Re: [sigc] sigc++ error during GTKmm cross-compilation



Don´t know how to do it most correctly so I tried to attach my signal.h to e-mail (its copy is on pastebin.com/t2fGNhsp ). I compared it with signal.h file I ams using for Unix and it´s a lot different. My signal.h file for Windows comes from Gtk+ or Gtkmm package downloaded from GTK website.

Dne 9.1.2012 15:35, Kjell Ahlstedt napsal(a):
I haven't got mingw installed, and I have never used it, so I'm not the best person to reply.

When I compare your error messages with my file sigc++/signal.h, it does not seem to fit at all. Lines 1675, 1784, and 1895 are not even close to anything that might produce your error messages. (I'm running Ubuntu 11.10, and I've fetched libsigc++ from the git repository, and built it locally.)

If you can attach your signal.h file, I can try to understand what's wrong.
Do you use the same signal.h when you compile for Linux, and succeed? If you do, then I suppose there's nothing wrong with the header file, and I will probably not find anything that can explain your error messages.

Kjell
// -*- c++ -*-
/* Do not edit! -- generated file */

#ifndef _SIGC_SIGNAL_H_
#define _SIGC_SIGNAL_H_

#include <list>
#include <sigc++/signal_base.h>
#include <sigc++/type_traits.h>
#include <sigc++/trackable.h>
#include <sigc++/functors/slot.h>
#include <sigc++/functors/mem_fun.h>

//SIGC_TYPEDEF_REDEFINE_ALLOWED:
// TODO: This should have its own test, but I can not create one that gives the error instead of just a warning. murrayc.
// I have just used this because there is a correlation between these two problems.
#ifdef SIGC_TEMPLATE_SPECIALIZATION_OPERATOR_OVERLOAD
  //Compilers, such as older versions of SUN Forte C++, that do not allow this also often
  //do not allow a typedef to have the same name as a class in the typedef's definition.
  //For Sun Forte CC 5.7 (SUN Workshop 10), comment this out to fix the build.
  #define SIGC_TYPEDEF_REDEFINE_ALLOWED 1
#endif

namespace sigc {

/** STL-style iterator for slot_list.
 *
 * @ingroup signal
 */
template <typename T_slot>
struct slot_iterator
{
  typedef size_t                          size_type;
  typedef ptrdiff_t                       difference_type;
  typedef std::bidirectional_iterator_tag iterator_category;

  typedef T_slot  slot_type;

  typedef T_slot  value_type;
  typedef T_slot* pointer;
  typedef T_slot& reference;

  typedef typename internal::signal_impl::iterator_type iterator_type;

  slot_iterator()
    {}

  explicit slot_iterator(const iterator_type& i)
    : i_(i) {}

  reference operator*() const
    { return static_cast<reference>(*i_); }

  pointer operator->() const
    { return &(operator*()); }

  slot_iterator& operator++()
    {
      ++i_;
      return *this;
    }

  slot_iterator operator++(int)
    { 
      slot_iterator __tmp(*this);
      ++i_;
      return __tmp;
    }

  slot_iterator& operator--()
    {
      --i_;
      return *this;
    }

  slot_iterator operator--(int)
    {
      slot_iterator __tmp(*this);
      --i_;
      return __tmp;
    }

  bool operator == (const slot_iterator& other) const
    { return i_ == other.i_; }

  bool operator != (const slot_iterator& other) const
    { return i_ != other.i_; }

  iterator_type i_;
};

/** STL-style const iterator for slot_list.
 *
 * @ingroup signal
 */
template <typename T_slot>
struct slot_const_iterator
{
  typedef size_t                          size_type;
  typedef ptrdiff_t                       difference_type;
  typedef std::bidirectional_iterator_tag iterator_category;

  typedef T_slot        slot_type;

  typedef T_slot        value_type;
  typedef const T_slot* pointer;
  typedef const T_slot& reference;

  typedef typename internal::signal_impl::const_iterator_type iterator_type;

  slot_const_iterator()
    {}

  explicit slot_const_iterator(const iterator_type& i)
    : i_(i) {}

  reference operator*() const
    { return static_cast<reference>(*i_); }

  pointer operator->() const
    { return &(operator*()); }

  slot_const_iterator& operator++()
    {
      ++i_;
      return *this;
    }

  slot_const_iterator operator++(int)
    { 
      slot_const_iterator __tmp(*this);
      ++i_;
      return __tmp;
    }

  slot_const_iterator& operator--()
    {
      --i_;
      return *this;
    }

  slot_const_iterator operator--(int)
    {
      slot_const_iterator __tmp(*this);
      --i_;
      return __tmp;
    }

  bool operator == (const slot_const_iterator& other) const
    { return i_ == other.i_; }

  bool operator != (const slot_const_iterator& other) const
    { return i_ != other.i_; }

  iterator_type i_;
};

/** STL-style list interface for sigc::signal#.
 * slot_list can be used to iterate over the list of slots that
 * is managed by a signal. Slots can be added or removed from
 * the list while existing iterators stay valid. A slot_list
 * object can be retrieved from the signal's slots() function.
 *
 * @ingroup signal
 */
template <class T_slot>
struct slot_list
{
  typedef T_slot slot_type;

  typedef slot_type&       reference;
  typedef const slot_type& const_reference;

  typedef slot_iterator<slot_type>              iterator;
  typedef slot_const_iterator<slot_type>        const_iterator;
  
  #ifndef SIGC_HAVE_SUN_REVERSE_ITERATOR
  typedef std::reverse_iterator<iterator>       reverse_iterator;
  typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
  #else
  typedef std::reverse_iterator<iterator, std::random_access_iterator_tag,
                                int, int&, int*, ptrdiff_t> reverse_iterator;

  typedef std::reverse_iterator<const_iterator, std::random_access_iterator_tag,
                                int, const int&, const int*, ptrdiff_t> const_reverse_iterator;
  #endif /* SIGC_HAVE_SUN_REVERSE_ITERATOR */




  slot_list()
    : list_(0) {}

  explicit slot_list(internal::signal_impl* __list)
    : list_(__list) {}

  iterator begin()
    { return iterator(list_->slots_.begin()); }

  const_iterator begin() const
    { return const_iterator(list_->slots_.begin()); }

  iterator end()
    { return iterator(list_->slots_.end()); }

  const_iterator end() const
    { return const_iterator(list_->slots_.end()); }

  reverse_iterator rbegin() 
    { return reverse_iterator(end()); }

  const_reverse_iterator rbegin() const 
    { return const_reverse_iterator(end()); }

  reverse_iterator rend()
    { return reverse_iterator(begin()); }

  const_reverse_iterator rend() const
    { return const_reverse_iterator(begin()); }

  reference front()
    { return *begin(); }

  const_reference front() const
    { return *begin(); }

  reference back()
    { return *(--end()); }

  const_reference back() const
    { return *(--end()); }

  iterator insert(iterator i, const slot_type& slot_)
    { return iterator(list_->insert(i.i_, static_cast<const slot_base&>(slot_))); }

  void push_front(const slot_type& c)
    { insert(begin(), c); }

  void push_back(const slot_type& c)
    { insert(end(), c); }

  iterator erase(iterator i)
    { return iterator(list_->erase(i.i_)); }

  iterator erase(iterator first_, iterator last_)
    {
      while (first_ != last_)
        first_ = erase(first_);
      return last_;
    }

  void pop_front()
    { erase(begin()); }

  void pop_back()
    { 
      iterator tmp_ = end();
      erase(--tmp_);
    }

protected:
  internal::signal_impl* list_;
};


namespace internal {

/** Special iterator over sigc::internal::signal_impl's slot list that holds extra data.
 * This iterators is for use in accumulators. operator*() executes
 * the slot. The return value is buffered, so that in an expression
 * like @code a = (*i) * (*i); @endcode the slot is executed only once.
 */
template <class T_emitter, class T_result = typename T_emitter::result_type>
struct slot_iterator_buf
{
  typedef size_t                           size_type;
  typedef ptrdiff_t                        difference_type;
  typedef std::bidirectional_iterator_tag  iterator_category;

  typedef T_emitter                        emitter_type;
  typedef T_result                         result_type;
  typedef typename T_emitter::slot_type    slot_type;

  typedef signal_impl::const_iterator_type iterator_type;

  slot_iterator_buf()
    : c_(0), invoked_(false) {}

  slot_iterator_buf(const iterator_type& i, const emitter_type* c)
    : i_(i), c_(c), invoked_(false) {}

  result_type operator*() const
    {
      if (!i_->empty() && !i_->blocked() && !invoked_)
        {
          r_ = (*c_)(static_cast<const slot_type&>(*i_));
          invoked_ = true;
        }
      return r_;
    }

  slot_iterator_buf& operator++()
    {
      ++i_;
      invoked_ = false;
      return *this;
    }

  slot_iterator_buf operator++(int)
    { 
      slot_iterator_buf __tmp(*this);
      ++i_;
      invoked_ = false;
      return __tmp;
    }

  slot_iterator_buf& operator--()
    {
      --i_;
      invoked_ = false;
      return *this;
    }

  slot_iterator_buf operator--(int)
    {
      slot_iterator_buf __tmp(*this);
      --i_;
      invoked_ = false;
      return __tmp;
    }

  bool operator == (const slot_iterator_buf& other) const
    { return (!c_ || (i_ == other.i_)); } /* If '!c_' the iterators are empty.
                                           * Unfortunately, empty stl iterators are not equal.
                                           * We are forcing equality so that 'first==last'
                                           * in the accumulator's emit function yields true. */

  bool operator != (const slot_iterator_buf& other) const
    { return (c_ && (i_ != other.i_)); }

private:
  iterator_type i_;
  const emitter_type* c_;
  mutable result_type r_;
  mutable bool invoked_;
};

/** Template specialization of slot_iterator_buf for void return signals.
 */
template <class T_emitter>
struct slot_iterator_buf<T_emitter, void>
{
  typedef size_t                           size_type;
  typedef ptrdiff_t                        difference_type;
  typedef std::bidirectional_iterator_tag  iterator_category;

  typedef T_emitter                        emitter_type;
  typedef void                             result_type;
  typedef typename T_emitter::slot_type    slot_type;

  typedef signal_impl::const_iterator_type iterator_type;

  slot_iterator_buf()
    : c_(0), invoked_(false) {}

  slot_iterator_buf(const iterator_type& i, const emitter_type* c)
    : i_(i), c_(c), invoked_(false) {}

  void operator*() const
    {
      if (!i_->empty() && !i_->blocked() && !invoked_)
        {
          (*c_)(static_cast<const slot_type&>(*i_));
          invoked_ = true;
        }
    }

  slot_iterator_buf& operator++()
    {
      ++i_;
      invoked_ = false;
      return *this;
    }

  slot_iterator_buf operator++(int)
    { 
      slot_iterator_buf __tmp(*this);
      ++i_;
      invoked_ = false;
      return __tmp;
    }

  slot_iterator_buf& operator--()
    {
      --i_;
      invoked_ = false;
      return *this;
    }

  slot_iterator_buf operator--(int)
    {
      slot_iterator_buf __tmp(*this);
      --i_;
      invoked_ = false;
      return __tmp;
    }

  bool operator == (const slot_iterator_buf& other) const
    { return i_ == other.i_; }

  bool operator != (const slot_iterator_buf& other) const
    { return i_ != other.i_; }

private:
  iterator_type i_;
  const emitter_type* c_;
  mutable bool invoked_;
};

/** Abstracts signal emission.
 * This template implements the emit() function of signal0.
 * Template specializations are available to optimize signal
 * emission when no accumulator is used, i.e. the template
 * argument @e T_accumulator is @p nil.
 */
template <class T_return, class T_accumulator>
struct signal_emit0
{
  typedef signal_emit0<T_return, T_accumulator> self_type;
  typedef typename T_accumulator::result_type result_type;
  typedef slot<T_return> slot_type;
  typedef internal::slot_iterator_buf<self_type> slot_iterator_buf_type;
  typedef signal_impl::const_iterator_type iterator_type;

  signal_emit0()  {}

  /** Invokes a slot.
   * @param _A_slot Some slot to invoke.
   * @return The slot's return value.
   */
  T_return operator()(const slot_type& _A_slot) const
    { return (reinterpret_cast<typename slot_type::call_type>(_A_slot.rep_->call_))(_A_slot.rep_); }

  /** Executes a list of slots using an accumulator of type @e T_accumulator.

   * @return The accumulated return values of the slot invocations as processed by the accumulator.
   */
  static result_type emit(signal_impl* impl)
    {
      T_accumulator accumulator;

      if (!impl)
        return accumulator(slot_iterator_buf_type(), slot_iterator_buf_type());

      signal_exec exec(impl);
      temp_slot_list slots(impl->slots_);

      self_type self ;
      return accumulator(slot_iterator_buf_type(slots.begin(), &self),
                         slot_iterator_buf_type(slots.end(), &self));
    }
  
};

/** Abstracts signal emission.
 * This template specialization implements an optimized emit()
 * function for the case that no accumulator is used.
 */
template <class T_return>
struct signal_emit0<T_return, nil>
{
  typedef signal_emit0<T_return, nil > self_type;
  typedef T_return result_type;
  typedef slot<T_return> slot_type;
  typedef signal_impl::const_iterator_type iterator_type;
  typedef typename slot_type::call_type call_type;

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The return value of the last slot invoked is returned.
   * @param first An iterator pointing to the first slot in the list.
   * @param last An iterator pointing to the last slot in the list.
   * @return The return value of the last slot invoked.
   */
  static result_type emit(signal_impl* impl)
    {
      if (!impl || impl->slots_.empty())
        return T_return();
        
      signal_exec exec(impl);
      T_return r_ = T_return(); 
      
      //Use this scope to make sure that "slots" is destroyed before "exec" is destroyed.
      //This avoids a leak on MSVC++ - see http://bugzilla.gnome.org/show_bug.cgi?id=306249
      { 
        temp_slot_list slots(impl->slots_);
        iterator_type it = slots.begin();
        for (; it != slots.end(); ++it)
          if (!it->empty() && !it->blocked()) break;
          
        if (it == slots.end())
          return T_return(); // note that 'T_return r_();' doesn't work => define 'r_' after this line and initialize as follows:
  
        r_ = (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_);
        for (++it; it != slots.end(); ++it)
          {
            if (it->empty() || it->blocked())
              continue;
            r_ = (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_);
          }
      }
      
      return r_;
    }
};

/** Abstracts signal emission.
 * This template specialization implements an optimized emit()
 * function for the case that no accumulator is used and the
 * return type is @p void.
 */
template <>
struct signal_emit0<void, nil>
{
  typedef signal_emit0<void, nil> self_type;
  typedef void result_type;
  typedef slot<void> slot_type;
  typedef signal_impl::const_iterator_type iterator_type;
  typedef void (*call_type)(slot_rep*);

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * @param first An iterator pointing to the first slot in the list.
   * @param last An iterator pointing to the last slot in the list.
   */
  static result_type emit(signal_impl* impl)
    {
      if (!impl || impl->slots_.empty()) return;
      signal_exec exec(impl);
      temp_slot_list slots(impl->slots_);

      for (iterator_type it = slots.begin(); it != slots.end(); ++it)
        {
          if (it->empty() || it->blocked())
            continue;
          (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_);
        }
    }
};

/** Abstracts signal emission.
 * This template implements the emit() function of signal1.
 * Template specializations are available to optimize signal
 * emission when no accumulator is used, i.e. the template
 * argument @e T_accumulator is @p nil.
 */
template <class T_return, class T_arg1, class T_accumulator>
struct signal_emit1
{
  typedef signal_emit1<T_return, T_arg1, T_accumulator> self_type;
  typedef typename T_accumulator::result_type result_type;
  typedef slot<T_return, T_arg1> slot_type;
  typedef internal::slot_iterator_buf<self_type> slot_iterator_buf_type;
  typedef signal_impl::const_iterator_type iterator_type;

  /** Instantiates the class.
   * The parameters are stored in member variables. operator()() passes
   * the values on to some slot.
   */
  signal_emit1(typename type_trait<T_arg1>::take _A_a1) 
    : _A_a1_(_A_a1) {}


  /** Invokes a slot using the buffered parameter values.
   * @param _A_slot Some slot to invoke.
   * @return The slot's return value.
   */
  T_return operator()(const slot_type& _A_slot) const
    { return (reinterpret_cast<typename slot_type::call_type>(_A_slot.rep_->call_))(_A_slot.rep_, _A_a1_); }

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are buffered in a temporary instance of signal_emit1.

