[gtk/wip/otte/bitset: 17/28] Add amalgamated roaring bitmaps source code



commit eab0e32deafe0696451316b3cb0282249d62d80c
Author: Benjamin Otte <otte redhat com>
Date:   Wed Jun 10 07:39:25 2020 +0200

    Add amalgamated roaring bitmaps source code
    
    Taken from https://github.com/RoaringBitmap/CRoaring and fixed to
    not spew warnings.

 gtk/roaring.c | 11456 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 gtk/roaring.h |  7249 +++++++++++++++++++++++++++++++++++
 2 files changed, 18705 insertions(+)
---
diff --git a/gtk/roaring.c b/gtk/roaring.c
new file mode 100644
index 0000000000..6d0eb131f4
--- /dev/null
+++ b/gtk/roaring.c
@@ -0,0 +1,11456 @@
+/* auto-generated on Wed 10 Jun 2020 03:33:35 PM CEST. Do not edit! */
+#include "roaring.h"
+
+/* used for http://dmalloc.com/ Dmalloc - Debug Malloc Library */
+#ifdef DMALLOC
+#include "dmalloc.h"
+#endif
+
+/* begin file src/array_util.c */
+#include <assert.h>
+#include <stdbool.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+
+#ifdef USESSE4
+// used by intersect_vector16
+ALIGNED(0x1000)
+static const uint8_t shuffle_mask16[] = {
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6,    7,    0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    6,    7,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,    0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    6,    7,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    4,    5,    6,    7,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    6,    7,    0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,
+    6,    7,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    6,    7,    0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 8,    9,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    8,    9,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    8,    9,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    8,    9,    0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    8,    9,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    4,    5,    8,    9,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,    8,    9,    0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    4,    5,    8,    9,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    6,    7,    8,    9,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    6,    7,    8,    9,    0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,
+    8,    9,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    6,    7,    8,    9,    0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    6,    7,    8,    9,    0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    6,    7,    8,    9,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    6,    7,    8,    9,    0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    6,    7,
+    8,    9,    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 10,   11,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    4,    5,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    10,   11,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,
+    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 6,    7,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    6,    7,
+    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    6,    7,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    6,    7,    10,   11,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    6,    7,
+    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    4,    5,    6,    7,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,    6,    7,    10,   11,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    4,    5,    6,    7,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    8,    9,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    8,    9,    10,   11,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    8,    9,
+    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    8,    9,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    8,    9,    10,   11,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    8,    9,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    8,    9,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    8,    9,
+    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6,    7,    8,    9,
+    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    6,    7,    8,    9,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,    8,    9,    10,   11,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    6,    7,    8,    9,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    4,    5,    6,    7,    8,    9,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    6,    7,    8,    9,
+    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,
+    6,    7,    8,    9,    10,   11,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    6,    7,    8,    9,    10,   11,
+    0xFF, 0xFF, 0xFF, 0xFF, 12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    12,   13,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    12,   13,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    4,    5,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,    12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    4,    5,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    6,    7,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    6,    7,    12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    6,    7,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    6,    7,    12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    6,    7,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    6,    7,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    6,    7,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 8,    9,    12,   13,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    8,    9,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    8,    9,    12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    8,    9,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    4,    5,    8,    9,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    8,    9,    12,   13,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,
+    8,    9,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    8,    9,    12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 6,    7,    8,    9,    12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    6,    7,
+    8,    9,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    6,    7,    8,    9,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    6,    7,    8,    9,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    6,    7,
+    8,    9,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    4,    5,    6,    7,    8,    9,    12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,    6,    7,    8,    9,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    4,    5,    6,    7,    8,    9,    12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    10,   11,   12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    10,   11,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    10,   11,   12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    10,   11,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6,    7,    10,   11,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    6,    7,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,    10,   11,   12,   13,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    6,    7,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    4,    5,    6,    7,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    6,    7,    10,   11,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,
+    6,    7,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    6,    7,    10,   11,   12,   13,
+    0xFF, 0xFF, 0xFF, 0xFF, 8,    9,    10,   11,   12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    8,    9,
+    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    8,    9,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    8,    9,    10,   11,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    8,    9,
+    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    4,    5,    8,    9,    10,   11,   12,   13,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,    8,    9,    10,   11,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    4,    5,    8,    9,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    6,    7,    8,    9,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    6,    7,    8,    9,    10,   11,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,
+    8,    9,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    6,    7,    8,    9,    10,   11,   12,   13,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    6,    7,    8,    9,    10,   11,
+    12,   13,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    6,    7,    8,    9,    10,   11,   12,   13,   0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    6,    7,    8,    9,    10,   11,   12,   13,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    6,    7,
+    8,    9,    10,   11,   12,   13,   0xFF, 0xFF, 14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    4,    5,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 6,    7,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    6,    7,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    6,    7,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    6,    7,    14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    6,    7,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    4,    5,    6,    7,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,    6,    7,    14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    4,    5,    6,    7,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    8,    9,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    8,    9,    14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    8,    9,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    8,    9,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    8,    9,    14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    8,    9,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    8,    9,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    8,    9,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6,    7,    8,    9,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    6,    7,    8,    9,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,    8,    9,    14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    6,    7,    8,    9,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    4,    5,    6,    7,    8,    9,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    6,    7,    8,    9,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,
+    6,    7,    8,    9,    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    6,    7,    8,    9,    14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    10,   11,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    10,   11,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    10,   11,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    4,    5,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,    10,   11,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    4,    5,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    6,    7,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    6,    7,    10,   11,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,
+    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    6,    7,    10,   11,   14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    6,    7,    10,   11,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    6,    7,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    6,    7,    10,   11,   14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    6,    7,
+    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 8,    9,    10,   11,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    8,    9,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    8,    9,    10,   11,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    8,    9,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    4,    5,    8,    9,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    8,    9,    10,   11,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,
+    8,    9,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    8,    9,    10,   11,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 6,    7,    8,    9,    10,   11,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    6,    7,
+    8,    9,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    6,    7,    8,    9,    10,   11,   14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    6,    7,    8,    9,
+    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    6,    7,
+    8,    9,    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    4,    5,    6,    7,    8,    9,    10,   11,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,    6,    7,    8,    9,
+    10,   11,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    4,    5,    6,    7,    8,    9,    10,   11,   14,   15,   0xFF, 0xFF,
+    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    12,   13,   14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    12,   13,   14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6,    7,    12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    6,    7,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,    12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    6,    7,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    4,    5,    6,    7,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    6,    7,    12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,
+    6,    7,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    6,    7,    12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 8,    9,    12,   13,   14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    8,    9,
+    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    8,    9,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    8,    9,    12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    8,    9,
+    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    4,    5,    8,    9,    12,   13,   14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,    8,    9,    12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    4,    5,    8,    9,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    6,    7,    8,    9,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    6,    7,    8,    9,    12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,
+    8,    9,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    6,    7,    8,    9,    12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    6,    7,    8,    9,    12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    6,    7,    8,    9,    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    6,    7,    8,    9,    12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    6,    7,
+    8,    9,    12,   13,   14,   15,   0xFF, 0xFF, 10,   11,   12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    10,   11,   12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    4,    5,    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    10,   11,   12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,
+    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    10,   11,   12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 6,    7,    10,   11,   12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    6,    7,
+    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    6,    7,    10,   11,   12,   13,   14,   15,   0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    6,    7,    10,   11,
+    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    6,    7,
+    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    4,    5,    6,    7,    10,   11,   12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    4,    5,    6,    7,    10,   11,
+    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    4,    5,    6,    7,    10,   11,   12,   13,   14,   15,   0xFF, 0xFF,
+    8,    9,    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    8,    9,    10,   11,   12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    8,    9,
+    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    2,    3,    8,    9,    10,   11,   12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 4,    5,    8,    9,    10,   11,   12,   13,
+    14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,
+    8,    9,    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF,
+    2,    3,    4,    5,    8,    9,    10,   11,   12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,    4,    5,    8,    9,
+    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 6,    7,    8,    9,
+    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0,    1,    6,    7,    8,    9,    10,   11,   12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 2,    3,    6,    7,    8,    9,    10,   11,
+    12,   13,   14,   15,   0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    2,    3,
+    6,    7,    8,    9,    10,   11,   12,   13,   14,   15,   0xFF, 0xFF,
+    4,    5,    6,    7,    8,    9,    10,   11,   12,   13,   14,   15,
+    0xFF, 0xFF, 0xFF, 0xFF, 0,    1,    4,    5,    6,    7,    8,    9,
+    10,   11,   12,   13,   14,   15,   0xFF, 0xFF, 2,    3,    4,    5,
+    6,    7,    8,    9,    10,   11,   12,   13,   14,   15,   0xFF, 0xFF,
+    0,    1,    2,    3,    4,    5,    6,    7,    8,    9,    10,   11,
+    12,   13,   14,   15};
+
+/**
+ * From Schlegel et al., Fast Sorted-Set Intersection using SIMD Instructions
+ * Optimized by D. Lemire on May 3rd 2013
+ */
+int32_t intersect_vector16(const uint16_t *__restrict__ A, size_t s_a,
+                           const uint16_t *__restrict__ B, size_t s_b,
+                           uint16_t *C) {
+    size_t count = 0;
+    size_t i_a = 0, i_b = 0;
+    const int vectorlength = sizeof(__m128i) / sizeof(uint16_t);
+    const size_t st_a = (s_a / vectorlength) * vectorlength;
+    const size_t st_b = (s_b / vectorlength) * vectorlength;
+    __m128i v_a, v_b;
+    if ((i_a < st_a) && (i_b < st_b)) {
+        v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+        v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+        while ((A[i_a] == 0) || (B[i_b] == 0)) {
+            const __m128i res_v = _mm_cmpestrm(
+                v_b, vectorlength, v_a, vectorlength,
+                _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
+            const int r = _mm_extract_epi32(res_v, 0);
+            __m128i sm16 = _mm_load_si128((const __m128i *)shuffle_mask16 + r);
+            __m128i p = _mm_shuffle_epi8(v_a, sm16);
+            _mm_storeu_si128((__m128i *)&C[count], p);  // can overflow
+            count += _mm_popcnt_u32(r);
+            const uint16_t a_max = A[i_a + vectorlength - 1];
+            const uint16_t b_max = B[i_b + vectorlength - 1];
+            if (a_max <= b_max) {
+                i_a += vectorlength;
+                if (i_a == st_a) break;
+                v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+            }
+            if (b_max <= a_max) {
+                i_b += vectorlength;
+                if (i_b == st_b) break;
+                v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+            }
+        }
+        if ((i_a < st_a) && (i_b < st_b))
+            while (true) {
+                const __m128i res_v = _mm_cmpistrm(
+                    v_b, v_a,
+                    _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
+                const int r = _mm_extract_epi32(res_v, 0);
+                __m128i sm16 =
+                    _mm_load_si128((const __m128i *)shuffle_mask16 + r);
+                __m128i p = _mm_shuffle_epi8(v_a, sm16);
+                _mm_storeu_si128((__m128i *)&C[count], p);  // can overflow
+                count += _mm_popcnt_u32(r);
+                const uint16_t a_max = A[i_a + vectorlength - 1];
+                const uint16_t b_max = B[i_b + vectorlength - 1];
+                if (a_max <= b_max) {
+                    i_a += vectorlength;
+                    if (i_a == st_a) break;
+                    v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+                }
+                if (b_max <= a_max) {
+                    i_b += vectorlength;
+                    if (i_b == st_b) break;
+                    v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+                }
+            }
+    }
+    // intersect the tail using scalar intersection
+    while (i_a < s_a && i_b < s_b) {
+        uint16_t a = A[i_a];
+        uint16_t b = B[i_b];
+        if (a < b) {
+            i_a++;
+        } else if (b < a) {
+            i_b++;
+        } else {
+            C[count] = a;  //==b;
+            count++;
+            i_a++;
+            i_b++;
+        }
+    }
+    return (int32_t)count;
+}
+
+int32_t intersect_vector16_cardinality(const uint16_t *__restrict__ A,
+                                       size_t s_a,
+                                       const uint16_t *__restrict__ B,
+                                       size_t s_b) {
+    size_t count = 0;
+    size_t i_a = 0, i_b = 0;
+    const int vectorlength = sizeof(__m128i) / sizeof(uint16_t);
+    const size_t st_a = (s_a / vectorlength) * vectorlength;
+    const size_t st_b = (s_b / vectorlength) * vectorlength;
+    __m128i v_a, v_b;
+    if ((i_a < st_a) && (i_b < st_b)) {
+        v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+        v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+        while ((A[i_a] == 0) || (B[i_b] == 0)) {
+            const __m128i res_v = _mm_cmpestrm(
+                v_b, vectorlength, v_a, vectorlength,
+                _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
+            const int r = _mm_extract_epi32(res_v, 0);
+            count += _mm_popcnt_u32(r);
+            const uint16_t a_max = A[i_a + vectorlength - 1];
+            const uint16_t b_max = B[i_b + vectorlength - 1];
+            if (a_max <= b_max) {
+                i_a += vectorlength;
+                if (i_a == st_a) break;
+                v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+            }
+            if (b_max <= a_max) {
+                i_b += vectorlength;
+                if (i_b == st_b) break;
+                v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+            }
+        }
+        if ((i_a < st_a) && (i_b < st_b))
+            while (true) {
+                const __m128i res_v = _mm_cmpistrm(
+                    v_b, v_a,
+                    _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
+                const int r = _mm_extract_epi32(res_v, 0);
+                count += _mm_popcnt_u32(r);
+                const uint16_t a_max = A[i_a + vectorlength - 1];
+                const uint16_t b_max = B[i_b + vectorlength - 1];
+                if (a_max <= b_max) {
+                    i_a += vectorlength;
+                    if (i_a == st_a) break;
+                    v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+                }
+                if (b_max <= a_max) {
+                    i_b += vectorlength;
+                    if (i_b == st_b) break;
+                    v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+                }
+            }
+    }
+    // intersect the tail using scalar intersection
+    while (i_a < s_a && i_b < s_b) {
+        uint16_t a = A[i_a];
+        uint16_t b = B[i_b];
+        if (a < b) {
+            i_a++;
+        } else if (b < a) {
+            i_b++;
+        } else {
+            count++;
+            i_a++;
+            i_b++;
+        }
+    }
+    return (int32_t)count;
+}
+
+/////////
+// Warning:
+// This function may not be safe if A == C or B == C.
+/////////
+int32_t difference_vector16(const uint16_t *__restrict__ A, size_t s_a,
+                            const uint16_t *__restrict__ B, size_t s_b,
+                            uint16_t *C) {
+    // we handle the degenerate case
+    if (s_a == 0) return 0;
+    if (s_b == 0) {
+        if (A != C) memcpy(C, A, sizeof(uint16_t) * s_a);
+        return (int32_t)s_a;
+    }
+    // handle the leading zeroes, it is messy but it allows us to use the fast
+    // _mm_cmpistrm instrinsic safely
+    int32_t count = 0;
+    if ((A[0] == 0) || (B[0] == 0)) {
+        if ((A[0] == 0) && (B[0] == 0)) {
+            A++;
+            s_a--;
+            B++;
+            s_b--;
+        } else if (A[0] == 0) {
+            C[count++] = 0;
+            A++;
+            s_a--;
+        } else {
+            B++;
+            s_b--;
+        }
+    }
+    // at this point, we have two non-empty arrays, made of non-zero
+    // increasing values.
+    size_t i_a = 0, i_b = 0;
+    const size_t vectorlength = sizeof(__m128i) / sizeof(uint16_t);
+    const size_t st_a = (s_a / vectorlength) * vectorlength;
+    const size_t st_b = (s_b / vectorlength) * vectorlength;
+    if ((i_a < st_a) && (i_b < st_b)) {  // this is the vectorized code path
+        __m128i v_a, v_b;                //, v_bmax;
+        // we load a vector from A and a vector from B
+        v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+        v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+        // we have a runningmask which indicates which values from A have been
+        // spotted in B, these don't get written out.
+        __m128i runningmask_a_found_in_b = _mm_setzero_si128();
+        /****
+        * start of the main vectorized loop
+        *****/
+        while (true) {
+            // afoundinb will contain a mask indicate for each entry in A
+            // whether it is seen
+            // in B
+            const __m128i a_found_in_b =
+                _mm_cmpistrm(v_b, v_a, _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY |
+                                           _SIDD_BIT_MASK);
+            runningmask_a_found_in_b =
+                _mm_or_si128(runningmask_a_found_in_b, a_found_in_b);
+            // we always compare the last values of A and B
+            const uint16_t a_max = A[i_a + vectorlength - 1];
+            const uint16_t b_max = B[i_b + vectorlength - 1];
+            if (a_max <= b_max) {
+                // Ok. In this code path, we are ready to write our v_a
+                // because there is no need to read more from B, they will
+                // all be large values.
+                const int bitmask_belongs_to_difference =
+                    _mm_extract_epi32(runningmask_a_found_in_b, 0) ^ 0xFF;
+                /*** next few lines are probably expensive *****/
+                __m128i sm16 = _mm_load_si128((const __m128i *)shuffle_mask16 +
+                                              bitmask_belongs_to_difference);
+                __m128i p = _mm_shuffle_epi8(v_a, sm16);
+                _mm_storeu_si128((__m128i *)&C[count], p);  // can overflow
+                count += _mm_popcnt_u32(bitmask_belongs_to_difference);
+                // we advance a
+                i_a += vectorlength;
+                if (i_a == st_a)  // no more
+                    break;
+                runningmask_a_found_in_b = _mm_setzero_si128();
+                v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
+            }
+            if (b_max <= a_max) {
+                // in this code path, the current v_b has become useless
+                i_b += vectorlength;
+                if (i_b == st_b) break;
+                v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
+            }
+        }
+        // at this point, either we have i_a == st_a, which is the end of the
+        // vectorized processing,
+        // or we have i_b == st_b,  and we are not done processing the vector...
+        // so we need to finish it off.
+        if (i_a < st_a) {        // we have unfinished business...
+            uint16_t buffer[8];  // buffer to do a masked load
+            memset(buffer, 0, 8 * sizeof(uint16_t));
+            memcpy(buffer, B + i_b, (s_b - i_b) * sizeof(uint16_t));
+            v_b = _mm_lddqu_si128((__m128i *)buffer);
+            const __m128i a_found_in_b =
+                _mm_cmpistrm(v_b, v_a, _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY |
+                                           _SIDD_BIT_MASK);
+            runningmask_a_found_in_b =
+                _mm_or_si128(runningmask_a_found_in_b, a_found_in_b);
+            const int bitmask_belongs_to_difference =
+                _mm_extract_epi32(runningmask_a_found_in_b, 0) ^ 0xFF;
+            __m128i sm16 = _mm_load_si128((const __m128i *)shuffle_mask16 +
+                                          bitmask_belongs_to_difference);
+            __m128i p = _mm_shuffle_epi8(v_a, sm16);
+            _mm_storeu_si128((__m128i *)&C[count], p);  // can overflow
+            count += _mm_popcnt_u32(bitmask_belongs_to_difference);
+            i_a += vectorlength;
+        }
+        // at this point we should have i_a == st_a and i_b == st_b
+    }
+    // do the tail using scalar code
+    while (i_a < s_a && i_b < s_b) {
+        uint16_t a = A[i_a];
+        uint16_t b = B[i_b];
+        if (b < a) {
+            i_b++;
+        } else if (a < b) {
+            C[count] = a;
+            count++;
+            i_a++;
+        } else {  //==
+            i_a++;
+            i_b++;
+        }
+    }
+    if (i_a < s_a) {
+        if(C == A) {
+          assert((size_t)count <= i_a);
+          if((size_t)count < i_a) {
+            memmove(C + count, A + i_a, sizeof(uint16_t) * (s_a - i_a));
+          }
+        } else {
+           for(size_t i = 0; i < (s_a - i_a); i++) {
+                C[count + i] = A[i + i_a];
+           }
+        }
+        count += (int32_t)(s_a - i_a);
+    }
+    return count;
+}
+
+#endif  // USESSE4
+
+
+
+#ifdef USE_OLD_SKEW_INTERSECT
+// TODO: given enough experience with the new skew intersect, drop the old one from the code base.
+
+
+/* Computes the intersection between one small and one large set of uint16_t.
+ * Stores the result into buffer and return the number of elements. */
+int32_t intersect_skewed_uint16(const uint16_t *small, size_t size_s,
+                                const uint16_t *large, size_t size_l,
+                                uint16_t *buffer) {
+    size_t pos = 0, idx_l = 0, idx_s = 0;
+
+    if (0 == size_s) {
+        return 0;
+    }
+
+    uint16_t val_l = large[idx_l], val_s = small[idx_s];
+
+    while (true) {
+        if (val_l < val_s) {
+            idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l, val_s);
+            if (idx_l == size_l) break;
+            val_l = large[idx_l];
+        } else if (val_s < val_l) {
+            idx_s++;
+            if (idx_s == size_s) break;
+            val_s = small[idx_s];
+        } else {
+            buffer[pos++] = val_s;
+            idx_s++;
+            if (idx_s == size_s) break;
+            val_s = small[idx_s];
+            idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l, val_s);
+            if (idx_l == size_l) break;
+            val_l = large[idx_l];
+        }
+    }
+
+    return (int32_t)pos;
+}
+#else // USE_OLD_SKEW_INTERSECT
+
+
+/**
+* Branchless binary search going after 4 values at once.
+* Assumes that array is sorted.
+* You have that array[*index1] >= target1, array[*index12] >= target2, ...
+* except when *index1 = n, in which case you know that all values in array are
+* smaller than target1, and so forth.
+* It has logarithmic complexity.
+*/
+static void binarySearch4(const uint16_t *array, int32_t n, uint16_t target1,
+                   uint16_t target2, uint16_t target3, uint16_t target4,
+                   int32_t *index1, int32_t *index2, int32_t *index3,
+                   int32_t *index4) {
+  const uint16_t *base1 = array;
+  const uint16_t *base2 = array;
+  const uint16_t *base3 = array;
+  const uint16_t *base4 = array;
+  if (n == 0)
+    return;
+  while (n > 1) {
+    int32_t half = n >> 1;
+    base1 = (base1[half] < target1) ? &base1[half] : base1;
+    base2 = (base2[half] < target2) ? &base2[half] : base2;
+    base3 = (base3[half] < target3) ? &base3[half] : base3;
+    base4 = (base4[half] < target4) ? &base4[half] : base4;
+    n -= half;
+  }
+  *index1 = (int32_t)((*base1 < target1) + base1 - array);
+  *index2 = (int32_t)((*base2 < target2) + base2 - array);
+  *index3 = (int32_t)((*base3 < target3) + base3 - array);
+  *index4 = (int32_t)((*base4 < target4) + base4 - array);
+}
+
+/**
+* Branchless binary search going after 2 values at once.
+* Assumes that array is sorted.
+* You have that array[*index1] >= target1, array[*index12] >= target2.
+* except when *index1 = n, in which case you know that all values in array are
+* smaller than target1, and so forth.
+* It has logarithmic complexity.
+*/
+static void binarySearch2(const uint16_t *array, int32_t n, uint16_t target1,
+                   uint16_t target2, int32_t *index1, int32_t *index2) {
+  const uint16_t *base1 = array;
+  const uint16_t *base2 = array;
+  if (n == 0)
+    return;
+  while (n > 1) {
+    int32_t half = n >> 1;
+    base1 = (base1[half] < target1) ? &base1[half] : base1;
+    base2 = (base2[half] < target2) ? &base2[half] : base2;
+    n -= half;
+  }
+  *index1 = (int32_t)((*base1 < target1) + base1 - array);
+  *index2 = (int32_t)((*base2 < target2) + base2 - array);
+}
+
+/* Computes the intersection between one small and one large set of uint16_t.
+ * Stores the result into buffer and return the number of elements.
+ * Processes the small set in blocks of 4 values calling binarySearch4
+ * and binarySearch2. This approach can be slightly superior to a conventional
+ * galloping search in some instances.
+ */
+int32_t intersect_skewed_uint16(const uint16_t *small, size_t size_s,
+                                         const uint16_t *large, size_t size_l,
+                                         uint16_t *buffer) {
+  size_t pos = 0, idx_l = 0, idx_s = 0;
+
+  if (0 == size_s) {
+    return 0;
+  }
+  int32_t index1 = 0, index2 = 0, index3 = 0, index4 = 0;
+  while ((idx_s + 4 <= size_s) && (idx_l < size_l)) {
+    uint16_t target1 = small[idx_s];
+    uint16_t target2 = small[idx_s + 1];
+    uint16_t target3 = small[idx_s + 2];
+    uint16_t target4 = small[idx_s + 3];
+    binarySearch4(large + idx_l, (int32_t)(size_l - idx_l), target1, target2, target3,
+                  target4, &index1, &index2, &index3, &index4);
+    if ((index1 + idx_l < size_l) && (large[idx_l + index1] == target1)) {
+      buffer[pos++] = target1;
+    }
+    if ((index2 + idx_l < size_l) && (large[idx_l + index2] == target2)) {
+      buffer[pos++] = target2;
+    }
+    if ((index3 + idx_l < size_l) && (large[idx_l + index3] == target3)) {
+      buffer[pos++] = target3;
+    }
+    if ((index4 + idx_l < size_l) && (large[idx_l + index4] == target4)) {
+      buffer[pos++] = target4;
+    }
+    idx_s += 4;
+    idx_l += index4;
+  }
+  if ((idx_s + 2 <= size_s) && (idx_l < size_l)) {
+    uint16_t target1 = small[idx_s];
+    uint16_t target2 = small[idx_s + 1];
+    binarySearch2(large + idx_l, (int32_t)(size_l - idx_l), target1, target2, &index1,
+                  &index2);
+    if ((index1 + idx_l < size_l) && (large[idx_l + index1] == target1)) {
+      buffer[pos++] = target1;
+    }
+    if ((index2 + idx_l < size_l) && (large[idx_l + index2] == target2)) {
+      buffer[pos++] = target2;
+    }
+    idx_s += 2;
+    idx_l += index2;
+  }
+  if ((idx_s < size_s) && (idx_l < size_l)) {
+    uint16_t val_s = small[idx_s];
+    int32_t index = binarySearch(large + idx_l, (int32_t)(size_l - idx_l), val_s);
+    if (index >= 0)
+      buffer[pos++] = val_s;
+  }
+  return (int32_t)pos;
+}
+
+
+#endif //USE_OLD_SKEW_INTERSECT
+
+
+// TODO: this could be accelerated, possibly, by using binarySearch4 as above.
+int32_t intersect_skewed_uint16_cardinality(const uint16_t *small,
+                                            size_t size_s,
+                                            const uint16_t *large,
+                                            size_t size_l) {
+    size_t pos = 0, idx_l = 0, idx_s = 0;
+
+    if (0 == size_s) {
+        return 0;
+    }
+
+    uint16_t val_l = large[idx_l], val_s = small[idx_s];
+
+    while (true) {
+        if (val_l < val_s) {
+            idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l, val_s);
+            if (idx_l == size_l) break;
+            val_l = large[idx_l];
+        } else if (val_s < val_l) {
+            idx_s++;
+            if (idx_s == size_s) break;
+            val_s = small[idx_s];
+        } else {
+            pos++;
+            idx_s++;
+            if (idx_s == size_s) break;
+            val_s = small[idx_s];
+            idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l, val_s);
+            if (idx_l == size_l) break;
+            val_l = large[idx_l];
+        }
+    }
+
+    return (int32_t)pos;
+}
+
+bool intersect_skewed_uint16_nonempty(const uint16_t *small, size_t size_s,
+                                const uint16_t *large, size_t size_l) {
+    size_t idx_l = 0, idx_s = 0;
+
+    if (0 == size_s) {
+        return false;
+    }
+
+    uint16_t val_l = large[idx_l], val_s = small[idx_s];
+
+    while (true) {
+        if (val_l < val_s) {
+            idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l, val_s);
+            if (idx_l == size_l) break;
+            val_l = large[idx_l];
+        } else if (val_s < val_l) {
+            idx_s++;
+            if (idx_s == size_s) break;
+            val_s = small[idx_s];
+        } else {
+            return true;
+        }
+    }
+
+    return false;
+}
+
+/**
+ * Generic intersection function.
+ */
+int32_t intersect_uint16(const uint16_t *A, const size_t lenA,
+                         const uint16_t *B, const size_t lenB, uint16_t *out) {
+    const uint16_t *initout = out;
+    if (lenA == 0 || lenB == 0) return 0;
+    const uint16_t *endA = A + lenA;
+    const uint16_t *endB = B + lenB;
+
+    while (1) {
+        while (*A < *B) {
+        SKIP_FIRST_COMPARE:
+            if (++A == endA) return (int32_t)(out - initout);
+        }
+        while (*A > *B) {
+            if (++B == endB) return (int32_t)(out - initout);
+        }
+        if (*A == *B) {
+            *out++ = *A;
+            if (++A == endA || ++B == endB) return (int32_t)(out - initout);
+        } else {
+            goto SKIP_FIRST_COMPARE;
+        }
+    }
+    return (int32_t)(out - initout);  // NOTREACHED
+}
+
+int32_t intersect_uint16_cardinality(const uint16_t *A, const size_t lenA,
+                                     const uint16_t *B, const size_t lenB) {
+    int32_t answer = 0;
+    if (lenA == 0 || lenB == 0) return 0;
+    const uint16_t *endA = A + lenA;
+    const uint16_t *endB = B + lenB;
+
+    while (1) {
+        while (*A < *B) {
+        SKIP_FIRST_COMPARE:
+            if (++A == endA) return answer;
+        }
+        while (*A > *B) {
+            if (++B == endB) return answer;
+        }
+        if (*A == *B) {
+            ++answer;
+            if (++A == endA || ++B == endB) return answer;
+        } else {
+            goto SKIP_FIRST_COMPARE;
+        }
+    }
+    return answer;  // NOTREACHED
+}
+
+
+bool intersect_uint16_nonempty(const uint16_t *A, const size_t lenA,
+                         const uint16_t *B, const size_t lenB) {
+    if (lenA == 0 || lenB == 0) return 0;
+    const uint16_t *endA = A + lenA;
+    const uint16_t *endB = B + lenB;
+
+    while (1) {
+        while (*A < *B) {
+        SKIP_FIRST_COMPARE:
+            if (++A == endA) return false;
+        }
+        while (*A > *B) {
+            if (++B == endB) return false;
+        }
+        if (*A == *B) {
+            return true;
+        } else {
+            goto SKIP_FIRST_COMPARE;
+        }
+    }
+    return false;  // NOTREACHED
+}
+
+
+
+/**
+ * Generic intersection function.
+ */
+size_t intersection_uint32(const uint32_t *A, const size_t lenA,
+                           const uint32_t *B, const size_t lenB,
+                           uint32_t *out) {
+    const uint32_t *initout = out;
+    if (lenA == 0 || lenB == 0) return 0;
+    const uint32_t *endA = A + lenA;
+    const uint32_t *endB = B + lenB;
+
+    while (1) {
+        while (*A < *B) {
+        SKIP_FIRST_COMPARE:
+            if (++A == endA) return (out - initout);
+        }
+        while (*A > *B) {
+            if (++B == endB) return (out - initout);
+        }
+        if (*A == *B) {
+            *out++ = *A;
+            if (++A == endA || ++B == endB) return (out - initout);
+        } else {
+            goto SKIP_FIRST_COMPARE;
+        }
+    }
+    return (out - initout);  // NOTREACHED
+}
+
+size_t intersection_uint32_card(const uint32_t *A, const size_t lenA,
+                                const uint32_t *B, const size_t lenB) {
+    if (lenA == 0 || lenB == 0) return 0;
+    size_t card = 0;
+    const uint32_t *endA = A + lenA;
+    const uint32_t *endB = B + lenB;
+
+    while (1) {
+        while (*A < *B) {
+        SKIP_FIRST_COMPARE:
+            if (++A == endA) return card;
+        }
+        while (*A > *B) {
+            if (++B == endB) return card;
+        }
+        if (*A == *B) {
+            card++;
+            if (++A == endA || ++B == endB) return card;
+        } else {
+            goto SKIP_FIRST_COMPARE;
+        }
+    }
+    return card;  // NOTREACHED
+}
+
+// can one vectorize the computation of the union? (Update: Yes! See
+// union_vector16).
+
+size_t union_uint16(const uint16_t *set_1, size_t size_1, const uint16_t *set_2,
+                    size_t size_2, uint16_t *buffer) {
+    size_t pos = 0, idx_1 = 0, idx_2 = 0;
+
+    if (0 == size_2) {
+        memmove(buffer, set_1, size_1 * sizeof(uint16_t));
+        return size_1;
+    }
+    if (0 == size_1) {
+        memmove(buffer, set_2, size_2 * sizeof(uint16_t));
+        return size_2;
+    }
+
+    uint16_t val_1 = set_1[idx_1], val_2 = set_2[idx_2];
+
+    while (true) {
+        if (val_1 < val_2) {
+            buffer[pos++] = val_1;
+            ++idx_1;
+            if (idx_1 >= size_1) break;
+            val_1 = set_1[idx_1];
+        } else if (val_2 < val_1) {
+            buffer[pos++] = val_2;
+            ++idx_2;
+            if (idx_2 >= size_2) break;
+            val_2 = set_2[idx_2];
+        } else {
+            buffer[pos++] = val_1;
+            ++idx_1;
+            ++idx_2;
+            if (idx_1 >= size_1 || idx_2 >= size_2) break;
+            val_1 = set_1[idx_1];
+            val_2 = set_2[idx_2];
+        }
+    }
+
+    if (idx_1 < size_1) {
+        const size_t n_elems = size_1 - idx_1;
+        memmove(buffer + pos, set_1 + idx_1, n_elems * sizeof(uint16_t));
+        pos += n_elems;
+    } else if (idx_2 < size_2) {
+        const size_t n_elems = size_2 - idx_2;
+        memmove(buffer + pos, set_2 + idx_2, n_elems * sizeof(uint16_t));
+        pos += n_elems;
+    }
+
+    return pos;
+}
+
+int difference_uint16(const uint16_t *a1, int length1, const uint16_t *a2,
+                      int length2, uint16_t *a_out) {
+    int out_card = 0;
+    int k1 = 0, k2 = 0;
+    if (length1 == 0) return 0;
+    if (length2 == 0) {
+        if (a1 != a_out) memcpy(a_out, a1, sizeof(uint16_t) * length1);
+        return length1;
+    }
+    uint16_t s1 = a1[k1];
+    uint16_t s2 = a2[k2];
+    while (true) {
+        if (s1 < s2) {
+            a_out[out_card++] = s1;
+            ++k1;
+            if (k1 >= length1) {
+                break;
+            }
+            s1 = a1[k1];
+        } else if (s1 == s2) {
+            ++k1;
+            ++k2;
+            if (k1 >= length1) {
+                break;
+            }
+            if (k2 >= length2) {
+                memmove(a_out + out_card, a1 + k1,
+                        sizeof(uint16_t) * (length1 - k1));
+                return out_card + length1 - k1;
+            }
+            s1 = a1[k1];
+            s2 = a2[k2];
+        } else {  // if (val1>val2)
+            ++k2;
+            if (k2 >= length2) {
+                memmove(a_out + out_card, a1 + k1,
+                        sizeof(uint16_t) * (length1 - k1));
+                return out_card + length1 - k1;
+            }
+            s2 = a2[k2];
+        }
+    }
+    return out_card;
+}
+
+int32_t xor_uint16(const uint16_t *array_1, int32_t card_1,
+                   const uint16_t *array_2, int32_t card_2, uint16_t *out) {
+    int32_t pos1 = 0, pos2 = 0, pos_out = 0;
+    while (pos1 < card_1 && pos2 < card_2) {
+        const uint16_t v1 = array_1[pos1];
+        const uint16_t v2 = array_2[pos2];
+        if (v1 == v2) {
+            ++pos1;
+            ++pos2;
+            continue;
+        }
+        if (v1 < v2) {
+            out[pos_out++] = v1;
+            ++pos1;
+        } else {
+            out[pos_out++] = v2;
+            ++pos2;
+        }
+    }
+    if (pos1 < card_1) {
+        const size_t n_elems = card_1 - pos1;
+        memcpy(out + pos_out, array_1 + pos1, n_elems * sizeof(uint16_t));
+        pos_out += (int32_t)n_elems;
+    } else if (pos2 < card_2) {
+        const size_t n_elems = card_2 - pos2;
+        memcpy(out + pos_out, array_2 + pos2, n_elems * sizeof(uint16_t));
+        pos_out += (int32_t)n_elems;
+    }
+    return pos_out;
+}
+
+#ifdef USESSE4
+
+/***
+ * start of the SIMD 16-bit union code
+ *
+ */
+
+// Assuming that vInput1 and vInput2 are sorted, produces a sorted output going
+// from vecMin all the way to vecMax
+// developed originally for merge sort using SIMD instructions.
+// Standard merge. See, e.g., Inoue and Taura, SIMD- and Cache-Friendly
+// Algorithm for Sorting an Array of Structures
+static inline void sse_merge(const __m128i *vInput1,
+                             const __m128i *vInput2,              // input 1 & 2
+                             __m128i *vecMin, __m128i *vecMax) {  // output
+    __m128i vecTmp;
+    vecTmp = _mm_min_epu16(*vInput1, *vInput2);
+    *vecMax = _mm_max_epu16(*vInput1, *vInput2);
+    vecTmp = _mm_alignr_epi8(vecTmp, vecTmp, 2);
+    *vecMin = _mm_min_epu16(vecTmp, *vecMax);
+    *vecMax = _mm_max_epu16(vecTmp, *vecMax);
+    vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
+    *vecMin = _mm_min_epu16(vecTmp, *vecMax);
+    *vecMax = _mm_max_epu16(vecTmp, *vecMax);
+    vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
+    *vecMin = _mm_min_epu16(vecTmp, *vecMax);
+    *vecMax = _mm_max_epu16(vecTmp, *vecMax);
+    vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
+    *vecMin = _mm_min_epu16(vecTmp, *vecMax);
+    *vecMax = _mm_max_epu16(vecTmp, *vecMax);
+    vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
+    *vecMin = _mm_min_epu16(vecTmp, *vecMax);
+    *vecMax = _mm_max_epu16(vecTmp, *vecMax);
+    vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
+    *vecMin = _mm_min_epu16(vecTmp, *vecMax);
+    *vecMax = _mm_max_epu16(vecTmp, *vecMax);
+    vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
+    *vecMin = _mm_min_epu16(vecTmp, *vecMax);
+    *vecMax = _mm_max_epu16(vecTmp, *vecMax);
+    *vecMin = _mm_alignr_epi8(*vecMin, *vecMin, 2);
+}
+
+// used by store_unique, generated by simdunion.py
+static uint8_t uniqshuf[] = {
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,
+    0xc,  0xd,  0xe,  0xf,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,
+    0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF,
+    0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0x8,  0x9,
+    0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,
+    0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0x8,  0x9,  0xa,  0xb,
+    0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x8,  0x9,
+    0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x8,  0x9,
+    0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,
+    0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,
+    0x6,  0x7,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x4,  0x5,  0x6,  0x7,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x6,  0x7,  0xa,  0xb,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x6,  0x7,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x6,  0x7,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x6,  0x7,  0xa,  0xb,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0xa,  0xb,
+    0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,  0xa,  0xb,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x4,  0x5,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0xa,  0xb,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0xa,  0xb,
+    0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xa,  0xb,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,
+    0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x6,  0x7,
+    0x8,  0x9,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0x8,  0x9,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,  0x8,  0x9,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x6,  0x7,
+    0x8,  0x9,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x6,  0x7,  0x8,  0x9,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x8,  0x9,
+    0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,
+    0x8,  0x9,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x4,  0x5,  0x8,  0x9,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x8,  0x9,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x8,  0x9,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x8,  0x9,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x8,  0x9,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x8,  0x9,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0x6,  0x7,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x4,  0x5,  0x6,  0x7,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,
+    0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x6,  0x7,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0xc,  0xd,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0xc,  0xd,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xc,  0xd,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,
+    0x8,  0x9,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,
+    0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0x8,  0x9,
+    0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x8,  0x9,  0xa,  0xb,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,  0x8,  0x9,  0xa,  0xb,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0x8,  0x9,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x4,  0x5,  0x8,  0x9,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x8,  0x9,  0xa,  0xb,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x8,  0x9,
+    0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x8,  0x9,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x8,  0x9,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0x6,  0x7,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0x6,  0x7,  0xa,  0xb,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x6,  0x7,
+    0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,  0xa,  0xb,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x6,  0x7,
+    0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x6,  0x7,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0xa,  0xb,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,
+    0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x4,  0x5,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0xa,  0xb,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xa,  0xb,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0x6,  0x7,  0x8,  0x9,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0x8,  0x9,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,
+    0x8,  0x9,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x6,  0x7,  0x8,  0x9,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0x8,  0x9,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0x8,  0x9,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0x8,  0x9,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0x8,  0x9,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x8,  0x9,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x8,  0x9,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x8,  0x9,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x8,  0x9,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x8,  0x9,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,
+    0x6,  0x7,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x4,  0x5,  0x6,  0x7,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x6,  0x7,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x6,  0x7,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x6,  0x7,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x6,  0x7,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x4,  0x5,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0xe,  0xf,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0xe,  0xf,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xe,  0xf,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,
+    0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x6,  0x7,
+    0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x6,  0x7,
+    0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x8,  0x9,
+    0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,
+    0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x4,  0x5,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x8,  0x9,  0xa,  0xb,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x8,  0x9,  0xa,  0xb,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0xa,  0xb,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0xa,  0xb,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0x6,  0x7,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x4,  0x5,  0x6,  0x7,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0xa,  0xb,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,
+    0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x6,  0x7,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0xa,  0xb,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0xa,  0xb,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0xa,  0xb,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xa,  0xb,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,
+    0x8,  0x9,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,
+    0x6,  0x7,  0x8,  0x9,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xc,  0xd,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x6,  0x7,  0x8,  0x9,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x6,  0x7,  0x8,  0x9,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x6,  0x7,  0x8,  0x9,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0x8,  0x9,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x8,  0x9,  0xc,  0xd,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,  0x8,  0x9,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0x8,  0x9,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x4,  0x5,  0x8,  0x9,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x8,  0x9,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x8,  0x9,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x8,  0x9,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x8,  0x9,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0x6,  0x7,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0x6,  0x7,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x6,  0x7,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,  0xc,  0xd,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x6,  0x7,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x6,  0x7,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0xc,  0xd,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x4,  0x5,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0xc,  0xd,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xc,  0xd,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,
+    0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0x8,  0x9,
+    0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,
+    0x8,  0x9,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0x8,  0x9,  0xa,  0xb,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0x8,  0x9,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0x8,  0x9,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0x8,  0x9,  0xa,  0xb,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x8,  0x9,
+    0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x8,  0x9,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x8,  0x9,  0xa,  0xb,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x8,  0x9,
+    0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x8,  0x9,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,
+    0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,
+    0x6,  0x7,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x4,  0x5,  0x6,  0x7,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x6,  0x7,  0xa,  0xb,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x6,  0x7,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x6,  0x7,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x6,  0x7,  0xa,  0xb,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0xa,  0xb,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,  0xa,  0xb,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x4,  0x5,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0xa,  0xb,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0xa,  0xb,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xa,  0xb,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0x6,  0x7,  0x8,  0x9,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x6,  0x7,
+    0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,  0x8,  0x9,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x6,  0x7,
+    0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x6,  0x7,  0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x8,  0x9,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,
+    0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x4,  0x5,  0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x8,  0x9,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x8,  0x9,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x4,  0x5,  0x6,  0x7,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,
+    0x6,  0x7,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x4,  0x5,  0x6,  0x7,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,  0x6,  0x7,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0x6,  0x7,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x6,  0x7,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x6,  0x7,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x2,  0x3,
+    0x4,  0x5,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x2,  0x3,  0x4,  0x5,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0x4,  0x5,  0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4,  0x5,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0x0,  0x1,  0x2,  0x3,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0x2,  0x3,  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0,  0x1,  0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+    0xFF, 0xFF, 0xFF, 0xFF};
+
+// write vector new, while omitting repeated values assuming that previously
+// written vector was "old"
+static inline int store_unique(__m128i old, __m128i newval, uint16_t *output) {
+    __m128i vecTmp = _mm_alignr_epi8(newval, old, 16 - 2);
+    // lots of high latency instructions follow (optimize?)
+    int M = _mm_movemask_epi8(
+        _mm_packs_epi16(_mm_cmpeq_epi16(vecTmp, newval), _mm_setzero_si128()));
+    int numberofnewvalues = 8 - _mm_popcnt_u32(M);
+    __m128i key = _mm_lddqu_si128((const __m128i *)uniqshuf + M);
+    __m128i val = _mm_shuffle_epi8(newval, key);
+    _mm_storeu_si128((__m128i *)output, val);
+    return numberofnewvalues;
+}
+
+// working in-place, this function overwrites the repeated values
+// could be avoided?
+static inline uint32_t unique(uint16_t *out, uint32_t len) {
+    uint32_t pos = 1;
+    for (uint32_t i = 1; i < len; ++i) {
+        if (out[i] != out[i - 1]) {
+            out[pos++] = out[i];
+        }
+    }
+    return pos;
+}
+
+// use with qsort, could be avoided
+static int uint16_compare(const void *a, const void *b) {
+    return (*(uint16_t *)a - *(uint16_t *)b);
+}
+
+// a one-pass SSE union algorithm
+// This function may not be safe if array1 == output or array2 == output.
+uint32_t union_vector16(const uint16_t *__restrict__ array1, uint32_t length1,
+                        const uint16_t *__restrict__ array2, uint32_t length2,
+                        uint16_t *__restrict__ output) {
+    if ((length1 < 8) || (length2 < 8)) {
+        return (uint32_t)union_uint16(array1, length1, array2, length2, output);
+    }
+    __m128i vA, vB, V, vecMin, vecMax;
+    __m128i laststore;
+    uint16_t *initoutput = output;
+    uint32_t len1 = length1 / 8;
+    uint32_t len2 = length2 / 8;
+    uint32_t pos1 = 0;
+    uint32_t pos2 = 0;
+    // we start the machine
+    vA = _mm_lddqu_si128((const __m128i *)array1 + pos1);
+    pos1++;
+    vB = _mm_lddqu_si128((const __m128i *)array2 + pos2);
+    pos2++;
+    sse_merge(&vA, &vB, &vecMin, &vecMax);
+    laststore = _mm_set1_epi16(-1);
+    output += store_unique(laststore, vecMin, output);
+    laststore = vecMin;
+    if ((pos1 < len1) && (pos2 < len2)) {
+        uint16_t curA, curB;
+        curA = array1[8 * pos1];
+        curB = array2[8 * pos2];
+        while (true) {
+            if (curA <= curB) {
+                V = _mm_lddqu_si128((const __m128i *)array1 + pos1);
+                pos1++;
+                if (pos1 < len1) {
+                    curA = array1[8 * pos1];
+                } else {
+                    break;
+                }
+            } else {
+                V = _mm_lddqu_si128((const __m128i *)array2 + pos2);
+                pos2++;
+                if (pos2 < len2) {
+                    curB = array2[8 * pos2];
+                } else {
+                    break;
+                }
+            }
+            sse_merge(&V, &vecMax, &vecMin, &vecMax);
+            output += store_unique(laststore, vecMin, output);
+            laststore = vecMin;
+        }
+        sse_merge(&V, &vecMax, &vecMin, &vecMax);
+        output += store_unique(laststore, vecMin, output);
+        laststore = vecMin;
+    }
+    // we finish the rest off using a scalar algorithm
+    // could be improved?
+    //
+    // copy the small end on a tmp buffer
+    uint32_t len = (uint32_t)(output - initoutput);
+    uint16_t buffer[16];
+    uint32_t leftoversize = store_unique(laststore, vecMax, buffer);
+    if (pos1 == len1) {
+        memcpy(buffer + leftoversize, array1 + 8 * pos1,
+               (length1 - 8 * len1) * sizeof(uint16_t));
+        leftoversize += length1 - 8 * len1;
+        qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare);
+
+        leftoversize = unique(buffer, leftoversize);
+        len += (uint32_t)union_uint16(buffer, leftoversize, array2 + 8 * pos2,
+                                      length2 - 8 * pos2, output);
+    } else {
+        memcpy(buffer + leftoversize, array2 + 8 * pos2,
+               (length2 - 8 * len2) * sizeof(uint16_t));
+        leftoversize += length2 - 8 * len2;
+        qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare);
+        leftoversize = unique(buffer, leftoversize);
+        len += (uint32_t)union_uint16(buffer, leftoversize, array1 + 8 * pos1,
+                                      length1 - 8 * pos1, output);
+    }
+    return len;
+}
+
+/**
+ * End of the SIMD 16-bit union code
+ *
+ */
+
+/**
+ * Start of SIMD 16-bit XOR code
+ */
+
+// write vector new, while omitting repeated values assuming that previously
+// written vector was "old"
+static inline int store_unique_xor(__m128i old, __m128i newval,
+                                   uint16_t *output) {
+    __m128i vecTmp1 = _mm_alignr_epi8(newval, old, 16 - 4);
+    __m128i vecTmp2 = _mm_alignr_epi8(newval, old, 16 - 2);
+    __m128i equalleft = _mm_cmpeq_epi16(vecTmp2, vecTmp1);
+    __m128i equalright = _mm_cmpeq_epi16(vecTmp2, newval);
+    __m128i equalleftoright = _mm_or_si128(equalleft, equalright);
+    int M = _mm_movemask_epi8(
+        _mm_packs_epi16(equalleftoright, _mm_setzero_si128()));
+    int numberofnewvalues = 8 - _mm_popcnt_u32(M);
+    __m128i key = _mm_lddqu_si128((const __m128i *)uniqshuf + M);
+    __m128i val = _mm_shuffle_epi8(vecTmp2, key);
+    _mm_storeu_si128((__m128i *)output, val);
+    return numberofnewvalues;
+}
+
+// working in-place, this function overwrites the repeated values
+// could be avoided? Warning: assumes len > 0
+static inline uint32_t unique_xor(uint16_t *out, uint32_t len) {
+    uint32_t pos = 1;
+    for (uint32_t i = 1; i < len; ++i) {
+        if (out[i] != out[i - 1]) {
+            out[pos++] = out[i];
+        } else
+            pos--;  // if it is identical to previous, delete it
+    }
+    return pos;
+}
+
+// a one-pass SSE xor algorithm
+uint32_t xor_vector16(const uint16_t *__restrict__ array1, uint32_t length1,
+                      const uint16_t *__restrict__ array2, uint32_t length2,
+                      uint16_t *__restrict__ output) {
+    if ((length1 < 8) || (length2 < 8)) {
+        return xor_uint16(array1, length1, array2, length2, output);
+    }
+    __m128i vA, vB, V, vecMin, vecMax;
+    __m128i laststore;
+    uint16_t *initoutput = output;
+    uint32_t len1 = length1 / 8;
+    uint32_t len2 = length2 / 8;
+    uint32_t pos1 = 0;
+    uint32_t pos2 = 0;
+    // we start the machine
+    vA = _mm_lddqu_si128((const __m128i *)array1 + pos1);
+    pos1++;
+    vB = _mm_lddqu_si128((const __m128i *)array2 + pos2);
+    pos2++;
+    sse_merge(&vA, &vB, &vecMin, &vecMax);
+    laststore = _mm_set1_epi16(-1);
+    uint16_t buffer[17];
+    output += store_unique_xor(laststore, vecMin, output);
+
+    laststore = vecMin;
+    if ((pos1 < len1) && (pos2 < len2)) {
+        uint16_t curA, curB;
+        curA = array1[8 * pos1];
+        curB = array2[8 * pos2];
+        while (true) {
+            if (curA <= curB) {
+                V = _mm_lddqu_si128((const __m128i *)array1 + pos1);
+                pos1++;
+                if (pos1 < len1) {
+                    curA = array1[8 * pos1];
+                } else {
+                    break;
+                }
+            } else {
+                V = _mm_lddqu_si128((const __m128i *)array2 + pos2);
+                pos2++;
+                if (pos2 < len2) {
+                    curB = array2[8 * pos2];
+                } else {
+                    break;
+                }
+            }
+            sse_merge(&V, &vecMax, &vecMin, &vecMax);
+            // conditionally stores the last value of laststore as well as all
+            // but the
+            // last value of vecMin
+            output += store_unique_xor(laststore, vecMin, output);
+            laststore = vecMin;
+        }
+        sse_merge(&V, &vecMax, &vecMin, &vecMax);
+        // conditionally stores the last value of laststore as well as all but
+        // the
+        // last value of vecMin
+        output += store_unique_xor(laststore, vecMin, output);
+        laststore = vecMin;
+    }
+    uint32_t len = (uint32_t)(output - initoutput);
+
+    // we finish the rest off using a scalar algorithm
+    // could be improved?
