from 0 to <varname>x</varname> (area under the "
"normal curve)."
@@ -13725,7 +13770,7 @@ msgstr ""
"Integrál Gaussovy funkce od 0 do <varname>x</varname> (oblast pod normální "
"křivkou)."
-#: C/genius.xml:7795(para) C/genius.xml:7807(para)
+#: C/genius.xml:7833(para) C/genius.xml:7845(para)
msgid ""
"See <ulink url=\"http://mathworld.wolfram.com/NormalDistribution.html"
"\">Mathworld</ulink> for more information."
@@ -13735,37 +13780,37 @@ msgstr ""
"angličtině) nebo <ulink url=\"http://cs.wikipedia.org/wiki/Norm%C3%A1ln"
"%C3%AD_rozd%C4%9Blen%C3%AD\">Wikipedia</ulink>."
-#: C/genius.xml:7803(term)
+#: C/genius.xml:7841(term)
msgid "<anchor id=\"gel-function-GaussFunction\"/>GaussFunction"
msgstr "<anchor id=\"gel-function-GaussFunction\"/>GaussFunction"
-#: C/genius.xml:7805(synopsis)
+#: C/genius.xml:7843(synopsis)
#, no-wrap
msgid "GaussFunction (x,sigma)"
msgstr "GaussFunction (x,sigma)"
-#: C/genius.xml:7806(para)
+#: C/genius.xml:7844(para)
msgid "The normalized Gauss distribution function (the normal curve)."
msgstr "Normalizovaného Gaussova funkce rozdělení (normální křivka)."
-#: C/genius.xml:7816(term)
+#: C/genius.xml:7854(term)
msgid "<anchor id=\"gel-function-Median\"/>Median"
msgstr "<anchor id=\"gel-function-Median\"/>Median"
-#: C/genius.xml:7818(synopsis)
+#: C/genius.xml:7856(synopsis)
#, no-wrap
msgid "Median (m)"
msgstr "Median (m)"
-#: C/genius.xml:7819(para)
+#: C/genius.xml:7857(para)
msgid "Aliases: <function>median</function>"
msgstr "Alternativní názvy: <function>median</function>"
-#: C/genius.xml:7820(para)
+#: C/genius.xml:7858(para)
msgid "Calculate median of an entire matrix."
msgstr "Vypočítat medián z celé matice."
-#: C/genius.xml:7821(para) C/genius.xml:7856(para)
+#: C/genius.xml:7859(para) C/genius.xml:7894(para)
msgid ""
"See <ulink url=\"http://mathworld.wolfram.com/StatisticalMedian.html"
"\">Mathworld</ulink> for more information."
@@ -13773,7 +13818,7 @@ msgstr ""
"Více informací najdete v encyklopedii <ulink url=\"http://mathworld.wolfram."
"com/StatisticalMedian.html\">Mathworld</ulink> (text je v angličtině)."
-#: C/genius.xml:7829(term)
+#: C/genius.xml:7867(term)
msgid ""
"<anchor id=\"gel-function-PopulationStandardDeviation\"/"
">PopulationStandardDeviation"
@@ -13781,53 +13826,53 @@ msgstr ""
"<anchor id=\"gel-function-PopulationStandardDeviation\"/"
">PopulationStandardDeviation"
-#: C/genius.xml:7831(synopsis)
+#: C/genius.xml:7869(synopsis)
#, no-wrap
msgid "PopulationStandardDeviation (m)"
msgstr "PopulationStandardDeviation (m)"
-#: C/genius.xml:7832(para)
+#: C/genius.xml:7870(para)
msgid "Aliases: <function>stdevp</function>"
msgstr "Alternativní názvy: <function>stdevp</function>"
-#: C/genius.xml:7833(para)
+#: C/genius.xml:7871(para)
msgid "Calculate the population standard deviation of a whole matrix."
msgstr "Spočítat standardní odchylku souboru celé matice."
-#: C/genius.xml:7838(term)
+#: C/genius.xml:7876(term)
msgid "<anchor id=\"gel-function-RowAverage\"/>RowAverage"
msgstr "<anchor id=\"gel-function-RowAverage\"/>RowAverage"
-#: C/genius.xml:7840(synopsis)
+#: C/genius.xml:7878(synopsis)
#, no-wrap
msgid "RowAverage (m)"
msgstr "RowAverage (m)"
-#: C/genius.xml:7841(para)
+#: C/genius.xml:7879(para)
msgid "Aliases: <function>RowMean</function>"
msgstr "Alternativní názvy: <function>RowMean</function>"
-#: C/genius.xml:7842(para)
+#: C/genius.xml:7880(para)
msgid "Calculate average of each row in a matrix."
msgstr "Vypočítat průměr každého řádku v matici."
-#: C/genius.xml:7851(term)
+#: C/genius.xml:7889(term)
msgid "<anchor id=\"gel-function-RowMedian\"/>RowMedian"
msgstr "<anchor id=\"gel-function-RowMedian\"/>RowMedian"
-#: C/genius.xml:7853(synopsis)
+#: C/genius.xml:7891(synopsis)
#, no-wrap
msgid "RowMedian (m)"
msgstr "RowMedian (m)"
-#: C/genius.xml:7854(para)
+#: C/genius.xml:7892(para)
msgid ""
"Calculate median of each row in a matrix and return a column vector of the "
"medians."
msgstr ""
"Vypočítat medián každého řádku v matici a vrátit sloupcový vektor mediánů."
-#: C/genius.xml:7864(term)
+#: C/genius.xml:7902(term)
msgid ""
"<anchor id=\"gel-function-RowPopulationStandardDeviation\"/"
">RowPopulationStandardDeviation"
@@ -13835,85 +13880,85 @@ msgstr ""
"<anchor id=\"gel-function-RowPopulationStandardDeviation\"/"
">RowPopulationStandardDeviation"
-#: C/genius.xml:7866(synopsis)
+#: C/genius.xml:7904(synopsis)
#, no-wrap
msgid "RowPopulationStandardDeviation (m)"
msgstr "RowPopulationStandardDeviation (m)"
-#: C/genius.xml:7867(para)
+#: C/genius.xml:7905(para)
msgid "Aliases: <function>rowstdevp</function>"
msgstr "Alternativní názvy: <function>rowstdevp</function>"
-#: C/genius.xml:7868(para)
+#: C/genius.xml:7906(para)
msgid ""
"Calculate the population standard deviations of rows of a matrix and return "
"a vertical vector."
msgstr ""
"Spočítat standardní odchylku souboru řádků matice a vrátit svislý vektor."
-#: C/genius.xml:7873(term)
+#: C/genius.xml:7911(term)
msgid "<anchor id=\"gel-function-RowStandardDeviation\"/>RowStandardDeviation"
msgstr "<anchor id=\"gel-function-RowStandardDeviation\"/>RowStandardDeviation"
-#: C/genius.xml:7875(synopsis)
+#: C/genius.xml:7913(synopsis)
#, no-wrap
msgid "RowStandardDeviation (m)"
msgstr "RowStandardDeviation (m)"
-#: C/genius.xml:7876(para)
+#: C/genius.xml:7914(para)
msgid "Aliases: <function>rowstdev</function>"
msgstr "Alternativní názvy: <function>rowstdev</function>"
-#: C/genius.xml:7877(para)
+#: C/genius.xml:7915(para)
msgid ""
"Calculate the standard deviations of rows of a matrix and return a vertical "
"vector."
msgstr "Spočítat standardní odchylku řádků matice a vrátit svislý vektor."
-#: C/genius.xml:7882(term)
+#: C/genius.xml:7920(term)
msgid "<anchor id=\"gel-function-StandardDeviation\"/>StandardDeviation"
msgstr "<anchor id=\"gel-function-StandardDeviation\"/>StandardDeviation"
-#: C/genius.xml:7884(synopsis)
+#: C/genius.xml:7922(synopsis)
#, no-wrap
msgid "StandardDeviation (m)"
msgstr "StandardDeviation (m)"
-#: C/genius.xml:7885(para)
+#: C/genius.xml:7923(para)
msgid "Aliases: <function>stdev</function>"
msgstr "Alternativní názvy: <function>stdev</function>"
-#: C/genius.xml:7886(para)
+#: C/genius.xml:7924(para)
msgid "Calculate the standard deviation of a whole matrix."
msgstr "Spočítat standardní odchylku celé matice."
-#: C/genius.xml:7894(title)
+#: C/genius.xml:7932(title)
msgid "Polynomials"
msgstr "Polynomy"
-#: C/genius.xml:7897(term)
+#: C/genius.xml:7935(term)
msgid "<anchor id=\"gel-function-AddPoly\"/>AddPoly"
msgstr "<anchor id=\"gel-function-AddPoly\"/>AddPoly"
-#: C/genius.xml:7899(synopsis)
+#: C/genius.xml:7937(synopsis)
#, no-wrap
msgid "AddPoly (p1,p2)"
msgstr "AddPoly (p1,p2)"
-#: C/genius.xml:7900(para)
+#: C/genius.xml:7938(para)
msgid "Add two polynomials (vectors)."
msgstr "Sečíst dva polynomy (vektory)."
-#: C/genius.xml:7905(term)
+#: C/genius.xml:7943(term)
msgid "<anchor id=\"gel-function-DividePoly\"/>DividePoly"
msgstr "<anchor id=\"gel-function-DividePoly\"/>DividePoly"
-#: C/genius.xml:7907(synopsis)
+#: C/genius.xml:7945(synopsis)
#, no-wrap
msgid "DividePoly (p,q,&r)"
msgstr "DividePoly (p,q,&r)"
-#: C/genius.xml:7908(para)
+#: C/genius.xml:7946(para)
msgid ""
"Divide two polynomials (as vectors) using long division. Returns the "
"quotient of the two polynomials. The optional argument <varname>r</varname> "
@@ -13924,7 +13969,7 @@ msgstr ""
"dvou polynomů. Volitelný argument <varname>r</varname> se použije k vrácení "
"zbytku. Zbytek bude mít nižší řád, než polynom <varname>q</varname>."
-#: C/genius.xml:7913(para)
+#: C/genius.xml:7951(para)
msgid ""
"See <ulink url=\"http://planetmath.org/encyclopedia/PolynomialLongDivision."
"html\">Planetmath</ulink> for more information."
@@ -13933,42 +13978,42 @@ msgstr ""
"encyclopedia/PolynomialLongDivision.html\">Planetmath</ulink> (text je v "
"angličtině)."
-#: C/genius.xml:7921(term)
+#: C/genius.xml:7959(term)
msgid "<anchor id=\"gel-function-IsPoly\"/>IsPoly"
msgstr "<anchor id=\"gel-function-IsPoly\"/>IsPoly"
-#: C/genius.xml:7923(synopsis)
+#: C/genius.xml:7961(synopsis)
#, no-wrap
msgid "IsPoly (p)"
msgstr "IsPoly (p)"
-#: C/genius.xml:7924(para)
+#: C/genius.xml:7962(para)
msgid "Check if a vector is usable as a polynomial."
msgstr "Zkontrolovat, zda je vektor použitelný jako polynom."
-#: C/genius.xml:7929(term)
+#: C/genius.xml:7967(term)
msgid "<anchor id=\"gel-function-MultiplyPoly\"/>MultiplyPoly"
msgstr "<anchor id=\"gel-function-MultiplyPoly\"/>MultiplyPoly"
-#: C/genius.xml:7931(synopsis)
+#: C/genius.xml:7969(synopsis)
#, no-wrap
msgid "MultiplyPoly (p1,p2)"
msgstr "MultiplyPoly (p1,p2)"
-#: C/genius.xml:7932(para)
+#: C/genius.xml:7970(para)
msgid "Multiply two polynomials (as vectors)."
msgstr "Vynásobit dva polynomy (jako vektory)."