   * @param _A_a1 Argument to be passed on to the slots.
   * @return The accumulated return values of the slot invocations as processed by the accumulator.
   */
  static result_type emit(signal_impl* impl, typename type_trait<T_arg1>::take _A_a1)
    {
      T_accumulator accumulator;

      if (!impl)
        return accumulator(slot_iterator_buf_type(), slot_iterator_buf_type());

      signal_exec exec(impl);
      temp_slot_list slots(impl->slots_);

      self_type self (_A_a1);
      return accumulator(slot_iterator_buf_type(slots.begin(), &self),
                         slot_iterator_buf_type(slots.end(), &self));
    }
  
  typename type_trait<T_arg1>::take _A_a1_;
};

/** Abstracts signal emission.
 * This template specialization implements an optimized emit()
 * function for the case that no accumulator is used.
 */
template <class T_return, class T_arg1>
struct signal_emit1<T_return, T_arg1, nil>
{
  typedef signal_emit1<T_return, T_arg1, nil > self_type;
  typedef T_return result_type;
  typedef slot<T_return, T_arg1> slot_type;
  typedef signal_impl::const_iterator_type iterator_type;
  typedef typename slot_type::call_type call_type;

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are passed directly on to the slots.
   * The return value of the last slot invoked is returned.
   * @param first An iterator pointing to the first slot in the list.
   * @param last An iterator pointing to the last slot in the list.
   * @param _A_a1 Argument to be passed on to the slots.
   * @return The return value of the last slot invoked.
   */
  static result_type emit(signal_impl* impl, typename type_trait<T_arg1>::take _A_a1)
    {
      if (!impl || impl->slots_.empty())
        return T_return();
        
      signal_exec exec(impl);
      T_return r_ = T_return(); 
      
      //Use this scope to make sure that "slots" is destroyed before "exec" is destroyed.
      //This avoids a leak on MSVC++ - see http://bugzilla.gnome.org/show_bug.cgi?id=306249
      { 
        temp_slot_list slots(impl->slots_);
        iterator_type it = slots.begin();
        for (; it != slots.end(); ++it)
          if (!it->empty() && !it->blocked()) break;
          
        if (it == slots.end())
          return T_return(); // note that 'T_return r_();' doesn't work => define 'r_' after this line and initialize as follows:
  
        r_ = (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_, _A_a1);
        for (++it; it != slots.end(); ++it)
          {
            if (it->empty() || it->blocked())
              continue;
            r_ = (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_, _A_a1);
          }
      }
      
      return r_;
    }
};

/** Abstracts signal emission.
 * This template specialization implements an optimized emit()
 * function for the case that no accumulator is used and the
 * return type is @p void.
 */
template <class T_arg1>
struct signal_emit1<void, T_arg1, nil>
{
  typedef signal_emit1<void, T_arg1, nil> self_type;
  typedef void result_type;
  typedef slot<void, T_arg1> slot_type;
  typedef signal_impl::const_iterator_type iterator_type;
  typedef typename slot_type::call_type call_type;

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are passed directly on to the slots.
   * @param first An iterator pointing to the first slot in the list.
   * @param last An iterator pointing to the last slot in the list.
   * @param _A_a1 Argument to be passed on to the slots.
   */
  static result_type emit(signal_impl* impl, typename type_trait<T_arg1>::take _A_a1)
    {
      if (!impl || impl->slots_.empty()) return;
      signal_exec exec(impl);
      temp_slot_list slots(impl->slots_);

      for (iterator_type it = slots.begin(); it != slots.end(); ++it)
        {
          if (it->empty() || it->blocked())
            continue;
          (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_, _A_a1);
        }
    }
};

/** Abstracts signal emission.
 * This template implements the emit() function of signal2.
 * Template specializations are available to optimize signal
 * emission when no accumulator is used, i.e. the template
 * argument @e T_accumulator is @p nil.
 */
template <class T_return, class T_arg1,class T_arg2, class T_accumulator>
struct signal_emit2
{
  typedef signal_emit2<T_return, T_arg1,T_arg2, T_accumulator> self_type;
  typedef typename T_accumulator::result_type result_type;
  typedef slot<T_return, T_arg1,T_arg2> slot_type;
  typedef internal::slot_iterator_buf<self_type> slot_iterator_buf_type;
  typedef signal_impl::const_iterator_type iterator_type;

  /** Instantiates the class.
   * The parameters are stored in member variables. operator()() passes
   * the values on to some slot.
   */
  signal_emit2(typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2) 
    : _A_a1_(_A_a1),_A_a2_(_A_a2) {}


  /** Invokes a slot using the buffered parameter values.
   * @param _A_slot Some slot to invoke.
   * @return The slot's return value.
   */
  T_return operator()(const slot_type& _A_slot) const
    { return (reinterpret_cast<typename slot_type::call_type>(_A_slot.rep_->call_))(_A_slot.rep_, _A_a1_,_A_a2_); }

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are buffered in a temporary instance of signal_emit2.

   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @return The accumulated return values of the slot invocations as processed by the accumulator.
   */
  static result_type emit(signal_impl* impl, typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2)
    {
      T_accumulator accumulator;

      if (!impl)
        return accumulator(slot_iterator_buf_type(), slot_iterator_buf_type());

      signal_exec exec(impl);
      temp_slot_list slots(impl->slots_);

      self_type self (_A_a1,_A_a2);
      return accumulator(slot_iterator_buf_type(slots.begin(), &self),
                         slot_iterator_buf_type(slots.end(), &self));
    }
  
  typename type_trait<T_arg1>::take _A_a1_;
  typename type_trait<T_arg2>::take _A_a2_;
};

/** Abstracts signal emission.
 * This template specialization implements an optimized emit()
 * function for the case that no accumulator is used.
 */
template <class T_return, class T_arg1,class T_arg2>
struct signal_emit2<T_return, T_arg1,T_arg2, nil>
{
  typedef signal_emit2<T_return, T_arg1,T_arg2, nil > self_type;
  typedef T_return result_type;
  typedef slot<T_return, T_arg1,T_arg2> slot_type;
  typedef signal_impl::const_iterator_type iterator_type;
  typedef typename slot_type::call_type call_type;

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are passed directly on to the slots.
   * The return value of the last slot invoked is returned.
   * @param first An iterator pointing to the first slot in the list.
   * @param last An iterator pointing to the last slot in the list.
   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @return The return value of the last slot invoked.
   */
  static result_type emit(signal_impl* impl, typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2)
    {
      if (!impl || impl->slots_.empty())
        return T_return();
        
      signal_exec exec(impl);
      T_return r_ = T_return(); 
      
      //Use this scope to make sure that "slots" is destroyed before "exec" is destroyed.
      //This avoids a leak on MSVC++ - see http://bugzilla.gnome.org/show_bug.cgi?id=306249
      { 
        temp_slot_list slots(impl->slots_);
        iterator_type it = slots.begin();
        for (; it != slots.end(); ++it)
          if (!it->empty() && !it->blocked()) break;
          
        if (it == slots.end())
          return T_return(); // note that 'T_return r_();' doesn't work => define 'r_' after this line and initialize as follows:
  
        r_ = (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_, _A_a1,_A_a2);
        for (++it; it != slots.end(); ++it)
          {
            if (it->empty() || it->blocked())
              continue;
            r_ = (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_, _A_a1,_A_a2);
          }
      }
      
      return r_;
    }
};

/** Abstracts signal emission.
 * This template specialization implements an optimized emit()
 * function for the case that no accumulator is used and the
 * return type is @p void.
 */
template <class T_arg1,class T_arg2>
struct signal_emit2<void, T_arg1,T_arg2, nil>
{
  typedef signal_emit2<void, T_arg1,T_arg2, nil> self_type;
  typedef void result_type;
  typedef slot<void, T_arg1,T_arg2> slot_type;
  typedef signal_impl::const_iterator_type iterator_type;
  typedef typename slot_type::call_type call_type;

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are passed directly on to the slots.
   * @param first An iterator pointing to the first slot in the list.
   * @param last An iterator pointing to the last slot in the list.
   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   */
  static result_type emit(signal_impl* impl, typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2)
    {
      if (!impl || impl->slots_.empty()) return;
      signal_exec exec(impl);
      temp_slot_list slots(impl->slots_);

      for (iterator_type it = slots.begin(); it != slots.end(); ++it)
        {
          if (it->empty() || it->blocked())
            continue;
          (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_, _A_a1,_A_a2);
        }
    }
};

/** Abstracts signal emission.
 * This template implements the emit() function of signal3.
 * Template specializations are available to optimize signal
 * emission when no accumulator is used, i.e. the template
 * argument @e T_accumulator is @p nil.
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3, class T_accumulator>
struct signal_emit3
{
  typedef signal_emit3<T_return, T_arg1,T_arg2,T_arg3, T_accumulator> self_type;
  typedef typename T_accumulator::result_type result_type;
  typedef slot<T_return, T_arg1,T_arg2,T_arg3> slot_type;
  typedef internal::slot_iterator_buf<self_type> slot_iterator_buf_type;
  typedef signal_impl::const_iterator_type iterator_type;

  /** Instantiates the class.
   * The parameters are stored in member variables. operator()() passes
   * the values on to some slot.
   */
  signal_emit3(typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3) 
    : _A_a1_(_A_a1),_A_a2_(_A_a2),_A_a3_(_A_a3) {}


  /** Invokes a slot using the buffered parameter values.
   * @param _A_slot Some slot to invoke.
   * @return The slot's return value.
   */
  T_return operator()(const slot_type& _A_slot) const
    { return (reinterpret_cast<typename slot_type::call_type>(_A_slot.rep_->call_))(_A_slot.rep_, _A_a1_,_A_a2_,_A_a3_); }

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are buffered in a temporary instance of signal_emit3.

   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @param _A_a3 Argument to be passed on to the slots.
   * @return The accumulated return values of the slot invocations as processed by the accumulator.
   */
  static result_type emit(signal_impl* impl, typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3)
    {
      T_accumulator accumulator;

      if (!impl)
        return accumulator(slot_iterator_buf_type(), slot_iterator_buf_type());

      signal_exec exec(impl);
      temp_slot_list slots(impl->slots_);

      self_type self (_A_a1,_A_a2,_A_a3);
      return accumulator(slot_iterator_buf_type(slots.begin(), &self),
                         slot_iterator_buf_type(slots.end(), &self));
    }
  
  typename type_trait<T_arg1>::take _A_a1_;
  typename type_trait<T_arg2>::take _A_a2_;
  typename type_trait<T_arg3>::take _A_a3_;
};

/** Abstracts signal emission.
 * This template specialization implements an optimized emit()
 * function for the case that no accumulator is used.
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3>
struct signal_emit3<T_return, T_arg1,T_arg2,T_arg3, nil>
{
  typedef signal_emit3<T_return, T_arg1,T_arg2,T_arg3, nil > self_type;
  typedef T_return result_type;
  typedef slot<T_return, T_arg1,T_arg2,T_arg3> slot_type;
  typedef signal_impl::const_iterator_type iterator_type;
  typedef typename slot_type::call_type call_type;

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are passed directly on to the slots.
   * The return value of the last slot invoked is returned.
   * @param first An iterator pointing to the first slot in the list.
   * @param last An iterator pointing to the last slot in the list.
   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @param _A_a3 Argument to be passed on to the slots.
   * @return The return value of the last slot invoked.
   */
  static result_type emit(signal_impl* impl, typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3)
    {
      if (!impl || impl->slots_.empty())
        return T_return();
        
      signal_exec exec(impl);
      T_return r_ = T_return(); 
      
      //Use this scope to make sure that "slots" is destroyed before "exec" is destroyed.
      //This avoids a leak on MSVC++ - see http://bugzilla.gnome.org/show_bug.cgi?id=306249
      { 
        temp_slot_list slots(impl->slots_);
        iterator_type it = slots.begin();
        for (; it != slots.end(); ++it)
          if (!it->empty() && !it->blocked()) break;
          
        if (it == slots.end())
          return T_return(); // note that 'T_return r_();' doesn't work => define 'r_' after this line and initialize as follows:
  
        r_ = (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_, _A_a1,_A_a2,_A_a3);
        for (++it; it != slots.end(); ++it)
          {
            if (it->empty() || it->blocked())
              continue;
            r_ = (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_, _A_a1,_A_a2,_A_a3);
          }
      }
      
      return r_;
    }
};

/** Abstracts signal emission.
 * This template specialization implements an optimized emit()
 * function for the case that no accumulator is used and the
 * return type is @p void.
 */
template <class T_arg1,class T_arg2,class T_arg3>
struct signal_emit3<void, T_arg1,T_arg2,T_arg3, nil>
{
  typedef signal_emit3<void, T_arg1,T_arg2,T_arg3, nil> self_type;
  typedef void result_type;
  typedef slot<void, T_arg1,T_arg2,T_arg3> slot_type;
  typedef signal_impl::const_iterator_type iterator_type;
  typedef typename slot_type::call_type call_type;

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are passed directly on to the slots.
   * @param first An iterator pointing to the first slot in the list.
   * @param last An iterator pointing to the last slot in the list.
   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @param _A_a3 Argument to be passed on to the slots.
   */
  static result_type emit(signal_impl* impl, typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3)
    {
      if (!impl || impl->slots_.empty()) return;
      signal_exec exec(impl);
      temp_slot_list slots(impl->slots_);

      for (iterator_type it = slots.begin(); it != slots.end(); ++it)
        {
          if (it->empty() || it->blocked())
            continue;
          (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_, _A_a1,_A_a2,_A_a3);
        }
    }
};

/** Abstracts signal emission.
 * This template implements the emit() function of signal4.
 * Template specializations are available to optimize signal
 * emission when no accumulator is used, i.e. the template
 * argument @e T_accumulator is @p nil.
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3,class T_arg4, class T_accumulator>
struct signal_emit4
{
  typedef signal_emit4<T_return, T_arg1,T_arg2,T_arg3,T_arg4, T_accumulator> self_type;
  typedef typename T_accumulator::result_type result_type;
  typedef slot<T_return, T_arg1,T_arg2,T_arg3,T_arg4> slot_type;
  typedef internal::slot_iterator_buf<self_type> slot_iterator_buf_type;
  typedef signal_impl::const_iterator_type iterator_type;

  /** Instantiates the class.
   * The parameters are stored in member variables. operator()() passes
   * the values on to some slot.
   */
  signal_emit4(typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4) 
    : _A_a1_(_A_a1),_A_a2_(_A_a2),_A_a3_(_A_a3),_A_a4_(_A_a4) {}


  /** Invokes a slot using the buffered parameter values.
   * @param _A_slot Some slot to invoke.
   * @return The slot's return value.
   */
  T_return operator()(const slot_type& _A_slot) const
    { return (reinterpret_cast<typename slot_type::call_type>(_A_slot.rep_->call_))(_A_slot.rep_, _A_a1_,_A_a2_,_A_a3_,_A_a4_); }

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are buffered in a temporary instance of signal_emit4.