+    // conditionally stores the last value of laststore as well as all but the
+    // last value of vecMax,
+    // we store to "buffer"
+    int leftoversize = store_unique_xor(laststore, vecMax, buffer);
+    uint16_t vec7 = _mm_extract_epi16(vecMax, 7);
+    uint16_t vec6 = _mm_extract_epi16(vecMax, 6);
+    if (vec7 != vec6) buffer[leftoversize++] = vec7;
+    if (pos1 == len1) {
+        memcpy(buffer + leftoversize, array1 + 8 * pos1,
+               (length1 - 8 * len1) * sizeof(uint16_t));
+        leftoversize += length1 - 8 * len1;
+        if (leftoversize == 0) {  // trivial case
+            memcpy(output, array2 + 8 * pos2,
+                   (length2 - 8 * pos2) * sizeof(uint16_t));
+            len += (length2 - 8 * pos2);
+        } else {
+            qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare);
+            leftoversize = unique_xor(buffer, leftoversize);
+            len += xor_uint16(buffer, leftoversize, array2 + 8 * pos2,
+                              length2 - 8 * pos2, output);
+        }
+    } else {
+        memcpy(buffer + leftoversize, array2 + 8 * pos2,
+               (length2 - 8 * len2) * sizeof(uint16_t));
+        leftoversize += length2 - 8 * len2;
+        if (leftoversize == 0) {  // trivial case
+            memcpy(output, array1 + 8 * pos1,
+                   (length1 - 8 * pos1) * sizeof(uint16_t));
+            len += (length1 - 8 * pos1);
+        } else {
+            qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare);
+            leftoversize = unique_xor(buffer, leftoversize);
+            len += xor_uint16(buffer, leftoversize, array1 + 8 * pos1,
+                              length1 - 8 * pos1, output);
+        }
+    }
+    return len;
+}
+
+/**
+ * End of SIMD 16-bit XOR code
+ */
+
+#endif  // USESSE4
+
+size_t union_uint32(const uint32_t *set_1, size_t size_1, const uint32_t *set_2,
+                    size_t size_2, uint32_t *buffer) {
+    size_t pos = 0, idx_1 = 0, idx_2 = 0;
+
+    if (0 == size_2) {
+        memmove(buffer, set_1, size_1 * sizeof(uint32_t));
+        return size_1;
+    }
+    if (0 == size_1) {
+        memmove(buffer, set_2, size_2 * sizeof(uint32_t));
+        return size_2;
+    }
+
+    uint32_t val_1 = set_1[idx_1], val_2 = set_2[idx_2];
+
+    while (true) {
+        if (val_1 < val_2) {
+            buffer[pos++] = val_1;
+            ++idx_1;
+            if (idx_1 >= size_1) break;
+            val_1 = set_1[idx_1];
+        } else if (val_2 < val_1) {
+            buffer[pos++] = val_2;
+            ++idx_2;
+            if (idx_2 >= size_2) break;
+            val_2 = set_2[idx_2];
+        } else {
+            buffer[pos++] = val_1;
+            ++idx_1;
+            ++idx_2;
+            if (idx_1 >= size_1 || idx_2 >= size_2) break;
+            val_1 = set_1[idx_1];
+            val_2 = set_2[idx_2];
+        }
+    }
+
+    if (idx_1 < size_1) {
+        const size_t n_elems = size_1 - idx_1;
+        memmove(buffer + pos, set_1 + idx_1, n_elems * sizeof(uint32_t));
+        pos += n_elems;
+    } else if (idx_2 < size_2) {
+        const size_t n_elems = size_2 - idx_2;
+        memmove(buffer + pos, set_2 + idx_2, n_elems * sizeof(uint32_t));
+        pos += n_elems;
+    }
+
+    return pos;
+}
+
+size_t union_uint32_card(const uint32_t *set_1, size_t size_1,
+                         const uint32_t *set_2, size_t size_2) {
+    size_t pos = 0, idx_1 = 0, idx_2 = 0;
+
+    if (0 == size_2) {
+        return size_1;
+    }
+    if (0 == size_1) {
+        return size_2;
+    }
+
+    uint32_t val_1 = set_1[idx_1], val_2 = set_2[idx_2];
+
+    while (true) {
+        if (val_1 < val_2) {
+            ++idx_1;
+            ++pos;
+            if (idx_1 >= size_1) break;
+            val_1 = set_1[idx_1];
+        } else if (val_2 < val_1) {
+            ++idx_2;
+            ++pos;
+            if (idx_2 >= size_2) break;
+            val_2 = set_2[idx_2];
+        } else {
+            ++idx_1;
+            ++idx_2;
+            ++pos;
+            if (idx_1 >= size_1 || idx_2 >= size_2) break;
+            val_1 = set_1[idx_1];
+            val_2 = set_2[idx_2];
+        }
+    }
+
+    if (idx_1 < size_1) {
+        const size_t n_elems = size_1 - idx_1;
+        pos += n_elems;
+    } else if (idx_2 < size_2) {
+        const size_t n_elems = size_2 - idx_2;
+        pos += n_elems;
+    }
+    return pos;
+}
+
+
+
+size_t fast_union_uint16(const uint16_t *set_1, size_t size_1, const uint16_t *set_2,
+                    size_t size_2, uint16_t *buffer) {
+#ifdef ROARING_VECTOR_OPERATIONS_ENABLED
+    // compute union with smallest array first
+    if (size_1 < size_2) {
+        return union_vector16(set_1, (uint32_t)size_1,
+                                          set_2, (uint32_t)size_2, buffer);
+    } else {
+        return union_vector16(set_2, (uint32_t)size_2,
+                                          set_1, (uint32_t)size_1, buffer);
+    }
+#else
+    // compute union with smallest array first
+    if (size_1 < size_2) {
+        return union_uint16(
+            set_1, size_1, set_2, size_2, buffer);
+    } else {
+        return union_uint16(
+            set_2, size_2, set_1, size_1, buffer);
+    }
+#endif
+}
+
+bool memequals(const void *s1, const void *s2, size_t n) {
+    if (n == 0) {
+        return true;
+    }
+#ifdef USEAVX
+    const uint8_t *ptr1 = (const uint8_t *)s1;
+    const uint8_t *ptr2 = (const uint8_t *)s2;
+    const uint8_t *end1 = ptr1 + n;
+    const uint8_t *end8 = ptr1 + n/8*8;
+    const uint8_t *end32 = ptr1 + n/32*32;
+
+    while (ptr1 < end32) {
+        __m256i r1 = _mm256_loadu_si256((const __m256i*)ptr1);
+        __m256i r2 = _mm256_loadu_si256((const __m256i*)ptr2);
+        int mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(r1, r2));
+        if ((uint32_t)mask != UINT32_MAX) {
+            return false;
+        }
+        ptr1 += 32;
+        ptr2 += 32;
+    }
+
+    while (ptr1 < end8) {
+        uint64_t v1 = *((const uint64_t*)ptr1);
+        uint64_t v2 = *((const uint64_t*)ptr2);
+        if (v1 != v2) {
+            return false;
+        }
+        ptr1 += 8;
+        ptr2 += 8;
+    }
+
+    while (ptr1 < end1) {
+        if (*ptr1 != *ptr2) {
+            return false;
+        }
+        ptr1++;
+        ptr2++;
+    }
+
+    return true;
+#else
+    return memcmp(s1, s2, n) == 0;
+#endif
+}
+/* end file src/array_util.c */
+/* begin file src/bitset_util.c */
+#include <assert.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+
+#ifdef IS_X64
+static uint8_t lengthTable[256] = {
+    0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4,
+    2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4,
+    2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6,
+    4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5,
+    3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6,
+    4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+    4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8};
+#endif
+
+#ifdef USEAVX
+ALIGNED(32)
+static uint32_t vecDecodeTable[256][8] = {
+    {0, 0, 0, 0, 0, 0, 0, 0}, /* 0x00 (00000000) */
+    {1, 0, 0, 0, 0, 0, 0, 0}, /* 0x01 (00000001) */
+    {2, 0, 0, 0, 0, 0, 0, 0}, /* 0x02 (00000010) */
+    {1, 2, 0, 0, 0, 0, 0, 0}, /* 0x03 (00000011) */
+    {3, 0, 0, 0, 0, 0, 0, 0}, /* 0x04 (00000100) */
+    {1, 3, 0, 0, 0, 0, 0, 0}, /* 0x05 (00000101) */
+    {2, 3, 0, 0, 0, 0, 0, 0}, /* 0x06 (00000110) */
+    {1, 2, 3, 0, 0, 0, 0, 0}, /* 0x07 (00000111) */
+    {4, 0, 0, 0, 0, 0, 0, 0}, /* 0x08 (00001000) */
+    {1, 4, 0, 0, 0, 0, 0, 0}, /* 0x09 (00001001) */
+    {2, 4, 0, 0, 0, 0, 0, 0}, /* 0x0A (00001010) */
+    {1, 2, 4, 0, 0, 0, 0, 0}, /* 0x0B (00001011) */
+    {3, 4, 0, 0, 0, 0, 0, 0}, /* 0x0C (00001100) */
+    {1, 3, 4, 0, 0, 0, 0, 0}, /* 0x0D (00001101) */
+    {2, 3, 4, 0, 0, 0, 0, 0}, /* 0x0E (00001110) */
+    {1, 2, 3, 4, 0, 0, 0, 0}, /* 0x0F (00001111) */
+    {5, 0, 0, 0, 0, 0, 0, 0}, /* 0x10 (00010000) */
+    {1, 5, 0, 0, 0, 0, 0, 0}, /* 0x11 (00010001) */
+    {2, 5, 0, 0, 0, 0, 0, 0}, /* 0x12 (00010010) */
+    {1, 2, 5, 0, 0, 0, 0, 0}, /* 0x13 (00010011) */
+    {3, 5, 0, 0, 0, 0, 0, 0}, /* 0x14 (00010100) */
+    {1, 3, 5, 0, 0, 0, 0, 0}, /* 0x15 (00010101) */
+    {2, 3, 5, 0, 0, 0, 0, 0}, /* 0x16 (00010110) */
+    {1, 2, 3, 5, 0, 0, 0, 0}, /* 0x17 (00010111) */
+    {4, 5, 0, 0, 0, 0, 0, 0}, /* 0x18 (00011000) */
+    {1, 4, 5, 0, 0, 0, 0, 0}, /* 0x19 (00011001) */
+    {2, 4, 5, 0, 0, 0, 0, 0}, /* 0x1A (00011010) */
+    {1, 2, 4, 5, 0, 0, 0, 0}, /* 0x1B (00011011) */
+    {3, 4, 5, 0, 0, 0, 0, 0}, /* 0x1C (00011100) */
+    {1, 3, 4, 5, 0, 0, 0, 0}, /* 0x1D (00011101) */
+    {2, 3, 4, 5, 0, 0, 0, 0}, /* 0x1E (00011110) */
+    {1, 2, 3, 4, 5, 0, 0, 0}, /* 0x1F (00011111) */
+    {6, 0, 0, 0, 0, 0, 0, 0}, /* 0x20 (00100000) */
+    {1, 6, 0, 0, 0, 0, 0, 0}, /* 0x21 (00100001) */
+    {2, 6, 0, 0, 0, 0, 0, 0}, /* 0x22 (00100010) */
+    {1, 2, 6, 0, 0, 0, 0, 0}, /* 0x23 (00100011) */
+    {3, 6, 0, 0, 0, 0, 0, 0}, /* 0x24 (00100100) */
+    {1, 3, 6, 0, 0, 0, 0, 0}, /* 0x25 (00100101) */
+    {2, 3, 6, 0, 0, 0, 0, 0}, /* 0x26 (00100110) */
+    {1, 2, 3, 6, 0, 0, 0, 0}, /* 0x27 (00100111) */
+    {4, 6, 0, 0, 0, 0, 0, 0}, /* 0x28 (00101000) */
+    {1, 4, 6, 0, 0, 0, 0, 0}, /* 0x29 (00101001) */
+    {2, 4, 6, 0, 0, 0, 0, 0}, /* 0x2A (00101010) */
+    {1, 2, 4, 6, 0, 0, 0, 0}, /* 0x2B (00101011) */
+    {3, 4, 6, 0, 0, 0, 0, 0}, /* 0x2C (00101100) */
+    {1, 3, 4, 6, 0, 0, 0, 0}, /* 0x2D (00101101) */
+    {2, 3, 4, 6, 0, 0, 0, 0}, /* 0x2E (00101110) */
+    {1, 2, 3, 4, 6, 0, 0, 0}, /* 0x2F (00101111) */
+    {5, 6, 0, 0, 0, 0, 0, 0}, /* 0x30 (00110000) */
+    {1, 5, 6, 0, 0, 0, 0, 0}, /* 0x31 (00110001) */
+    {2, 5, 6, 0, 0, 0, 0, 0}, /* 0x32 (00110010) */
+    {1, 2, 5, 6, 0, 0, 0, 0}, /* 0x33 (00110011) */
+    {3, 5, 6, 0, 0, 0, 0, 0}, /* 0x34 (00110100) */
+    {1, 3, 5, 6, 0, 0, 0, 0}, /* 0x35 (00110101) */
+    {2, 3, 5, 6, 0, 0, 0, 0}, /* 0x36 (00110110) */
+    {1, 2, 3, 5, 6, 0, 0, 0}, /* 0x37 (00110111) */
+    {4, 5, 6, 0, 0, 0, 0, 0}, /* 0x38 (00111000) */
+    {1, 4, 5, 6, 0, 0, 0, 0}, /* 0x39 (00111001) */
+    {2, 4, 5, 6, 0, 0, 0, 0}, /* 0x3A (00111010) */
+    {1, 2, 4, 5, 6, 0, 0, 0}, /* 0x3B (00111011) */
+    {3, 4, 5, 6, 0, 0, 0, 0}, /* 0x3C (00111100) */
+    {1, 3, 4, 5, 6, 0, 0, 0}, /* 0x3D (00111101) */
+    {2, 3, 4, 5, 6, 0, 0, 0}, /* 0x3E (00111110) */
+    {1, 2, 3, 4, 5, 6, 0, 0}, /* 0x3F (00111111) */
+    {7, 0, 0, 0, 0, 0, 0, 0}, /* 0x40 (01000000) */
+    {1, 7, 0, 0, 0, 0, 0, 0}, /* 0x41 (01000001) */
+    {2, 7, 0, 0, 0, 0, 0, 0}, /* 0x42 (01000010) */
+    {1, 2, 7, 0, 0, 0, 0, 0}, /* 0x43 (01000011) */
+    {3, 7, 0, 0, 0, 0, 0, 0}, /* 0x44 (01000100) */
+    {1, 3, 7, 0, 0, 0, 0, 0}, /* 0x45 (01000101) */
+    {2, 3, 7, 0, 0, 0, 0, 0}, /* 0x46 (01000110) */
+    {1, 2, 3, 7, 0, 0, 0, 0}, /* 0x47 (01000111) */
+    {4, 7, 0, 0, 0, 0, 0, 0}, /* 0x48 (01001000) */
+    {1, 4, 7, 0, 0, 0, 0, 0}, /* 0x49 (01001001) */
+    {2, 4, 7, 0, 0, 0, 0, 0}, /* 0x4A (01001010) */
+    {1, 2, 4, 7, 0, 0, 0, 0}, /* 0x4B (01001011) */
+    {3, 4, 7, 0, 0, 0, 0, 0}, /* 0x4C (01001100) */
+    {1, 3, 4, 7, 0, 0, 0, 0}, /* 0x4D (01001101) */
+    {2, 3, 4, 7, 0, 0, 0, 0}, /* 0x4E (01001110) */
+    {1, 2, 3, 4, 7, 0, 0, 0}, /* 0x4F (01001111) */
+    {5, 7, 0, 0, 0, 0, 0, 0}, /* 0x50 (01010000) */
+    {1, 5, 7, 0, 0, 0, 0, 0}, /* 0x51 (01010001) */
+    {2, 5, 7, 0, 0, 0, 0, 0}, /* 0x52 (01010010) */
+    {1, 2, 5, 7, 0, 0, 0, 0}, /* 0x53 (01010011) */
+    {3, 5, 7, 0, 0, 0, 0, 0}, /* 0x54 (01010100) */
+    {1, 3, 5, 7, 0, 0, 0, 0}, /* 0x55 (01010101) */
+    {2, 3, 5, 7, 0, 0, 0, 0}, /* 0x56 (01010110) */
+    {1, 2, 3, 5, 7, 0, 0, 0}, /* 0x57 (01010111) */
+    {4, 5, 7, 0, 0, 0, 0, 0}, /* 0x58 (01011000) */
+    {1, 4, 5, 7, 0, 0, 0, 0}, /* 0x59 (01011001) */
+    {2, 4, 5, 7, 0, 0, 0, 0}, /* 0x5A (01011010) */
+    {1, 2, 4, 5, 7, 0, 0, 0}, /* 0x5B (01011011) */
+    {3, 4, 5, 7, 0, 0, 0, 0}, /* 0x5C (01011100) */
+    {1, 3, 4, 5, 7, 0, 0, 0}, /* 0x5D (01011101) */
+    {2, 3, 4, 5, 7, 0, 0, 0}, /* 0x5E (01011110) */
+    {1, 2, 3, 4, 5, 7, 0, 0}, /* 0x5F (01011111) */
+    {6, 7, 0, 0, 0, 0, 0, 0}, /* 0x60 (01100000) */
+    {1, 6, 7, 0, 0, 0, 0, 0}, /* 0x61 (01100001) */
+    {2, 6, 7, 0, 0, 0, 0, 0}, /* 0x62 (01100010) */
+    {1, 2, 6, 7, 0, 0, 0, 0}, /* 0x63 (01100011) */
+    {3, 6, 7, 0, 0, 0, 0, 0}, /* 0x64 (01100100) */
+    {1, 3, 6, 7, 0, 0, 0, 0}, /* 0x65 (01100101) */
+    {2, 3, 6, 7, 0, 0, 0, 0}, /* 0x66 (01100110) */
+    {1, 2, 3, 6, 7, 0, 0, 0}, /* 0x67 (01100111) */
+    {4, 6, 7, 0, 0, 0, 0, 0}, /* 0x68 (01101000) */
+    {1, 4, 6, 7, 0, 0, 0, 0}, /* 0x69 (01101001) */
+    {2, 4, 6, 7, 0, 0, 0, 0}, /* 0x6A (01101010) */
+    {1, 2, 4, 6, 7, 0, 0, 0}, /* 0x6B (01101011) */
+    {3, 4, 6, 7, 0, 0, 0, 0}, /* 0x6C (01101100) */
+    {1, 3, 4, 6, 7, 0, 0, 0}, /* 0x6D (01101101) */
+    {2, 3, 4, 6, 7, 0, 0, 0}, /* 0x6E (01101110) */
+    {1, 2, 3, 4, 6, 7, 0, 0}, /* 0x6F (01101111) */
+    {5, 6, 7, 0, 0, 0, 0, 0}, /* 0x70 (01110000) */
+    {1, 5, 6, 7, 0, 0, 0, 0}, /* 0x71 (01110001) */
+    {2, 5, 6, 7, 0, 0, 0, 0}, /* 0x72 (01110010) */
+    {1, 2, 5, 6, 7, 0, 0, 0}, /* 0x73 (01110011) */
+    {3, 5, 6, 7, 0, 0, 0, 0}, /* 0x74 (01110100) */
+    {1, 3, 5, 6, 7, 0, 0, 0}, /* 0x75 (01110101) */
+    {2, 3, 5, 6, 7, 0, 0, 0}, /* 0x76 (01110110) */
+    {1, 2, 3, 5, 6, 7, 0, 0}, /* 0x77 (01110111) */
+    {4, 5, 6, 7, 0, 0, 0, 0}, /* 0x78 (01111000) */
+    {1, 4, 5, 6, 7, 0, 0, 0}, /* 0x79 (01111001) */
+    {2, 4, 5, 6, 7, 0, 0, 0}, /* 0x7A (01111010) */
+    {1, 2, 4, 5, 6, 7, 0, 0}, /* 0x7B (01111011) */
+    {3, 4, 5, 6, 7, 0, 0, 0}, /* 0x7C (01111100) */
+    {1, 3, 4, 5, 6, 7, 0, 0}, /* 0x7D (01111101) */
+    {2, 3, 4, 5, 6, 7, 0, 0}, /* 0x7E (01111110) */
+    {1, 2, 3, 4, 5, 6, 7, 0}, /* 0x7F (01111111) */
+    {8, 0, 0, 0, 0, 0, 0, 0}, /* 0x80 (10000000) */
+    {1, 8, 0, 0, 0, 0, 0, 0}, /* 0x81 (10000001) */
+    {2, 8, 0, 0, 0, 0, 0, 0}, /* 0x82 (10000010) */
+    {1, 2, 8, 0, 0, 0, 0, 0}, /* 0x83 (10000011) */
+    {3, 8, 0, 0, 0, 0, 0, 0}, /* 0x84 (10000100) */
+    {1, 3, 8, 0, 0, 0, 0, 0}, /* 0x85 (10000101) */
+    {2, 3, 8, 0, 0, 0, 0, 0}, /* 0x86 (10000110) */
+    {1, 2, 3, 8, 0, 0, 0, 0}, /* 0x87 (10000111) */
+    {4, 8, 0, 0, 0, 0, 0, 0}, /* 0x88 (10001000) */
+    {1, 4, 8, 0, 0, 0, 0, 0}, /* 0x89 (10001001) */
+    {2, 4, 8, 0, 0, 0, 0, 0}, /* 0x8A (10001010) */
+    {1, 2, 4, 8, 0, 0, 0, 0}, /* 0x8B (10001011) */
+    {3, 4, 8, 0, 0, 0, 0, 0}, /* 0x8C (10001100) */
+    {1, 3, 4, 8, 0, 0, 0, 0}, /* 0x8D (10001101) */
+    {2, 3, 4, 8, 0, 0, 0, 0}, /* 0x8E (10001110) */
+    {1, 2, 3, 4, 8, 0, 0, 0}, /* 0x8F (10001111) */
+    {5, 8, 0, 0, 0, 0, 0, 0}, /* 0x90 (10010000) */
+    {1, 5, 8, 0, 0, 0, 0, 0}, /* 0x91 (10010001) */
+    {2, 5, 8, 0, 0, 0, 0, 0}, /* 0x92 (10010010) */
+    {1, 2, 5, 8, 0, 0, 0, 0}, /* 0x93 (10010011) */
+    {3, 5, 8, 0, 0, 0, 0, 0}, /* 0x94 (10010100) */
+    {1, 3, 5, 8, 0, 0, 0, 0}, /* 0x95 (10010101) */
+    {2, 3, 5, 8, 0, 0, 0, 0}, /* 0x96 (10010110) */
+    {1, 2, 3, 5, 8, 0, 0, 0}, /* 0x97 (10010111) */
+    {4, 5, 8, 0, 0, 0, 0, 0}, /* 0x98 (10011000) */
+    {1, 4, 5, 8, 0, 0, 0, 0}, /* 0x99 (10011001) */
+    {2, 4, 5, 8, 0, 0, 0, 0}, /* 0x9A (10011010) */
+    {1, 2, 4, 5, 8, 0, 0, 0}, /* 0x9B (10011011) */
+    {3, 4, 5, 8, 0, 0, 0, 0}, /* 0x9C (10011100) */
+    {1, 3, 4, 5, 8, 0, 0, 0}, /* 0x9D (10011101) */
+    {2, 3, 4, 5, 8, 0, 0, 0}, /* 0x9E (10011110) */
+    {1, 2, 3, 4, 5, 8, 0, 0}, /* 0x9F (10011111) */
+    {6, 8, 0, 0, 0, 0, 0, 0}, /* 0xA0 (10100000) */
+    {1, 6, 8, 0, 0, 0, 0, 0}, /* 0xA1 (10100001) */
+    {2, 6, 8, 0, 0, 0, 0, 0}, /* 0xA2 (10100010) */
+    {1, 2, 6, 8, 0, 0, 0, 0}, /* 0xA3 (10100011) */
+    {3, 6, 8, 0, 0, 0, 0, 0}, /* 0xA4 (10100100) */
+    {1, 3, 6, 8, 0, 0, 0, 0}, /* 0xA5 (10100101) */
+    {2, 3, 6, 8, 0, 0, 0, 0}, /* 0xA6 (10100110) */
+    {1, 2, 3, 6, 8, 0, 0, 0}, /* 0xA7 (10100111) */
+    {4, 6, 8, 0, 0, 0, 0, 0}, /* 0xA8 (10101000) */
+    {1, 4, 6, 8, 0, 0, 0, 0}, /* 0xA9 (10101001) */
+    {2, 4, 6, 8, 0, 0, 0, 0}, /* 0xAA (10101010) */
+    {1, 2, 4, 6, 8, 0, 0, 0}, /* 0xAB (10101011) */
+    {3, 4, 6, 8, 0, 0, 0, 0}, /* 0xAC (10101100) */
+    {1, 3, 4, 6, 8, 0, 0, 0}, /* 0xAD (10101101) */
+    {2, 3, 4, 6, 8, 0, 0, 0}, /* 0xAE (10101110) */
+    {1, 2, 3, 4, 6, 8, 0, 0}, /* 0xAF (10101111) */
+    {5, 6, 8, 0, 0, 0, 0, 0}, /* 0xB0 (10110000) */
+    {1, 5, 6, 8, 0, 0, 0, 0}, /* 0xB1 (10110001) */
+    {2, 5, 6, 8, 0, 0, 0, 0}, /* 0xB2 (10110010) */
+    {1, 2, 5, 6, 8, 0, 0, 0}, /* 0xB3 (10110011) */
+    {3, 5, 6, 8, 0, 0, 0, 0}, /* 0xB4 (10110100) */
+    {1, 3, 5, 6, 8, 0, 0, 0}, /* 0xB5 (10110101) */
+    {2, 3, 5, 6, 8, 0, 0, 0}, /* 0xB6 (10110110) */
+    {1, 2, 3, 5, 6, 8, 0, 0}, /* 0xB7 (10110111) */
+    {4, 5, 6, 8, 0, 0, 0, 0}, /* 0xB8 (10111000) */
+    {1, 4, 5, 6, 8, 0, 0, 0}, /* 0xB9 (10111001) */
+    {2, 4, 5, 6, 8, 0, 0, 0}, /* 0xBA (10111010) */
+    {1, 2, 4, 5, 6, 8, 0, 0}, /* 0xBB (10111011) */
+    {3, 4, 5, 6, 8, 0, 0, 0}, /* 0xBC (10111100) */
+    {1, 3, 4, 5, 6, 8, 0, 0}, /* 0xBD (10111101) */
+    {2, 3, 4, 5, 6, 8, 0, 0}, /* 0xBE (10111110) */
+    {1, 2, 3, 4, 5, 6, 8, 0}, /* 0xBF (10111111) */
+    {7, 8, 0, 0, 0, 0, 0, 0}, /* 0xC0 (11000000) */
+    {1, 7, 8, 0, 0, 0, 0, 0}, /* 0xC1 (11000001) */
+    {2, 7, 8, 0, 0, 0, 0, 0}, /* 0xC2 (11000010) */
+    {1, 2, 7, 8, 0, 0, 0, 0}, /* 0xC3 (11000011) */
+    {3, 7, 8, 0, 0, 0, 0, 0}, /* 0xC4 (11000100) */
+    {1, 3, 7, 8, 0, 0, 0, 0}, /* 0xC5 (11000101) */
+    {2, 3, 7, 8, 0, 0, 0, 0}, /* 0xC6 (11000110) */
+    {1, 2, 3, 7, 8, 0, 0, 0}, /* 0xC7 (11000111) */
+    {4, 7, 8, 0, 0, 0, 0, 0}, /* 0xC8 (11001000) */
+    {1, 4, 7, 8, 0, 0, 0, 0}, /* 0xC9 (11001001) */
+    {2, 4, 7, 8, 0, 0, 0, 0}, /* 0xCA (11001010) */
+    {1, 2, 4, 7, 8, 0, 0, 0}, /* 0xCB (11001011) */
+    {3, 4, 7, 8, 0, 0, 0, 0}, /* 0xCC (11001100) */
+    {1, 3, 4, 7, 8, 0, 0, 0}, /* 0xCD (11001101) */
+    {2, 3, 4, 7, 8, 0, 0, 0}, /* 0xCE (11001110) */
+    {1, 2, 3, 4, 7, 8, 0, 0}, /* 0xCF (11001111) */
+    {5, 7, 8, 0, 0, 0, 0, 0}, /* 0xD0 (11010000) */
+    {1, 5, 7, 8, 0, 0, 0, 0}, /* 0xD1 (11010001) */
+    {2, 5, 7, 8, 0, 0, 0, 0}, /* 0xD2 (11010010) */
+    {1, 2, 5, 7, 8, 0, 0, 0}, /* 0xD3 (11010011) */
+    {3, 5, 7, 8, 0, 0, 0, 0}, /* 0xD4 (11010100) */
+    {1, 3, 5, 7, 8, 0, 0, 0}, /* 0xD5 (11010101) */
+    {2, 3, 5, 7, 8, 0, 0, 0}, /* 0xD6 (11010110) */
+    {1, 2, 3, 5, 7, 8, 0, 0}, /* 0xD7 (11010111) */
+    {4, 5, 7, 8, 0, 0, 0, 0}, /* 0xD8 (11011000) */
+    {1, 4, 5, 7, 8, 0, 0, 0}, /* 0xD9 (11011001) */
+    {2, 4, 5, 7, 8, 0, 0, 0}, /* 0xDA (11011010) */
+    {1, 2, 4, 5, 7, 8, 0, 0}, /* 0xDB (11011011) */
+    {3, 4, 5, 7, 8, 0, 0, 0}, /* 0xDC (11011100) */
+    {1, 3, 4, 5, 7, 8, 0, 0}, /* 0xDD (11011101) */
+    {2, 3, 4, 5, 7, 8, 0, 0}, /* 0xDE (11011110) */
+    {1, 2, 3, 4, 5, 7, 8, 0}, /* 0xDF (11011111) */
+    {6, 7, 8, 0, 0, 0, 0, 0}, /* 0xE0 (11100000) */
+    {1, 6, 7, 8, 0, 0, 0, 0}, /* 0xE1 (11100001) */
+    {2, 6, 7, 8, 0, 0, 0, 0}, /* 0xE2 (11100010) */
+    {1, 2, 6, 7, 8, 0, 0, 0}, /* 0xE3 (11100011) */
+    {3, 6, 7, 8, 0, 0, 0, 0}, /* 0xE4 (11100100) */
+    {1, 3, 6, 7, 8, 0, 0, 0}, /* 0xE5 (11100101) */
+    {2, 3, 6, 7, 8, 0, 0, 0}, /* 0xE6 (11100110) */
+    {1, 2, 3, 6, 7, 8, 0, 0}, /* 0xE7 (11100111) */
+    {4, 6, 7, 8, 0, 0, 0, 0}, /* 0xE8 (11101000) */
+    {1, 4, 6, 7, 8, 0, 0, 0}, /* 0xE9 (11101001) */
+    {2, 4, 6, 7, 8, 0, 0, 0}, /* 0xEA (11101010) */
+    {1, 2, 4, 6, 7, 8, 0, 0}, /* 0xEB (11101011) */
+    {3, 4, 6, 7, 8, 0, 0, 0}, /* 0xEC (11101100) */
+    {1, 3, 4, 6, 7, 8, 0, 0}, /* 0xED (11101101) */
+    {2, 3, 4, 6, 7, 8, 0, 0}, /* 0xEE (11101110) */
+    {1, 2, 3, 4, 6, 7, 8, 0}, /* 0xEF (11101111) */
+    {5, 6, 7, 8, 0, 0, 0, 0}, /* 0xF0 (11110000) */
+    {1, 5, 6, 7, 8, 0, 0, 0}, /* 0xF1 (11110001) */
+    {2, 5, 6, 7, 8, 0, 0, 0}, /* 0xF2 (11110010) */
+    {1, 2, 5, 6, 7, 8, 0, 0}, /* 0xF3 (11110011) */
+    {3, 5, 6, 7, 8, 0, 0, 0}, /* 0xF4 (11110100) */
+    {1, 3, 5, 6, 7, 8, 0, 0}, /* 0xF5 (11110101) */
+    {2, 3, 5, 6, 7, 8, 0, 0}, /* 0xF6 (11110110) */
+    {1, 2, 3, 5, 6, 7, 8, 0}, /* 0xF7 (11110111) */
+    {4, 5, 6, 7, 8, 0, 0, 0}, /* 0xF8 (11111000) */
+    {1, 4, 5, 6, 7, 8, 0, 0}, /* 0xF9 (11111001) */
+    {2, 4, 5, 6, 7, 8, 0, 0}, /* 0xFA (11111010) */
+    {1, 2, 4, 5, 6, 7, 8, 0}, /* 0xFB (11111011) */
+    {3, 4, 5, 6, 7, 8, 0, 0}, /* 0xFC (11111100) */
+    {1, 3, 4, 5, 6, 7, 8, 0}, /* 0xFD (11111101) */
+    {2, 3, 4, 5, 6, 7, 8, 0}, /* 0xFE (11111110) */
+    {1, 2, 3, 4, 5, 6, 7, 8}  /* 0xFF (11111111) */
+};
+
+#endif  // #ifdef USEAVX
+
+#ifdef IS_X64
+// same as vecDecodeTable but in 16 bits
+ALIGNED(32)
+static uint16_t vecDecodeTable_uint16[256][8] = {
+    {0, 0, 0, 0, 0, 0, 0, 0}, /* 0x00 (00000000) */
+    {1, 0, 0, 0, 0, 0, 0, 0}, /* 0x01 (00000001) */
+    {2, 0, 0, 0, 0, 0, 0, 0}, /* 0x02 (00000010) */
+    {1, 2, 0, 0, 0, 0, 0, 0}, /* 0x03 (00000011) */
+    {3, 0, 0, 0, 0, 0, 0, 0}, /* 0x04 (00000100) */
+    {1, 3, 0, 0, 0, 0, 0, 0}, /* 0x05 (00000101) */
+    {2, 3, 0, 0, 0, 0, 0, 0}, /* 0x06 (00000110) */
+    {1, 2, 3, 0, 0, 0, 0, 0}, /* 0x07 (00000111) */
+    {4, 0, 0, 0, 0, 0, 0, 0}, /* 0x08 (00001000) */
+    {1, 4, 0, 0, 0, 0, 0, 0}, /* 0x09 (00001001) */
+    {2, 4, 0, 0, 0, 0, 0, 0}, /* 0x0A (00001010) */
+    {1, 2, 4, 0, 0, 0, 0, 0}, /* 0x0B (00001011) */
+    {3, 4, 0, 0, 0, 0, 0, 0}, /* 0x0C (00001100) */
+    {1, 3, 4, 0, 0, 0, 0, 0}, /* 0x0D (00001101) */
+    {2, 3, 4, 0, 0, 0, 0, 0}, /* 0x0E (00001110) */
+    {1, 2, 3, 4, 0, 0, 0, 0}, /* 0x0F (00001111) */
+    {5, 0, 0, 0, 0, 0, 0, 0}, /* 0x10 (00010000) */
+    {1, 5, 0, 0, 0, 0, 0, 0}, /* 0x11 (00010001) */
+    {2, 5, 0, 0, 0, 0, 0, 0}, /* 0x12 (00010010) */
+    {1, 2, 5, 0, 0, 0, 0, 0}, /* 0x13 (00010011) */
+    {3, 5, 0, 0, 0, 0, 0, 0}, /* 0x14 (00010100) */
+    {1, 3, 5, 0, 0, 0, 0, 0}, /* 0x15 (00010101) */
+    {2, 3, 5, 0, 0, 0, 0, 0}, /* 0x16 (00010110) */
+    {1, 2, 3, 5, 0, 0, 0, 0}, /* 0x17 (00010111) */
+    {4, 5, 0, 0, 0, 0, 0, 0}, /* 0x18 (00011000) */
+    {1, 4, 5, 0, 0, 0, 0, 0}, /* 0x19 (00011001) */
+    {2, 4, 5, 0, 0, 0, 0, 0}, /* 0x1A (00011010) */
+    {1, 2, 4, 5, 0, 0, 0, 0}, /* 0x1B (00011011) */
+    {3, 4, 5, 0, 0, 0, 0, 0}, /* 0x1C (00011100) */
+    {1, 3, 4, 5, 0, 0, 0, 0}, /* 0x1D (00011101) */
+    {2, 3, 4, 5, 0, 0, 0, 0}, /* 0x1E (00011110) */
+    {1, 2, 3, 4, 5, 0, 0, 0}, /* 0x1F (00011111) */
+    {6, 0, 0, 0, 0, 0, 0, 0}, /* 0x20 (00100000) */
+    {1, 6, 0, 0, 0, 0, 0, 0}, /* 0x21 (00100001) */
+    {2, 6, 0, 0, 0, 0, 0, 0}, /* 0x22 (00100010) */
+    {1, 2, 6, 0, 0, 0, 0, 0}, /* 0x23 (00100011) */
+    {3, 6, 0, 0, 0, 0, 0, 0}, /* 0x24 (00100100) */
+    {1, 3, 6, 0, 0, 0, 0, 0}, /* 0x25 (00100101) */
+    {2, 3, 6, 0, 0, 0, 0, 0}, /* 0x26 (00100110) */
+    {1, 2, 3, 6, 0, 0, 0, 0}, /* 0x27 (00100111) */
+    {4, 6, 0, 0, 0, 0, 0, 0}, /* 0x28 (00101000) */
+    {1, 4, 6, 0, 0, 0, 0, 0}, /* 0x29 (00101001) */
+    {2, 4, 6, 0, 0, 0, 0, 0}, /* 0x2A (00101010) */
+    {1, 2, 4, 6, 0, 0, 0, 0}, /* 0x2B (00101011) */
+    {3, 4, 6, 0, 0, 0, 0, 0}, /* 0x2C (00101100) */
+    {1, 3, 4, 6, 0, 0, 0, 0}, /* 0x2D (00101101) */
+    {2, 3, 4, 6, 0, 0, 0, 0}, /* 0x2E (00101110) */
+    {1, 2, 3, 4, 6, 0, 0, 0}, /* 0x2F (00101111) */
+    {5, 6, 0, 0, 0, 0, 0, 0}, /* 0x30 (00110000) */
+    {1, 5, 6, 0, 0, 0, 0, 0}, /* 0x31 (00110001) */
+    {2, 5, 6, 0, 0, 0, 0, 0}, /* 0x32 (00110010) */
+    {1, 2, 5, 6, 0, 0, 0, 0}, /* 0x33 (00110011) */
+    {3, 5, 6, 0, 0, 0, 0, 0}, /* 0x34 (00110100) */
+    {1, 3, 5, 6, 0, 0, 0, 0}, /* 0x35 (00110101) */
+    {2, 3, 5, 6, 0, 0, 0, 0}, /* 0x36 (00110110) */
+    {1, 2, 3, 5, 6, 0, 0, 0}, /* 0x37 (00110111) */
+    {4, 5, 6, 0, 0, 0, 0, 0}, /* 0x38 (00111000) */
+    {1, 4, 5, 6, 0, 0, 0, 0}, /* 0x39 (00111001) */
+    {2, 4, 5, 6, 0, 0, 0, 0}, /* 0x3A (00111010) */
+    {1, 2, 4, 5, 6, 0, 0, 0}, /* 0x3B (00111011) */
+    {3, 4, 5, 6, 0, 0, 0, 0}, /* 0x3C (00111100) */
+    {1, 3, 4, 5, 6, 0, 0, 0}, /* 0x3D (00111101) */
+    {2, 3, 4, 5, 6, 0, 0, 0}, /* 0x3E (00111110) */
+    {1, 2, 3, 4, 5, 6, 0, 0}, /* 0x3F (00111111) */
+    {7, 0, 0, 0, 0, 0, 0, 0}, /* 0x40 (01000000) */
+    {1, 7, 0, 0, 0, 0, 0, 0}, /* 0x41 (01000001) */
+    {2, 7, 0, 0, 0, 0, 0, 0}, /* 0x42 (01000010) */
+    {1, 2, 7, 0, 0, 0, 0, 0}, /* 0x43 (01000011) */
+    {3, 7, 0, 0, 0, 0, 0, 0}, /* 0x44 (01000100) */
+    {1, 3, 7, 0, 0, 0, 0, 0}, /* 0x45 (01000101) */
+    {2, 3, 7, 0, 0, 0, 0, 0}, /* 0x46 (01000110) */
+    {1, 2, 3, 7, 0, 0, 0, 0}, /* 0x47 (01000111) */
+    {4, 7, 0, 0, 0, 0, 0, 0}, /* 0x48 (01001000) */
+    {1, 4, 7, 0, 0, 0, 0, 0}, /* 0x49 (01001001) */
+    {2, 4, 7, 0, 0, 0, 0, 0}, /* 0x4A (01001010) */
+    {1, 2, 4, 7, 0, 0, 0, 0}, /* 0x4B (01001011) */
+    {3, 4, 7, 0, 0, 0, 0, 0}, /* 0x4C (01001100) */
+    {1, 3, 4, 7, 0, 0, 0, 0}, /* 0x4D (01001101) */
+    {2, 3, 4, 7, 0, 0, 0, 0}, /* 0x4E (01001110) */
+    {1, 2, 3, 4, 7, 0, 0, 0}, /* 0x4F (01001111) */
+    {5, 7, 0, 0, 0, 0, 0, 0}, /* 0x50 (01010000) */
+    {1, 5, 7, 0, 0, 0, 0, 0}, /* 0x51 (01010001) */
+    {2, 5, 7, 0, 0, 0, 0, 0}, /* 0x52 (01010010) */
+    {1, 2, 5, 7, 0, 0, 0, 0}, /* 0x53 (01010011) */
+    {3, 5, 7, 0, 0, 0, 0, 0}, /* 0x54 (01010100) */
+    {1, 3, 5, 7, 0, 0, 0, 0}, /* 0x55 (01010101) */
+    {2, 3, 5, 7, 0, 0, 0, 0}, /* 0x56 (01010110) */
+    {1, 2, 3, 5, 7, 0, 0, 0}, /* 0x57 (01010111) */
+    {4, 5, 7, 0, 0, 0, 0, 0}, /* 0x58 (01011000) */
+    {1, 4, 5, 7, 0, 0, 0, 0}, /* 0x59 (01011001) */
+    {2, 4, 5, 7, 0, 0, 0, 0}, /* 0x5A (01011010) */
+    {1, 2, 4, 5, 7, 0, 0, 0}, /* 0x5B (01011011) */
+    {3, 4, 5, 7, 0, 0, 0, 0}, /* 0x5C (01011100) */
+    {1, 3, 4, 5, 7, 0, 0, 0}, /* 0x5D (01011101) */
+    {2, 3, 4, 5, 7, 0, 0, 0}, /* 0x5E (01011110) */
+    {1, 2, 3, 4, 5, 7, 0, 0}, /* 0x5F (01011111) */
+    {6, 7, 0, 0, 0, 0, 0, 0}, /* 0x60 (01100000) */
+    {1, 6, 7, 0, 0, 0, 0, 0}, /* 0x61 (01100001) */
+    {2, 6, 7, 0, 0, 0, 0, 0}, /* 0x62 (01100010) */
+    {1, 2, 6, 7, 0, 0, 0, 0}, /* 0x63 (01100011) */
+    {3, 6, 7, 0, 0, 0, 0, 0}, /* 0x64 (01100100) */
+    {1, 3, 6, 7, 0, 0, 0, 0}, /* 0x65 (01100101) */
+    {2, 3, 6, 7, 0, 0, 0, 0}, /* 0x66 (01100110) */
+    {1, 2, 3, 6, 7, 0, 0, 0}, /* 0x67 (01100111) */
+    {4, 6, 7, 0, 0, 0, 0, 0}, /* 0x68 (01101000) */
+    {1, 4, 6, 7, 0, 0, 0, 0}, /* 0x69 (01101001) */
+    {2, 4, 6, 7, 0, 0, 0, 0}, /* 0x6A (01101010) */
+    {1, 2, 4, 6, 7, 0, 0, 0}, /* 0x6B (01101011) */
+    {3, 4, 6, 7, 0, 0, 0, 0}, /* 0x6C (01101100) */
+    {1, 3, 4, 6, 7, 0, 0, 0}, /* 0x6D (01101101) */
+    {2, 3, 4, 6, 7, 0, 0, 0}, /* 0x6E (01101110) */
+    {1, 2, 3, 4, 6, 7, 0, 0}, /* 0x6F (01101111) */
+    {5, 6, 7, 0, 0, 0, 0, 0}, /* 0x70 (01110000) */
+    {1, 5, 6, 7, 0, 0, 0, 0}, /* 0x71 (01110001) */
+    {2, 5, 6, 7, 0, 0, 0, 0}, /* 0x72 (01110010) */
+    {1, 2, 5, 6, 7, 0, 0, 0}, /* 0x73 (01110011) */
+    {3, 5, 6, 7, 0, 0, 0, 0}, /* 0x74 (01110100) */
+    {1, 3, 5, 6, 7, 0, 0, 0}, /* 0x75 (01110101) */
+    {2, 3, 5, 6, 7, 0, 0, 0}, /* 0x76 (01110110) */
+    {1, 2, 3, 5, 6, 7, 0, 0}, /* 0x77 (01110111) */
+    {4, 5, 6, 7, 0, 0, 0, 0}, /* 0x78 (01111000) */
+    {1, 4, 5, 6, 7, 0, 0, 0}, /* 0x79 (01111001) */
+    {2, 4, 5, 6, 7, 0, 0, 0}, /* 0x7A (01111010) */
+    {1, 2, 4, 5, 6, 7, 0, 0}, /* 0x7B (01111011) */
+    {3, 4, 5, 6, 7, 0, 0, 0}, /* 0x7C (01111100) */
+    {1, 3, 4, 5, 6, 7, 0, 0}, /* 0x7D (01111101) */
+    {2, 3, 4, 5, 6, 7, 0, 0}, /* 0x7E (01111110) */
+    {1, 2, 3, 4, 5, 6, 7, 0}, /* 0x7F (01111111) */
+    {8, 0, 0, 0, 0, 0, 0, 0}, /* 0x80 (10000000) */
+    {1, 8, 0, 0, 0, 0, 0, 0}, /* 0x81 (10000001) */
+    {2, 8, 0, 0, 0, 0, 0, 0}, /* 0x82 (10000010) */
+    {1, 2, 8, 0, 0, 0, 0, 0}, /* 0x83 (10000011) */
+    {3, 8, 0, 0, 0, 0, 0, 0}, /* 0x84 (10000100) */
+    {1, 3, 8, 0, 0, 0, 0, 0}, /* 0x85 (10000101) */
+    {2, 3, 8, 0, 0, 0, 0, 0}, /* 0x86 (10000110) */
+    {1, 2, 3, 8, 0, 0, 0, 0}, /* 0x87 (10000111) */
+    {4, 8, 0, 0, 0, 0, 0, 0}, /* 0x88 (10001000) */
+    {1, 4, 8, 0, 0, 0, 0, 0}, /* 0x89 (10001001) */
+    {2, 4, 8, 0, 0, 0, 0, 0}, /* 0x8A (10001010) */
+    {1, 2, 4, 8, 0, 0, 0, 0}, /* 0x8B (10001011) */
+    {3, 4, 8, 0, 0, 0, 0, 0}, /* 0x8C (10001100) */
+    {1, 3, 4, 8, 0, 0, 0, 0}, /* 0x8D (10001101) */
+    {2, 3, 4, 8, 0, 0, 0, 0}, /* 0x8E (10001110) */
+    {1, 2, 3, 4, 8, 0, 0, 0}, /* 0x8F (10001111) */
+    {5, 8, 0, 0, 0, 0, 0, 0}, /* 0x90 (10010000) */
+    {1, 5, 8, 0, 0, 0, 0, 0}, /* 0x91 (10010001) */
+    {2, 5, 8, 0, 0, 0, 0, 0}, /* 0x92 (10010010) */
+    {1, 2, 5, 8, 0, 0, 0, 0}, /* 0x93 (10010011) */
+    {3, 5, 8, 0, 0, 0, 0, 0}, /* 0x94 (10010100) */
+    {1, 3, 5, 8, 0, 0, 0, 0}, /* 0x95 (10010101) */
+    {2, 3, 5, 8, 0, 0, 0, 0}, /* 0x96 (10010110) */
+    {1, 2, 3, 5, 8, 0, 0, 0}, /* 0x97 (10010111) */
+    {4, 5, 8, 0, 0, 0, 0, 0}, /* 0x98 (10011000) */
+    {1, 4, 5, 8, 0, 0, 0, 0}, /* 0x99 (10011001) */
+    {2, 4, 5, 8, 0, 0, 0, 0}, /* 0x9A (10011010) */
+    {1, 2, 4, 5, 8, 0, 0, 0}, /* 0x9B (10011011) */
+    {3, 4, 5, 8, 0, 0, 0, 0}, /* 0x9C (10011100) */
+    {1, 3, 4, 5, 8, 0, 0, 0}, /* 0x9D (10011101) */
+    {2, 3, 4, 5, 8, 0, 0, 0}, /* 0x9E (10011110) */
+    {1, 2, 3, 4, 5, 8, 0, 0}, /* 0x9F (10011111) */
+    {6, 8, 0, 0, 0, 0, 0, 0}, /* 0xA0 (10100000) */
+    {1, 6, 8, 0, 0, 0, 0, 0}, /* 0xA1 (10100001) */
+    {2, 6, 8, 0, 0, 0, 0, 0}, /* 0xA2 (10100010) */
+    {1, 2, 6, 8, 0, 0, 0, 0}, /* 0xA3 (10100011) */
+    {3, 6, 8, 0, 0, 0, 0, 0}, /* 0xA4 (10100100) */
+    {1, 3, 6, 8, 0, 0, 0, 0}, /* 0xA5 (10100101) */
+    {2, 3, 6, 8, 0, 0, 0, 0}, /* 0xA6 (10100110) */
+    {1, 2, 3, 6, 8, 0, 0, 0}, /* 0xA7 (10100111) */
+    {4, 6, 8, 0, 0, 0, 0, 0}, /* 0xA8 (10101000) */
+    {1, 4, 6, 8, 0, 0, 0, 0}, /* 0xA9 (10101001) */
+    {2, 4, 6, 8, 0, 0, 0, 0}, /* 0xAA (10101010) */
+    {1, 2, 4, 6, 8, 0, 0, 0}, /* 0xAB (10101011) */
+    {3, 4, 6, 8, 0, 0, 0, 0}, /* 0xAC (10101100) */
+    {1, 3, 4, 6, 8, 0, 0, 0}, /* 0xAD (10101101) */
+    {2, 3, 4, 6, 8, 0, 0, 0}, /* 0xAE (10101110) */
+    {1, 2, 3, 4, 6, 8, 0, 0}, /* 0xAF (10101111) */
+    {5, 6, 8, 0, 0, 0, 0, 0}, /* 0xB0 (10110000) */
+    {1, 5, 6, 8, 0, 0, 0, 0}, /* 0xB1 (10110001) */
+    {2, 5, 6, 8, 0, 0, 0, 0}, /* 0xB2 (10110010) */
+    {1, 2, 5, 6, 8, 0, 0, 0}, /* 0xB3 (10110011) */
+    {3, 5, 6, 8, 0, 0, 0, 0}, /* 0xB4 (10110100) */
+    {1, 3, 5, 6, 8, 0, 0, 0}, /* 0xB5 (10110101) */
+    {2, 3, 5, 6, 8, 0, 0, 0}, /* 0xB6 (10110110) */
+    {1, 2, 3, 5, 6, 8, 0, 0}, /* 0xB7 (10110111) */
+    {4, 5, 6, 8, 0, 0, 0, 0}, /* 0xB8 (10111000) */
+    {1, 4, 5, 6, 8, 0, 0, 0}, /* 0xB9 (10111001) */
+    {2, 4, 5, 6, 8, 0, 0, 0}, /* 0xBA (10111010) */
+    {1, 2, 4, 5, 6, 8, 0, 0}, /* 0xBB (10111011) */
+    {3, 4, 5, 6, 8, 0, 0, 0}, /* 0xBC (10111100) */
+    {1, 3, 4, 5, 6, 8, 0, 0}, /* 0xBD (10111101) */
+    {2, 3, 4, 5, 6, 8, 0, 0}, /* 0xBE (10111110) */
+    {1, 2, 3, 4, 5, 6, 8, 0}, /* 0xBF (10111111) */
+    {7, 8, 0, 0, 0, 0, 0, 0}, /* 0xC0 (11000000) */
+    {1, 7, 8, 0, 0, 0, 0, 0}, /* 0xC1 (11000001) */
+    {2, 7, 8, 0, 0, 0, 0, 0}, /* 0xC2 (11000010) */
+    {1, 2, 7, 8, 0, 0, 0, 0}, /* 0xC3 (11000011) */
+    {3, 7, 8, 0, 0, 0, 0, 0}, /* 0xC4 (11000100) */
+    {1, 3, 7, 8, 0, 0, 0, 0}, /* 0xC5 (11000101) */
+    {2, 3, 7, 8, 0, 0, 0, 0}, /* 0xC6 (11000110) */
+    {1, 2, 3, 7, 8, 0, 0, 0}, /* 0xC7 (11000111) */
+    {4, 7, 8, 0, 0, 0, 0, 0}, /* 0xC8 (11001000) */
+    {1, 4, 7, 8, 0, 0, 0, 0}, /* 0xC9 (11001001) */
+    {2, 4, 7, 8, 0, 0, 0, 0}, /* 0xCA (11001010) */
+    {1, 2, 4, 7, 8, 0, 0, 0}, /* 0xCB (11001011) */
+    {3, 4, 7, 8, 0, 0, 0, 0}, /* 0xCC (11001100) */
+    {1, 3, 4, 7, 8, 0, 0, 0}, /* 0xCD (11001101) */
+    {2, 3, 4, 7, 8, 0, 0, 0}, /* 0xCE (11001110) */
+    {1, 2, 3, 4, 7, 8, 0, 0}, /* 0xCF (11001111) */
+    {5, 7, 8, 0, 0, 0, 0, 0}, /* 0xD0 (11010000) */
+    {1, 5, 7, 8, 0, 0, 0, 0}, /* 0xD1 (11010001) */
+    {2, 5, 7, 8, 0, 0, 0, 0}, /* 0xD2 (11010010) */
+    {1, 2, 5, 7, 8, 0, 0, 0}, /* 0xD3 (11010011) */
+    {3, 5, 7, 8, 0, 0, 0, 0}, /* 0xD4 (11010100) */
+    {1, 3, 5, 7, 8, 0, 0, 0}, /* 0xD5 (11010101) */
+    {2, 3, 5, 7, 8, 0, 0, 0}, /* 0xD6 (11010110) */
+    {1, 2, 3, 5, 7, 8, 0, 0}, /* 0xD7 (11010111) */
+    {4, 5, 7, 8, 0, 0, 0, 0}, /* 0xD8 (11011000) */
+    {1, 4, 5, 7, 8, 0, 0, 0}, /* 0xD9 (11011001) */
+    {2, 4, 5, 7, 8, 0, 0, 0}, /* 0xDA (11011010) */
+    {1, 2, 4, 5, 7, 8, 0, 0}, /* 0xDB (11011011) */
+    {3, 4, 5, 7, 8, 0, 0, 0}, /* 0xDC (11011100) */
+    {1, 3, 4, 5, 7, 8, 0, 0}, /* 0xDD (11011101) */
+    {2, 3, 4, 5, 7, 8, 0, 0}, /* 0xDE (11011110) */
+    {1, 2, 3, 4, 5, 7, 8, 0}, /* 0xDF (11011111) */
+    {6, 7, 8, 0, 0, 0, 0, 0}, /* 0xE0 (11100000) */
+    {1, 6, 7, 8, 0, 0, 0, 0}, /* 0xE1 (11100001) */
+    {2, 6, 7, 8, 0, 0, 0, 0}, /* 0xE2 (11100010) */
+    {1, 2, 6, 7, 8, 0, 0, 0}, /* 0xE3 (11100011) */
+    {3, 6, 7, 8, 0, 0, 0, 0}, /* 0xE4 (11100100) */
+    {1, 3, 6, 7, 8, 0, 0, 0}, /* 0xE5 (11100101) */
+    {2, 3, 6, 7, 8, 0, 0, 0}, /* 0xE6 (11100110) */
+    {1, 2, 3, 6, 7, 8, 0, 0}, /* 0xE7 (11100111) */
+    {4, 6, 7, 8, 0, 0, 0, 0}, /* 0xE8 (11101000) */
+    {1, 4, 6, 7, 8, 0, 0, 0}, /* 0xE9 (11101001) */
+    {2, 4, 6, 7, 8, 0, 0, 0}, /* 0xEA (11101010) */
+    {1, 2, 4, 6, 7, 8, 0, 0}, /* 0xEB (11101011) */
+    {3, 4, 6, 7, 8, 0, 0, 0}, /* 0xEC (11101100) */
+    {1, 3, 4, 6, 7, 8, 0, 0}, /* 0xED (11101101) */
+    {2, 3, 4, 6, 7, 8, 0, 0}, /* 0xEE (11101110) */
+    {1, 2, 3, 4, 6, 7, 8, 0}, /* 0xEF (11101111) */
+    {5, 6, 7, 8, 0, 0, 0, 0}, /* 0xF0 (11110000) */
+    {1, 5, 6, 7, 8, 0, 0, 0}, /* 0xF1 (11110001) */
+    {2, 5, 6, 7, 8, 0, 0, 0}, /* 0xF2 (11110010) */
+    {1, 2, 5, 6, 7, 8, 0, 0}, /* 0xF3 (11110011) */
+    {3, 5, 6, 7, 8, 0, 0, 0}, /* 0xF4 (11110100) */
+    {1, 3, 5, 6, 7, 8, 0, 0}, /* 0xF5 (11110101) */
+    {2, 3, 5, 6, 7, 8, 0, 0}, /* 0xF6 (11110110) */
+    {1, 2, 3, 5, 6, 7, 8, 0}, /* 0xF7 (11110111) */
+    {4, 5, 6, 7, 8, 0, 0, 0}, /* 0xF8 (11111000) */
+    {1, 4, 5, 6, 7, 8, 0, 0}, /* 0xF9 (11111001) */
+    {2, 4, 5, 6, 7, 8, 0, 0}, /* 0xFA (11111010) */
+    {1, 2, 4, 5, 6, 7, 8, 0}, /* 0xFB (11111011) */
+    {3, 4, 5, 6, 7, 8, 0, 0}, /* 0xFC (11111100) */
+    {1, 3, 4, 5, 6, 7, 8, 0}, /* 0xFD (11111101) */
+    {2, 3, 4, 5, 6, 7, 8, 0}, /* 0xFE (11111110) */
+    {1, 2, 3, 4, 5, 6, 7, 8}  /* 0xFF (11111111) */
+};
+
+#endif
+
+#ifdef USEAVX
+
+size_t bitset_extract_setbits_avx2(uint64_t *array, size_t length, void *vout,
+                                   size_t outcapacity, uint32_t base) {
+    uint32_t *out = (uint32_t *)vout;
+    uint32_t *initout = out;
+    __m256i baseVec = _mm256_set1_epi32(base - 1);
+    __m256i incVec = _mm256_set1_epi32(64);
+    __m256i add8 = _mm256_set1_epi32(8);
+    uint32_t *safeout = out + outcapacity;
+    size_t i = 0;
+    for (; (i < length) && (out + 64 <= safeout); ++i) {
+        uint64_t w = array[i];
+        if (w == 0) {
+            baseVec = _mm256_add_epi32(baseVec, incVec);
+        } else {
+            for (int k = 0; k < 4; ++k) {
+                uint8_t byteA = (uint8_t)w;
+                uint8_t byteB = (uint8_t)(w >> 8);
+                w >>= 16;
+                __m256i vecA =
+                    _mm256_load_si256((const __m256i *)vecDecodeTable[byteA]);
+                __m256i vecB =
+                    _mm256_load_si256((const __m256i *)vecDecodeTable[byteB]);
+                uint8_t advanceA = lengthTable[byteA];
+                uint8_t advanceB = lengthTable[byteB];
+                vecA = _mm256_add_epi32(baseVec, vecA);
+                baseVec = _mm256_add_epi32(baseVec, add8);
+                vecB = _mm256_add_epi32(baseVec, vecB);
+                baseVec = _mm256_add_epi32(baseVec, add8);
+                _mm256_storeu_si256((__m256i *)out, vecA);
+                out += advanceA;
+                _mm256_storeu_si256((__m256i *)out, vecB);
+                out += advanceB;
+            }
+        }
+    }
+    base += i * 64;
+    for (; (i < length) && (out < safeout); ++i) {
+        uint64_t w = array[i];
+        while ((w != 0) && (out < safeout)) {
+            uint64_t t = w & (~w + 1); // on x64, should compile to BLSI (careful: the Intel compiler seems 
to fail)
+            int r = __builtin_ctzll(w); // on x64, should compile to TZCNT
+            uint32_t val = r + base;
+            memcpy(out, &val,
+                   sizeof(uint32_t));  // should be compiled as a MOV on x64
+            out++;
+            w ^= t;
+        }
+        base += 64;
+    }
+    return out - initout;
+}
+#endif  // USEAVX
+
+size_t bitset_extract_setbits(uint64_t *bitset, size_t length, void *vout,
+                              uint32_t base) {
+    int outpos = 0;
+    uint32_t *out = (uint32_t *)vout;
+    for (size_t i = 0; i < length; ++i) {
+        uint64_t w = bitset[i];
+        while (w != 0) {
+            uint64_t t = w & (~w + 1); // on x64, should compile to BLSI (careful: the Intel compiler seems 
to fail)
+            int r = __builtin_ctzll(w); // on x64, should compile to TZCNT
+            uint32_t val = r + base;
+            memcpy(out + outpos, &val,
+                   sizeof(uint32_t));  // should be compiled as a MOV on x64
+            outpos++;
+            w ^= t;
+        }
+        base += 64;
+    }
+    return outpos;
+}
+
+size_t bitset_extract_intersection_setbits_uint16(const uint64_t * __restrict__ bitset1,
+                                                  const uint64_t * __restrict__ bitset2,
+                                                  size_t length, uint16_t *out,
+                                                  uint16_t base) {
+    int outpos = 0;
+    for (size_t i = 0; i < length; ++i) {
+        uint64_t w = bitset1[i] & bitset2[i];
+        while (w != 0) {
+            uint64_t t = w & (~w + 1);
+            int r = __builtin_ctzll(w);
+            out[outpos++] = r + base;
+            w ^= t;
+        }
+        base += 64;
+    }
+    return outpos;
+}
+
+#ifdef IS_X64
+/*
+ * Given a bitset containing "length" 64-bit words, write out the position
+ * of all the set bits to "out" as 16-bit integers, values start at "base" (can
+ *be set to zero).
+ *
+ * The "out" pointer should be sufficient to store the actual number of bits
+ *set.
+ *
+ * Returns how many values were actually decoded.
+ *
+ * This function uses SSE decoding.
+ */
+size_t bitset_extract_setbits_sse_uint16(const uint64_t *bitset, size_t length,
+                                         uint16_t *out, size_t outcapacity,
+                                         uint16_t base) {
+    uint16_t *initout = out;
+    __m128i baseVec = _mm_set1_epi16(base - 1);
+    __m128i incVec = _mm_set1_epi16(64);
+    __m128i add8 = _mm_set1_epi16(8);
+    uint16_t *safeout = out + outcapacity;
+    const int numberofbytes = 2;  // process two bytes at a time
+    size_t i = 0;
+    for (; (i < length) && (out + numberofbytes * 8 <= safeout); ++i) {
+        uint64_t w = bitset[i];
+        if (w == 0) {
+            baseVec = _mm_add_epi16(baseVec, incVec);
+        } else {
+            for (int k = 0; k < 4; ++k) {
+                uint8_t byteA = (uint8_t)w;
+                uint8_t byteB = (uint8_t)(w >> 8);
+                w >>= 16;
+                __m128i vecA = _mm_load_si128(
+                    (const __m128i *)vecDecodeTable_uint16[byteA]);
+                __m128i vecB = _mm_load_si128(
+                    (const __m128i *)vecDecodeTable_uint16[byteB]);
+                uint8_t advanceA = lengthTable[byteA];
+                uint8_t advanceB = lengthTable[byteB];
+                vecA = _mm_add_epi16(baseVec, vecA);
+                baseVec = _mm_add_epi16(baseVec, add8);
+                vecB = _mm_add_epi16(baseVec, vecB);
+                baseVec = _mm_add_epi16(baseVec, add8);
+                _mm_storeu_si128((__m128i *)out, vecA);
+                out += advanceA;
+                _mm_storeu_si128((__m128i *)out, vecB);
+                out += advanceB;
+            }
+        }
+    }
+    base += (uint16_t)(i * 64);
+    for (; (i < length) && (out < safeout); ++i) {
+        uint64_t w = bitset[i];
+        while ((w != 0) && (out < safeout)) {
+            uint64_t t = w & (~w + 1);
+            int r = __builtin_ctzll(w);
+            *out = r + base;
+            out++;
+            w ^= t;
+        }
+        base += 64;
+    }
+    return out - initout;
+}
+#endif
+
+/*
+ * Given a bitset containing "length" 64-bit words, write out the position
+ * of all the set bits to "out", values start at "base" (can be set to zero).