-#: C/genius.xml:7937(term)
+#: C/genius.xml:7975(term)
msgid "<anchor id=\"gel-function-NewtonsMethodPoly\"/>NewtonsMethodPoly"
msgstr "<anchor id=\"gel-function-NewtonsMethodPoly\"/>NewtonsMethodPoly"
-#: C/genius.xml:7939(synopsis)
+#: C/genius.xml:7977(synopsis)
#, no-wrap
msgid "NewtonsMethodPoly (poly,guess,epsilon,maxn)"
msgstr "NewtonsMethodPoly (poly,odhad,epsilon,maxn)"
-#: C/genius.xml:7940(para)
+#: C/genius.xml:7978(para)
msgid ""
"Run newton's method on a polynomial to attempt to find a root, returns after "
"two successive values are within epsilon or after maxn tries (then returns "
@@ -13978,113 +14023,113 @@ msgstr ""
"vrátí se, když dvě po sobě jdoucí hodnoty spadají do epsilon, nebo po maxn "
"pokusech (pak vrátí <constant>null</constant>)."
-#: C/genius.xml:7945(term)
+#: C/genius.xml:7983(term)
msgid "<anchor id=\"gel-function-Poly2ndDerivative\"/>Poly2ndDerivative"
msgstr "<anchor id=\"gel-function-Poly2ndDerivative\"/>Poly2ndDerivative"
-#: C/genius.xml:7947(synopsis)
+#: C/genius.xml:7985(synopsis)
#, no-wrap
msgid "Poly2ndDerivative (p)"
msgstr "Poly2ndDerivative (p)"
-#: C/genius.xml:7948(para)
+#: C/genius.xml:7986(para)
msgid "Take second polynomial (as vector) derivative."
msgstr "Vypočítat druhou derivaci polynomu (jako vektoru)."
-#: C/genius.xml:7953(term)
+#: C/genius.xml:7991(term)
msgid "<anchor id=\"gel-function-PolyDerivative\"/>PolyDerivative"
msgstr "<anchor id=\"gel-function-PolyDerivative\"/>PolyDerivative"
-#: C/genius.xml:7955(synopsis)
+#: C/genius.xml:7993(synopsis)
#, no-wrap
msgid "PolyDerivative (p)"
msgstr "PolyDerivative (p)"
-#: C/genius.xml:7956(para)
+#: C/genius.xml:7994(para)
msgid "Take polynomial (as vector) derivative."
msgstr "Derivovat polynom (jako vektor)."
-#: C/genius.xml:7961(term)
+#: C/genius.xml:7999(term)
msgid "<anchor id=\"gel-function-PolyToFunction\"/>PolyToFunction"
msgstr "<anchor id=\"gel-function-PolyToFunction\"/>PolyToFunction"
-#: C/genius.xml:7963(synopsis)
+#: C/genius.xml:8001(synopsis)
#, no-wrap
msgid "PolyToFunction (p)"
msgstr "PolyToFunction (p)"
-#: C/genius.xml:7964(para)
+#: C/genius.xml:8002(para)
msgid "Make function out of a polynomial (as vector)."
msgstr "Vytvořit funkci z polynomu (jako vektoru)."
-#: C/genius.xml:7969(term)
+#: C/genius.xml:8007(term)
msgid "<anchor id=\"gel-function-PolyToString\"/>PolyToString"
msgstr "<anchor id=\"gel-function-PolyToString\"/>PolyToString"
-#: C/genius.xml:7971(synopsis)
+#: C/genius.xml:8009(synopsis)
#, no-wrap
msgid "PolyToString (p,var...)"
msgstr "PolyToString (p,prom...)"
-#: C/genius.xml:7972(para)
+#: C/genius.xml:8010(para)
msgid "Make string out of a polynomial (as vector)."
msgstr "Vytvořit řetězec z polynomu (jako vektoru)."
-#: C/genius.xml:7977(term)
+#: C/genius.xml:8015(term)
msgid "<anchor id=\"gel-function-SubtractPoly\"/>SubtractPoly"
msgstr "<anchor id=\"gel-function-SubtractPoly\"/>SubtractPoly"
-#: C/genius.xml:7979(synopsis)
+#: C/genius.xml:8017(synopsis)
#, no-wrap
msgid "SubtractPoly (p1,p2)"
msgstr "SubtractPoly (p1,p2)"
-#: C/genius.xml:7980(para)
+#: C/genius.xml:8018(para)
msgid "Subtract two polynomials (as vectors)."
msgstr "Odečíst dva polynomy (jako vektory)."
-#: C/genius.xml:7985(term)
+#: C/genius.xml:8023(term)
msgid "<anchor id=\"gel-function-TrimPoly\"/>TrimPoly"
msgstr "<anchor id=\"gel-function-TrimPoly\"/>TrimPoly"
-#: C/genius.xml:7987(synopsis)
+#: C/genius.xml:8025(synopsis)
#, no-wrap
msgid "TrimPoly (p)"
msgstr "TrimPoly (p)"
-#: C/genius.xml:7988(para)
+#: C/genius.xml:8026(para)
msgid "Trim zeros from a polynomial (as vector)."
msgstr "Odstranit nuly z polynomu (jako vektoru)."
-#: C/genius.xml:7996(title)
+#: C/genius.xml:8034(title)
msgid "Set Theory"
msgstr "Teorie množin"
-#: C/genius.xml:7999(term)
+#: C/genius.xml:8037(term)
msgid "<anchor id=\"gel-function-Intersection\"/>Intersection"
msgstr "<anchor id=\"gel-function-Intersection\"/>Intersection"
-#: C/genius.xml:8001(synopsis)
+#: C/genius.xml:8039(synopsis)
#, no-wrap
msgid "Intersection (X,Y)"
msgstr "Intersection (X,Y)"
-#: C/genius.xml:8002(para)
+#: C/genius.xml:8040(para)
msgid ""
"Returns a set theoretic intersection of X and Y (X and Y are vectors "
"pretending to be sets)."
msgstr "Vrátit průnik množin X a Y (X a Y jsou vektory považované za množiny)."
-#: C/genius.xml:8007(term)
+#: C/genius.xml:8045(term)
msgid "<anchor id=\"gel-function-IsIn\"/>IsIn"
msgstr "<anchor id=\"gel-function-IsIn\"/>IsIn"
-#: C/genius.xml:8009(synopsis)
+#: C/genius.xml:8047(synopsis)
#, no-wrap
msgid "IsIn (x,X)"
msgstr "IsIn (x,X)"
-#: C/genius.xml:8010(para)
+#: C/genius.xml:8048(para)
msgid ""
"Returns <constant>true</constant> if the element x is in the set X (where X "
"is a vector pretending to be a set)."
@@ -14092,16 +14137,16 @@ msgstr ""
"Vrátit <constant>true</constant> (pravda), pokud je x prvkem množiny X (kde "
"X je vektor považovaný za množinu)."
-#: C/genius.xml:8015(term)
+#: C/genius.xml:8053(term)
msgid "<anchor id=\"gel-function-IsSubset\"/>IsSubset"
msgstr "<anchor id=\"gel-function-IsSubset\"/>IsSubset"
-#: C/genius.xml:8017(synopsis)
+#: C/genius.xml:8055(synopsis)
#, no-wrap
msgid "IsSubset (X, Y)"
msgstr "IsSubset (X, Y)"
-#: C/genius.xml:8018(para)
+#: C/genius.xml:8056(para)
msgid ""
"Returns <constant>true</constant> if X is a subset of Y (X and Y are vectors "
"pretending to be sets)."
@@ -14109,64 +14154,64 @@ msgstr ""
"Vrátit <constant>true</constant> (pravda), pokud X je podmnožinu Y (X a Y "
"jsou vektory považované za množiny)."
-#: C/genius.xml:8023(term)
+#: C/genius.xml:8061(term)
msgid "<anchor id=\"gel-function-MakeSet\"/>MakeSet"
msgstr "<anchor id=\"gel-function-MakeSet\"/>MakeSet"
-#: C/genius.xml:8025(synopsis)
+#: C/genius.xml:8063(synopsis)
#, no-wrap
msgid "MakeSet (X)"
msgstr "MakeSet (X)"
-#: C/genius.xml:8026(para)
+#: C/genius.xml:8064(para)
msgid "Returns a vector where every element of X appears only once."
msgstr "Vrátit vektor, ve kterém se každý prvek X vyskytuje jen jednou."
-#: C/genius.xml:8031(term)
+#: C/genius.xml:8069(term)
msgid "<anchor id=\"gel-function-SetMinus\"/>SetMinus"
msgstr "<anchor id=\"gel-function-SetMinus\"/>SetMinus"
-#: C/genius.xml:8033(synopsis)
+#: C/genius.xml:8071(synopsis)
#, no-wrap
msgid "SetMinus (X,Y)"
msgstr "SetMinus (X,Y)"
-#: C/genius.xml:8034(para)
+#: C/genius.xml:8072(para)
msgid ""
"Returns a set theoretic difference X-Y (X and Y are vectors pretending to be "
"sets)."
msgstr "Vrátit rozdíl množin X-Y (X a Y jsou vektory považované za množiny)."
-#: C/genius.xml:8039(term)
+#: C/genius.xml:8077(term)
msgid "<anchor id=\"gel-function-Union\"/>Union"
msgstr "<anchor id=\"gel-function-Union\"/>Union"
-#: C/genius.xml:8041(synopsis)
+#: C/genius.xml:8079(synopsis)
#, no-wrap
msgid "Union (X,Y)"
msgstr "Union (X,Y)"
-#: C/genius.xml:8042(para)
+#: C/genius.xml:8080(para)
msgid ""
"Returns a set theoretic union of X and Y (X and Y are vectors pretending to "
"be sets)."
msgstr ""
"Vrátit sjednocení množin X a Y (X a Y jsou vektory považované za množiny)."
-#: C/genius.xml:8050(title)
+#: C/genius.xml:8088(title)
msgid "Commutative Algebra"
msgstr "Komutativní algebra"
-#: C/genius.xml:8053(term)
+#: C/genius.xml:8091(term)
msgid "<anchor id=\"gel-function-MacaulayBound\"/>MacaulayBound"
msgstr "<anchor id=\"gel-function-MacaulayBound\"/>MacaulayBound"
-#: C/genius.xml:8055(synopsis)
+#: C/genius.xml:8093(synopsis)
#, no-wrap
msgid "MacaulayBound (c,d)"
msgstr "MacaulayBound (c,d)"
-#: C/genius.xml:8056(para)
+#: C/genius.xml:8094(para)
msgid ""
"For a Hilbert function that is c for degree d, given the Macaulay bound for "
"the Hilbert function of degree d+1 (The c^<d> operator from Green's "
@@ -14175,61 +14220,61 @@ msgstr ""
"Pro Hilbertovu funkci jde o c pro stupeň d, daný Macaulayho ohraničením pro "
"Hilbertovu funkci stupně d+1 (operátor c^<d> z Greenova důkazu)"
-#: C/genius.xml:8061(term)
+#: C/genius.xml:8099(term)
msgid ""
"<anchor id=\"gel-function-MacaulayLowerOperator\"/>MacaulayLowerOperator"
msgstr ""
"<anchor id=\"gel-function-MacaulayLowerOperator\"/>MacaulayLowerOperator"
-#: C/genius.xml:8063(synopsis)
+#: C/genius.xml:8101(synopsis)
#, no-wrap
msgid "MacaulayLowerOperator (c,d)"
msgstr "MacaulayLowerOperator (c,d)"
-#: C/genius.xml:8064(para)
+#: C/genius.xml:8102(para)
msgid "The c_<d> operator from Green's proof of Macaulay's Theorem."
msgstr "Operátor c_<d> z Greenova důkazu Macaulayova teorému"
-#: C/genius.xml:8069(term)
+#: C/genius.xml:8107(term)
msgid "<anchor id=\"gel-function-MacaulayRep\"/>MacaulayRep"
msgstr "<anchor id=\"gel-function-MacaulayRep\"/>MacaulayRep"
-#: C/genius.xml:8071(synopsis)
+#: C/genius.xml:8109(synopsis)
#, no-wrap
msgid "MacaulayRep (c,d)"
msgstr "MacaulayRep (c,d)"
-#: C/genius.xml:8072(para)
+#: C/genius.xml:8110(para)
msgid "Return the dth Macaulay representation of a positive integer c."
msgstr "Vrátit d-tou Macaulayho reprezentaci celého kladného čísla c."