   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @param _A_a3 Argument to be passed on to the slots.
   * @param _A_a4 Argument to be passed on to the slots.
   * @return The accumulated return values of the slot invocations as processed by the accumulator.
   */
  static result_type emit(signal_impl* impl, typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4)
    {
      T_accumulator accumulator;

      if (!impl)
        return accumulator(slot_iterator_buf_type(), slot_iterator_buf_type());

      signal_exec exec(impl);
      temp_slot_list slots(impl->slots_);

      self_type self (_A_a1,_A_a2,_A_a3,_A_a4);
      return accumulator(slot_iterator_buf_type(slots.begin(), &self),
                         slot_iterator_buf_type(slots.end(), &self));
    }
  
  typename type_trait<T_arg1>::take _A_a1_;
  typename type_trait<T_arg2>::take _A_a2_;
  typename type_trait<T_arg3>::take _A_a3_;
  typename type_trait<T_arg4>::take _A_a4_;
};

/** Abstracts signal emission.
 * This template specialization implements an optimized emit()
 * function for the case that no accumulator is used.
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3,class T_arg4>
struct signal_emit4<T_return, T_arg1,T_arg2,T_arg3,T_arg4, nil>
{
  typedef signal_emit4<T_return, T_arg1,T_arg2,T_arg3,T_arg4, nil > self_type;
  typedef T_return result_type;
  typedef slot<T_return, T_arg1,T_arg2,T_arg3,T_arg4> slot_type;
  typedef signal_impl::const_iterator_type iterator_type;
  typedef typename slot_type::call_type call_type;

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are passed directly on to the slots.
   * The return value of the last slot invoked is returned.
   * @param first An iterator pointing to the first slot in the list.
   * @param last An iterator pointing to the last slot in the list.
   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @param _A_a3 Argument to be passed on to the slots.
   * @param _A_a4 Argument to be passed on to the slots.
   * @return The return value of the last slot invoked.
   */
  static result_type emit(signal_impl* impl, typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4)
    {
      if (!impl || impl->slots_.empty())
        return T_return();
        
      signal_exec exec(impl);
      T_return r_ = T_return(); 
      
      //Use this scope to make sure that "slots" is destroyed before "exec" is destroyed.
      //This avoids a leak on MSVC++ - see http://bugzilla.gnome.org/show_bug.cgi?id=306249
      { 
        temp_slot_list slots(impl->slots_);
        iterator_type it = slots.begin();
        for (; it != slots.end(); ++it)
          if (!it->empty() && !it->blocked()) break;
          
        if (it == slots.end())
          return T_return(); // note that 'T_return r_();' doesn't work => define 'r_' after this line and initialize as follows:
  
        r_ = (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_, _A_a1,_A_a2,_A_a3,_A_a4);
        for (++it; it != slots.end(); ++it)
          {
            if (it->empty() || it->blocked())
              continue;
            r_ = (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_, _A_a1,_A_a2,_A_a3,_A_a4);
          }
      }
      
      return r_;
    }
};

/** Abstracts signal emission.
 * This template specialization implements an optimized emit()
 * function for the case that no accumulator is used and the
 * return type is @p void.
 */
template <class T_arg1,class T_arg2,class T_arg3,class T_arg4>
struct signal_emit4<void, T_arg1,T_arg2,T_arg3,T_arg4, nil>
{
  typedef signal_emit4<void, T_arg1,T_arg2,T_arg3,T_arg4, nil> self_type;
  typedef void result_type;
  typedef slot<void, T_arg1,T_arg2,T_arg3,T_arg4> slot_type;
  typedef signal_impl::const_iterator_type iterator_type;
  typedef typename slot_type::call_type call_type;

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are passed directly on to the slots.
   * @param first An iterator pointing to the first slot in the list.
   * @param last An iterator pointing to the last slot in the list.
   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @param _A_a3 Argument to be passed on to the slots.
   * @param _A_a4 Argument to be passed on to the slots.
   */
  static result_type emit(signal_impl* impl, typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4)
    {
      if (!impl || impl->slots_.empty()) return;
      signal_exec exec(impl);
      temp_slot_list slots(impl->slots_);

      for (iterator_type it = slots.begin(); it != slots.end(); ++it)
        {
          if (it->empty() || it->blocked())
            continue;
          (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_, _A_a1,_A_a2,_A_a3,_A_a4);
        }
    }
};

/** Abstracts signal emission.
 * This template implements the emit() function of signal5.
 * Template specializations are available to optimize signal
 * emission when no accumulator is used, i.e. the template
 * argument @e T_accumulator is @p nil.
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3,class T_arg4,class T_arg5, class T_accumulator>
struct signal_emit5
{
  typedef signal_emit5<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5, T_accumulator> self_type;
  typedef typename T_accumulator::result_type result_type;
  typedef slot<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5> slot_type;
  typedef internal::slot_iterator_buf<self_type> slot_iterator_buf_type;
  typedef signal_impl::const_iterator_type iterator_type;

  /** Instantiates the class.
   * The parameters are stored in member variables. operator()() passes
   * the values on to some slot.
   */
  signal_emit5(typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4,typename type_trait<T_arg5>::take _A_a5) 
    : _A_a1_(_A_a1),_A_a2_(_A_a2),_A_a3_(_A_a3),_A_a4_(_A_a4),_A_a5_(_A_a5) {}


  /** Invokes a slot using the buffered parameter values.
   * @param _A_slot Some slot to invoke.
   * @return The slot's return value.
   */
  T_return operator()(const slot_type& _A_slot) const
    { return (reinterpret_cast<typename slot_type::call_type>(_A_slot.rep_->call_))(_A_slot.rep_, _A_a1_,_A_a2_,_A_a3_,_A_a4_,_A_a5_); }

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are buffered in a temporary instance of signal_emit5.

   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @param _A_a3 Argument to be passed on to the slots.
   * @param _A_a4 Argument to be passed on to the slots.
   * @param _A_a5 Argument to be passed on to the slots.
   * @return The accumulated return values of the slot invocations as processed by the accumulator.
   */
  static result_type emit(signal_impl* impl, typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4,typename type_trait<T_arg5>::take _A_a5)
    {
      T_accumulator accumulator;

      if (!impl)
        return accumulator(slot_iterator_buf_type(), slot_iterator_buf_type());

      signal_exec exec(impl);
      temp_slot_list slots(impl->slots_);

      self_type self (_A_a1,_A_a2,_A_a3,_A_a4,_A_a5);
      return accumulator(slot_iterator_buf_type(slots.begin(), &self),
                         slot_iterator_buf_type(slots.end(), &self));
    }
  
  typename type_trait<T_arg1>::take _A_a1_;
  typename type_trait<T_arg2>::take _A_a2_;
  typename type_trait<T_arg3>::take _A_a3_;
  typename type_trait<T_arg4>::take _A_a4_;
  typename type_trait<T_arg5>::take _A_a5_;
};

/** Abstracts signal emission.
 * This template specialization implements an optimized emit()
 * function for the case that no accumulator is used.
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3,class T_arg4,class T_arg5>
struct signal_emit5<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5, nil>
{
  typedef signal_emit5<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5, nil > self_type;
  typedef T_return result_type;
  typedef slot<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5> slot_type;
  typedef signal_impl::const_iterator_type iterator_type;
  typedef typename slot_type::call_type call_type;

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are passed directly on to the slots.
   * The return value of the last slot invoked is returned.
   * @param first An iterator pointing to the first slot in the list.
   * @param last An iterator pointing to the last slot in the list.
   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @param _A_a3 Argument to be passed on to the slots.
   * @param _A_a4 Argument to be passed on to the slots.
   * @param _A_a5 Argument to be passed on to the slots.
   * @return The return value of the last slot invoked.
   */
  static result_type emit(signal_impl* impl, typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4,typename type_trait<T_arg5>::take _A_a5)
    {
      if (!impl || impl->slots_.empty())
        return T_return();
        
      signal_exec exec(impl);
      T_return r_ = T_return(); 
      
      //Use this scope to make sure that "slots" is destroyed before "exec" is destroyed.
      //This avoids a leak on MSVC++ - see http://bugzilla.gnome.org/show_bug.cgi?id=306249
      { 
        temp_slot_list slots(impl->slots_);
        iterator_type it = slots.begin();
        for (; it != slots.end(); ++it)
          if (!it->empty() && !it->blocked()) break;
          
        if (it == slots.end())
          return T_return(); // note that 'T_return r_();' doesn't work => define 'r_' after this line and initialize as follows:
  
        r_ = (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_, _A_a1,_A_a2,_A_a3,_A_a4,_A_a5);
        for (++it; it != slots.end(); ++it)
          {
            if (it->empty() || it->blocked())
              continue;
            r_ = (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_, _A_a1,_A_a2,_A_a3,_A_a4,_A_a5);
          }
      }
      
      return r_;
    }
};

/** Abstracts signal emission.
 * This template specialization implements an optimized emit()
 * function for the case that no accumulator is used and the
 * return type is @p void.
 */
template <class T_arg1,class T_arg2,class T_arg3,class T_arg4,class T_arg5>
struct signal_emit5<void, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5, nil>
{
  typedef signal_emit5<void, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5, nil> self_type;
  typedef void result_type;
  typedef slot<void, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5> slot_type;
  typedef signal_impl::const_iterator_type iterator_type;
  typedef typename slot_type::call_type call_type;

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are passed directly on to the slots.
   * @param first An iterator pointing to the first slot in the list.
   * @param last An iterator pointing to the last slot in the list.
   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @param _A_a3 Argument to be passed on to the slots.
   * @param _A_a4 Argument to be passed on to the slots.
   * @param _A_a5 Argument to be passed on to the slots.
   */
  static result_type emit(signal_impl* impl, typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4,typename type_trait<T_arg5>::take _A_a5)
    {
      if (!impl || impl->slots_.empty()) return;
      signal_exec exec(impl);
      temp_slot_list slots(impl->slots_);

      for (iterator_type it = slots.begin(); it != slots.end(); ++it)
        {
          if (it->empty() || it->blocked())
            continue;
          (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_, _A_a1,_A_a2,_A_a3,_A_a4,_A_a5);
        }
    }
};

/** Abstracts signal emission.
 * This template implements the emit() function of signal6.
 * Template specializations are available to optimize signal
 * emission when no accumulator is used, i.e. the template
 * argument @e T_accumulator is @p nil.
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3,class T_arg4,class T_arg5,class T_arg6, class T_accumulator>
struct signal_emit6
{
  typedef signal_emit6<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6, T_accumulator> self_type;
  typedef typename T_accumulator::result_type result_type;
  typedef slot<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6> slot_type;
  typedef internal::slot_iterator_buf<self_type> slot_iterator_buf_type;
  typedef signal_impl::const_iterator_type iterator_type;

  /** Instantiates the class.
   * The parameters are stored in member variables. operator()() passes
   * the values on to some slot.
   */
  signal_emit6(typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4,typename type_trait<T_arg5>::take _A_a5,typename type_trait<T_arg6>::take _A_a6) 
    : _A_a1_(_A_a1),_A_a2_(_A_a2),_A_a3_(_A_a3),_A_a4_(_A_a4),_A_a5_(_A_a5),_A_a6_(_A_a6) {}


  /** Invokes a slot using the buffered parameter values.
   * @param _A_slot Some slot to invoke.
   * @return The slot's return value.
   */
  T_return operator()(const slot_type& _A_slot) const
    { return (reinterpret_cast<typename slot_type::call_type>(_A_slot.rep_->call_))(_A_slot.rep_, _A_a1_,_A_a2_,_A_a3_,_A_a4_,_A_a5_,_A_a6_); }

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are buffered in a temporary instance of signal_emit6.

   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @param _A_a3 Argument to be passed on to the slots.
   * @param _A_a4 Argument to be passed on to the slots.
   * @param _A_a5 Argument to be passed on to the slots.
   * @param _A_a6 Argument to be passed on to the slots.
   * @return The accumulated return values of the slot invocations as processed by the accumulator.
   */
  static result_type emit(signal_impl* impl, typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4,typename type_trait<T_arg5>::take _A_a5,typename type_trait<T_arg6>::take _A_a6)
    {
      T_accumulator accumulator;

      if (!impl)
        return accumulator(slot_iterator_buf_type(), slot_iterator_buf_type());

      signal_exec exec(impl);
      temp_slot_list slots(impl->slots_);

      self_type self (_A_a1,_A_a2,_A_a3,_A_a4,_A_a5,_A_a6);
      return accumulator(slot_iterator_buf_type(slots.begin(), &self),
                         slot_iterator_buf_type(slots.end(), &self));
    }
  
  typename type_trait<T_arg1>::take _A_a1_;
  typename type_trait<T_arg2>::take _A_a2_;
  typename type_trait<T_arg3>::take _A_a3_;
  typename type_trait<T_arg4>::take _A_a4_;
  typename type_trait<T_arg5>::take _A_a5_;
  typename type_trait<T_arg6>::take _A_a6_;
};

/** Abstracts signal emission.
 * This template specialization implements an optimized emit()
 * function for the case that no accumulator is used.
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3,class T_arg4,class T_arg5,class T_arg6>
struct signal_emit6<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6, nil>
{
  typedef signal_emit6<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6, nil > self_type;
  typedef T_return result_type;
  typedef slot<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6> slot_type;
  typedef signal_impl::const_iterator_type iterator_type;
  typedef typename slot_type::call_type call_type;

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are passed directly on to the slots.
   * The return value of the last slot invoked is returned.
   * @param first An iterator pointing to the first slot in the list.
   * @param last An iterator pointing to the last slot in the list.
   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @param _A_a3 Argument to be passed on to the slots.
   * @param _A_a4 Argument to be passed on to the slots.
   * @param _A_a5 Argument to be passed on to the slots.
   * @param _A_a6 Argument to be passed on to the slots.
   * @return The return value of the last slot invoked.
   */
  static result_type emit(signal_impl* impl, typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4,typename type_trait<T_arg5>::take _A_a5,typename type_trait<T_arg6>::take _A_a6)
    {
      if (!impl || impl->slots_.empty())
        return T_return();
        
      signal_exec exec(impl);
      T_return r_ = T_return(); 
      
      //Use this scope to make sure that "slots" is destroyed before "exec" is destroyed.
      //This avoids a leak on MSVC++ - see http://bugzilla.gnome.org/show_bug.cgi?id=306249
      { 
        temp_slot_list slots(impl->slots_);
        iterator_type it = slots.begin();
        for (; it != slots.end(); ++it)
          if (!it->empty() && !it->blocked()) break;
          
        if (it == slots.end())
          return T_return(); // note that 'T_return r_();' doesn't work => define 'r_' after this line and initialize as follows:
  
        r_ = (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_, _A_a1,_A_a2,_A_a3,_A_a4,_A_a5,_A_a6);
        for (++it; it != slots.end(); ++it)
          {
            if (it->empty() || it->blocked())
              continue;
            r_ = (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_, _A_a1,_A_a2,_A_a3,_A_a4,_A_a5,_A_a6);
          }
      }
      
      return r_;
    }
};