+ *
+ * The "out" pointer should be sufficient to store the actual number of bits
+ *set.
+ *
+ * Returns how many values were actually decoded.
+ */
+size_t bitset_extract_setbits_uint16(const uint64_t *bitset, size_t length,
+                                     uint16_t *out, uint16_t base) {
+    int outpos = 0;
+    for (size_t i = 0; i < length; ++i) {
+        uint64_t w = bitset[i];
+        while (w != 0) {
+            uint64_t t = w & (~w + 1);
+            int r = __builtin_ctzll(w);
+            out[outpos++] = r + base;
+            w ^= t;
+        }
+        base += 64;
+    }
+    return outpos;
+}
+
+#if defined(ASMBITMANIPOPTIMIZATION)
+
+uint64_t bitset_set_list_withcard(void *bitset, uint64_t card,
+                                  const uint16_t *list, uint64_t length) {
+    uint64_t offset, load, pos;
+    uint64_t shift = 6;
+    const uint16_t *end = list + length;
+    if (!length) return card;
+    // TODO: could unroll for performance, see bitset_set_list
+    // bts is not available as an intrinsic in GCC
+    __asm volatile(
+        "1:\n"
+        "movzwq (%[list]), %[pos]\n"
+        "shrx %[shift], %[pos], %[offset]\n"
+        "mov (%[bitset],%[offset],8), %[load]\n"
+        "bts %[pos], %[load]\n"
+        "mov %[load], (%[bitset],%[offset],8)\n"
+        "sbb $-1, %[card]\n"
+        "add $2, %[list]\n"
+        "cmp %[list], %[end]\n"
+        "jnz 1b"
+        : [card] "+&r"(card), [list] "+&r"(list), [load] "=&r"(load),
+          [pos] "=&r"(pos), [offset] "=&r"(offset)
+        : [end] "r"(end), [bitset] "r"(bitset), [shift] "r"(shift));
+    return card;
+}
+
+void bitset_set_list(void *bitset, const uint16_t *list, uint64_t length) {
+    uint64_t pos;
+    const uint16_t *end = list + length;
+
+    uint64_t shift = 6;
+    uint64_t offset;
+    uint64_t load;
+    for (; list + 3 < end; list += 4) {
+        pos = list[0];
+        __asm volatile(
+            "shrx %[shift], %[pos], %[offset]\n"
+            "mov (%[bitset],%[offset],8), %[load]\n"
+            "bts %[pos], %[load]\n"
+            "mov %[load], (%[bitset],%[offset],8)"
+            : [load] "=&r"(load), [offset] "=&r"(offset)
+            : [bitset] "r"(bitset), [shift] "r"(shift), [pos] "r"(pos));
+        pos = list[1];
+        __asm volatile(
+            "shrx %[shift], %[pos], %[offset]\n"
+            "mov (%[bitset],%[offset],8), %[load]\n"
+            "bts %[pos], %[load]\n"
+            "mov %[load], (%[bitset],%[offset],8)"
+            : [load] "=&r"(load), [offset] "=&r"(offset)
+            : [bitset] "r"(bitset), [shift] "r"(shift), [pos] "r"(pos));
+        pos = list[2];
+        __asm volatile(
+            "shrx %[shift], %[pos], %[offset]\n"
+            "mov (%[bitset],%[offset],8), %[load]\n"
+            "bts %[pos], %[load]\n"
+            "mov %[load], (%[bitset],%[offset],8)"
+            : [load] "=&r"(load), [offset] "=&r"(offset)
+            : [bitset] "r"(bitset), [shift] "r"(shift), [pos] "r"(pos));
+        pos = list[3];
+        __asm volatile(
+            "shrx %[shift], %[pos], %[offset]\n"
+            "mov (%[bitset],%[offset],8), %[load]\n"
+            "bts %[pos], %[load]\n"
+            "mov %[load], (%[bitset],%[offset],8)"
+            : [load] "=&r"(load), [offset] "=&r"(offset)
+            : [bitset] "r"(bitset), [shift] "r"(shift), [pos] "r"(pos));
+    }
+
+    while (list != end) {
+        pos = list[0];
+        __asm volatile(
+            "shrx %[shift], %[pos], %[offset]\n"
+            "mov (%[bitset],%[offset],8), %[load]\n"
+            "bts %[pos], %[load]\n"
+            "mov %[load], (%[bitset],%[offset],8)"
+            : [load] "=&r"(load), [offset] "=&r"(offset)
+            : [bitset] "r"(bitset), [shift] "r"(shift), [pos] "r"(pos));
+        list++;
+    }
+}
+
+uint64_t bitset_clear_list(void *bitset, uint64_t card, const uint16_t *list,
+                           uint64_t length) {
+    uint64_t offset, load, pos;
+    uint64_t shift = 6;
+    const uint16_t *end = list + length;
+    if (!length) return card;
+    // btr is not available as an intrinsic in GCC
+    __asm volatile(
+        "1:\n"
+        "movzwq (%[list]), %[pos]\n"
+        "shrx %[shift], %[pos], %[offset]\n"
+        "mov (%[bitset],%[offset],8), %[load]\n"
+        "btr %[pos], %[load]\n"
+        "mov %[load], (%[bitset],%[offset],8)\n"
+        "sbb $0, %[card]\n"
+        "add $2, %[list]\n"
+        "cmp %[list], %[end]\n"
+        "jnz 1b"
+        : [card] "+&r"(card), [list] "+&r"(list), [load] "=&r"(load),
+          [pos] "=&r"(pos), [offset] "=&r"(offset)
+        : [end] "r"(end), [bitset] "r"(bitset), [shift] "r"(shift)
+        :
+        /* clobbers */ "memory");
+    return card;
+}
+
+#else
+uint64_t bitset_clear_list(void *bitset, uint64_t card, const uint16_t *list,
+                           uint64_t length) {
+    uint64_t offset, load, newload, pos, index;
+    const uint16_t *end = list + length;
+    while (list != end) {
+        pos = *(const uint16_t *)list;
+        offset = pos >> 6;
+        index = pos % 64;
+        load = ((uint64_t *)bitset)[offset];
+        newload = load & ~(UINT64_C(1) << index);
+        card -= (load ^ newload) >> index;
+        ((uint64_t *)bitset)[offset] = newload;
+        list++;
+    }
+    return card;
+}
+
+uint64_t bitset_set_list_withcard(void *bitset, uint64_t card,
+                                  const uint16_t *list, uint64_t length) {
+    uint64_t offset, load, newload, pos, index;
+    const uint16_t *end = list + length;
+    while (list != end) {
+        pos = *(const uint16_t *)list;
+        offset = pos >> 6;
+        index = pos % 64;
+        load = ((uint64_t *)bitset)[offset];
+        newload = load | (UINT64_C(1) << index);
+        card += (load ^ newload) >> index;
+        ((uint64_t *)bitset)[offset] = newload;
+        list++;
+    }
+    return card;
+}
+
+void bitset_set_list(void *bitset, const uint16_t *list, uint64_t length) {
+    uint64_t offset, load, newload, pos, index;
+    const uint16_t *end = list + length;
+    while (list != end) {
+        pos = *(const uint16_t *)list;
+        offset = pos >> 6;
+        index = pos % 64;
+        load = ((uint64_t *)bitset)[offset];
+        newload = load | (UINT64_C(1) << index);
+        ((uint64_t *)bitset)[offset] = newload;
+        list++;
+    }
+}
+
+#endif
+
+/* flip specified bits */
+/* TODO: consider whether worthwhile to make an asm version */
+
+uint64_t bitset_flip_list_withcard(void *bitset, uint64_t card,
+                                   const uint16_t *list, uint64_t length) {
+    uint64_t offset, load, newload, pos, index;
+    const uint16_t *end = list + length;
+    while (list != end) {
+        pos = *(const uint16_t *)list;
+        offset = pos >> 6;
+        index = pos % 64;
+        load = ((uint64_t *)bitset)[offset];
+        newload = load ^ (UINT64_C(1) << index);
+        // todo: is a branch here all that bad?
+        card +=
+            (1 - 2 * (((UINT64_C(1) << index) & load) >> index));  // +1 or -1
+        ((uint64_t *)bitset)[offset] = newload;
+        list++;
+    }
+    return card;
+}
+
+void bitset_flip_list(void *bitset, const uint16_t *list, uint64_t length) {
+    uint64_t offset, load, newload, pos, index;
+    const uint16_t *end = list + length;
+    while (list != end) {
+        pos = *(const uint16_t *)list;
+        offset = pos >> 6;
+        index = pos % 64;
+        load = ((uint64_t *)bitset)[offset];
+        newload = load ^ (UINT64_C(1) << index);
+        ((uint64_t *)bitset)[offset] = newload;
+        list++;
+    }
+}
+/* end file src/bitset_util.c */
+/* begin file src/containers/array.c */
+/*
+ * array.c
+ *
+ */
+
+#include <assert.h>
+#include <stdio.h>
+#include <stdlib.h>
+
+/* Create a new array with capacity size. Return NULL in case of failure. */
+array_container_t *array_container_create_given_capacity(int32_t size) {
+    array_container_t *container;
+
+    container = (array_container_t *)malloc(sizeof(array_container_t));
+    assert (container);
+
+    if( size <= 0 ) { // we don't want to rely on malloc(0)
+        container->array = NULL;
+    } else {
+        container->array = (uint16_t *)malloc(sizeof(uint16_t) * size);
+        assert (container->array);
+    }
+
+    container->capacity = size;
+    container->cardinality = 0;
+
+    return container;
+}
+
+/* Create a new array. Return NULL in case of failure. */
+array_container_t *array_container_create(void) {
+    return array_container_create_given_capacity(ARRAY_DEFAULT_INIT_SIZE);
+}
+
+/* Create a new array containing all values in [min,max). */
+array_container_t * array_container_create_range(uint32_t min, uint32_t max) {
+    array_container_t * answer = array_container_create_given_capacity(max - min + 1);
+    if(answer == NULL) return answer;
+    answer->cardinality = 0;
+    for(uint32_t k = min; k < max; k++) {
+      answer->array[answer->cardinality++] = k;
+    }
+    return answer;
+}
+
+/* Duplicate container */
+array_container_t *array_container_clone(const array_container_t *src) {
+    array_container_t *newcontainer =
+        array_container_create_given_capacity(src->capacity);
+    if (newcontainer == NULL) return NULL;
+
+    newcontainer->cardinality = src->cardinality;
+
+    memcpy(newcontainer->array, src->array,
+           src->cardinality * sizeof(uint16_t));
+
+    return newcontainer;
+}
+
+int array_container_shrink_to_fit(array_container_t *src) {
+    if (src->cardinality == src->capacity) return 0;  // nothing to do
+    int savings = src->capacity - src->cardinality;
+    src->capacity = src->cardinality;
+    if( src->capacity == 0) { // we do not want to rely on realloc for zero allocs
+      free(src->array);
+      src->array = NULL;
+    } else {
+      uint16_t *oldarray = src->array;
+      src->array =
+        (uint16_t *)realloc(oldarray, src->capacity * sizeof(uint16_t));
+      if (src->array == NULL) free(oldarray);  // should never happen?
+    }
+    return savings;
+}
+
+/* Free memory. */
+void array_container_free(array_container_t *arr) {
+    if(arr->array != NULL) {// Jon Strabala reports that some tools complain otherwise
+      free(arr->array);
+      arr->array = NULL; // pedantic
+    }
+    free(arr);
+}
+
+static inline int32_t grow_capacity(int32_t capacity) {
+    return (capacity <= 0) ? ARRAY_DEFAULT_INIT_SIZE
+                           : capacity < 64 ? capacity * 2
+                                           : capacity < 1024 ? capacity * 3 / 2
+                                                             : capacity * 5 / 4;
+}
+
+static inline int32_t clamp(int32_t val, int32_t min, int32_t max) {
+    return ((val < min) ? min : (val > max) ? max : val);
+}
+
+void array_container_grow(array_container_t *container, int32_t min,
+                          bool preserve) {
+
+    int32_t max = (min <= DEFAULT_MAX_SIZE ? DEFAULT_MAX_SIZE : 65536);
+    int32_t new_capacity = clamp(grow_capacity(container->capacity), min, max);
+
+    container->capacity = new_capacity;
+    uint16_t *array = container->array;
+
+    if (preserve) {
+        container->array =
+            (uint16_t *)realloc(array, new_capacity * sizeof(uint16_t));
+        if (container->array == NULL) free(array);
+    } else {
+        // Jon Strabala reports that some tools complain otherwise
+        if (array != NULL) {
+          free(array);
+        }
+        container->array = (uint16_t *)malloc(new_capacity * sizeof(uint16_t));
+    }
+
+    //  handle the case where realloc fails
+    if (container->array == NULL) {
+      fprintf(stderr, "could not allocate memory\n");
+    }
+    assert(container->array != NULL);
+}
+
+/* Copy one container into another. We assume that they are distinct. */
+void array_container_copy(const array_container_t *src,
+                          array_container_t *dst) {
+    const int32_t cardinality = src->cardinality;
+    if (cardinality > dst->capacity) {
+        array_container_grow(dst, cardinality, false);
+    }
+
+    dst->cardinality = cardinality;
+    memcpy(dst->array, src->array, cardinality * sizeof(uint16_t));
+}
+
+void array_container_add_from_range(array_container_t *arr, uint32_t min,
+                                    uint32_t max, uint16_t step) {
+    for (uint32_t value = min; value < max; value += step) {
+        array_container_append(arr, value);
+    }
+}
+
+/* Computes the union of array1 and array2 and write the result to arrayout.
+ * It is assumed that arrayout is distinct from both array1 and array2.
+ */
+void array_container_union(const array_container_t *array_1,
+                           const array_container_t *array_2,
+                           array_container_t *out) {
+    const int32_t card_1 = array_1->cardinality, card_2 = array_2->cardinality;
+    const int32_t max_cardinality = card_1 + card_2;
+
+    if (out->capacity < max_cardinality) {
+      array_container_grow(out, max_cardinality, false);
+    }
+    out->cardinality = (int32_t)fast_union_uint16(array_1->array, card_1,
+                                      array_2->array, card_2, out->array);
+
+}
+
+/* Computes the  difference of array1 and array2 and write the result
+ * to array out.
+ * Array out does not need to be distinct from array_1
+ */
+void array_container_andnot(const array_container_t *array_1,
+                            const array_container_t *array_2,
+                            array_container_t *out) {
+    if (out->capacity < array_1->cardinality)
+        array_container_grow(out, array_1->cardinality, false);
+#ifdef ROARING_VECTOR_OPERATIONS_ENABLED
+    if((out != array_1) && (out != array_2)) {
+      out->cardinality =
+          difference_vector16(array_1->array, array_1->cardinality,
+                            array_2->array, array_2->cardinality, out->array);
+     } else {
+      out->cardinality =
+        difference_uint16(array_1->array, array_1->cardinality, array_2->array,
+                          array_2->cardinality, out->array);
+     }
+#else
+    out->cardinality =
+        difference_uint16(array_1->array, array_1->cardinality, array_2->array,
+                          array_2->cardinality, out->array);
+#endif
+}
+
+/* Computes the symmetric difference of array1 and array2 and write the
+ * result
+ * to arrayout.
+ * It is assumed that arrayout is distinct from both array1 and array2.
+ */
+void array_container_xor(const array_container_t *array_1,
+                         const array_container_t *array_2,
+                         array_container_t *out) {
+    const int32_t card_1 = array_1->cardinality, card_2 = array_2->cardinality;
+    const int32_t max_cardinality = card_1 + card_2;
+    if (out->capacity < max_cardinality) {
+        array_container_grow(out, max_cardinality, false);
+    }
+
+#ifdef ROARING_VECTOR_OPERATIONS_ENABLED
+    out->cardinality =
+        xor_vector16(array_1->array, array_1->cardinality, array_2->array,
+                     array_2->cardinality, out->array);
+#else
+    out->cardinality =
+        xor_uint16(array_1->array, array_1->cardinality, array_2->array,
+                   array_2->cardinality, out->array);
+#endif
+}
+
+static inline int32_t minimum_int32(int32_t a, int32_t b) {
+    return (a < b) ? a : b;
+}
+
+/* computes the intersection of array1 and array2 and write the result to
+ * arrayout.
+ * It is assumed that arrayout is distinct from both array1 and array2.
+ * */
+void array_container_intersection(const array_container_t *array1,
+                                  const array_container_t *array2,
+                                  array_container_t *out) {
+    int32_t card_1 = array1->cardinality, card_2 = array2->cardinality,
+            min_card = minimum_int32(card_1, card_2);
+    const int threshold = 64;  // subject to tuning
+#ifdef USEAVX
+    if (out->capacity < min_card) {
+      array_container_grow(out, min_card + sizeof(__m128i) / sizeof(uint16_t),
+        false);
+    }
+#else
+    if (out->capacity < min_card) {
+      array_container_grow(out, min_card, false);
+    }
+#endif
+
+    if (card_1 * threshold < card_2) {
+        out->cardinality = intersect_skewed_uint16(
+            array1->array, card_1, array2->array, card_2, out->array);
+    } else if (card_2 * threshold < card_1) {
+        out->cardinality = intersect_skewed_uint16(
+            array2->array, card_2, array1->array, card_1, out->array);
+    } else {
+#ifdef USEAVX
+        out->cardinality = intersect_vector16(
+            array1->array, card_1, array2->array, card_2, out->array);
+#else
+        out->cardinality = intersect_uint16(array1->array, card_1,
+                                            array2->array, card_2, out->array);
+#endif
+    }
+}
+
+/* computes the size of the intersection of array1 and array2
+ * */
+int array_container_intersection_cardinality(const array_container_t *array1,
+                                             const array_container_t *array2) {
+    int32_t card_1 = array1->cardinality, card_2 = array2->cardinality;
+    const int threshold = 64;  // subject to tuning
+    if (card_1 * threshold < card_2) {
+        return intersect_skewed_uint16_cardinality(array1->array, card_1,
+                                                   array2->array, card_2);
+    } else if (card_2 * threshold < card_1) {
+        return intersect_skewed_uint16_cardinality(array2->array, card_2,
+                                                   array1->array, card_1);
+    } else {
+#ifdef USEAVX
+        return intersect_vector16_cardinality(array1->array, card_1,
+                                              array2->array, card_2);
+#else
+        return intersect_uint16_cardinality(array1->array, card_1,
+                                            array2->array, card_2);
+#endif
+    }
+}
+
+bool array_container_intersect(const array_container_t *array1,
+                                  const array_container_t *array2) {
+    int32_t card_1 = array1->cardinality, card_2 = array2->cardinality;
+    const int threshold = 64;  // subject to tuning
+    if (card_1 * threshold < card_2) {
+        return intersect_skewed_uint16_nonempty(
+            array1->array, card_1, array2->array, card_2);
+    } else if (card_2 * threshold < card_1) {
+       return intersect_skewed_uint16_nonempty(
+            array2->array, card_2, array1->array, card_1);
+    } else {
+       // we do not bother vectorizing
+        return intersect_uint16_nonempty(array1->array, card_1,
+                                            array2->array, card_2);
+    }
+}
+
+/* computes the intersection of array1 and array2 and write the result to
+ * array1.
+ * */
+void array_container_intersection_inplace(array_container_t *src_1,
+                                          const array_container_t *src_2) {
+    // todo: can any of this be vectorized?
+    int32_t card_1 = src_1->cardinality, card_2 = src_2->cardinality;
+    const int threshold = 64;  // subject to tuning
+    if (card_1 * threshold < card_2) {
+        src_1->cardinality = intersect_skewed_uint16(
+            src_1->array, card_1, src_2->array, card_2, src_1->array);
+    } else if (card_2 * threshold < card_1) {
+        src_1->cardinality = intersect_skewed_uint16(
+            src_2->array, card_2, src_1->array, card_1, src_1->array);
+    } else {
+        src_1->cardinality = intersect_uint16(
+            src_1->array, card_1, src_2->array, card_2, src_1->array);
+    }
+}
+
+int array_container_to_uint32_array(void *vout, const array_container_t *cont,
+                                    uint32_t base) {
+    int outpos = 0;
+    uint32_t *out = (uint32_t *)vout;
+    for (int i = 0; i < cont->cardinality; ++i) {
+        const uint32_t val = base + cont->array[i];
+        memcpy(out + outpos, &val,
+               sizeof(uint32_t));  // should be compiled as a MOV on x64
+        outpos++;
+    }
+    return outpos;
+}
+
+void array_container_printf(const array_container_t *v) {
+    if (v->cardinality == 0) {
+        printf("{}");
+        return;
+    }
+    printf("{");
+    printf("%d", v->array[0]);
+    for (int i = 1; i < v->cardinality; ++i) {
+        printf(",%d", v->array[i]);
+    }
+    printf("}");
+}
+
+void array_container_printf_as_uint32_array(const array_container_t *v,
+                                            uint32_t base) {
+    if (v->cardinality == 0) {
+        return;
+    }
+    printf("%u", v->array[0] + base);
+    for (int i = 1; i < v->cardinality; ++i) {
+        printf(",%u", v->array[i] + base);
+    }
+}
+
+/* Compute the number of runs */
+int32_t array_container_number_of_runs(const array_container_t *a) {
+    // Can SIMD work here?
+    int32_t nr_runs = 0;
+    int32_t prev = -2;
+    for (const uint16_t *p = a->array; p != a->array + a->cardinality; ++p) {
+        if (*p != prev + 1) nr_runs++;
+        prev = *p;
+    }
+    return nr_runs;
+}
+
+int32_t array_container_serialize(const array_container_t *container, char *buf) {
+    int32_t l, off;
+    uint16_t cardinality = (uint16_t)container->cardinality;
+
+    memcpy(buf, &cardinality, off = sizeof(cardinality));
+    l = sizeof(uint16_t) * container->cardinality;
+    if (l) memcpy(&buf[off], container->array, l);
+
+    return (off + l);
+}
+
+/**
+ * Writes the underlying array to buf, outputs how many bytes were written.
+ * The number of bytes written should be
+ * array_container_size_in_bytes(container).
+ *
+ */
+int32_t array_container_write(const array_container_t *container, char *buf) {
+    memcpy(buf, container->array, container->cardinality * sizeof(uint16_t));
+    return array_container_size_in_bytes(container);
+}
+
+bool array_container_is_subset(const array_container_t *container1,
+                               const array_container_t *container2) {
+    if (container1->cardinality > container2->cardinality) {
+        return false;
+    }
+    int i1 = 0, i2 = 0;
+    while (i1 < container1->cardinality && i2 < container2->cardinality) {
+        if (container1->array[i1] == container2->array[i2]) {
+            i1++;
+            i2++;
+        } else if (container1->array[i1] > container2->array[i2]) {
+            i2++;
+        } else {  // container1->array[i1] < container2->array[i2]
+            return false;
+        }
+    }
+    if (i1 == container1->cardinality) {
+        return true;
+    } else {
+        return false;
+    }
+}
+
+int32_t array_container_read(int32_t cardinality, array_container_t *container,
+                             const char *buf) {
+    if (container->capacity < cardinality) {
+        array_container_grow(container, cardinality, false);
+    }
+    container->cardinality = cardinality;
+    memcpy(container->array, buf, container->cardinality * sizeof(uint16_t));
+
+    return array_container_size_in_bytes(container);
+}
+
+uint32_t array_container_serialization_len(const array_container_t *container) {
+    return (sizeof(uint16_t) /* container->cardinality converted to 16 bit */ +
+            (sizeof(uint16_t) * container->cardinality));
+}
+
+void *array_container_deserialize(const char *buf, size_t buf_len) {
+    array_container_t *ptr;
+
+    if (buf_len < 2) /* capacity converted to 16 bit */
+        return (NULL);
+    else
+        buf_len -= 2;
+
+    if ((ptr = (array_container_t *)malloc(sizeof(array_container_t))) !=
+        NULL) {
+        size_t len;
+        int32_t off;
+        uint16_t cardinality;
+
+        memcpy(&cardinality, buf, off = sizeof(cardinality));
+
+        ptr->capacity = ptr->cardinality = (uint32_t)cardinality;
+        len = sizeof(uint16_t) * ptr->cardinality;
+
+        if (len != buf_len) {
+            free(ptr);
+            return (NULL);
+        }
+
+        if ((ptr->array = (uint16_t *)malloc(sizeof(uint16_t) *
+                                             ptr->capacity)) == NULL) {
+            free(ptr);
+            return (NULL);
+        }
+
+        if (len) memcpy(ptr->array, &buf[off], len);
+
+        /* Check if returned values are monotonically increasing */
+        for (int32_t i = 0, j = 0; i < ptr->cardinality; i++) {
+            if (ptr->array[i] < j) {
+                free(ptr->array);
+                free(ptr);
+                return (NULL);
+            } else
+                j = ptr->array[i];
+        }
+    }
+
+    return (ptr);
+}
+
+bool array_container_iterate(const array_container_t *cont, uint32_t base,
+                             roaring_iterator iterator, void *ptr) {
+    for (int i = 0; i < cont->cardinality; i++)
+        if (!iterator(cont->array[i] + base, ptr)) return false;
+    return true;
+}
+
+bool array_container_iterate64(const array_container_t *cont, uint32_t base,
+                               roaring_iterator64 iterator, uint64_t high_bits,
+                               void *ptr) {
+    for (int i = 0; i < cont->cardinality; i++)
+        if (!iterator(high_bits | (uint64_t)(cont->array[i] + base), ptr))
+            return false;
+    return true;
+}
+/* end file src/containers/array.c */
+/* begin file src/containers/bitset.c */
+/*
+ * bitset.c
+ *
+ */
+#ifndef _POSIX_C_SOURCE
+#define _POSIX_C_SOURCE 200809L
+#endif
+#include <assert.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+
+void bitset_container_clear(bitset_container_t *bitset) {
+    memset(bitset->array, 0, sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
+    bitset->cardinality = 0;
+}
+
+void bitset_container_set_all(bitset_container_t *bitset) {
+    memset(bitset->array, INT64_C(-1),
+           sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
+    bitset->cardinality = (1 << 16);
+}
+
+
+
+/* Create a new bitset. Return NULL in case of failure. */
+bitset_container_t *bitset_container_create(void) {
+    bitset_container_t *bitset =
+        (bitset_container_t *)malloc(sizeof(bitset_container_t));
+
+    if (!bitset) {
+        return NULL;
+    }
+    // sizeof(__m256i) == 32
+    bitset->array = (uint64_t *)roaring_bitmap_aligned_malloc(
+        32, sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
+    if (!bitset->array) {
+        free(bitset);
+        return NULL;
+    }
+    bitset_container_clear(bitset);
+    return bitset;
+}
+
+/* Copy one container into another. We assume that they are distinct. */
+void bitset_container_copy(const bitset_container_t *source,
+                           bitset_container_t *dest) {
+    dest->cardinality = source->cardinality;
+    memcpy(dest->array, source->array,
+           sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
+}
+
+void bitset_container_add_from_range(bitset_container_t *bitset, uint32_t min,
+                                     uint32_t max, uint16_t step) {
+    if (step == 0) return;   // refuse to crash
+    if ((64 % step) == 0) {  // step divides 64
+        uint64_t mask = 0;   // construct the repeated mask
+        for (uint32_t value = (min % step); value < 64; value += step) {
+            mask |= ((uint64_t)1 << value);
+        }
+        uint32_t firstword = min / 64;
+        uint32_t endword = (max - 1) / 64;
+        bitset->cardinality = (max - min + step - 1) / step;
+        if (firstword == endword) {
+            bitset->array[firstword] |=
+                mask & (((~UINT64_C(0)) << (min % 64)) &
+                        ((~UINT64_C(0)) >> ((~max + 1) % 64)));
+            return;
+        }
+        bitset->array[firstword] = mask & ((~UINT64_C(0)) << (min % 64));
+        for (uint32_t i = firstword + 1; i < endword; i++)
+            bitset->array[i] = mask;
+        bitset->array[endword] = mask & ((~UINT64_C(0)) >> ((~max + 1) % 64));
+    } else {
+        for (uint32_t value = min; value < max; value += step) {
+            bitset_container_add(bitset, value);
+        }
+    }
+}
+
+/* Free memory. */
+void bitset_container_free(bitset_container_t *bitset) {
+    if(bitset->array != NULL) {// Jon Strabala reports that some tools complain otherwise
+      roaring_bitmap_aligned_free(bitset->array);
+      bitset->array = NULL; // pedantic
+    }
+    free(bitset);
+}
+
+/* duplicate container. */
+bitset_container_t *bitset_container_clone(const bitset_container_t *src) {
+    bitset_container_t *bitset =
+        (bitset_container_t *)malloc(sizeof(bitset_container_t));
+    assert(bitset);
+
+    // sizeof(__m256i) == 32
+    bitset->array = (uint64_t *)roaring_bitmap_aligned_malloc(
+        32, sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
+    assert(bitset->array);
+    bitset->cardinality = src->cardinality;
+    memcpy(bitset->array, src->array,
+           sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
+    return bitset;
+}
+
+void bitset_container_set_range(bitset_container_t *bitset, uint32_t begin,
+                                uint32_t end) {
+    bitset_set_range(bitset->array, begin, end);
+    bitset->cardinality =
+        bitset_container_compute_cardinality(bitset);  // could be smarter
+}
+
+
+bool bitset_container_intersect(const bitset_container_t *src_1,
+                                  const bitset_container_t *src_2) {
+       // could vectorize, but this is probably already quite fast in practice
+    const uint64_t * __restrict__ array_1 = src_1->array;
+    const uint64_t * __restrict__ array_2 = src_2->array;
+       for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i ++) {
+        if((array_1[i] & array_2[i]) != 0) return true;
+    }
+    return false;
+}
+
+
+#ifdef USEAVX
+#ifndef WORDS_IN_AVX2_REG
+#define WORDS_IN_AVX2_REG sizeof(__m256i) / sizeof(uint64_t)
+#endif
+/* Get the number of bits set (force computation) */
+int bitset_container_compute_cardinality(const bitset_container_t *bitset) {
+    return (int) avx2_harley_seal_popcount256(
+        (const __m256i *)bitset->array,
+        BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX2_REG));
+}
+
+#elif defined(USENEON)
+int bitset_container_compute_cardinality(const bitset_container_t *bitset) {
+    uint16x8_t n0 = vdupq_n_u16(0);
+    uint16x8_t n1 = vdupq_n_u16(0);
+    uint16x8_t n2 = vdupq_n_u16(0);
+    uint16x8_t n3 = vdupq_n_u16(0);
+    for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) {
+        uint64x2_t c0 = vld1q_u64(&bitset->array[i + 0]);
+        n0 = vaddq_u16(n0, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c0))));
+        uint64x2_t c1 = vld1q_u64(&bitset->array[i + 2]);
+        n1 = vaddq_u16(n1, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c1))));
+        uint64x2_t c2 = vld1q_u64(&bitset->array[i + 4]);
+        n2 = vaddq_u16(n2, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c2))));
+        uint64x2_t c3 = vld1q_u64(&bitset->array[i + 6]);
+        n3 = vaddq_u16(n3, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c3))));
+    }
+    uint64x2_t n = vdupq_n_u64(0);
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n0)));
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n1)));
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n2)));
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n3)));
+    return vgetq_lane_u64(n, 0) + vgetq_lane_u64(n, 1);
+}
+
+#else
+
+/* Get the number of bits set (force computation) */
+int bitset_container_compute_cardinality(const bitset_container_t *bitset) {
+    const uint64_t *array = bitset->array;
+    int32_t sum = 0;
+    for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 4) {
+        sum += hamming(array[i]);
+        sum += hamming(array[i + 1]);
+        sum += hamming(array[i + 2]);
+        sum += hamming(array[i + 3]);
+    }
+    return sum;
+}
+
+#endif
+
+#ifdef USEAVX
+
+#define BITSET_CONTAINER_FN_REPEAT 8
+#ifndef WORDS_IN_AVX2_REG
+#define WORDS_IN_AVX2_REG sizeof(__m256i) / sizeof(uint64_t)
+#endif
+#define LOOP_SIZE                    \
+    BITSET_CONTAINER_SIZE_IN_WORDS / \
+        ((WORDS_IN_AVX2_REG)*BITSET_CONTAINER_FN_REPEAT)
+
+/* Computes a binary operation (eg union) on bitset1 and bitset2 and write the
+   result to bitsetout */
+// clang-format off
+#define BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic, neon_intrinsic)  \
+int bitset_container_##opname##_nocard(const bitset_container_t *src_1, \
+                                       const bitset_container_t *src_2, \
+                                       bitset_container_t *dst) {       \
+    const uint8_t * __restrict__ array_1 = (const uint8_t *)src_1->array; \
+    const uint8_t * __restrict__ array_2 = (const uint8_t *)src_2->array; \
+    /* not using the blocking optimization for some reason*/            \
+    uint8_t *out = (uint8_t*)dst->array;                                \
+    const int innerloop = 8;                                            \
+    for (size_t i = 0;                                                  \
+        i < BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX2_REG);       \
+                                                         i+=innerloop) {\
+        __m256i A1, A2, AO;                                             \
+        A1 = _mm256_lddqu_si256((const __m256i *)(array_1));                  \
+        A2 = _mm256_lddqu_si256((const __m256i *)(array_2));                  \
+        AO = avx_intrinsic(A2, A1);                                     \
+        _mm256_storeu_si256((__m256i *)out, AO);                        \
+        A1 = _mm256_lddqu_si256((const __m256i *)(array_1 + 32));             \
+        A2 = _mm256_lddqu_si256((const __m256i *)(array_2 + 32));             \
+        AO = avx_intrinsic(A2, A1);                                     \
+        _mm256_storeu_si256((__m256i *)(out+32), AO);                   \
+        A1 = _mm256_lddqu_si256((const __m256i *)(array_1 + 64));             \
+        A2 = _mm256_lddqu_si256((const __m256i *)(array_2 + 64));             \
+        AO = avx_intrinsic(A2, A1);                                     \
+        _mm256_storeu_si256((__m256i *)(out+64), AO);                   \
+        A1 = _mm256_lddqu_si256((const __m256i *)(array_1 + 96));             \
+        A2 = _mm256_lddqu_si256((const __m256i *)(array_2 + 96));             \
+        AO = avx_intrinsic(A2, A1);                                     \
+        _mm256_storeu_si256((__m256i *)(out+96), AO);                   \
+        A1 = _mm256_lddqu_si256((const __m256i *)(array_1 + 128));            \
+        A2 = _mm256_lddqu_si256((const __m256i *)(array_2 + 128));            \
+        AO = avx_intrinsic(A2, A1);                                     \
+        _mm256_storeu_si256((__m256i *)(out+128), AO);                  \
+        A1 = _mm256_lddqu_si256((const __m256i *)(array_1 + 160));            \
+        A2 = _mm256_lddqu_si256((const __m256i *)(array_2 + 160));            \
+        AO = avx_intrinsic(A2, A1);                                     \
+        _mm256_storeu_si256((__m256i *)(out+160), AO);                  \
+        A1 = _mm256_lddqu_si256((const __m256i *)(array_1 + 192));            \
+        A2 = _mm256_lddqu_si256((const __m256i *)(array_2 + 192));            \
+        AO = avx_intrinsic(A2, A1);                                     \
+        _mm256_storeu_si256((__m256i *)(out+192), AO);                  \
+        A1 = _mm256_lddqu_si256((const __m256i *)(array_1 + 224));            \
+        A2 = _mm256_lddqu_si256((const __m256i *)(array_2 + 224));            \
+        AO = avx_intrinsic(A2, A1);                                     \
+        _mm256_storeu_si256((__m256i *)(out+224), AO);                  \
+        out+=256;                                                       \
+        array_1 += 256;                                                 \
+        array_2 += 256;                                                 \
+    }                                                                   \
+    dst->cardinality = BITSET_UNKNOWN_CARDINALITY;                      \
+    return dst->cardinality;                                            \
+}                                                                       \
+/* next, a version that updates cardinality*/                           \
+int bitset_container_##opname(const bitset_container_t *src_1,          \
+                              const bitset_container_t *src_2,          \
+                              bitset_container_t *dst) {                \
+    const __m256i * __restrict__ array_1 = (const __m256i *) src_1->array; \
+    const __m256i * __restrict__ array_2 = (const __m256i *) src_2->array; \
+    __m256i *out = (__m256i *) dst->array;                              \
+    dst->cardinality = (int32_t)avx2_harley_seal_popcount256andstore_##opname(array_2,\
+               array_1, out,BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX2_REG));\
+    return dst->cardinality;                                            \
+}                                                                       \
+/* next, a version that just computes the cardinality*/                 \
+int bitset_container_##opname##_justcard(const bitset_container_t *src_1, \
+                              const bitset_container_t *src_2) {        \
+    const __m256i * __restrict__ data1 = (const __m256i *) src_1->array; \
+    const __m256i * __restrict__ data2 = (const __m256i *) src_2->array; \
+    return (int)avx2_harley_seal_popcount256_##opname(data2,                \
+               data1, BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX2_REG));\
+}
+
+#elif defined(USENEON)
+
+#define BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic, neon_intrinsic)  \
+int bitset_container_##opname(const bitset_container_t *src_1,                \
+                              const bitset_container_t *src_2,                \
+                              bitset_container_t *dst) {                      \
+    const uint64_t * __restrict__ array_1 = src_1->array;                     \
+    const uint64_t * __restrict__ array_2 = src_2->array;                     \
+    uint64_t *out = dst->array;                                               \
+    uint16x8_t n0 = vdupq_n_u16(0);                                           \
+    uint16x8_t n1 = vdupq_n_u16(0);                                           \
+    uint16x8_t n2 = vdupq_n_u16(0);                                           \
+    uint16x8_t n3 = vdupq_n_u16(0);                                           \
+    for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) {          \
+        uint64x2_t c0 = neon_intrinsic(vld1q_u64(&array_1[i + 0]),            \
+                                       vld1q_u64(&array_2[i + 0]));           \
+        n0 = vaddq_u16(n0, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c0))));   \
+        vst1q_u64(&out[i + 0], c0);                                           \
+        uint64x2_t c1 = neon_intrinsic(vld1q_u64(&array_1[i + 2]),            \
+                                       vld1q_u64(&array_2[i + 2]));           \
+        n1 = vaddq_u16(n1, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c1))));   \
+        vst1q_u64(&out[i + 2], c1);                                           \
+        uint64x2_t c2 = neon_intrinsic(vld1q_u64(&array_1[i + 4]),            \
+                                       vld1q_u64(&array_2[i + 4]));           \
+        n2 = vaddq_u16(n2, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c2))));   \
+        vst1q_u64(&out[i + 4], c2);                                           \
+        uint64x2_t c3 = neon_intrinsic(vld1q_u64(&array_1[i + 6]),            \
+                                       vld1q_u64(&array_2[i + 6]));           \
+        n3 = vaddq_u16(n3, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c3))));   \
+        vst1q_u64(&out[i + 6], c3);                                           \
+    }                                                                         \
+    uint64x2_t n = vdupq_n_u64(0);                                            \
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n0)));                           \
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n1)));                           \
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n2)));                           \
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n3)));                           \
+    dst->cardinality = vgetq_lane_u64(n, 0) + vgetq_lane_u64(n, 1);           \
+    return dst->cardinality;                                                  \
+}                                                                             \
+int bitset_container_##opname##_nocard(const bitset_container_t *src_1,       \
+                                       const bitset_container_t *src_2,       \
+                                             bitset_container_t *dst) {       \
+    const uint64_t * __restrict__ array_1 = src_1->array;                     \
+    const uint64_t * __restrict__ array_2 = src_2->array;                     \
+    uint64_t *out = dst->array;                                               \
+    for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) {          \
+        vst1q_u64(&out[i + 0], neon_intrinsic(vld1q_u64(&array_1[i + 0]),     \
+                                              vld1q_u64(&array_2[i + 0])));   \
+        vst1q_u64(&out[i + 2], neon_intrinsic(vld1q_u64(&array_1[i + 2]),     \
+                                              vld1q_u64(&array_2[i + 2])));   \
+        vst1q_u64(&out[i + 4], neon_intrinsic(vld1q_u64(&array_1[i + 4]),     \
+                                              vld1q_u64(&array_2[i + 4])));   \
+        vst1q_u64(&out[i + 6], neon_intrinsic(vld1q_u64(&array_1[i + 6]),     \
+                                              vld1q_u64(&array_2[i + 6])));   \
+    }                                                                         \
+    dst->cardinality = BITSET_UNKNOWN_CARDINALITY;                            \
+    return dst->cardinality;                                                  \
+}                                                                             \
+int bitset_container_##opname##_justcard(const bitset_container_t *src_1,     \
+                                         const bitset_container_t *src_2) {   \
+    const uint64_t * __restrict__ array_1 = src_1->array;                     \
+    const uint64_t * __restrict__ array_2 = src_2->array;                     \
+    uint16x8_t n0 = vdupq_n_u16(0);                                           \
+    uint16x8_t n1 = vdupq_n_u16(0);                                           \
+    uint16x8_t n2 = vdupq_n_u16(0);                                           \
+    uint16x8_t n3 = vdupq_n_u16(0);                                           \
+    for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) {          \
+        uint64x2_t c0 = neon_intrinsic(vld1q_u64(&array_1[i + 0]),            \
+                                       vld1q_u64(&array_2[i + 0]));           \
+        n0 = vaddq_u16(n0, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c0))));   \
+        uint64x2_t c1 = neon_intrinsic(vld1q_u64(&array_1[i + 2]),            \
+                                       vld1q_u64(&array_2[i + 2]));           \
+        n1 = vaddq_u16(n1, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c1))));   \
+        uint64x2_t c2 = neon_intrinsic(vld1q_u64(&array_1[i + 4]),            \
+                                       vld1q_u64(&array_2[i + 4]));           \
+        n2 = vaddq_u16(n2, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c2))));   \
+        uint64x2_t c3 = neon_intrinsic(vld1q_u64(&array_1[i + 6]),            \
+                                       vld1q_u64(&array_2[i + 6]));           \
+        n3 = vaddq_u16(n3, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c3))));   \
+    }                                                                         \
+    uint64x2_t n = vdupq_n_u64(0);                                            \
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n0)));                           \
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n1)));                           \
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n2)));                           \
+    n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n3)));                           \
+    return vgetq_lane_u64(n, 0) + vgetq_lane_u64(n, 1);                       \
+}
+
+#else /* not USEAVX  */
+
+#define BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic, neon_intrinsic)  \
+int bitset_container_##opname(const bitset_container_t *src_1,            \
+                              const bitset_container_t *src_2,            \
+                              bitset_container_t *dst) {                  \
+    const uint64_t * __restrict__ array_1 = src_1->array;                 \
+    const uint64_t * __restrict__ array_2 = src_2->array;                 \
+    uint64_t *out = dst->array;                                           \
+    int32_t sum = 0;                                                      \
+    for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) {      \
+        const uint64_t word_1 = (array_1[i])opsymbol(array_2[i]),         \
+                       word_2 = (array_1[i + 1])opsymbol(array_2[i + 1]); \
+        out[i] = word_1;                                                  \
+        out[i + 1] = word_2;                                              \
+        sum += hamming(word_1);                                    \
+        sum += hamming(word_2);                                    \
+    }                                                                     \
+    dst->cardinality = sum;                                               \
+    return dst->cardinality;                                              \
+}                                                                         \
+int bitset_container_##opname##_nocard(const bitset_container_t *src_1,   \
+                                       const bitset_container_t *src_2,   \
+                                       bitset_container_t *dst) {         \
+    const uint64_t * __restrict__ array_1 = src_1->array;                 \
+    const uint64_t * __restrict__ array_2 = src_2->array;                 \
+    uint64_t *out = dst->array;                                           \
+    for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i++) {         \
+        out[i] = (array_1[i])opsymbol(array_2[i]);                        \
+    }                                                                     \
+    dst->cardinality = BITSET_UNKNOWN_CARDINALITY;                        \
+    return dst->cardinality;                                              \
+}                                                                         \
+int bitset_container_##opname##_justcard(const bitset_container_t *src_1, \
+                              const bitset_container_t *src_2) {          \
+    const uint64_t * __restrict__ array_1 = src_1->array;                 \
+    const uint64_t * __restrict__ array_2 = src_2->array;                 \
+    int32_t sum = 0;                                                      \
+    for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) {      \
+        const uint64_t word_1 = (array_1[i])opsymbol(array_2[i]),         \
+                       word_2 = (array_1[i + 1])opsymbol(array_2[i + 1]); \
+        sum += hamming(word_1);                                    \
+        sum += hamming(word_2);                                    \
+    }                                                                     \
+    return sum;                                                           \
+}
+
+#endif
+
+// we duplicate the function because other containers use the "or" term, makes API more consistent
+BITSET_CONTAINER_FN(or,    |, _mm256_or_si256, vorrq_u64)
+BITSET_CONTAINER_FN(union, |, _mm256_or_si256, vorrq_u64)
+
+// we duplicate the function because other containers use the "intersection" term, makes API more consistent
+BITSET_CONTAINER_FN(and,          &, _mm256_and_si256, vandq_u64)
+BITSET_CONTAINER_FN(intersection, &, _mm256_and_si256, vandq_u64)
+
+BITSET_CONTAINER_FN(xor,    ^,  _mm256_xor_si256,    veorq_u64)
+BITSET_CONTAINER_FN(andnot, &~, _mm256_andnot_si256, vbicq_u64)
+// clang-format On
+
+
+
+int bitset_container_to_uint32_array( void *vout, const bitset_container_t *cont, uint32_t base) {
+#ifdef USEAVX2FORDECODING
+       if(cont->cardinality >= 8192)// heuristic
+               return (int) bitset_extract_setbits_avx2(cont->array, BITSET_CONTAINER_SIZE_IN_WORDS, 
vout,cont->cardinality,base);
+       else
+               return (int) bitset_extract_setbits(cont->array, BITSET_CONTAINER_SIZE_IN_WORDS, vout,base);
+#else
+       return (int) bitset_extract_setbits(cont->array, BITSET_CONTAINER_SIZE_IN_WORDS, vout,base);
+#endif
+}
+
+/*
+ * Print this container using printf (useful for debugging).
+ */
+void bitset_container_printf(const bitset_container_t * v) {
+       printf("{");
+       uint32_t base = 0;
+       bool iamfirst = true;// TODO: rework so that this is not necessary yet still readable
+       for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i) {
+               uint64_t w = v->array[i];
+               while (w != 0) {
+                       uint64_t t = w & (~w + 1);
+                       int r = __builtin_ctzll(w);
+                       if(iamfirst) {// predicted to be false
+                               printf("%u",base + r);
+                               iamfirst = false;
+                       } else {
+                               printf(",%u",base + r);
+                       }
+                       w ^= t;
+               }
+               base += 64;
+       }
+       printf("}");
+}
+
+
+/*
+ * Print this container using printf as a comma-separated list of 32-bit integers starting at base.
+ */
+void bitset_container_printf_as_uint32_array(const bitset_container_t * v, uint32_t base) {
+       bool iamfirst = true;// TODO: rework so that this is not necessary yet still readable
+       for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i) {
+               uint64_t w = v->array[i];
+               while (w != 0) {
+                       uint64_t t = w & (~w + 1);
+                       int r = __builtin_ctzll(w);
+                       if(iamfirst) {// predicted to be false
+                               printf("%u", r + base);
+                               iamfirst = false;
+                       } else {
+                               printf(",%u",r + base);
+                       }
+                       w ^= t;
+               }
+               base += 64;
+       }
+}
+
+
+// TODO: use the fast lower bound, also
+int bitset_container_number_of_runs(bitset_container_t *b) {
+  int num_runs = 0;
+  uint64_t next_word = b->array[0];
+
+  for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS-1; ++i) {
+    uint64_t word = next_word;
+    next_word = b->array[i+1];
+    num_runs += hamming((~word) & (word << 1)) + ( (word >> 63) & ~next_word);
+  }
+
+  uint64_t word = next_word;
+  num_runs += hamming((~word) & (word << 1));
+  if((word & 0x8000000000000000ULL) != 0)
+    num_runs++;
+  return num_runs;
+}
+
+int32_t bitset_container_serialize(const bitset_container_t *container, char *buf) {
+  int32_t l = sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS;
+  memcpy(buf, container->array, l);
+  return(l);
+}
+
+
+
+int32_t bitset_container_write(const bitset_container_t *container,
+                                  char *buf) {
+       memcpy(buf, container->array, BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t));
+       return bitset_container_size_in_bytes(container);
+}
+
+
+int32_t bitset_container_read(int32_t cardinality, bitset_container_t *container,
+               const char *buf)  {
+       container->cardinality = cardinality;
+       memcpy(container->array, buf, BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t));
+       return bitset_container_size_in_bytes(container);
+}
+
+uint32_t bitset_container_serialization_len(void) {
+  return(sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
+}
+
+void* bitset_container_deserialize(const char *buf, size_t buf_len) {
+  bitset_container_t *ptr;
+  size_t l = sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS;
+
+  if(l != buf_len)
+    return(NULL);
+
+  if((ptr = (bitset_container_t *)malloc(sizeof(bitset_container_t))) != NULL) {
+    memcpy(ptr, buf, sizeof(bitset_container_t));
+    // sizeof(__m256i) == 32
+    ptr->array = (uint64_t *) roaring_bitmap_aligned_malloc(32, l);
+    if (! ptr->array) {
+        free(ptr);
+        return NULL;
+    }
+    memcpy(ptr->array, buf, l);
+    ptr->cardinality = bitset_container_compute_cardinality(ptr);
+  }
+
+  return((void*)ptr);
+}
+
+bool bitset_container_iterate(const bitset_container_t *cont, uint32_t base, roaring_iterator iterator, void 
*ptr) {
+  for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) {
+    uint64_t w = cont->array[i];
+    while (w != 0) {
+      uint64_t t = w & (~w + 1);
+      int r = __builtin_ctzll(w);
+      if(!iterator(r + base, ptr)) return false;
+      w ^= t;
+    }
+    base += 64;
+  }
+  return true;
+}
+
+bool bitset_container_iterate64(const bitset_container_t *cont, uint32_t base, roaring_iterator64 iterator, 
uint64_t high_bits, void *ptr) {
+  for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) {
+    uint64_t w = cont->array[i];
+    while (w != 0) {
+      uint64_t t = w & (~w + 1);
+      int r = __builtin_ctzll(w);
+      if(!iterator(high_bits | (uint64_t)(r + base), ptr)) return false;
+      w ^= t;
+    }
+    base += 64;
+  }
+  return true;
+}
+
+
+bool bitset_container_equals(const bitset_container_t *container1, const bitset_container_t *container2) {
+       if((container1->cardinality != BITSET_UNKNOWN_CARDINALITY) && (container2->cardinality != 
BITSET_UNKNOWN_CARDINALITY)) {
+               if(container1->cardinality != container2->cardinality) {
+                       return false;
+               }
+    if (container1->cardinality == INT32_C(0x10000)) {
+        return true;
+    }
+       }
+#ifdef USEAVX
+  const __m256i *ptr1 = (const __m256i*)container1->array;
+  const __m256i *ptr2 = (const __m256i*)container2->array;
+  for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS*sizeof(uint64_t)/32; i++) {
+      __m256i r1 = _mm256_load_si256(ptr1+i);
+      __m256i r2 = _mm256_load_si256(ptr2+i);
+      int mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(r1, r2));
+      if ((uint32_t)mask != UINT32_MAX) {
+          return false;
+      }
+  }
+#else
+  return memcmp(container1->array,
+                container2->array,
+                BITSET_CONTAINER_SIZE_IN_WORDS*sizeof(uint64_t)) == 0;
+#endif
+       return true;
+}
+
+bool bitset_container_is_subset(const bitset_container_t *container1,
+                          const bitset_container_t *container2) {
+    if((container1->cardinality != BITSET_UNKNOWN_CARDINALITY) && (container2->cardinality != 
BITSET_UNKNOWN_CARDINALITY)) {
+        if(container1->cardinality > container2->cardinality) {
+            return false;
+        }
+    }
+    for(int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) {
+               if((container1->array[i] & container2->array[i]) != container1->array[i]) {
+                       return false;
+               }
+       }
+       return true;
+}
+
+bool bitset_container_select(const bitset_container_t *container, uint32_t *start_rank, uint32_t rank, 
uint32_t *element) {
+    int card = bitset_container_cardinality(container);
+    if(rank >= *start_rank + card) {
+        *start_rank += card;
+        return false;
+    }
+    const uint64_t *array = container->array;
+    int32_t size;
+    for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 1) {
+        size = hamming(array[i]);
+        if(rank <= *start_rank + size) {
+            uint64_t w = container->array[i];
+            uint16_t base = i*64;
+            while (w != 0) {
+                uint64_t t = w & (~w + 1);
+                int r = __builtin_ctzll(w);
+                if(*start_rank == rank) {
+                    *element = r+base;
+                    return true;
+                }
+                w ^= t;
+                *start_rank += 1;
+            }
+        }
+        else
+            *start_rank += size;
+    }
+    assert(false);
+    __builtin_unreachable();
+}
+
+
+/* Returns the smallest value (assumes not empty) */
+uint16_t bitset_container_minimum(const bitset_container_t *container) {
+  for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) {
+    uint64_t w = container->array[i];
+    if (w != 0) {
+      int r = __builtin_ctzll(w);
+      return r + i * 64;
+    }
+  }
+  return UINT16_MAX;
+}
+
+/* Returns the largest value (assumes not empty) */
+uint16_t bitset_container_maximum(const bitset_container_t *container) {
+  for (int32_t i = BITSET_CONTAINER_SIZE_IN_WORDS - 1; i > 0; --i ) {
+    uint64_t w = container->array[i];
+    if (w != 0) {
+      int r = __builtin_clzll(w);
+      return i * 64 + 63  - r;
+    }
+  }
+  return 0;
+}
+
+/* Returns the number of values equal or smaller than x */
+int bitset_container_rank(const bitset_container_t *container, uint16_t x) {
+  // credit: aqrit
+  int sum = 0;
+  int i = 0;
+  for (int end = x / 64; i < end; i++){
+    sum += hamming(container->array[i]);
+  }
+  uint64_t lastword = container->array[i];
+  uint64_t lastpos = UINT64_C(1) << (x % 64);
+  uint64_t mask = lastpos + lastpos - 1; // smear right
+  sum += hamming(lastword & mask);
+  return sum;
+}
+
+/* Returns the index of the first value equal or larger than x, or -1 */
+int bitset_container_index_equalorlarger(const bitset_container_t *container, uint16_t x) {
+  uint32_t x32 = x;
+  uint32_t k = x32 / 64;
+  uint64_t word = container->array[k];
+  const int diff = x32 - k * 64; // in [0,64)
+  word = (word >> diff) << diff; // a mask is faster, but we don't care
+  while(word == 0) {
+    k++;
+    if(k == BITSET_CONTAINER_SIZE_IN_WORDS) return -1;
+    word = container->array[k];
+  }
+  return k * 64 + __builtin_ctzll(word);
+}
+/* end file src/containers/bitset.c */
+/* begin file src/containers/containers.c */
+
+
+void container_free(void *container, uint8_t typecode) {
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            bitset_container_free((bitset_container_t *)container);
+            break;
+        case ARRAY_CONTAINER_TYPE_CODE:
+            array_container_free((array_container_t *)container);
+            break;
+        case RUN_CONTAINER_TYPE_CODE:
+            run_container_free((run_container_t *)container);
+            break;
+        case SHARED_CONTAINER_TYPE_CODE:
+            shared_container_free((shared_container_t *)container);
+            break;
+        default:
+            assert(false);
+            __builtin_unreachable();
+    }
+}
+
+void container_printf(const void *container, uint8_t typecode) {
+    container = container_unwrap_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            bitset_container_printf((const bitset_container_t *)container);
+            return;
+        case ARRAY_CONTAINER_TYPE_CODE:
+            array_container_printf((const array_container_t *)container);
+            return;
+        case RUN_CONTAINER_TYPE_CODE:
+            run_container_printf((const run_container_t *)container);
+            return;
+        default:
+            __builtin_unreachable();
+    }
+}
+
+void container_printf_as_uint32_array(const void *container, uint8_t typecode,
+                                      uint32_t base) {
+    container = container_unwrap_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            bitset_container_printf_as_uint32_array(
+                (const bitset_container_t *)container, base);
+            return;
+        case ARRAY_CONTAINER_TYPE_CODE:
+            array_container_printf_as_uint32_array(
+                (const array_container_t *)container, base);
+            return;
+        case RUN_CONTAINER_TYPE_CODE:
+            run_container_printf_as_uint32_array(
+                (const run_container_t *)container, base);
+            return;
+            return;
+        default:
+            __builtin_unreachable();
+    }
+}
+
+int32_t container_serialize(const void *container, uint8_t typecode,
+                            char *buf) {
+    container = container_unwrap_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return (bitset_container_serialize((const bitset_container_t *)container,
+                                               buf));
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return (
+                array_container_serialize((const array_container_t *)container, buf));
+        case RUN_CONTAINER_TYPE_CODE:
+            return (run_container_serialize((const run_container_t *)container, buf));
+        default:
+            assert(0);
+            __builtin_unreachable();
+            return (-1);
+    }
+}
+
+uint32_t container_serialization_len(const void *container, uint8_t typecode) {
+    container = container_unwrap_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return bitset_container_serialization_len();
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return array_container_serialization_len(
+                (const array_container_t *)container);
+        case RUN_CONTAINER_TYPE_CODE:
+            return run_container_serialization_len(
+                (const run_container_t *)container);
+        default:
+            assert(0);
+            __builtin_unreachable();
+            return (0);
+    }
+}
+
+void *container_deserialize(uint8_t typecode, const char *buf, size_t buf_len) {
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return (bitset_container_deserialize(buf, buf_len));
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return (array_container_deserialize(buf, buf_len));
+        case RUN_CONTAINER_TYPE_CODE:
+            return (run_container_deserialize(buf, buf_len));
+        case SHARED_CONTAINER_TYPE_CODE:
+            printf("this should never happen.\n");
+            assert(0);
+            __builtin_unreachable();
+            return (NULL);
+        default:
+            assert(0);
+            __builtin_unreachable();
+            return (NULL);
+    }
+}
+
+void *get_copy_of_container(void *container, uint8_t *typecode,
+                            bool copy_on_write) {
+    if (copy_on_write) {
+        shared_container_t *shared_container;
+        if (*typecode == SHARED_CONTAINER_TYPE_CODE) {
+            shared_container = (shared_container_t *)container;
+            shared_container->counter += 1;
+            return shared_container;
+        }
+        assert(*typecode != SHARED_CONTAINER_TYPE_CODE);
+
+        if ((shared_container = (shared_container_t *)malloc(
+                 sizeof(shared_container_t))) == NULL) {
+            return NULL;
+        }
+
+        shared_container->container = container;
+        shared_container->typecode = *typecode;
+
+        shared_container->counter = 2;
+        *typecode = SHARED_CONTAINER_TYPE_CODE;
+
+        return shared_container;
+    }  // copy_on_write
+    // otherwise, no copy on write...