-#: C/genius.xml:8079(title)
+#: C/genius.xml:8117(title)
msgid "Miscellaneous"
msgstr "Různé"
-#: C/genius.xml:8082(term)
+#: C/genius.xml:8120(term)
msgid "<anchor id=\"gel-function-ASCIIToString\"/>ASCIIToString"
msgstr "<anchor id=\"gel-function-ASCIIToString\"/>ASCIIToString"
-#: C/genius.xml:8084(synopsis)
+#: C/genius.xml:8122(synopsis)
#, no-wrap
msgid "ASCIIToString (vec)"
msgstr "ASCIIToString (vektor)"
-#: C/genius.xml:8085(para)
+#: C/genius.xml:8123(para)
msgid "Convert a vector of ASCII values to a string."
msgstr "Převést vektor hodnost ASCII na řetězec."
-#: C/genius.xml:8090(term)
+#: C/genius.xml:8128(term)
msgid "<anchor id=\"gel-function-AlphabetToString\"/>AlphabetToString"
msgstr "<anchor id=\"gel-function-AlphabetToString\"/>AlphabetToString"
-#: C/genius.xml:8092(synopsis)
+#: C/genius.xml:8130(synopsis)
#, no-wrap
msgid "AlphabetToString (vec,alphabet)"
msgstr "AlphabetToString (vektor,abeceda)"
-#: C/genius.xml:8093(para)
+#: C/genius.xml:8131(para)
msgid ""
"Convert a vector of 0-based alphabet values (positions in the alphabet "
"string) to a string."
@@ -14237,29 +14282,29 @@ msgstr ""
"Převést vektor hodnot abecedy (pozic v řetězci abecedy) počítaných od 0 na "
"řetězec."
-#: C/genius.xml:8098(term)
+#: C/genius.xml:8136(term)
msgid "<anchor id=\"gel-function-StringToASCII\"/>StringToASCII"
msgstr "<anchor id=\"gel-function-StringToASCII\"/>StringToASCII"
-#: C/genius.xml:8100(synopsis)
+#: C/genius.xml:8138(synopsis)
#, no-wrap
msgid "StringToASCII (str)"
msgstr "StringToASCII (retezec)"
-#: C/genius.xml:8101(para)
+#: C/genius.xml:8139(para)
msgid "Convert a string to a vector of ASCII values."
msgstr "Převést retezec na vektor hodnot ASCII."
-#: C/genius.xml:8106(term)
+#: C/genius.xml:8144(term)
msgid "<anchor id=\"gel-function-StringToAlphabet\"/>StringToAlphabet"
msgstr "<anchor id=\"gel-function-StringToAlphabet\"/>StringToAlphabet"
-#: C/genius.xml:8108(synopsis)
+#: C/genius.xml:8146(synopsis)
#, no-wrap
msgid "StringToAlphabet (str,alphabet)"
msgstr "StringToAlphabet (retezec,abeceda)"
-#: C/genius.xml:8109(para)
+#: C/genius.xml:8147(para)
msgid ""
"Convert a string to a vector of 0-based alphabet values (positions in the "
"alphabet string), -1's for unknown letters."
@@ -14267,55 +14312,55 @@ msgstr ""
"Převést řetězec na vektor hodnot abecedy (pozic v řetězci) počítaných od 0, "
"za neznámé znaky se dosadí -1."
-#: C/genius.xml:8117(title)
+#: C/genius.xml:8155(title)
msgid "Symbolic Operations"
msgstr "Symbolické operace"
-#: C/genius.xml:8120(term)
+#: C/genius.xml:8158(term)
msgid "<anchor id=\"gel-function-SymbolicDerivative\"/>SymbolicDerivative"
msgstr "<anchor id=\"gel-function-SymbolicDerivative\"/>SymbolicDerivative"
-#: C/genius.xml:8122(synopsis)
+#: C/genius.xml:8160(synopsis)
#, no-wrap
msgid "SymbolicDerivative (f)"
msgstr "SymbolicDerivative (f)"
-#: C/genius.xml:8123(para)
+#: C/genius.xml:8161(para)
msgid ""
"Attempt to symbolically differentiate the function f, where f is a function "
"of one variable."
msgstr "Zkusit symbolicky derivovat funkci f, kde f je funkce jedné proměnné."
-#: C/genius.xml:8124(para)
+#: C/genius.xml:8162(para)
msgid ""
-"Examples: <screen><prompt>genius></prompt> <userinput>SymbolicDerivative"
-"(sin)</userinput>\n"
+"Examples: <screen><prompt>genius></prompt> "
+"<userinput>SymbolicDerivative(sin)</userinput>\n"
"= (`(x)=cos(x))\n"
"<prompt>genius></prompt> <userinput>SymbolicDerivative(`(x)=7*x^2)</"
"userinput>\n"
"= (`(x)=(7*(2*x)))\n"
"</screen>"
msgstr ""
-"Příklady: <screen><prompt>genius></prompt> <userinput>SymbolicDerivative"
-"(sin)</userinput>\n"
+"Příklady: <screen><prompt>genius></prompt> "
+"<userinput>SymbolicDerivative(sin)</userinput>\n"
"= (`(x)=cos(x))\n"
"<prompt>genius></prompt> <userinput>SymbolicDerivative(`(x)=7*x^2)</"
"userinput>\n"
"= (`(x)=(7*(2*x)))\n"
"</screen>"
-#: C/genius.xml:8136(term)
+#: C/genius.xml:8174(term)
msgid ""
"<anchor id=\"gel-function-SymbolicDerivativeTry\"/>SymbolicDerivativeTry"
msgstr ""
"<anchor id=\"gel-function-SymbolicDerivativeTry\"/>SymbolicDerivativeTry"
-#: C/genius.xml:8138(synopsis)
+#: C/genius.xml:8176(synopsis)
#, no-wrap
msgid "SymbolicDerivativeTry (f)"
msgstr "SymbolicDerivativeTry (f)"
-#: C/genius.xml:8139(para)
+#: C/genius.xml:8177(para)
msgid ""
"Attempt to symbolically differentiate the function f, where f is a function "
"of one variable, returns <constant>null</constant> if unsuccessful but is "
@@ -14326,18 +14371,18 @@ msgstr ""
"neúspěchu vrátit potichu <constant>null</constant>. (Viz <link linkend=\"gel-"
"function-SymbolicDerivative\"><function>SymbolicDerivative</function></link>)"
-#: C/genius.xml:8146(term)
+#: C/genius.xml:8184(term)
msgid ""
"<anchor id=\"gel-function-SymbolicNthDerivative\"/>SymbolicNthDerivative"
msgstr ""
"<anchor id=\"gel-function-SymbolicNthDerivative\"/>SymbolicNthDerivative"
-#: C/genius.xml:8148(synopsis)
+#: C/genius.xml:8186(synopsis)
#, no-wrap
msgid "SymbolicNthDerivative (f,n)"
msgstr "SymbolicNthDerivative (f,n)"
-#: C/genius.xml:8149(para)
+#: C/genius.xml:8187(para)
msgid ""
"Attempt to symbolically differentiate a function n times. (See <link linkend="
"\"gel-function-SymbolicDerivative\"><function>SymbolicDerivative</function></"
@@ -14346,7 +14391,7 @@ msgstr ""
"Zkusit symbolicky n-krát derivovat funkci. (Viz <link linkend=\"gel-function-"
"SymbolicDerivative\"><function>SymbolicDerivative</function></link>)"
-#: C/genius.xml:8156(term)
+#: C/genius.xml:8194(term)
msgid ""
"<anchor id=\"gel-function-SymbolicNthDerivativeTry\"/"
">SymbolicNthDerivativeTry"
@@ -14354,12 +14399,12 @@ msgstr ""
"<anchor id=\"gel-function-SymbolicNthDerivativeTry\"/"
">SymbolicNthDerivativeTry"
-#: C/genius.xml:8158(synopsis)
+#: C/genius.xml:8196(synopsis)
#, no-wrap
msgid "SymbolicNthDerivativeTry (f,n)"
msgstr "SymbolicNthDerivativeTry (f,n)"
-#: C/genius.xml:8159(para)
+#: C/genius.xml:8197(para)
msgid ""
"Attempt to symbolically differentiate a function n times quietly and return "
"<constant>null</constant> on failure (See <link linkend=\"gel-function-"
@@ -14369,7 +14414,7 @@ msgstr ""
"<constant>null</constant>. (Viz <link linkend=\"gel-function-"
"SymbolicNthDerivative\"><function>SymbolicNthDerivative</function></link>)"
-#: C/genius.xml:8166(term)
+#: C/genius.xml:8204(term)
msgid ""
"<anchor id=\"gel-function-SymbolicTaylorApproximationFunction\"/"
">SymbolicTaylorApproximationFunction"
@@ -14377,12 +14422,12 @@ msgstr ""
"<anchor id=\"gel-function-SymbolicTaylorApproximationFunction\"/"
">SymbolicTaylorApproximationFunction"
-#: C/genius.xml:8168(synopsis)
+#: C/genius.xml:8206(synopsis)
#, no-wrap
msgid "SymbolicTaylorApproximationFunction (f,x0,n)"
msgstr "SymbolicTaylorApproximationFunction (f,x0,n)"
-#: C/genius.xml:8169(para)
+#: C/genius.xml:8207(para)
msgid ""
"Attempt to construct the Taylor approximation function around x0 to the nth "
"degree. (See <link linkend=\"gel-function-SymbolicDerivative"
@@ -14392,21 +14437,21 @@ msgstr ""
"aproximuje zadanou funkci. (Viz <link linkend=\"gel-function-"
"SymbolicDerivative\"><function>SymbolicDerivative</function></link>)"
-#: C/genius.xml:8181(term)
+#: C/genius.xml:8219(term)
msgid "<anchor id=\"gel-function-ExportPlot\"/>ExportPlot"
msgstr "<anchor id=\"gel-function-ExportPlot\"/>ExportPlot"
-#: C/genius.xml:8183(synopsis)
+#: C/genius.xml:8221(synopsis)
#, no-wrap
msgid "ExportPlot (file,type)"
msgstr "ExportPlot (soubor,typ)"
-#: C/genius.xml:8184(synopsis)
+#: C/genius.xml:8222(synopsis)
#, no-wrap
msgid "ExportPlot (file)"
msgstr "ExportPlot (soubor)"
-#: C/genius.xml:8185(para)
+#: C/genius.xml:8223(para)
msgid ""
"Export the contents of the plotting window to a file. The type is a string "
"that specifies the file type to use, \"png\", \"eps\", or \"ps\". If the "
@@ -14418,11 +14463,11 @@ msgstr ""
"zadán, určí se podle přípony, která by v takovém případě mela být „.png“, „."
"eps“ nebo „.ps“."
-#: C/genius.xml:8192(para)
+#: C/genius.xml:8230(para)
msgid "Note that files are overwritten without asking."
msgstr "Upozorňujeme, že soubory se přepisují bez dotazu."
-#: C/genius.xml:8195(para)
+#: C/genius.xml:8233(para)
msgid ""
"On successful export, true is returned. Otherwise error is printed and "
"exception is raised."
@@ -14430,7 +14475,7 @@ msgstr ""
"Při úspěšném exportu je vrácena hodnota pravda. Jinak je vypsána chyba a "
"vyvolána výjimka."
-#: C/genius.xml:8199(para)
+#: C/genius.xml:8237(para)
msgid ""
"Examples: <screen><prompt>genius></prompt> <userinput>ExportPlot(\"file."
"png\")</userinput>\n"
@@ -14440,40 +14485,40 @@ msgid ""
msgstr ""
"Příklady: <screen><prompt>genius></prompt> <userinput>ExportPlot(\"soubor."