/** Abstracts signal emission.
 * This template specialization implements an optimized emit()
 * function for the case that no accumulator is used and the
 * return type is @p void.
 */
template <class T_arg1,class T_arg2,class T_arg3,class T_arg4,class T_arg5,class T_arg6>
struct signal_emit6<void, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6, nil>
{
  typedef signal_emit6<void, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6, nil> self_type;
  typedef void result_type;
  typedef slot<void, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6> slot_type;
  typedef signal_impl::const_iterator_type iterator_type;
  typedef typename slot_type::call_type call_type;

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are passed directly on to the slots.
   * @param first An iterator pointing to the first slot in the list.
   * @param last An iterator pointing to the last slot in the list.
   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @param _A_a3 Argument to be passed on to the slots.
   * @param _A_a4 Argument to be passed on to the slots.
   * @param _A_a5 Argument to be passed on to the slots.
   * @param _A_a6 Argument to be passed on to the slots.
   */
  static result_type emit(signal_impl* impl, typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4,typename type_trait<T_arg5>::take _A_a5,typename type_trait<T_arg6>::take _A_a6)
    {
      if (!impl || impl->slots_.empty()) return;
      signal_exec exec(impl);
      temp_slot_list slots(impl->slots_);

      for (iterator_type it = slots.begin(); it != slots.end(); ++it)
        {
          if (it->empty() || it->blocked())
            continue;
          (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_, _A_a1,_A_a2,_A_a3,_A_a4,_A_a5,_A_a6);
        }
    }
};

/** Abstracts signal emission.
 * This template implements the emit() function of signal7.
 * Template specializations are available to optimize signal
 * emission when no accumulator is used, i.e. the template
 * argument @e T_accumulator is @p nil.
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3,class T_arg4,class T_arg5,class T_arg6,class T_arg7, class T_accumulator>
struct signal_emit7
{
  typedef signal_emit7<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6,T_arg7, T_accumulator> self_type;
  typedef typename T_accumulator::result_type result_type;
  typedef slot<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6,T_arg7> slot_type;
  typedef internal::slot_iterator_buf<self_type> slot_iterator_buf_type;
  typedef signal_impl::const_iterator_type iterator_type;

  /** Instantiates the class.
   * The parameters are stored in member variables. operator()() passes
   * the values on to some slot.
   */
  signal_emit7(typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4,typename type_trait<T_arg5>::take _A_a5,typename type_trait<T_arg6>::take _A_a6,typename type_trait<T_arg7>::take _A_a7) 
    : _A_a1_(_A_a1),_A_a2_(_A_a2),_A_a3_(_A_a3),_A_a4_(_A_a4),_A_a5_(_A_a5),_A_a6_(_A_a6),_A_a7_(_A_a7) {}


  /** Invokes a slot using the buffered parameter values.
   * @param _A_slot Some slot to invoke.
   * @return The slot's return value.
   */
  T_return operator()(const slot_type& _A_slot) const
    { return (reinterpret_cast<typename slot_type::call_type>(_A_slot.rep_->call_))(_A_slot.rep_, _A_a1_,_A_a2_,_A_a3_,_A_a4_,_A_a5_,_A_a6_,_A_a7_); }

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are buffered in a temporary instance of signal_emit7.

   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @param _A_a3 Argument to be passed on to the slots.
   * @param _A_a4 Argument to be passed on to the slots.
   * @param _A_a5 Argument to be passed on to the slots.
   * @param _A_a6 Argument to be passed on to the slots.
   * @param _A_a7 Argument to be passed on to the slots.
   * @return The accumulated return values of the slot invocations as processed by the accumulator.
   */
  static result_type emit(signal_impl* impl, typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4,typename type_trait<T_arg5>::take _A_a5,typename type_trait<T_arg6>::take _A_a6,typename type_trait<T_arg7>::take _A_a7)
    {
      T_accumulator accumulator;

      if (!impl)
        return accumulator(slot_iterator_buf_type(), slot_iterator_buf_type());

      signal_exec exec(impl);
      temp_slot_list slots(impl->slots_);

      self_type self (_A_a1,_A_a2,_A_a3,_A_a4,_A_a5,_A_a6,_A_a7);
      return accumulator(slot_iterator_buf_type(slots.begin(), &self),
                         slot_iterator_buf_type(slots.end(), &self));
    }
  
  typename type_trait<T_arg1>::take _A_a1_;
  typename type_trait<T_arg2>::take _A_a2_;
  typename type_trait<T_arg3>::take _A_a3_;
  typename type_trait<T_arg4>::take _A_a4_;
  typename type_trait<T_arg5>::take _A_a5_;
  typename type_trait<T_arg6>::take _A_a6_;
  typename type_trait<T_arg7>::take _A_a7_;
};

/** Abstracts signal emission.
 * This template specialization implements an optimized emit()
 * function for the case that no accumulator is used.
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3,class T_arg4,class T_arg5,class T_arg6,class T_arg7>
struct signal_emit7<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6,T_arg7, nil>
{
  typedef signal_emit7<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6,T_arg7, nil > self_type;
  typedef T_return result_type;
  typedef slot<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6,T_arg7> slot_type;
  typedef signal_impl::const_iterator_type iterator_type;
  typedef typename slot_type::call_type call_type;

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are passed directly on to the slots.
   * The return value of the last slot invoked is returned.
   * @param first An iterator pointing to the first slot in the list.
   * @param last An iterator pointing to the last slot in the list.
   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @param _A_a3 Argument to be passed on to the slots.
   * @param _A_a4 Argument to be passed on to the slots.
   * @param _A_a5 Argument to be passed on to the slots.
   * @param _A_a6 Argument to be passed on to the slots.
   * @param _A_a7 Argument to be passed on to the slots.
   * @return The return value of the last slot invoked.
   */
  static result_type emit(signal_impl* impl, typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4,typename type_trait<T_arg5>::take _A_a5,typename type_trait<T_arg6>::take _A_a6,typename type_trait<T_arg7>::take _A_a7)
    {
      if (!impl || impl->slots_.empty())
        return T_return();
        
      signal_exec exec(impl);
      T_return r_ = T_return(); 
      
      //Use this scope to make sure that "slots" is destroyed before "exec" is destroyed.
      //This avoids a leak on MSVC++ - see http://bugzilla.gnome.org/show_bug.cgi?id=306249
      { 
        temp_slot_list slots(impl->slots_);
        iterator_type it = slots.begin();
        for (; it != slots.end(); ++it)
          if (!it->empty() && !it->blocked()) break;
          
        if (it == slots.end())
          return T_return(); // note that 'T_return r_();' doesn't work => define 'r_' after this line and initialize as follows:
  
        r_ = (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_, _A_a1,_A_a2,_A_a3,_A_a4,_A_a5,_A_a6,_A_a7);
        for (++it; it != slots.end(); ++it)
          {
            if (it->empty() || it->blocked())
              continue;
            r_ = (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_, _A_a1,_A_a2,_A_a3,_A_a4,_A_a5,_A_a6,_A_a7);
          }
      }
      
      return r_;
    }
};

/** Abstracts signal emission.
 * This template specialization implements an optimized emit()
 * function for the case that no accumulator is used and the
 * return type is @p void.
 */
template <class T_arg1,class T_arg2,class T_arg3,class T_arg4,class T_arg5,class T_arg6,class T_arg7>
struct signal_emit7<void, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6,T_arg7, nil>
{
  typedef signal_emit7<void, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6,T_arg7, nil> self_type;
  typedef void result_type;
  typedef slot<void, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6,T_arg7> slot_type;
  typedef signal_impl::const_iterator_type iterator_type;
  typedef typename slot_type::call_type call_type;

  /** Executes a list of slots using an accumulator of type @e T_accumulator.
   * The arguments are passed directly on to the slots.
   * @param first An iterator pointing to the first slot in the list.
   * @param last An iterator pointing to the last slot in the list.
   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @param _A_a3 Argument to be passed on to the slots.
   * @param _A_a4 Argument to be passed on to the slots.
   * @param _A_a5 Argument to be passed on to the slots.
   * @param _A_a6 Argument to be passed on to the slots.
   * @param _A_a7 Argument to be passed on to the slots.
   */
  static result_type emit(signal_impl* impl, typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4,typename type_trait<T_arg5>::take _A_a5,typename type_trait<T_arg6>::take _A_a6,typename type_trait<T_arg7>::take _A_a7)
    {
      if (!impl || impl->slots_.empty()) return;
      signal_exec exec(impl);
      temp_slot_list slots(impl->slots_);

      for (iterator_type it = slots.begin(); it != slots.end(); ++it)
        {
          if (it->empty() || it->blocked())
            continue;
          (reinterpret_cast<call_type>(it->rep_->call_))(it->rep_, _A_a1,_A_a2,_A_a3,_A_a4,_A_a5,_A_a6,_A_a7);
        }
    }
};


} /* namespace internal */

/** Signal declaration.
 * signal0 can be used to connect() slots that are invoked
 * during subsequent calls to emit(). Any functor or slot
 * can be passed into connect(). It is converted into a slot
 * implicitely.
 *
 * If you want to connect one signal to another, use make_slot()
 * to retrieve a functor that emits the signal when invoked.
 *
 * Be careful if you directly pass one signal into the connect()
 * method of another: a shallow copy of the signal is made and
 * the signal's slots are not disconnected until both the signal
 * and its clone are destroyed which is probably not what you want!
 *
 * An STL-style list interface for the signal's list of slots
 * can be retrieved with slots(). This interface supports
 * iteration, insertion and removal of slots.
 *
 * The following template arguments are used:
 * - @e T_return The desired return type for the emit() function (may be overridden by the accumulator).
 * - @e T_accumulator The accumulator type used for emission. The default @p nil means that no accumulator should be used, i.e. signal emission returns the return value of the last slot invoked.
 *
 * You should use the more convenient unnumbered sigc::signal template.
 *
 * @ingroup signal
 */
template <class T_return, class T_accumulator=nil>
class signal0
  : public signal_base
{
public:
  typedef internal::signal_emit0<T_return, T_accumulator> emitter_type;
  typedef typename emitter_type::result_type         result_type;
  typedef slot<T_return>    slot_type;
  typedef slot_list<slot_type>                       slot_list_type;
  typedef typename slot_list_type::iterator               iterator;
  typedef typename slot_list_type::const_iterator         const_iterator;
  typedef typename slot_list_type::reverse_iterator       reverse_iterator;
  typedef typename slot_list_type::const_reverse_iterator const_reverse_iterator;

#ifdef SIGC_TYPEDEF_REDEFINE_ALLOWED
  /** This typedef is only for backwards-compatibility.
   * It is not available when using the SUN Forte compiler.
   * @deprecated slot_list_type;
   */
  typedef slot_list_type slot_list;
#endif

  /** Add a slot to the list of slots.
   * Any functor or slot may be passed into connect().
   * It will be converted into a slot implicitely.
   * The returned iterator may be stored for disconnection
   * of the slot at some later point. It stays valid until
   * the slot is removed from the list of slots. The iterator
   * can also be implicitely converted into a sigc::connection object
   * that may be used safely beyond the life time of the slot.
   * @param slot_ The slot to add to the list of slots.
   * @return An iterator pointing to the new slot in the list.
   */
  iterator connect(const slot_type& slot_)
    { return iterator(signal_base::connect(static_cast<const slot_base&>(slot_))); }

  /** Triggers the emission of the signal.
   * During signal emission all slots that have been connected
   * to the signal are invoked unless they are manually set into
   * a blocking state. The parameters are passed on to the slots.
   * If @e T_accumulated is not @p nil, an accumulator of this type
   * is used to process the return values of the slot invocations.
   * Otherwise, the return value of the last slot invoked is returned.
   * @return The accumulated return values of the slot invocations.
   */
  result_type emit() const
    { return emitter_type::emit(impl_); }

  /** Triggers the emission of the signal (see emit()). */
  result_type operator()() const
    { return emit(); }

  /** Creates a functor that calls emit() on this signal.
   * @code
   * sigc::mem_fun(mysignal, &sigc::signal0::emit)
   * @endcode
   * yields the same result.
   * @return A functor that calls emit() on this signal.
   */
  bound_const_mem_functor0<result_type, signal0> make_slot() const
    { return bound_const_mem_functor0<result_type, signal0>(this, &signal0::emit); }

  /** Creates an STL-style interface for the signal's list of slots.
   * This interface supports iteration, insertion and removal of slots.
   * @return An STL-style interface for the signal's list of slots.
   */
  slot_list_type slots()
    { return slot_list_type(impl()); }

  /** Creates an STL-style interface for the signal's list of slots.
   * This interface supports iteration, insertion and removal of slots.
   * @return An STL-style interface for the signal's list of slots.
   */
  const slot_list_type slots() const
    { return slot_list_type(const_cast<signal0*>(this)->impl()); }

  signal0() {}

  signal0(const signal0& src)
    : signal_base(src) {}
};

/** Signal declaration.
 * signal1 can be used to connect() slots that are invoked
 * during subsequent calls to emit(). Any functor or slot
 * can be passed into connect(). It is converted into a slot
 * implicitely.
 *
 * If you want to connect one signal to another, use make_slot()
 * to retrieve a functor that emits the signal when invoked.
 *
 * Be careful if you directly pass one signal into the connect()
 * method of another: a shallow copy of the signal is made and
 * the signal's slots are not disconnected until both the signal
 * and its clone are destroyed which is probably not what you want!
 *
 * An STL-style list interface for the signal's list of slots
 * can be retrieved with slots(). This interface supports
 * iteration, insertion and removal of slots.
 *
 * The following template arguments are used:
 * - @e T_return The desired return type for the emit() function (may be overridden by the accumulator).
 * - @e T_arg1 Argument type used in the definition of emit().
 * - @e T_accumulator The accumulator type used for emission. The default @p nil means that no accumulator should be used, i.e. signal emission returns the return value of the last slot invoked.
 *
 * You should use the more convenient unnumbered sigc::signal template.
 *
 * @ingroup signal
 */
template <class T_return, class T_arg1, class T_accumulator=nil>
class signal1
  : public signal_base
{
public:
  typedef internal::signal_emit1<T_return, T_arg1, T_accumulator> emitter_type;
  typedef typename emitter_type::result_type         result_type;
  typedef slot<T_return, T_arg1>    slot_type;
  typedef slot_list<slot_type>                       slot_list_type;
  typedef typename slot_list_type::iterator               iterator;
  typedef typename slot_list_type::const_iterator         const_iterator;
  typedef typename slot_list_type::reverse_iterator       reverse_iterator;
  typedef typename slot_list_type::const_reverse_iterator const_reverse_iterator;

#ifdef SIGC_TYPEDEF_REDEFINE_ALLOWED
  /** This typedef is only for backwards-compatibility.
   * It is not available when using the SUN Forte compiler.
   * @deprecated slot_list_type;
   */
  typedef slot_list_type slot_list;
#endif

  /** Add a slot to the list of slots.
   * Any functor or slot may be passed into connect().
   * It will be converted into a slot implicitely.
   * The returned iterator may be stored for disconnection
   * of the slot at some later point. It stays valid until
   * the slot is removed from the list of slots. The iterator
   * can also be implicitely converted into a sigc::connection object
   * that may be used safely beyond the life time of the slot.
   * @param slot_ The slot to add to the list of slots.
   * @return An iterator pointing to the new slot in the list.
   */
  iterator connect(const slot_type& slot_)
    { return iterator(signal_base::connect(static_cast<const slot_base&>(slot_))); }

  /** Triggers the emission of the signal.
   * During signal emission all slots that have been connected
   * to the signal are invoked unless they are manually set into
   * a blocking state. The parameters are passed on to the slots.
   * If @e T_accumulated is not @p nil, an accumulator of this type
   * is used to process the return values of the slot invocations.
   * Otherwise, the return value of the last slot invoked is returned.
   * @param _A_a1 Argument to be passed on to the slots.
   * @return The accumulated return values of the slot invocations.
   */
  result_type emit(typename type_trait<T_arg1>::take _A_a1) const
    { return emitter_type::emit(impl_, _A_a1); }