+    const void *actualcontainer =
+        container_unwrap_shared((const void *)container, typecode);
+    assert(*typecode != SHARED_CONTAINER_TYPE_CODE);
+    return container_clone(actualcontainer, *typecode);
+}
+/**
+ * Copies a container, requires a typecode. This allocates new memory, caller
+ * is responsible for deallocation.
+ */
+void *container_clone(const void *container, uint8_t typecode) {
+    container = container_unwrap_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return bitset_container_clone((const bitset_container_t *)container);
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return array_container_clone((const array_container_t *)container);
+        case RUN_CONTAINER_TYPE_CODE:
+            return run_container_clone((const run_container_t *)container);
+        case SHARED_CONTAINER_TYPE_CODE:
+            printf("shared containers are not cloneable\n");
+            assert(false);
+            return NULL;
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return NULL;
+    }
+}
+
+void *shared_container_extract_copy(shared_container_t *container,
+                                    uint8_t *typecode) {
+    assert(container->counter > 0);
+    assert(container->typecode != SHARED_CONTAINER_TYPE_CODE);
+    container->counter--;
+    *typecode = container->typecode;
+    void *answer;
+    if (container->counter == 0) {
+        answer = container->container;
+        container->container = NULL;  // paranoid
+        free(container);
+    } else {
+        answer = container_clone(container->container, *typecode);
+    }
+    assert(*typecode != SHARED_CONTAINER_TYPE_CODE);
+    return answer;
+}
+
+void shared_container_free(shared_container_t *container) {
+    assert(container->counter > 0);
+    container->counter--;
+    if (container->counter == 0) {
+        assert(container->typecode != SHARED_CONTAINER_TYPE_CODE);
+        container_free(container->container, container->typecode);
+        container->container = NULL;  // paranoid
+        free(container);
+    }
+}
+
+/* end file src/containers/containers.c */
+/* begin file src/containers/convert.c */
+#include <stdio.h>
+
+
+// file contains grubby stuff that must know impl. details of all container
+// types.
+bitset_container_t *bitset_container_from_array(const array_container_t *a) {
+    bitset_container_t *ans = bitset_container_create();
+    int limit = array_container_cardinality(a);
+    for (int i = 0; i < limit; ++i) bitset_container_set(ans, a->array[i]);
+    return ans;
+}
+
+bitset_container_t *bitset_container_from_run(const run_container_t *arr) {
+    int card = run_container_cardinality(arr);
+    bitset_container_t *answer = bitset_container_create();
+    for (int rlepos = 0; rlepos < arr->n_runs; ++rlepos) {
+        rle16_t vl = arr->runs[rlepos];
+        bitset_set_lenrange(answer->array, vl.value, vl.length);
+    }
+    answer->cardinality = card;
+    return answer;
+}
+
+array_container_t *array_container_from_run(const run_container_t *arr) {
+    array_container_t *answer =
+        array_container_create_given_capacity(run_container_cardinality(arr));
+    answer->cardinality = 0;
+    for (int rlepos = 0; rlepos < arr->n_runs; ++rlepos) {
+        int run_start = arr->runs[rlepos].value;
+        int run_end = run_start + arr->runs[rlepos].length;
+
+        for (int run_value = run_start; run_value <= run_end; ++run_value) {
+            answer->array[answer->cardinality++] = (uint16_t)run_value;
+        }
+    }
+    return answer;
+}
+
+array_container_t *array_container_from_bitset(const bitset_container_t *bits) {
+    array_container_t *result =
+        array_container_create_given_capacity(bits->cardinality);
+    result->cardinality = bits->cardinality;
+    //  sse version ends up being slower here
+    // (bitset_extract_setbits_sse_uint16)
+    // because of the sparsity of the data
+    bitset_extract_setbits_uint16(bits->array, BITSET_CONTAINER_SIZE_IN_WORDS,
+                                  result->array, 0);
+    return result;
+}
+
+/* assumes that container has adequate space.  Run from [s,e] (inclusive) */
+static void add_run(run_container_t *r, int s, int e) {
+    r->runs[r->n_runs].value = s;
+    r->runs[r->n_runs].length = e - s;
+    r->n_runs++;
+}
+
+run_container_t *run_container_from_array(const array_container_t *c) {
+    int32_t n_runs = array_container_number_of_runs(c);
+    run_container_t *answer = run_container_create_given_capacity(n_runs);
+    int prev = -2;
+    int run_start = -1;
+    int32_t card = c->cardinality;
+    if (card == 0) return answer;
+    for (int i = 0; i < card; ++i) {
+        const uint16_t cur_val = c->array[i];
+        if (cur_val != prev + 1) {
+            // new run starts; flush old one, if any
+            if (run_start != -1) add_run(answer, run_start, prev);
+            run_start = cur_val;
+        }
+        prev = c->array[i];
+    }
+    // now prev is the last seen value
+    add_run(answer, run_start, prev);
+    // assert(run_container_cardinality(answer) == c->cardinality);
+    return answer;
+}
+
+/**
+ * Convert the runcontainer to either a Bitmap or an Array Container, depending
+ * on the cardinality.  Frees the container.
+ * Allocates and returns new container, which caller is responsible for freeing.
+ * It does not free the run container.
+ */
+
+void *convert_to_bitset_or_array_container(run_container_t *r, int32_t card,
+                                           uint8_t *resulttype) {
+    if (card <= DEFAULT_MAX_SIZE) {
+        array_container_t *answer = array_container_create_given_capacity(card);
+        answer->cardinality = 0;
+        for (int rlepos = 0; rlepos < r->n_runs; ++rlepos) {
+            uint16_t run_start = r->runs[rlepos].value;
+            uint16_t run_end = run_start + r->runs[rlepos].length;
+            for (uint16_t run_value = run_start; run_value <= run_end;
+                 ++run_value) {
+                answer->array[answer->cardinality++] = run_value;
+            }
+        }
+        assert(card == answer->cardinality);
+        *resulttype = ARRAY_CONTAINER_TYPE_CODE;
+        //run_container_free(r);
+        return answer;
+    }
+    bitset_container_t *answer = bitset_container_create();
+    for (int rlepos = 0; rlepos < r->n_runs; ++rlepos) {
+        uint16_t run_start = r->runs[rlepos].value;
+        bitset_set_lenrange(answer->array, run_start, r->runs[rlepos].length);
+    }
+    answer->cardinality = card;
+    *resulttype = BITSET_CONTAINER_TYPE_CODE;
+    //run_container_free(r);
+    return answer;
+}
+
+/* Converts a run container to either an array or a bitset, IF it saves space.
+ */
+/* If a conversion occurs, the caller is responsible to free the original
+ * container and
+ * he becomes responsible to free the new one. */
+void *convert_run_to_efficient_container(run_container_t *c,
+                                         uint8_t *typecode_after) {
+    int32_t size_as_run_container =
+        run_container_serialized_size_in_bytes(c->n_runs);
+
+    int32_t size_as_bitset_container =
+        bitset_container_serialized_size_in_bytes();
+    int32_t card = run_container_cardinality(c);
+    int32_t size_as_array_container =
+        array_container_serialized_size_in_bytes(card);
+
+    int32_t min_size_non_run =
+        size_as_bitset_container < size_as_array_container
+            ? size_as_bitset_container
+            : size_as_array_container;
+    if (size_as_run_container <= min_size_non_run) {  // no conversion
+        *typecode_after = RUN_CONTAINER_TYPE_CODE;
+        return c;
+    }
+    if (card <= DEFAULT_MAX_SIZE) {
+        // to array
+        array_container_t *answer = array_container_create_given_capacity(card);
+        answer->cardinality = 0;
+        for (int rlepos = 0; rlepos < c->n_runs; ++rlepos) {
+            int run_start = c->runs[rlepos].value;
+            int run_end = run_start + c->runs[rlepos].length;
+
+            for (int run_value = run_start; run_value <= run_end; ++run_value) {
+                answer->array[answer->cardinality++] = (uint16_t)run_value;
+            }
+        }
+        *typecode_after = ARRAY_CONTAINER_TYPE_CODE;
+        return answer;
+    }
+
+    // else to bitset
+    bitset_container_t *answer = bitset_container_create();
+
+    for (int rlepos = 0; rlepos < c->n_runs; ++rlepos) {
+        int start = c->runs[rlepos].value;
+        int end = start + c->runs[rlepos].length;
+        bitset_set_range(answer->array, start, end + 1);
+    }
+    answer->cardinality = card;
+    *typecode_after = BITSET_CONTAINER_TYPE_CODE;
+    return answer;
+}
+
+// like convert_run_to_efficient_container but frees the old result if needed
+void *convert_run_to_efficient_container_and_free(run_container_t *c,
+                                                  uint8_t *typecode_after) {
+    void *answer = convert_run_to_efficient_container(c, typecode_after);
+    if (answer != c) run_container_free(c);
+    return answer;
+}
+
+/* once converted, the original container is disposed here, rather than
+   in roaring_array
+*/
+
+// TODO: split into run-  array-  and bitset-  subfunctions for sanity;
+// a few function calls won't really matter.
+
+void *convert_run_optimize(void *c, uint8_t typecode_original,
+                           uint8_t *typecode_after) {
+    if (typecode_original == RUN_CONTAINER_TYPE_CODE) {
+        void *newc = convert_run_to_efficient_container((run_container_t *)c,
+                                                        typecode_after);
+        if (newc != c) {
+            container_free(c, typecode_original);
+        }
+        return newc;
+    } else if (typecode_original == ARRAY_CONTAINER_TYPE_CODE) {
+        // it might need to be converted to a run container.
+        array_container_t *c_qua_array = (array_container_t *)c;
+        int32_t n_runs = array_container_number_of_runs(c_qua_array);
+        int32_t size_as_run_container =
+            run_container_serialized_size_in_bytes(n_runs);
+        int32_t card = array_container_cardinality(c_qua_array);
+        int32_t size_as_array_container =
+            array_container_serialized_size_in_bytes(card);
+
+        if (size_as_run_container >= size_as_array_container) {
+            *typecode_after = ARRAY_CONTAINER_TYPE_CODE;
+            return c;
+        }
+        // else convert array to run container
+        run_container_t *answer = run_container_create_given_capacity(n_runs);
+        int prev = -2;
+        int run_start = -1;
+
+        assert(card > 0);
+        for (int i = 0; i < card; ++i) {
+            uint16_t cur_val = c_qua_array->array[i];
+            if (cur_val != prev + 1) {
+                // new run starts; flush old one, if any
+                if (run_start != -1) add_run(answer, run_start, prev);
+                run_start = cur_val;
+            }
+            prev = c_qua_array->array[i];
+        }
+        assert(run_start >= 0);
+        // now prev is the last seen value
+        add_run(answer, run_start, prev);
+        *typecode_after = RUN_CONTAINER_TYPE_CODE;
+        array_container_free(c_qua_array);
+        return answer;
+    } else if (typecode_original ==
+               BITSET_CONTAINER_TYPE_CODE) {  // run conversions on bitset
+        // does bitset need conversion to run?
+        bitset_container_t *c_qua_bitset = (bitset_container_t *)c;
+        int32_t n_runs = bitset_container_number_of_runs(c_qua_bitset);
+        int32_t size_as_run_container =
+            run_container_serialized_size_in_bytes(n_runs);
+        int32_t size_as_bitset_container =
+            bitset_container_serialized_size_in_bytes();
+
+        if (size_as_bitset_container <= size_as_run_container) {
+            // no conversion needed.
+            *typecode_after = BITSET_CONTAINER_TYPE_CODE;
+            return c;
+        }
+        // bitset to runcontainer (ported from Java  RunContainer(
+        // BitmapContainer bc, int nbrRuns))
+        assert(n_runs > 0);  // no empty bitmaps
+        run_container_t *answer = run_container_create_given_capacity(n_runs);
+
+        int long_ctr = 0;
+        uint64_t cur_word = c_qua_bitset->array[0];
+        int run_count = 0;
+        while (true) {
+            while (cur_word == UINT64_C(0) &&
+                   long_ctr < BITSET_CONTAINER_SIZE_IN_WORDS - 1)
+                cur_word = c_qua_bitset->array[++long_ctr];
+
+            if (cur_word == UINT64_C(0)) {
+                bitset_container_free(c_qua_bitset);
+                *typecode_after = RUN_CONTAINER_TYPE_CODE;
+                return answer;
+            }
+
+            int local_run_start = __builtin_ctzll(cur_word);
+            int run_start = local_run_start + 64 * long_ctr;
+            uint64_t cur_word_with_1s = cur_word | (cur_word - 1);
+
+            int run_end = 0;
+            while (cur_word_with_1s == UINT64_C(0xFFFFFFFFFFFFFFFF) &&
+                   long_ctr < BITSET_CONTAINER_SIZE_IN_WORDS - 1)
+                cur_word_with_1s = c_qua_bitset->array[++long_ctr];
+
+            if (cur_word_with_1s == UINT64_C(0xFFFFFFFFFFFFFFFF)) {
+                run_end = 64 + long_ctr * 64;  // exclusive, I guess
+                add_run(answer, run_start, run_end - 1);
+                bitset_container_free(c_qua_bitset);
+                *typecode_after = RUN_CONTAINER_TYPE_CODE;
+                return answer;
+            }
+            int local_run_end = __builtin_ctzll(~cur_word_with_1s);
+            run_end = local_run_end + long_ctr * 64;
+            add_run(answer, run_start, run_end - 1);
+            run_count++;
+            cur_word = cur_word_with_1s & (cur_word_with_1s + 1);
+        }
+        return answer;
+    } else {
+        assert(false);
+        __builtin_unreachable();
+        return NULL;
+    }
+}
+
+bitset_container_t *bitset_container_from_run_range(const run_container_t *run,
+                                                    uint32_t min, uint32_t max) {
+    bitset_container_t *bitset = bitset_container_create();
+    int32_t union_cardinality = 0;
+    for (int32_t i = 0; i < run->n_runs; ++i) {
+        uint32_t rle_min = run->runs[i].value;
+        uint32_t rle_max = rle_min + run->runs[i].length;
+        bitset_set_lenrange(bitset->array, rle_min, rle_max - rle_min);
+        union_cardinality += run->runs[i].length + 1;
+    }
+    union_cardinality += max - min + 1;
+    union_cardinality -= bitset_lenrange_cardinality(bitset->array, min, max-min);
+    bitset_set_lenrange(bitset->array, min, max - min);
+    bitset->cardinality = union_cardinality;
+    return bitset;
+}
+/* end file src/containers/convert.c */
+/* begin file src/containers/mixed_andnot.c */
+/*
+ * mixed_andnot.c.  More methods since operation is not symmetric,
+ * except no "wide" andnot , so no lazy options motivated.
+ */
+
+#include <assert.h>
+#include <string.h>
+
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst, a valid array container that could be the same as dst.*/
+void array_bitset_container_andnot(const array_container_t *src_1,
+                                   const bitset_container_t *src_2,
+                                   array_container_t *dst) {
+    // follows Java implementation as of June 2016
+    if (dst->capacity < src_1->cardinality) {
+        array_container_grow(dst, src_1->cardinality, false);
+    }
+    int32_t newcard = 0;
+    const int32_t origcard = src_1->cardinality;
+    for (int i = 0; i < origcard; ++i) {
+        uint16_t key = src_1->array[i];
+        dst->array[newcard] = key;
+        newcard += 1 - bitset_container_contains(src_2, key);
+    }
+    dst->cardinality = newcard;
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * src_1 */
+
+void array_bitset_container_iandnot(array_container_t *src_1,
+                                    const bitset_container_t *src_2) {
+    array_bitset_container_andnot(src_1, src_2, src_1);
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst, which does not initially have a valid container.
+ * Return true for a bitset result; false for array
+ */
+
+bool bitset_array_container_andnot(const bitset_container_t *src_1,
+                                   const array_container_t *src_2, void **dst) {
+    // Java did this directly, but we have option of asm or avx
+    bitset_container_t *result = bitset_container_create();
+    bitset_container_copy(src_1, result);
+    result->cardinality =
+        (int32_t)bitset_clear_list(result->array, (uint64_t)result->cardinality,
+                                   src_2->array, (uint64_t)src_2->cardinality);
+
+    // do required type conversions.
+    if (result->cardinality <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_from_bitset(result);
+        bitset_container_free(result);
+        return false;
+    }
+    *dst = result;
+    return true;
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+bool bitset_array_container_iandnot(bitset_container_t *src_1,
+                                    const array_container_t *src_2,
+                                    void **dst) {
+    *dst = src_1;
+    src_1->cardinality =
+        (int32_t)bitset_clear_list(src_1->array, (uint64_t)src_1->cardinality,
+                                   src_2->array, (uint64_t)src_2->cardinality);
+
+    if (src_1->cardinality <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_from_bitset(src_1);
+        bitset_container_free(src_1);
+        return false;  // not bitset
+    } else
+        return true;
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_andnot(const run_container_t *src_1,
+                                 const bitset_container_t *src_2, void **dst) {
+    // follows the Java implementation as of June 2016
+    int card = run_container_cardinality(src_1);
+    if (card <= DEFAULT_MAX_SIZE) {
+        // must be an array
+        array_container_t *answer = array_container_create_given_capacity(card);
+        answer->cardinality = 0;
+        for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+            rle16_t rle = src_1->runs[rlepos];
+            for (int run_value = rle.value; run_value <= rle.value + rle.length;
+                 ++run_value) {
+                if (!bitset_container_get(src_2, (uint16_t)run_value)) {
+                    answer->array[answer->cardinality++] = (uint16_t)run_value;
+                }
+            }
+        }
+        *dst = answer;
+        return false;
+    } else {  // we guess it will be a bitset, though have to check guess when
+              // done
+        bitset_container_t *answer = bitset_container_clone(src_2);
+
+        uint32_t last_pos = 0;
+        for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+            rle16_t rle = src_1->runs[rlepos];
+
+            uint32_t start = rle.value;
+            uint32_t end = start + rle.length + 1;
+            bitset_reset_range(answer->array, last_pos, start);
+            bitset_flip_range(answer->array, start, end);
+            last_pos = end;
+        }
+        bitset_reset_range(answer->array, last_pos, (uint32_t)(1 << 16));
+
+        answer->cardinality = bitset_container_compute_cardinality(answer);
+
+        if (answer->cardinality <= DEFAULT_MAX_SIZE) {
+            *dst = array_container_from_bitset(answer);
+            bitset_container_free(answer);
+            return false;  // not bitset
+        }
+        *dst = answer;
+        return true;  // bitset
+    }
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_iandnot(run_container_t *src_1,
+                                  const bitset_container_t *src_2, void **dst) {
+    // dummy implementation
+    bool ans = run_bitset_container_andnot(src_1, src_2, dst);
+    run_container_free(src_1);
+    return ans;
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset").  dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool bitset_run_container_andnot(const bitset_container_t *src_1,
+                                 const run_container_t *src_2, void **dst) {
+    // follows Java implementation
+    bitset_container_t *result = bitset_container_create();
+
+    bitset_container_copy(src_1, result);
+    for (int32_t rlepos = 0; rlepos < src_2->n_runs; ++rlepos) {
+        rle16_t rle = src_2->runs[rlepos];
+        bitset_reset_range(result->array, rle.value,
+                           rle.value + rle.length + UINT32_C(1));
+    }
+    result->cardinality = bitset_container_compute_cardinality(result);
+
+    if (result->cardinality <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_from_bitset(result);
+        bitset_container_free(result);
+        return false;  // not bitset
+    }
+    *dst = result;
+    return true;  // bitset
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+bool bitset_run_container_iandnot(bitset_container_t *src_1,
+                                  const run_container_t *src_2, void **dst) {
+    *dst = src_1;
+
+    for (int32_t rlepos = 0; rlepos < src_2->n_runs; ++rlepos) {
+        rle16_t rle = src_2->runs[rlepos];
+        bitset_reset_range(src_1->array, rle.value,
+                           rle.value + rle.length + UINT32_C(1));
+    }
+    src_1->cardinality = bitset_container_compute_cardinality(src_1);
+
+    if (src_1->cardinality <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_from_bitset(src_1);
+        bitset_container_free(src_1);
+        return false;  // not bitset
+    } else
+        return true;
+}
+
+/* helper. a_out must be a valid array container with adequate capacity.
+ * Returns the cardinality of the output container. Partly Based on Java
+ * implementation Util.unsignedDifference.
+ *
+ * TODO: Util.unsignedDifference does not use advanceUntil.  Is it cheaper
+ * to avoid advanceUntil?
+ */
+
+static int run_array_array_subtract(const run_container_t *r,
+                                    const array_container_t *a_in,
+                                    array_container_t *a_out) {
+    int out_card = 0;
+    int32_t in_array_pos =
+        -1;  // since advanceUntil always assumes we start the search AFTER this
+
+    for (int rlepos = 0; rlepos < r->n_runs; rlepos++) {
+        int32_t start = r->runs[rlepos].value;
+        int32_t end = start + r->runs[rlepos].length + 1;
+
+        in_array_pos = advanceUntil(a_in->array, in_array_pos,
+                                    a_in->cardinality, (uint16_t)start);
+
+        if (in_array_pos >= a_in->cardinality) {  // run has no items subtracted
+            for (int32_t i = start; i < end; ++i)
+                a_out->array[out_card++] = (uint16_t)i;
+        } else {
+            uint16_t next_nonincluded = a_in->array[in_array_pos];
+            if (next_nonincluded >= end) {
+                // another case when run goes unaltered
+                for (int32_t i = start; i < end; ++i)
+                    a_out->array[out_card++] = (uint16_t)i;
+                in_array_pos--;  // ensure we see this item again if necessary
+            } else {
+                for (int32_t i = start; i < end; ++i)
+                    if (i != next_nonincluded)
+                        a_out->array[out_card++] = (uint16_t)i;
+                    else  // 0 should ensure  we don't match
+                        next_nonincluded =
+                            (in_array_pos + 1 >= a_in->cardinality)
+                                ? 0
+                                : a_in->array[++in_array_pos];
+                in_array_pos--;  // see again
+            }
+        }
+    }
+    return out_card;
+}
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any type of container.
+ */
+
+int run_array_container_andnot(const run_container_t *src_1,
+                               const array_container_t *src_2, void **dst) {
+    // follows the Java impl as of June 2016
+
+    int card = run_container_cardinality(src_1);
+    const int arbitrary_threshold = 32;
+
+    if (card <= arbitrary_threshold) {
+        if (src_2->cardinality == 0) {
+            *dst = run_container_clone(src_1);
+            return RUN_CONTAINER_TYPE_CODE;
+        }
+        // Java's "lazyandNot.toEfficientContainer" thing
+        run_container_t *answer = run_container_create_given_capacity(
+            card + array_container_cardinality(src_2));
+
+        int rlepos = 0;
+        int xrlepos = 0;  // "x" is src_2
+        rle16_t rle = src_1->runs[rlepos];
+        int32_t start = rle.value;
+        int32_t end = start + rle.length + 1;
+        int32_t xstart = src_2->array[xrlepos];
+
+        while ((rlepos < src_1->n_runs) && (xrlepos < src_2->cardinality)) {
+            if (end <= xstart) {
+                // output the first run
+                answer->runs[answer->n_runs++] =
+                    (rle16_t){.value = (uint16_t)start,
+                              .length = (uint16_t)(end - start - 1)};
+                rlepos++;
+                if (rlepos < src_1->n_runs) {
+                    start = src_1->runs[rlepos].value;
+                    end = start + src_1->runs[rlepos].length + 1;
+                }
+            } else if (xstart + 1 <= start) {
+                // exit the second run
+                xrlepos++;
+                if (xrlepos < src_2->cardinality) {
+                    xstart = src_2->array[xrlepos];
+                }
+            } else {
+                if (start < xstart) {
+                    answer->runs[answer->n_runs++] =
+                        (rle16_t){.value = (uint16_t)start,
+                                  .length = (uint16_t)(xstart - start - 1)};
+                }
+                if (xstart + 1 < end) {
+                    start = xstart + 1;
+                } else {
+                    rlepos++;
+                    if (rlepos < src_1->n_runs) {
+                        start = src_1->runs[rlepos].value;
+                        end = start + src_1->runs[rlepos].length + 1;
+                    }
+                }
+            }
+        }
+        if (rlepos < src_1->n_runs) {
+            answer->runs[answer->n_runs++] =
+                (rle16_t){.value = (uint16_t)start,
+                          .length = (uint16_t)(end - start - 1)};
+            rlepos++;
+            if (rlepos < src_1->n_runs) {
+                memcpy(answer->runs + answer->n_runs, src_1->runs + rlepos,
+                       (src_1->n_runs - rlepos) * sizeof(rle16_t));
+                answer->n_runs += (src_1->n_runs - rlepos);
+            }
+        }
+        uint8_t return_type;
+        *dst = convert_run_to_efficient_container(answer, &return_type);
+        if (answer != *dst) run_container_free(answer);
+        return return_type;
+    }
+    // else it's a bitmap or array
+
+    if (card <= DEFAULT_MAX_SIZE) {
+        array_container_t *ac = array_container_create_given_capacity(card);
+        // nb Java code used a generic iterator-based merge to compute
+        // difference
+        ac->cardinality = run_array_array_subtract(src_1, src_2, ac);
+        *dst = ac;
+        return ARRAY_CONTAINER_TYPE_CODE;
+    }
+    bitset_container_t *ans = bitset_container_from_run(src_1);
+    bool result_is_bitset = bitset_array_container_iandnot(ans, src_2, dst);
+    return (result_is_bitset ? BITSET_CONTAINER_TYPE_CODE
+                             : ARRAY_CONTAINER_TYPE_CODE);
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+int run_array_container_iandnot(run_container_t *src_1,
+                                const array_container_t *src_2, void **dst) {
+    // dummy implementation same as June 2016 Java
+    int ans = run_array_container_andnot(src_1, src_2, dst);
+    run_container_free(src_1);
+    return ans;
+}
+
+/* dst must be a valid array container, allowed to be src_1 */
+
+void array_run_container_andnot(const array_container_t *src_1,
+                                const run_container_t *src_2,
+                                array_container_t *dst) {
+    // basically following Java impl as of June 2016
+    if (src_1->cardinality > dst->capacity) {
+        array_container_grow(dst, src_1->cardinality, false);
+    }
+
+    if (src_2->n_runs == 0) {
+        memmove(dst->array, src_1->array,
+                sizeof(uint16_t) * src_1->cardinality);
+        dst->cardinality = src_1->cardinality;
+        return;
+    }
+    int32_t run_start = src_2->runs[0].value;
+    int32_t run_end = run_start + src_2->runs[0].length;
+    int which_run = 0;
+
+    uint16_t val = 0;
+    int dest_card = 0;
+    for (int i = 0; i < src_1->cardinality; ++i) {
+        val = src_1->array[i];
+        if (val < run_start)
+            dst->array[dest_card++] = val;
+        else if (val <= run_end) {
+            ;  // omitted item
+        } else {
+            do {
+                if (which_run + 1 < src_2->n_runs) {
+                    ++which_run;
+                    run_start = src_2->runs[which_run].value;
+                    run_end = run_start + src_2->runs[which_run].length;
+
+                } else
+                    run_start = run_end = (1 << 16) + 1;
+            } while (val > run_end);
+            --i;
+        }
+    }
+    dst->cardinality = dest_card;
+}
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any kind of container.
+ */
+
+void array_run_container_iandnot(array_container_t *src_1,
+                                 const run_container_t *src_2) {
+    array_run_container_andnot(src_1, src_2, src_1);
+}
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any kind of container.
+ */
+
+int run_run_container_andnot(const run_container_t *src_1,
+                             const run_container_t *src_2, void **dst) {
+    run_container_t *ans = run_container_create();
+    run_container_andnot(src_1, src_2, ans);
+    uint8_t typecode_after;
+    *dst = convert_run_to_efficient_container_and_free(ans, &typecode_after);
+    return typecode_after;
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+int run_run_container_iandnot(run_container_t *src_1,
+                              const run_container_t *src_2, void **dst) {
+    // following Java impl as of June 2016 (dummy)
+    int ans = run_run_container_andnot(src_1, src_2, dst);
+    run_container_free(src_1);
+    return ans;
+}
+
+/*
+ * dst is a valid array container and may be the same as src_1
+ */
+
+void array_array_container_andnot(const array_container_t *src_1,
+                                  const array_container_t *src_2,
+                                  array_container_t *dst) {
+    array_container_andnot(src_1, src_2, dst);
+}
+
+/* inplace array-array andnot will always be able to reuse the space of
+ * src_1 */
+void array_array_container_iandnot(array_container_t *src_1,
+                                   const array_container_t *src_2) {
+    array_container_andnot(src_1, src_2, src_1);
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially). Return value is
+ * "dst is a bitset"
+ */
+
+bool bitset_bitset_container_andnot(const bitset_container_t *src_1,
+                                    const bitset_container_t *src_2,
+                                    void **dst) {
+    bitset_container_t *ans = bitset_container_create();
+    int card = bitset_container_andnot(src_1, src_2, ans);
+    if (card <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_from_bitset(ans);
+        bitset_container_free(ans);
+        return false;  // not bitset
+    } else {
+        *dst = ans;
+        return true;
+    }
+}
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+bool bitset_bitset_container_iandnot(bitset_container_t *src_1,
+                                     const bitset_container_t *src_2,
+                                     void **dst) {
+    int card = bitset_container_andnot(src_1, src_2, src_1);
+    if (card <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_from_bitset(src_1);
+        bitset_container_free(src_1);
+        return false;  // not bitset
+    } else {
+        *dst = src_1;
+        return true;
+    }
+}
+/* end file src/containers/mixed_andnot.c */
+/* begin file src/containers/mixed_equal.c */
+
+bool array_container_equal_bitset(const array_container_t* container1,
+                                  const bitset_container_t* container2) {
+    if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) {
+        if (container2->cardinality != container1->cardinality) {
+            return false;
+        }
+    }
+    int32_t pos = 0;
+    for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i) {
+        uint64_t w = container2->array[i];
+        while (w != 0) {
+            uint64_t t = w & (~w + 1);
+            uint16_t r = i * 64 + __builtin_ctzll(w);
+            if (pos >= container1->cardinality) {
+                return false;
+            }
+            if (container1->array[pos] != r) {
+                return false;
+            }
+            ++pos;
+            w ^= t;
+        }
+    }
+    return (pos == container1->cardinality);
+}
+
+bool run_container_equals_array(const run_container_t* container1,
+                                const array_container_t* container2) {
+    if (run_container_cardinality(container1) != container2->cardinality)
+        return false;
+    int32_t pos = 0;
+    for (int i = 0; i < container1->n_runs; ++i) {
+        const uint32_t run_start = container1->runs[i].value;
+        const uint32_t le = container1->runs[i].length;
+
+        if (container2->array[pos] != run_start) {
+            return false;
+        }
+
+        if (container2->array[pos + le] != run_start + le) {
+            return false;
+        }
+
+        pos += le + 1;
+    }
+    return true;
+}
+
+bool run_container_equals_bitset(const run_container_t* container1,
+                                 const bitset_container_t* container2) {
+
+    int run_card = run_container_cardinality(container1);
+    int bitset_card = (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) ?
+                      container2->cardinality :
+                      bitset_container_compute_cardinality(container2);
+    if (bitset_card != run_card) {
+        return false;
+    }
+
+    for (int32_t i = 0; i < container1->n_runs; i++) {
+        uint32_t begin = container1->runs[i].value;
+        if (container1->runs[i].length) {
+            uint32_t end = begin + container1->runs[i].length + 1;
+            if (!bitset_container_contains_range(container2, begin, end)) {
+                return false;
+            }
+        } else {
+            if (!bitset_container_contains(container2, begin)) {
+                return false;
+            }
+        }
+    }
+
+    return true;
+}
+/* end file src/containers/mixed_equal.c */
+/* begin file src/containers/mixed_intersection.c */
+/*
+ * mixed_intersection.c
+ *
+ */
+
+
+/* Compute the intersection of src_1 and src_2 and write the result to
+ * dst.  */
+void array_bitset_container_intersection(const array_container_t *src_1,
+                                         const bitset_container_t *src_2,
+                                         array_container_t *dst) {
+    if (dst->capacity < src_1->cardinality) {
+        array_container_grow(dst, src_1->cardinality, false);
+    }
+    int32_t newcard = 0;  // dst could be src_1
+    const int32_t origcard = src_1->cardinality;
+    for (int i = 0; i < origcard; ++i) {
+        uint16_t key = src_1->array[i];
+        // this branchless approach is much faster...
+        dst->array[newcard] = key;
+        newcard += bitset_container_contains(src_2, key);
+        /**
+         * we could do it this way instead...
+         * if (bitset_container_contains(src_2, key)) {
+         * dst->array[newcard++] = key;
+         * }
+         * but if the result is unpredictible, the processor generates
+         * many mispredicted branches.
+         * Difference can be huge (from 3 cycles when predictible all the way
+         * to 16 cycles when unpredictible.
+         * See
+         * 
https://github.com/lemire/Code-used-on-Daniel-Lemire-s-blog/blob/master/extra/bitset/c/arraybitsetintersection.c
+         */
+    }
+    dst->cardinality = newcard;
+}
+
+/* Compute the size of the intersection of src_1 and src_2. */
+int array_bitset_container_intersection_cardinality(
+    const array_container_t *src_1, const bitset_container_t *src_2) {
+    int32_t newcard = 0;
+    const int32_t origcard = src_1->cardinality;
+    for (int i = 0; i < origcard; ++i) {
+        uint16_t key = src_1->array[i];
+        newcard += bitset_container_contains(src_2, key);
+    }
+    return newcard;
+}
+
+
+bool array_bitset_container_intersect(const array_container_t *src_1,
+                                         const bitset_container_t *src_2) {
+       const int32_t origcard = src_1->cardinality;
+       for (int i = 0; i < origcard; ++i) {
+               uint16_t key = src_1->array[i];
+               if(bitset_container_contains(src_2, key)) return true;
+       }
+       return false;
+}
+
+/* Compute the intersection of src_1 and src_2 and write the result to
+ * dst. It is allowed for dst to be equal to src_1. We assume that dst is a
+ * valid container. */
+void array_run_container_intersection(const array_container_t *src_1,
+                                      const run_container_t *src_2,
+                                      array_container_t *dst) {
+    if (run_container_is_full(src_2)) {
+        if (dst != src_1) array_container_copy(src_1, dst);
+        return;
+    }
+    if (dst->capacity < src_1->cardinality) {
+        array_container_grow(dst, src_1->cardinality, false);
+    }
+    if (src_2->n_runs == 0) {
+        return;
+    }
+    int32_t rlepos = 0;
+    int32_t arraypos = 0;
+    rle16_t rle = src_2->runs[rlepos];
+    int32_t newcard = 0;
+    while (arraypos < src_1->cardinality) {
+        const uint16_t arrayval = src_1->array[arraypos];
+        while (rle.value + rle.length <
+               arrayval) {  // this will frequently be false
+            ++rlepos;
+            if (rlepos == src_2->n_runs) {
+                dst->cardinality = newcard;
+                return;  // we are done
+            }
+            rle = src_2->runs[rlepos];
+        }
+        if (rle.value > arrayval) {
+            arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality,
+                                    rle.value);
+        } else {
+            dst->array[newcard] = arrayval;
+            newcard++;
+            arraypos++;
+        }
+    }
+    dst->cardinality = newcard;
+}
+
+/* Compute the intersection of src_1 and src_2 and write the result to
+ * *dst. If the result is true then the result is a bitset_container_t
+ * otherwise is a array_container_t. If *dst ==  src_2, an in-place processing
+ * is attempted.*/
+bool run_bitset_container_intersection(const run_container_t *src_1,
+                                       const bitset_container_t *src_2,
+                                       void **dst) {
+    if (run_container_is_full(src_1)) {
+        if (*dst != src_2) *dst = bitset_container_clone(src_2);
+        return true;
+    }
+    int32_t card = run_container_cardinality(src_1);
+    if (card <= DEFAULT_MAX_SIZE) {
+        // result can only be an array (assuming that we never make a
+        // RunContainer)
+        if (card > src_2->cardinality) {
+            card = src_2->cardinality;
+        }
+        array_container_t *answer = array_container_create_given_capacity(card);
+        *dst = answer;
+        if (*dst == NULL) {
+            return false;
+        }
+        for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+            rle16_t rle = src_1->runs[rlepos];
+            uint32_t endofrun = (uint32_t)rle.value + rle.length;
+            for (uint32_t runValue = rle.value; runValue <= endofrun;
+                 ++runValue) {
+                answer->array[answer->cardinality] = (uint16_t)runValue;
+                answer->cardinality +=
+                    bitset_container_contains(src_2, runValue);
+            }
+        }
+        return false;
+    }
+    if (*dst == src_2) {  // we attempt in-place
+        bitset_container_t *answer = (bitset_container_t *)*dst;
+        uint32_t start = 0;
+        for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+            const rle16_t rle = src_1->runs[rlepos];
+            uint32_t end = rle.value;
+            bitset_reset_range(src_2->array, start, end);
+
+            start = end + rle.length + 1;
+        }
+        bitset_reset_range(src_2->array, start, UINT32_C(1) << 16);
+        answer->cardinality = bitset_container_compute_cardinality(answer);
+        if (src_2->cardinality > DEFAULT_MAX_SIZE) {
+            return true;
+        } else {
+            array_container_t *newanswer = array_container_from_bitset(src_2);
+            if (newanswer == NULL) {
+                *dst = NULL;
+                return false;
+            }
+            *dst = newanswer;
+            return false;
+        }
+    } else {  // no inplace
+        // we expect the answer to be a bitmap (if we are lucky)
+        bitset_container_t *answer = bitset_container_clone(src_2);
+
+        *dst = answer;
+        if (answer == NULL) {
+            return true;
+        }
+        uint32_t start = 0;
+        for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+            const rle16_t rle = src_1->runs[rlepos];
+            uint32_t end = rle.value;
+            bitset_reset_range(answer->array, start, end);
+            start = end + rle.length + 1;
+        }
+        bitset_reset_range(answer->array, start, UINT32_C(1) << 16);
+        answer->cardinality = bitset_container_compute_cardinality(answer);
+
+        if (answer->cardinality > DEFAULT_MAX_SIZE) {
+            return true;
+        } else {
+            array_container_t *newanswer = array_container_from_bitset(answer);
+            bitset_container_free((bitset_container_t *)*dst);
+            if (newanswer == NULL) {
+                *dst = NULL;
+                return false;
+            }
+            *dst = newanswer;
+            return false;
+        }
+    }
+}
+
+/* Compute the size of the intersection between src_1 and src_2 . */
+int array_run_container_intersection_cardinality(const array_container_t *src_1,
+                                                 const run_container_t *src_2) {
+    if (run_container_is_full(src_2)) {
+        return src_1->cardinality;
+    }
+    if (src_2->n_runs == 0) {
+        return 0;
+    }
+    int32_t rlepos = 0;
+    int32_t arraypos = 0;
+    rle16_t rle = src_2->runs[rlepos];
+    int32_t newcard = 0;
+    while (arraypos < src_1->cardinality) {
+        const uint16_t arrayval = src_1->array[arraypos];
+        while (rle.value + rle.length <
+               arrayval) {  // this will frequently be false
+            ++rlepos;
+            if (rlepos == src_2->n_runs) {
+                return newcard;  // we are done
+            }
+            rle = src_2->runs[rlepos];
+        }
+        if (rle.value > arrayval) {
+            arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality,
+                                    rle.value);
+        } else {
+            newcard++;
+            arraypos++;
+        }
+    }
+    return newcard;
+}
+
+/* Compute the intersection  between src_1 and src_2
+ **/
+int run_bitset_container_intersection_cardinality(
+    const run_container_t *src_1, const bitset_container_t *src_2) {
+    if (run_container_is_full(src_1)) {
+        return bitset_container_cardinality(src_2);
+    }
+    int answer = 0;
+    for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+        rle16_t rle = src_1->runs[rlepos];
+        answer +=
+            bitset_lenrange_cardinality(src_2->array, rle.value, rle.length);
+    }
+    return answer;
+}
+
+
+bool array_run_container_intersect(const array_container_t *src_1,
+                                      const run_container_t *src_2) {
+       if( run_container_is_full(src_2) ) {
+           return !array_container_empty(src_1);
+       }
+       if (src_2->n_runs == 0) {
+        return false;
+    }
+    int32_t rlepos = 0;
+    int32_t arraypos = 0;
+    rle16_t rle = src_2->runs[rlepos];
+    while (arraypos < src_1->cardinality) {
+        const uint16_t arrayval = src_1->array[arraypos];
+        while (rle.value + rle.length <
+               arrayval) {  // this will frequently be false
+            ++rlepos;
+            if (rlepos == src_2->n_runs) {
+                return false;  // we are done
+            }
+            rle = src_2->runs[rlepos];
+        }
+        if (rle.value > arrayval) {
+            arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality,
+                                    rle.value);
+        } else {
+            return true;
+        }
+    }
+    return false;
+}
+
+/* Compute the intersection  between src_1 and src_2
+ **/
+bool run_bitset_container_intersect(const run_container_t *src_1,
+                                       const bitset_container_t *src_2) {
+          if( run_container_is_full(src_1) ) {
+                  return !bitset_container_empty(src_2);
+          }
+       for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+           rle16_t rle = src_1->runs[rlepos];
+           if(!bitset_lenrange_empty(src_2->array, rle.value,rle.length)) return true;
+       }
+       return false;
+}
+
+/*
+ * Compute the intersection between src_1 and src_2 and write the result
+ * to *dst. If the return function is true, the result is a bitset_container_t
+ * otherwise is a array_container_t.
+ */
+bool bitset_bitset_container_intersection(const bitset_container_t *src_1,
+                                          const bitset_container_t *src_2,
+                                          void **dst) {
+    const int newCardinality = bitset_container_and_justcard(src_1, src_2);
+    if (newCardinality > DEFAULT_MAX_SIZE) {
+        *dst = bitset_container_create();
+        if (*dst != NULL) {
+            bitset_container_and_nocard(src_1, src_2,
+                                        (bitset_container_t *)*dst);
+            ((bitset_container_t *)*dst)->cardinality = newCardinality;
+        }
+        return true;  // it is a bitset
+    }
+    *dst = array_container_create_given_capacity(newCardinality);
+    if (*dst != NULL) {
+        ((array_container_t *)*dst)->cardinality = newCardinality;
+        bitset_extract_intersection_setbits_uint16(
+            ((const bitset_container_t *)src_1)->array,
+            ((const bitset_container_t *)src_2)->array,
+            BITSET_CONTAINER_SIZE_IN_WORDS, ((array_container_t *)*dst)->array,
+            0);
+    }
+    return false;  // not a bitset
+}
+
+bool bitset_bitset_container_intersection_inplace(
+    bitset_container_t *src_1, const bitset_container_t *src_2, void **dst) {
+    const int newCardinality = bitset_container_and_justcard(src_1, src_2);
+    if (newCardinality > DEFAULT_MAX_SIZE) {
+        *dst = src_1;
+        bitset_container_and_nocard(src_1, src_2, src_1);
+        ((bitset_container_t *)*dst)->cardinality = newCardinality;
+        return true;  // it is a bitset
+    }
+    *dst = array_container_create_given_capacity(newCardinality);
+    if (*dst != NULL) {
+        ((array_container_t *)*dst)->cardinality = newCardinality;
+        bitset_extract_intersection_setbits_uint16(
+            ((const bitset_container_t *)src_1)->array,
+            ((const bitset_container_t *)src_2)->array,
+            BITSET_CONTAINER_SIZE_IN_WORDS, ((array_container_t *)*dst)->array,
+            0);
+    }
+    return false;  // not a bitset
+}
+/* end file src/containers/mixed_intersection.c */
+/* begin file src/containers/mixed_negation.c */
+/*
+ * mixed_negation.c
+ *
+ */
+
+#include <assert.h>
+#include <string.h>
+
+
+// TODO: make simplified and optimized negation code across
+// the full range.
+
+/* Negation across the entire range of the container.
+ * Compute the  negation of src  and write the result
+ * to *dst. The complement of a
+ * sufficiently sparse set will always be dense and a hence a bitmap
+' * We assume that dst is pre-allocated and a valid bitset container
+ * There can be no in-place version.
+ */
+void array_container_negation(const array_container_t *src,
+                              bitset_container_t *dst) {
+    uint64_t card = UINT64_C(1 << 16);
+    bitset_container_set_all(dst);
+
+    dst->cardinality = (int32_t)bitset_clear_list(dst->array, card, src->array,
+                                                  (uint64_t)src->cardinality);
+}
+
+/* Negation across the entire range of the container
+ * Compute the  negation of src  and write the result
+ * to *dst.  A true return value indicates a bitset result,
+ * otherwise the result is an array container.
+ *  We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+bool bitset_container_negation(const bitset_container_t *src, void **dst) {
+    return bitset_container_negation_range(src, 0, (1 << 16), dst);
+}
+
+/* inplace version */
+/*
+ * Same as bitset_container_negation except that if the output is to
+ * be a
+ * bitset_container_t, then src is modified and no allocation is made.
+ * If the output is to be an array_container_t, then caller is responsible
+ * to free the container.
+ * In all cases, the result is in *dst.
+ */
+bool bitset_container_negation_inplace(bitset_container_t *src, void **dst) {
+    return bitset_container_negation_range_inplace(src, 0, (1 << 16), dst);
+}
+
+/* Negation across the entire range of container
+ * Compute the  negation of src  and write the result
+ * to *dst.  Return values are the *_TYPECODES as defined * in containers.h
+ *  We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+int run_container_negation(const run_container_t *src, void **dst) {
+    return run_container_negation_range(src, 0, (1 << 16), dst);
+}
+
+/*
+ * Same as run_container_negation except that if the output is to
+ * be a
+ * run_container_t, and has the capacity to hold the result,
+ * then src is modified and no allocation is made.
+ * In all cases, the result is in *dst.
+ */
+int run_container_negation_inplace(run_container_t *src, void **dst) {
+    return run_container_negation_range_inplace(src, 0, (1 << 16), dst);
+}
+
+/* Negation across a range of the container.
+ * Compute the  negation of src  and write the result
+ * to *dst. Returns true if the result is a bitset container
+ * and false for an array container.  *dst is not preallocated.
+ */
+bool array_container_negation_range(const array_container_t *src,
+                                    const int range_start, const int range_end,
+                                    void **dst) {
+    /* close port of the Java implementation */
+    if (range_start >= range_end) {
+        *dst = array_container_clone(src);
+        return false;
+    }
+
+    int32_t start_index =
+        binarySearch(src->array, src->cardinality, (uint16_t)range_start);
+    if (start_index < 0) start_index = -start_index - 1;
+
+    int32_t last_index =
+        binarySearch(src->array, src->cardinality, (uint16_t)(range_end - 1));
+    if (last_index < 0) last_index = -last_index - 2;
+
+    const int32_t current_values_in_range = last_index - start_index + 1;
+    const int32_t span_to_be_flipped = range_end - range_start;
+    const int32_t new_values_in_range =
+        span_to_be_flipped - current_values_in_range;
+    const int32_t cardinality_change =
+        new_values_in_range - current_values_in_range;
+    const int32_t new_cardinality = src->cardinality + cardinality_change;
+
+    if (new_cardinality > DEFAULT_MAX_SIZE) {
+        bitset_container_t *temp = bitset_container_from_array(src);
+        bitset_flip_range(temp->array, (uint32_t)range_start,
+                          (uint32_t)range_end);
+        temp->cardinality = new_cardinality;
+        *dst = temp;
+        return true;
+    }
+
+    array_container_t *arr =
+        array_container_create_given_capacity(new_cardinality);
+    *dst = (void *)arr;
+    if(new_cardinality == 0) {
+      arr->cardinality = new_cardinality;
+      return false; // we are done.
+    }
+    // copy stuff before the active area
+    memcpy(arr->array, src->array, start_index * sizeof(uint16_t));
+
+    // work on the range
+    int32_t out_pos = start_index, in_pos = start_index;
+    int32_t val_in_range = range_start;
+    for (; val_in_range < range_end && in_pos <= last_index; ++val_in_range) {
+        if ((uint16_t)val_in_range != src->array[in_pos]) {
+            arr->array[out_pos++] = (uint16_t)val_in_range;
+        } else {
+            ++in_pos;
+        }
+    }
+    for (; val_in_range < range_end; ++val_in_range)
+        arr->array[out_pos++] = (uint16_t)val_in_range;
+
+    // content after the active range
+    memcpy(arr->array + out_pos, src->array + (last_index + 1),
+           (src->cardinality - (last_index + 1)) * sizeof(uint16_t));
+    arr->cardinality = new_cardinality;
+    return false;
+}
+
+/* Even when the result would fit, it is unclear how to make an
+ * inplace version without inefficient copying.
+ */
+
+bool array_container_negation_range_inplace(array_container_t *src,
+                                            const int range_start,
+                                            const int range_end, void **dst) {
+    bool ans = array_container_negation_range(src, range_start, range_end, dst);
+    // TODO : try a real inplace version
+    array_container_free(src);
+    return ans;
+}
+
+/* Negation across a range of the container
+ * Compute the  negation of src  and write the result
+ * to *dst.  A true return value indicates a bitset result,
+ * otherwise the result is an array container.
+ *  We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+bool bitset_container_negation_range(const bitset_container_t *src,
+                                     const int range_start, const int range_end,
+                                     void **dst) {
+    // TODO maybe consider density-based estimate
+    // and sometimes build result directly as array, with
+    // conversion back to bitset if wrong.  Or determine
+    // actual result cardinality, then go directly for the known final cont.
+
+    // keep computation using bitsets as long as possible.
+    bitset_container_t *t = bitset_container_clone(src);
+    bitset_flip_range(t->array, (uint32_t)range_start, (uint32_t)range_end);
+    t->cardinality = bitset_container_compute_cardinality(t);
+
+    if (t->cardinality > DEFAULT_MAX_SIZE) {
+        *dst = t;
+        return true;
+    } else {
+        *dst = array_container_from_bitset(t);
+        bitset_container_free(t);
+        return false;
+    }
+}
+
+/* inplace version */
+/*
+ * Same as bitset_container_negation except that if the output is to
+ * be a
+ * bitset_container_t, then src is modified and no allocation is made.
+ * If the output is to be an array_container_t, then caller is responsible
+ * to free the container.
+ * In all cases, the result is in *dst.
+ */
+bool bitset_container_negation_range_inplace(bitset_container_t *src,
+                                             const int range_start,
+                                             const int range_end, void **dst) {
+    bitset_flip_range(src->array, (uint32_t)range_start, (uint32_t)range_end);
+    src->cardinality = bitset_container_compute_cardinality(src);
+    if (src->cardinality > DEFAULT_MAX_SIZE) {
+        *dst = src;
+        return true;
+    }
+    *dst = array_container_from_bitset(src);
+    bitset_container_free(src);
+    return false;
+}
+
+/* Negation across a range of container
+ * Compute the  negation of src  and write the result
+ * to *dst. Return values are the *_TYPECODES as defined * in containers.h
+ *  We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+int run_container_negation_range(const run_container_t *src,
+                                 const int range_start, const int range_end,
+                                 void **dst) {
+    uint8_t return_typecode;
+
+    // follows the Java implementation
+    if (range_end <= range_start) {
+        *dst = run_container_clone(src);
+        return RUN_CONTAINER_TYPE_CODE;
+    }
+
+    run_container_t *ans = run_container_create_given_capacity(
+        src->n_runs + 1);  // src->n_runs + 1);
+    int k = 0;
+    for (; k < src->n_runs && src->runs[k].value < range_start; ++k) {
+        ans->runs[k] = src->runs[k];
+        ans->n_runs++;
+    }
+
+    run_container_smart_append_exclusive(
+        ans, (uint16_t)range_start, (uint16_t)(range_end - range_start - 1));
+
+    for (; k < src->n_runs; ++k) {
+        run_container_smart_append_exclusive(ans, src->runs[k].value,
+                                             src->runs[k].length);
+    }
+
+    *dst = convert_run_to_efficient_container(ans, &return_typecode);
+    if (return_typecode != RUN_CONTAINER_TYPE_CODE) run_container_free(ans);
+
+    return return_typecode;
+}
+
+/*
+ * Same as run_container_negation except that if the output is to
+ * be a
+ * run_container_t, and has the capacity to hold the result,
+ * then src is modified and no allocation is made.
+ * In all cases, the result is in *dst.
+ */
+int run_container_negation_range_inplace(run_container_t *src,
+                                         const int range_start,
+                                         const int range_end, void **dst) {
+    uint8_t return_typecode;
+
+    if (range_end <= range_start) {
+        *dst = src;
+        return RUN_CONTAINER_TYPE_CODE;
+    }
+
+    // TODO: efficient special case when range is 0 to 65535 inclusive
+
+    if (src->capacity == src->n_runs) {
+        // no excess room.  More checking to see if result can fit
+        bool last_val_before_range = false;
+        bool first_val_in_range = false;
+        bool last_val_in_range = false;
+        bool first_val_past_range = false;
+
+        if (range_start > 0)
+            last_val_before_range =
+                run_container_contains(src, (uint16_t)(range_start - 1));
+        first_val_in_range = run_container_contains(src, (uint16_t)range_start);
+
+        if (last_val_before_range == first_val_in_range) {
+            last_val_in_range =
+                run_container_contains(src, (uint16_t)(range_end - 1));
+            if (range_end != 0x10000)
+                first_val_past_range =
+                    run_container_contains(src, (uint16_t)range_end);
+
+            if (last_val_in_range ==
+                first_val_past_range) {  // no space for inplace
+                int ans = run_container_negation_range(src, range_start,
+                                                       range_end, dst);
+                run_container_free(src);
+                return ans;
+            }
+        }
+    }
+    // all other cases: result will fit
+
+    run_container_t *ans = src;
+    int my_nbr_runs = src->n_runs;
+
+    ans->n_runs = 0;
+    int k = 0;
+    for (; (k < my_nbr_runs) && (src->runs[k].value < range_start); ++k) {
+        // ans->runs[k] = src->runs[k]; (would be self-copy)
+        ans->n_runs++;
+    }
+
+    // as with Java implementation, use locals to give self a buffer of depth 1
+    rle16_t buffered = (rle16_t){.value = (uint16_t)0, .length = (uint16_t)0};
+    rle16_t next = buffered;
+    if (k < my_nbr_runs) buffered = src->runs[k];
+
+    run_container_smart_append_exclusive(
+        ans, (uint16_t)range_start, (uint16_t)(range_end - range_start - 1));
+
+    for (; k < my_nbr_runs; ++k) {
+        if (k + 1 < my_nbr_runs) next = src->runs[k + 1];
+
+        run_container_smart_append_exclusive(ans, buffered.value,
+                                             buffered.length);
+        buffered = next;
+    }
+
+    *dst = convert_run_to_efficient_container(ans, &return_typecode);
+    if (return_typecode != RUN_CONTAINER_TYPE_CODE) run_container_free(ans);
+
+    return return_typecode;
+}
+/* end file src/containers/mixed_negation.c */
+/* begin file src/containers/mixed_subset.c */
+
+bool array_container_is_subset_bitset(const array_container_t* container1,
+                                      const bitset_container_t* container2) {
+    if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) {
+        if (container2->cardinality < container1->cardinality) {
+            return false;
+        }
+    }
+    for (int i = 0; i < container1->cardinality; ++i) {
+        if (!bitset_container_contains(container2, container1->array[i])) {
+            return false;
+        }
+    }
+    return true;
+}
+
+bool run_container_is_subset_array(const run_container_t* container1,
+                                   const array_container_t* container2) {
+    if (run_container_cardinality(container1) > container2->cardinality)
+        return false;
+    int32_t start_pos = -1, stop_pos = -1;
+    for (int i = 0; i < container1->n_runs; ++i) {
+        int32_t start = container1->runs[i].value;
+        int32_t stop = start + container1->runs[i].length;
+        start_pos = advanceUntil(container2->array, stop_pos,
+                                 container2->cardinality, start);
+        stop_pos = advanceUntil(container2->array, stop_pos,
+                                container2->cardinality, stop);
+        if (start_pos == container2->cardinality) {
+            return false;
+        } else if (stop_pos - start_pos != stop - start ||
+                   container2->array[start_pos] != start ||
+                   container2->array[stop_pos] != stop) {
+            return false;
+        }
+    }
+    return true;
+}
+
+bool array_container_is_subset_run(const array_container_t* container1,
+                                   const run_container_t* container2) {
+    if (container1->cardinality > run_container_cardinality(container2))
+        return false;
+    int i_array = 0, i_run = 0;
+    while (i_array < container1->cardinality && i_run < container2->n_runs) {
+        uint32_t start = container2->runs[i_run].value;
+        uint32_t stop = start + container2->runs[i_run].length;
+        if (container1->array[i_array] < start) {
+            return false;
+        } else if (container1->array[i_array] > stop) {
+            i_run++;
+        } else {  // the value of the array is in the run
+            i_array++;
+        }
+    }
+    if (i_array == container1->cardinality) {
+        return true;
+    } else {
+        return false;
+    }
+}
+
+bool run_container_is_subset_bitset(const run_container_t* container1,
+                                    const bitset_container_t* container2) {
+    // todo: this code could be much faster
+    if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) {
+        if (container2->cardinality < run_container_cardinality(container1)) {
+            return false;
+        }
+    } else {
+        int32_t card = bitset_container_compute_cardinality(
+            container2);  // modify container2?