"png\")</userinput>\n"
-"<prompt>genius></prompt> <userinput>ExportPlot(\"/složka/soubor\",\"eps\")"
-"</userinput>\n"
+"<prompt>genius></prompt> <userinput>ExportPlot(\"/složka/soubor\",\"eps"
+"\")</userinput>\n"
"</screen>"
-#: C/genius.xml:8209(term)
+#: C/genius.xml:8247(term)
msgid "<anchor id=\"gel-function-LinePlot\"/>LinePlot"
msgstr "<anchor id=\"gel-function-LinePlot\"/>LinePlot"
-#: C/genius.xml:8211(synopsis)
+#: C/genius.xml:8249(synopsis)
#, no-wrap
msgid "LinePlot (func1,func2,func3,...)"
msgstr "LinePlot (fce1,fce2,fce3,…)"
-#: C/genius.xml:8212(synopsis)
+#: C/genius.xml:8250(synopsis)
#, no-wrap
msgid "LinePlot (func1,func2,func3,x1,x2)"
msgstr "LinePlot (fce1,fce2,fce3,x1,x2)"
-#: C/genius.xml:8213(synopsis)
+#: C/genius.xml:8251(synopsis)
#, no-wrap
msgid "LinePlot (func1,func2,func3,x1,x2,y1,y2)"
msgstr "LinePlot (fce1,fce2,fce3,x1,x2,y1,y2)"
-#: C/genius.xml:8214(synopsis)
+#: C/genius.xml:8252(synopsis)
#, no-wrap
msgid "LinePlot (func1,func2,func3,[x1,x2])"
msgstr "LinePlot (fce1,fce2,fce3,[x1,x2])"
-#: C/genius.xml:8215(synopsis)
+#: C/genius.xml:8253(synopsis)
#, no-wrap
msgid "LinePlot (func1,func2,func3,[x1,x2,y1,y2])"
msgstr "LinePlot (fce1,fce2,fce3,[x1,x2,y1,y2])"
-#: C/genius.xml:8216(para)
+#: C/genius.xml:8254(para)
msgid ""
"Plot a function (or several functions) with a line. First (up to 10) "
"arguments are functions, then optionally you can specify the limits of the "
@@ -14492,8 +14537,8 @@ msgstr ""
"\"><function>LinePlotWindow</function></link>). Pokud nejsou zadány jen meze "
"v ose y, funkce se propočítají a vezme se jejich minimum a maximu."
-#: C/genius.xml:8227(para) C/genius.xml:8315(para) C/genius.xml:8342(para)
-#: C/genius.xml:8395(para) C/genius.xml:8570(para)
+#: C/genius.xml:8265(para) C/genius.xml:8372(para) C/genius.xml:8399(para)
+#: C/genius.xml:8452(para) C/genius.xml:8627(para)
msgid ""
"The parameter <link linkend=\"gel-function-LinePlotDrawLegends"
"\"><function>LinePlotDrawLegends</function></link> controls the drawing of "
@@ -14503,7 +14548,7 @@ msgstr ""
"\"><function>LinePlotDrawLegends</function></link> ovládá vykreslování "
"legendy."
-#: C/genius.xml:8232(para)
+#: C/genius.xml:8270(para)
msgid ""
"Examples: <screen><prompt>genius></prompt> <userinput>LinePlot(sin,cos)</"
"userinput>\n"
@@ -14517,16 +14562,16 @@ msgstr ""
"userinput>\n"
"</screen>"
-#: C/genius.xml:8242(term)
+#: C/genius.xml:8280(term)
msgid "<anchor id=\"gel-function-LinePlotClear\"/>LinePlotClear"
msgstr "<anchor id=\"gel-function-LinePlotClear\"/>LinePlotClear"
-#: C/genius.xml:8244(synopsis)
+#: C/genius.xml:8282(synopsis)
#, no-wrap
msgid "LinePlotClear ()"
msgstr "LinePlotClear ()"
-#: C/genius.xml:8245(para)
+#: C/genius.xml:8283(para)
msgid ""
"Show the line plot window and clear out functions and any other lines that "
"were drawn."
@@ -14534,21 +14579,21 @@ msgstr ""
"Zobrazí okno pro vykreslování a vymaže funkce a ostatní čáry, které jsou v "
"něm vykresleny."
-#: C/genius.xml:8253(term)
+#: C/genius.xml:8291(term)
msgid "<anchor id=\"gel-function-LinePlotDrawLine\"/>LinePlotDrawLine"
msgstr "<anchor id=\"gel-function-LinePlotDrawLine\"/>LinePlotDrawLine"
-#: C/genius.xml:8255(synopsis)
+#: C/genius.xml:8293(synopsis)
#, no-wrap
msgid "LinePlotDrawLine (x1,y1,x2,y2,...)"
msgstr "LinePlotDrawLine (x1,y1,x2,y2,…)"
-#: C/genius.xml:8256(synopsis)
+#: C/genius.xml:8294(synopsis)
#, no-wrap
msgid "LinePlotDrawLine (v,...)"
msgstr "LinePlotDrawLine (v,…)"
-#: C/genius.xml:8257(para)
+#: C/genius.xml:8295(para)
msgid ""
"Draw a line from <varname>x1</varname>,<varname>y1</varname> to <varname>x2</"
"varname>,<varname>y2</varname>. <varname>x1</varname>,<varname>y1</varname>, "
@@ -14560,86 +14605,134 @@ msgstr ""
"<varname>x2</varname>,<varname>y2</varname> může být pro delší lomené čáry "
"nahrazeno maticí <varname>n</varname> krát 2."
-#: C/genius.xml:8264(para)
-msgid ""
-"Extra parameters can be added to specify line color, thickness, arrows, and "
-"the plotting window. You can do this by adding a string <userinput>\"color"
-"\"</userinput>, <userinput>\"thickness\"</userinput>, <userinput>\"window\"</"
-"userinput>, or <userinput>\"arrow\"</userinput>, and after it either the "
-"color string, the thicknes as an integer, the window as 4-vector, and for "
-"arrow either <userinput>\"origin\"</userinput>, <userinput>\"end\"</"
-"userinput>, <userinput>\"both\"</userinput>, or <userinput>\"none\"</"
-"userinput>. For <userinput>\"window\"</userinput> we can specify <userinput>"
-"\"fit\"</userinput> rather than a vector in which case, the x range will be "
-"set precisely and the y range will be set with five percent borders around "
-"the line. Finally, the legend can be specified by adding <userinput>\"legend"
-"\"</userinput> and the string with the legend."
-msgstr ""
-"Lze přidat doplňující parametry pro určení barvy čáry, tloušťky čáry, "
-"vykreslovacího okna a šipek. Dělá se to přidáním řetězce <userinput>\"color"
-"\"</userinput>, <userinput>\"thickness\"</userinput>, <userinput>\"window\"</"
-"userinput> nebo <userinput>\"arrow\"</userinput> následovaného barvou jako "
-"řetězec, tloušťkou jako celé číslo, oknem jako 4prvkový vektor a pro šipku "
-"buď <userinput>\"origin\"</userinput> (v počátku), <userinput>\"end\"</"
-"userinput> (na konci), <userinput>\"both\"</userinput> (na obou stranách) "
-"<userinput>\"none\"</userinput> (nikde). Pro <userinput>\"window\"</"
-"userinput> můžete místo vektoru zadat také <userinput>\"fit\"</userinput> a "
-"rozsah x pak bude nastaven přesně a rozsah y bude nastaven s pětiprocentními "
-"okraji okolo čáry. Nakonec je možné zadat pomocí <userinput>\"legend\"</"
-"userinput> řetězec s legendou."
-
-#: C/genius.xml:8284(para)
-msgid ""
-"Examples: <screen><prompt>genius></prompt> <userinput>LinePlotDrawLine"
-"(0,0,1,1,\"color\",\"blue\",\"thickness\",3)</userinput>\n"
+#: C/genius.xml:8302(para)
+msgid ""
+"Extra parameters can be added to specify line color, thickness, arrows, the "
+"plotting window, or legend. You can do this by adding an argument string "
+"<userinput>\"color\"</userinput>, <userinput>\"thickness\"</userinput>, "
+"<userinput>\"window\"</userinput>, <userinput>\"arrow\"</userinput>, or "
+"<userinput>\"legend\"</userinput>, and after it specify the color, the "
+"thicknes, the window as 4-vector, type of arrow, or the legend."
+msgstr ""
+"Mohou být přidány dodatečné parametry, které určují barvu, tloušťku a šipky "
+"čáry a vykreslení okna nebo legendy. Stačí přidat argument v podobě řetězce "
+"<userinput>\"color\"</userinput>, <userinput>\"thickness\"</userinput>, "
+"<userinput>\"window\"</userinput>, <userinput>\"arrow\"</userinput> nebo "
+"<userinput>\"legend\"</userinput> a za ním určit barvu, tloušťku, okno jako "
+"4prvkový vektor, typ šipky nebo legendu."
+
+#: C/genius.xml:8312(para)
+msgid ""
+"The color should be either a string indicating the common english word for "
+"the color that GTK will recognize such as <userinput>\"red\"</userinput>, "
+"<userinput>\"blue\"</userinput>, <userinput>\"yellow\"</userinput>, etc... "
+"Alternatively the color can be specified in RGB format as <userinput>\"#rgb"
+"\"</userinput>, <userinput>\"#rrggbb\"</userinput>, or <userinput>"
+"\"#rrrrggggbbbb\"</userinput>, where the r, g, or b are hex digits of the "
+"red, green, and blue components of the color. Finally the color can also be "
+"specified as a real vector specifying the red green and blue components "
+"where the components are between 0 and 1."
+msgstr ""
+"Barva by měla být buď řetězec symbolizující běžným anglickým slovem barvu, "
+"kterou rozpozná GTK, jako <userinput>\"red\"</userinput>, <userinput>\"blue"
+"\"</userinput>, <userinput>\"yellow\"</userinput>, apod. Nebo druhou "
+"možností je zadat barvu ve formátu RGB jako <userinput>\"#rgb\"</userinput>, "
+"<userinput>\"#rrggbb\"</userinput> nebo <userinput>\"#rrrrggggbbbb\"</"
+"userinput>, kde r, g a b jsou číslice šestnáctkové soustavy červené, zelené "
+"a modré složky barvy. A nakonec třetí možností je také určení barvy vektorem "
+"reálných čísel, která představují červenou, zelenou a modrou složku v "
+"rozmezí 0 až 1."
+
+#: C/genius.xml:8322(para)
+msgid ""
+"The window should be given as usual as <userinput>[x1,x2,y1,y2]</userinput>, "
+"or alternatively can be given as a string <userinput>\"fit\"</userinput> in "
+"which case, the x range will be set precisely and the y range will be set "
+"with five percent borders around the line."
+msgstr ""
+"Okno by mělo být zadáno buď obvyklým způsobem jako <userinput>[x1,x2,y1,y2]</"
+"userinput> nebo alternativně může být použit řetězec <userinput>\"fit\"</"
+"userinput>, v kterémž to případě bude rozsah x určen přesně a rozsah y bude "
+"nastaven s pětiprocentním přesahem křivky."
+
+#: C/genius.xml:8329(para)
+msgid ""
+"Arrow specification should be <userinput>\"origin\"</userinput>, <userinput>"
+"\"end\"</userinput>, <userinput>\"both\"</userinput>, or <userinput>\"none"
+"\"</userinput>."
+msgstr ""
+"Specifikace šipky by měla být <userinput>\"origin\"</userinput> (počátek), "
+"<userinput>\"end\"</userinput> (konec), <userinput>\"both\"</userinput> "
+"(obojí) nebo <userinput>\"none\"</userinput> (nic)."
+
+#: C/genius.xml:8336(para)
+msgid ""
+"Finally, legend should be a string that can be used as the legend in the "
+"graph. That is, if legends are being printed."
+msgstr ""
+"A nakonec legenda, která by měla být zadána jako řetězec, který se použije k "
+"osvětlení grafu. Samozřejmě jen v případě, že se legenda tiskne."