  /** Triggers the emission of the signal (see emit()). */
  result_type operator()(typename type_trait<T_arg1>::take _A_a1) const
    { return emit(_A_a1); }

  /** Creates a functor that calls emit() on this signal.
   * @code
   * sigc::mem_fun(mysignal, &sigc::signal1::emit)
   * @endcode
   * yields the same result.
   * @return A functor that calls emit() on this signal.
   */
  bound_const_mem_functor1<result_type, signal1, typename type_trait<T_arg1>::take> make_slot() const
    { return bound_const_mem_functor1<result_type, signal1, typename type_trait<T_arg1>::take>(this, &signal1::emit); }

  /** Creates an STL-style interface for the signal's list of slots.
   * This interface supports iteration, insertion and removal of slots.
   * @return An STL-style interface for the signal's list of slots.
   */
  slot_list_type slots()
    { return slot_list_type(impl()); }

  /** Creates an STL-style interface for the signal's list of slots.
   * This interface supports iteration, insertion and removal of slots.
   * @return An STL-style interface for the signal's list of slots.
   */
  const slot_list_type slots() const
    { return slot_list_type(const_cast<signal1*>(this)->impl()); }

  signal1() {}

  signal1(const signal1& src)
    : signal_base(src) {}
};

/** Signal declaration.
 * signal2 can be used to connect() slots that are invoked
 * during subsequent calls to emit(). Any functor or slot
 * can be passed into connect(). It is converted into a slot
 * implicitely.
 *
 * If you want to connect one signal to another, use make_slot()
 * to retrieve a functor that emits the signal when invoked.
 *
 * Be careful if you directly pass one signal into the connect()
 * method of another: a shallow copy of the signal is made and
 * the signal's slots are not disconnected until both the signal
 * and its clone are destroyed which is probably not what you want!
 *
 * An STL-style list interface for the signal's list of slots
 * can be retrieved with slots(). This interface supports
 * iteration, insertion and removal of slots.
 *
 * The following template arguments are used:
 * - @e T_return The desired return type for the emit() function (may be overridden by the accumulator).
 * - @e T_arg1 Argument type used in the definition of emit().
 * - @e T_arg2 Argument type used in the definition of emit().
 * - @e T_accumulator The accumulator type used for emission. The default @p nil means that no accumulator should be used, i.e. signal emission returns the return value of the last slot invoked.
 *
 * You should use the more convenient unnumbered sigc::signal template.
 *
 * @ingroup signal
 */
template <class T_return, class T_arg1,class T_arg2, class T_accumulator=nil>
class signal2
  : public signal_base
{
public:
  typedef internal::signal_emit2<T_return, T_arg1,T_arg2, T_accumulator> emitter_type;
  typedef typename emitter_type::result_type         result_type;
  typedef slot<T_return, T_arg1,T_arg2>    slot_type;
  typedef slot_list<slot_type>                       slot_list_type;
  typedef typename slot_list_type::iterator               iterator;
  typedef typename slot_list_type::const_iterator         const_iterator;
  typedef typename slot_list_type::reverse_iterator       reverse_iterator;
  typedef typename slot_list_type::const_reverse_iterator const_reverse_iterator;

#ifdef SIGC_TYPEDEF_REDEFINE_ALLOWED
  /** This typedef is only for backwards-compatibility.
   * It is not available when using the SUN Forte compiler.
   * @deprecated slot_list_type;
   */
  typedef slot_list_type slot_list;
#endif

  /** Add a slot to the list of slots.
   * Any functor or slot may be passed into connect().
   * It will be converted into a slot implicitely.
   * The returned iterator may be stored for disconnection
   * of the slot at some later point. It stays valid until
   * the slot is removed from the list of slots. The iterator
   * can also be implicitely converted into a sigc::connection object
   * that may be used safely beyond the life time of the slot.
   * @param slot_ The slot to add to the list of slots.
   * @return An iterator pointing to the new slot in the list.
   */
  iterator connect(const slot_type& slot_)
    { return iterator(signal_base::connect(static_cast<const slot_base&>(slot_))); }

  /** Triggers the emission of the signal.
   * During signal emission all slots that have been connected
   * to the signal are invoked unless they are manually set into
   * a blocking state. The parameters are passed on to the slots.
   * If @e T_accumulated is not @p nil, an accumulator of this type
   * is used to process the return values of the slot invocations.
   * Otherwise, the return value of the last slot invoked is returned.
   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @return The accumulated return values of the slot invocations.
   */
  result_type emit(typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2) const
    { return emitter_type::emit(impl_, _A_a1,_A_a2); }

  /** Triggers the emission of the signal (see emit()). */
  result_type operator()(typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2) const
    { return emit(_A_a1,_A_a2); }

  /** Creates a functor that calls emit() on this signal.
   * @code
   * sigc::mem_fun(mysignal, &sigc::signal2::emit)
   * @endcode
   * yields the same result.
   * @return A functor that calls emit() on this signal.
   */
  bound_const_mem_functor2<result_type, signal2, typename type_trait<T_arg1>::take,typename type_trait<T_arg2>::take> make_slot() const
    { return bound_const_mem_functor2<result_type, signal2, typename type_trait<T_arg1>::take,typename type_trait<T_arg2>::take>(this, &signal2::emit); }

  /** Creates an STL-style interface for the signal's list of slots.
   * This interface supports iteration, insertion and removal of slots.
   * @return An STL-style interface for the signal's list of slots.
   */
  slot_list_type slots()
    { return slot_list_type(impl()); }

  /** Creates an STL-style interface for the signal's list of slots.
   * This interface supports iteration, insertion and removal of slots.
   * @return An STL-style interface for the signal's list of slots.
   */
  const slot_list_type slots() const
    { return slot_list_type(const_cast<signal2*>(this)->impl()); }

  signal2() {}

  signal2(const signal2& src)
    : signal_base(src) {}
};

/** Signal declaration.
 * signal3 can be used to connect() slots that are invoked
 * during subsequent calls to emit(). Any functor or slot
 * can be passed into connect(). It is converted into a slot
 * implicitely.
 *
 * If you want to connect one signal to another, use make_slot()
 * to retrieve a functor that emits the signal when invoked.
 *
 * Be careful if you directly pass one signal into the connect()
 * method of another: a shallow copy of the signal is made and
 * the signal's slots are not disconnected until both the signal
 * and its clone are destroyed which is probably not what you want!
 *
 * An STL-style list interface for the signal's list of slots
 * can be retrieved with slots(). This interface supports
 * iteration, insertion and removal of slots.
 *
 * The following template arguments are used:
 * - @e T_return The desired return type for the emit() function (may be overridden by the accumulator).
 * - @e T_arg1 Argument type used in the definition of emit().
 * - @e T_arg2 Argument type used in the definition of emit().
 * - @e T_arg3 Argument type used in the definition of emit().
 * - @e T_accumulator The accumulator type used for emission. The default @p nil means that no accumulator should be used, i.e. signal emission returns the return value of the last slot invoked.
 *
 * You should use the more convenient unnumbered sigc::signal template.
 *
 * @ingroup signal
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3, class T_accumulator=nil>
class signal3
  : public signal_base
{
public:
  typedef internal::signal_emit3<T_return, T_arg1,T_arg2,T_arg3, T_accumulator> emitter_type;
  typedef typename emitter_type::result_type         result_type;
  typedef slot<T_return, T_arg1,T_arg2,T_arg3>    slot_type;
  typedef slot_list<slot_type>                       slot_list_type;
  typedef typename slot_list_type::iterator               iterator;
  typedef typename slot_list_type::const_iterator         const_iterator;
  typedef typename slot_list_type::reverse_iterator       reverse_iterator;
  typedef typename slot_list_type::const_reverse_iterator const_reverse_iterator;

#ifdef SIGC_TYPEDEF_REDEFINE_ALLOWED
  /** This typedef is only for backwards-compatibility.
   * It is not available when using the SUN Forte compiler.
   * @deprecated slot_list_type;
   */
  typedef slot_list_type slot_list;
#endif

  /** Add a slot to the list of slots.
   * Any functor or slot may be passed into connect().
   * It will be converted into a slot implicitely.
   * The returned iterator may be stored for disconnection
   * of the slot at some later point. It stays valid until
   * the slot is removed from the list of slots. The iterator
   * can also be implicitely converted into a sigc::connection object
   * that may be used safely beyond the life time of the slot.
   * @param slot_ The slot to add to the list of slots.
   * @return An iterator pointing to the new slot in the list.
   */
  iterator connect(const slot_type& slot_)
    { return iterator(signal_base::connect(static_cast<const slot_base&>(slot_))); }

  /** Triggers the emission of the signal.
   * During signal emission all slots that have been connected
   * to the signal are invoked unless they are manually set into
   * a blocking state. The parameters are passed on to the slots.
   * If @e T_accumulated is not @p nil, an accumulator of this type
   * is used to process the return values of the slot invocations.
   * Otherwise, the return value of the last slot invoked is returned.
   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @param _A_a3 Argument to be passed on to the slots.
   * @return The accumulated return values of the slot invocations.
   */
  result_type emit(typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3) const
    { return emitter_type::emit(impl_, _A_a1,_A_a2,_A_a3); }

  /** Triggers the emission of the signal (see emit()). */
  result_type operator()(typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3) const
    { return emit(_A_a1,_A_a2,_A_a3); }

  /** Creates a functor that calls emit() on this signal.
   * @code
   * sigc::mem_fun(mysignal, &sigc::signal3::emit)
   * @endcode
   * yields the same result.
   * @return A functor that calls emit() on this signal.
   */
  bound_const_mem_functor3<result_type, signal3, typename type_trait<T_arg1>::take,typename type_trait<T_arg2>::take,typename type_trait<T_arg3>::take> make_slot() const
    { return bound_const_mem_functor3<result_type, signal3, typename type_trait<T_arg1>::take,typename type_trait<T_arg2>::take,typename type_trait<T_arg3>::take>(this, &signal3::emit); }

  /** Creates an STL-style interface for the signal's list of slots.
   * This interface supports iteration, insertion and removal of slots.
   * @return An STL-style interface for the signal's list of slots.
   */
  slot_list_type slots()
    { return slot_list_type(impl()); }

  /** Creates an STL-style interface for the signal's list of slots.
   * This interface supports iteration, insertion and removal of slots.
   * @return An STL-style interface for the signal's list of slots.
   */
  const slot_list_type slots() const
    { return slot_list_type(const_cast<signal3*>(this)->impl()); }

  signal3() {}

  signal3(const signal3& src)
    : signal_base(src) {}
};

/** Signal declaration.
 * signal4 can be used to connect() slots that are invoked
 * during subsequent calls to emit(). Any functor or slot
 * can be passed into connect(). It is converted into a slot
 * implicitely.
 *
 * If you want to connect one signal to another, use make_slot()
 * to retrieve a functor that emits the signal when invoked.
 *
 * Be careful if you directly pass one signal into the connect()
 * method of another: a shallow copy of the signal is made and
 * the signal's slots are not disconnected until both the signal
 * and its clone are destroyed which is probably not what you want!
 *
 * An STL-style list interface for the signal's list of slots
 * can be retrieved with slots(). This interface supports
 * iteration, insertion and removal of slots.
 *
 * The following template arguments are used:
 * - @e T_return The desired return type for the emit() function (may be overridden by the accumulator).
 * - @e T_arg1 Argument type used in the definition of emit().
 * - @e T_arg2 Argument type used in the definition of emit().
 * - @e T_arg3 Argument type used in the definition of emit().
 * - @e T_arg4 Argument type used in the definition of emit().
 * - @e T_accumulator The accumulator type used for emission. The default @p nil means that no accumulator should be used, i.e. signal emission returns the return value of the last slot invoked.
 *
 * You should use the more convenient unnumbered sigc::signal template.
 *
 * @ingroup signal
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3,class T_arg4, class T_accumulator=nil>
class signal4
  : public signal_base
{
public:
  typedef internal::signal_emit4<T_return, T_arg1,T_arg2,T_arg3,T_arg4, T_accumulator> emitter_type;
  typedef typename emitter_type::result_type         result_type;
  typedef slot<T_return, T_arg1,T_arg2,T_arg3,T_arg4>    slot_type;
  typedef slot_list<slot_type>                       slot_list_type;
  typedef typename slot_list_type::iterator               iterator;
  typedef typename slot_list_type::const_iterator         const_iterator;
  typedef typename slot_list_type::reverse_iterator       reverse_iterator;
  typedef typename slot_list_type::const_reverse_iterator const_reverse_iterator;

#ifdef SIGC_TYPEDEF_REDEFINE_ALLOWED
  /** This typedef is only for backwards-compatibility.
   * It is not available when using the SUN Forte compiler.
   * @deprecated slot_list_type;
   */
  typedef slot_list_type slot_list;
#endif

  /** Add a slot to the list of slots.
   * Any functor or slot may be passed into connect().
   * It will be converted into a slot implicitely.
   * The returned iterator may be stored for disconnection
   * of the slot at some later point. It stays valid until
   * the slot is removed from the list of slots. The iterator
   * can also be implicitely converted into a sigc::connection object
   * that may be used safely beyond the life time of the slot.
   * @param slot_ The slot to add to the list of slots.
   * @return An iterator pointing to the new slot in the list.
   */
  iterator connect(const slot_type& slot_)
    { return iterator(signal_base::connect(static_cast<const slot_base&>(slot_))); }

  /** Triggers the emission of the signal.
   * During signal emission all slots that have been connected
   * to the signal are invoked unless they are manually set into
   * a blocking state. The parameters are passed on to the slots.
   * If @e T_accumulated is not @p nil, an accumulator of this type
   * is used to process the return values of the slot invocations.
   * Otherwise, the return value of the last slot invoked is returned.
   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @param _A_a3 Argument to be passed on to the slots.
   * @param _A_a4 Argument to be passed on to the slots.
   * @return The accumulated return values of the slot invocations.
   */
  result_type emit(typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4) const
    { return emitter_type::emit(impl_, _A_a1,_A_a2,_A_a3,_A_a4); }

  /** Triggers the emission of the signal (see emit()). */
  result_type operator()(typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4) const
    { return emit(_A_a1,_A_a2,_A_a3,_A_a4); }

  /** Creates a functor that calls emit() on this signal.
   * @code
   * sigc::mem_fun(mysignal, &sigc::signal4::emit)
   * @endcode
   * yields the same result.
   * @return A functor that calls emit() on this signal.
   */
  bound_const_mem_functor4<result_type, signal4, typename type_trait<T_arg1>::take,typename type_trait<T_arg2>::take,typename type_trait<T_arg3>::take,typename type_trait<T_arg4>::take> make_slot() const
    { return bound_const_mem_functor4<result_type, signal4, typename type_trait<T_arg1>::take,typename type_trait<T_arg2>::take,typename type_trait<T_arg3>::take,typename type_trait<T_arg4>::take>(this, &signal4::emit); }

  /** Creates an STL-style interface for the signal's list of slots.
   * This interface supports iteration, insertion and removal of slots.
   * @return An STL-style interface for the signal's list of slots.
   */
  slot_list_type slots()
    { return slot_list_type(impl()); }

  /** Creates an STL-style interface for the signal's list of slots.
   * This interface supports iteration, insertion and removal of slots.
   * @return An STL-style interface for the signal's list of slots.
   */
  const slot_list_type slots() const
    { return slot_list_type(const_cast<signal4*>(this)->impl()); }

  signal4() {}

  signal4(const signal4& src)
    : signal_base(src) {}
};