+        if (card < run_container_cardinality(container1)) {
+            return false;
+        }
+    }
+    for (int i = 0; i < container1->n_runs; ++i) {
+        uint32_t run_start = container1->runs[i].value;
+        uint32_t le = container1->runs[i].length;
+        for (uint32_t j = run_start; j <= run_start + le; ++j) {
+            if (!bitset_container_contains(container2, j)) {
+                return false;
+            }
+        }
+    }
+    return true;
+}
+
+bool bitset_container_is_subset_run(const bitset_container_t* container1,
+                                    const run_container_t* container2) {
+    // todo: this code could be much faster
+    if (container1->cardinality != BITSET_UNKNOWN_CARDINALITY) {
+        if (container1->cardinality > run_container_cardinality(container2)) {
+            return false;
+        }
+    }
+    int32_t i_bitset = 0, i_run = 0;
+    while (i_bitset < BITSET_CONTAINER_SIZE_IN_WORDS &&
+           i_run < container2->n_runs) {
+        uint64_t w = container1->array[i_bitset];
+        while (w != 0 && i_run < container2->n_runs) {
+            uint32_t start = container2->runs[i_run].value;
+            uint32_t stop = start + container2->runs[i_run].length;
+            uint64_t t = w & (~w + 1);
+            uint16_t r = i_bitset * 64 + __builtin_ctzll(w);
+            if (r < start) {
+                return false;
+            } else if (r > stop) {
+                i_run++;
+                continue;
+            } else {
+                w ^= t;
+            }
+        }
+        if (w == 0) {
+            i_bitset++;
+        } else {
+            return false;
+        }
+    }
+    if (i_bitset < BITSET_CONTAINER_SIZE_IN_WORDS) {
+        // terminated iterating on the run containers, check that rest of bitset
+        // is empty
+        for (; i_bitset < BITSET_CONTAINER_SIZE_IN_WORDS; i_bitset++) {
+            if (container1->array[i_bitset] != 0) {
+                return false;
+            }
+        }
+    }
+    return true;
+}
+/* end file src/containers/mixed_subset.c */
+/* begin file src/containers/mixed_union.c */
+/*
+ * mixed_union.c
+ *
+ */
+
+#include <assert.h>
+#include <string.h>
+
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * dst.  */
+void array_bitset_container_union(const array_container_t *src_1,
+                                  const bitset_container_t *src_2,
+                                  bitset_container_t *dst) {
+    if (src_2 != dst) bitset_container_copy(src_2, dst);
+    dst->cardinality = (int32_t)bitset_set_list_withcard(
+        dst->array, dst->cardinality, src_1->array, src_1->cardinality);
+}
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * dst. It is allowed for src_2 to be dst.  This version does not
+ * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). */
+void array_bitset_container_lazy_union(const array_container_t *src_1,
+                                       const bitset_container_t *src_2,
+                                       bitset_container_t *dst) {
+    if (src_2 != dst) bitset_container_copy(src_2, dst);
+    bitset_set_list(dst->array, src_1->array, src_1->cardinality);
+    dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
+}
+
+void run_bitset_container_union(const run_container_t *src_1,
+                                const bitset_container_t *src_2,
+                                bitset_container_t *dst) {
+    assert(!run_container_is_full(src_1));  // catch this case upstream
+    if (src_2 != dst) bitset_container_copy(src_2, dst);
+    for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+        rle16_t rle = src_1->runs[rlepos];
+        bitset_set_lenrange(dst->array, rle.value, rle.length);
+    }
+    dst->cardinality = bitset_container_compute_cardinality(dst);
+}
+
+void run_bitset_container_lazy_union(const run_container_t *src_1,
+                                     const bitset_container_t *src_2,
+                                     bitset_container_t *dst) {
+    assert(!run_container_is_full(src_1));  // catch this case upstream
+    if (src_2 != dst) bitset_container_copy(src_2, dst);
+    for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+        rle16_t rle = src_1->runs[rlepos];
+        bitset_set_lenrange(dst->array, rle.value, rle.length);
+    }
+    dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
+}
+
+// why do we leave the result as a run container??
+void array_run_container_union(const array_container_t *src_1,
+                               const run_container_t *src_2,
+                               run_container_t *dst) {
+    if (run_container_is_full(src_2)) {
+        run_container_copy(src_2, dst);
+        return;
+    }
+    // TODO: see whether the "2*" is spurious
+    run_container_grow(dst, 2 * (src_1->cardinality + src_2->n_runs), false);
+    int32_t rlepos = 0;
+    int32_t arraypos = 0;
+    rle16_t previousrle;
+    if (src_2->runs[rlepos].value <= src_1->array[arraypos]) {
+        previousrle = run_container_append_first(dst, src_2->runs[rlepos]);
+        rlepos++;
+    } else {
+        previousrle =
+            run_container_append_value_first(dst, src_1->array[arraypos]);
+        arraypos++;
+    }
+    while ((rlepos < src_2->n_runs) && (arraypos < src_1->cardinality)) {
+        if (src_2->runs[rlepos].value <= src_1->array[arraypos]) {
+            run_container_append(dst, src_2->runs[rlepos], &previousrle);
+            rlepos++;
+        } else {
+            run_container_append_value(dst, src_1->array[arraypos],
+                                       &previousrle);
+            arraypos++;
+        }
+    }
+    if (arraypos < src_1->cardinality) {
+        while (arraypos < src_1->cardinality) {
+            run_container_append_value(dst, src_1->array[arraypos],
+                                       &previousrle);
+            arraypos++;
+        }
+    } else {
+        while (rlepos < src_2->n_runs) {
+            run_container_append(dst, src_2->runs[rlepos], &previousrle);
+            rlepos++;
+        }
+    }
+}
+
+void array_run_container_inplace_union(const array_container_t *src_1,
+                                       run_container_t *src_2) {
+    if (run_container_is_full(src_2)) {
+        return;
+    }
+    const int32_t maxoutput = src_1->cardinality + src_2->n_runs;
+    const int32_t neededcapacity = maxoutput + src_2->n_runs;
+    if (src_2->capacity < neededcapacity)
+        run_container_grow(src_2, neededcapacity, true);
+    memmove(src_2->runs + maxoutput, src_2->runs,
+            src_2->n_runs * sizeof(rle16_t));
+    rle16_t *inputsrc2 = src_2->runs + maxoutput;
+    int32_t rlepos = 0;
+    int32_t arraypos = 0;
+    int src2nruns = src_2->n_runs;
+    src_2->n_runs = 0;
+
+    rle16_t previousrle;
+
+    if (inputsrc2[rlepos].value <= src_1->array[arraypos]) {
+        previousrle = run_container_append_first(src_2, inputsrc2[rlepos]);
+        rlepos++;
+    } else {
+        previousrle =
+            run_container_append_value_first(src_2, src_1->array[arraypos]);
+        arraypos++;
+    }
+
+    while ((rlepos < src2nruns) && (arraypos < src_1->cardinality)) {
+        if (inputsrc2[rlepos].value <= src_1->array[arraypos]) {
+            run_container_append(src_2, inputsrc2[rlepos], &previousrle);
+            rlepos++;
+        } else {
+            run_container_append_value(src_2, src_1->array[arraypos],
+                                       &previousrle);
+            arraypos++;
+        }
+    }
+    if (arraypos < src_1->cardinality) {
+        while (arraypos < src_1->cardinality) {
+            run_container_append_value(src_2, src_1->array[arraypos],
+                                       &previousrle);
+            arraypos++;
+        }
+    } else {
+        while (rlepos < src2nruns) {
+            run_container_append(src_2, inputsrc2[rlepos], &previousrle);
+            rlepos++;
+        }
+    }
+}
+
+bool array_array_container_union(const array_container_t *src_1,
+                                 const array_container_t *src_2, void **dst) {
+    int totalCardinality = src_1->cardinality + src_2->cardinality;
+    if (totalCardinality <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_create_given_capacity(totalCardinality);
+        if (*dst != NULL) {
+            array_container_union(src_1, src_2, (array_container_t *)*dst);
+        } else {
+            return true; // otherwise failure won't be caught
+        }
+        return false;  // not a bitset
+    }
+    *dst = bitset_container_create();
+    bool returnval = true;  // expect a bitset
+    if (*dst != NULL) {
+        bitset_container_t *ourbitset = (bitset_container_t *)*dst;
+        bitset_set_list(ourbitset->array, src_1->array, src_1->cardinality);
+        ourbitset->cardinality = (int32_t)bitset_set_list_withcard(
+            ourbitset->array, src_1->cardinality, src_2->array,
+            src_2->cardinality);
+        if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) {
+            // need to convert!
+            *dst = array_container_from_bitset(ourbitset);
+            bitset_container_free(ourbitset);
+            returnval = false;  // not going to be a bitset
+        }
+    }
+    return returnval;
+}
+
+bool array_array_container_inplace_union(array_container_t *src_1,
+                                 const array_container_t *src_2, void **dst) {
+    int totalCardinality = src_1->cardinality + src_2->cardinality;
+    *dst = NULL;
+    if (totalCardinality <= DEFAULT_MAX_SIZE) {
+        if(src_1->capacity < totalCardinality) {
+          *dst = array_container_create_given_capacity(2  * totalCardinality); // be purposefully generous
+          if (*dst != NULL) {
+              array_container_union(src_1, src_2, (array_container_t *)*dst);
+          } else {
+              return true; // otherwise failure won't be caught
+          }
+          return false;  // not a bitset
+        } else {
+          memmove(src_1->array + src_2->cardinality, src_1->array, src_1->cardinality * sizeof(uint16_t));
+          src_1->cardinality = (int32_t)union_uint16(src_1->array + src_2->cardinality, src_1->cardinality,
+                                  src_2->array, src_2->cardinality, src_1->array);
+          return false; // not a bitset
+        }
+    }
+    *dst = bitset_container_create();
+    bool returnval = true;  // expect a bitset
+    if (*dst != NULL) {
+        bitset_container_t *ourbitset = (bitset_container_t *)*dst;
+        bitset_set_list(ourbitset->array, src_1->array, src_1->cardinality);
+        ourbitset->cardinality = (int32_t)bitset_set_list_withcard(
+            ourbitset->array, src_1->cardinality, src_2->array,
+            src_2->cardinality);
+        if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) {
+            // need to convert!
+            if(src_1->capacity < ourbitset->cardinality) {
+              array_container_grow(src_1, ourbitset->cardinality, false);
+            }
+
+            bitset_extract_setbits_uint16(ourbitset->array, BITSET_CONTAINER_SIZE_IN_WORDS,
+                                  src_1->array, 0);
+            src_1->cardinality =  ourbitset->cardinality;
+            *dst = src_1;
+            bitset_container_free(ourbitset);
+            returnval = false;  // not going to be a bitset
+        }
+    }
+    return returnval;
+}
+
+
+bool array_array_container_lazy_union(const array_container_t *src_1,
+                                      const array_container_t *src_2,
+                                      void **dst) {
+    int totalCardinality = src_1->cardinality + src_2->cardinality;
+    if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) {
+        *dst = array_container_create_given_capacity(totalCardinality);
+        if (*dst != NULL) {
+            array_container_union(src_1, src_2, (array_container_t *)*dst);
+        } else {
+              return true; // otherwise failure won't be caught
+        }
+        return false;  // not a bitset
+    }
+    *dst = bitset_container_create();
+    bool returnval = true;  // expect a bitset
+    if (*dst != NULL) {
+        bitset_container_t *ourbitset = (bitset_container_t *)*dst;
+        bitset_set_list(ourbitset->array, src_1->array, src_1->cardinality);
+        bitset_set_list(ourbitset->array, src_2->array, src_2->cardinality);
+        ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY;
+    }
+    return returnval;
+}
+
+
+bool array_array_container_lazy_inplace_union(array_container_t *src_1,
+                                      const array_container_t *src_2,
+                                      void **dst) {
+    int totalCardinality = src_1->cardinality + src_2->cardinality;
+    *dst = NULL;
+    if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) {
+        if(src_1->capacity < totalCardinality) {
+          *dst = array_container_create_given_capacity(2  * totalCardinality); // be purposefully generous
+          if (*dst != NULL) {
+              array_container_union(src_1, src_2, (array_container_t *)*dst);
+          } else {
+            return true; // otherwise failure won't be caught
+          }
+          return false;  // not a bitset
+        } else {
+          memmove(src_1->array + src_2->cardinality, src_1->array, src_1->cardinality * sizeof(uint16_t));
+          src_1->cardinality = (int32_t)union_uint16(src_1->array + src_2->cardinality, src_1->cardinality,
+                                  src_2->array, src_2->cardinality, src_1->array);
+          return false; // not a bitset
+        }
+    }
+    *dst = bitset_container_create();
+    bool returnval = true;  // expect a bitset
+    if (*dst != NULL) {
+        bitset_container_t *ourbitset = (bitset_container_t *)*dst;
+        bitset_set_list(ourbitset->array, src_1->array, src_1->cardinality);
+        bitset_set_list(ourbitset->array, src_2->array, src_2->cardinality);
+        ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY;
+    }
+    return returnval;
+}
+/* end file src/containers/mixed_union.c */
+/* begin file src/containers/mixed_xor.c */
+/*
+ * mixed_xor.c
+ */
+
+#include <assert.h>
+#include <string.h>
+
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst (which has no container initially).
+ * Result is true iff dst is a bitset  */
+bool array_bitset_container_xor(const array_container_t *src_1,
+                                const bitset_container_t *src_2, void **dst) {
+    bitset_container_t *result = bitset_container_create();
+    bitset_container_copy(src_2, result);
+    result->cardinality = (int32_t)bitset_flip_list_withcard(
+        result->array, result->cardinality, src_1->array, src_1->cardinality);
+
+    // do required type conversions.
+    if (result->cardinality <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_from_bitset(result);
+        bitset_container_free(result);
+        return false;  // not bitset
+    }
+    *dst = result;
+    return true;  // bitset
+}
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst. It is allowed for src_2 to be dst.  This version does not
+ * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY).
+ */
+
+void array_bitset_container_lazy_xor(const array_container_t *src_1,
+                                     const bitset_container_t *src_2,
+                                     bitset_container_t *dst) {
+    if (src_2 != dst) bitset_container_copy(src_2, dst);
+    bitset_flip_list(dst->array, src_1->array, src_1->cardinality);
+    dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
+}
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_xor(const run_container_t *src_1,
+                              const bitset_container_t *src_2, void **dst) {
+    bitset_container_t *result = bitset_container_create();
+
+    bitset_container_copy(src_2, result);
+    for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+        rle16_t rle = src_1->runs[rlepos];
+        bitset_flip_range(result->array, rle.value,
+                          rle.value + rle.length + UINT32_C(1));
+    }
+    result->cardinality = bitset_container_compute_cardinality(result);
+
+    if (result->cardinality <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_from_bitset(result);
+        bitset_container_free(result);
+        return false;  // not bitset
+    }
+    *dst = result;
+    return true;  // bitset
+}
+
+/* lazy xor.  Dst is initialized and may be equal to src_2.
+ *  Result is left as a bitset container, even if actual
+ *  cardinality would dictate an array container.
+ */
+
+void run_bitset_container_lazy_xor(const run_container_t *src_1,
+                                   const bitset_container_t *src_2,
+                                   bitset_container_t *dst) {
+    if (src_2 != dst) bitset_container_copy(src_2, dst);
+    for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
+        rle16_t rle = src_1->runs[rlepos];
+        bitset_flip_range(dst->array, rle.value,
+                          rle.value + rle.length + UINT32_C(1));
+    }
+    dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
+}
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any kind of container.
+ */
+
+int array_run_container_xor(const array_container_t *src_1,
+                            const run_container_t *src_2, void **dst) {
+    // semi following Java XOR implementation as of May 2016
+    // the C OR implementation works quite differently and can return a run
+    // container
+    // TODO could optimize for full run containers.
+
+    // use of lazy following Java impl.
+    const int arbitrary_threshold = 32;
+    if (src_1->cardinality < arbitrary_threshold) {
+        run_container_t *ans = run_container_create();
+        array_run_container_lazy_xor(src_1, src_2, ans);  // keeps runs.
+        uint8_t typecode_after;
+        *dst =
+            convert_run_to_efficient_container_and_free(ans, &typecode_after);
+        return typecode_after;
+    }
+
+    int card = run_container_cardinality(src_2);
+    if (card <= DEFAULT_MAX_SIZE) {
+        // Java implementation works with the array, xoring the run elements via
+        // iterator
+        array_container_t *temp = array_container_from_run(src_2);
+        bool ret_is_bitset = array_array_container_xor(temp, src_1, dst);
+        array_container_free(temp);
+        return ret_is_bitset ? BITSET_CONTAINER_TYPE_CODE
+                             : ARRAY_CONTAINER_TYPE_CODE;
+
+    } else {  // guess that it will end up as a bitset
+        bitset_container_t *result = bitset_container_from_run(src_2);
+        bool is_bitset = bitset_array_container_ixor(result, src_1, dst);
+        // any necessary type conversion has been done by the ixor
+        int retval = (is_bitset ? BITSET_CONTAINER_TYPE_CODE
+                                : ARRAY_CONTAINER_TYPE_CODE);
+        return retval;
+    }
+}
+
+/* Dst is a valid run container. (Can it be src_2? Let's say not.)
+ * Leaves result as run container, even if other options are
+ * smaller.
+ */
+
+void array_run_container_lazy_xor(const array_container_t *src_1,
+                                  const run_container_t *src_2,
+                                  run_container_t *dst) {
+    run_container_grow(dst, src_1->cardinality + src_2->n_runs, false);
+    int32_t rlepos = 0;
+    int32_t arraypos = 0;
+    dst->n_runs = 0;
+
+    while ((rlepos < src_2->n_runs) && (arraypos < src_1->cardinality)) {
+        if (src_2->runs[rlepos].value <= src_1->array[arraypos]) {
+            run_container_smart_append_exclusive(dst, src_2->runs[rlepos].value,
+                                                 src_2->runs[rlepos].length);
+            rlepos++;
+        } else {
+            run_container_smart_append_exclusive(dst, src_1->array[arraypos],
+                                                 0);
+            arraypos++;
+        }
+    }
+    while (arraypos < src_1->cardinality) {
+        run_container_smart_append_exclusive(dst, src_1->array[arraypos], 0);
+        arraypos++;
+    }
+    while (rlepos < src_2->n_runs) {
+        run_container_smart_append_exclusive(dst, src_2->runs[rlepos].value,
+                                             src_2->runs[rlepos].length);
+        rlepos++;
+    }
+}
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any kind of container.
+ */
+
+int run_run_container_xor(const run_container_t *src_1,
+                          const run_container_t *src_2, void **dst) {
+    run_container_t *ans = run_container_create();
+    run_container_xor(src_1, src_2, ans);
+    uint8_t typecode_after;
+    *dst = convert_run_to_efficient_container_and_free(ans, &typecode_after);
+    return typecode_after;
+}
+
+/*
+ * Java implementation (as of May 2016) for array_run, run_run
+ * and  bitset_run don't do anything different for inplace.
+ * Could adopt the mixed_union.c approach instead (ie, using
+ * smart_append_exclusive)
+ *
+ */
+
+bool array_array_container_xor(const array_container_t *src_1,
+                               const array_container_t *src_2, void **dst) {
+    int totalCardinality =
+        src_1->cardinality + src_2->cardinality;  // upper bound
+    if (totalCardinality <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_create_given_capacity(totalCardinality);
+        array_container_xor(src_1, src_2, (array_container_t *)*dst);
+        return false;  // not a bitset
+    }
+    *dst = bitset_container_from_array(src_1);
+    bool returnval = true;  // expect a bitset
+    bitset_container_t *ourbitset = (bitset_container_t *)*dst;
+    ourbitset->cardinality = (uint32_t)bitset_flip_list_withcard(
+        ourbitset->array, src_1->cardinality, src_2->array, src_2->cardinality);
+    if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) {
+        // need to convert!
+        *dst = array_container_from_bitset(ourbitset);
+        bitset_container_free(ourbitset);
+        returnval = false;  // not going to be a bitset
+    }
+
+    return returnval;
+}
+
+bool array_array_container_lazy_xor(const array_container_t *src_1,
+                                    const array_container_t *src_2,
+                                    void **dst) {
+    int totalCardinality = src_1->cardinality + src_2->cardinality;
+    // upper bound, but probably poor estimate for xor
+    if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) {
+        *dst = array_container_create_given_capacity(totalCardinality);
+        if (*dst != NULL)
+            array_container_xor(src_1, src_2, (array_container_t *)*dst);
+        return false;  // not a bitset
+    }
+    *dst = bitset_container_from_array(src_1);
+    bool returnval = true;  // expect a bitset (maybe, for XOR??)
+    if (*dst != NULL) {
+        bitset_container_t *ourbitset = (bitset_container_t *)*dst;
+        bitset_flip_list(ourbitset->array, src_2->array, src_2->cardinality);
+        ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY;
+    }
+    return returnval;
+}
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst (which has no container initially). Return value is
+ * "dst is a bitset"
+ */
+
+bool bitset_bitset_container_xor(const bitset_container_t *src_1,
+                                 const bitset_container_t *src_2, void **dst) {
+    bitset_container_t *ans = bitset_container_create();
+    int card = bitset_container_xor(src_1, src_2, ans);
+    if (card <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_from_bitset(ans);
+        bitset_container_free(ans);
+        return false;  // not bitset
+    } else {
+        *dst = ans;
+        return true;
+    }
+}
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+bool bitset_array_container_ixor(bitset_container_t *src_1,
+                                 const array_container_t *src_2, void **dst) {
+    *dst = src_1;
+    src_1->cardinality = (uint32_t)bitset_flip_list_withcard(
+        src_1->array, src_1->cardinality, src_2->array, src_2->cardinality);
+
+    if (src_1->cardinality <= DEFAULT_MAX_SIZE) {
+        *dst = array_container_from_bitset(src_1);
+        bitset_container_free(src_1);
+        return false;  // not bitset
+    } else
+        return true;
+}
+
+/* a bunch of in-place, some of which may not *really* be inplace.
+ * TODO: write actual inplace routine if efficiency warrants it
+ * Anything inplace with a bitset is a good candidate
+ */
+
+bool bitset_bitset_container_ixor(bitset_container_t *src_1,
+                                  const bitset_container_t *src_2, void **dst) {
+    bool ans = bitset_bitset_container_xor(src_1, src_2, dst);
+    bitset_container_free(src_1);
+    return ans;
+}
+
+bool array_bitset_container_ixor(array_container_t *src_1,
+                                 const bitset_container_t *src_2, void **dst) {
+    bool ans = array_bitset_container_xor(src_1, src_2, dst);
+    array_container_free(src_1);
+    return ans;
+}
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_ixor(run_container_t *src_1,
+                               const bitset_container_t *src_2, void **dst) {
+    bool ans = run_bitset_container_xor(src_1, src_2, dst);
+    run_container_free(src_1);
+    return ans;
+}
+
+bool bitset_run_container_ixor(bitset_container_t *src_1,
+                               const run_container_t *src_2, void **dst) {
+    bool ans = run_bitset_container_xor(src_2, src_1, dst);
+    bitset_container_free(src_1);
+    return ans;
+}
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any kind of container.
+ */
+
+int array_run_container_ixor(array_container_t *src_1,
+                             const run_container_t *src_2, void **dst) {
+    int ans = array_run_container_xor(src_1, src_2, dst);
+    array_container_free(src_1);
+    return ans;
+}
+
+int run_array_container_ixor(run_container_t *src_1,
+                             const array_container_t *src_2, void **dst) {
+    int ans = array_run_container_xor(src_2, src_1, dst);
+    run_container_free(src_1);
+    return ans;
+}
+
+bool array_array_container_ixor(array_container_t *src_1,
+                                const array_container_t *src_2, void **dst) {
+    bool ans = array_array_container_xor(src_1, src_2, dst);
+    array_container_free(src_1);
+    return ans;
+}
+
+int run_run_container_ixor(run_container_t *src_1, const run_container_t *src_2,
+                           void **dst) {
+    int ans = run_run_container_xor(src_1, src_2, dst);
+    run_container_free(src_1);
+    return ans;
+}
+/* end file src/containers/mixed_xor.c */
+/* begin file src/containers/run.c */
+#include <stdio.h>
+#include <stdlib.h>
+
+
+bool run_container_add(run_container_t *run, uint16_t pos) {
+    int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos);
+    if (index >= 0) return false;  // already there
+    index = -index - 2;            // points to preceding value, possibly -1
+    if (index >= 0) {              // possible match
+        int32_t offset = pos - run->runs[index].value;
+        int32_t le = run->runs[index].length;
+        if (offset <= le) return false;  // already there
+        if (offset == le + 1) {
+            // we may need to fuse
+            if (index + 1 < run->n_runs) {
+                if (run->runs[index + 1].value == pos + 1) {
+                    // indeed fusion is needed
+                    run->runs[index].length = run->runs[index + 1].value +
+                                              run->runs[index + 1].length -
+                                              run->runs[index].value;
+                    recoverRoomAtIndex(run, (uint16_t)(index + 1));
+                    return true;
+                }
+            }
+            run->runs[index].length++;
+            return true;
+        }
+        if (index + 1 < run->n_runs) {
+            // we may need to fuse
+            if (run->runs[index + 1].value == pos + 1) {
+                // indeed fusion is needed
+                run->runs[index + 1].value = pos;
+                run->runs[index + 1].length = run->runs[index + 1].length + 1;
+                return true;
+            }
+        }
+    }
+    if (index == -1) {
+        // we may need to extend the first run
+        if (0 < run->n_runs) {
+            if (run->runs[0].value == pos + 1) {
+                run->runs[0].length++;
+                run->runs[0].value--;
+                return true;
+            }
+        }
+    }
+    makeRoomAtIndex(run, (uint16_t)(index + 1));
+    run->runs[index + 1].value = pos;
+    run->runs[index + 1].length = 0;
+    return true;
+}
+
+/* Create a new run container. Return NULL in case of failure. */
+run_container_t *run_container_create_given_capacity(int32_t size) {
+    run_container_t *run;
+    /* Allocate the run container itself. */
+    if ((run = (run_container_t *)malloc(sizeof(run_container_t))) == NULL) {
+        return NULL;
+    }
+    if (size <= 0 ) { // we don't want to rely on malloc(0)
+        run->runs = NULL;
+    } else if ((run->runs = (rle16_t *)malloc(sizeof(rle16_t) * size)) == NULL) {
+        free(run);
+        return NULL;
+    }
+    run->capacity = size;
+    run->n_runs = 0;
+    return run;
+}
+
+int run_container_shrink_to_fit(run_container_t *src) {
+    if (src->n_runs == src->capacity) return 0;  // nothing to do
+    int savings = src->capacity - src->n_runs;
+    src->capacity = src->n_runs;
+    rle16_t *oldruns = src->runs;
+    src->runs = (rle16_t *)realloc(oldruns, src->capacity * sizeof(rle16_t));
+    if (src->runs == NULL) free(oldruns);  // should never happen?
+    return savings;
+}
+/* Create a new run container. Return NULL in case of failure. */
+run_container_t *run_container_create(void) {
+    return run_container_create_given_capacity(RUN_DEFAULT_INIT_SIZE);
+}
+
+run_container_t *run_container_clone(const run_container_t *src) {
+    run_container_t *run = run_container_create_given_capacity(src->capacity);
+    if (run == NULL) return NULL;
+    run->capacity = src->capacity;
+    run->n_runs = src->n_runs;
+    memcpy(run->runs, src->runs, src->n_runs * sizeof(rle16_t));
+    return run;
+}
+
+/* Free memory. */
+void run_container_free(run_container_t *run) {
+    if(run->runs != NULL) {// Jon Strabala reports that some tools complain otherwise
+      free(run->runs);
+      run->runs = NULL;  // pedantic
+    }
+    free(run);
+}
+
+void run_container_grow(run_container_t *run, int32_t min, bool copy) {
+    int32_t newCapacity =
+        (run->capacity == 0)
+            ? RUN_DEFAULT_INIT_SIZE
+            : run->capacity < 64 ? run->capacity * 2
+                                 : run->capacity < 1024 ? run->capacity * 3 / 2
+                                                        : run->capacity * 5 / 4;
+    if (newCapacity < min) newCapacity = min;
+    run->capacity = newCapacity;
+    assert(run->capacity >= min);
+    if (copy) {
+        rle16_t *oldruns = run->runs;
+        run->runs =
+            (rle16_t *)realloc(oldruns, run->capacity * sizeof(rle16_t));
+        if (run->runs == NULL) free(oldruns);
+    } else {
+        // Jon Strabala reports that some tools complain otherwise
+        if (run->runs != NULL) {
+          free(run->runs);
+        }
+        run->runs = (rle16_t *)malloc(run->capacity * sizeof(rle16_t));
+    }
+    // handle the case where realloc fails
+    if (run->runs == NULL) {
+      fprintf(stderr, "could not allocate memory\n");
+    }
+    assert(run->runs != NULL);
+}
+
+/* copy one container into another */
+void run_container_copy(const run_container_t *src, run_container_t *dst) {
+    const int32_t n_runs = src->n_runs;
+    if (src->n_runs > dst->capacity) {
+        run_container_grow(dst, n_runs, false);
+    }
+    dst->n_runs = n_runs;
+    memcpy(dst->runs, src->runs, sizeof(rle16_t) * n_runs);
+}
+
+/* Compute the union of `src_1' and `src_2' and write the result to `dst'
+ * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
+void run_container_union(const run_container_t *src_1,
+                         const run_container_t *src_2, run_container_t *dst) {
+    // TODO: this could be a lot more efficient
+
+    // we start out with inexpensive checks
+    const bool if1 = run_container_is_full(src_1);
+    const bool if2 = run_container_is_full(src_2);
+    if (if1 || if2) {
+        if (if1) {
+            run_container_copy(src_1, dst);
+            return;
+        }
+        if (if2) {
+            run_container_copy(src_2, dst);
+            return;
+        }
+    }
+    const int32_t neededcapacity = src_1->n_runs + src_2->n_runs;
+    if (dst->capacity < neededcapacity)
+        run_container_grow(dst, neededcapacity, false);
+    dst->n_runs = 0;
+    int32_t rlepos = 0;
+    int32_t xrlepos = 0;
+
+    rle16_t previousrle;
+    if (src_1->runs[rlepos].value <= src_2->runs[xrlepos].value) {
+        previousrle = run_container_append_first(dst, src_1->runs[rlepos]);
+        rlepos++;
+    } else {
+        previousrle = run_container_append_first(dst, src_2->runs[xrlepos]);
+        xrlepos++;
+    }
+
+    while ((xrlepos < src_2->n_runs) && (rlepos < src_1->n_runs)) {
+        rle16_t newrl;
+        if (src_1->runs[rlepos].value <= src_2->runs[xrlepos].value) {
+            newrl = src_1->runs[rlepos];
+            rlepos++;
+        } else {
+            newrl = src_2->runs[xrlepos];
+            xrlepos++;
+        }
+        run_container_append(dst, newrl, &previousrle);
+    }
+    while (xrlepos < src_2->n_runs) {
+        run_container_append(dst, src_2->runs[xrlepos], &previousrle);
+        xrlepos++;
+    }
+    while (rlepos < src_1->n_runs) {
+        run_container_append(dst, src_1->runs[rlepos], &previousrle);
+        rlepos++;
+    }
+}
+
+/* Compute the union of `src_1' and `src_2' and write the result to `src_1'
+ */
+void run_container_union_inplace(run_container_t *src_1,
+                                 const run_container_t *src_2) {
+    // TODO: this could be a lot more efficient
+
+    // we start out with inexpensive checks
+    const bool if1 = run_container_is_full(src_1);
+    const bool if2 = run_container_is_full(src_2);
+    if (if1 || if2) {
+        if (if1) {
+            return;
+        }
+        if (if2) {
+            run_container_copy(src_2, src_1);
+            return;
+        }
+    }
+    // we move the data to the end of the current array
+    const int32_t maxoutput = src_1->n_runs + src_2->n_runs;
+    const int32_t neededcapacity = maxoutput + src_1->n_runs;
+    if (src_1->capacity < neededcapacity)
+        run_container_grow(src_1, neededcapacity, true);
+    memmove(src_1->runs + maxoutput, src_1->runs,
+            src_1->n_runs * sizeof(rle16_t));
+    rle16_t *inputsrc1 = src_1->runs + maxoutput;
+    const int32_t input1nruns = src_1->n_runs;
+    src_1->n_runs = 0;
+    int32_t rlepos = 0;
+    int32_t xrlepos = 0;
+
+    rle16_t previousrle;
+    if (inputsrc1[rlepos].value <= src_2->runs[xrlepos].value) {
+        previousrle = run_container_append_first(src_1, inputsrc1[rlepos]);
+        rlepos++;
+    } else {
+        previousrle = run_container_append_first(src_1, src_2->runs[xrlepos]);
+        xrlepos++;
+    }
+    while ((xrlepos < src_2->n_runs) && (rlepos < input1nruns)) {
+        rle16_t newrl;
+        if (inputsrc1[rlepos].value <= src_2->runs[xrlepos].value) {
+            newrl = inputsrc1[rlepos];
+            rlepos++;
+        } else {
+            newrl = src_2->runs[xrlepos];
+            xrlepos++;
+        }
+        run_container_append(src_1, newrl, &previousrle);
+    }
+    while (xrlepos < src_2->n_runs) {
+        run_container_append(src_1, src_2->runs[xrlepos], &previousrle);
+        xrlepos++;
+    }
+    while (rlepos < input1nruns) {
+        run_container_append(src_1, inputsrc1[rlepos], &previousrle);
+        rlepos++;
+    }
+}
+
+/* Compute the symmetric difference of `src_1' and `src_2' and write the result
+ * to `dst'
+ * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
+void run_container_xor(const run_container_t *src_1,
+                       const run_container_t *src_2, run_container_t *dst) {
+    // don't bother to convert xor with full range into negation
+    // since negation is implemented similarly
+
+    const int32_t neededcapacity = src_1->n_runs + src_2->n_runs;
+    if (dst->capacity < neededcapacity)
+        run_container_grow(dst, neededcapacity, false);
+
+    int32_t pos1 = 0;
+    int32_t pos2 = 0;
+    dst->n_runs = 0;
+
+    while ((pos1 < src_1->n_runs) && (pos2 < src_2->n_runs)) {
+        if (src_1->runs[pos1].value <= src_2->runs[pos2].value) {
+            run_container_smart_append_exclusive(dst, src_1->runs[pos1].value,
+                                                 src_1->runs[pos1].length);
+            pos1++;
+        } else {
+            run_container_smart_append_exclusive(dst, src_2->runs[pos2].value,
+                                                 src_2->runs[pos2].length);
+            pos2++;
+        }
+    }
+    while (pos1 < src_1->n_runs) {
+        run_container_smart_append_exclusive(dst, src_1->runs[pos1].value,
+                                             src_1->runs[pos1].length);
+        pos1++;
+    }
+
+    while (pos2 < src_2->n_runs) {
+        run_container_smart_append_exclusive(dst, src_2->runs[pos2].value,
+                                             src_2->runs[pos2].length);
+        pos2++;
+    }
+}
+
+/* Compute the intersection of src_1 and src_2 and write the result to
+ * dst. It is assumed that dst is distinct from both src_1 and src_2. */
+void run_container_intersection(const run_container_t *src_1,
+                                const run_container_t *src_2,
+                                run_container_t *dst) {
+    const bool if1 = run_container_is_full(src_1);
+    const bool if2 = run_container_is_full(src_2);
+    if (if1 || if2) {
+        if (if1) {
+            run_container_copy(src_2, dst);
+            return;
+        }
+        if (if2) {
+            run_container_copy(src_1, dst);
+            return;
+        }
+    }
+    // TODO: this could be a lot more efficient, could use SIMD optimizations
+    const int32_t neededcapacity = src_1->n_runs + src_2->n_runs;
+    if (dst->capacity < neededcapacity)
+        run_container_grow(dst, neededcapacity, false);
+    dst->n_runs = 0;
+    int32_t rlepos = 0;
+    int32_t xrlepos = 0;
+    int32_t start = src_1->runs[rlepos].value;
+    int32_t end = start + src_1->runs[rlepos].length + 1;
+    int32_t xstart = src_2->runs[xrlepos].value;
+    int32_t xend = xstart + src_2->runs[xrlepos].length + 1;
+    while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) {
+        if (end <= xstart) {
+            ++rlepos;
+            if (rlepos < src_1->n_runs) {
+                start = src_1->runs[rlepos].value;
+                end = start + src_1->runs[rlepos].length + 1;
+            }
+        } else if (xend <= start) {
+            ++xrlepos;
+            if (xrlepos < src_2->n_runs) {
+                xstart = src_2->runs[xrlepos].value;
+                xend = xstart + src_2->runs[xrlepos].length + 1;
+            }
+        } else {  // they overlap
+            const int32_t lateststart = start > xstart ? start : xstart;
+            int32_t earliestend;
+            if (end == xend) {  // improbable
+                earliestend = end;
+                rlepos++;
+                xrlepos++;
+                if (rlepos < src_1->n_runs) {
+                    start = src_1->runs[rlepos].value;
+                    end = start + src_1->runs[rlepos].length + 1;
+                }
+                if (xrlepos < src_2->n_runs) {
+                    xstart = src_2->runs[xrlepos].value;
+                    xend = xstart + src_2->runs[xrlepos].length + 1;
+                }
+            } else if (end < xend) {
+                earliestend = end;
+                rlepos++;
+                if (rlepos < src_1->n_runs) {
+                    start = src_1->runs[rlepos].value;
+                    end = start + src_1->runs[rlepos].length + 1;
+                }
+
+            } else {  // end > xend
+                earliestend = xend;
+                xrlepos++;
+                if (xrlepos < src_2->n_runs) {
+                    xstart = src_2->runs[xrlepos].value;
+                    xend = xstart + src_2->runs[xrlepos].length + 1;
+                }
+            }
+            dst->runs[dst->n_runs].value = (uint16_t)lateststart;
+            dst->runs[dst->n_runs].length =
+                (uint16_t)(earliestend - lateststart - 1);
+            dst->n_runs++;
+        }
+    }
+}
+
+/* Compute the size of the intersection of src_1 and src_2 . */
+int run_container_intersection_cardinality(const run_container_t *src_1,
+                                           const run_container_t *src_2) {
+    const bool if1 = run_container_is_full(src_1);
+    const bool if2 = run_container_is_full(src_2);
+    if (if1 || if2) {
+        if (if1) {
+            return run_container_cardinality(src_2);
+        }
+        if (if2) {
+            return run_container_cardinality(src_1);
+        }
+    }
+    int answer = 0;
+    int32_t rlepos = 0;
+    int32_t xrlepos = 0;
+    int32_t start = src_1->runs[rlepos].value;
+    int32_t end = start + src_1->runs[rlepos].length + 1;
+    int32_t xstart = src_2->runs[xrlepos].value;
+    int32_t xend = xstart + src_2->runs[xrlepos].length + 1;
+    while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) {
+        if (end <= xstart) {
+            ++rlepos;
+            if (rlepos < src_1->n_runs) {
+                start = src_1->runs[rlepos].value;
+                end = start + src_1->runs[rlepos].length + 1;
+            }
+        } else if (xend <= start) {
+            ++xrlepos;
+            if (xrlepos < src_2->n_runs) {
+                xstart = src_2->runs[xrlepos].value;
+                xend = xstart + src_2->runs[xrlepos].length + 1;
+            }
+        } else {  // they overlap
+            const int32_t lateststart = start > xstart ? start : xstart;
+            int32_t earliestend;
+            if (end == xend) {  // improbable
+                earliestend = end;
+                rlepos++;
+                xrlepos++;
+                if (rlepos < src_1->n_runs) {
+                    start = src_1->runs[rlepos].value;
+                    end = start + src_1->runs[rlepos].length + 1;
+                }
+                if (xrlepos < src_2->n_runs) {
+                    xstart = src_2->runs[xrlepos].value;
+                    xend = xstart + src_2->runs[xrlepos].length + 1;
+                }
+            } else if (end < xend) {
+                earliestend = end;
+                rlepos++;
+                if (rlepos < src_1->n_runs) {
+                    start = src_1->runs[rlepos].value;
+                    end = start + src_1->runs[rlepos].length + 1;
+                }
+
+            } else {  // end > xend
+                earliestend = xend;
+                xrlepos++;
+                if (xrlepos < src_2->n_runs) {
+                    xstart = src_2->runs[xrlepos].value;
+                    xend = xstart + src_2->runs[xrlepos].length + 1;
+                }
+            }
+            answer += earliestend - lateststart;
+        }
+    }
+    return answer;
+}
+
+bool run_container_intersect(const run_container_t *src_1,
+                                const run_container_t *src_2) {
+    const bool if1 = run_container_is_full(src_1);
+    const bool if2 = run_container_is_full(src_2);
+    if (if1 || if2) {
+        if (if1) {
+            return !run_container_empty(src_2);
+        }
+        if (if2) {
+               return !run_container_empty(src_1);
+        }
+    }
+    int32_t rlepos = 0;
+    int32_t xrlepos = 0;
+    int32_t start = src_1->runs[rlepos].value;
+    int32_t end = start + src_1->runs[rlepos].length + 1;
+    int32_t xstart = src_2->runs[xrlepos].value;
+    int32_t xend = xstart + src_2->runs[xrlepos].length + 1;
+    while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) {
+        if (end <= xstart) {
+            ++rlepos;
+            if (rlepos < src_1->n_runs) {
+                start = src_1->runs[rlepos].value;
+                end = start + src_1->runs[rlepos].length + 1;
+            }
+        } else if (xend <= start) {
+            ++xrlepos;
+            if (xrlepos < src_2->n_runs) {
+                xstart = src_2->runs[xrlepos].value;
+                xend = xstart + src_2->runs[xrlepos].length + 1;
+            }
+        } else {  // they overlap
+            return true;
+        }
+    }
+    return false;
+}
+
+
+/* Compute the difference of src_1 and src_2 and write the result to
+ * dst. It is assumed that dst is distinct from both src_1 and src_2. */
+void run_container_andnot(const run_container_t *src_1,
+                          const run_container_t *src_2, run_container_t *dst) {
+    // following Java implementation as of June 2016
+
+    if (dst->capacity < src_1->n_runs + src_2->n_runs)
+        run_container_grow(dst, src_1->n_runs + src_2->n_runs, false);
+
+    dst->n_runs = 0;
+
+    int rlepos1 = 0;
+    int rlepos2 = 0;
+    int32_t start = src_1->runs[rlepos1].value;
+    int32_t end = start + src_1->runs[rlepos1].length + 1;
+    int32_t start2 = src_2->runs[rlepos2].value;
+    int32_t end2 = start2 + src_2->runs[rlepos2].length + 1;
+
+    while ((rlepos1 < src_1->n_runs) && (rlepos2 < src_2->n_runs)) {
+        if (end <= start2) {
+            // output the first run
+            dst->runs[dst->n_runs++] =
+                (rle16_t){.value = (uint16_t)start,
+                          .length = (uint16_t)(end - start - 1)};
+            rlepos1++;
+            if (rlepos1 < src_1->n_runs) {
+                start = src_1->runs[rlepos1].value;
+                end = start + src_1->runs[rlepos1].length + 1;
+            }
+        } else if (end2 <= start) {
+            // exit the second run
+            rlepos2++;
+            if (rlepos2 < src_2->n_runs) {
+                start2 = src_2->runs[rlepos2].value;
+                end2 = start2 + src_2->runs[rlepos2].length + 1;
+            }
+        } else {
+            if (start < start2) {
+                dst->runs[dst->n_runs++] =
+                    (rle16_t){.value = (uint16_t)start,
+                              .length = (uint16_t)(start2 - start - 1)};
+            }
+            if (end2 < end) {
+                start = end2;
+            } else {
+                rlepos1++;
+                if (rlepos1 < src_1->n_runs) {
+                    start = src_1->runs[rlepos1].value;
+                    end = start + src_1->runs[rlepos1].length + 1;
+                }
+            }
+        }
+    }
+    if (rlepos1 < src_1->n_runs) {
+        dst->runs[dst->n_runs++] = (rle16_t){
+            .value = (uint16_t)start, .length = (uint16_t)(end - start - 1)};
+        rlepos1++;
+        if (rlepos1 < src_1->n_runs) {
+            memcpy(dst->runs + dst->n_runs, src_1->runs + rlepos1,
+                   sizeof(rle16_t) * (src_1->n_runs - rlepos1));
+            dst->n_runs += src_1->n_runs - rlepos1;
+        }
+    }
+}
+
+int run_container_to_uint32_array(void *vout, const run_container_t *cont,
+                                  uint32_t base) {
+    int outpos = 0;
+    uint32_t *out = (uint32_t *)vout;
+    for (int i = 0; i < cont->n_runs; ++i) {
+        uint32_t run_start = base + cont->runs[i].value;
+        uint16_t le = cont->runs[i].length;
+        for (int j = 0; j <= le; ++j) {
+            uint32_t val = run_start + j;
+            memcpy(out + outpos, &val,
+                   sizeof(uint32_t));  // should be compiled as a MOV on x64
+            outpos++;
+        }
+    }
+    return outpos;
+}
+
+/*
+ * Print this container using printf (useful for debugging).
+ */
+void run_container_printf(const run_container_t *cont) {
+    for (int i = 0; i < cont->n_runs; ++i) {
+        uint16_t run_start = cont->runs[i].value;
+        uint16_t le = cont->runs[i].length;
+        printf("[%d,%d]", run_start, run_start + le);
+    }
+}
+
+/*
+ * Print this container using printf as a comma-separated list of 32-bit
+ * integers starting at base.
+ */
+void run_container_printf_as_uint32_array(const run_container_t *cont,
+                                          uint32_t base) {
+    if (cont->n_runs == 0) return;
+    {
+        uint32_t run_start = base + cont->runs[0].value;
+        uint16_t le = cont->runs[0].length;
+        printf("%u", run_start);
+        for (uint32_t j = 1; j <= le; ++j) printf(",%u", run_start + j);
+    }
+    for (int32_t i = 1; i < cont->n_runs; ++i) {
+        uint32_t run_start = base + cont->runs[i].value;
+        uint16_t le = cont->runs[i].length;
+        for (uint32_t j = 0; j <= le; ++j) printf(",%u", run_start + j);
+    }
+}
+
+int32_t run_container_serialize(const run_container_t *container, char *buf) {
+    int32_t l, off;
+
+    memcpy(buf, &container->n_runs, off = sizeof(container->n_runs));
+    memcpy(&buf[off], &container->capacity, sizeof(container->capacity));
+    off += sizeof(container->capacity);
+
+    l = sizeof(rle16_t) * container->n_runs;
+    memcpy(&buf[off], container->runs, l);
+    return (off + l);
+}
+
+int32_t run_container_write(const run_container_t *container, char *buf) {
+    memcpy(buf, &container->n_runs, sizeof(uint16_t));
+    memcpy(buf + sizeof(uint16_t), container->runs,
+           container->n_runs * sizeof(rle16_t));
+    return run_container_size_in_bytes(container);
+}
+
+int32_t run_container_read(int32_t cardinality, run_container_t *container,
+                           const char *buf) {
+    (void)cardinality;
+    memcpy(&container->n_runs, buf, sizeof(uint16_t));
+    if (container->n_runs > container->capacity)
+        run_container_grow(container, container->n_runs, false);
+    if(container->n_runs > 0) {
+      memcpy(container->runs, buf + sizeof(uint16_t),
+           container->n_runs * sizeof(rle16_t));
+    }
+    return run_container_size_in_bytes(container);
+}
+
+uint32_t run_container_serialization_len(const run_container_t *container) {
+    return (sizeof(container->n_runs) + sizeof(container->capacity) +
+            sizeof(rle16_t) * container->n_runs);
+}
+
+void *run_container_deserialize(const char *buf, size_t buf_len) {
+    run_container_t *ptr;
+
+    if (buf_len < 8 /* n_runs + capacity */)
+        return (NULL);
+    else
+        buf_len -= 8;
+
+    if ((ptr = (run_container_t *)malloc(sizeof(run_container_t))) != NULL) {
+        size_t len;
+        int32_t off;
+
+        memcpy(&ptr->n_runs, buf, off = 4);
+        memcpy(&ptr->capacity, &buf[off], 4);
+        off += 4;
+
+        len = sizeof(rle16_t) * ptr->n_runs;
+
+        if (len != buf_len) {
+            free(ptr);
+            return (NULL);
+        }
+
+        if ((ptr->runs = (rle16_t *)malloc(len)) == NULL) {
+            free(ptr);
+            return (NULL);
+        }
+
+        memcpy(ptr->runs, &buf[off], len);
+
+        /* Check if returned values are monotonically increasing */
+        for (int32_t i = 0, j = 0; i < ptr->n_runs; i++) {
+            if (ptr->runs[i].value < j) {
+                free(ptr->runs);
+                free(ptr);
+                return (NULL);
+            } else
+                j = ptr->runs[i].value;
+        }
+    }
+
+    return (ptr);
+}
+
+bool run_container_iterate(const run_container_t *cont, uint32_t base,
+                           roaring_iterator iterator, void *ptr) {
+    for (int i = 0; i < cont->n_runs; ++i) {
+        uint32_t run_start = base + cont->runs[i].value;
+        uint16_t le = cont->runs[i].length;
+
+        for (int j = 0; j <= le; ++j)
+            if (!iterator(run_start + j, ptr)) return false;
+    }
+    return true;
+}
+
+bool run_container_iterate64(const run_container_t *cont, uint32_t base,
+                             roaring_iterator64 iterator, uint64_t high_bits,
+                             void *ptr) {
+    for (int i = 0; i < cont->n_runs; ++i) {
+        uint32_t run_start = base + cont->runs[i].value;
+        uint16_t le = cont->runs[i].length;
+
+        for (int j = 0; j <= le; ++j)
+            if (!iterator(high_bits | (uint64_t)(run_start + j), ptr))
+                return false;
+    }
+    return true;
+}
+
+bool run_container_is_subset(const run_container_t *container1,
+                             const run_container_t *container2) {
+    int i1 = 0, i2 = 0;
+    while (i1 < container1->n_runs && i2 < container2->n_runs) {
+        int start1 = container1->runs[i1].value;
+        int stop1 = start1 + container1->runs[i1].length;
+        int start2 = container2->runs[i2].value;
+        int stop2 = start2 + container2->runs[i2].length;
+        if (start1 < start2) {
+            return false;
+        } else {  // start1 >= start2
+            if (stop1 < stop2) {
+                i1++;
+            } else if (stop1 == stop2) {
+                i1++;
+                i2++;
+            } else {  // stop1 > stop2
+                i2++;
+            }
+        }
+    }
+    if (i1 == container1->n_runs) {
+        return true;
+    } else {
+        return false;
+    }
+}
+
+// TODO: write smart_append_exclusive version to match the overloaded 1 param
+// Java version (or  is it even used?)
+
+// follows the Java implementation closely
+// length is the rle-value.  Ie, run [10,12) uses a length value 1.
+void run_container_smart_append_exclusive(run_container_t *src,
+                                          const uint16_t start,
+                                          const uint16_t length) {
+    int old_end;
+    rle16_t *last_run = src->n_runs ? src->runs + (src->n_runs - 1) : NULL;
+    rle16_t *appended_last_run = src->runs + src->n_runs;
+
+    if (!src->n_runs ||
+        (start > (old_end = last_run->value + last_run->length + 1))) {
+        *appended_last_run = (rle16_t){.value = start, .length = length};
+        src->n_runs++;
+        return;
+    }
+    if (old_end == start) {
+        // we merge
+        last_run->length += (length + 1);
+        return;
+    }
+    int new_end = start + length + 1;
+
+    if (start == last_run->value) {
+        // wipe out previous
+        if (new_end < old_end) {
+            *last_run = (rle16_t){.value = (uint16_t)new_end,
+                                  .length = (uint16_t)(old_end - new_end - 1)};
+            return;
+        } else if (new_end > old_end) {
+            *last_run = (rle16_t){.value = (uint16_t)old_end,
+                                  .length = (uint16_t)(new_end - old_end - 1)};
+            return;
+        } else {
+            src->n_runs--;
+            return;
+        }
+    }
+    last_run->length = start - last_run->value - 1;
+    if (new_end < old_end) {
+        *appended_last_run =
+            (rle16_t){.value = (uint16_t)new_end,
+                      .length = (uint16_t)(old_end - new_end - 1)};
+        src->n_runs++;
+    } else if (new_end > old_end) {
+        *appended_last_run =
+            (rle16_t){.value = (uint16_t)old_end,
+                      .length = (uint16_t)(new_end - old_end - 1)};
+        src->n_runs++;
+    }
+}
+
+bool run_container_select(const run_container_t *container,
+                          uint32_t *start_rank, uint32_t rank,
+                          uint32_t *element) {
+    for (int i = 0; i < container->n_runs; i++) {
+        uint16_t length = container->runs[i].length;
+        if (rank <= *start_rank + length) {
+            uint16_t value = container->runs[i].value;
+            *element = value + rank - (*start_rank);
+            return true;
+        } else
+            *start_rank += length + 1;
+    }
+    return false;
+}
+
+int run_container_rank(const run_container_t *container, uint16_t x) {
+    int sum = 0;
+    uint32_t x32 = x;
+    for (int i = 0; i < container->n_runs; i++) {
+        uint32_t startpoint = container->runs[i].value;
+        uint32_t length = container->runs[i].length;
+        uint32_t endpoint = length + startpoint;
+        if (x <= endpoint) {
+            if (x < startpoint) break;
+            return sum + (x32 - startpoint) + 1;
+        } else {
+            sum += length + 1;
+        }
+    }
+    return sum;
+}
+/* end file src/containers/run.c */
+/* begin file src/roaring.c */
+#include <assert.h>
+#include <stdarg.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <string.h>
+#include <inttypes.h>
+
+static inline bool is_cow(const roaring_bitmap_t *r) {
+    return r->high_low_container.flags & ROARING_FLAG_COW;
+}
+static inline bool is_frozen(const roaring_bitmap_t *r) {
+    return r->high_low_container.flags & ROARING_FLAG_FROZEN;
+}
+
+// this is like roaring_bitmap_add, but it populates pointer arguments in such a
+// way
+// that we can recover the container touched, which, in turn can be used to
+// accelerate some functions (when you repeatedly need to add to the same
+// container)
+static inline void *containerptr_roaring_bitmap_add(roaring_bitmap_t *r,
+                                                    uint32_t val,
+                                                    uint8_t *typecode,
+                                                    int *index) {
+    uint16_t hb = val >> 16;
+    const int i = ra_get_index(&r->high_low_container, hb);
+    if (i >= 0) {
+        ra_unshare_container_at_index(&r->high_low_container, i);
+        void *container =
+            ra_get_container_at_index(&r->high_low_container, i, typecode);
+        uint8_t newtypecode = *typecode;
+        void *container2 =
+            container_add(container, val & 0xFFFF, *typecode, &newtypecode);
+        *index = i;
+        if (container2 != container) {
+            container_free(container, *typecode);
+            ra_set_container_at_index(&r->high_low_container, i, container2,
+                                      newtypecode);
+            *typecode = newtypecode;
+            return container2;
+        } else {
+            return container;
+        }
+    } else {
+        array_container_t *newac = array_container_create();
+        void *container = container_add(newac, val & 0xFFFF,
+                                        ARRAY_CONTAINER_TYPE_CODE, typecode);
+        // we could just assume that it stays an array container
+        ra_insert_new_key_value_at(&r->high_low_container, -i - 1, hb,
+                                   container, *typecode);
+        *index = -i - 1;
+        return container;
+    }
+}
+
+roaring_bitmap_t *roaring_bitmap_create(void) {
+    roaring_bitmap_t *ans =
+        (roaring_bitmap_t *)malloc(sizeof(roaring_bitmap_t));
+    if (!ans) {
+        return NULL;
+    }
+    ra_init(&ans->high_low_container);
+    return ans;
+}
+
+roaring_bitmap_t *roaring_bitmap_create_with_capacity(uint32_t cap) {
+    roaring_bitmap_t *ans =
+        (roaring_bitmap_t *)malloc(sizeof(roaring_bitmap_t));
+    if (!ans) {
+        return NULL;
+    }
+    bool is_ok = ra_init_with_capacity(&ans->high_low_container, cap);
+    if (!is_ok) {
+        free(ans);
+        return NULL;
+    }
+    return ans;
+}
+
+void roaring_bitmap_add_many(roaring_bitmap_t *r, size_t n_args,
+                             const uint32_t *vals) {
+    void *container = NULL;  // hold value of last container touched
+    uint8_t typecode = 0;    // typecode of last container touched
+    uint32_t prev = 0;       // previous valued inserted
+    size_t i = 0;            // index of value
+    int containerindex = 0;
+    if (n_args == 0) return;
+    uint32_t val;
+    memcpy(&val, vals + i, sizeof(val));
+    container =
+        containerptr_roaring_bitmap_add(r, val, &typecode, &containerindex);
+    prev = val;
+    i++;
+    for (; i < n_args; i++) {
+        memcpy(&val, vals + i, sizeof(val));
+        if (((prev ^ val) >> 16) ==
+            0) {  // no need to seek the container, it is at hand
+            // because we already have the container at hand, we can do the
+            // insertion
+            // automatically, bypassing the roaring_bitmap_add call
+            uint8_t newtypecode = typecode;
+            void *container2 =
+                container_add(container, val & 0xFFFF, typecode, &newtypecode);
+            if (container2 != container) {  // rare instance when we need to
+                                            // change the container type
+                container_free(container, typecode);
+                ra_set_container_at_index(&r->high_low_container,
+                                          containerindex, container2,
+                                          newtypecode);
+                typecode = newtypecode;
+                container = container2;
+            }
+        } else {
+            container = containerptr_roaring_bitmap_add(r, val, &typecode,
+                                                        &containerindex);
+        }
+        prev = val;
+    }
+}
+
+roaring_bitmap_t *roaring_bitmap_of_ptr(size_t n_args, const uint32_t *vals) {
+    roaring_bitmap_t *answer = roaring_bitmap_create();
+    roaring_bitmap_add_many(answer, n_args, vals);
+    return answer;
+}
+
+roaring_bitmap_t *roaring_bitmap_of(size_t n_args, ...) {
+    // todo: could be greatly optimized but we do not expect this call to ever
+    // include long lists
+    roaring_bitmap_t *answer = roaring_bitmap_create();
+    va_list ap;
+    va_start(ap, n_args);
+    for (size_t i = 1; i <= n_args; i++) {
+        uint32_t val = va_arg(ap, uint32_t);
+        roaring_bitmap_add(answer, val);
+    }
+    va_end(ap);
+    return answer;
+}
+
+static inline uint32_t minimum_uint32(uint32_t a, uint32_t b) {
+    return (a < b) ? a : b;
+}
+
+static inline uint64_t minimum_uint64(uint64_t a, uint64_t b) {
+    return (a < b) ? a : b;
+}
+
+roaring_bitmap_t *roaring_bitmap_from_range(uint64_t min, uint64_t max,
+                                            uint32_t step) {
+    if(max >= UINT64_C(0x100000000)) {
+        max = UINT64_C(0x100000000);
+    }
+    if (step == 0) return NULL;
+    if (max <= min) return NULL;
+    roaring_bitmap_t *answer = roaring_bitmap_create();
+    if (step >= (1 << 16)) {
+        for (uint32_t value = (uint32_t)min; value < max; value += step) {
+            roaring_bitmap_add(answer, value);
+        }
+        return answer;
+    }
+    uint64_t min_tmp = min;
+    do {
+        uint32_t key = (uint32_t)min_tmp >> 16;
+        uint32_t container_min = min_tmp & 0xFFFF;
+        uint32_t container_max = (uint32_t)minimum_uint64(max - (key << 16), 1 << 16);
+        uint8_t type;
+        void *container = container_from_range(&type, container_min,
+                                               container_max, (uint16_t)step);
+        ra_append(&answer->high_low_container, key, container, type);
+        uint32_t gap = container_max - container_min + step - 1;
+        min_tmp += gap - (gap % step);
+    } while (min_tmp < max);
+    // cardinality of bitmap will be ((uint64_t) max - min + step - 1 ) / step
+    return answer;
+}
+
+void roaring_bitmap_add_range_closed(roaring_bitmap_t *ra, uint32_t min, uint32_t max) {
+    if (min > max) {
+        return;
+    }
+
+    uint32_t min_key = min >> 16;
+    uint32_t max_key = max >> 16;
+
+    int32_t num_required_containers = max_key - min_key + 1;
+    int32_t suffix_length = count_greater(ra->high_low_container.keys,
+                                          ra->high_low_container.size,
+                                          max_key);
+    int32_t prefix_length = count_less(ra->high_low_container.keys,
+                                       ra->high_low_container.size - suffix_length,
+                                       min_key);
+    int32_t common_length = ra->high_low_container.size - prefix_length - suffix_length;
+
+    if (num_required_containers > common_length) {
+        ra_shift_tail(&ra->high_low_container, suffix_length,
+                      num_required_containers - common_length);
+    }
+
+    int32_t src = prefix_length + common_length - 1;
+    int32_t dst = ra->high_low_container.size - suffix_length - 1;
+    for (uint32_t key = max_key; key != min_key-1; key--) { // beware of min_key==0
+        uint32_t container_min = (min_key == key) ? (min & 0xffff) : 0;
+        uint32_t container_max = (max_key == key) ? (max & 0xffff) : 0xffff;
+        void* new_container;
+        uint8_t new_type;
+
+        if (src >= 0 && ra->high_low_container.keys[src] == key) {
+            ra_unshare_container_at_index(&ra->high_low_container, src);
+            new_container = container_add_range(ra->high_low_container.containers[src],
+                                                ra->high_low_container.typecodes[src],
+                                                container_min, container_max, &new_type);
+            if (new_container != ra->high_low_container.containers[src]) {
+                container_free(ra->high_low_container.containers[src],
+                               ra->high_low_container.typecodes[src]);
+            }
+            src--;
+        } else {
+            new_container = container_from_range(&new_type, container_min,
+                                                 container_max+1, 1);
+        }
+        ra_replace_key_and_container_at_index(&ra->high_low_container, dst,
+                                              key, new_container, new_type);
+        dst--;
+    }
+}
+
+void roaring_bitmap_remove_range_closed(roaring_bitmap_t *ra, uint32_t min, uint32_t max) {
+    if (min > max) {
+        return;
+    }
+
+    uint32_t min_key = min >> 16;
+    uint32_t max_key = max >> 16;
+
+    int32_t src = count_less(ra->high_low_container.keys, ra->high_low_container.size, min_key);
+    int32_t dst = src;
+    while (src < ra->high_low_container.size && ra->high_low_container.keys[src] <= max_key) {
+        uint32_t container_min = (min_key == ra->high_low_container.keys[src]) ? (min & 0xffff) : 0;
+        uint32_t container_max = (max_key == ra->high_low_container.keys[src]) ? (max & 0xffff) : 0xffff;
+        ra_unshare_container_at_index(&ra->high_low_container, src);
+        void *new_container;
+        uint8_t new_type;
+        new_container = container_remove_range(ra->high_low_container.containers[src],
+                                               ra->high_low_container.typecodes[src],
+                                               container_min, container_max,
+                                               &new_type);
+        if (new_container != ra->high_low_container.containers[src]) {
+            container_free(ra->high_low_container.containers[src],
+                           ra->high_low_container.typecodes[src]);
+        }
+        if (new_container) {
+            ra_replace_key_and_container_at_index(&ra->high_low_container, dst,
+                                                  ra->high_low_container.keys[src],
+                                                  new_container, new_type);
+            dst++;
+        }
+        src++;
+    }
+    if (src > dst) {
+        ra_shift_tail(&ra->high_low_container, ra->high_low_container.size - src, dst - src);
+    }
+}
+
+void roaring_bitmap_printf(const roaring_bitmap_t *ra) {
+    printf("{");
+    for (int i = 0; i < ra->high_low_container.size; ++i) {
+        container_printf_as_uint32_array(
+            ra->high_low_container.containers[i],
+            ra->high_low_container.typecodes[i],
+            ((uint32_t)ra->high_low_container.keys[i]) << 16);
+        if (i + 1 < ra->high_low_container.size) printf(",");
+    }
+    printf("}");
+}
+
+void roaring_bitmap_printf_describe(const roaring_bitmap_t *ra) {
+    printf("{");
+    for (int i = 0; i < ra->high_low_container.size; ++i) {
+        printf("%d: %s (%d)", ra->high_low_container.keys[i],
+               get_full_container_name(ra->high_low_container.containers[i],
+                                       ra->high_low_container.typecodes[i]),
+               container_get_cardinality(ra->high_low_container.containers[i],
+                                         ra->high_low_container.typecodes[i]));
+        if (ra->high_low_container.typecodes[i] == SHARED_CONTAINER_TYPE_CODE) {
+            printf(
+                "(shared count = %" PRIu32 " )",
+                ((shared_container_t *)(ra->high_low_container.containers[i]))
+                    ->counter);
+        }
+
+        if (i + 1 < ra->high_low_container.size) printf(", ");
+    }
+    printf("}");
+}
+
+typedef struct min_max_sum_s {
+    uint32_t min;
+    uint32_t max;
+    uint64_t sum;
+} min_max_sum_t;
+
+static bool min_max_sum_fnc(uint32_t value, void *param) {
+    min_max_sum_t *mms = (min_max_sum_t *)param;
+    if (value > mms->max) mms->max = value;
+    if (value < mms->min) mms->min = value;
+    mms->sum += value;
+    return true;  // we always process all data points
+}
+
+/**
+*  (For advanced users.)