+
+#: C/genius.xml:8340(para)
+msgid ""
+"Examples: <screen><prompt>genius></prompt> "
+"<userinput>LinePlotDrawLine(0,0,1,1,\"color\",\"blue\",\"thickness\",3)</"
+"userinput>\n"
"<prompt>genius></prompt> <userinput>LinePlotDrawLine([0,0;1,-1;-1,-1])</"
"userinput>\n"
"<prompt>genius></prompt> <userinput>LinePlotDrawLine([0,0;1,1],\"arrow\","
"\"end\")</userinput>\n"
"<prompt>genius></prompt> <userinput>LinePlotDrawLine(EulersMethodFull(`(x,"
"y)=y,0,3,100),\"color\",\"blue\",\"legend\",\"The Solution\")</userinput>\n"
+"<prompt>genius></prompt> <userinput>for r=0.0 to 1.0 by 0.1 do "
+"LinePlotDrawLine([0,0;1,r],\"color\",[r,(1-r),0.5],\"window\",[0,1,0,1])</"
+"userinput>\n"
"</screen>"
msgstr ""
-"Příklady: <screen><prompt>genius></prompt> <userinput>LinePlotDrawLine"
-"(0,0,1,1,\"color\",\"blue\",\"thickness\",3)</userinput>\n"
+"Příklady: <screen><prompt>genius></prompt> "
+"<userinput>LinePlotDrawLine(0,0,1,1,\"color\",\"blue\",\"thickness\",3)</"
+"userinput>\n"
"<prompt>genius></prompt> <userinput>LinePlotDrawLine([0,0;1,-1;-1,-1])</"
"userinput>\n"
"<prompt>genius></prompt> <userinput>LinePlotDrawLine([0,0;1,1],\"arrow\","
"\"end\")</userinput>\n"
"<prompt>genius></prompt> <userinput>LinePlotDrawLine(EulersMethodFull(`(x,"
"y)=y,0,3,100),\"color\",\"blue\",\"legend\",\"Řešení\")</userinput>\n"
+"<prompt>genius></prompt> <userinput>for r=0.0 to 1.0 by 0.1 do "
+"LinePlotDrawLine([0,0;1,r],\"color\",[r,(1-r),0.5],\"window\",[0,1,0,1])</"
+"userinput>\n"
"</screen>"
-#: C/genius.xml:8296(term)
+#: C/genius.xml:8353(term)
msgid "<anchor id=\"gel-function-LinePlotParametric\"/>LinePlotParametric"
msgstr "<anchor id=\"gel-function-LinePlotParametric\"/>LinePlotParametric"
-#: C/genius.xml:8298(synopsis)
+#: C/genius.xml:8355(synopsis)
#, no-wrap
msgid "LinePlotParametric (xfunc,yfunc,...)"
msgstr "LinePlotParametric (xfce,yfce,…)"
-#: C/genius.xml:8299(synopsis)
+#: C/genius.xml:8356(synopsis)
#, no-wrap
msgid "LinePlotParametric (xfunc,yfunc,t1,t2,tinc)"
msgstr "LinePlotParametric (xfce,yfce,t1,t2,tprirust)"
-#: C/genius.xml:8300(synopsis)
+#: C/genius.xml:8357(synopsis)
#, no-wrap
msgid "LinePlotParametric (xfunc,yfunc,t1,t2,tinc,x1,x2,y1,y2)"
msgstr "LinePlotParametric (xfce,yfce,t1,t2,tprirust,x1,x2,y1,y2)"
-#: C/genius.xml:8301(synopsis)
+#: C/genius.xml:8358(synopsis)
#, no-wrap
msgid "LinePlotParametric (xfunc,yfunc,t1,t2,tinc,[x1,x2,y1,y2])"
msgstr "LinePlotParametric (xfce,yfce,t1,t2,tprirust,[x1,x2,y1,y2])"
-#: C/genius.xml:8302(synopsis)
+#: C/genius.xml:8359(synopsis)
#, no-wrap
msgid "LinePlotParametric (xfunc,yfunc,t1,t2,tinc,\"fit\")"
msgstr "LinePlotParametric (xfce,yfce,t1,t2,tprirust, \"fit\")"
-#: C/genius.xml:8303(para)
+#: C/genius.xml:8360(para)
msgid ""
"Plot a parametric function with a line. First come the functions for "
"<varname>x</varname> and <varname>y</varname> then optionally the "
@@ -14651,7 +14744,7 @@ msgstr ""
"volitelnými omezeními <userinput>t1,t2,tprirust</userinput> pro <varname>t</"
"varname> a pak mezemi v podobě <userinput>x1,x2,y1,y2</userinput>."
-#: C/genius.xml:8308(para)
+#: C/genius.xml:8365(para)
msgid ""
"If x and y limits are not specified, then the currently set limits apply "
"(See <link linkend=\"gel-function-LinePlotWindow\"><function>LinePlotWindow</"
@@ -14663,26 +14756,26 @@ msgstr ""
"function></link>). Místo mezí x a y je možné zadat řetězec \"fit\" a meze se "
"pak zvolí podle maximálního rozsahu grafu."
-#: C/genius.xml:8324(term)
+#: C/genius.xml:8381(term)
msgid "<anchor id=\"gel-function-LinePlotCParametric\"/>LinePlotCParametric"
msgstr "<anchor id=\"gel-function-LinePlotCParametric\"/>LinePlotCParametric"
-#: C/genius.xml:8326(synopsis)
+#: C/genius.xml:8383(synopsis)
#, no-wrap
msgid "LinePlotCParametric (func,...)"
msgstr "LinePlotCParametric (fce,...)"
-#: C/genius.xml:8327(synopsis)
+#: C/genius.xml:8384(synopsis)
#, no-wrap
msgid "LinePlotCParametric (func,t1,t2,tinc)"
msgstr "LinePlotCParametric (fce,t1,t2,tprirust)"
-#: C/genius.xml:8328(synopsis)
+#: C/genius.xml:8385(synopsis)
#, no-wrap
msgid "LinePlotCParametric (func,t1,t2,tinc,x1,x2,y1,y2)"
msgstr "LinePlotCParametric (fce,t1,t2,tprirust,x1,x2,y1,y2)"
-#: C/genius.xml:8329(para)
+#: C/genius.xml:8386(para)
msgid ""
"Plot a parametric complex valued function with a line. First comes the "
"function that returns <computeroutput>x+iy</computeroutput>, then optionally "
@@ -14695,7 +14788,7 @@ msgstr ""
"tprirust</userinput> pro <varname>t</varname> a pak mezemi v podobě "
"<userinput>x1,x2,y1,y2</userinput>."
-#: C/genius.xml:8335(para)
+#: C/genius.xml:8392(para)
msgid ""
"If limits are not specified, then the currently set limits apply (See <link "
"linkend=\"gel-function-LinePlotWindow\"><function>LinePlotWindow</function></"
@@ -14707,7 +14800,7 @@ msgstr ""
"function></link>). Místo mezí x a y je možné zadat řetězec \"fit\" a meze se "
"pak zvolí podle maximálního rozsahu grafu."
-#: C/genius.xml:8351(term)
+#: C/genius.xml:8408(term)
msgid ""
"<anchor id=\"gel-function-SlopefieldClearSolutions\"/"
">SlopefieldClearSolutions"
@@ -14715,12 +14808,12 @@ msgstr ""
"<anchor id=\"gel-function-SlopefieldClearSolutions\"/"
">SlopefieldClearSolutions"
-#: C/genius.xml:8353(synopsis)
+#: C/genius.xml:8410(synopsis)
#, no-wrap
msgid "SlopefieldClearSolutions ()"
msgstr "SlopefieldClearSolutions ()"
-#: C/genius.xml:8354(para)
+#: C/genius.xml:8411(para)
msgid ""
"Clears the solutions drawn by the <link linkend=\"gel-function-"
"SlopefieldDrawSolution\"><function>SlopefieldDrawSolution</function></link> "
@@ -14729,18 +14822,18 @@ msgstr ""
"Vymazat řešení vykreslená funkcí <link linkend=\"gel-function-"
"SlopefieldDrawSolution\"><function>SlopefieldDrawSolution</function></link>."
-#: C/genius.xml:8363(term)
+#: C/genius.xml:8420(term)
msgid ""
"<anchor id=\"gel-function-SlopefieldDrawSolution\"/>SlopefieldDrawSolution"
msgstr ""
"<anchor id=\"gel-function-SlopefieldDrawSolution\"/>SlopefieldDrawSolution"
-#: C/genius.xml:8365(synopsis)
+#: C/genius.xml:8422(synopsis)
#, no-wrap
msgid "SlopefieldDrawSolution (x, y, dx)"
msgstr "SlopefieldDrawSolution (x, y, dx)"
-#: C/genius.xml:8366(para)
+#: C/genius.xml:8423(para)
msgid ""
"When a slope field plot is active, draw a solution with the specified "
"initial condition. The standard Runge-Kutta method is used with increment "
@@ -14758,21 +14851,21 @@ msgstr ""
"link>. Pro vykreslení řešení můžete použít i grafické rozhraní a počáteční "
"podmínky zadat pomocí myši."
-#: C/genius.xml:8380(term)
+#: C/genius.xml:8437(term)
msgid "<anchor id=\"gel-function-SlopefieldPlot\"/>SlopefieldPlot"
msgstr "<anchor id=\"gel-function-SlopefieldPlot\"/>SlopefieldPlot"
-#: C/genius.xml:8382(synopsis)
+#: C/genius.xml:8439(synopsis)
#, no-wrap
msgid "SlopefieldPlot (func)"
msgstr "SlopefieldPlot (fce)"
-#: C/genius.xml:8383(synopsis)
+#: C/genius.xml:8440(synopsis)
#, no-wrap
msgid "SlopefieldPlot (func,x1,x2,y1,y2)"
msgstr "SlopefieldPlot (fce,x1,x2,y1,y2)"
-#: C/genius.xml:8384(para)
+#: C/genius.xml:8441(para)
msgid ""
"Plot a slope field. The function <varname>func</varname> should take two "
"real numbers <varname>x</varname> and <varname>y</varname>, or a single "
@@ -14790,46 +14883,46 @@ msgstr ""
"aktuálně nastavení mezí (viz <link linkend=\"gel-function-LinePlotWindow"
"\"><function>LinePlotWindow</function></link>)."
-#: C/genius.xml:8400(para)
+#: C/genius.xml:8457(para)
msgid ""
-"Examples: <screen><prompt>genius></prompt> <userinput>Slopefield(`(x,y)"
-"=sin(x-y),-5,5,-5,5)</userinput>\n"
+"Examples: <screen><prompt>genius></prompt> <userinput>Slopefield(`(x,"
+"y)=sin(x-y),-5,5,-5,5)</userinput>\n"
"</screen>"
msgstr ""
-"Příklady: <screen><prompt>genius></prompt> <userinput>Slopefield(`(x,y)"
-"=sin(x-y),-5,5,-5,5)</userinput>\n"
+"Příklady: <screen><prompt>genius></prompt> <userinput>Slopefield(`(x,"
+"y)=sin(x-y),-5,5,-5,5)</userinput>\n"
"</screen>"
-#: C/genius.xml:8409(term)
+#: C/genius.xml:8466(term)
msgid "<anchor id=\"gel-function-SurfacePlot\"/>SurfacePlot"
msgstr "<anchor id=\"gel-function-SurfacePlot\"/>SurfacePlot"
-#: C/genius.xml:8411(synopsis)
+#: C/genius.xml:8468(synopsis)
#, no-wrap
msgid "SurfacePlot (func)"
msgstr "SurfacePlot (fce)"
-#: C/genius.xml:8412(synopsis)
+#: C/genius.xml:8469(synopsis)
#, no-wrap
msgid "SurfacePlot (func,x1,x2,y1,y2,z1,z2)"
msgstr "SurfacePlot (fce,x1,x2,y1,y2,z1,z2)"
-#: C/genius.xml:8413(synopsis)
+#: C/genius.xml:8470(synopsis)
#, no-wrap
msgid "SurfacePlot (func,x1,x2,y1,y2)"
msgstr "SurfacePlot (fce,x1,x2,y1,y2)"
-#: C/genius.xml:8414(synopsis)
+#: C/genius.xml:8471(synopsis)
#, no-wrap
msgid "SurfacePlot (func,[x1,x2,y1,y2,z1,z2])"
msgstr "SurfacePlot (fce,[x1,x2,y1,y2,z1,z2])"
-#: C/genius.xml:8415(synopsis)
+#: C/genius.xml:8472(synopsis)
#, no-wrap
msgid "SurfacePlot (func,[x1,x2,y1,y2])"
msgstr "SurfacePlot (fce,[x1,x2,y1,y2])"
-#: C/genius.xml:8416(para)
+#: C/genius.xml:8473(para)
msgid ""
"Plot a surface function which takes either two arguments or a complex "
"number. First comes the function then optionally limits as <varname>x1</"
@@ -14847,65 +14940,65 @@ msgstr ""
"function-LinePlotWindow\"><function>SurfacePlotWindow</function></link>). V "
"současnosti umí Genius vykreslovat jen funkci jedné plochy."