/** Signal declaration.
 * signal5 can be used to connect() slots that are invoked
 * during subsequent calls to emit(). Any functor or slot
 * can be passed into connect(). It is converted into a slot
 * implicitely.
 *
 * If you want to connect one signal to another, use make_slot()
 * to retrieve a functor that emits the signal when invoked.
 *
 * Be careful if you directly pass one signal into the connect()
 * method of another: a shallow copy of the signal is made and
 * the signal's slots are not disconnected until both the signal
 * and its clone are destroyed which is probably not what you want!
 *
 * An STL-style list interface for the signal's list of slots
 * can be retrieved with slots(). This interface supports
 * iteration, insertion and removal of slots.
 *
 * The following template arguments are used:
 * - @e T_return The desired return type for the emit() function (may be overridden by the accumulator).
 * - @e T_arg1 Argument type used in the definition of emit().
 * - @e T_arg2 Argument type used in the definition of emit().
 * - @e T_arg3 Argument type used in the definition of emit().
 * - @e T_arg4 Argument type used in the definition of emit().
 * - @e T_arg5 Argument type used in the definition of emit().
 * - @e T_accumulator The accumulator type used for emission. The default @p nil means that no accumulator should be used, i.e. signal emission returns the return value of the last slot invoked.
 *
 * You should use the more convenient unnumbered sigc::signal template.
 *
 * @ingroup signal
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3,class T_arg4,class T_arg5, class T_accumulator=nil>
class signal5
  : public signal_base
{
public:
  typedef internal::signal_emit5<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5, T_accumulator> emitter_type;
  typedef typename emitter_type::result_type         result_type;
  typedef slot<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5>    slot_type;
  typedef slot_list<slot_type>                       slot_list_type;
  typedef typename slot_list_type::iterator               iterator;
  typedef typename slot_list_type::const_iterator         const_iterator;
  typedef typename slot_list_type::reverse_iterator       reverse_iterator;
  typedef typename slot_list_type::const_reverse_iterator const_reverse_iterator;

#ifdef SIGC_TYPEDEF_REDEFINE_ALLOWED
  /** This typedef is only for backwards-compatibility.
   * It is not available when using the SUN Forte compiler.
   * @deprecated slot_list_type;
   */
  typedef slot_list_type slot_list;
#endif

  /** Add a slot to the list of slots.
   * Any functor or slot may be passed into connect().
   * It will be converted into a slot implicitely.
   * The returned iterator may be stored for disconnection
   * of the slot at some later point. It stays valid until
   * the slot is removed from the list of slots. The iterator
   * can also be implicitely converted into a sigc::connection object
   * that may be used safely beyond the life time of the slot.
   * @param slot_ The slot to add to the list of slots.
   * @return An iterator pointing to the new slot in the list.
   */
  iterator connect(const slot_type& slot_)
    { return iterator(signal_base::connect(static_cast<const slot_base&>(slot_))); }

  /** Triggers the emission of the signal.
   * During signal emission all slots that have been connected
   * to the signal are invoked unless they are manually set into
   * a blocking state. The parameters are passed on to the slots.
   * If @e T_accumulated is not @p nil, an accumulator of this type
   * is used to process the return values of the slot invocations.
   * Otherwise, the return value of the last slot invoked is returned.
   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @param _A_a3 Argument to be passed on to the slots.
   * @param _A_a4 Argument to be passed on to the slots.
   * @param _A_a5 Argument to be passed on to the slots.
   * @return The accumulated return values of the slot invocations.
   */
  result_type emit(typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4,typename type_trait<T_arg5>::take _A_a5) const
    { return emitter_type::emit(impl_, _A_a1,_A_a2,_A_a3,_A_a4,_A_a5); }

  /** Triggers the emission of the signal (see emit()). */
  result_type operator()(typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4,typename type_trait<T_arg5>::take _A_a5) const
    { return emit(_A_a1,_A_a2,_A_a3,_A_a4,_A_a5); }

  /** Creates a functor that calls emit() on this signal.
   * @code
   * sigc::mem_fun(mysignal, &sigc::signal5::emit)
   * @endcode
   * yields the same result.
   * @return A functor that calls emit() on this signal.
   */
  bound_const_mem_functor5<result_type, signal5, typename type_trait<T_arg1>::take,typename type_trait<T_arg2>::take,typename type_trait<T_arg3>::take,typename type_trait<T_arg4>::take,typename type_trait<T_arg5>::take> make_slot() const
    { return bound_const_mem_functor5<result_type, signal5, typename type_trait<T_arg1>::take,typename type_trait<T_arg2>::take,typename type_trait<T_arg3>::take,typename type_trait<T_arg4>::take,typename type_trait<T_arg5>::take>(this, &signal5::emit); }

  /** Creates an STL-style interface for the signal's list of slots.
   * This interface supports iteration, insertion and removal of slots.
   * @return An STL-style interface for the signal's list of slots.
   */
  slot_list_type slots()
    { return slot_list_type(impl()); }

  /** Creates an STL-style interface for the signal's list of slots.
   * This interface supports iteration, insertion and removal of slots.
   * @return An STL-style interface for the signal's list of slots.
   */
  const slot_list_type slots() const
    { return slot_list_type(const_cast<signal5*>(this)->impl()); }

  signal5() {}

  signal5(const signal5& src)
    : signal_base(src) {}
};

/** Signal declaration.
 * signal6 can be used to connect() slots that are invoked
 * during subsequent calls to emit(). Any functor or slot
 * can be passed into connect(). It is converted into a slot
 * implicitely.
 *
 * If you want to connect one signal to another, use make_slot()
 * to retrieve a functor that emits the signal when invoked.
 *
 * Be careful if you directly pass one signal into the connect()
 * method of another: a shallow copy of the signal is made and
 * the signal's slots are not disconnected until both the signal
 * and its clone are destroyed which is probably not what you want!
 *
 * An STL-style list interface for the signal's list of slots
 * can be retrieved with slots(). This interface supports
 * iteration, insertion and removal of slots.
 *
 * The following template arguments are used:
 * - @e T_return The desired return type for the emit() function (may be overridden by the accumulator).
 * - @e T_arg1 Argument type used in the definition of emit().
 * - @e T_arg2 Argument type used in the definition of emit().
 * - @e T_arg3 Argument type used in the definition of emit().
 * - @e T_arg4 Argument type used in the definition of emit().
 * - @e T_arg5 Argument type used in the definition of emit().
 * - @e T_arg6 Argument type used in the definition of emit().
 * - @e T_accumulator The accumulator type used for emission. The default @p nil means that no accumulator should be used, i.e. signal emission returns the return value of the last slot invoked.
 *
 * You should use the more convenient unnumbered sigc::signal template.
 *
 * @ingroup signal
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3,class T_arg4,class T_arg5,class T_arg6, class T_accumulator=nil>
class signal6
  : public signal_base
{
public:
  typedef internal::signal_emit6<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6, T_accumulator> emitter_type;
  typedef typename emitter_type::result_type         result_type;
  typedef slot<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6>    slot_type;
  typedef slot_list<slot_type>                       slot_list_type;
  typedef typename slot_list_type::iterator               iterator;
  typedef typename slot_list_type::const_iterator         const_iterator;
  typedef typename slot_list_type::reverse_iterator       reverse_iterator;
  typedef typename slot_list_type::const_reverse_iterator const_reverse_iterator;

#ifdef SIGC_TYPEDEF_REDEFINE_ALLOWED
  /** This typedef is only for backwards-compatibility.
   * It is not available when using the SUN Forte compiler.
   * @deprecated slot_list_type;
   */
  typedef slot_list_type slot_list;
#endif

  /** Add a slot to the list of slots.
   * Any functor or slot may be passed into connect().
   * It will be converted into a slot implicitely.
   * The returned iterator may be stored for disconnection
   * of the slot at some later point. It stays valid until
   * the slot is removed from the list of slots. The iterator
   * can also be implicitely converted into a sigc::connection object
   * that may be used safely beyond the life time of the slot.
   * @param slot_ The slot to add to the list of slots.
   * @return An iterator pointing to the new slot in the list.
   */
  iterator connect(const slot_type& slot_)
    { return iterator(signal_base::connect(static_cast<const slot_base&>(slot_))); }

  /** Triggers the emission of the signal.
   * During signal emission all slots that have been connected
   * to the signal are invoked unless they are manually set into
   * a blocking state. The parameters are passed on to the slots.
   * If @e T_accumulated is not @p nil, an accumulator of this type
   * is used to process the return values of the slot invocations.
   * Otherwise, the return value of the last slot invoked is returned.
   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @param _A_a3 Argument to be passed on to the slots.
   * @param _A_a4 Argument to be passed on to the slots.
   * @param _A_a5 Argument to be passed on to the slots.
   * @param _A_a6 Argument to be passed on to the slots.
   * @return The accumulated return values of the slot invocations.
   */
  result_type emit(typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4,typename type_trait<T_arg5>::take _A_a5,typename type_trait<T_arg6>::take _A_a6) const
    { return emitter_type::emit(impl_, _A_a1,_A_a2,_A_a3,_A_a4,_A_a5,_A_a6); }

  /** Triggers the emission of the signal (see emit()). */
  result_type operator()(typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4,typename type_trait<T_arg5>::take _A_a5,typename type_trait<T_arg6>::take _A_a6) const
    { return emit(_A_a1,_A_a2,_A_a3,_A_a4,_A_a5,_A_a6); }

  /** Creates a functor that calls emit() on this signal.
   * @code
   * sigc::mem_fun(mysignal, &sigc::signal6::emit)
   * @endcode
   * yields the same result.
   * @return A functor that calls emit() on this signal.
   */
  bound_const_mem_functor6<result_type, signal6, typename type_trait<T_arg1>::take,typename type_trait<T_arg2>::take,typename type_trait<T_arg3>::take,typename type_trait<T_arg4>::take,typename type_trait<T_arg5>::take,typename type_trait<T_arg6>::take> make_slot() const
    { return bound_const_mem_functor6<result_type, signal6, typename type_trait<T_arg1>::take,typename type_trait<T_arg2>::take,typename type_trait<T_arg3>::take,typename type_trait<T_arg4>::take,typename type_trait<T_arg5>::take,typename type_trait<T_arg6>::take>(this, &signal6::emit); }

  /** Creates an STL-style interface for the signal's list of slots.
   * This interface supports iteration, insertion and removal of slots.
   * @return An STL-style interface for the signal's list of slots.
   */
  slot_list_type slots()
    { return slot_list_type(impl()); }

  /** Creates an STL-style interface for the signal's list of slots.
   * This interface supports iteration, insertion and removal of slots.
   * @return An STL-style interface for the signal's list of slots.
   */
  const slot_list_type slots() const
    { return slot_list_type(const_cast<signal6*>(this)->impl()); }

  signal6() {}

  signal6(const signal6& src)
    : signal_base(src) {}
};

/** Signal declaration.
 * signal7 can be used to connect() slots that are invoked
 * during subsequent calls to emit(). Any functor or slot
 * can be passed into connect(). It is converted into a slot
 * implicitely.
 *
 * If you want to connect one signal to another, use make_slot()
 * to retrieve a functor that emits the signal when invoked.
 *
 * Be careful if you directly pass one signal into the connect()
 * method of another: a shallow copy of the signal is made and
 * the signal's slots are not disconnected until both the signal
 * and its clone are destroyed which is probably not what you want!
 *
 * An STL-style list interface for the signal's list of slots
 * can be retrieved with slots(). This interface supports
 * iteration, insertion and removal of slots.
 *
 * The following template arguments are used:
 * - @e T_return The desired return type for the emit() function (may be overridden by the accumulator).
 * - @e T_arg1 Argument type used in the definition of emit().
 * - @e T_arg2 Argument type used in the definition of emit().
 * - @e T_arg3 Argument type used in the definition of emit().
 * - @e T_arg4 Argument type used in the definition of emit().
 * - @e T_arg5 Argument type used in the definition of emit().
 * - @e T_arg6 Argument type used in the definition of emit().
 * - @e T_arg7 Argument type used in the definition of emit().
 * - @e T_accumulator The accumulator type used for emission. The default @p nil means that no accumulator should be used, i.e. signal emission returns the return value of the last slot invoked.
 *
 * You should use the more convenient unnumbered sigc::signal template.
 *
 * @ingroup signal
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3,class T_arg4,class T_arg5,class T_arg6,class T_arg7, class T_accumulator=nil>
class signal7
  : public signal_base
{
public:
  typedef internal::signal_emit7<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6,T_arg7, T_accumulator> emitter_type;
  typedef typename emitter_type::result_type         result_type;
  typedef slot<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6,T_arg7>    slot_type;
  typedef slot_list<slot_type>                       slot_list_type;
  typedef typename slot_list_type::iterator               iterator;
  typedef typename slot_list_type::const_iterator         const_iterator;
  typedef typename slot_list_type::reverse_iterator       reverse_iterator;
  typedef typename slot_list_type::const_reverse_iterator const_reverse_iterator;

#ifdef SIGC_TYPEDEF_REDEFINE_ALLOWED
  /** This typedef is only for backwards-compatibility.
   * It is not available when using the SUN Forte compiler.
   * @deprecated slot_list_type;
   */
  typedef slot_list_type slot_list;
#endif

  /** Add a slot to the list of slots.
   * Any functor or slot may be passed into connect().
   * It will be converted into a slot implicitely.
   * The returned iterator may be stored for disconnection
   * of the slot at some later point. It stays valid until
   * the slot is removed from the list of slots. The iterator
   * can also be implicitely converted into a sigc::connection object
   * that may be used safely beyond the life time of the slot.
   * @param slot_ The slot to add to the list of slots.
   * @return An iterator pointing to the new slot in the list.
   */
  iterator connect(const slot_type& slot_)
    { return iterator(signal_base::connect(static_cast<const slot_base&>(slot_))); }

  /** Triggers the emission of the signal.
   * During signal emission all slots that have been connected
   * to the signal are invoked unless they are manually set into
   * a blocking state. The parameters are passed on to the slots.
   * If @e T_accumulated is not @p nil, an accumulator of this type
   * is used to process the return values of the slot invocations.
   * Otherwise, the return value of the last slot invoked is returned.
   * @param _A_a1 Argument to be passed on to the slots.
   * @param _A_a2 Argument to be passed on to the slots.
   * @param _A_a3 Argument to be passed on to the slots.
   * @param _A_a4 Argument to be passed on to the slots.
   * @param _A_a5 Argument to be passed on to the slots.
   * @param _A_a6 Argument to be passed on to the slots.
   * @param _A_a7 Argument to be passed on to the slots.
   * @return The accumulated return values of the slot invocations.
   */
  result_type emit(typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4,typename type_trait<T_arg5>::take _A_a5,typename type_trait<T_arg6>::take _A_a6,typename type_trait<T_arg7>::take _A_a7) const
    { return emitter_type::emit(impl_, _A_a1,_A_a2,_A_a3,_A_a4,_A_a5,_A_a6,_A_a7); }

  /** Triggers the emission of the signal (see emit()). */
  result_type operator()(typename type_trait<T_arg1>::take _A_a1,typename type_trait<T_arg2>::take _A_a2,typename type_trait<T_arg3>::take _A_a3,typename type_trait<T_arg4>::take _A_a4,typename type_trait<T_arg5>::take _A_a5,typename type_trait<T_arg6>::take _A_a6,typename type_trait<T_arg7>::take _A_a7) const
    { return emit(_A_a1,_A_a2,_A_a3,_A_a4,_A_a5,_A_a6,_A_a7); }