+* Collect statistics about the bitmap
+*/
+void roaring_bitmap_statistics(const roaring_bitmap_t *ra,
+                               roaring_statistics_t *stat) {
+    memset(stat, 0, sizeof(*stat));
+    stat->n_containers = ra->high_low_container.size;
+    stat->cardinality = roaring_bitmap_get_cardinality(ra);
+    min_max_sum_t mms;
+    mms.min = UINT32_C(0xFFFFFFFF);
+    mms.max = UINT32_C(0);
+    mms.sum = 0;
+    roaring_iterate(ra, &min_max_sum_fnc, &mms);
+    stat->min_value = mms.min;
+    stat->max_value = mms.max;
+    stat->sum_value = mms.sum;
+
+    for (int i = 0; i < ra->high_low_container.size; ++i) {
+        uint8_t truetype =
+            get_container_type(ra->high_low_container.containers[i],
+                               ra->high_low_container.typecodes[i]);
+        uint32_t card =
+            container_get_cardinality(ra->high_low_container.containers[i],
+                                      ra->high_low_container.typecodes[i]);
+        uint32_t sbytes =
+            container_size_in_bytes(ra->high_low_container.containers[i],
+                                    ra->high_low_container.typecodes[i]);
+        switch (truetype) {
+            case BITSET_CONTAINER_TYPE_CODE:
+                stat->n_bitset_containers++;
+                stat->n_values_bitset_containers += card;
+                stat->n_bytes_bitset_containers += sbytes;
+                break;
+            case ARRAY_CONTAINER_TYPE_CODE:
+                stat->n_array_containers++;
+                stat->n_values_array_containers += card;
+                stat->n_bytes_array_containers += sbytes;
+                break;
+            case RUN_CONTAINER_TYPE_CODE:
+                stat->n_run_containers++;
+                stat->n_values_run_containers += card;
+                stat->n_bytes_run_containers += sbytes;
+                break;
+            default:
+                assert(false);
+                __builtin_unreachable();
+        }
+    }
+}
+
+roaring_bitmap_t *roaring_bitmap_copy(const roaring_bitmap_t *r) {
+    roaring_bitmap_t *ans =
+        (roaring_bitmap_t *)malloc(sizeof(roaring_bitmap_t));
+    if (!ans) {
+        return NULL;
+    }
+    bool is_ok = ra_copy(&r->high_low_container, &ans->high_low_container,
+                         is_cow(r));
+    if (!is_ok) {
+        free(ans);
+        return NULL;
+    }
+    roaring_bitmap_set_copy_on_write(ans, is_cow(r));
+    return ans;
+}
+
+bool roaring_bitmap_overwrite(roaring_bitmap_t *dest,
+                                     const roaring_bitmap_t *src) {
+    return ra_overwrite(&src->high_low_container, &dest->high_low_container,
+                        is_cow(src));
+}
+
+void roaring_bitmap_free(const roaring_bitmap_t *r) {
+    if (!is_frozen(r)) {
+      ra_clear((roaring_array_t*)&r->high_low_container);
+    }
+    free((roaring_bitmap_t*)r);
+}
+
+void roaring_bitmap_clear(roaring_bitmap_t *r) {
+  ra_reset(&r->high_low_container);
+}
+
+void roaring_bitmap_add(roaring_bitmap_t *r, uint32_t val) {
+    const uint16_t hb = val >> 16;
+    const int i = ra_get_index(&r->high_low_container, hb);
+    uint8_t typecode;
+    if (i >= 0) {
+        ra_unshare_container_at_index(&r->high_low_container, i);
+        void *container =
+            ra_get_container_at_index(&r->high_low_container, i, &typecode);
+        uint8_t newtypecode = typecode;
+        void *container2 =
+            container_add(container, val & 0xFFFF, typecode, &newtypecode);
+        if (container2 != container) {
+            container_free(container, typecode);
+            ra_set_container_at_index(&r->high_low_container, i, container2,
+                                      newtypecode);
+        }
+    } else {
+        array_container_t *newac = array_container_create();
+        void *container = container_add(newac, val & 0xFFFF,
+                                        ARRAY_CONTAINER_TYPE_CODE, &typecode);
+        // we could just assume that it stays an array container
+        ra_insert_new_key_value_at(&r->high_low_container, -i - 1, hb,
+                                   container, typecode);
+    }
+}
+
+bool roaring_bitmap_add_checked(roaring_bitmap_t *r, uint32_t val) {
+    const uint16_t hb = val >> 16;
+    const int i = ra_get_index(&r->high_low_container, hb);
+    uint8_t typecode;
+    bool result = false;
+    if (i >= 0) {
+        ra_unshare_container_at_index(&r->high_low_container, i);
+        void *container =
+            ra_get_container_at_index(&r->high_low_container, i, &typecode);
+
+        const int oldCardinality =
+            container_get_cardinality(container, typecode);
+
+        uint8_t newtypecode = typecode;
+        void *container2 =
+            container_add(container, val & 0xFFFF, typecode, &newtypecode);
+        if (container2 != container) {
+            container_free(container, typecode);
+            ra_set_container_at_index(&r->high_low_container, i, container2,
+                                      newtypecode);
+            result = true;
+        } else {
+            const int newCardinality =
+                container_get_cardinality(container, newtypecode);
+
+            result = oldCardinality != newCardinality;
+        }
+    } else {
+        array_container_t *newac = array_container_create();
+        void *container = container_add(newac, val & 0xFFFF,
+                                        ARRAY_CONTAINER_TYPE_CODE, &typecode);
+        // we could just assume that it stays an array container
+        ra_insert_new_key_value_at(&r->high_low_container, -i - 1, hb,
+                                   container, typecode);
+        result = true;
+    }
+
+    return result;
+}
+
+void roaring_bitmap_remove(roaring_bitmap_t *r, uint32_t val) {
+    const uint16_t hb = val >> 16;
+    const int i = ra_get_index(&r->high_low_container, hb);
+    uint8_t typecode;
+    if (i >= 0) {
+        ra_unshare_container_at_index(&r->high_low_container, i);
+        void *container =
+            ra_get_container_at_index(&r->high_low_container, i, &typecode);
+        uint8_t newtypecode = typecode;
+        void *container2 =
+            container_remove(container, val & 0xFFFF, typecode, &newtypecode);
+        if (container2 != container) {
+            container_free(container, typecode);
+            ra_set_container_at_index(&r->high_low_container, i, container2,
+                                      newtypecode);
+        }
+        if (container_get_cardinality(container2, newtypecode) != 0) {
+            ra_set_container_at_index(&r->high_low_container, i, container2,
+                                      newtypecode);
+        } else {
+            ra_remove_at_index_and_free(&r->high_low_container, i);
+        }
+    }
+}
+
+bool roaring_bitmap_remove_checked(roaring_bitmap_t *r, uint32_t val) {
+    const uint16_t hb = val >> 16;
+    const int i = ra_get_index(&r->high_low_container, hb);
+    uint8_t typecode;
+    bool result = false;
+    if (i >= 0) {
+        ra_unshare_container_at_index(&r->high_low_container, i);
+        void *container =
+            ra_get_container_at_index(&r->high_low_container, i, &typecode);
+
+        const int oldCardinality =
+            container_get_cardinality(container, typecode);
+
+        uint8_t newtypecode = typecode;
+        void *container2 =
+            container_remove(container, val & 0xFFFF, typecode, &newtypecode);
+        if (container2 != container) {
+            container_free(container, typecode);
+            ra_set_container_at_index(&r->high_low_container, i, container2,
+                                      newtypecode);
+        }
+
+        const int newCardinality =
+            container_get_cardinality(container2, newtypecode);
+
+        if (newCardinality != 0) {
+            ra_set_container_at_index(&r->high_low_container, i, container2,
+                                      newtypecode);
+        } else {
+            ra_remove_at_index_and_free(&r->high_low_container, i);
+        }
+
+        result = oldCardinality != newCardinality;
+    }
+    return result;
+}
+
+void roaring_bitmap_remove_many(roaring_bitmap_t *r, size_t n_args,
+                                const uint32_t *vals) {
+    if (n_args == 0 || r->high_low_container.size == 0) {
+        return;
+    }
+    int32_t pos = -1; // position of the container used in the previous iteration
+    for (size_t i = 0; i < n_args; i++) {
+        uint16_t key = (uint16_t)(vals[i] >> 16);
+        if (pos < 0 || key != r->high_low_container.keys[pos]) {
+            pos = ra_get_index(&r->high_low_container, key);
+        }
+        if (pos >= 0) {
+            uint8_t new_typecode;
+            void *new_container;
+            new_container = container_remove(r->high_low_container.containers[pos],
+                                             vals[i] & 0xffff,
+                                             r->high_low_container.typecodes[pos],
+                                             &new_typecode);
+            if (new_container != r->high_low_container.containers[pos]) {
+                container_free(r->high_low_container.containers[pos],
+                               r->high_low_container.typecodes[pos]);
+                ra_replace_key_and_container_at_index(&r->high_low_container,
+                                                      pos, key, new_container,
+                                                      new_typecode);
+            }
+            if (!container_nonzero_cardinality(new_container, new_typecode)) {
+                container_free(new_container, new_typecode);
+                ra_remove_at_index(&r->high_low_container, pos);
+                pos = -1;
+            }
+        }
+    }
+}
+
+// there should be some SIMD optimizations possible here
+roaring_bitmap_t *roaring_bitmap_and(const roaring_bitmap_t *x1,
+                                     const roaring_bitmap_t *x2) {
+    uint8_t container_result_type = 0;
+    const int length1 = x1->high_low_container.size,
+              length2 = x2->high_low_container.size;
+    uint32_t neededcap = length1 > length2 ? length2 : length1;
+    roaring_bitmap_t *answer = roaring_bitmap_create_with_capacity(neededcap);
+    roaring_bitmap_set_copy_on_write(answer, is_cow(x1) && is_cow(x2));
+
+    int pos1 = 0, pos2 = 0;
+
+    while (pos1 < length1 && pos2 < length2) {
+        const uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+        const uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+
+        if (s1 == s2) {
+            uint8_t container_type_1, container_type_2;
+            void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
+                                                 &container_type_1);
+            void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
+                                                 &container_type_2);
+            void *c = container_and(c1, container_type_1, c2, container_type_2,
+                                    &container_result_type);
+            if (container_nonzero_cardinality(c, container_result_type)) {
+                ra_append(&answer->high_low_container, s1, c,
+                          container_result_type);
+            } else {
+                container_free(
+                    c, container_result_type);  // otherwise:memory leak!
+            }
+            ++pos1;
+            ++pos2;
+        } else if (s1 < s2) {  // s1 < s2
+            pos1 = ra_advance_until(&x1->high_low_container, s2, pos1);
+        } else {  // s1 > s2
+            pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
+        }
+    }
+    return answer;
+}
+
+/**
+ * Compute the union of 'number' bitmaps.
+ */
+roaring_bitmap_t *roaring_bitmap_or_many(size_t number,
+                                         const roaring_bitmap_t **x) {
+    if (number == 0) {
+        return roaring_bitmap_create();
+    }
+    if (number == 1) {
+        return roaring_bitmap_copy(x[0]);
+    }
+    roaring_bitmap_t *answer =
+        roaring_bitmap_lazy_or(x[0], x[1], LAZY_OR_BITSET_CONVERSION);
+    for (size_t i = 2; i < number; i++) {
+        roaring_bitmap_lazy_or_inplace(answer, x[i], LAZY_OR_BITSET_CONVERSION);
+    }
+    roaring_bitmap_repair_after_lazy(answer);
+    return answer;
+}
+
+/**
+ * Compute the xor of 'number' bitmaps.
+ */
+roaring_bitmap_t *roaring_bitmap_xor_many(size_t number,
+                                          const roaring_bitmap_t **x) {
+    if (number == 0) {
+        return roaring_bitmap_create();
+    }
+    if (number == 1) {
+        return roaring_bitmap_copy(x[0]);
+    }
+    roaring_bitmap_t *answer = roaring_bitmap_lazy_xor(x[0], x[1]);
+    for (size_t i = 2; i < number; i++) {
+        roaring_bitmap_lazy_xor_inplace(answer, x[i]);
+    }
+    roaring_bitmap_repair_after_lazy(answer);
+    return answer;
+}
+
+// inplace and (modifies its first argument).
+void roaring_bitmap_and_inplace(roaring_bitmap_t *x1,
+                                const roaring_bitmap_t *x2) {
+    if (x1 == x2) return;
+    int pos1 = 0, pos2 = 0, intersection_size = 0;
+    const int length1 = ra_get_size(&x1->high_low_container);
+    const int length2 = ra_get_size(&x2->high_low_container);
+
+    // any skipped-over or newly emptied containers in x1
+    // have to be freed.
+    while (pos1 < length1 && pos2 < length2) {
+        const uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+        const uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+
+        if (s1 == s2) {
+            uint8_t typecode1, typecode2, typecode_result;
+            void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
+                                                 &typecode1);
+            c1 = get_writable_copy_if_shared(c1, &typecode1);
+            void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
+                                                 &typecode2);
+            void *c =
+                container_iand(c1, typecode1, c2, typecode2, &typecode_result);
+            if (c != c1) {  // in this instance a new container was created, and
+                            // we need to free the old one
+                container_free(c1, typecode1);
+            }
+            if (container_nonzero_cardinality(c, typecode_result)) {
+                ra_replace_key_and_container_at_index(&x1->high_low_container,
+                                                      intersection_size, s1, c,
+                                                      typecode_result);
+                intersection_size++;
+            } else {
+                container_free(c, typecode_result);
+            }
+            ++pos1;
+            ++pos2;
+        } else if (s1 < s2) {
+            pos1 = ra_advance_until_freeing(&x1->high_low_container, s2, pos1);
+        } else {  // s1 > s2
+            pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
+        }
+    }
+
+    // if we ended early because x2 ran out, then all remaining in x1 should be
+    // freed
+    while (pos1 < length1) {
+        container_free(x1->high_low_container.containers[pos1],
+                       x1->high_low_container.typecodes[pos1]);
+        ++pos1;
+    }
+
+    // all containers after this have either been copied or freed
+    ra_downsize(&x1->high_low_container, intersection_size);
+}
+
+roaring_bitmap_t *roaring_bitmap_or(const roaring_bitmap_t *x1,
+                                    const roaring_bitmap_t *x2) {
+    uint8_t container_result_type = 0;
+    const int length1 = x1->high_low_container.size,
+              length2 = x2->high_low_container.size;
+    if (0 == length1) {
+        return roaring_bitmap_copy(x2);
+    }
+    if (0 == length2) {
+        return roaring_bitmap_copy(x1);
+    }
+    roaring_bitmap_t *answer =
+        roaring_bitmap_create_with_capacity(length1 + length2);
+    roaring_bitmap_set_copy_on_write(answer, is_cow(x1) && is_cow(x2));
+    int pos1 = 0, pos2 = 0;
+    uint8_t container_type_1, container_type_2;
+    uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+    uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+    while (true) {
+        if (s1 == s2) {
+            void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
+                                                 &container_type_1);
+            void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
+                                                 &container_type_2);
+            void *c = container_or(c1, container_type_1, c2, container_type_2,
+                                   &container_result_type);
+            // since we assume that the initial containers are non-empty, the
+            // result here
+            // can only be non-empty
+            ra_append(&answer->high_low_container, s1, c,
+                      container_result_type);
+            ++pos1;
+            ++pos2;
+            if (pos1 == length1) break;
+            if (pos2 == length2) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+            s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+
+        } else if (s1 < s2) {  // s1 < s2
+            void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
+                                                 &container_type_1);
+            // c1 = container_clone(c1, container_type_1);
+            c1 =
+                get_copy_of_container(c1, &container_type_1, is_cow(x1));
+            if (is_cow(x1)) {
+                ra_set_container_at_index(&x1->high_low_container, pos1, c1,
+                                          container_type_1);
+            }
+            ra_append(&answer->high_low_container, s1, c1, container_type_1);
+            pos1++;
+            if (pos1 == length1) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+
+        } else {  // s1 > s2
+            void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
+                                                 &container_type_2);
+            // c2 = container_clone(c2, container_type_2);
+            c2 =
+                get_copy_of_container(c2, &container_type_2, is_cow(x2));
+            if (is_cow(x2)) {
+                ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+                                          container_type_2);
+            }
+            ra_append(&answer->high_low_container, s2, c2, container_type_2);
+            pos2++;
+            if (pos2 == length2) break;
+            s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+        }
+    }
+    if (pos1 == length1) {
+        ra_append_copy_range(&answer->high_low_container,
+                             &x2->high_low_container, pos2, length2,
+                             is_cow(x2));
+    } else if (pos2 == length2) {
+        ra_append_copy_range(&answer->high_low_container,
+                             &x1->high_low_container, pos1, length1,
+                             is_cow(x1));
+    }
+    return answer;
+}
+
+// inplace or (modifies its first argument).
+void roaring_bitmap_or_inplace(roaring_bitmap_t *x1,
+                               const roaring_bitmap_t *x2) {
+    uint8_t container_result_type = 0;
+    int length1 = x1->high_low_container.size;
+    const int length2 = x2->high_low_container.size;
+
+    if (0 == length2) return;
+
+    if (0 == length1) {
+        roaring_bitmap_overwrite(x1, x2);
+        return;
+    }
+    int pos1 = 0, pos2 = 0;
+    uint8_t container_type_1, container_type_2;
+    uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+    uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+    while (true) {
+        if (s1 == s2) {
+            void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
+                                                 &container_type_1);
+            if (!container_is_full(c1, container_type_1)) {
+                c1 = get_writable_copy_if_shared(c1, &container_type_1);
+
+                void *c2 = ra_get_container_at_index(&x2->high_low_container,
+                                                     pos2, &container_type_2);
+                void *c =
+                    container_ior(c1, container_type_1, c2, container_type_2,
+                                  &container_result_type);
+                if (c !=
+                    c1) {  // in this instance a new container was created, and
+                           // we need to free the old one
+                    container_free(c1, container_type_1);
+                }
+
+                ra_set_container_at_index(&x1->high_low_container, pos1, c,
+                                          container_result_type);
+            }
+            ++pos1;
+            ++pos2;
+            if (pos1 == length1) break;
+            if (pos2 == length2) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+            s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+
+        } else if (s1 < s2) {  // s1 < s2
+            pos1++;
+            if (pos1 == length1) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+
+        } else {  // s1 > s2
+            void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
+                                                 &container_type_2);
+            c2 =
+                get_copy_of_container(c2, &container_type_2, is_cow(x2));
+            if (is_cow(x2)) {
+                ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+                                          container_type_2);
+            }
+
+            // void *c2_clone = container_clone(c2, container_type_2);
+            ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2,
+                                       container_type_2);
+            pos1++;
+            length1++;
+            pos2++;
+            if (pos2 == length2) break;
+            s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+        }
+    }
+    if (pos1 == length1) {
+        ra_append_copy_range(&x1->high_low_container, &x2->high_low_container,
+                             pos2, length2, is_cow(x2));
+    }
+}
+
+roaring_bitmap_t *roaring_bitmap_xor(const roaring_bitmap_t *x1,
+                                     const roaring_bitmap_t *x2) {
+    uint8_t container_result_type = 0;
+    const int length1 = x1->high_low_container.size,
+              length2 = x2->high_low_container.size;
+    if (0 == length1) {
+        return roaring_bitmap_copy(x2);
+    }
+    if (0 == length2) {
+        return roaring_bitmap_copy(x1);
+    }
+    roaring_bitmap_t *answer =
+        roaring_bitmap_create_with_capacity(length1 + length2);
+    roaring_bitmap_set_copy_on_write(answer, is_cow(x1) && is_cow(x2));
+    int pos1 = 0, pos2 = 0;
+    uint8_t container_type_1, container_type_2;
+    uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+    uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+    while (true) {
+        if (s1 == s2) {
+            void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
+                                                 &container_type_1);
+            void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
+                                                 &container_type_2);
+            void *c = container_xor(c1, container_type_1, c2, container_type_2,
+                                    &container_result_type);
+
+            if (container_nonzero_cardinality(c, container_result_type)) {
+                ra_append(&answer->high_low_container, s1, c,
+                          container_result_type);
+            } else {
+                container_free(c, container_result_type);
+            }
+            ++pos1;
+            ++pos2;
+            if (pos1 == length1) break;
+            if (pos2 == length2) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+            s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+
+        } else if (s1 < s2) {  // s1 < s2
+            void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
+                                                 &container_type_1);
+            c1 =
+                get_copy_of_container(c1, &container_type_1, is_cow(x1));
+            if (is_cow(x1)) {
+                ra_set_container_at_index(&x1->high_low_container, pos1, c1,
+                                          container_type_1);
+            }
+            ra_append(&answer->high_low_container, s1, c1, container_type_1);
+            pos1++;
+            if (pos1 == length1) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+
+        } else {  // s1 > s2
+            void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
+                                                 &container_type_2);
+            c2 =
+                get_copy_of_container(c2, &container_type_2, is_cow(x2));
+            if (is_cow(x2)) {
+                ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+                                          container_type_2);
+            }
+            ra_append(&answer->high_low_container, s2, c2, container_type_2);
+            pos2++;
+            if (pos2 == length2) break;
+            s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+        }
+    }
+    if (pos1 == length1) {
+        ra_append_copy_range(&answer->high_low_container,
+                             &x2->high_low_container, pos2, length2,
+                             is_cow(x2));
+    } else if (pos2 == length2) {
+        ra_append_copy_range(&answer->high_low_container,
+                             &x1->high_low_container, pos1, length1,
+                             is_cow(x1));
+    }
+    return answer;
+}
+
+// inplace xor (modifies its first argument).
+
+void roaring_bitmap_xor_inplace(roaring_bitmap_t *x1,
+                                const roaring_bitmap_t *x2) {
+    assert(x1 != x2);
+    uint8_t container_result_type = 0;
+    int length1 = x1->high_low_container.size;
+    const int length2 = x2->high_low_container.size;
+
+    if (0 == length2) return;
+
+    if (0 == length1) {
+        roaring_bitmap_overwrite(x1, x2);
+        return;
+    }
+
+    // XOR can have new containers inserted from x2, but can also
+    // lose containers when x1 and x2 are nonempty and identical.
+
+    int pos1 = 0, pos2 = 0;
+    uint8_t container_type_1, container_type_2;
+    uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+    uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+    while (true) {
+        if (s1 == s2) {
+            void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
+                                                 &container_type_1);
+            c1 = get_writable_copy_if_shared(c1, &container_type_1);
+
+            void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
+                                                 &container_type_2);
+            void *c = container_ixor(c1, container_type_1, c2, container_type_2,
+                                     &container_result_type);
+
+            if (container_nonzero_cardinality(c, container_result_type)) {
+                ra_set_container_at_index(&x1->high_low_container, pos1, c,
+                                          container_result_type);
+                ++pos1;
+            } else {
+                container_free(c, container_result_type);
+                ra_remove_at_index(&x1->high_low_container, pos1);
+                --length1;
+            }
+
+            ++pos2;
+            if (pos1 == length1) break;
+            if (pos2 == length2) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+            s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+
+        } else if (s1 < s2) {  // s1 < s2
+            pos1++;
+            if (pos1 == length1) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+
+        } else {  // s1 > s2
+            void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
+                                                 &container_type_2);
+            c2 =
+                get_copy_of_container(c2, &container_type_2, is_cow(x2));
+            if (is_cow(x2)) {
+                ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+                                          container_type_2);
+            }
+
+            ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2,
+                                       container_type_2);
+            pos1++;
+            length1++;
+            pos2++;
+            if (pos2 == length2) break;
+            s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+        }
+    }
+    if (pos1 == length1) {
+        ra_append_copy_range(&x1->high_low_container, &x2->high_low_container,
+                             pos2, length2, is_cow(x2));
+    }
+}
+
+roaring_bitmap_t *roaring_bitmap_andnot(const roaring_bitmap_t *x1,
+                                        const roaring_bitmap_t *x2) {
+    uint8_t container_result_type = 0;
+    const int length1 = x1->high_low_container.size,
+              length2 = x2->high_low_container.size;
+    if (0 == length1) {
+        roaring_bitmap_t *empty_bitmap = roaring_bitmap_create();
+        roaring_bitmap_set_copy_on_write(empty_bitmap, is_cow(x1) && is_cow(x2));
+        return empty_bitmap;
+    }
+    if (0 == length2) {
+        return roaring_bitmap_copy(x1);
+    }
+    roaring_bitmap_t *answer = roaring_bitmap_create_with_capacity(length1);
+    roaring_bitmap_set_copy_on_write(answer, is_cow(x1) && is_cow(x2));
+
+    int pos1 = 0, pos2 = 0;
+    uint8_t container_type_1, container_type_2;
+    uint16_t s1 = 0;
+    uint16_t s2 = 0;
+    while (true) {
+        s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+        s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+
+        if (s1 == s2) {
+            void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
+                                                 &container_type_1);
+            void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
+                                                 &container_type_2);
+            void *c =
+                container_andnot(c1, container_type_1, c2, container_type_2,
+                                 &container_result_type);
+
+            if (container_nonzero_cardinality(c, container_result_type)) {
+                ra_append(&answer->high_low_container, s1, c,
+                          container_result_type);
+            } else {
+                container_free(c, container_result_type);
+            }
+            ++pos1;
+            ++pos2;
+            if (pos1 == length1) break;
+            if (pos2 == length2) break;
+        } else if (s1 < s2) {  // s1 < s2
+            const int next_pos1 =
+                ra_advance_until(&x1->high_low_container, s2, pos1);
+            ra_append_copy_range(&answer->high_low_container,
+                                 &x1->high_low_container, pos1, next_pos1,
+                                 is_cow(x1));
+            // TODO : perhaps some of the copy_on_write should be based on
+            // answer rather than x1 (more stringent?).  Many similar cases
+            pos1 = next_pos1;
+            if (pos1 == length1) break;
+        } else {  // s1 > s2
+            pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
+            if (pos2 == length2) break;
+        }
+    }
+    if (pos2 == length2) {
+        ra_append_copy_range(&answer->high_low_container,
+                             &x1->high_low_container, pos1, length1,
+                             is_cow(x1));
+    }
+    return answer;
+}
+
+// inplace andnot (modifies its first argument).
+
+void roaring_bitmap_andnot_inplace(roaring_bitmap_t *x1,
+                                   const roaring_bitmap_t *x2) {
+    assert(x1 != x2);
+
+    uint8_t container_result_type = 0;
+    int length1 = x1->high_low_container.size;
+    const int length2 = x2->high_low_container.size;
+    int intersection_size = 0;
+
+    if (0 == length2) return;
+
+    if (0 == length1) {
+        roaring_bitmap_clear(x1);
+        return;
+    }
+
+    int pos1 = 0, pos2 = 0;
+    uint8_t container_type_1, container_type_2;
+    uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+    uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+    while (true) {
+        if (s1 == s2) {
+            void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
+                                                 &container_type_1);
+            c1 = get_writable_copy_if_shared(c1, &container_type_1);
+
+            void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
+                                                 &container_type_2);
+            void *c =
+                container_iandnot(c1, container_type_1, c2, container_type_2,
+                                  &container_result_type);
+
+            if (container_nonzero_cardinality(c, container_result_type)) {
+                ra_replace_key_and_container_at_index(&x1->high_low_container,
+                                                      intersection_size++, s1,
+                                                      c, container_result_type);
+            } else {
+                container_free(c, container_result_type);
+            }
+
+            ++pos1;
+            ++pos2;
+            if (pos1 == length1) break;
+            if (pos2 == length2) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+            s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+
+        } else if (s1 < s2) {  // s1 < s2
+            if (pos1 != intersection_size) {
+                void *c1 = ra_get_container_at_index(&x1->high_low_container,
+                                                     pos1, &container_type_1);
+
+                ra_replace_key_and_container_at_index(&x1->high_low_container,
+                                                      intersection_size, s1, c1,
+                                                      container_type_1);
+            }
+            intersection_size++;
+            pos1++;
+            if (pos1 == length1) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+
+        } else {  // s1 > s2
+            pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
+            if (pos2 == length2) break;
+            s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+        }
+    }
+
+    if (pos1 < length1) {
+        // all containers between intersection_size and
+        // pos1 are junk.  However, they have either been moved
+        // (thus still referenced) or involved in an iandnot
+        // that will clean up all containers that could not be reused.
+        // Thus we should not free the junk containers between
+        // intersection_size and pos1.
+        if (pos1 > intersection_size) {
+            // left slide of remaining items
+            ra_copy_range(&x1->high_low_container, pos1, length1,
+                          intersection_size);
+        }
+        // else current placement is fine
+        intersection_size += (length1 - pos1);
+    }
+    ra_downsize(&x1->high_low_container, intersection_size);
+}
+
+uint64_t roaring_bitmap_get_cardinality(const roaring_bitmap_t *ra) {
+    uint64_t card = 0;
+    for (int i = 0; i < ra->high_low_container.size; ++i)
+        card += container_get_cardinality(ra->high_low_container.containers[i],
+                                          ra->high_low_container.typecodes[i]);
+    return card;
+}
+
+uint64_t roaring_bitmap_range_cardinality(const roaring_bitmap_t *ra,
+                                          uint64_t range_start,
+                                          uint64_t range_end) {
+    if (range_end > UINT32_MAX) {
+        range_end = UINT32_MAX + UINT64_C(1);
+    }
+    if (range_start >= range_end) {
+        return 0;
+    }
+    range_end--; // make range_end inclusive
+    // now we have: 0 <= range_start <= range_end <= UINT32_MAX
+
+    uint16_t minhb = range_start >> 16;
+    uint16_t maxhb = range_end >> 16;
+
+    uint64_t card = 0;
+
+    int i = ra_get_index(&ra->high_low_container, minhb);
+    if (i >= 0) {
+        if (minhb == maxhb) {
+            card += container_rank(ra->high_low_container.containers[i],
+                                   ra->high_low_container.typecodes[i],
+                                   range_end & 0xffff);
+        } else {
+            card += container_get_cardinality(ra->high_low_container.containers[i],
+                                              ra->high_low_container.typecodes[i]);
+        }
+        if ((range_start & 0xffff) != 0) {
+            card -= container_rank(ra->high_low_container.containers[i],
+                                   ra->high_low_container.typecodes[i],
+                                   (range_start & 0xffff) - 1);
+        }
+        i++;
+    } else {
+        i = -i - 1;
+    }
+
+    for (; i < ra->high_low_container.size; i++) {
+        uint16_t key = ra->high_low_container.keys[i];
+        if (key < maxhb) {
+            card += container_get_cardinality(ra->high_low_container.containers[i],
+                                              ra->high_low_container.typecodes[i]);
+        } else if (key == maxhb) {
+            card += container_rank(ra->high_low_container.containers[i],
+                                   ra->high_low_container.typecodes[i],
+                                   range_end & 0xffff);
+            break;
+        } else {
+            break;
+        }
+    }
+
+    return card;
+}
+
+
+bool roaring_bitmap_is_empty(const roaring_bitmap_t *ra) {
+    return ra->high_low_container.size == 0;
+}
+
+void roaring_bitmap_to_uint32_array(const roaring_bitmap_t *ra, uint32_t *ans) {
+    ra_to_uint32_array(&ra->high_low_container, ans);
+}
+
+bool roaring_bitmap_range_uint32_array(const roaring_bitmap_t *ra, size_t offset, size_t limit,  uint32_t 
*ans) {
+    return ra_range_uint32_array(&ra->high_low_container, offset, limit, ans);
+}
+
+/** convert array and bitmap containers to run containers when it is more
+ * efficient;
+ * also convert from run containers when more space efficient.  Returns
+ * true if the result has at least one run container.
+*/
+bool roaring_bitmap_run_optimize(roaring_bitmap_t *r) {
+    bool answer = false;
+    for (int i = 0; i < r->high_low_container.size; i++) {
+        uint8_t typecode_original, typecode_after;
+        ra_unshare_container_at_index(
+            &r->high_low_container, i);  // TODO: this introduces extra cloning!
+        void *c = ra_get_container_at_index(&r->high_low_container, i,
+                                            &typecode_original);
+        void *c1 = convert_run_optimize(c, typecode_original, &typecode_after);
+        if (typecode_after == RUN_CONTAINER_TYPE_CODE) answer = true;
+        ra_set_container_at_index(&r->high_low_container, i, c1,
+                                  typecode_after);
+    }
+    return answer;
+}
+
+size_t roaring_bitmap_shrink_to_fit(roaring_bitmap_t *r) {
+    size_t answer = 0;
+    for (int i = 0; i < r->high_low_container.size; i++) {
+        uint8_t typecode_original;
+        void *c = ra_get_container_at_index(&r->high_low_container, i,
+                                            &typecode_original);
+        answer += container_shrink_to_fit(c, typecode_original);
+    }
+    answer += ra_shrink_to_fit(&r->high_low_container);
+    return answer;
+}
+
+/**
+ *  Remove run-length encoding even when it is more space efficient
+ *  return whether a change was applied
+ */
+bool roaring_bitmap_remove_run_compression(roaring_bitmap_t *r) {
+    bool answer = false;
+    for (int i = 0; i < r->high_low_container.size; i++) {
+        uint8_t typecode_original, typecode_after;
+        void *c = ra_get_container_at_index(&r->high_low_container, i,
+                                            &typecode_original);
+        if (get_container_type(c, typecode_original) ==
+            RUN_CONTAINER_TYPE_CODE) {
+            answer = true;
+            if (typecode_original == SHARED_CONTAINER_TYPE_CODE) {
+                run_container_t *truec =
+                    (run_container_t *)((shared_container_t *)c)->container;
+                int32_t card = run_container_cardinality(truec);
+                void *c1 = convert_to_bitset_or_array_container(
+                    truec, card, &typecode_after);
+                shared_container_free((shared_container_t *)c);// will free the run container as needed
+                ra_set_container_at_index(&r->high_low_container, i, c1,
+                                          typecode_after);
+
+            } else {
+                int32_t card = run_container_cardinality((run_container_t *)c);
+                void *c1 = convert_to_bitset_or_array_container(
+                    (run_container_t *)c, card, &typecode_after);
+                run_container_free((run_container_t *)c);
+                ra_set_container_at_index(&r->high_low_container, i, c1,
+                                          typecode_after);
+            }
+        }
+    }
+    return answer;
+}
+
+size_t roaring_bitmap_serialize(const roaring_bitmap_t *ra, char *buf) {
+    size_t portablesize = roaring_bitmap_portable_size_in_bytes(ra);
+    uint64_t cardinality = roaring_bitmap_get_cardinality(ra);
+    uint64_t sizeasarray = cardinality * sizeof(uint32_t) + sizeof(uint32_t);
+    if (portablesize < sizeasarray) {
+        buf[0] = SERIALIZATION_CONTAINER;
+        return roaring_bitmap_portable_serialize(ra, buf + 1) + 1;
+    } else {
+        buf[0] = SERIALIZATION_ARRAY_UINT32;
+        memcpy(buf + 1, &cardinality, sizeof(uint32_t));
+        roaring_bitmap_to_uint32_array(
+            ra, (uint32_t *)(buf + 1 + sizeof(uint32_t)));
+        return 1 + (size_t)sizeasarray;
+    }
+}
+
+size_t roaring_bitmap_size_in_bytes(const roaring_bitmap_t *ra) {
+    size_t portablesize = roaring_bitmap_portable_size_in_bytes(ra);
+    uint64_t sizeasarray = roaring_bitmap_get_cardinality(ra) * sizeof(uint32_t) +
+                         sizeof(uint32_t);
+    return portablesize < sizeasarray ? portablesize + 1 : (size_t)sizeasarray + 1;
+}
+
+size_t roaring_bitmap_portable_size_in_bytes(const roaring_bitmap_t *ra) {
+    return ra_portable_size_in_bytes(&ra->high_low_container);
+}
+
+
+roaring_bitmap_t *roaring_bitmap_portable_deserialize_safe(const char *buf, size_t maxbytes) {
+    roaring_bitmap_t *ans =
+        (roaring_bitmap_t *)malloc(sizeof(roaring_bitmap_t));
+    if (ans == NULL) {
+        return NULL;
+    }
+    size_t bytesread;
+    bool is_ok = ra_portable_deserialize(&ans->high_low_container, buf, maxbytes, &bytesread);
+    if(is_ok) assert(bytesread <= maxbytes);
+    roaring_bitmap_set_copy_on_write(ans, false);
+    if (!is_ok) {
+        free(ans);
+        return NULL;
+    }
+    return ans;
+}
+
+roaring_bitmap_t *roaring_bitmap_portable_deserialize(const char *buf) {
+    return roaring_bitmap_portable_deserialize_safe(buf, SIZE_MAX);
+}
+
+
+size_t roaring_bitmap_portable_deserialize_size(const char *buf, size_t maxbytes) {
+  return ra_portable_deserialize_size(buf, maxbytes);
+}
+
+
+size_t roaring_bitmap_portable_serialize(const roaring_bitmap_t *ra,
+                                         char *buf) {
+    return ra_portable_serialize(&ra->high_low_container, buf);
+}
+
+roaring_bitmap_t *roaring_bitmap_deserialize(const void *buf) {
+    const char *bufaschar = (const char *)buf;
+    if (*(const unsigned char *)buf == SERIALIZATION_ARRAY_UINT32) {
+        /* This looks like a compressed set of uint32_t elements */
+        uint32_t card;
+        memcpy(&card, bufaschar + 1, sizeof(uint32_t));
+        const uint32_t *elems =
+            (const uint32_t *)(bufaschar + 1 + sizeof(uint32_t));
+
+        return roaring_bitmap_of_ptr(card, elems);
+    } else if (bufaschar[0] == SERIALIZATION_CONTAINER) {
+        return roaring_bitmap_portable_deserialize(bufaschar + 1);
+    } else
+        return (NULL);
+}
+
+bool roaring_iterate(const roaring_bitmap_t *ra, roaring_iterator iterator,
+                     void *ptr) {
+    for (int i = 0; i < ra->high_low_container.size; ++i)
+        if (!container_iterate(ra->high_low_container.containers[i],
+                               ra->high_low_container.typecodes[i],
+                               ((uint32_t)ra->high_low_container.keys[i]) << 16,
+                               iterator, ptr)) {
+            return false;
+        }
+    return true;
+}
+
+bool roaring_iterate64(const roaring_bitmap_t *ra, roaring_iterator64 iterator,
+                       uint64_t high_bits, void *ptr) {
+    for (int i = 0; i < ra->high_low_container.size; ++i)
+        if (!container_iterate64(
+                ra->high_low_container.containers[i],
+                ra->high_low_container.typecodes[i],
+                ((uint32_t)ra->high_low_container.keys[i]) << 16, iterator,
+                high_bits, ptr)) {
+            return false;
+        }
+    return true;
+}
+
+/****
+* begin roaring_uint32_iterator_t
+*****/
+
+// Partially initializes the roaring iterator when it begins looking at
+// a new container.
+static bool iter_new_container_partial_init(roaring_uint32_iterator_t *newit) {
+    newit->in_container_index = 0;
+    newit->run_index = 0;
+    newit->current_value = 0;
+    if (newit->container_index >= newit->parent->high_low_container.size ||
+        newit->container_index < 0) {
+        newit->current_value = UINT32_MAX;
+        return (newit->has_value = false);
+    }
+    // assume not empty
+    newit->has_value = true;
+    // we precompute container, typecode and highbits so that successive
+    // iterators do not have to grab them from odd memory locations
+    // and have to worry about the (easily predicted) container_unwrap_shared
+    // call.
+    newit->container =
+            newit->parent->high_low_container.containers[newit->container_index];
+    newit->typecode =
+            newit->parent->high_low_container.typecodes[newit->container_index];
+    newit->highbits =
+            ((uint32_t)
+                    newit->parent->high_low_container.keys[newit->container_index])
+                    << 16;
+    newit->container =
+            container_unwrap_shared(newit->container, &(newit->typecode));
+    return newit->has_value;
+}
+
+static bool loadfirstvalue(roaring_uint32_iterator_t *newit) {
+    if (!iter_new_container_partial_init(newit))
+        return newit->has_value;
+
+    uint32_t wordindex;
+    uint64_t word;  // used for bitsets
+    switch (newit->typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            wordindex = 0;
+            while ((word = ((const bitset_container_t *)(newit->container))
+                               ->array[wordindex]) == 0)
+                wordindex++;  // advance
+            // here "word" is non-zero
+            newit->in_container_index = wordindex * 64 + __builtin_ctzll(word);
+            newit->current_value = newit->highbits | newit->in_container_index;
+            break;
+        case ARRAY_CONTAINER_TYPE_CODE:
+            newit->current_value =
+                newit->highbits |
+                ((const array_container_t *)(newit->container))->array[0];
+            break;
+        case RUN_CONTAINER_TYPE_CODE:
+            newit->current_value =
+                newit->highbits |
+                (((const run_container_t *)(newit->container))->runs[0].value);
+            break;
+        default:
+            // if this ever happens, bug!
+            assert(false);
+    }  // switch (typecode)
+    return true;
+}
+
+static bool loadlastvalue(roaring_uint32_iterator_t* newit) {
+    if (!iter_new_container_partial_init(newit))
+        return newit->has_value;
+
+    switch(newit->typecode) {
+        case BITSET_CONTAINER_TYPE_CODE: {
+            uint32_t wordindex = BITSET_CONTAINER_SIZE_IN_WORDS - 1;
+            uint64_t word;
+            const bitset_container_t* bitset_container = (const bitset_container_t*)newit->container;
+            while ((word = bitset_container->array[wordindex]) == 0)
+                --wordindex;
+
+            int num_leading_zeros = __builtin_clzll(word);
+            newit->in_container_index = (wordindex * 64) + (63 - num_leading_zeros);
+            newit->current_value = newit->highbits | newit->in_container_index;
+            break;
+        }
+        case ARRAY_CONTAINER_TYPE_CODE: {
+            const array_container_t* array_container = (const array_container_t*)newit->container;
+            newit->in_container_index = array_container->cardinality - 1;
+            newit->current_value = newit->highbits | array_container->array[newit->in_container_index];
+            break;
+        }
+        case RUN_CONTAINER_TYPE_CODE: {
+            const run_container_t* run_container = (const run_container_t*)newit->container;
+            newit->run_index = run_container->n_runs - 1;
+            const rle16_t* last_run = &run_container->runs[newit->run_index];
+            newit->current_value = newit->highbits | (last_run->value + last_run->length);
+            break;
+        }
+        default:
+            // if this ever happens, bug!
+            assert(false);
+    }
+    return true;
+}
+
+// prerequesite: the value should be in range of the container
+static bool loadfirstvalue_largeorequal(roaring_uint32_iterator_t *newit, uint32_t val) {
+    // Don't have to check return value because of prerequisite
+    iter_new_container_partial_init(newit);
+    uint16_t lb = val & 0xFFFF;
+
+    switch (newit->typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            newit->in_container_index =  bitset_container_index_equalorlarger((const bitset_container_t 
*)(newit->container), lb);
+            newit->current_value = newit->highbits | newit->in_container_index;
+            break;
+        case ARRAY_CONTAINER_TYPE_CODE:
+            newit->in_container_index = array_container_index_equalorlarger((const array_container_t 
*)(newit->container), lb);
+            newit->current_value =
+                newit->highbits |
+                ((const array_container_t *)(newit->container))->array[newit->in_container_index];
+            break;
+        case RUN_CONTAINER_TYPE_CODE:
+            newit->run_index = run_container_index_equalorlarger((const run_container_t 
*)(newit->container), lb);
+            if(((const run_container_t *)(newit->container))->runs[newit->run_index].value <= lb) {
+              newit->current_value = val;
+            } else {
+              newit->current_value =
+                newit->highbits |
+                (((const run_container_t *)(newit->container))->runs[newit->run_index].value);
+            }
+            break;
+        default:
+            // if this ever happens, bug!
+            assert(false);
+    }  // switch (typecode)
+    return true;
+}
+
+void roaring_init_iterator(const roaring_bitmap_t *ra,
+                           roaring_uint32_iterator_t *newit) {
+    newit->parent = ra;
+    newit->container_index = 0;
+    newit->has_value = loadfirstvalue(newit);
+}
+
+void roaring_init_iterator_last(const roaring_bitmap_t *ra,
+                                roaring_uint32_iterator_t *newit) {
+    newit->parent = ra;
+    newit->container_index = newit->parent->high_low_container.size - 1;
+    newit->has_value = loadlastvalue(newit);
+}
+
+roaring_uint32_iterator_t *roaring_create_iterator(const roaring_bitmap_t *ra) {
+    roaring_uint32_iterator_t *newit =
+        (roaring_uint32_iterator_t *)malloc(sizeof(roaring_uint32_iterator_t));
+    if (newit == NULL) return NULL;
+    roaring_init_iterator(ra, newit);
+    return newit;
+}
+
+roaring_uint32_iterator_t *roaring_copy_uint32_iterator(
+    const roaring_uint32_iterator_t *it) {
+    roaring_uint32_iterator_t *newit =
+        (roaring_uint32_iterator_t *)malloc(sizeof(roaring_uint32_iterator_t));
+    memcpy(newit, it, sizeof(roaring_uint32_iterator_t));
+    return newit;
+}
+
+bool roaring_move_uint32_iterator_equalorlarger(roaring_uint32_iterator_t *it, uint32_t val) {
+    uint16_t hb = val >> 16;
+    const int i = ra_get_index(& it->parent->high_low_container, hb);
+    if (i >= 0) {
+      uint32_t lowvalue = container_maximum(it->parent->high_low_container.containers[i], 
it->parent->high_low_container.typecodes[i]);
+      uint16_t lb = val & 0xFFFF;
+      if(lowvalue < lb ) {
+        it->container_index = i+1; // will have to load first value of next container
+      } else {// the value is necessarily within the range of the container
+        it->container_index = i;
+        it->has_value = loadfirstvalue_largeorequal(it, val);
+        return it->has_value;
+      }
+    } else {
+      // there is no matching, so we are going for the next container
+      it->container_index = -i-1;
+    }
+    it->has_value = loadfirstvalue(it);
+    return it->has_value;
+}
+
+
+bool roaring_advance_uint32_iterator(roaring_uint32_iterator_t *it) {
+    if (it->container_index >= it->parent->high_low_container.size) {
+        return (it->has_value = false);
+    }
+    if (it->container_index < 0) {
+        it->container_index = 0;
+        return (it->has_value = loadfirstvalue(it));
+    }
+
+    uint32_t wordindex;  // used for bitsets
+    uint64_t word;       // used for bitsets
+    switch (it->typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            it->in_container_index++;
+            wordindex = it->in_container_index / 64;
+            if (wordindex >= BITSET_CONTAINER_SIZE_IN_WORDS) break;
+            word = ((const bitset_container_t *)(it->container))
+                       ->array[wordindex] &
+                   (UINT64_MAX << (it->in_container_index % 64));
+            // next part could be optimized/simplified
+            while ((word == 0) &&
+                   (wordindex + 1 < BITSET_CONTAINER_SIZE_IN_WORDS)) {
+                wordindex++;
+                word = ((const bitset_container_t *)(it->container))
+                           ->array[wordindex];
+            }
+            if (word != 0) {
+                it->in_container_index = wordindex * 64 + __builtin_ctzll(word);
+                it->current_value = it->highbits | it->in_container_index;
+                return (it->has_value = true);
+            }
+            break;
+        case ARRAY_CONTAINER_TYPE_CODE:
+            it->in_container_index++;
+            if (it->in_container_index <
+                ((const array_container_t *)(it->container))->cardinality) {
+                it->current_value = it->highbits |
+                                    ((const array_container_t *)(it->container))
+                                        ->array[it->in_container_index];
+                return (it->has_value = true);
+            }
+            break;
+        case RUN_CONTAINER_TYPE_CODE: {
+            if(it->current_value == UINT32_MAX) {
+                return (it->has_value = false); // without this, we risk an overflow to zero
+            }
+
+            const run_container_t* run_container = (const run_container_t*)it->container;
+            if (++it->current_value <= (it->highbits | (run_container->runs[it->run_index].value +
+                                                        run_container->runs[it->run_index].length))) {
+                return (it->has_value = true);
+            }
+
+            if (++it->run_index < run_container->n_runs) {
+                // Assume the run has a value
+                it->current_value = it->highbits | run_container->runs[it->run_index].value;
+                return (it->has_value = true);
+            }
+            break;
+        }
+        default:
+            // if this ever happens, bug!
+            assert(false);
+    }  // switch (typecode)
+    // moving to next container
+    it->container_index++;
+    return (it->has_value = loadfirstvalue(it));
+}
+
+bool roaring_previous_uint32_iterator(roaring_uint32_iterator_t *it) {
+    if (it->container_index < 0) {
+        return (it->has_value = false);
+    }
+    if (it->container_index >= it->parent->high_low_container.size) {
+        it->container_index = it->parent->high_low_container.size - 1;
+        return (it->has_value = loadlastvalue(it));
+    }
+
+    switch (it->typecode) {
+        case BITSET_CONTAINER_TYPE_CODE: {
+            if (--it->in_container_index < 0)
+                break;
+
+            const bitset_container_t* bitset_container = (const bitset_container_t*)it->container;
+            int32_t wordindex = it->in_container_index / 64;
+            uint64_t word = bitset_container->array[wordindex] & (UINT64_MAX >> (63 - 
(it->in_container_index % 64)));
+
+            while (word == 0 && --wordindex >= 0) {
+                word = bitset_container->array[wordindex];
+            }
+            if (word == 0)
+                break;
+
+            int num_leading_zeros = __builtin_clzll(word);
+            it->in_container_index = (wordindex * 64) + (63 - num_leading_zeros);
+            it->current_value = it->highbits | it->in_container_index;
+            return (it->has_value = true);
+        }
+        case ARRAY_CONTAINER_TYPE_CODE: {
+            if (--it->in_container_index < 0)
+                break;
+
+            const array_container_t* array_container = (const array_container_t*)it->container;
+            it->current_value = it->highbits | array_container->array[it->in_container_index];
+            return (it->has_value = true);
+        }
+        case RUN_CONTAINER_TYPE_CODE: {
+            if(it->current_value == 0)
+                return (it->has_value = false);
+
+            const run_container_t* run_container = (const run_container_t*)it->container;
+            if (--it->current_value >= (it->highbits | run_container->runs[it->run_index].value)) {
+                return (it->has_value = true);
+            }
+
+            if (--it->run_index < 0)
+                break;
+
+            it->current_value = it->highbits | (run_container->runs[it->run_index].value +
+                                                run_container->runs[it->run_index].length);
+            return (it->has_value = true);
+        }
+        default:
+            // if this ever happens, bug!