-#: C/genius.xml:8424(para)
+#: C/genius.xml:8481(para)
msgid ""
"If the z limits are not specified then the maxima and minima of the function "
"are used."
msgstr "Když nejsou meze zadány, použije se pro ně minimum a maximum funkce."
-#: C/genius.xml:8427(para)
+#: C/genius.xml:8484(para)
msgid ""
"Examples: <screen><prompt>genius></prompt> <userinput>SurfacePlot(|"
"sin|,-1,1,-1,1,0,1.5)</userinput>\n"
-"<prompt>genius></prompt> <userinput>SurfacePlot(`(x,y)"
-"=x^2+y,-1,1,-1,1,-2,2)</userinput>\n"
-"<prompt>genius></prompt> <userinput>SurfacePlot(`(z)=|z|^2,-1,1,-1,1,0,2)"
-"</userinput>\n"
+"<prompt>genius></prompt> <userinput>SurfacePlot(`(x,"
+"y)=x^2+y,-1,1,-1,1,-2,2)</userinput>\n"
+"<prompt>genius></prompt> <userinput>SurfacePlot(`(z)=|z|"
+"^2,-1,1,-1,1,0,2)</userinput>\n"
"</screen>"
msgstr ""
"Příklady: <screen><prompt>genius></prompt> <userinput>SurfacePlot(|"
"sin|,-1,1,-1,1,0,1.5)</userinput>\n"
-"<prompt>genius></prompt> <userinput>SurfacePlot(`(x,y)"
-"=x^2+y,-1,1,-1,1,-2,2)</userinput>\n"
-"<prompt>genius></prompt> <userinput>SurfacePlot(`(z)=|z|^2,-1,1,-1,1,0,2)"
-"</userinput>\n"
+"<prompt>genius></prompt> <userinput>SurfacePlot(`(x,"
+"y)=x^2+y,-1,1,-1,1,-2,2)</userinput>\n"
+"<prompt>genius></prompt> <userinput>SurfacePlot(`(z)=|z|"
+"^2,-1,1,-1,1,0,2)</userinput>\n"
"</screen>"
-#: C/genius.xml:8438(term)
+#: C/genius.xml:8495(term)
msgid "<anchor id=\"gel-function-SurfacePlotData\"/>SurfacePlotData"
msgstr "<anchor id=\"gel-function-SurfacePlotData\"/>SurfacePlotData"
-#: C/genius.xml:8440(synopsis)
+#: C/genius.xml:8497(synopsis)
#, no-wrap
msgid "SurfacePlotData (data)"
msgstr "SurfacePlotData (data)"
-#: C/genius.xml:8441(synopsis)
+#: C/genius.xml:8498(synopsis)
#, no-wrap
msgid "SurfacePlotData (data,label)"
msgstr "SurfacePlotData (data,popisek)"
-#: C/genius.xml:8442(synopsis)
+#: C/genius.xml:8499(synopsis)
#, no-wrap
msgid "SurfacePlotData (data,x1,x2,y1,y2,z1,z2)"
msgstr "SurfacePlotData (data,x1,x2,y1,y2,z1,z2)"
-#: C/genius.xml:8443(synopsis)
+#: C/genius.xml:8500(synopsis)
#, no-wrap
msgid "SurfacePlotData (data,label,x1,x2,y1,y2,z1,z2)"
msgstr "SurfacePlotData (data,popisek,x1,x2,y1,y2,z1,z2)"
-#: C/genius.xml:8444(synopsis)
+#: C/genius.xml:8501(synopsis)
#, no-wrap
msgid "SurfacePlotData (data,[x1,x2,y1,y2,z1,z2])"
msgstr "SurfacePlotData (data,[x1,x2,y1,y2,z1,z2])"
-#: C/genius.xml:8445(synopsis)
+#: C/genius.xml:8502(synopsis)
#, no-wrap
msgid "SurfacePlotData (data,label,[x1,x2,y1,y2,z1,z2])"
msgstr "SurfacePlotData (data,popisek,[x1,x2,y1,y2,z1,z2])"
-#: C/genius.xml:8446(para)
+#: C/genius.xml:8503(para)
msgid ""
"Plot a surface from data. The data is an n by 3 matrix whose rows are the x, "
"y and z coordinates. The data can also be simply a vector whose length is a "
@@ -14917,7 +15010,7 @@ msgstr ""
"dělitelná 3 a který obsahuje trojice x, y, z. Data by měla obsahovat nejméně "
"3 body."
-#: C/genius.xml:8453(para)
+#: C/genius.xml:8510(para)
msgid ""
"Optionally we can give the label and also optionally the limits. If limits "
"are not given, they are computed from the data, <link linkend=\"gel-function-"
@@ -14931,10 +15024,10 @@ msgstr ""
"pokud ji chcete použít, musíte to provést explicitně. Když není předán "
"popisek, použije se prázdný."
-#: C/genius.xml:8460(para)
+#: C/genius.xml:8517(para)
msgid ""
-"Examples: <screen><prompt>genius></prompt> <userinput>SurfacePlotData"
-"([0,0,0;1,0,1;0,1,1;1,1,3])</userinput>\n"
+"Examples: <screen><prompt>genius></prompt> "
+"<userinput>SurfacePlotData([0,0,0;1,0,1;0,1,1;1,1,3])</userinput>\n"
"<prompt>genius></prompt> <userinput>SurfacePlotData(data,\"My data\")</"
"userinput>\n"
"<prompt>genius></prompt> <userinput>SurfacePlotData(data,-1,1,-1,1,0,10)</"
@@ -14943,8 +15036,8 @@ msgid ""
"SurfacePlotWindow)</userinput>\n"
"</screen>"
msgstr ""
-"Příklady: <screen><prompt>genius></prompt> <userinput>SurfacePlotData"
-"([0,0,0;1,0,1;0,1,1;1,1,3])</userinput>\n"
+"Příklady: <screen><prompt>genius></prompt> "
+"<userinput>SurfacePlotData([0,0,0;1,0,1;0,1,1;1,1,3])</userinput>\n"
"<prompt>genius></prompt> <userinput>SurfacePlotData(data,\"Moje data\")</"
"userinput>\n"
"<prompt>genius></prompt> <userinput>SurfacePlotData(data,-1,1,-1,1,0,10)</"
@@ -14953,7 +15046,7 @@ msgstr ""
"SurfacePlotWindow)</userinput>\n"
"</screen>"
-#: C/genius.xml:8468(para)
+#: C/genius.xml:8525(para)
msgid ""
"Here's an example of how to plot in polar coordinates, in particular how to "
"plot the function <userinput>-r^2 * theta</userinput>: "
@@ -14970,31 +15063,31 @@ msgstr ""
"<prompt>genius></prompt> <userinput>SurfacePlotData(d)</userinput>\n"
"</screen>"
-#: C/genius.xml:8480(term)
+#: C/genius.xml:8537(term)
msgid "<anchor id=\"gel-function-SurfacePlotDataGrid\"/>SurfacePlotDataGrid"
msgstr "<anchor id=\"gel-function-SurfacePlotDataGrid\"/>SurfacePlotDataGrid"
-#: C/genius.xml:8482(synopsis)
+#: C/genius.xml:8539(synopsis)
#, no-wrap
msgid "SurfacePlotDataGrid (data,[x1,x2,y1,y2])"
msgstr "SurfacePlotDataGrid (data,[x1,x2,y1,y2])"
-#: C/genius.xml:8483(synopsis)
+#: C/genius.xml:8540(synopsis)
#, no-wrap
msgid "SurfacePlotDataGrid (data,[x1,x2,y1,y2,z1,z2])"
msgstr "SurfacePlotDataGrid (data,[x1,x2,y1,y2,z1,z2])"
-#: C/genius.xml:8484(synopsis)
+#: C/genius.xml:8541(synopsis)
#, no-wrap
msgid "SurfacePlotDataGrid (data,[x1,x2,y1,y2],label)"
msgstr "SurfacePlotDataGrid (data,[x1,x2,y1,y2],popisek)"
-#: C/genius.xml:8485(synopsis)
+#: C/genius.xml:8542(synopsis)
#, no-wrap
msgid "SurfacePlotDataGrid (data,[x1,x2,y1,y2,z1,z2],label)"
msgstr "SurfacePlotDataGrid (data,[x1,x2,y1,y2,z1,z2],popisek)"
-#: C/genius.xml:8486(para)
+#: C/genius.xml:8543(para)
msgid ""
"Plot a surface from regular rectangular data. The data is given in a n by m "
"matrix where the rows are the x coordinate and the columns are the y "
@@ -15015,16 +15108,16 @@ msgstr ""
"nejsou uvedeny meze <varname>z1</varname> a <varname>z2</varname>, jsou "
"vypočteny z dat (budou to extrémní hodnoty v datech)."
-#: C/genius.xml:8500(para)
+#: C/genius.xml:8557(para)
msgid ""
"Optionally we can give the label, if label is not given then empty label is "
"used."
msgstr "Volitelně se může zadat popisek, pokud zadán není, použije se prázdný."
-#: C/genius.xml:8504(para)
+#: C/genius.xml:8561(para)
msgid ""
-"Examples: <screen><prompt>genius></prompt> <userinput>SurfacePlotDataGrid"
-"([1,2;3,4],[0,1,0,1])</userinput>\n"
+"Examples: <screen><prompt>genius></prompt> "
+"<userinput>SurfacePlotDataGrid([1,2;3,4],[0,1,0,1])</userinput>\n"
"<prompt>genius></prompt> <userinput>SurfacePlotDataGrid(data,[-1,1,-1,1],"
"\"My data\")</userinput>\n"
"<prompt>genius></prompt> <userinput>d:=null; for i=1 to 20 do for j=1 to "
@@ -15033,8 +15126,8 @@ msgid ""
"\"half a saddle\")</userinput>\n"
"</screen>"
msgstr ""
-"Příklady: <screen><prompt>genius></prompt> <userinput>SurfacePlotDataGrid"
-"([1,2;3,4],[0,1,0,1])</userinput>\n"
+"Příklady: <screen><prompt>genius></prompt> "
+"<userinput>SurfacePlotDataGrid([1,2;3,4],[0,1,0,1])</userinput>\n"
"<prompt>genius></prompt> <userinput>SurfacePlotDataGrid(data,[-1,1,-1,1],"
"\"Moje data\")</userinput>\n"
"<prompt>genius></prompt> <userinput>d:=null; for i=1 to 20 do for j=1 to "
@@ -15043,7 +15136,7 @@ msgstr ""
"\"poloviční sedlo\")</userinput>\n"
"</screen>"
-#: C/genius.xml:8516(term)
+#: C/genius.xml:8573(term)
msgid ""
"<anchor id=\"gel-function-VectorfieldClearSolutions\"/"
">VectorfieldClearSolutions"
@@ -15051,12 +15144,12 @@ msgstr ""
"<anchor id=\"gel-function-VectorfieldClearSolutions\"/"
">VectorfieldClearSolutions"
-#: C/genius.xml:8518(synopsis)
+#: C/genius.xml:8575(synopsis)
#, no-wrap
msgid "VectorfieldClearSolutions ()"
msgstr "VectorfieldClearSolutions ()"
-#: C/genius.xml:8519(para)
+#: C/genius.xml:8576(para)
msgid ""
"Clears the solutions drawn by the <link linkend=\"gel-function-"
"VectorfieldDrawSolution\"><function>VectorfieldDrawSolution</function></"
@@ -15066,18 +15159,18 @@ msgstr ""
"VectorfieldDrawSolution\"><function>VectorfieldDrawSolution</function></"
"link>."