  /** Creates a functor that calls emit() on this signal.
   * @code
   * sigc::mem_fun(mysignal, &sigc::signal7::emit)
   * @endcode
   * yields the same result.
   * @return A functor that calls emit() on this signal.
   */
  bound_const_mem_functor7<result_type, signal7, typename type_trait<T_arg1>::take,typename type_trait<T_arg2>::take,typename type_trait<T_arg3>::take,typename type_trait<T_arg4>::take,typename type_trait<T_arg5>::take,typename type_trait<T_arg6>::take,typename type_trait<T_arg7>::take> make_slot() const
    { return bound_const_mem_functor7<result_type, signal7, typename type_trait<T_arg1>::take,typename type_trait<T_arg2>::take,typename type_trait<T_arg3>::take,typename type_trait<T_arg4>::take,typename type_trait<T_arg5>::take,typename type_trait<T_arg6>::take,typename type_trait<T_arg7>::take>(this, &signal7::emit); }

  /** Creates an STL-style interface for the signal's list of slots.
   * This interface supports iteration, insertion and removal of slots.
   * @return An STL-style interface for the signal's list of slots.
   */
  slot_list_type slots()
    { return slot_list_type(impl()); }

  /** Creates an STL-style interface for the signal's list of slots.
   * This interface supports iteration, insertion and removal of slots.
   * @return An STL-style interface for the signal's list of slots.
   */
  const slot_list_type slots() const
    { return slot_list_type(const_cast<signal7*>(this)->impl()); }

  signal7() {}

  signal7(const signal7& src)
    : signal_base(src) {}
};



/** Convenience wrapper for the numbered sigc::signal# templates.
 * signal can be used to connect() slots that are invoked
 * during subsequent calls to emit(). Any functor or slot
 * can be passed into connect(). It is converted into a slot
 * implicitly.
 *
 * If you want to connect one signal to another, use make_slot()
 * to retrieve a functor that emits the signal when invoked.
 *
 * Be careful if you directly pass one signal into the connect()
 * method of another: a shallow copy of the signal is made and
 * the signal's slots are not disconnected until both the signal
 * and its clone are destroyed which is probably not what you want!
 *
 * An STL-style list interface for the signal's list of slots
 * can be retrieved with slots(). This interface supports
 * iteration, insertion and removal of slots.
 *
 * The template arguments determine the function signature of
 * the emit() function:
 * - @e T_return The desired return type of the emit() function.
 * - @e T_arg1 Argument type used in the definition of emit(). The default @p nil means no argument.
 * - @e T_arg2 Argument type used in the definition of emit(). The default @p nil means no argument.
 * - @e T_arg3 Argument type used in the definition of emit(). The default @p nil means no argument.
 * - @e T_arg4 Argument type used in the definition of emit(). The default @p nil means no argument.
 * - @e T_arg5 Argument type used in the definition of emit(). The default @p nil means no argument.
 * - @e T_arg6 Argument type used in the definition of emit(). The default @p nil means no argument.
 * - @e T_arg7 Argument type used in the definition of emit(). The default @p nil means no argument.
 *
 * To specify an accumulator type the nested class signal::accumulated can be used.
 *
 * @par Example:
 *   @code
 *   void foo(int) {}
 *   sigc::signal<void, long> sig;
 *   sig.connect(sigc::ptr_fun(&foo));
 *   sig.emit(19);
 *   @endcode
 *
 * @ingroup signal
 */
template <class T_return, class T_arg1 = nil,class T_arg2 = nil,class T_arg3 = nil,class T_arg4 = nil,class T_arg5 = nil,class T_arg6 = nil,class T_arg7 = nil>
class signal 
  : public signal7<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6,T_arg7, nil>
{
public:
  /** Convenience wrapper for the numbered sigc::signal# templates.
   * Like sigc::signal but the additional template parameter @e T_accumulator
   * defines the accumulator type that should be used.
   *
   * An accumulator is a functor that uses a pair of special iterators
   * to step through a list of slots and calculate a return value
   * from the results of the slot invokations. The iterators' operator*()
   * executes the slot. The return value is buffered, so that in an expression
   * like @code a = (*i) * (*i); @endcode the slot is executed only once.
   * The accumulator must define its return value as @p result_type.
   * 
   * @par Example 1:
   *   This accumulator calculates the arithmetic mean value:
   *   @code
   *   struct arithmetic_mean_accumulator
   *   {
   *     typedef double result_type;
   *     template<typename T_iterator>
   *     result_type operator()(T_iterator first, T_iterator last) const
   *     {
   *       result_type value_ = 0;
   *       int n_ = 0;
   *       for (; first != last; ++first, ++n_)
   *         value_ += *first;
   *       return value_ / n_;
   *     }
   *   };
   *   @endcode
   *
   * @par Example 2:
   *   This accumulator stops signal emission when a slot returns zero:
   *   @code
   *   struct interruptable_accumulator
   *   {
   *     typedef bool result_type;
   *     template<typename T_iterator>
   *     result_type operator()(T_iterator first, T_iterator last) const
   *     {
   *       for (; first != last; ++first, ++n_)
   *         if (!*first) return false;
   *       return true;
   *     }
   *   };
   *   @endcode
   *
   * @ingroup signal
   */
  template <class T_accumulator>
  class accumulated
    : public signal7<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6,T_arg7, T_accumulator>
  {
  public:
    accumulated() {}
    accumulated(const accumulated& src)
      : signal7<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6,T_arg7, T_accumulator>(src) {}
  };

  signal() {}
  signal(const signal& src)
    : signal7<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6,T_arg7, nil>(src) {}
};



/** Convenience wrapper for the numbered sigc::signal0 template.
 * See the base class for useful methods.
 * This is the template specialization of the unnumbered sigc::signal
 * template for 0 argument(s).
 */
template <class T_return>
class signal <T_return, nil,nil,nil,nil,nil,nil,nil>
  : public signal0<T_return, nil>
{
public:

  /** Convenience wrapper for the numbered sigc::signal0 template.
   * Like sigc::signal but the additional template parameter @e T_accumulator
   * defines the accumulator type that should be used.
   */
  template <class T_accumulator>
  class accumulated
    : public signal0<T_return, T_accumulator>
  {
  public:
    accumulated() {}
    accumulated(const accumulated& src)
      : signal0<T_return, T_accumulator>(src) {}
  };

  signal() {}
  signal(const signal& src)
    : signal0<T_return, nil>(src) {}
};


/** Convenience wrapper for the numbered sigc::signal1 template.
 * See the base class for useful methods.
 * This is the template specialization of the unnumbered sigc::signal
 * template for 1 argument(s).
 */
template <class T_return, class T_arg1>
class signal <T_return, T_arg1, nil,nil,nil,nil,nil,nil>
  : public signal1<T_return, T_arg1, nil>
{
public:

  /** Convenience wrapper for the numbered sigc::signal1 template.
   * Like sigc::signal but the additional template parameter @e T_accumulator
   * defines the accumulator type that should be used.
   */
  template <class T_accumulator>
  class accumulated
    : public signal1<T_return, T_arg1, T_accumulator>
  {
  public:
    accumulated() {}
    accumulated(const accumulated& src)
      : signal1<T_return, T_arg1, T_accumulator>(src) {}
  };

  signal() {}
  signal(const signal& src)
    : signal1<T_return, T_arg1, nil>(src) {}
};


/** Convenience wrapper for the numbered sigc::signal2 template.
 * See the base class for useful methods.
 * This is the template specialization of the unnumbered sigc::signal
 * template for 2 argument(s).
 */
template <class T_return, class T_arg1,class T_arg2>
class signal <T_return, T_arg1,T_arg2, nil,nil,nil,nil,nil>
  : public signal2<T_return, T_arg1,T_arg2, nil>
{
public:

  /** Convenience wrapper for the numbered sigc::signal2 template.
   * Like sigc::signal but the additional template parameter @e T_accumulator
   * defines the accumulator type that should be used.
   */
  template <class T_accumulator>
  class accumulated
    : public signal2<T_return, T_arg1,T_arg2, T_accumulator>
  {
  public:
    accumulated() {}
    accumulated(const accumulated& src)
      : signal2<T_return, T_arg1,T_arg2, T_accumulator>(src) {}
  };

  signal() {}
  signal(const signal& src)
    : signal2<T_return, T_arg1,T_arg2, nil>(src) {}
};


/** Convenience wrapper for the numbered sigc::signal3 template.
 * See the base class for useful methods.
 * This is the template specialization of the unnumbered sigc::signal
 * template for 3 argument(s).
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3>
class signal <T_return, T_arg1,T_arg2,T_arg3, nil,nil,nil,nil>
  : public signal3<T_return, T_arg1,T_arg2,T_arg3, nil>
{
public:

  /** Convenience wrapper for the numbered sigc::signal3 template.
   * Like sigc::signal but the additional template parameter @e T_accumulator
   * defines the accumulator type that should be used.
   */
  template <class T_accumulator>
  class accumulated
    : public signal3<T_return, T_arg1,T_arg2,T_arg3, T_accumulator>
  {
  public:
    accumulated() {}
    accumulated(const accumulated& src)
      : signal3<T_return, T_arg1,T_arg2,T_arg3, T_accumulator>(src) {}
  };

  signal() {}
  signal(const signal& src)
    : signal3<T_return, T_arg1,T_arg2,T_arg3, nil>(src) {}
};


/** Convenience wrapper for the numbered sigc::signal4 template.
 * See the base class for useful methods.
 * This is the template specialization of the unnumbered sigc::signal
 * template for 4 argument(s).
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3,class T_arg4>
class signal <T_return, T_arg1,T_arg2,T_arg3,T_arg4, nil,nil,nil>
  : public signal4<T_return, T_arg1,T_arg2,T_arg3,T_arg4, nil>
{
public:

  /** Convenience wrapper for the numbered sigc::signal4 template.
   * Like sigc::signal but the additional template parameter @e T_accumulator
   * defines the accumulator type that should be used.
   */
  template <class T_accumulator>
  class accumulated
    : public signal4<T_return, T_arg1,T_arg2,T_arg3,T_arg4, T_accumulator>
  {
  public:
    accumulated() {}
    accumulated(const accumulated& src)
      : signal4<T_return, T_arg1,T_arg2,T_arg3,T_arg4, T_accumulator>(src) {}
  };

  signal() {}
  signal(const signal& src)
    : signal4<T_return, T_arg1,T_arg2,T_arg3,T_arg4, nil>(src) {}
};


/** Convenience wrapper for the numbered sigc::signal5 template.
 * See the base class for useful methods.
 * This is the template specialization of the unnumbered sigc::signal
 * template for 5 argument(s).
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3,class T_arg4,class T_arg5>
class signal <T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5, nil,nil>
  : public signal5<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5, nil>
{
public:

  /** Convenience wrapper for the numbered sigc::signal5 template.
   * Like sigc::signal but the additional template parameter @e T_accumulator
   * defines the accumulator type that should be used.
   */
  template <class T_accumulator>
  class accumulated
    : public signal5<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5, T_accumulator>
  {
  public:
    accumulated() {}
    accumulated(const accumulated& src)
      : signal5<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5, T_accumulator>(src) {}
  };

  signal() {}
  signal(const signal& src)
    : signal5<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5, nil>(src) {}
};


/** Convenience wrapper for the numbered sigc::signal6 template.
 * See the base class for useful methods.
 * This is the template specialization of the unnumbered sigc::signal
 * template for 6 argument(s).
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3,class T_arg4,class T_arg5,class T_arg6>
class signal <T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6, nil>
  : public signal6<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6, nil>
{
public:

  /** Convenience wrapper for the numbered sigc::signal6 template.
   * Like sigc::signal but the additional template parameter @e T_accumulator
   * defines the accumulator type that should be used.
   */
  template <class T_accumulator>
  class accumulated
    : public signal6<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6, T_accumulator>
  {
  public:
    accumulated() {}
    accumulated(const accumulated& src)
      : signal6<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6, T_accumulator>(src) {}
  };

  signal() {}
  signal(const signal& src)
    : signal6<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6, nil>(src) {}
};



} /* namespace sigc */


#ifndef LIBSIGC_DISABLE_DEPRECATED

namespace SigC {

// SignalN
/** Signal declaration.
 * Signal0 can be used to connect() slots that are invoked
 * during subsequent calls to emit(). Any functor or slot
 * can be passed into connect(). It is converted into a slot
 * implicitely.
 *
 * If you want to connect one signal to another, use slot()
 * to retrieve a functor that emits the signal when invoked.
 *
 * Be careful if you directly pass one signal into the connect()
 * method of another: a shallow copy of the signal is made and
 * the signal's slots are not disconnected until both the signal
 * and its clone are destroyed which is probably not what you want!
 *
 * An STL-style list interface for the signal's list of slots
 * can be retrieved with slots(). This interface supports
 * iteration, insertion and removal of slots.
 *
 * The following template arguments are used:
 * - @e T_return The desired return type for the emit() function (may be overridden by the accumulator).
 * - @e T_accumulator The accumulator type used for emission. The default @p nil means that no accumulator should be used. Signal emission returns the return value of the last slot invoked.
 *
 * @deprecated Use the unnumbered template sigc::signal instead.
 * @ingroup compat
 */
template <class T_return, class T_accumulator=::sigc::nil>
class Signal0
  : public ::sigc::signal0<T_return, T_accumulator>
{
public:
  typedef ::sigc::signal0<T_return, T_accumulator> parent_type;
  typedef typename parent_type::result_type result_type;
  typedef typename parent_type::slot_type slot_type;

  Signal0() {}
  Signal0(const Signal0& src)
    : ::sigc::signal0<T_return, T_accumulator>(src) {}

  /** Creates a functor that calls emit() on this signal.
   * @code
   * sigc::mem_fun(mysignal, &sigc::signal0::emit)
   * @endcode
   * yields the same result.
   * @return A functor that calls emit() on this signal.
   */
  slot_type slot() const
    { return ::sigc::bound_const_mem_functor0<result_type, parent_type>(this, &parent_type::emit); }
};

/** Signal declaration.
 * Signal1 can be used to connect() slots that are invoked
 * during subsequent calls to emit(). Any functor or slot
 * can be passed into connect(). It is converted into a slot
 * implicitely.
 *
 * If you want to connect one signal to another, use slot()
 * to retrieve a functor that emits the signal when invoked.
 *
 * Be careful if you directly pass one signal into the connect()
 * method of another: a shallow copy of the signal is made and
 * the signal's slots are not disconnected until both the signal
 * and its clone are destroyed which is probably not what you want!
 *
 * An STL-style list interface for the signal's list of slots
 * can be retrieved with slots(). This interface supports
 * iteration, insertion and removal of slots.
 *
 * The following template arguments are used:
 * - @e T_return The desired return type for the emit() function (may be overridden by the accumulator).
 * - @e T_arg1 Argument type used in the definition of emit().
 * - @e T_accumulator The accumulator type used for emission. The default @p nil means that no accumulator should be used. Signal emission returns the return value of the last slot invoked.
 *
 * @deprecated Use the unnumbered template sigc::signal instead.
 * @ingroup compat
 */
template <class T_return, class T_arg1, class T_accumulator=::sigc::nil>
class Signal1
  : public ::sigc::signal1<T_return, T_arg1, T_accumulator>
{
public:
  typedef ::sigc::signal1<T_return, T_arg1, T_accumulator> parent_type;
  typedef typename parent_type::result_type result_type;
  typedef typename parent_type::slot_type slot_type;

  Signal1() {}
  Signal1(const Signal1& src)
    : ::sigc::signal1<T_return, T_arg1, T_accumulator>(src) {}