+            assert(false);
+    }  // switch (typecode)
+
+    // moving to previous container
+    it->container_index--;
+    return (it->has_value = loadlastvalue(it));
+}
+
+uint32_t roaring_read_uint32_iterator(roaring_uint32_iterator_t *it, uint32_t* buf, uint32_t count) {
+  uint32_t ret = 0;
+  uint32_t num_values;
+  uint32_t wordindex;  // used for bitsets
+  uint64_t word;       // used for bitsets
+  const array_container_t* acont; //TODO remove
+  const run_container_t* rcont; //TODO remove
+  const bitset_container_t* bcont; //TODO remove
+
+  while (it->has_value && ret < count) {
+    switch (it->typecode) {
+      case BITSET_CONTAINER_TYPE_CODE:
+        bcont = (const bitset_container_t*)(it->container);
+        wordindex = it->in_container_index / 64;
+        word = bcont->array[wordindex] & (UINT64_MAX << (it->in_container_index % 64));
+        do {
+          while (word != 0 && ret < count) {
+            buf[0] = it->highbits | (wordindex * 64 + __builtin_ctzll(word));
+            word = word & (word - 1);
+            buf++;
+            ret++;
+          }
+          while (word == 0 && wordindex+1 < BITSET_CONTAINER_SIZE_IN_WORDS) {
+            wordindex++;
+            word = bcont->array[wordindex];
+          }
+        } while (word != 0 && ret < count);
+        it->has_value = (word != 0);
+        if (it->has_value) {
+          it->in_container_index = wordindex * 64 + __builtin_ctzll(word);
+          it->current_value = it->highbits | it->in_container_index;
+        }
+        break;
+      case ARRAY_CONTAINER_TYPE_CODE:
+        acont = (const array_container_t *)(it->container);
+        num_values = minimum_uint32(acont->cardinality - it->in_container_index, count - ret);
+        for (uint32_t i = 0; i < num_values; i++) {
+          buf[i] = it->highbits | acont->array[it->in_container_index + i];
+        }
+        buf += num_values;
+        ret += num_values;
+        it->in_container_index += num_values;
+        it->has_value = (it->in_container_index < acont->cardinality);
+        if (it->has_value) {
+          it->current_value = it->highbits | acont->array[it->in_container_index];
+        }
+        break;
+      case RUN_CONTAINER_TYPE_CODE:
+        rcont = (const run_container_t*)(it->container);
+        //"in_run_index" name is misleading, read it as "max_value_in_current_run"
+        do {
+          uint32_t largest_run_value = it->highbits | (rcont->runs[it->run_index].value + 
rcont->runs[it->run_index].length);
+          num_values = minimum_uint32(largest_run_value - it->current_value + 1, count - ret);
+          for (uint32_t i = 0; i < num_values; i++) {
+            buf[i] = it->current_value + i;
+          }
+          it->current_value += num_values; // this can overflow to zero: UINT32_MAX+1=0
+          buf += num_values;
+          ret += num_values;
+
+          if (it->current_value > largest_run_value || it->current_value == 0) {
+            it->run_index++;
+            if (it->run_index < rcont->n_runs) {
+              it->current_value = it->highbits | rcont->runs[it->run_index].value;
+            } else {
+              it->has_value = false;
+            }
+          }
+        } while ((ret < count) && it->has_value);
+        break;
+      default:
+        assert(false);
+    }
+    if (it->has_value) {
+      assert(ret == count);
+      return ret;
+    }
+    it->container_index++;
+    it->has_value = loadfirstvalue(it);
+  }
+  return ret;
+}
+
+
+
+void roaring_free_uint32_iterator(roaring_uint32_iterator_t *it) { free(it); }
+
+/****
+* end of roaring_uint32_iterator_t
+*****/
+
+bool roaring_bitmap_equals(const roaring_bitmap_t *ra1,
+                           const roaring_bitmap_t *ra2) {
+    if (ra1->high_low_container.size != ra2->high_low_container.size) {
+        return false;
+    }
+    for (int i = 0; i < ra1->high_low_container.size; ++i) {
+        if (ra1->high_low_container.keys[i] !=
+            ra2->high_low_container.keys[i]) {
+            return false;
+        }
+    }
+    for (int i = 0; i < ra1->high_low_container.size; ++i) {
+        bool areequal = container_equals(ra1->high_low_container.containers[i],
+                                         ra1->high_low_container.typecodes[i],
+                                         ra2->high_low_container.containers[i],
+                                         ra2->high_low_container.typecodes[i]);
+        if (!areequal) {
+            return false;
+        }
+    }
+    return true;
+}
+
+bool roaring_bitmap_is_subset(const roaring_bitmap_t *ra1,
+                              const roaring_bitmap_t *ra2) {
+    const int length1 = ra1->high_low_container.size,
+              length2 = ra2->high_low_container.size;
+
+    int pos1 = 0, pos2 = 0;
+
+    while (pos1 < length1 && pos2 < length2) {
+        const uint16_t s1 = ra_get_key_at_index(&ra1->high_low_container, pos1);
+        const uint16_t s2 = ra_get_key_at_index(&ra2->high_low_container, pos2);
+
+        if (s1 == s2) {
+            uint8_t container_type_1, container_type_2;
+            void *c1 = ra_get_container_at_index(&ra1->high_low_container, pos1,
+                                                 &container_type_1);
+            void *c2 = ra_get_container_at_index(&ra2->high_low_container, pos2,
+                                                 &container_type_2);
+            bool subset =
+                container_is_subset(c1, container_type_1, c2, container_type_2);
+            if (!subset) return false;
+            ++pos1;
+            ++pos2;
+        } else if (s1 < s2) {  // s1 < s2
+            return false;
+        } else {  // s1 > s2
+            pos2 = ra_advance_until(&ra2->high_low_container, s1, pos2);
+        }
+    }
+    if (pos1 == length1)
+        return true;
+    else
+        return false;
+}
+
+static void insert_flipped_container(roaring_array_t *ans_arr,
+                                     const roaring_array_t *x1_arr, uint16_t hb,
+                                     uint16_t lb_start, uint16_t lb_end) {
+    const int i = ra_get_index(x1_arr, hb);
+    const int j = ra_get_index(ans_arr, hb);
+    uint8_t ctype_in, ctype_out;
+    void *flipped_container = NULL;
+    if (i >= 0) {
+        void *container_to_flip =
+            ra_get_container_at_index(x1_arr, i, &ctype_in);
+        flipped_container =
+            container_not_range(container_to_flip, ctype_in, (uint32_t)lb_start,
+                                (uint32_t)(lb_end + 1), &ctype_out);
+
+        if (container_get_cardinality(flipped_container, ctype_out))
+            ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container,
+                                       ctype_out);
+        else {
+            container_free(flipped_container, ctype_out);
+        }
+    } else {
+        flipped_container = container_range_of_ones(
+            (uint32_t)lb_start, (uint32_t)(lb_end + 1), &ctype_out);
+        ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container,
+                                   ctype_out);
+    }
+}
+
+static void inplace_flip_container(roaring_array_t *x1_arr, uint16_t hb,
+                                   uint16_t lb_start, uint16_t lb_end) {
+    const int i = ra_get_index(x1_arr, hb);
+    uint8_t ctype_in, ctype_out;
+    void *flipped_container = NULL;
+    if (i >= 0) {
+        void *container_to_flip =
+            ra_get_container_at_index(x1_arr, i, &ctype_in);
+        flipped_container = container_inot_range(
+            container_to_flip, ctype_in, (uint32_t)lb_start,
+            (uint32_t)(lb_end + 1), &ctype_out);
+        // if a new container was created, the old one was already freed
+        if (container_get_cardinality(flipped_container, ctype_out)) {
+            ra_set_container_at_index(x1_arr, i, flipped_container, ctype_out);
+        } else {
+            container_free(flipped_container, ctype_out);
+            ra_remove_at_index(x1_arr, i);
+        }
+
+    } else {
+        flipped_container = container_range_of_ones(
+            (uint32_t)lb_start, (uint32_t)(lb_end + 1), &ctype_out);
+        ra_insert_new_key_value_at(x1_arr, -i - 1, hb, flipped_container,
+                                   ctype_out);
+    }
+}
+
+static void insert_fully_flipped_container(roaring_array_t *ans_arr,
+                                           const roaring_array_t *x1_arr,
+                                           uint16_t hb) {
+    const int i = ra_get_index(x1_arr, hb);
+    const int j = ra_get_index(ans_arr, hb);
+    uint8_t ctype_in, ctype_out;
+    void *flipped_container = NULL;
+    if (i >= 0) {
+        void *container_to_flip =
+            ra_get_container_at_index(x1_arr, i, &ctype_in);
+        flipped_container =
+            container_not(container_to_flip, ctype_in, &ctype_out);
+        if (container_get_cardinality(flipped_container, ctype_out))
+            ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container,
+                                       ctype_out);
+        else {
+            container_free(flipped_container, ctype_out);
+        }
+    } else {
+        flipped_container = container_range_of_ones(0U, 0x10000U, &ctype_out);
+        ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container,
+                                   ctype_out);
+    }
+}
+
+static void inplace_fully_flip_container(roaring_array_t *x1_arr, uint16_t hb) {
+    const int i = ra_get_index(x1_arr, hb);
+    uint8_t ctype_in, ctype_out;
+    void *flipped_container = NULL;
+    if (i >= 0) {
+        void *container_to_flip =
+            ra_get_container_at_index(x1_arr, i, &ctype_in);
+        flipped_container =
+            container_inot(container_to_flip, ctype_in, &ctype_out);
+
+        if (container_get_cardinality(flipped_container, ctype_out)) {
+            ra_set_container_at_index(x1_arr, i, flipped_container, ctype_out);
+        } else {
+            container_free(flipped_container, ctype_out);
+            ra_remove_at_index(x1_arr, i);
+        }
+
+    } else {
+        flipped_container = container_range_of_ones(0U, 0x10000U, &ctype_out);
+        ra_insert_new_key_value_at(x1_arr, -i - 1, hb, flipped_container,
+                                   ctype_out);
+    }
+}
+
+roaring_bitmap_t *roaring_bitmap_flip(const roaring_bitmap_t *x1,
+                                      uint64_t range_start,
+                                      uint64_t range_end) {
+    if (range_start >= range_end) {
+        return roaring_bitmap_copy(x1);
+    }
+    if(range_end >= UINT64_C(0x100000000)) {
+        range_end = UINT64_C(0x100000000);
+    }
+
+    roaring_bitmap_t *ans = roaring_bitmap_create();
+    roaring_bitmap_set_copy_on_write(ans, is_cow(x1));
+
+    uint16_t hb_start = (uint16_t)(range_start >> 16);
+    const uint16_t lb_start = (uint16_t)range_start;  // & 0xFFFF;
+    uint16_t hb_end = (uint16_t)((range_end - 1) >> 16);
+    const uint16_t lb_end = (uint16_t)(range_end - 1);  // & 0xFFFF;
+
+    ra_append_copies_until(&ans->high_low_container, &x1->high_low_container,
+                           hb_start, is_cow(x1));
+    if (hb_start == hb_end) {
+        insert_flipped_container(&ans->high_low_container,
+                                 &x1->high_low_container, hb_start, lb_start,
+                                 lb_end);
+    } else {
+        // start and end containers are distinct
+        if (lb_start > 0) {
+            // handle first (partial) container
+            insert_flipped_container(&ans->high_low_container,
+                                     &x1->high_low_container, hb_start,
+                                     lb_start, 0xFFFF);
+            ++hb_start;  // for the full containers.  Can't wrap.
+        }
+
+        if (lb_end != 0xFFFF) --hb_end;  // later we'll handle the partial block
+
+        for (uint32_t hb = hb_start; hb <= hb_end; ++hb) {
+            insert_fully_flipped_container(&ans->high_low_container,
+                                           &x1->high_low_container, hb);
+        }
+
+        // handle a partial final container
+        if (lb_end != 0xFFFF) {
+            insert_flipped_container(&ans->high_low_container,
+                                     &x1->high_low_container, hb_end + 1, 0,
+                                     lb_end);
+            ++hb_end;
+        }
+    }
+    ra_append_copies_after(&ans->high_low_container, &x1->high_low_container,
+                           hb_end, is_cow(x1));
+    return ans;
+}
+
+void roaring_bitmap_flip_inplace(roaring_bitmap_t *x1, uint64_t range_start,
+                                 uint64_t range_end) {
+    if (range_start >= range_end) {
+        return;  // empty range
+    }
+    if(range_end >= UINT64_C(0x100000000)) {
+        range_end = UINT64_C(0x100000000);
+    }
+
+    uint16_t hb_start = (uint16_t)(range_start >> 16);
+    const uint16_t lb_start = (uint16_t)range_start;
+    uint16_t hb_end = (uint16_t)((range_end - 1) >> 16);
+    const uint16_t lb_end = (uint16_t)(range_end - 1);
+
+    if (hb_start == hb_end) {
+        inplace_flip_container(&x1->high_low_container, hb_start, lb_start,
+                               lb_end);
+    } else {
+        // start and end containers are distinct
+        if (lb_start > 0) {
+            // handle first (partial) container
+            inplace_flip_container(&x1->high_low_container, hb_start, lb_start,
+                                   0xFFFF);
+            ++hb_start;  // for the full containers.  Can't wrap.
+        }
+
+        if (lb_end != 0xFFFF) --hb_end;
+
+        for (uint32_t hb = hb_start; hb <= hb_end; ++hb) {
+            inplace_fully_flip_container(&x1->high_low_container, hb);
+        }
+        // handle a partial final container
+        if (lb_end != 0xFFFF) {
+            inplace_flip_container(&x1->high_low_container, hb_end + 1, 0,
+                                   lb_end);
+            ++hb_end;
+        }
+    }
+}
+
+roaring_bitmap_t *roaring_bitmap_lazy_or(const roaring_bitmap_t *x1,
+                                         const roaring_bitmap_t *x2,
+                                         const bool bitsetconversion) {
+    uint8_t container_result_type = 0;
+    const int length1 = x1->high_low_container.size,
+              length2 = x2->high_low_container.size;
+    if (0 == length1) {
+        return roaring_bitmap_copy(x2);
+    }
+    if (0 == length2) {
+        return roaring_bitmap_copy(x1);
+    }
+    roaring_bitmap_t *answer =
+        roaring_bitmap_create_with_capacity(length1 + length2);
+    roaring_bitmap_set_copy_on_write(answer, is_cow(x1) && is_cow(x2));
+    int pos1 = 0, pos2 = 0;
+    uint8_t container_type_1, container_type_2;
+    uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+    uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+    while (true) {
+        if (s1 == s2) {
+            void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
+                                                 &container_type_1);
+            void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
+                                                 &container_type_2);
+            void *c;
+            if (bitsetconversion && (get_container_type(c1, container_type_1) !=
+                                     BITSET_CONTAINER_TYPE_CODE) &&
+                (get_container_type(c2, container_type_2) !=
+                 BITSET_CONTAINER_TYPE_CODE)) {
+                void *newc1 =
+                    container_mutable_unwrap_shared(c1, &container_type_1);
+                newc1 = container_to_bitset(newc1, container_type_1);
+                container_type_1 = BITSET_CONTAINER_TYPE_CODE;
+                c = container_lazy_ior(newc1, container_type_1, c2,
+                                       container_type_2,
+                                       &container_result_type);
+                if (c != newc1) {  // should not happen
+                    container_free(newc1, container_type_1);
+                }
+            } else {
+                c = container_lazy_or(c1, container_type_1, c2,
+                                      container_type_2, &container_result_type);
+            }
+            // since we assume that the initial containers are non-empty,
+            // the
+            // result here
+            // can only be non-empty
+            ra_append(&answer->high_low_container, s1, c,
+                      container_result_type);
+            ++pos1;
+            ++pos2;
+            if (pos1 == length1) break;
+            if (pos2 == length2) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+            s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+
+        } else if (s1 < s2) {  // s1 < s2
+            void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
+                                                 &container_type_1);
+            c1 =
+                get_copy_of_container(c1, &container_type_1, is_cow(x1));
+            if (is_cow(x1)) {
+                ra_set_container_at_index(&x1->high_low_container, pos1, c1,
+                                          container_type_1);
+            }
+            ra_append(&answer->high_low_container, s1, c1, container_type_1);
+            pos1++;
+            if (pos1 == length1) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+
+        } else {  // s1 > s2
+            void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
+                                                 &container_type_2);
+            c2 =
+                get_copy_of_container(c2, &container_type_2, is_cow(x2));
+            if (is_cow(x2)) {
+                ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+                                          container_type_2);
+            }
+            ra_append(&answer->high_low_container, s2, c2, container_type_2);
+            pos2++;
+            if (pos2 == length2) break;
+            s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+        }
+    }
+    if (pos1 == length1) {
+        ra_append_copy_range(&answer->high_low_container,
+                             &x2->high_low_container, pos2, length2,
+                             is_cow(x2));
+    } else if (pos2 == length2) {
+        ra_append_copy_range(&answer->high_low_container,
+                             &x1->high_low_container, pos1, length1,
+                             is_cow(x1));
+    }
+    return answer;
+}
+
+void roaring_bitmap_lazy_or_inplace(roaring_bitmap_t *x1,
+                                    const roaring_bitmap_t *x2,
+                                    const bool bitsetconversion) {
+    uint8_t container_result_type = 0;
+    int length1 = x1->high_low_container.size;
+    const int length2 = x2->high_low_container.size;
+
+    if (0 == length2) return;
+
+    if (0 == length1) {
+        roaring_bitmap_overwrite(x1, x2);
+        return;
+    }
+    int pos1 = 0, pos2 = 0;
+    uint8_t container_type_1, container_type_2;
+    uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+    uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+    while (true) {
+        if (s1 == s2) {
+            void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
+                                                 &container_type_1);
+            if (!container_is_full(c1, container_type_1)) {
+                if ((bitsetconversion == false) ||
+                    (get_container_type(c1, container_type_1) ==
+                     BITSET_CONTAINER_TYPE_CODE)) {
+                    c1 = get_writable_copy_if_shared(c1, &container_type_1);
+                } else {
+                    // convert to bitset
+                    void *oldc1 = c1;
+                    uint8_t oldt1 = container_type_1;
+                    c1 = container_mutable_unwrap_shared(c1, &container_type_1);
+                    c1 = container_to_bitset(c1, container_type_1);
+                    container_free(oldc1, oldt1);
+                    container_type_1 = BITSET_CONTAINER_TYPE_CODE;
+                }
+
+                void *c2 = ra_get_container_at_index(&x2->high_low_container,
+                                                     pos2, &container_type_2);
+                void *c = container_lazy_ior(c1, container_type_1, c2,
+                                             container_type_2,
+                                             &container_result_type);
+                if (c !=
+                    c1) {  // in this instance a new container was created, and
+                           // we need to free the old one
+                    container_free(c1, container_type_1);
+                }
+
+                ra_set_container_at_index(&x1->high_low_container, pos1, c,
+                                          container_result_type);
+            }
+            ++pos1;
+            ++pos2;
+            if (pos1 == length1) break;
+            if (pos2 == length2) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+            s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+
+        } else if (s1 < s2) {  // s1 < s2
+            pos1++;
+            if (pos1 == length1) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+
+        } else {  // s1 > s2
+            void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
+                                                 &container_type_2);
+            // void *c2_clone = container_clone(c2, container_type_2);
+            c2 =
+                get_copy_of_container(c2, &container_type_2, is_cow(x2));
+            if (is_cow(x2)) {
+                ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+                                          container_type_2);
+            }
+            ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2,
+                                       container_type_2);
+            pos1++;
+            length1++;
+            pos2++;
+            if (pos2 == length2) break;
+            s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+        }
+    }
+    if (pos1 == length1) {
+        ra_append_copy_range(&x1->high_low_container, &x2->high_low_container,
+                             pos2, length2, is_cow(x2));
+    }
+}
+
+roaring_bitmap_t *roaring_bitmap_lazy_xor(const roaring_bitmap_t *x1,
+                                          const roaring_bitmap_t *x2) {
+    uint8_t container_result_type = 0;
+    const int length1 = x1->high_low_container.size,
+              length2 = x2->high_low_container.size;
+    if (0 == length1) {
+        return roaring_bitmap_copy(x2);
+    }
+    if (0 == length2) {
+        return roaring_bitmap_copy(x1);
+    }
+    roaring_bitmap_t *answer =
+        roaring_bitmap_create_with_capacity(length1 + length2);
+    roaring_bitmap_set_copy_on_write(answer, is_cow(x1) && is_cow(x2));
+    int pos1 = 0, pos2 = 0;
+    uint8_t container_type_1, container_type_2;
+    uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+    uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+    while (true) {
+        if (s1 == s2) {
+            void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
+                                                 &container_type_1);
+            void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
+                                                 &container_type_2);
+            void *c =
+                container_lazy_xor(c1, container_type_1, c2, container_type_2,
+                                   &container_result_type);
+
+            if (container_nonzero_cardinality(c, container_result_type)) {
+                ra_append(&answer->high_low_container, s1, c,
+                          container_result_type);
+            } else {
+                container_free(c, container_result_type);
+            }
+
+            ++pos1;
+            ++pos2;
+            if (pos1 == length1) break;
+            if (pos2 == length2) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+            s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+
+        } else if (s1 < s2) {  // s1 < s2
+            void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
+                                                 &container_type_1);
+            c1 =
+                get_copy_of_container(c1, &container_type_1, is_cow(x1));
+            if (is_cow(x1)) {
+                ra_set_container_at_index(&x1->high_low_container, pos1, c1,
+                                          container_type_1);
+            }
+            ra_append(&answer->high_low_container, s1, c1, container_type_1);
+            pos1++;
+            if (pos1 == length1) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+
+        } else {  // s1 > s2
+            void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
+                                                 &container_type_2);
+            c2 =
+                get_copy_of_container(c2, &container_type_2, is_cow(x2));
+            if (is_cow(x2)) {
+                ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+                                          container_type_2);
+            }
+            ra_append(&answer->high_low_container, s2, c2, container_type_2);
+            pos2++;
+            if (pos2 == length2) break;
+            s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+        }
+    }
+    if (pos1 == length1) {
+        ra_append_copy_range(&answer->high_low_container,
+                             &x2->high_low_container, pos2, length2,
+                             is_cow(x2));
+    } else if (pos2 == length2) {
+        ra_append_copy_range(&answer->high_low_container,
+                             &x1->high_low_container, pos1, length1,
+                             is_cow(x1));
+    }
+    return answer;
+}
+
+void roaring_bitmap_lazy_xor_inplace(roaring_bitmap_t *x1,
+                                     const roaring_bitmap_t *x2) {
+    assert(x1 != x2);
+    uint8_t container_result_type = 0;
+    int length1 = x1->high_low_container.size;
+    const int length2 = x2->high_low_container.size;
+
+    if (0 == length2) return;
+
+    if (0 == length1) {
+        roaring_bitmap_overwrite(x1, x2);
+        return;
+    }
+    int pos1 = 0, pos2 = 0;
+    uint8_t container_type_1, container_type_2;
+    uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+    uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+    while (true) {
+        if (s1 == s2) {
+            void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
+                                                 &container_type_1);
+            c1 = get_writable_copy_if_shared(c1, &container_type_1);
+            void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
+                                                 &container_type_2);
+            void *c =
+                container_lazy_ixor(c1, container_type_1, c2, container_type_2,
+                                    &container_result_type);
+            if (container_nonzero_cardinality(c, container_result_type)) {
+                ra_set_container_at_index(&x1->high_low_container, pos1, c,
+                                          container_result_type);
+                ++pos1;
+            } else {
+                container_free(c, container_result_type);
+                ra_remove_at_index(&x1->high_low_container, pos1);
+                --length1;
+            }
+            ++pos2;
+            if (pos1 == length1) break;
+            if (pos2 == length2) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+            s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+
+        } else if (s1 < s2) {  // s1 < s2
+            pos1++;
+            if (pos1 == length1) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+
+        } else {  // s1 > s2
+            void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
+                                                 &container_type_2);
+            // void *c2_clone = container_clone(c2, container_type_2);
+            c2 =
+                get_copy_of_container(c2, &container_type_2, is_cow(x2));
+            if (is_cow(x2)) {
+                ra_set_container_at_index(&x2->high_low_container, pos2, c2,
+                                          container_type_2);
+            }
+            ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2,
+                                       container_type_2);
+            pos1++;
+            length1++;
+            pos2++;
+            if (pos2 == length2) break;
+            s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+        }
+    }
+    if (pos1 == length1) {
+        ra_append_copy_range(&x1->high_low_container, &x2->high_low_container,
+                             pos2, length2, is_cow(x2));
+    }
+}
+
+void roaring_bitmap_repair_after_lazy(roaring_bitmap_t *ra) {
+    for (int i = 0; i < ra->high_low_container.size; ++i) {
+        const uint8_t original_typecode = ra->high_low_container.typecodes[i];
+        void *container = ra->high_low_container.containers[i];
+        uint8_t new_typecode = original_typecode;
+        void *newcontainer =
+            container_repair_after_lazy(container, &new_typecode);
+        ra->high_low_container.containers[i] = newcontainer;
+        ra->high_low_container.typecodes[i] = new_typecode;
+    }
+}
+
+
+
+/**
+* roaring_bitmap_rank returns the number of integers that are smaller or equal
+* to x.
+*/
+uint64_t roaring_bitmap_rank(const roaring_bitmap_t *bm, uint32_t x) {
+    uint64_t size = 0;
+    uint32_t xhigh = x >> 16;
+    for (int i = 0; i < bm->high_low_container.size; i++) {
+        uint32_t key = bm->high_low_container.keys[i];
+        if (xhigh > key) {
+            size +=
+                container_get_cardinality(bm->high_low_container.containers[i],
+                                          bm->high_low_container.typecodes[i]);
+        } else if (xhigh == key) {
+            return size + container_rank(bm->high_low_container.containers[i],
+                                         bm->high_low_container.typecodes[i],
+                                         x & 0xFFFF);
+        } else {
+            return size;
+        }
+    }
+    return size;
+}
+
+/**
+* roaring_bitmap_smallest returns the smallest value in the set.
+* Returns UINT32_MAX if the set is empty.
+*/
+uint32_t roaring_bitmap_minimum(const roaring_bitmap_t *bm) {
+    if (bm->high_low_container.size > 0) {
+        void *container = bm->high_low_container.containers[0];
+        uint8_t typecode = bm->high_low_container.typecodes[0];
+        uint32_t key = bm->high_low_container.keys[0];
+        uint32_t lowvalue = container_minimum(container, typecode);
+        return lowvalue | (key << 16);
+    }
+    return UINT32_MAX;
+}
+
+/**
+* roaring_bitmap_smallest returns the greatest value in the set.
+* Returns 0 if the set is empty.
+*/
+uint32_t roaring_bitmap_maximum(const roaring_bitmap_t *bm) {
+    if (bm->high_low_container.size > 0) {
+        void *container =
+            bm->high_low_container.containers[bm->high_low_container.size - 1];
+        uint8_t typecode =
+            bm->high_low_container.typecodes[bm->high_low_container.size - 1];
+        uint32_t key =
+            bm->high_low_container.keys[bm->high_low_container.size - 1];
+        uint32_t lowvalue = container_maximum(container, typecode);
+        return lowvalue | (key << 16);
+    }
+    return 0;
+}
+
+bool roaring_bitmap_select(const roaring_bitmap_t *bm, uint32_t rank,
+                           uint32_t *element) {
+    void *container;
+    uint8_t typecode;
+    uint16_t key;
+    uint32_t start_rank = 0;
+    int i = 0;
+    bool valid = false;
+    while (!valid && i < bm->high_low_container.size) {
+        container = bm->high_low_container.containers[i];
+        typecode = bm->high_low_container.typecodes[i];
+        valid =
+            container_select(container, typecode, &start_rank, rank, element);
+        i++;
+    }
+
+    if (valid) {
+        key = bm->high_low_container.keys[i - 1];
+        *element |= (key << 16);
+        return true;
+    } else
+        return false;
+}
+
+bool roaring_bitmap_intersect(const roaring_bitmap_t *x1,
+                                     const roaring_bitmap_t *x2) {
+    const int length1 = x1->high_low_container.size,
+              length2 = x2->high_low_container.size;
+    uint64_t answer = 0;
+    int pos1 = 0, pos2 = 0;
+
+    while (pos1 < length1 && pos2 < length2) {
+        const uint16_t s1 = ra_get_key_at_index(& x1->high_low_container, pos1);
+        const uint16_t s2 = ra_get_key_at_index(& x2->high_low_container, pos2);
+
+        if (s1 == s2) {
+            uint8_t container_type_1, container_type_2;
+            void *c1 = ra_get_container_at_index(& x1->high_low_container, pos1,
+                                                 &container_type_1);
+            void *c2 = ra_get_container_at_index(& x2->high_low_container, pos2,
+                                                 &container_type_2);
+            if( container_intersect(c1, container_type_1, c2, container_type_2) ) return true;
+            ++pos1;
+            ++pos2;
+        } else if (s1 < s2) {  // s1 < s2
+            pos1 = ra_advance_until(& x1->high_low_container, s2, pos1);
+        } else {  // s1 > s2
+            pos2 = ra_advance_until(& x2->high_low_container, s1, pos2);
+        }
+    }
+    return answer;
+}
+
+
+uint64_t roaring_bitmap_and_cardinality(const roaring_bitmap_t *x1,
+                                        const roaring_bitmap_t *x2) {
+    const int length1 = x1->high_low_container.size,
+              length2 = x2->high_low_container.size;
+    uint64_t answer = 0;
+    int pos1 = 0, pos2 = 0;
+
+    while (pos1 < length1 && pos2 < length2) {
+        const uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+        const uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+
+        if (s1 == s2) {
+            uint8_t container_type_1, container_type_2;
+            void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
+                                                 &container_type_1);
+            void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
+                                                 &container_type_2);
+            answer += container_and_cardinality(c1, container_type_1, c2,
+                                                container_type_2);
+            ++pos1;
+            ++pos2;
+        } else if (s1 < s2) {  // s1 < s2
+            pos1 = ra_advance_until(&x1->high_low_container, s2, pos1);
+        } else {  // s1 > s2
+            pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
+        }
+    }
+    return answer;
+}
+
+double roaring_bitmap_jaccard_index(const roaring_bitmap_t *x1,
+                                    const roaring_bitmap_t *x2) {
+    const uint64_t c1 = roaring_bitmap_get_cardinality(x1);
+    const uint64_t c2 = roaring_bitmap_get_cardinality(x2);
+    const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2);
+    return (double)inter / (double)(c1 + c2 - inter);
+}
+
+uint64_t roaring_bitmap_or_cardinality(const roaring_bitmap_t *x1,
+                                       const roaring_bitmap_t *x2) {
+    const uint64_t c1 = roaring_bitmap_get_cardinality(x1);
+    const uint64_t c2 = roaring_bitmap_get_cardinality(x2);
+    const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2);
+    return c1 + c2 - inter;
+}
+
+uint64_t roaring_bitmap_andnot_cardinality(const roaring_bitmap_t *x1,
+                                           const roaring_bitmap_t *x2) {
+    const uint64_t c1 = roaring_bitmap_get_cardinality(x1);
+    const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2);
+    return c1 - inter;
+}
+
+uint64_t roaring_bitmap_xor_cardinality(const roaring_bitmap_t *x1,
+                                        const roaring_bitmap_t *x2) {
+    const uint64_t c1 = roaring_bitmap_get_cardinality(x1);
+    const uint64_t c2 = roaring_bitmap_get_cardinality(x2);
+    const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2);
+    return c1 + c2 - 2 * inter;
+}
+
+
+/**
+ * Check whether a range of values from range_start (included) to range_end (excluded) is present
+ */
+bool roaring_bitmap_contains_range(const roaring_bitmap_t *r, uint64_t range_start, uint64_t range_end) {
+    if(range_end >= UINT64_C(0x100000000)) {
+        range_end = UINT64_C(0x100000000);
+    }
+    if (range_start >= range_end) return true;  // empty range are always contained!
+    if (range_end - range_start == 1) return roaring_bitmap_contains(r, (uint32_t)range_start);
+    uint16_t hb_rs = (uint16_t)(range_start >> 16);
+    uint16_t hb_re = (uint16_t)((range_end - 1) >> 16);
+    const int32_t span = hb_re - hb_rs;
+    const int32_t hlc_sz = ra_get_size(&r->high_low_container);
+    if (hlc_sz < span + 1) {
+      return false;
+    }
+    int32_t is = ra_get_index(&r->high_low_container, hb_rs);
+    int32_t ie = ra_get_index(&r->high_low_container, hb_re);
+    ie = (ie < 0 ? -ie - 1 : ie);
+    if ((is < 0) || ((ie - is) != span)) {
+       return false;
+    }
+    const uint32_t lb_rs = range_start & 0xFFFF;
+    const uint32_t lb_re = ((range_end - 1) & 0xFFFF) + 1;
+    uint8_t typecode;
+    void *container = ra_get_container_at_index(&r->high_low_container, is, &typecode);
+    if (hb_rs == hb_re) {
+      return container_contains_range(container, lb_rs, lb_re, typecode);
+    }
+    if (!container_contains_range(container, lb_rs, 1 << 16, typecode)) {
+      return false;
+    }
+    assert(ie < hlc_sz); // would indicate an algorithmic bug
+    container = ra_get_container_at_index(&r->high_low_container, ie, &typecode);
+    if (!container_contains_range(container, 0, lb_re, typecode)) {
+        return false;
+    }
+    for (int32_t i = is + 1; i < ie; ++i) {
+        container = ra_get_container_at_index(&r->high_low_container, i, &typecode);
+        if (!container_is_full(container, typecode) ) {
+          return false;
+        }
+    }
+    return true;
+}
+
+
+bool roaring_bitmap_is_strict_subset(const roaring_bitmap_t *ra1,
+                                            const roaring_bitmap_t *ra2) {
+    return (roaring_bitmap_get_cardinality(ra2) >
+                roaring_bitmap_get_cardinality(ra1) &&
+            roaring_bitmap_is_subset(ra1, ra2));
+}
+
+
+/*
+ * FROZEN SERIALIZATION FORMAT DESCRIPTION
+ *
+ * -- (beginning must be aligned by 32 bytes) --
+ * <bitset_data> uint64_t[BITSET_CONTAINER_SIZE_IN_WORDS * num_bitset_containers]
+ * <run_data>    rle16_t[total number of rle elements in all run containers]
+ * <array_data>  uint16_t[total number of array elements in all array containers]
+ * <keys>        uint16_t[num_containers]
+ * <counts>      uint16_t[num_containers]
+ * <typecodes>   uint8_t[num_containers]
+ * <header>      uint32_t
+ *
+ * <header> is a 4-byte value which is a bit union of FROZEN_COOKIE (15 bits)
+ * and the number of containers (17 bits).
+ *
+ * <counts> stores number of elements for every container.
+ * Its meaning depends on container type.
+ * For array and bitset containers, this value is the container cardinality minus one.
+ * For run container, it is the number of rle_t elements (n_runs).
+ *
+ * <bitset_data>,<array_data>,<run_data> are flat arrays of elements of
+ * all containers of respective type.
+ *
+ * <*_data> and <keys> are kept close together because they are not accessed
+ * during deserilization. This may reduce IO in case of large mmaped bitmaps.
+ * All members have their native alignments during deserilization except <header>,
+ * which is not guaranteed to be aligned by 4 bytes.
+ */
+
+size_t roaring_bitmap_frozen_size_in_bytes(const roaring_bitmap_t *rb) {
+    const roaring_array_t *ra = &rb->high_low_container;
+    size_t num_bytes = 0;
+    for (int32_t i = 0; i < ra->size; i++) {
+        switch (ra->typecodes[i]) {
+            case BITSET_CONTAINER_TYPE_CODE: {
+                num_bytes += BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
+                break;
+            }
+            case RUN_CONTAINER_TYPE_CODE: {
+                const run_container_t *run =
+                        (const run_container_t *) ra->containers[i];
+                num_bytes += run->n_runs * sizeof(rle16_t);
+                break;
+            }
+            case ARRAY_CONTAINER_TYPE_CODE: {
+                const array_container_t *array =
+                        (const array_container_t *) ra->containers[i];
+                num_bytes += array->cardinality * sizeof(uint16_t);
+                break;
+            }
+            default:
+                __builtin_unreachable();
+        }
+    }
+    num_bytes += (2 + 2 + 1) * ra->size; // keys, counts, typecodes
+    num_bytes += 4; // header
+    return num_bytes;
+}
+
+inline static void *arena_alloc(char **arena, size_t num_bytes) {
+    char *res = *arena;
+    *arena += num_bytes;
+    return res;
+}
+
+void roaring_bitmap_frozen_serialize(const roaring_bitmap_t *rb, char *buf) {
+    /*
+     * Note: we do not require user to supply spicificly aligned buffer.
+     * Thus we have to use memcpy() everywhere.
+     */
+
+    const roaring_array_t *ra = &rb->high_low_container;
+
+    size_t bitset_zone_size = 0;
+    size_t run_zone_size = 0;
+    size_t array_zone_size = 0;
+    for (int32_t i = 0; i < ra->size; i++) {
+        switch (ra->typecodes[i]) {
+            case BITSET_CONTAINER_TYPE_CODE: {
+                bitset_zone_size +=
+                        BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
+                break;
+            }
+            case RUN_CONTAINER_TYPE_CODE: {
+                const run_container_t *run =
+                        (const run_container_t *) ra->containers[i];
+                run_zone_size += run->n_runs * sizeof(rle16_t);
+                break;
+            }
+            case ARRAY_CONTAINER_TYPE_CODE: {
+                const array_container_t *array =
+                        (const array_container_t *) ra->containers[i];
+                array_zone_size += array->cardinality * sizeof(uint16_t);
+                break;
+            }
+            default:
+                __builtin_unreachable();
+        }
+    }
+
+    uint64_t *bitset_zone = (uint64_t *)arena_alloc(&buf, bitset_zone_size);
+    rle16_t *run_zone = (rle16_t *)arena_alloc(&buf, run_zone_size);
+    uint16_t *array_zone = (uint16_t *)arena_alloc(&buf, array_zone_size);
+    uint16_t *key_zone = (uint16_t *)arena_alloc(&buf, 2*ra->size);
+    uint16_t *count_zone = (uint16_t *)arena_alloc(&buf, 2*ra->size);
+    uint8_t *typecode_zone = (uint8_t *)arena_alloc(&buf, ra->size);
+    uint32_t *header_zone = (uint32_t *)arena_alloc(&buf, 4);
+
+    for (int32_t i = 0; i < ra->size; i++) {
+        uint16_t count;
+        switch (ra->typecodes[i]) {
+            case BITSET_CONTAINER_TYPE_CODE: {
+                const bitset_container_t *bitset =
+                        (const bitset_container_t *) ra->containers[i];
+                memcpy(bitset_zone, bitset->array,
+                       BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t));
+                bitset_zone += BITSET_CONTAINER_SIZE_IN_WORDS;
+                if (bitset->cardinality != BITSET_UNKNOWN_CARDINALITY) {
+                    count = bitset->cardinality - 1;
+                } else {
+                    count = bitset_container_compute_cardinality(bitset) - 1;
+                }
+                break;
+            }
+            case RUN_CONTAINER_TYPE_CODE: {
+                const run_container_t *run =
+                        (const run_container_t *) ra->containers[i];
+                size_t num_bytes = run->n_runs * sizeof(rle16_t);
+                memcpy(run_zone, run->runs, num_bytes);
+                run_zone += run->n_runs;
+                count = run->n_runs;
+                break;
+            }
+            case ARRAY_CONTAINER_TYPE_CODE: {
+                const array_container_t *array =
+                        (const array_container_t *) ra->containers[i];
+                size_t num_bytes = array->cardinality * sizeof(uint16_t);
+                memcpy(array_zone, array->array, num_bytes);
+                array_zone += array->cardinality;
+                count = array->cardinality - 1;
+                break;
+            }
+            default:
+                __builtin_unreachable();
+        }
+        memcpy(&count_zone[i], &count, 2);
+    }
+    memcpy(key_zone, ra->keys, ra->size * sizeof(uint16_t));
+    memcpy(typecode_zone, ra->typecodes, ra->size * sizeof(uint8_t));
+    uint32_t header = ((uint32_t)ra->size << 15) | FROZEN_COOKIE;
+    memcpy(header_zone, &header, 4);
+}
+
+const roaring_bitmap_t *
+roaring_bitmap_frozen_view(const char *buf, size_t length) {
+    if ((uintptr_t)buf % 32 != 0) {
+        return NULL;
+    }
+
+    // cookie and num_containers
+    if (length < 4) {
+        return NULL;
+    }
+    uint32_t header;
+    memcpy(&header, buf + length - 4, 4); // header may be misaligned
+    if ((header & 0x7FFF) != FROZEN_COOKIE) {
+        return NULL;
+    }
+    int32_t num_containers = (header >> 15);
+
+    // typecodes, counts and keys
+    if (length < 4 + (size_t)num_containers * (1 + 2 + 2)) {
+        return NULL;
+    }
+    uint16_t *keys = (uint16_t *)(buf + length - 4 - num_containers * 5);
+    uint16_t *counts = (uint16_t *)(buf + length - 4 - num_containers * 3);
+    uint8_t *typecodes = (uint8_t *)(buf + length - 4 - num_containers * 1);
+
+    // {bitset,array,run}_zone
+    int32_t num_bitset_containers = 0;
+    int32_t num_run_containers = 0;
+    int32_t num_array_containers = 0;
+    size_t bitset_zone_size = 0;
+    size_t run_zone_size = 0;
+    size_t array_zone_size = 0;
+    for (int32_t i = 0; i < num_containers; i++) {
+        switch (typecodes[i]) {
+            case BITSET_CONTAINER_TYPE_CODE:
+                num_bitset_containers++;
+                bitset_zone_size += BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
+                break;
+            case RUN_CONTAINER_TYPE_CODE:
+                num_run_containers++;
+                run_zone_size += counts[i] * sizeof(rle16_t);
+                break;
+            case ARRAY_CONTAINER_TYPE_CODE:
+                num_array_containers++;
+                array_zone_size += (counts[i] + UINT32_C(1)) * sizeof(uint16_t);
+                break;
+            default:
+                return NULL;
+        }
+    }
+    if (length != bitset_zone_size + run_zone_size + array_zone_size +
+                  5 * num_containers + 4) {
+        return NULL;
+    }
+    uint64_t *bitset_zone = (uint64_t*) (buf);
+    rle16_t *run_zone = (rle16_t*) (buf + bitset_zone_size);
+    uint16_t *array_zone = (uint16_t*) (buf + bitset_zone_size + run_zone_size);
+
+    size_t alloc_size = 0;
+    alloc_size += sizeof(roaring_bitmap_t);
+    alloc_size += num_containers * sizeof(void *);
+    alloc_size += num_bitset_containers * sizeof(bitset_container_t);
+    alloc_size += num_run_containers * sizeof(run_container_t);
+    alloc_size += num_array_containers * sizeof(array_container_t);
+
+    char *arena = (char *)malloc(alloc_size);
+    if (arena == NULL) {
+        return NULL;
+    }
+
+    roaring_bitmap_t *rb = (roaring_bitmap_t *)
+            arena_alloc(&arena, sizeof(roaring_bitmap_t));
+    rb->high_low_container.flags = ROARING_FLAG_FROZEN;
+    rb->high_low_container.allocation_size = num_containers;
+    rb->high_low_container.size = num_containers;
+    rb->high_low_container.keys = (uint16_t *)keys;
+    rb->high_low_container.typecodes = (uint8_t *)typecodes;
+    rb->high_low_container.containers =
+            (void **)arena_alloc(&arena, sizeof(void*) * num_containers);
+    for (int32_t i = 0; i < num_containers; i++) {
+        switch (typecodes[i]) {
+            case BITSET_CONTAINER_TYPE_CODE: {
+                bitset_container_t *bitset = (bitset_container_t *)
+                        arena_alloc(&arena, sizeof(bitset_container_t));
+                bitset->array = bitset_zone;
+                bitset->cardinality = counts[i] + UINT32_C(1);
+                rb->high_low_container.containers[i] = bitset;
+                bitset_zone += BITSET_CONTAINER_SIZE_IN_WORDS;
+                break;
+            }
+            case RUN_CONTAINER_TYPE_CODE: {
+                run_container_t *run = (run_container_t *)
+                        arena_alloc(&arena, sizeof(run_container_t));
+                run->capacity = counts[i];
+                run->n_runs = counts[i];
+                run->runs = run_zone;
+                rb->high_low_container.containers[i] = run;
+                run_zone += run->n_runs;
+                break;
+            }
+            case ARRAY_CONTAINER_TYPE_CODE: {
+                array_container_t *array = (array_container_t *)
+                        arena_alloc(&arena, sizeof(array_container_t));
+                array->capacity = counts[i] + UINT32_C(1);
+                array->cardinality = counts[i] + UINT32_C(1);
+                array->array = array_zone;
+                rb->high_low_container.containers[i] = array;
+                array_zone += counts[i] + UINT32_C(1);
+                break;
+            }
+            default:
+                free(arena);
+                return NULL;
+        }
+    }
+
+    return rb;
+}
+/* end file src/roaring.c */
+/* begin file src/roaring_array.c */
+#include <assert.h>
+#include <stdbool.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <inttypes.h>
+
+
+// Convention: [0,ra->size) all elements are initialized
+//  [ra->size, ra->allocation_size) is junk and contains nothing needing freeing
+
+static bool realloc_array(roaring_array_t *ra, int32_t new_capacity) {
+    // because we combine the allocations, it is not possible to use realloc
+    /*ra->keys =
+    (uint16_t *)realloc(ra->keys, sizeof(uint16_t) * new_capacity);
+ra->containers =
+    (void **)realloc(ra->containers, sizeof(void *) * new_capacity);
+ra->typecodes =
+    (uint8_t *)realloc(ra->typecodes, sizeof(uint8_t) * new_capacity);
+if (!ra->keys || !ra->containers || !ra->typecodes) {
+    free(ra->keys);
+    free(ra->containers);
+    free(ra->typecodes);
+    return false;
+}*/
+
+    if ( new_capacity == 0 ) {
+      free(ra->containers);
+      ra->containers = NULL;
+      ra->keys = NULL;
+      ra->typecodes = NULL;
+      ra->allocation_size = 0;
+      return true;
+    }
+    const size_t memoryneeded =
+        new_capacity * (sizeof(uint16_t) + sizeof(void *) + sizeof(uint8_t));
+    void *bigalloc = malloc(memoryneeded);
+    if (!bigalloc) return false;
+    void *oldbigalloc = ra->containers;
+    void **newcontainers = (void **)bigalloc;
+    uint16_t *newkeys = (uint16_t *)(newcontainers + new_capacity);
+    uint8_t *newtypecodes = (uint8_t *)(newkeys + new_capacity);
+    assert((char *)(newtypecodes + new_capacity) ==
+           (char *)bigalloc + memoryneeded);
+    if(ra->size > 0) {
+      memcpy(newcontainers, ra->containers, sizeof(void *) * ra->size);
+      memcpy(newkeys, ra->keys, sizeof(uint16_t) * ra->size);
+      memcpy(newtypecodes, ra->typecodes, sizeof(uint8_t) * ra->size);
+    }
+    ra->containers = newcontainers;
+    ra->keys = newkeys;
+    ra->typecodes = newtypecodes;
+    ra->allocation_size = new_capacity;
+    free(oldbigalloc);
+    return true;
+}
+
+bool ra_init_with_capacity(roaring_array_t *new_ra, uint32_t cap) {
+    if (!new_ra) return false;
+    ra_init(new_ra);
+
+    if (cap > INT32_MAX) { return false; }
+
+    if(cap > 0) {
+      void *bigalloc =
+        malloc(cap * (sizeof(uint16_t) + sizeof(void *) + sizeof(uint8_t)));
+      if( bigalloc == NULL ) return false;
+      new_ra->containers = (void **)bigalloc;
+      new_ra->keys = (uint16_t *)(new_ra->containers + cap);
+      new_ra->typecodes = (uint8_t *)(new_ra->keys + cap);
+      // Narrowing is safe because of above check
+      new_ra->allocation_size = (int32_t)cap;
+    }
+    return true;
+}
+
+int ra_shrink_to_fit(roaring_array_t *ra) {
+    int savings = (ra->allocation_size - ra->size) *
+                  (sizeof(uint16_t) + sizeof(void *) + sizeof(uint8_t));
+    if (!realloc_array(ra, ra->size)) {
+      return 0;
+    }
+    ra->allocation_size = ra->size;
+    return savings;
+}
+
+void ra_init(roaring_array_t *new_ra) {
+    if (!new_ra) { return; }
+    new_ra->keys = NULL;
+    new_ra->containers = NULL;
+    new_ra->typecodes = NULL;
+
+    new_ra->allocation_size = 0;
+    new_ra->size = 0;
+    new_ra->flags = 0;
+}
+
+bool ra_copy(const roaring_array_t *source, roaring_array_t *dest,
+             bool copy_on_write) {
+    if (!ra_init_with_capacity(dest, source->size)) return false;
+    dest->size = source->size;
+    dest->allocation_size = source->size;
+    if(dest->size > 0) {
+      memcpy(dest->keys, source->keys, dest->size * sizeof(uint16_t));
+    }
+    // we go through the containers, turning them into shared containers...
+    if (copy_on_write) {
+        for (int32_t i = 0; i < dest->size; ++i) {
+            source->containers[i] = get_copy_of_container(
+                source->containers[i], &source->typecodes[i], copy_on_write);
+        }
+        // we do a shallow copy to the other bitmap
+        if(dest->size > 0) {
+          memcpy(dest->containers, source->containers,
+               dest->size * sizeof(void *));
+          memcpy(dest->typecodes, source->typecodes,
+               dest->size * sizeof(uint8_t));
+        }
+    } else {
+        if(dest->size > 0) {
+          memcpy(dest->typecodes, source->typecodes,
+               dest->size * sizeof(uint8_t));
+        }
+        for (int32_t i = 0; i < dest->size; i++) {
+            dest->containers[i] =
+                container_clone(source->containers[i], source->typecodes[i]);
+            if (dest->containers[i] == NULL) {
+                for (int32_t j = 0; j < i; j++) {
+                    container_free(dest->containers[j], dest->typecodes[j]);
+                }
+                ra_clear_without_containers(dest);
+                return false;
+            }
+        }
+    }
+    return true;
+}
+
+bool ra_overwrite(const roaring_array_t *source, roaring_array_t *dest,
+                  bool copy_on_write) {
+    ra_clear_containers(dest);  // we are going to overwrite them
+    if (dest->allocation_size < source->size) {
+        if (!realloc_array(dest, source->size)) {
+            return false;
+        }
+    }
+    dest->size = source->size;
+    memcpy(dest->keys, source->keys, dest->size * sizeof(uint16_t));
+    // we go through the containers, turning them into shared containers...
+    if (copy_on_write) {
+        for (int32_t i = 0; i < dest->size; ++i) {
+            source->containers[i] = get_copy_of_container(
+                source->containers[i], &source->typecodes[i], copy_on_write);
+        }
+        // we do a shallow copy to the other bitmap
+        memcpy(dest->containers, source->containers,
+               dest->size * sizeof(void *));
+        memcpy(dest->typecodes, source->typecodes,
+               dest->size * sizeof(uint8_t));
+    } else {
+        memcpy(dest->typecodes, source->typecodes,
+               dest->size * sizeof(uint8_t));
+        for (int32_t i = 0; i < dest->size; i++) {
+            dest->containers[i] =
+                container_clone(source->containers[i], source->typecodes[i]);
+            if (dest->containers[i] == NULL) {
+                for (int32_t j = 0; j < i; j++) {
+                    container_free(dest->containers[j], dest->typecodes[j]);
+                }
+                ra_clear_without_containers(dest);
+                return false;
+            }
+        }
+    }
+    return true;
+}
+
+void ra_clear_containers(roaring_array_t *ra) {
+    for (int32_t i = 0; i < ra->size; ++i) {
+        container_free(ra->containers[i], ra->typecodes[i]);
+    }
+}
+
+void ra_reset(roaring_array_t *ra) {
+  ra_clear_containers(ra);
+  ra->size = 0;
+  ra_shrink_to_fit(ra);
+}
+
+void ra_clear_without_containers(roaring_array_t *ra) {
+    free(ra->containers);    // keys and typecodes are allocated with containers
+    ra->size = 0;
+    ra->allocation_size = 0;
+    ra->containers = NULL;
+    ra->keys = NULL;
+    ra->typecodes = NULL;
+}
+
+void ra_clear(roaring_array_t *ra) {
+    ra_clear_containers(ra);
+    ra_clear_without_containers(ra);
+}
+
+bool extend_array(roaring_array_t *ra, int32_t k) {
+    int32_t desired_size = ra->size + k;
+    assert(desired_size <= MAX_CONTAINERS);
+    if (desired_size > ra->allocation_size) {
+        int32_t new_capacity =
+            (ra->size < 1024) ? 2 * desired_size : 5 * desired_size / 4;
+        if (new_capacity > MAX_CONTAINERS) {
+            new_capacity = MAX_CONTAINERS;
+        }
+
+        return realloc_array(ra, new_capacity);
+    }
+    return true;
+}
+
+void ra_append(roaring_array_t *ra, uint16_t key, void *container,
+               uint8_t typecode) {
+    extend_array(ra, 1);
+    const int32_t pos = ra->size;
+
+    ra->keys[pos] = key;
+    ra->containers[pos] = container;
+    ra->typecodes[pos] = typecode;
+    ra->size++;
+}
+
+void ra_append_copy(roaring_array_t *ra, const roaring_array_t *sa,
+                    uint16_t index, bool copy_on_write) {
+    extend_array(ra, 1);
+    const int32_t pos = ra->size;
+
+    // old contents is junk not needing freeing
+    ra->keys[pos] = sa->keys[index];
+    // the shared container will be in two bitmaps
+    if (copy_on_write) {
+        sa->containers[index] = get_copy_of_container(
+            sa->containers[index], &sa->typecodes[index], copy_on_write);
+        ra->containers[pos] = sa->containers[index];
+        ra->typecodes[pos] = sa->typecodes[index];
+    } else {
+        ra->containers[pos] =
+            container_clone(sa->containers[index], sa->typecodes[index]);
+        ra->typecodes[pos] = sa->typecodes[index];
+    }
+    ra->size++;
+}
+
+void ra_append_copies_until(roaring_array_t *ra, const roaring_array_t *sa,
+                            uint16_t stopping_key, bool copy_on_write) {
+    for (int32_t i = 0; i < sa->size; ++i) {
+        if (sa->keys[i] >= stopping_key) break;
+        ra_append_copy(ra, sa, i, copy_on_write);
+    }
+}
+
+void ra_append_copy_range(roaring_array_t *ra, const roaring_array_t *sa,
+                          int32_t start_index, int32_t end_index,
+                          bool copy_on_write) {
+    extend_array(ra, end_index - start_index);
+    for (int32_t i = start_index; i < end_index; ++i) {
+        const int32_t pos = ra->size;
+        ra->keys[pos] = sa->keys[i];
+        if (copy_on_write) {
+            sa->containers[i] = get_copy_of_container(
+                sa->containers[i], &sa->typecodes[i], copy_on_write);
+            ra->containers[pos] = sa->containers[i];
+            ra->typecodes[pos] = sa->typecodes[i];
+        } else {
+            ra->containers[pos] =
+                container_clone(sa->containers[i], sa->typecodes[i]);
+            ra->typecodes[pos] = sa->typecodes[i];
+        }
+        ra->size++;
+    }
+}
+
+void ra_append_copies_after(roaring_array_t *ra, const roaring_array_t *sa,
+                            uint16_t before_start, bool copy_on_write) {
+    int start_location = ra_get_index(sa, before_start);
+    if (start_location >= 0)
+        ++start_location;
+    else
+        start_location = -start_location - 1;
+    ra_append_copy_range(ra, sa, start_location, sa->size, copy_on_write);
+}
+
+void ra_append_move_range(roaring_array_t *ra, roaring_array_t *sa,
+                          int32_t start_index, int32_t end_index) {
+    extend_array(ra, end_index - start_index);
+
+    for (int32_t i = start_index; i < end_index; ++i) {
+        const int32_t pos = ra->size;
+
+        ra->keys[pos] = sa->keys[i];
+        ra->containers[pos] = sa->containers[i];
+        ra->typecodes[pos] = sa->typecodes[i];
+        ra->size++;
+    }
+}
+
+void ra_append_range(roaring_array_t *ra, roaring_array_t *sa,
+                     int32_t start_index, int32_t end_index,
+                     bool copy_on_write) {
+    extend_array(ra, end_index - start_index);
+
+    for (int32_t i = start_index; i < end_index; ++i) {
+        const int32_t pos = ra->size;
+        ra->keys[pos] = sa->keys[i];
+        if (copy_on_write) {
+            sa->containers[i] = get_copy_of_container(
+                sa->containers[i], &sa->typecodes[i], copy_on_write);
+            ra->containers[pos] = sa->containers[i];
+            ra->typecodes[pos] = sa->typecodes[i];
+        } else {
+            ra->containers[pos] =
+                container_clone(sa->containers[i], sa->typecodes[i]);
+            ra->typecodes[pos] = sa->typecodes[i];
+        }
+        ra->size++;
+    }
+}
+
+uint16_t ra_get_key_at_index(const roaring_array_t *ra, uint16_t i) {
+    return ra->keys[i];
+}
+
+// everything skipped over is freed
+int32_t ra_advance_until_freeing(roaring_array_t *ra, uint16_t x, int32_t pos) {
+    while (pos < ra->size && ra->keys[pos] < x) {
+        container_free(ra->containers[pos], ra->typecodes[pos]);
+        ++pos;
+    }
+    return pos;
+}
+
+void ra_insert_new_key_value_at(roaring_array_t *ra, int32_t i, uint16_t key,
+                                void *container, uint8_t typecode) {
+    extend_array(ra, 1);
+    // May be an optimization opportunity with DIY memmove
+    memmove(&(ra->keys[i + 1]), &(ra->keys[i]),
+            sizeof(uint16_t) * (ra->size - i));
+    memmove(&(ra->containers[i + 1]), &(ra->containers[i]),
+            sizeof(void *) * (ra->size - i));
+    memmove(&(ra->typecodes[i + 1]), &(ra->typecodes[i]),
+            sizeof(uint8_t) * (ra->size - i));
+    ra->keys[i] = key;
+    ra->containers[i] = container;
+    ra->typecodes[i] = typecode;
+    ra->size++;
+}
+
+// note: Java routine set things to 0, enabling GC.
+// Java called it "resize" but it was always used to downsize.
+// Allowing upsize would break the conventions about
+// valid containers below ra->size.
+
+void ra_downsize(roaring_array_t *ra, int32_t new_length) {
+    assert(new_length <= ra->size);
+    ra->size = new_length;
+}
+
+void ra_remove_at_index(roaring_array_t *ra, int32_t i) {
+    memmove(&(ra->containers[i]), &(ra->containers[i + 1]),
+            sizeof(void *) * (ra->size - i - 1));
+    memmove(&(ra->keys[i]), &(ra->keys[i + 1]),
+            sizeof(uint16_t) * (ra->size - i - 1));
+    memmove(&(ra->typecodes[i]), &(ra->typecodes[i + 1]),
+            sizeof(uint8_t) * (ra->size - i - 1));
+    ra->size--;
+}
+
+void ra_remove_at_index_and_free(roaring_array_t *ra, int32_t i) {
+    container_free(ra->containers[i], ra->typecodes[i]);
+    ra_remove_at_index(ra, i);
+}
+
+// used in inplace andNot only, to slide left the containers from
+// the mutated RoaringBitmap that are after the largest container of
+// the argument RoaringBitmap.  In use it should be followed by a call to
+// downsize.