-#: C/genius.xml:8528(term)
+#: C/genius.xml:8585(term)
msgid ""
"<anchor id=\"gel-function-VectorfieldDrawSolution\"/>VectorfieldDrawSolution"
msgstr ""
"<anchor id=\"gel-function-VectorfieldDrawSolution\"/>VectorfieldDrawSolution"
-#: C/genius.xml:8530(synopsis)
+#: C/genius.xml:8587(synopsis)
#, no-wrap
msgid "VectorfieldDrawSolution (x, y, dt, tlen)"
msgstr "VectorfieldDrawSolution (x, y, dt, tdelka)"
-#: C/genius.xml:8531(para)
+#: C/genius.xml:8588(para)
msgid ""
"When a vector field plot is active, draw a solution with the specified "
"initial condition. The standard Runge-Kutta method is used with increment "
@@ -15097,21 +15190,21 @@ msgstr ""
"řešení můžete použít i grafické rozhraní a počáteční podmínky zadat pomocí "
"myši."
-#: C/genius.xml:8546(term)
+#: C/genius.xml:8603(term)
msgid "<anchor id=\"gel-function-VectorfieldPlot\"/>VectorfieldPlot"
msgstr "<anchor id=\"gel-function-VectorfieldPlot\"/>VectorfieldPlot"
-#: C/genius.xml:8548(synopsis)
+#: C/genius.xml:8605(synopsis)
#, no-wrap
msgid "VectorfieldPlot (funcx, funcy)"
msgstr "VectorfieldPlot (fcex, fcey)"
-#: C/genius.xml:8549(synopsis)
+#: C/genius.xml:8606(synopsis)
#, no-wrap
msgid "VectorfieldPlot (funcx, funcy, x1, x2, y1, y2)"
msgstr "VectorfieldPlot (fcex, fcey, x1, x2, y1, y2)"
-#: C/genius.xml:8550(para)
+#: C/genius.xml:8607(para)
msgid ""
"Plot a two dimensional vector field. The function <varname>funcx</varname> "
"should be the dx/dt of the vectorfield and the function <varname>funcy</"
@@ -15131,7 +15224,7 @@ msgstr ""
"<constant>true</constant>, pak je velikost vektorů normalizována. To "
"znamená, že je zobrazen jen směr a velikost ne."
-#: C/genius.xml:8563(para)
+#: C/genius.xml:8620(para)
msgid ""
"Optionally you can specify the limits of the plotting window as <varname>x1</"
"varname>, <varname>x2</varname>, <varname>y1</varname>, <varname>y2</"
@@ -15145,7 +15238,7 @@ msgstr ""
"(viz <link linkend=\"gel-function-LinePlotWindow\"><function>LinePlotWindow</"
"function></link>)."
-#: C/genius.xml:8575(para)
+#: C/genius.xml:8632(para)
msgid ""
"Examples: <screen><prompt>genius></prompt> <userinput>VectorfieldPlot(`(x,"
"y)=x^2-y, `(x,y)=y^2-x, -1, 1, -1, 1)</userinput>\n"
@@ -15155,19 +15248,19 @@ msgstr ""
"y)=x^2-y, `(x,y)=y^2-x, -1, 1, -1, 1)</userinput>\n"
"</screen>"
-#: C/genius.xml:8590(title)
+#: C/genius.xml:8647(title)
msgid "Example Programs in GEL"
msgstr "Příklad programů v jazyce GEL"
-#: C/genius.xml:8592(para)
+#: C/genius.xml:8649(para)
msgid "Here is a function that calculates factorials: <placeholder-1/>"
msgstr "Zde je funkce, která vypočítává faktoriály: <placeholder-1/>"
-#: C/genius.xml:8597(para)
+#: C/genius.xml:8654(para)
msgid "With indentation it becomes: <placeholder-1/>"
msgstr "Naformátovaná odsazováním vypadá takto: <placeholder-1/>"
-#: C/genius.xml:8607(para)
+#: C/genius.xml:8664(para)
msgid ""
"This is a direct port of the factorial function from the <application>bc</"
"application> manpage. The syntax seems similar to <application>bc</"
@@ -15181,12 +15274,12 @@ msgstr ""
"výraz je to, co je vráceno. Pokud by se místo toho použila funkce "
"<literal>return</literal>, vypadalo by to takto: <placeholder-1/>"
-#: C/genius.xml:8620(programlisting)
+#: C/genius.xml:8677(programlisting)
#, no-wrap
msgid "function f(x) = prod k=1 to x do k\n"
msgstr "function f(x) = prod k=1 to x do k\n"
-#: C/genius.xml:8616(para)
+#: C/genius.xml:8673(para)
msgid ""
"By far the easiest way to define a factorial function would be using the "
"product loop as follows. This is not only the shortest and fastest, but also "
@@ -15197,7 +15290,7 @@ msgstr ""
"nejkratší a nejrychlejší řešení, ale je to nejlépe čitelná verze. "
"<placeholder-1/>"
-#: C/genius.xml:8624(para)
+#: C/genius.xml:8681(para)
msgid ""
"Here is a larger example, this basically redefines the internal <link "
"linkend=\"gel-function-ref\"><function>ref</function></link> function to "
@@ -15211,7 +15304,7 @@ msgstr ""
"function> je vestavěná a mnohem rychlejší, ale tento příklad má ilustrovat "
"některé komplexnější vlastnosti jazyka GEL. <placeholder-1/>"
-#: C/genius.xml:8679(para)
+#: C/genius.xml:8736(para)
msgid ""
"To configure <application>Genius Mathematics Tool</application>, choose "
"<menuchoice><guimenu>Settings</guimenu><guimenuitem>Preferences</"
@@ -15225,11 +15318,11 @@ msgstr ""
"parametrům, které poskytuje standardní knihovna je zde navíc pár základních "
"parametrů poskytovaných kalkulátorem. Ty určují, jak se kalkulátor má chovat."
-#: C/genius.xml:8689(title)
+#: C/genius.xml:8746(title)
msgid "Changing Settings with GEL"
msgstr "Změna nastavení pomocí GEL"
-#: C/genius.xml:8690(para)
+#: C/genius.xml:8747(para)
msgid ""
"Many of the settings in Genius are simply global variables, and can be "
"evaluated and assigned to in the same way as normal variables. See <xref "
@@ -15243,12 +15336,12 @@ msgstr ""
"vyhodnocování a přiřazování proměnných a <xref linkend=\"genius-gel-"
"function-parameters\"/> pro seznam nastavení, která lze tímto způsobem měnit."
-#: C/genius.xml:8699(programlisting)
+#: C/genius.xml:8756(programlisting)
#, no-wrap
msgid "MaxDigits = 12\n"
msgstr "MaxDigits = 12\n"
-#: C/genius.xml:8697(para)
+#: C/genius.xml:8754(para)
msgid ""
"As an example, you can set the maximum number of digits in a result to 12 by "
"typing: <placeholder-1/>"
@@ -15256,15 +15349,15 @@ msgstr ""
"Jako příklad uveďme, jak můžete nastavit maximální počet číslic ve "
"výsledcích na 12 tím, že napíšete: <placeholder-1/>"
-#: C/genius.xml:8705(title)
+#: C/genius.xml:8762(title)
msgid "Output"
msgstr "Výstup"
-#: C/genius.xml:8709(guilabel)
+#: C/genius.xml:8766(guilabel)
msgid "Maximum digits to output"
msgstr "Maximum číslic na výstupu"
-#: C/genius.xml:8712(para)
+#: C/genius.xml:8769(para)
msgid ""
"The maximum digits in a result (<link linkend=\"gel-function-MaxDigits"
"\"><function>MaxDigits</function></link>)"
@@ -15272,11 +15365,11 @@ msgstr ""
"Maximum číslic ve výsledcích (<link linkend=\"gel-function-MaxDigits"
"\"><function>MaxDigits</function></link>)"
-#: C/genius.xml:8717(guilabel)
+#: C/genius.xml:8774(guilabel)
msgid "Results as floats"
msgstr "Výsledky jako čísla s plovoucí desetinnou čárkou"
-#: C/genius.xml:8720(para)
+#: C/genius.xml:8777(para)
msgid ""
"If the results should be always printed as floats (<link linkend=\"gel-"
"function-ResultsAsFloats\"><function>ResultsAsFloats</function></link>)"
@@ -15285,11 +15378,11 @@ msgstr ""
"linkend=\"gel-function-ResultsAsFloats\"><function>ResultsAsFloats</"
"function></link>)"
-#: C/genius.xml:8725(guilabel)
+#: C/genius.xml:8782(guilabel)
msgid "Floats in scientific notation"
msgstr "Čísla s plovoucí desetinnou čárkou ve vědecké notaci"
-#: C/genius.xml:8728(para)
+#: C/genius.xml:8785(para)
msgid ""
"If floats should be in scientific notation (<link linkend=\"gel-function-"
"ScientificNotation\"><function>ScientificNotation</function></link>)"
@@ -15297,11 +15390,11 @@ msgstr ""
"Zda by desetinná čísla měla být ve vědecké notaci (<link linkend=\"gel-"
"function-ScientificNotation\"><function>ScientificNotation</function></link>)"
-#: C/genius.xml:8733(guilabel)
+#: C/genius.xml:8790(guilabel)
msgid "Always print full expressions"
msgstr "Vždy vypisovat celé výrazy"
-#: C/genius.xml:8736(para)
+#: C/genius.xml:8793(para)
msgid ""
"Should we print out full expressions for non-numeric return values (longer "
"than a line) (<link linkend=\"gel-function-FullExpressions"
@@ -15311,11 +15404,11 @@ msgstr ""
"než řádek) (<link linkend=\"gel-function-FullExpressions"
"\"><function>FullExpressions</function></link>)"
-#: C/genius.xml:8742(guilabel)
+#: C/genius.xml:8799(guilabel)
msgid "Use mixed fractions"
msgstr "Vypisovat smíšené zlomky"
-#: C/genius.xml:8745(para)
+#: C/genius.xml:8802(para)
msgid ""
"If fractions should be printed as mixed fractions such as \"1 1/3\" rather "
"than \"4/3\". (<link linkend=\"gel-function-MixedFractions"
@@ -15325,13 +15418,13 @@ msgstr ""
"„4/3“. (<link linkend=\"gel-function-MixedFractions"
"\"><function>MixedFractions</function></link>)"
-#: C/genius.xml:8751(guilabel)
+#: C/genius.xml:8808(guilabel)
msgid ""
"Display 0.0 when floating point number is less than 10^-x (0=never chop)"
msgstr ""
"Zobrazovat 0.0, když je desetinné číslo menší než 10^-x (0=nikdy neosekávat)"
-#: C/genius.xml:8754(para)
+#: C/genius.xml:8811(para)
msgid ""
"How to chop output. But only when other numbers nearby are large. See the "
"documentation of the paramter <link linkend=\"gel-function-OutputChopExponent"
@@ -15341,11 +15434,11 @@ msgstr ""
"Podívejte se na dokumentaci k parametru <link linkend=\"gel-function-"
"OutputChopExponent\"><function>OutputChopExponent</function></link>."
-#: C/genius.xml:8762(guilabel)
+#: C/genius.xml:8819(guilabel)
msgid "Only chop numbers when another number is greater than 10^-x"
msgstr "Osekávat čísla jen když je jiné číslo větší než 10^-x"
-#: C/genius.xml:8765(para)
+#: C/genius.xml:8822(para)
msgid ""
"When to chop output. This is set by the paramter <link linkend=\"gel-"
"function-OutputChopWhenExponent\"><function>OutputChopWhenExponent</"
@@ -15357,11 +15450,11 @@ msgstr ""
"function></link>. Viz dokumentace k parametru <link linkend=\"gel-function-"
"OutputChopExponent\"><function>OutputChopExponent</function></link>."