  /** Creates a functor that calls emit() on this signal.
   * @code
   * sigc::mem_fun(mysignal, &sigc::signal1::emit)
   * @endcode
   * yields the same result.
   * @return A functor that calls emit() on this signal.
   */
  slot_type slot() const
    { return ::sigc::bound_const_mem_functor1<result_type, parent_type, typename ::sigc::type_trait<T_arg1>::take>(this, &parent_type::emit); }
};

/** Signal declaration.
 * Signal2 can be used to connect() slots that are invoked
 * during subsequent calls to emit(). Any functor or slot
 * can be passed into connect(). It is converted into a slot
 * implicitely.
 *
 * If you want to connect one signal to another, use slot()
 * to retrieve a functor that emits the signal when invoked.
 *
 * Be careful if you directly pass one signal into the connect()
 * method of another: a shallow copy of the signal is made and
 * the signal's slots are not disconnected until both the signal
 * and its clone are destroyed which is probably not what you want!
 *
 * An STL-style list interface for the signal's list of slots
 * can be retrieved with slots(). This interface supports
 * iteration, insertion and removal of slots.
 *
 * The following template arguments are used:
 * - @e T_return The desired return type for the emit() function (may be overridden by the accumulator).
 * - @e T_arg1 Argument type used in the definition of emit().
 * - @e T_arg2 Argument type used in the definition of emit().
 * - @e T_accumulator The accumulator type used for emission. The default @p nil means that no accumulator should be used. Signal emission returns the return value of the last slot invoked.
 *
 * @deprecated Use the unnumbered template sigc::signal instead.
 * @ingroup compat
 */
template <class T_return, class T_arg1,class T_arg2, class T_accumulator=::sigc::nil>
class Signal2
  : public ::sigc::signal2<T_return, T_arg1,T_arg2, T_accumulator>
{
public:
  typedef ::sigc::signal2<T_return, T_arg1,T_arg2, T_accumulator> parent_type;
  typedef typename parent_type::result_type result_type;
  typedef typename parent_type::slot_type slot_type;

  Signal2() {}
  Signal2(const Signal2& src)
    : ::sigc::signal2<T_return, T_arg1,T_arg2, T_accumulator>(src) {}

  /** Creates a functor that calls emit() on this signal.
   * @code
   * sigc::mem_fun(mysignal, &sigc::signal2::emit)
   * @endcode
   * yields the same result.
   * @return A functor that calls emit() on this signal.
   */
  slot_type slot() const
    { return ::sigc::bound_const_mem_functor2<result_type, parent_type, typename ::sigc::type_trait<T_arg1>::take,typename ::sigc::type_trait<T_arg2>::take>(this, &parent_type::emit); }
};

/** Signal declaration.
 * Signal3 can be used to connect() slots that are invoked
 * during subsequent calls to emit(). Any functor or slot
 * can be passed into connect(). It is converted into a slot
 * implicitely.
 *
 * If you want to connect one signal to another, use slot()
 * to retrieve a functor that emits the signal when invoked.
 *
 * Be careful if you directly pass one signal into the connect()
 * method of another: a shallow copy of the signal is made and
 * the signal's slots are not disconnected until both the signal
 * and its clone are destroyed which is probably not what you want!
 *
 * An STL-style list interface for the signal's list of slots
 * can be retrieved with slots(). This interface supports
 * iteration, insertion and removal of slots.
 *
 * The following template arguments are used:
 * - @e T_return The desired return type for the emit() function (may be overridden by the accumulator).
 * - @e T_arg1 Argument type used in the definition of emit().
 * - @e T_arg2 Argument type used in the definition of emit().
 * - @e T_arg3 Argument type used in the definition of emit().
 * - @e T_accumulator The accumulator type used for emission. The default @p nil means that no accumulator should be used. Signal emission returns the return value of the last slot invoked.
 *
 * @deprecated Use the unnumbered template sigc::signal instead.
 * @ingroup compat
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3, class T_accumulator=::sigc::nil>
class Signal3
  : public ::sigc::signal3<T_return, T_arg1,T_arg2,T_arg3, T_accumulator>
{
public:
  typedef ::sigc::signal3<T_return, T_arg1,T_arg2,T_arg3, T_accumulator> parent_type;
  typedef typename parent_type::result_type result_type;
  typedef typename parent_type::slot_type slot_type;

  Signal3() {}
  Signal3(const Signal3& src)
    : ::sigc::signal3<T_return, T_arg1,T_arg2,T_arg3, T_accumulator>(src) {}

  /** Creates a functor that calls emit() on this signal.
   * @code
   * sigc::mem_fun(mysignal, &sigc::signal3::emit)
   * @endcode
   * yields the same result.
   * @return A functor that calls emit() on this signal.
   */
  slot_type slot() const
    { return ::sigc::bound_const_mem_functor3<result_type, parent_type, typename ::sigc::type_trait<T_arg1>::take,typename ::sigc::type_trait<T_arg2>::take,typename ::sigc::type_trait<T_arg3>::take>(this, &parent_type::emit); }
};

/** Signal declaration.
 * Signal4 can be used to connect() slots that are invoked
 * during subsequent calls to emit(). Any functor or slot
 * can be passed into connect(). It is converted into a slot
 * implicitely.
 *
 * If you want to connect one signal to another, use slot()
 * to retrieve a functor that emits the signal when invoked.
 *
 * Be careful if you directly pass one signal into the connect()
 * method of another: a shallow copy of the signal is made and
 * the signal's slots are not disconnected until both the signal
 * and its clone are destroyed which is probably not what you want!
 *
 * An STL-style list interface for the signal's list of slots
 * can be retrieved with slots(). This interface supports
 * iteration, insertion and removal of slots.
 *
 * The following template arguments are used:
 * - @e T_return The desired return type for the emit() function (may be overridden by the accumulator).
 * - @e T_arg1 Argument type used in the definition of emit().
 * - @e T_arg2 Argument type used in the definition of emit().
 * - @e T_arg3 Argument type used in the definition of emit().
 * - @e T_arg4 Argument type used in the definition of emit().
 * - @e T_accumulator The accumulator type used for emission. The default @p nil means that no accumulator should be used. Signal emission returns the return value of the last slot invoked.
 *
 * @deprecated Use the unnumbered template sigc::signal instead.
 * @ingroup compat
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3,class T_arg4, class T_accumulator=::sigc::nil>
class Signal4
  : public ::sigc::signal4<T_return, T_arg1,T_arg2,T_arg3,T_arg4, T_accumulator>
{
public:
  typedef ::sigc::signal4<T_return, T_arg1,T_arg2,T_arg3,T_arg4, T_accumulator> parent_type;
  typedef typename parent_type::result_type result_type;
  typedef typename parent_type::slot_type slot_type;

  Signal4() {}
  Signal4(const Signal4& src)
    : ::sigc::signal4<T_return, T_arg1,T_arg2,T_arg3,T_arg4, T_accumulator>(src) {}

  /** Creates a functor that calls emit() on this signal.
   * @code
   * sigc::mem_fun(mysignal, &sigc::signal4::emit)
   * @endcode
   * yields the same result.
   * @return A functor that calls emit() on this signal.
   */
  slot_type slot() const
    { return ::sigc::bound_const_mem_functor4<result_type, parent_type, typename ::sigc::type_trait<T_arg1>::take,typename ::sigc::type_trait<T_arg2>::take,typename ::sigc::type_trait<T_arg3>::take,typename ::sigc::type_trait<T_arg4>::take>(this, &parent_type::emit); }
};

/** Signal declaration.
 * Signal5 can be used to connect() slots that are invoked
 * during subsequent calls to emit(). Any functor or slot
 * can be passed into connect(). It is converted into a slot
 * implicitely.
 *
 * If you want to connect one signal to another, use slot()
 * to retrieve a functor that emits the signal when invoked.
 *
 * Be careful if you directly pass one signal into the connect()
 * method of another: a shallow copy of the signal is made and
 * the signal's slots are not disconnected until both the signal
 * and its clone are destroyed which is probably not what you want!
 *
 * An STL-style list interface for the signal's list of slots
 * can be retrieved with slots(). This interface supports
 * iteration, insertion and removal of slots.
 *
 * The following template arguments are used:
 * - @e T_return The desired return type for the emit() function (may be overridden by the accumulator).
 * - @e T_arg1 Argument type used in the definition of emit().
 * - @e T_arg2 Argument type used in the definition of emit().
 * - @e T_arg3 Argument type used in the definition of emit().
 * - @e T_arg4 Argument type used in the definition of emit().
 * - @e T_arg5 Argument type used in the definition of emit().
 * - @e T_accumulator The accumulator type used for emission. The default @p nil means that no accumulator should be used. Signal emission returns the return value of the last slot invoked.
 *
 * @deprecated Use the unnumbered template sigc::signal instead.
 * @ingroup compat
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3,class T_arg4,class T_arg5, class T_accumulator=::sigc::nil>
class Signal5
  : public ::sigc::signal5<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5, T_accumulator>
{
public:
  typedef ::sigc::signal5<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5, T_accumulator> parent_type;
  typedef typename parent_type::result_type result_type;
  typedef typename parent_type::slot_type slot_type;

  Signal5() {}
  Signal5(const Signal5& src)
    : ::sigc::signal5<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5, T_accumulator>(src) {}

  /** Creates a functor that calls emit() on this signal.
   * @code
   * sigc::mem_fun(mysignal, &sigc::signal5::emit)
   * @endcode
   * yields the same result.
   * @return A functor that calls emit() on this signal.
   */
  slot_type slot() const
    { return ::sigc::bound_const_mem_functor5<result_type, parent_type, typename ::sigc::type_trait<T_arg1>::take,typename ::sigc::type_trait<T_arg2>::take,typename ::sigc::type_trait<T_arg3>::take,typename ::sigc::type_trait<T_arg4>::take,typename ::sigc::type_trait<T_arg5>::take>(this, &parent_type::emit); }
};

/** Signal declaration.
 * Signal6 can be used to connect() slots that are invoked
 * during subsequent calls to emit(). Any functor or slot
 * can be passed into connect(). It is converted into a slot
 * implicitely.
 *
 * If you want to connect one signal to another, use slot()
 * to retrieve a functor that emits the signal when invoked.
 *
 * Be careful if you directly pass one signal into the connect()
 * method of another: a shallow copy of the signal is made and
 * the signal's slots are not disconnected until both the signal
 * and its clone are destroyed which is probably not what you want!
 *
 * An STL-style list interface for the signal's list of slots
 * can be retrieved with slots(). This interface supports
 * iteration, insertion and removal of slots.
 *
 * The following template arguments are used:
 * - @e T_return The desired return type for the emit() function (may be overridden by the accumulator).
 * - @e T_arg1 Argument type used in the definition of emit().
 * - @e T_arg2 Argument type used in the definition of emit().
 * - @e T_arg3 Argument type used in the definition of emit().
 * - @e T_arg4 Argument type used in the definition of emit().
 * - @e T_arg5 Argument type used in the definition of emit().
 * - @e T_arg6 Argument type used in the definition of emit().
 * - @e T_accumulator The accumulator type used for emission. The default @p nil means that no accumulator should be used. Signal emission returns the return value of the last slot invoked.
 *
 * @deprecated Use the unnumbered template sigc::signal instead.
 * @ingroup compat
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3,class T_arg4,class T_arg5,class T_arg6, class T_accumulator=::sigc::nil>
class Signal6
  : public ::sigc::signal6<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6, T_accumulator>
{
public:
  typedef ::sigc::signal6<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6, T_accumulator> parent_type;
  typedef typename parent_type::result_type result_type;
  typedef typename parent_type::slot_type slot_type;

  Signal6() {}
  Signal6(const Signal6& src)
    : ::sigc::signal6<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6, T_accumulator>(src) {}

  /** Creates a functor that calls emit() on this signal.
   * @code
   * sigc::mem_fun(mysignal, &sigc::signal6::emit)
   * @endcode
   * yields the same result.
   * @return A functor that calls emit() on this signal.
   */
  slot_type slot() const
    { return ::sigc::bound_const_mem_functor6<result_type, parent_type, typename ::sigc::type_trait<T_arg1>::take,typename ::sigc::type_trait<T_arg2>::take,typename ::sigc::type_trait<T_arg3>::take,typename ::sigc::type_trait<T_arg4>::take,typename ::sigc::type_trait<T_arg5>::take,typename ::sigc::type_trait<T_arg6>::take>(this, &parent_type::emit); }
};

/** Signal declaration.
 * Signal7 can be used to connect() slots that are invoked
 * during subsequent calls to emit(). Any functor or slot
 * can be passed into connect(). It is converted into a slot
 * implicitely.
 *
 * If you want to connect one signal to another, use slot()
 * to retrieve a functor that emits the signal when invoked.
 *
 * Be careful if you directly pass one signal into the connect()
 * method of another: a shallow copy of the signal is made and
 * the signal's slots are not disconnected until both the signal
 * and its clone are destroyed which is probably not what you want!
 *
 * An STL-style list interface for the signal's list of slots
 * can be retrieved with slots(). This interface supports
 * iteration, insertion and removal of slots.
 *
 * The following template arguments are used:
 * - @e T_return The desired return type for the emit() function (may be overridden by the accumulator).
 * - @e T_arg1 Argument type used in the definition of emit().
 * - @e T_arg2 Argument type used in the definition of emit().
 * - @e T_arg3 Argument type used in the definition of emit().
 * - @e T_arg4 Argument type used in the definition of emit().
 * - @e T_arg5 Argument type used in the definition of emit().
 * - @e T_arg6 Argument type used in the definition of emit().
 * - @e T_arg7 Argument type used in the definition of emit().
 * - @e T_accumulator The accumulator type used for emission. The default @p nil means that no accumulator should be used. Signal emission returns the return value of the last slot invoked.
 *
 * @deprecated Use the unnumbered template sigc::signal instead.
 * @ingroup compat
 */
template <class T_return, class T_arg1,class T_arg2,class T_arg3,class T_arg4,class T_arg5,class T_arg6,class T_arg7, class T_accumulator=::sigc::nil>
class Signal7
  : public ::sigc::signal7<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6,T_arg7, T_accumulator>
{
public:
  typedef ::sigc::signal7<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6,T_arg7, T_accumulator> parent_type;
  typedef typename parent_type::result_type result_type;
  typedef typename parent_type::slot_type slot_type;

  Signal7() {}
  Signal7(const Signal7& src)
    : ::sigc::signal7<T_return, T_arg1,T_arg2,T_arg3,T_arg4,T_arg5,T_arg6,T_arg7, T_accumulator>(src) {}

  /** Creates a functor that calls emit() on this signal.
   * @code
   * sigc::mem_fun(mysignal, &sigc::signal7::emit)
   * @endcode
   * yields the same result.
   * @return A functor that calls emit() on this signal.
   */
  slot_type slot() const
    { return ::sigc::bound_const_mem_functor7<result_type, parent_type, typename ::sigc::type_trait<T_arg1>::take,typename ::sigc::type_trait<T_arg2>::take,typename ::sigc::type_trait<T_arg3>::take,typename ::sigc::type_trait<T_arg4>::take,typename ::sigc::type_trait<T_arg5>::take,typename ::sigc::type_trait<T_arg6>::take,typename ::sigc::type_trait<T_arg7>::take>(this, &parent_type::emit); }
};


}

#endif /* LIBSIGC_DISABLE_DEPRECATED */

#endif /* _SIGC_SIGNAL_H_ */


[Date Prev][Date Next]   [Thread Prev][Thread Next]   [Thread Index] [Date Index] [Author Index]