-#: C/genius.xml:8773(guilabel)
+#: C/genius.xml:8830(guilabel)
msgid "Remember output settings across sessions"
msgstr "Pamatovat si nastavení výstupu pro další sezení"
-#: C/genius.xml:8776(para)
+#: C/genius.xml:8833(para)
msgid ""
"Should the output settings in the <guilabel>Number/Expression output "
"options</guilabel> frame be remembered for next session. Does not apply to "
@@ -15371,7 +15464,7 @@ msgstr ""
"výrazů</guilabel> zapamatovat pro příští sezení. Neplatí pro nastavení ve "
"skupině <guilabel>Volby výstupu chyb/informací</guilabel>."
-#: C/genius.xml:8778(para)
+#: C/genius.xml:8835(para)
msgid ""
"If unchecked, either the default or any previously saved settings are used "
"each time Genius starts up. Note that settings are saved at the end of the "
@@ -15384,11 +15477,11 @@ msgstr ""
"postupujte následovně: zaškrtněte políčko, <application>matematický nástroj "
"Genius</application> restartujte a u políčka zaškrtnutí zase zrušte."
-#: C/genius.xml:8790(guilabel)
+#: C/genius.xml:8847(guilabel)
msgid "Display errors in a dialog"
msgstr "Zobrazovat chyby v dialogovém okně"
-#: C/genius.xml:8793(para)
+#: C/genius.xml:8850(para)
msgid ""
"If set the errors will be displayed in a separate dialog, if unset the "
"errors will be printed on the console."
@@ -15396,11 +15489,11 @@ msgstr ""
"Když je nataveno, budou chyby zobrazovány v samostatném dialogovém okně, "
"když není nastaveno, budou vypisovány v konzole."
-#: C/genius.xml:8800(guilabel)
+#: C/genius.xml:8857(guilabel)
msgid "Display information messages in a dialog"
msgstr "Zobrazovat informativní zprávy v dialogovém okně"
-#: C/genius.xml:8803(para)
+#: C/genius.xml:8860(para)
msgid ""
"If set the information messages will be displayed in a separate dialog, if "
"unset the information messages will be printed on the console."
@@ -15408,11 +15501,11 @@ msgstr ""
"Když je nastaveno, budou informativní zprávy zobrazovány v samostatném "
"dialogovém okně, když není nataveno, budou vypisovány v konzole."
-#: C/genius.xml:8811(guilabel)
+#: C/genius.xml:8868(guilabel)
msgid "Maximum errors to display"
msgstr "Maximum zobrazovaných chyb"
-#: C/genius.xml:8814(para)
+#: C/genius.xml:8871(para)
msgid ""
"The maximum number of errors to return on one evaluation (<link linkend="
"\"gel-function-MaxErrors\"><function>MaxErrors</function></link>). If you "
@@ -15427,7 +15520,7 @@ msgstr ""
"způsobí hodně chyb, je nepravděpodobné, že jich bude mít význam více než "
"pár, takže prohlížení dlouhého seznam nemá žádný přínos."
-#: C/genius.xml:8826(para)
+#: C/genius.xml:8883(para)
msgid ""
"In addition to these preferences, there are some preferences that can only "
"be changed by setting them in the workspace console. For others that may "
@@ -15437,19 +15530,19 @@ msgstr ""
"pouze přes prostředí konzoly. Tyto další volby, které se týkají výstupu "
"najdete v kapitole <xref linkend=\"genius-gel-function-parameters\"/>."
-#: C/genius.xml:8836(function)
+#: C/genius.xml:8893(function)
msgid "IntegerOutputBase"
msgstr "IntegerOutputBase"
-#: C/genius.xml:8839(para)
+#: C/genius.xml:8896(para)
msgid "The base that will be used to output integers"
msgstr "Číselná soustava, která se bude používat pro vypisování celých čísel"
-#: C/genius.xml:8845(function)
+#: C/genius.xml:8902(function)
msgid "OutputStyle"
msgstr "OutputStyle"
-#: C/genius.xml:8848(para)
+#: C/genius.xml:8905(para)
msgid ""
"A string, can be <literal>\"normal\"</literal>, <literal>\"latex\"</"
"literal>, <literal>\"mathml\"</literal> or <literal>\"troff\"</literal> and "
@@ -15458,23 +15551,23 @@ msgid ""
"style of <application>Genius Mathematics Tool</application>. The other "
"styles are for typsetting in LaTeX, MathML (XML), or in Troff."
msgstr ""
-"Řetězec, který může nabývat hodnot <literal>„normal“</literal>, <literal>"
-"„latex“</literal>, <literal>„mathml“</literal> nebo <literal>„troff“</"
-"literal> a bude ovlivňovat, jak se mají vypisovat matice (a samozřejmě i "
-"další věci), což je důležité pro vkládání do dokumentů. Styl Normal je "
-"výchozí styl výpisu <application>matematického nástroje Genius</application> "
-"čitelný pro člověka. Ostatní styly jsou pro sazbu v aplikacích LaTeX, MathML "
-"(XML) nebo Troff."
+"Řetězec, který může nabývat hodnot <literal>„normal“</literal>, "
+"<literal>„latex“</literal>, <literal>„mathml“</literal> nebo "
+"<literal>„troff“</literal> a bude ovlivňovat, jak se mají vypisovat matice "
+"(a samozřejmě i další věci), což je důležité pro vkládání do dokumentů. Styl "
+"Normal je výchozí styl výpisu <application>matematického nástroje Genius</"
+"application> čitelný pro člověka. Ostatní styly jsou pro sazbu v aplikacích "
+"LaTeX, MathML (XML) nebo Troff."
-#: C/genius.xml:8860(title)
+#: C/genius.xml:8917(title)
msgid "Precision"
msgstr "Přesnost"
-#: C/genius.xml:8864(guilabel)
+#: C/genius.xml:8921(guilabel)
msgid "Floating point precision"
msgstr "Přesnost desetinných čísel"
-#: C/genius.xml:8867(para)
+#: C/genius.xml:8924(para)
msgid ""
"The floating point precision in bits (<link linkend=\"gel-function-"
"FloatPrecision\"><function>FloatPrecision</function></link>). Note that "
@@ -15494,11 +15587,11 @@ msgstr ""
"\"><function>pi</function></link> nebo <link linkend=\"gel-function-e"
"\"><function>e</function></link>."
-#: C/genius.xml:8882(guilabel)
+#: C/genius.xml:8939(guilabel)
msgid "Remember precision setting across sessions"
msgstr "Pamatovat si nastavené přesnosti pro další sezení"
-#: C/genius.xml:8885(para)
+#: C/genius.xml:8942(para)
msgid ""
"Should the precision setting be remembered for the next session. If "
"unchecked, either the default or any previously saved setting is used each "
@@ -15512,43 +15605,43 @@ msgstr ""
"takže pokud si chcete uložit výchozí nastavení postupujte následovně: "
"zaškrtněte políčko, Genius restartujte a u políčka zaškrtnutí zase zrušte."
-#: C/genius.xml:8898(title)
+#: C/genius.xml:8955(title)
msgid "Terminal"
msgstr "Terminál"
-#: C/genius.xml:8900(para)
+#: C/genius.xml:8957(para)
msgid "Terminal refers to the console in the work area."
msgstr "Terminál představuje konzolu v pracovní oblasti."
-#: C/genius.xml:8907(guilabel)
+#: C/genius.xml:8964(guilabel)
msgid "Scrollback lines"
msgstr "Paměť řádků"
-#: C/genius.xml:8910(para)
+#: C/genius.xml:8967(para)
msgid "Lines of scrollback in the terminal."
msgstr "Počet řádků, o které se dá v terminálu vracet zpět."
-#: C/genius.xml:8915(guilabel)
+#: C/genius.xml:8972(guilabel)
msgid "Font"
msgstr "Písmo"
-#: C/genius.xml:8918(para)
+#: C/genius.xml:8975(para)
msgid "The font to use on the terminal."
msgstr "Písmo, které se má používat v terminálu."
-#: C/genius.xml:8923(guilabel)
+#: C/genius.xml:8980(guilabel)
msgid "Black on white"
msgstr "Černé na bílém"
-#: C/genius.xml:8926(para)
+#: C/genius.xml:8983(para)
msgid "If to use black on white on the terminal."
msgstr "Zda se má terminálu používat černá na bílé."
-#: C/genius.xml:8931(guilabel)
+#: C/genius.xml:8988(guilabel)
msgid "Blinking cursor"
msgstr "Blikající kurzor"
-#: C/genius.xml:8934(para)
+#: C/genius.xml:8991(para)
msgid ""
"If the cursor in the terminal should blink when the terminal is in focus. "
"This can sometimes be annoying and it generates idle traffic if you are "
@@ -15558,15 +15651,15 @@ msgstr ""
"někdy nepříjemné a vytvářet provoz při nečinnosti v případě, že používáte "
"aplikaci Genius vzdáleně."
-#: C/genius.xml:8941(title)
+#: C/genius.xml:8998(title)
msgid "Memory"
msgstr "Paměť"
-#: C/genius.xml:8945(guilabel)
+#: C/genius.xml:9002(guilabel)
msgid "Maximum number of nodes to allocate"
msgstr "Maximum alokovaných uzlů"
-#: C/genius.xml:8948(para)
+#: C/genius.xml:9005(para)
msgid ""
"Internally all data is put onto small nodes in memory. This gives a limit on "
"the maximum number of nodes to allocate for computations. This avoids the "
@@ -15580,7 +15673,7 @@ msgstr ""
"množství, například při rekurzi. Při vyčerpání paměti by došlo ke zpomalení "
"počítače a bylo by obtížné program přerušit."
-#: C/genius.xml:8956(para)
+#: C/genius.xml:9013(para)
msgid ""
"Once the limit is reached, <application>Genius Mathematics Tool</"
"application> asks if you wish to interrupt the computation or if you wish to "
@@ -15596,7 +15689,7 @@ msgstr ""
"programu nebo vyhodnocení výrazu v konzole bez ohledu na to, co jste na "
"dotaz odpověděli."
-#: C/genius.xml:8964(para)
+#: C/genius.xml:9021(para)
msgid ""
"Setting the limit to zero means there is no limit to the amount of memory "
"that genius uses."
@@ -15604,11 +15697,11 @@ msgstr ""
"Nastavení limitu na nulu znamená, že na množství paměti použité kalkulátorem "
"Genius nebude žádný limit uplatňován."
-#: C/genius.xml:8978(title)
+#: C/genius.xml:9035(title)
msgid "About <application>Genius Mathematics Tool</application>"
msgstr "O <application>Matematickém nástroji Genius</application>"
-#: C/genius.xml:8980(para)
+#: C/genius.xml:9037(para)
msgid ""
"<application>Genius Mathematics Tool</application> was written by Jiří "
"(George) Lebl (<email>jirka 5z com</email>). The history of "
@@ -15626,7 +15719,7 @@ msgstr ""
"informací o něm najdete na <ulink url=\"http://www.jirka.org/genius.html\" "
"type=\"http\">webových stránkách Genius</ulink>."
-#: C/genius.xml:8987(para)
+#: C/genius.xml:9044(para)
msgid ""
"To report a bug or make a suggestion regarding this application or this "
"manual, send email to me (the author) or post to the mailing list (see the "
@@ -15636,7 +15729,7 @@ msgstr ""
"aplikaci nebo této příručce, pošlete e-mail autorovi nebo do poštovní "
"konference (viz webové stránky)."
-#: C/genius.xml:8993(para)
+#: C/genius.xml:9050(para)
msgid ""
"This program is distributed under the terms of the GNU General Public "
"license as published by the Free Software Foundation; either version 3 of "
@@ -15650,7 +15743,7 @@ msgstr ""
"naleznete <ulink url=\"ghelp:gpl\" type=\"help\">pod tímto odkazem</ulink> "
"nebo v souboru COPYING přiloženém ke zdrojovým kódům tohoto programu."
-#: C/genius.xml:9000(para)
+#: C/genius.xml:9057(para)
msgid ""
"Jiří Lebl was during various parts of the development partially supported "
"for the work by NSF grant DMS 0900885, the University of Illinois at Urbana-"
[
Date Prev][
Date Next] [
Thread Prev][
Thread Next]
[
Thread Index]
[
Date Index]
[
Author Index]