+//
+void ra_copy_range(roaring_array_t *ra, uint32_t begin, uint32_t end,
+                   uint32_t new_begin) {
+    assert(begin <= end);
+    assert(new_begin < begin);
+
+    const int range = end - begin;
+
+    // We ensure to previously have freed overwritten containers
+    // that are not copied elsewhere
+
+    memmove(&(ra->containers[new_begin]), &(ra->containers[begin]),
+            sizeof(void *) * range);
+    memmove(&(ra->keys[new_begin]), &(ra->keys[begin]),
+            sizeof(uint16_t) * range);
+    memmove(&(ra->typecodes[new_begin]), &(ra->typecodes[begin]),
+            sizeof(uint8_t) * range);
+}
+
+void ra_shift_tail(roaring_array_t *ra, int32_t count, int32_t distance) {
+    if (distance > 0) {
+        extend_array(ra, distance);
+    }
+    int32_t srcpos = ra->size - count;
+    int32_t dstpos = srcpos + distance;
+    memmove(&(ra->keys[dstpos]), &(ra->keys[srcpos]),
+            sizeof(uint16_t) * count);
+    memmove(&(ra->containers[dstpos]), &(ra->containers[srcpos]),
+            sizeof(void *) * count);
+    memmove(&(ra->typecodes[dstpos]), &(ra->typecodes[srcpos]),
+            sizeof(uint8_t) * count);
+    ra->size += distance;
+}
+
+
+void ra_to_uint32_array(const roaring_array_t *ra, uint32_t *ans) {
+    size_t ctr = 0;
+    for (int32_t i = 0; i < ra->size; ++i) {
+        int num_added = container_to_uint32_array(
+            ans + ctr, ra->containers[i], ra->typecodes[i],
+            ((uint32_t)ra->keys[i]) << 16);
+        ctr += num_added;
+    }
+}
+
+bool ra_range_uint32_array(const roaring_array_t *ra, size_t offset, size_t limit, uint32_t *ans) {
+    size_t ctr = 0;
+    size_t dtr = 0;
+
+    size_t t_limit = 0;
+
+    bool first = false;
+    size_t first_skip = 0;
+
+    uint32_t *t_ans = NULL;
+    size_t cur_len = 0;
+
+    for (int i = 0; i < ra->size; ++i) {
+
+        const void *container = container_unwrap_shared(ra->containers[i], &ra->typecodes[i]);
+        switch (ra->typecodes[i]) {
+            case BITSET_CONTAINER_TYPE_CODE:
+                t_limit = ((const bitset_container_t *)container)->cardinality;
+                break;
+            case ARRAY_CONTAINER_TYPE_CODE:
+                t_limit = ((const array_container_t *)container)->cardinality;
+                break;
+            case RUN_CONTAINER_TYPE_CODE:
+                t_limit = run_container_cardinality((const run_container_t *)container);
+                break;
+            case SHARED_CONTAINER_TYPE_CODE:
+            default:
+                __builtin_unreachable();
+        }
+        if (ctr + t_limit - 1 >= offset && ctr < offset + limit){
+            if (!first){
+                //first_skip = t_limit - (ctr + t_limit - offset);
+                first_skip = offset - ctr;
+                first = true;
+                t_ans = (uint32_t *)malloc(sizeof(*t_ans) * (first_skip + limit));
+                if(t_ans == NULL) {
+                  return false;
+                }
+                memset(t_ans, 0, sizeof(*t_ans) * (first_skip + limit)) ;
+                cur_len = first_skip + limit;
+            }
+            if (dtr + t_limit > cur_len){
+                uint32_t * append_ans = (uint32_t *)malloc(sizeof(*append_ans) * (cur_len + t_limit));
+                if(append_ans == NULL) {
+                  if(t_ans != NULL) free(t_ans);
+                  return false;
+                }
+                memset(append_ans, 0, sizeof(*append_ans) * (cur_len + t_limit));
+                cur_len = cur_len + t_limit;
+                memcpy(append_ans, t_ans, dtr * sizeof(uint32_t));
+                free(t_ans);
+                t_ans = append_ans;
+            }
+            switch (ra->typecodes[i]) {
+                case BITSET_CONTAINER_TYPE_CODE:
+                    container_to_uint32_array(
+                        t_ans + dtr, (const bitset_container_t *)container,  ra->typecodes[i],
+                        ((uint32_t)ra->keys[i]) << 16);
+                    break;
+                case ARRAY_CONTAINER_TYPE_CODE:
+                    container_to_uint32_array(
+                        t_ans + dtr, (const array_container_t *)container, ra->typecodes[i],
+                        ((uint32_t)ra->keys[i]) << 16);
+                    break;
+                case RUN_CONTAINER_TYPE_CODE:
+                    container_to_uint32_array(
+                        t_ans + dtr, (const run_container_t *)container, ra->typecodes[i],
+                        ((uint32_t)ra->keys[i]) << 16);
+                    break;
+                case SHARED_CONTAINER_TYPE_CODE:
+                default:
+                    __builtin_unreachable();
+            }
+            dtr += t_limit;
+        }
+        ctr += t_limit;
+        if (dtr-first_skip >= limit) break;
+    }
+    if(t_ans != NULL) {
+      memcpy(ans, t_ans+first_skip, limit * sizeof(uint32_t));
+      free(t_ans);
+    }
+    return true;
+}
+
+bool ra_has_run_container(const roaring_array_t *ra) {
+    for (int32_t k = 0; k < ra->size; ++k) {
+        if (get_container_type(ra->containers[k], ra->typecodes[k]) ==
+            RUN_CONTAINER_TYPE_CODE)
+            return true;
+    }
+    return false;
+}
+
+uint32_t ra_portable_header_size(const roaring_array_t *ra) {
+    if (ra_has_run_container(ra)) {
+        if (ra->size <
+            NO_OFFSET_THRESHOLD) {  // for small bitmaps, we omit the offsets
+            return 4 + (ra->size + 7) / 8 + 4 * ra->size;
+        }
+        return 4 + (ra->size + 7) / 8 +
+               8 * ra->size;  // - 4 because we pack the size with the cookie
+    } else {
+        return 4 + 4 + 8 * ra->size;
+    }
+}
+
+size_t ra_portable_size_in_bytes(const roaring_array_t *ra) {
+    size_t count = ra_portable_header_size(ra);
+
+    for (int32_t k = 0; k < ra->size; ++k) {
+        count += container_size_in_bytes(ra->containers[k], ra->typecodes[k]);
+    }
+    return count;
+}
+
+size_t ra_portable_serialize(const roaring_array_t *ra, char *buf) {
+    char *initbuf = buf;
+    uint32_t startOffset = 0;
+    bool hasrun = ra_has_run_container(ra);
+    if (hasrun) {
+        uint32_t cookie = SERIAL_COOKIE | ((ra->size - 1) << 16);
+        memcpy(buf, &cookie, sizeof(cookie));
+        buf += sizeof(cookie);
+        uint32_t s = (ra->size + 7) / 8;
+        uint8_t *bitmapOfRunContainers = (uint8_t *)calloc(s, 1);
+        assert(bitmapOfRunContainers != NULL);  // todo: handle
+        for (int32_t i = 0; i < ra->size; ++i) {
+            if (get_container_type(ra->containers[i], ra->typecodes[i]) ==
+                RUN_CONTAINER_TYPE_CODE) {
+                bitmapOfRunContainers[i / 8] |= (1 << (i % 8));
+            }
+        }
+        memcpy(buf, bitmapOfRunContainers, s);
+        buf += s;
+        free(bitmapOfRunContainers);
+        if (ra->size < NO_OFFSET_THRESHOLD) {
+            startOffset = 4 + 4 * ra->size + s;
+        } else {
+            startOffset = 4 + 8 * ra->size + s;
+        }
+    } else {  // backwards compatibility
+        uint32_t cookie = SERIAL_COOKIE_NO_RUNCONTAINER;
+
+        memcpy(buf, &cookie, sizeof(cookie));
+        buf += sizeof(cookie);
+        memcpy(buf, &ra->size, sizeof(ra->size));
+        buf += sizeof(ra->size);
+
+        startOffset = 4 + 4 + 4 * ra->size + 4 * ra->size;
+    }
+    for (int32_t k = 0; k < ra->size; ++k) {
+        memcpy(buf, &ra->keys[k], sizeof(ra->keys[k]));
+        buf += sizeof(ra->keys[k]);
+        // get_cardinality returns a value in [1,1<<16], subtracting one
+        // we get [0,1<<16 - 1] which fits in 16 bits
+        uint16_t card = (uint16_t)(
+            container_get_cardinality(ra->containers[k], ra->typecodes[k]) - 1);
+        memcpy(buf, &card, sizeof(card));
+        buf += sizeof(card);
+    }
+    if ((!hasrun) || (ra->size >= NO_OFFSET_THRESHOLD)) {
+        // writing the containers offsets
+        for (int32_t k = 0; k < ra->size; k++) {
+            memcpy(buf, &startOffset, sizeof(startOffset));
+            buf += sizeof(startOffset);
+            startOffset =
+                startOffset +
+                container_size_in_bytes(ra->containers[k], ra->typecodes[k]);
+        }
+    }
+    for (int32_t k = 0; k < ra->size; ++k) {
+        buf += container_write(ra->containers[k], ra->typecodes[k], buf);
+    }
+    return buf - initbuf;
+}
+
+// Quickly checks whether there is a serialized bitmap at the pointer,
+// not exceeding size "maxbytes" in bytes. This function does not allocate
+// memory dynamically.
+//
+// This function returns 0 if and only if no valid bitmap is found.
+// Otherwise, it returns how many bytes are occupied.
+//
+size_t ra_portable_deserialize_size(const char *buf, const size_t maxbytes) {
+    size_t bytestotal = sizeof(int32_t);// for cookie
+    if(bytestotal > maxbytes) return 0;
+    uint32_t cookie;
+    memcpy(&cookie, buf, sizeof(int32_t));
+    buf += sizeof(uint32_t);
+    if ((cookie & 0xFFFF) != SERIAL_COOKIE &&
+        cookie != SERIAL_COOKIE_NO_RUNCONTAINER) {
+        return 0;
+    }
+    int32_t size;
+
+    if ((cookie & 0xFFFF) == SERIAL_COOKIE)
+        size = (cookie >> 16) + 1;
+    else {
+        bytestotal += sizeof(int32_t);
+        if(bytestotal > maxbytes) return 0;
+        memcpy(&size, buf, sizeof(int32_t));
+        buf += sizeof(uint32_t);
+    }
+    if (size > (1<<16)) {
+       return 0; // logically impossible
+    }
+    char *bitmapOfRunContainers = NULL;
+    bool hasrun = (cookie & 0xFFFF) == SERIAL_COOKIE;
+    if (hasrun) {
+        int32_t s = (size + 7) / 8;
+        bytestotal += s;
+        if(bytestotal > maxbytes) return 0;
+        bitmapOfRunContainers = (char *)buf;
+        buf += s;
+    }
+    bytestotal += size * 2 * sizeof(uint16_t);
+    if(bytestotal > maxbytes) return 0;
+    uint16_t *keyscards = (uint16_t *)buf;
+    buf += size * 2 * sizeof(uint16_t);
+    if ((!hasrun) || (size >= NO_OFFSET_THRESHOLD)) {
+        // skipping the offsets
+        bytestotal += size * 4;
+        if(bytestotal > maxbytes) return 0;
+        buf += size * 4;
+    }
+    // Reading the containers
+    for (int32_t k = 0; k < size; ++k) {
+        uint16_t tmp;
+        memcpy(&tmp, keyscards + 2*k+1, sizeof(tmp));
+        uint32_t thiscard = tmp + 1;
+        bool isbitmap = (thiscard > DEFAULT_MAX_SIZE);
+        bool isrun = false;
+        if(hasrun) {
+          if((bitmapOfRunContainers[k / 8] & (1 << (k % 8))) != 0) {
+            isbitmap = false;
+            isrun = true;
+          }
+        }
+        if (isbitmap) {
+            size_t containersize = BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
+            bytestotal += containersize;
+            if(bytestotal > maxbytes) return 0;
+            buf += containersize;
+        } else if (isrun) {
+            bytestotal += sizeof(uint16_t);
+            if(bytestotal > maxbytes) return 0;
+            uint16_t n_runs;
+            memcpy(&n_runs, buf, sizeof(uint16_t));
+            buf += sizeof(uint16_t);
+            size_t containersize = n_runs * sizeof(rle16_t);
+            bytestotal += containersize;
+            if(bytestotal > maxbytes) return 0;
+            buf += containersize;
+        } else {
+            size_t containersize = thiscard * sizeof(uint16_t);
+            bytestotal += containersize;
+            if(bytestotal > maxbytes) return 0;
+            buf += containersize;
+        }
+    }
+    return bytestotal;
+}
+
+
+// this function populates answer from the content of buf (reading up to maxbytes bytes).
+// The function returns false if a properly serialized bitmap cannot be found.
+// if it returns true, readbytes is populated by how many bytes were read, we have that *readbytes <= 
maxbytes.
+bool ra_portable_deserialize(roaring_array_t *answer, const char *buf, const size_t maxbytes, size_t * 
readbytes) {
+    *readbytes = sizeof(int32_t);// for cookie
+    if(*readbytes > maxbytes) {
+      fprintf(stderr, "Ran out of bytes while reading first 4 bytes.\n");
+      return false;
+    }
+    uint32_t cookie;
+    memcpy(&cookie, buf, sizeof(int32_t));
+    buf += sizeof(uint32_t);
+    if ((cookie & 0xFFFF) != SERIAL_COOKIE &&
+        cookie != SERIAL_COOKIE_NO_RUNCONTAINER) {
+        fprintf(stderr, "I failed to find one of the right cookies. Found %" PRIu32 "\n",
+                cookie);
+        return false;
+    }
+    int32_t size;
+
+    if ((cookie & 0xFFFF) == SERIAL_COOKIE)
+        size = (cookie >> 16) + 1;
+    else {
+        *readbytes += sizeof(int32_t);
+        if(*readbytes > maxbytes) {
+          fprintf(stderr, "Ran out of bytes while reading second part of the cookie.\n");
+          return false;
+        }
+        memcpy(&size, buf, sizeof(int32_t));
+        buf += sizeof(uint32_t);
+    }
+    if (size > (1<<16)) {
+       fprintf(stderr, "You cannot have so many containers, the data must be corrupted: %" PRId32 "\n",
+                size);
+       return false; // logically impossible
+    }
+    const char *bitmapOfRunContainers = NULL;
+    bool hasrun = (cookie & 0xFFFF) == SERIAL_COOKIE;
+    if (hasrun) {
+        int32_t s = (size + 7) / 8;
+        *readbytes += s;
+        if(*readbytes > maxbytes) {// data is corrupted?
+          fprintf(stderr, "Ran out of bytes while reading run bitmap.\n");
+          return false;
+        }
+        bitmapOfRunContainers = buf;
+        buf += s;
+    }
+    uint16_t *keyscards = (uint16_t *)buf;
+
+    *readbytes += size * 2 * sizeof(uint16_t);
+    if(*readbytes > maxbytes) {
+      fprintf(stderr, "Ran out of bytes while reading key-cardinality array.\n");
+      return false;
+    }
+    buf += size * 2 * sizeof(uint16_t);
+
+    bool is_ok = ra_init_with_capacity(answer, size);
+    if (!is_ok) {
+        fprintf(stderr, "Failed to allocate memory for roaring array. Bailing out.\n");
+        return false;
+    }
+
+    for (int32_t k = 0; k < size; ++k) {
+        uint16_t tmp;
+        memcpy(&tmp, keyscards + 2*k, sizeof(tmp));
+        answer->keys[k] = tmp;
+    }
+    if ((!hasrun) || (size >= NO_OFFSET_THRESHOLD)) {
+        *readbytes += size * 4;
+        if(*readbytes > maxbytes) {// data is corrupted?
+          fprintf(stderr, "Ran out of bytes while reading offsets.\n");
+          ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
+          return false;
+        }
+
+        // skipping the offsets
+        buf += size * 4;
+    }
+    // Reading the containers
+    for (int32_t k = 0; k < size; ++k) {
+        uint16_t tmp;
+        memcpy(&tmp, keyscards + 2*k+1, sizeof(tmp));
+        uint32_t thiscard = tmp + 1;
+        bool isbitmap = (thiscard > DEFAULT_MAX_SIZE);
+        bool isrun = false;
+        if(hasrun) {
+          if((bitmapOfRunContainers[k / 8] & (1 << (k % 8))) != 0) {
+            isbitmap = false;
+            isrun = true;
+          }
+        }
+        if (isbitmap) {
+            // we check that the read is allowed
+            size_t containersize = BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
+            *readbytes += containersize;
+            if(*readbytes > maxbytes) {
+              fprintf(stderr, "Running out of bytes while reading a bitset container.\n");
+              ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
+              return false;
+            }
+            // it is now safe to read
+            bitset_container_t *c = bitset_container_create();
+            if(c == NULL) {// memory allocation failure
+              fprintf(stderr, "Failed to allocate memory for a bitset container.\n");
+              ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
+              return false;
+            }
+            answer->size++;
+            buf += bitset_container_read(thiscard, c, buf);
+            answer->containers[k] = c;
+            answer->typecodes[k] = BITSET_CONTAINER_TYPE_CODE;
+        } else if (isrun) {
+            // we check that the read is allowed
+            *readbytes += sizeof(uint16_t);
+            if(*readbytes > maxbytes) {
+              fprintf(stderr, "Running out of bytes while reading a run container (header).\n");
+              ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
+              return false;
+            }
+            uint16_t n_runs;
+            memcpy(&n_runs, buf, sizeof(uint16_t));
+            size_t containersize = n_runs * sizeof(rle16_t);
+            *readbytes += containersize;
+            if(*readbytes > maxbytes) {// data is corrupted?
+              fprintf(stderr, "Running out of bytes while reading a run container.\n");
+              ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
+              return false;
+            }
+            // it is now safe to read
+
+            run_container_t *c = run_container_create();
+            if(c == NULL) {// memory allocation failure
+              fprintf(stderr, "Failed to allocate memory for a run container.\n");
+              ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
+              return false;
+            }
+            answer->size++;
+            buf += run_container_read(thiscard, c, buf);
+            answer->containers[k] = c;
+            answer->typecodes[k] = RUN_CONTAINER_TYPE_CODE;
+        } else {
+            // we check that the read is allowed
+            size_t containersize = thiscard * sizeof(uint16_t);
+            *readbytes += containersize;
+            if(*readbytes > maxbytes) {// data is corrupted?
+              fprintf(stderr, "Running out of bytes while reading an array container.\n");
+              ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
+              return false;
+            }
+            // it is now safe to read
+            array_container_t *c =
+                array_container_create_given_capacity(thiscard);
+            if(c == NULL) {// memory allocation failure
+              fprintf(stderr, "Failed to allocate memory for an array container.\n");
+              ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
+              return false;
+            }
+            answer->size++;
+            buf += array_container_read(thiscard, c, buf);
+            answer->containers[k] = c;
+            answer->typecodes[k] = ARRAY_CONTAINER_TYPE_CODE;
+        }
+    }
+    return true;
+}
+/* end file src/roaring_array.c */
+/* begin file src/roaring_priority_queue.c */
+
+struct roaring_pq_element_s {
+    uint64_t size;
+    bool is_temporary;
+    roaring_bitmap_t *bitmap;
+};
+
+typedef struct roaring_pq_element_s roaring_pq_element_t;
+
+struct roaring_pq_s {
+    roaring_pq_element_t *elements;
+    uint64_t size;
+};
+
+typedef struct roaring_pq_s roaring_pq_t;
+
+static inline bool compare(roaring_pq_element_t *t1, roaring_pq_element_t *t2) {
+    return t1->size < t2->size;
+}
+
+static void pq_add(roaring_pq_t *pq, roaring_pq_element_t *t) {
+    uint64_t i = pq->size;
+    pq->elements[pq->size++] = *t;
+    while (i > 0) {
+        uint64_t p = (i - 1) >> 1;
+        roaring_pq_element_t ap = pq->elements[p];
+        if (!compare(t, &ap)) break;
+        pq->elements[i] = ap;
+        i = p;
+    }
+    pq->elements[i] = *t;
+}
+
+static void pq_free(roaring_pq_t *pq) {
+    free(pq->elements);
+    pq->elements = NULL;  // paranoid
+    free(pq);
+}
+
+static void percolate_down(roaring_pq_t *pq, uint32_t i) {
+    uint32_t size = (uint32_t)pq->size;
+    uint32_t hsize = size >> 1;
+    roaring_pq_element_t ai = pq->elements[i];
+    while (i < hsize) {
+        uint32_t l = (i << 1) + 1;
+        uint32_t r = l + 1;
+        roaring_pq_element_t bestc = pq->elements[l];
+        if (r < size) {
+            if (compare(pq->elements + r, &bestc)) {
+                l = r;
+                bestc = pq->elements[r];
+            }
+        }
+        if (!compare(&bestc, &ai)) {
+            break;
+        }
+        pq->elements[i] = bestc;
+        i = l;
+    }
+    pq->elements[i] = ai;
+}
+
+static roaring_pq_t *create_pq(const roaring_bitmap_t **arr, uint32_t length) {
+    roaring_pq_t *answer = (roaring_pq_t *)malloc(sizeof(roaring_pq_t));
+    answer->elements =
+        (roaring_pq_element_t *)malloc(sizeof(roaring_pq_element_t) * length);
+    answer->size = length;
+    for (uint32_t i = 0; i < length; i++) {
+        answer->elements[i].bitmap = (roaring_bitmap_t *)arr[i];
+        answer->elements[i].is_temporary = false;
+        answer->elements[i].size =
+            roaring_bitmap_portable_size_in_bytes(arr[i]);
+    }
+    for (int32_t i = (length >> 1); i >= 0; i--) {
+        percolate_down(answer, i);
+    }
+    return answer;
+}
+
+static roaring_pq_element_t pq_poll(roaring_pq_t *pq) {
+    roaring_pq_element_t ans = *pq->elements;
+    if (pq->size > 1) {
+        pq->elements[0] = pq->elements[--pq->size];
+        percolate_down(pq, 0);
+    } else
+        --pq->size;
+    // memmove(pq->elements,pq->elements+1,(pq->size-1)*sizeof(roaring_pq_element_t));--pq->size;
+    return ans;
+}
+
+// this function consumes and frees the inputs
+static roaring_bitmap_t *lazy_or_from_lazy_inputs(roaring_bitmap_t *x1,
+                                                  roaring_bitmap_t *x2) {
+    uint8_t container_result_type = 0;
+    const int length1 = ra_get_size(&x1->high_low_container),
+              length2 = ra_get_size(&x2->high_low_container);
+    if (0 == length1) {
+        roaring_bitmap_free(x1);
+        return x2;
+    }
+    if (0 == length2) {
+        roaring_bitmap_free(x2);
+        return x1;
+    }
+    uint32_t neededcap = length1 > length2 ? length2 : length1;
+    roaring_bitmap_t *answer = roaring_bitmap_create_with_capacity(neededcap);
+    int pos1 = 0, pos2 = 0;
+    uint8_t container_type_1, container_type_2;
+    uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+    uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+    while (true) {
+        if (s1 == s2) {
+            // todo: unsharing can be inefficient as it may create a clone where
+            // none
+            // is needed, but it has the benefit of being easy to reason about.
+            ra_unshare_container_at_index(&x1->high_low_container, pos1);
+            void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
+                                                 &container_type_1);
+            assert(container_type_1 != SHARED_CONTAINER_TYPE_CODE);
+            ra_unshare_container_at_index(&x2->high_low_container, pos2);
+            void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
+                                                 &container_type_2);
+            assert(container_type_2 != SHARED_CONTAINER_TYPE_CODE);
+            void *c;
+
+            if ((container_type_2 == BITSET_CONTAINER_TYPE_CODE) &&
+                (container_type_1 != BITSET_CONTAINER_TYPE_CODE)) {
+                c = container_lazy_ior(c2, container_type_2, c1,
+                                       container_type_1,
+                                       &container_result_type);
+                container_free(c1, container_type_1);
+                if (c != c2) {
+                    container_free(c2, container_type_2);
+                }
+            } else {
+                c = container_lazy_ior(c1, container_type_1, c2,
+                                       container_type_2,
+                                       &container_result_type);
+                container_free(c2, container_type_2);
+                if (c != c1) {
+                    container_free(c1, container_type_1);
+                }
+            }
+            // since we assume that the initial containers are non-empty, the
+            // result here
+            // can only be non-empty
+            ra_append(&answer->high_low_container, s1, c,
+                      container_result_type);
+            ++pos1;
+            ++pos2;
+            if (pos1 == length1) break;
+            if (pos2 == length2) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+            s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+
+        } else if (s1 < s2) {  // s1 < s2
+            void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
+                                                 &container_type_1);
+            ra_append(&answer->high_low_container, s1, c1, container_type_1);
+            pos1++;
+            if (pos1 == length1) break;
+            s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
+
+        } else {  // s1 > s2
+            void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
+                                                 &container_type_2);
+            ra_append(&answer->high_low_container, s2, c2, container_type_2);
+            pos2++;
+            if (pos2 == length2) break;
+            s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
+        }
+    }
+    if (pos1 == length1) {
+        ra_append_move_range(&answer->high_low_container,
+                             &x2->high_low_container, pos2, length2);
+    } else if (pos2 == length2) {
+        ra_append_move_range(&answer->high_low_container,
+                             &x1->high_low_container, pos1, length1);
+    }
+    ra_clear_without_containers(&x1->high_low_container);
+    ra_clear_without_containers(&x2->high_low_container);
+    free(x1);
+    free(x2);
+    return answer;
+}
+
+/**
+ * Compute the union of 'number' bitmaps using a heap. This can
+ * sometimes be faster than roaring_bitmap_or_many which uses
+ * a naive algorithm. Caller is responsible for freeing the
+ * result.
+ */
+roaring_bitmap_t *roaring_bitmap_or_many_heap(uint32_t number,
+                                              const roaring_bitmap_t **x) {
+    if (number == 0) {
+        return roaring_bitmap_create();
+    }
+    if (number == 1) {
+        return roaring_bitmap_copy(x[0]);
+    }
+    roaring_pq_t *pq = create_pq(x, number);
+    while (pq->size > 1) {
+        roaring_pq_element_t x1 = pq_poll(pq);
+        roaring_pq_element_t x2 = pq_poll(pq);
+
+        if (x1.is_temporary && x2.is_temporary) {
+            roaring_bitmap_t *newb =
+                lazy_or_from_lazy_inputs(x1.bitmap, x2.bitmap);
+            // should normally return a fresh new bitmap *except* that
+            // it can return x1.bitmap or x2.bitmap in degenerate cases
+            bool temporary = !((newb == x1.bitmap) && (newb == x2.bitmap));
+            uint64_t bsize = roaring_bitmap_portable_size_in_bytes(newb);
+            roaring_pq_element_t newelement = {
+                .size = bsize, .is_temporary = temporary, .bitmap = newb};
+            pq_add(pq, &newelement);
+        } else if (x2.is_temporary) {
+            roaring_bitmap_lazy_or_inplace(x2.bitmap, x1.bitmap, false);
+            x2.size = roaring_bitmap_portable_size_in_bytes(x2.bitmap);
+            pq_add(pq, &x2);
+        } else if (x1.is_temporary) {
+            roaring_bitmap_lazy_or_inplace(x1.bitmap, x2.bitmap, false);
+            x1.size = roaring_bitmap_portable_size_in_bytes(x1.bitmap);
+
+            pq_add(pq, &x1);
+        } else {
+            roaring_bitmap_t *newb =
+                roaring_bitmap_lazy_or(x1.bitmap, x2.bitmap, false);
+            uint64_t bsize = roaring_bitmap_portable_size_in_bytes(newb);
+            roaring_pq_element_t newelement = {
+                .size = bsize, .is_temporary = true, .bitmap = newb};
+
+            pq_add(pq, &newelement);
+        }
+    }
+    roaring_pq_element_t X = pq_poll(pq);
+    roaring_bitmap_t *answer = X.bitmap;
+    roaring_bitmap_repair_after_lazy(answer);
+    pq_free(pq);
+    return answer;
+}
+/* end file src/roaring_priority_queue.c */
diff --git a/gtk/roaring.h b/gtk/roaring.h
new file mode 100644
index 0000000000..addb163ddb
--- /dev/null
+++ b/gtk/roaring.h
@@ -0,0 +1,7249 @@
+/* auto-generated on Wed 10 Jun 2020 03:33:35 PM CEST. Do not edit! */
+/* begin file include/roaring/roaring_version.h */
+// /include/roaring/roaring_version.h automatically generated by release.py, do not change by hand 
+#ifndef ROARING_INCLUDE_ROARING_VERSION 
+#define ROARING_INCLUDE_ROARING_VERSION 
+#define ROARING_VERSION = 0.2.66,  
+enum { 
+    ROARING_VERSION_MAJOR = 0,  
+    ROARING_VERSION_MINOR = 2,  
+    ROARING_VERSION_REVISION = 66  
+}; 
+#endif // ROARING_INCLUDE_ROARING_VERSION 
+/* end file include/roaring/roaring_version.h */
+/* begin file include/roaring/portability.h */
+/*
+ * portability.h
+ *
+ */
+
+#ifndef INCLUDE_PORTABILITY_H_
+#define INCLUDE_PORTABILITY_H_
+
+#ifndef _GNU_SOURCE
+#define _GNU_SOURCE
+#endif
+#ifndef __STDC_FORMAT_MACROS
+#define __STDC_FORMAT_MACROS 1
+#endif
+
+#if !(defined(_POSIX_C_SOURCE)) || (_POSIX_C_SOURCE < 200809L)
+#define _POSIX_C_SOURCE 200809L
+#endif
+#if !(defined(_XOPEN_SOURCE)) || (_XOPEN_SOURCE < 700)
+#define _XOPEN_SOURCE 700
+#endif
+
+#include <stdbool.h>
+#include <stdint.h>
+#include <stdlib.h>  // will provide posix_memalign with _POSIX_C_SOURCE as defined above
+#if !(defined(__APPLE__)) && !(defined(__FreeBSD__))
+#include <malloc.h>  // this should never be needed but there are some reports that it is needed.
+#endif
+
+
+#if defined(_MSC_VER) && !defined(__clang__) && !defined(_WIN64) && !defined(ROARING_ACK_32BIT)
+#pragma message( \
+    "You appear to be attempting a 32-bit build under Visual Studio. We recommend a 64-bit build instead.")
+#endif
+
+#if defined(__SIZEOF_LONG_LONG__) && __SIZEOF_LONG_LONG__ != 8
+#error This code assumes  64-bit long longs (by use of the GCC intrinsics). Your system is not currently 
supported.
+#endif
+
+#if defined(_MSC_VER)
+#define __restrict__ __restrict
+#endif
+
+#ifndef DISABLE_X64  // some users may want to compile as if they did not have
+                     // an x64 processor
+
+///////////////////////
+/// We support X64 hardware in the following manner:
+///
+/// if IS_X64 is defined then we have at least SSE and SSE2
+/// (All Intel processors sold in the recent past have at least SSE and SSE2 support,
+/// going back to the Pentium 4.)
+///
+/// if USESSE4 is defined then we assume at least SSE4.2, SSE4.1,
+///                   SSSE3, SSE3... + IS_X64
+/// if USEAVX is defined, then we assume AVX2, AVX + USESSE4
+///
+/// So if you have hardware that supports AVX but not AVX2, then "USEAVX"
+/// won't be enabled.
+/// If you have hardware that supports SSE4.1, but not SSE4.2, then USESSE4
+/// won't be defined.
+//////////////////////
+
+// unless DISABLEAVX was defined, if we have __AVX2__, we enable AVX
+#if (!defined(USEAVX)) && (!defined(DISABLEAVX)) && (defined(__AVX2__))
+#define USEAVX
+#endif
+
+// if we have __SSE4_2__, we enable SSE4
+#if (defined(__POPCNT__)) && (defined(__SSE4_2__))
+#define USESSE4
+#endif
+
+#if defined(USEAVX) || defined(__x86_64__) || defined(_M_X64)
+// we have an x64 processor
+#define IS_X64
+// we include the intrinsic header
+#ifndef _MSC_VER
+/* Non-Microsoft C/C++-compatible compiler */
+#include <x86intrin.h>  // on some recent GCC, this will declare posix_memalign
+#endif
+#endif
+
+#if !defined(USENEON) && !defined(DISABLENEON) && defined(__ARM_NEON)
+#  define USENEON
+#endif
+#if defined(USENEON)
+#  include <arm_neon.h>
+#endif
+
+#ifndef _MSC_VER
+/* Non-Microsoft C/C++-compatible compiler, assumes that it supports inline
+ * assembly */
+#define ROARING_INLINE_ASM
+#endif
+
+#ifdef USEAVX
+#define USESSE4             // if we have AVX, then we have SSE4
+#define USE_BMI             // we assume that AVX2 and BMI go hand and hand
+#define USEAVX2FORDECODING  // optimization
+// vector operations should work on not just AVX
+#define ROARING_VECTOR_OPERATIONS_ENABLED  // vector unions (optimization)
+#endif
+
+#endif  // DISABLE_X64
+
+#ifdef _MSC_VER
+/* Microsoft C/C++-compatible compiler */
+#include <intrin.h>
+
+#ifndef __clang__  // if one compiles with MSVC *with* clang, then these
+                   // intrinsics are defined!!!
+// sadly there is no way to check whether we are missing these intrinsics
+// specifically.
+
+/* wrappers for Visual Studio built-ins that look like gcc built-ins */
+/* result might be undefined when input_num is zero */
+static inline int __builtin_ctzll(unsigned long long input_num) {
+    unsigned long index;
+#ifdef _WIN64  // highly recommended!!!
+    _BitScanForward64(&index, input_num);
+#else  // if we must support 32-bit Windows
+    if ((uint32_t)input_num != 0) {
+        _BitScanForward(&index, (uint32_t)input_num);
+    } else {
+        _BitScanForward(&index, (uint32_t)(input_num >> 32));
+        index += 32;
+    }
+#endif
+    return index;
+}
+
+/* result might be undefined when input_num is zero */
+static inline int __builtin_clzll(unsigned long long input_num) {
+    unsigned long index;
+#ifdef _WIN64  // highly recommended!!!
+    _BitScanReverse64(&index, input_num);
+#else  // if we must support 32-bit Windows
+    if (input_num > 0xFFFFFFFF) {
+        _BitScanReverse(&index, (uint32_t)(input_num >> 32));
+        index += 32;
+    } else {
+        _BitScanReverse(&index, (uint32_t)(input_num));
+    }
+#endif
+    return 63 - index;
+}
+
+/* result might be undefined when input_num is zero */
+#ifdef USESSE4
+/* POPCNT support was added to processors around the release of SSE4.2 */
+/* USESSE4 flag guarantees POPCNT support */
+static inline int __builtin_popcountll(unsigned long long input_num) {
+#ifdef _WIN64  // highly recommended!!!
+       return (int)__popcnt64(input_num);
+#else  // if we must support 32-bit Windows
+       return (int)(__popcnt((uint32_t)input_num) +
+               __popcnt((uint32_t)(input_num >> 32)));
+#endif
+}
+#else
+/* software implementation avoids POPCNT */
+static inline int __builtin_popcountll(unsigned long long input_num) {
+       const uint64_t m1 = 0x5555555555555555; //binary: 0101...
+       const uint64_t m2 = 0x3333333333333333; //binary: 00110011..
+       const uint64_t m4 = 0x0f0f0f0f0f0f0f0f; //binary:  4 zeros,  4 ones ...
+       const uint64_t h01 = 0x0101010101010101; //the sum of 256 to the power of 0,1,2,3...
+
+       input_num -= (input_num >> 1) & m1;
+       input_num = (input_num & m2) + ((input_num >> 2) & m2);
+       input_num = (input_num + (input_num >> 4)) & m4;
+       return (input_num * h01) >> 56;
+}
+#endif
+
+/* Use #define so this is effective even under /Ob0 (no inline) */
+#define __builtin_unreachable() __assume(0)
+#endif
+
+#endif
+
+// portable version of  posix_memalign
+static inline void *roaring_bitmap_aligned_malloc(size_t alignment, size_t size) {
+    void *p;
+#ifdef _MSC_VER
+    p = _aligned_malloc(size, alignment);
+#elif defined(__MINGW32__) || defined(__MINGW64__)
+    p = __mingw_aligned_malloc(size, alignment);
+#else
+    // somehow, if this is used before including "x86intrin.h", it creates an
+    // implicit defined warning.
+    if (posix_memalign(&p, alignment, size) != 0) return NULL;
+#endif
+    return p;
+}
+
+static inline void roaring_bitmap_aligned_free(void *memblock) {
+#ifdef _MSC_VER
+    _aligned_free(memblock);
+#elif defined(__MINGW32__) || defined(__MINGW64__)
+    __mingw_aligned_free(memblock);
+#else
+    free(memblock);
+#endif
+}
+
+#if defined(_MSC_VER)
+#define ALIGNED(x) __declspec(align(x))
+#else
+#if defined(__GNUC__)
+#define ALIGNED(x) __attribute__((aligned(x)))
+#endif
+#endif
+
+#ifdef __GNUC__
+#define WARN_UNUSED __attribute__((warn_unused_result))
+#else
+#define WARN_UNUSED
+#endif
+
+#define IS_BIG_ENDIAN (*(uint16_t *)"\0\xff" < 0x100)
+
+static inline int hamming(uint64_t x) {
+#ifdef USESSE4
+    return (int) _mm_popcnt_u64(x);
+#else
+    // won't work under visual studio, but hopeful we have _mm_popcnt_u64 in
+    // many cases
+    return __builtin_popcountll(x);
+#endif
+}
+
+#ifndef UINT64_C
+#define UINT64_C(c) (c##ULL)
+#endif
+
+#ifndef UINT32_C
+#define UINT32_C(c) (c##UL)
+#endif
+
+#endif /* INCLUDE_PORTABILITY_H_ */
+/* end file include/roaring/portability.h */
+/* begin file include/roaring/containers/perfparameters.h */
+#ifndef PERFPARAMETERS_H_
+#define PERFPARAMETERS_H_
+
+#include <stdbool.h>
+
+/**
+During lazy computations, we can transform array containers into bitset
+containers as
+long as we can expect them to have  ARRAY_LAZY_LOWERBOUND values.
+*/
+enum { ARRAY_LAZY_LOWERBOUND = 1024 };
+
+/* default initial size of a run container 
+   setting it to zero delays the malloc.*/
+enum { RUN_DEFAULT_INIT_SIZE = 0 };
+
+/* default initial size of an array container 
+   setting it to zero delays the malloc */
+enum { ARRAY_DEFAULT_INIT_SIZE = 0 };
+
+/* automatic bitset conversion during lazy or */
+#ifndef LAZY_OR_BITSET_CONVERSION
+#define LAZY_OR_BITSET_CONVERSION true
+#endif
+
+/* automatically attempt to convert a bitset to a full run during lazy
+ * evaluation */
+#ifndef LAZY_OR_BITSET_CONVERSION_TO_FULL
+#define LAZY_OR_BITSET_CONVERSION_TO_FULL true
+#endif
+
+/* automatically attempt to convert a bitset to a full run */
+#ifndef OR_BITSET_CONVERSION_TO_FULL
+#define OR_BITSET_CONVERSION_TO_FULL true
+#endif
+
+#endif
+/* end file include/roaring/containers/perfparameters.h */
+/* begin file include/roaring/array_util.h */
+#ifndef ARRAY_UTIL_H
+#define ARRAY_UTIL_H
+
+#include <stddef.h>  // for size_t
+#include <stdint.h>
+
+
+/*
+ *  Good old binary search.
+ *  Assumes that array is sorted, has logarithmic complexity.
+ *  if the result is x, then:
+ *     if ( x>0 )  you have array[x] = ikey
+ *     if ( x<0 ) then inserting ikey at position -x-1 in array (insuring that array[-x-1]=ikey)
+ *                   keys the array sorted.
+ */
+static inline int32_t binarySearch(const uint16_t *array, int32_t lenarray,
+                            uint16_t ikey) {
+    int32_t low = 0;
+    int32_t high = lenarray - 1;
+    while (low <= high) {
+        int32_t middleIndex = (low + high) >> 1;
+        uint16_t middleValue = array[middleIndex];
+        if (middleValue < ikey) {
+            low = middleIndex + 1;
+        } else if (middleValue > ikey) {
+            high = middleIndex - 1;
+        } else {
+            return middleIndex;
+        }
+    }
+    return -(low + 1);
+}
+
+/**
+ * Galloping search
+ * Assumes that array is sorted, has logarithmic complexity.
+ * if the result is x, then if x = length, you have that all values in array between pos and length
+ *    are smaller than min.
+ * otherwise returns the first index x such that array[x] >= min.
+ */
+static inline int32_t advanceUntil(const uint16_t *array, int32_t pos,
+                                   int32_t length, uint16_t min) {
+    int32_t lower = pos + 1;
+
+    if ((lower >= length) || (array[lower] >= min)) {
+        return lower;
+    }
+
+    int32_t spansize = 1;
+
+    while ((lower + spansize < length) && (array[lower + spansize] < min)) {
+        spansize <<= 1;
+    }
+    int32_t upper = (lower + spansize < length) ? lower + spansize : length - 1;
+
+    if (array[upper] == min) {
+        return upper;
+    }
+    if (array[upper] < min) {
+        // means
+        // array
+        // has no
+        // item
+        // >= min
+        // pos = array.length;
+        return length;
+    }
+
+    // we know that the next-smallest span was too small
+    lower += (spansize >> 1);
+
+    int32_t mid = 0;
+    while (lower + 1 != upper) {
+        mid = (lower + upper) >> 1;
+        if (array[mid] == min) {
+            return mid;
+        } else if (array[mid] < min) {
+            lower = mid;
+        } else {
+            upper = mid;
+        }
+    }
+    return upper;
+}
+
+/**
+ * Returns number of elements which are less then $ikey.
+ * Array elements must be unique and sorted.
+ */
+static inline int32_t count_less(const uint16_t *array, int32_t lenarray,
+                                 uint16_t ikey) {
+    if (lenarray == 0) return 0;
+    int32_t pos = binarySearch(array, lenarray, ikey);
+    return pos >= 0 ? pos : -(pos+1);
+}
+
+/**
+ * Returns number of elements which are greater then $ikey.
+ * Array elements must be unique and sorted.
+ */
+static inline int32_t count_greater(const uint16_t *array, int32_t lenarray,
+                                    uint16_t ikey) {
+    if (lenarray == 0) return 0;
+    int32_t pos = binarySearch(array, lenarray, ikey);
+    if (pos >= 0) {
+        return lenarray - (pos+1);
+    } else {
+        return lenarray - (-pos-1);
+    }
+}
+
+/**
+ * From Schlegel et al., Fast Sorted-Set Intersection using SIMD Instructions
+ * Optimized by D. Lemire on May 3rd 2013
+ *
+ * C should have capacity greater than the minimum of s_1 and s_b + 8
+ * where 8 is sizeof(__m128i)/sizeof(uint16_t).
+ */
+int32_t intersect_vector16(const uint16_t *__restrict__ A, size_t s_a,
+                           const uint16_t *__restrict__ B, size_t s_b,
+                           uint16_t *C);
+
+/**
+ * Compute the cardinality of the intersection using SSE4 instructions
+ */
+int32_t intersect_vector16_cardinality(const uint16_t *__restrict__ A,
+                                       size_t s_a,
+                                       const uint16_t *__restrict__ B,
+                                       size_t s_b);
+
+/* Computes the intersection between one small and one large set of uint16_t.
+ * Stores the result into buffer and return the number of elements. */
+int32_t intersect_skewed_uint16(const uint16_t *smallarray, size_t size_s,
+                                const uint16_t *largearray, size_t size_l,
+                                uint16_t *buffer);
+
+/* Computes the size of the intersection between one small and one large set of
+ * uint16_t. */
+int32_t intersect_skewed_uint16_cardinality(const uint16_t *smallarray,
+                                            size_t size_s,
+                                            const uint16_t *largearray,
+                                            size_t size_l);
+
+
+/* Check whether the size of the intersection between one small and one large set of uint16_t is non-zero. */
+bool intersect_skewed_uint16_nonempty(const uint16_t *smallarray, size_t size_s,
+                                const uint16_t *largearray, size_t size_l);
+/**
+ * Generic intersection function.
+ */
+int32_t intersect_uint16(const uint16_t *A, const size_t lenA,
+                         const uint16_t *B, const size_t lenB, uint16_t *out);
+/**
+ * Compute the size of the intersection (generic).
+ */
+int32_t intersect_uint16_cardinality(const uint16_t *A, const size_t lenA,
+                                     const uint16_t *B, const size_t lenB);
+
+/**
+ * Checking whether the size of the intersection  is non-zero.
+ */
+bool intersect_uint16_nonempty(const uint16_t *A, const size_t lenA,
+                         const uint16_t *B, const size_t lenB);
+/**
+ * Generic union function.
+ */
+size_t union_uint16(const uint16_t *set_1, size_t size_1, const uint16_t *set_2,
+                    size_t size_2, uint16_t *buffer);
+
+/**
+ * Generic XOR function.
+ */
+int32_t xor_uint16(const uint16_t *array_1, int32_t card_1,
+                   const uint16_t *array_2, int32_t card_2, uint16_t *out);
+
+/**
+ * Generic difference function (ANDNOT).
+ */
+int difference_uint16(const uint16_t *a1, int length1, const uint16_t *a2,
+                      int length2, uint16_t *a_out);
+
+/**
+ * Generic intersection function.
+ */
+size_t intersection_uint32(const uint32_t *A, const size_t lenA,
+                           const uint32_t *B, const size_t lenB, uint32_t *out);
+
+/**
+ * Generic intersection function, returns just the cardinality.
+ */
+size_t intersection_uint32_card(const uint32_t *A, const size_t lenA,
+                                const uint32_t *B, const size_t lenB);
+
+/**
+ * Generic union function.
+ */
+size_t union_uint32(const uint32_t *set_1, size_t size_1, const uint32_t *set_2,
+                    size_t size_2, uint32_t *buffer);
+
+/**
+ * A fast SSE-based union function.
+ */
+uint32_t union_vector16(const uint16_t *__restrict__ set_1, uint32_t size_1,
+                        const uint16_t *__restrict__ set_2, uint32_t size_2,
+                        uint16_t *__restrict__ buffer);
+/**
+ * A fast SSE-based XOR function.
+ */
+uint32_t xor_vector16(const uint16_t *__restrict__ array1, uint32_t length1,
+                      const uint16_t *__restrict__ array2, uint32_t length2,
+                      uint16_t *__restrict__ output);
+
+/**
+ * A fast SSE-based difference function.
+ */
+int32_t difference_vector16(const uint16_t *__restrict__ A, size_t s_a,
+                            const uint16_t *__restrict__ B, size_t s_b,
+                            uint16_t *C);
+
+/**
+ * Generic union function, returns just the cardinality.
+ */
+size_t union_uint32_card(const uint32_t *set_1, size_t size_1,
+                         const uint32_t *set_2, size_t size_2);
+
+/**
+* combines union_uint16 and  union_vector16 optimally
+*/
+size_t fast_union_uint16(const uint16_t *set_1, size_t size_1, const uint16_t *set_2,
+                    size_t size_2, uint16_t *buffer);
+
+
+bool memequals(const void *s1, const void *s2, size_t n);
+
+#endif
+/* end file include/roaring/array_util.h */
+/* begin file include/roaring/roaring_types.h */
+/*
+  Typedefs used by various components
+*/
+
+#ifndef ROARING_TYPES_H
+#define ROARING_TYPES_H
+
+typedef bool (*roaring_iterator)(uint32_t value, void *param);
+typedef bool (*roaring_iterator64)(uint64_t value, void *param);
+
+/**
+*  (For advanced users.)
+* The roaring_statistics_t can be used to collect detailed statistics about
+* the composition of a roaring bitmap.
+*/
+typedef struct roaring_statistics_s {
+    uint32_t n_containers; /* number of containers */
+
+    uint32_t n_array_containers;  /* number of array containers */
+    uint32_t n_run_containers;    /* number of run containers */
+    uint32_t n_bitset_containers; /* number of bitmap containers */
+
+    uint32_t
+        n_values_array_containers;    /* number of values in array containers */
+    uint32_t n_values_run_containers; /* number of values in run containers */
+    uint32_t
+        n_values_bitset_containers; /* number of values in  bitmap containers */
+
+    uint32_t n_bytes_array_containers;  /* number of allocated bytes in array
+                                           containers */
+    uint32_t n_bytes_run_containers;    /* number of allocated bytes in run
+                                           containers */
+    uint32_t n_bytes_bitset_containers; /* number of allocated bytes in  bitmap
+                                           containers */
+
+    uint32_t
+        max_value; /* the maximal value, undefined if cardinality is zero */
+    uint32_t
+        min_value; /* the minimal value, undefined if cardinality is zero */
+    uint64_t sum_value; /* the sum of all values (could be used to compute
+                           average) */
+
+    uint64_t cardinality; /* total number of values stored in the bitmap */
+
+    // and n_values_arrays, n_values_rle, n_values_bitmap
+} roaring_statistics_t;
+
+#endif /* ROARING_TYPES_H */
+/* end file include/roaring/roaring_types.h */
+/* begin file include/roaring/utilasm.h */
+/*
+ * utilasm.h
+ *
+ */
+
+#ifndef INCLUDE_UTILASM_H_
+#define INCLUDE_UTILASM_H_
+
+
+#if defined(USE_BMI) & defined(ROARING_INLINE_ASM)
+#define ASMBITMANIPOPTIMIZATION  // optimization flag
+
+#define ASM_SHIFT_RIGHT(srcReg, bitsReg, destReg) \
+    __asm volatile("shrx %1, %2, %0"              \
+                   : "=r"(destReg)                \
+                   :             /* write */      \
+                   "r"(bitsReg), /* read only */  \
+                   "r"(srcReg)   /* read only */  \
+                   )
+
+#define ASM_INPLACESHIFT_RIGHT(srcReg, bitsReg)  \
+    __asm volatile("shrx %1, %0, %0"             \
+                   : "+r"(srcReg)                \
+                   :            /* read/write */ \
+                   "r"(bitsReg) /* read only */  \
+                   )
+
+#define ASM_SHIFT_LEFT(srcReg, bitsReg, destReg) \
+    __asm volatile("shlx %1, %2, %0"             \
+                   : "=r"(destReg)               \
+                   :             /* write */     \
+                   "r"(bitsReg), /* read only */ \
+                   "r"(srcReg)   /* read only */ \
+                   )
+// set bit at position testBit within testByte to 1 and
+// copy cmovDst to cmovSrc if that bit was previously clear
+#define ASM_SET_BIT_INC_WAS_CLEAR(testByte, testBit, count) \
+    __asm volatile(                                         \
+        "bts %2, %0\n"                                      \
+        "sbb $-1, %1\n"                                     \
+        : "+r"(testByte), /* read/write */                  \
+          "+r"(count)                                       \
+        :            /* read/write */                       \
+        "r"(testBit) /* read only */                        \
+        )
+
+#define ASM_CLEAR_BIT_DEC_WAS_SET(testByte, testBit, count) \
+    __asm volatile(                                         \
+        "btr %2, %0\n"                                      \
+        "sbb $0, %1\n"                                      \
+        : "+r"(testByte), /* read/write */                  \
+          "+r"(count)                                       \
+        :            /* read/write */                       \
+        "r"(testBit) /* read only */                        \
+        )
+
+#define ASM_BT64(testByte, testBit, count) \
+    __asm volatile(                        \
+        "bt %2,%1\n"                       \
+        "sbb %0,%0" /*could use setb */    \
+        : "=r"(count)                      \
+        :              /* write */         \
+        "r"(testByte), /* read only */     \
+        "r"(testBit)   /* read only */     \
+        )
+
+#endif  // USE_BMI
+#endif  /* INCLUDE_UTILASM_H_ */
+/* end file include/roaring/utilasm.h */
+/* begin file include/roaring/bitset_util.h */
+#ifndef BITSET_UTIL_H
+#define BITSET_UTIL_H
+
+#include <stdint.h>
+
+
+/*
+ * Set all bits in indexes [begin,end) to true.
+ */
+static inline void bitset_set_range(uint64_t *bitmap, uint32_t start,
+                                    uint32_t end) {
+    if (start == end) return;
+    uint32_t firstword = start / 64;
+    uint32_t endword = (end - 1) / 64;
+    if (firstword == endword) {
+        bitmap[firstword] |= ((~UINT64_C(0)) << (start % 64)) &
+                             ((~UINT64_C(0)) >> ((~end + 1) % 64));
+        return;
+    }
+    bitmap[firstword] |= (~UINT64_C(0)) << (start % 64);
+    for (uint32_t i = firstword + 1; i < endword; i++) bitmap[i] = ~UINT64_C(0);
+    bitmap[endword] |= (~UINT64_C(0)) >> ((~end + 1) % 64);
+}
+
+
+/*
+ * Find the cardinality of the bitset in [begin,begin+lenminusone]
+ */
+static inline int bitset_lenrange_cardinality(uint64_t *bitmap, uint32_t start,
+                                              uint32_t lenminusone) {
+    uint32_t firstword = start / 64;
+    uint32_t endword = (start + lenminusone) / 64;
+    if (firstword == endword) {
+        return hamming(bitmap[firstword] &
+                       ((~UINT64_C(0)) >> ((63 - lenminusone) % 64))
+                           << (start % 64));
+    }
+    int answer = hamming(bitmap[firstword] & ((~UINT64_C(0)) << (start % 64)));
+    for (uint32_t i = firstword + 1; i < endword; i++) {
+        answer += hamming(bitmap[i]);
+    }
+    answer +=
+        hamming(bitmap[endword] &
+                (~UINT64_C(0)) >> (((~start + 1) - lenminusone - 1) % 64));
+    return answer;
+}
+
+/*
+ * Check whether the cardinality of the bitset in [begin,begin+lenminusone] is 0
+ */
+static inline bool bitset_lenrange_empty(uint64_t *bitmap, uint32_t start,
+        uint32_t lenminusone) {
+    uint32_t firstword = start / 64;
+    uint32_t endword = (start + lenminusone) / 64;
+    if (firstword == endword) {
+      return (bitmap[firstword] & ((~UINT64_C(0)) >> ((63 - lenminusone) % 64))
+              << (start % 64)) == 0;
+    }
+    if(((bitmap[firstword] & ((~UINT64_C(0)) << (start%64)))) != 0) return false;
+    for (uint32_t i = firstword + 1; i < endword; i++) {
+     if(bitmap[i] != 0) return false;
+    }
+    if((bitmap[endword] & (~UINT64_C(0)) >> (((~start + 1) - lenminusone - 1) % 64)) != 0) return false;
+    return true;
+}
+
+
+/*
+ * Set all bits in indexes [begin,begin+lenminusone] to true.
+ */
+static inline void bitset_set_lenrange(uint64_t *bitmap, uint32_t start,
+                                       uint32_t lenminusone) {
+    uint32_t firstword = start / 64;
+    uint32_t endword = (start + lenminusone) / 64;
+    if (firstword == endword) {
+        bitmap[firstword] |= ((~UINT64_C(0)) >> ((63 - lenminusone) % 64))
+                             << (start % 64);
+        return;
+    }
+    uint64_t temp = bitmap[endword];
+    bitmap[firstword] |= (~UINT64_C(0)) << (start % 64);
+    for (uint32_t i = firstword + 1; i < endword; i += 2)
+        bitmap[i] = bitmap[i + 1] = ~UINT64_C(0);
+    bitmap[endword] =
+        temp | (~UINT64_C(0)) >> (((~start + 1) - lenminusone - 1) % 64);
+}
+
+/*
+ * Flip all the bits in indexes [begin,end).
+ */
+static inline void bitset_flip_range(uint64_t *bitmap, uint32_t start,
+                                     uint32_t end) {
+    if (start == end) return;
+    uint32_t firstword = start / 64;
+    uint32_t endword = (end - 1) / 64;
+    bitmap[firstword] ^= ~((~UINT64_C(0)) << (start % 64));
+    for (uint32_t i = firstword; i < endword; i++) bitmap[i] = ~bitmap[i];
+    bitmap[endword] ^= ((~UINT64_C(0)) >> ((~end + 1) % 64));
+}
+
+/*
+ * Set all bits in indexes [begin,end) to false.
+ */
+static inline void bitset_reset_range(uint64_t *bitmap, uint32_t start,
+                                      uint32_t end) {
+    if (start == end) return;
+    uint32_t firstword = start / 64;
+    uint32_t endword = (end - 1) / 64;
+    if (firstword == endword) {
+        bitmap[firstword] &= ~(((~UINT64_C(0)) << (start % 64)) &
+                               ((~UINT64_C(0)) >> ((~end + 1) % 64)));
+        return;
+    }
+    bitmap[firstword] &= ~((~UINT64_C(0)) << (start % 64));
+    for (uint32_t i = firstword + 1; i < endword; i++) bitmap[i] = UINT64_C(0);
+    bitmap[endword] &= ~((~UINT64_C(0)) >> ((~end + 1) % 64));
+}
+
+/*
+ * Given a bitset containing "length" 64-bit words, write out the position
+ * of all the set bits to "out", values start at "base".
+ *
+ * The "out" pointer should be sufficient to store the actual number of bits
+ * set.
+ *
+ * Returns how many values were actually decoded.
+ *
+ * This function should only be expected to be faster than
+ * bitset_extract_setbits
+ * when the density of the bitset is high.
+ *
+ * This function uses AVX2 decoding.
+ */
+size_t bitset_extract_setbits_avx2(uint64_t *bitset, size_t length, void *vout,
+                                   size_t outcapacity, uint32_t base);
+
+/*
+ * Given a bitset containing "length" 64-bit words, write out the position
+ * of all the set bits to "out", values start at "base".
+ *
+ * The "out" pointer should be sufficient to store the actual number of bits
+ *set.
+ *
+ * Returns how many values were actually decoded.
+ */
+size_t bitset_extract_setbits(uint64_t *bitset, size_t length, void *vout,
+                              uint32_t base);
+
+/*
+ * Given a bitset containing "length" 64-bit words, write out the position
+ * of all the set bits to "out" as 16-bit integers, values start at "base" (can
+ *be set to zero)
+ *
+ * The "out" pointer should be sufficient to store the actual number of bits
+ *set.
+ *
+ * Returns how many values were actually decoded.
+ *
+ * This function should only be expected to be faster than
+ *bitset_extract_setbits_uint16
+ * when the density of the bitset is high.
+ *
+ * This function uses SSE decoding.
+ */
+size_t bitset_extract_setbits_sse_uint16(const uint64_t *bitset, size_t length,
+                                         uint16_t *out, size_t outcapacity,
+                                         uint16_t base);
+
+/*
+ * Given a bitset containing "length" 64-bit words, write out the position
+ * of all the set bits to "out",  values start at "base"
+ * (can be set to zero)
+ *
+ * The "out" pointer should be sufficient to store the actual number of bits
+ *set.
+ *
+ * Returns how many values were actually decoded.
+ */
+size_t bitset_extract_setbits_uint16(const uint64_t *bitset, size_t length,
+                                     uint16_t *out, uint16_t base);
+
+/*
+ * Given two bitsets containing "length" 64-bit words, write out the position
+ * of all the common set bits to "out", values start at "base"
+ * (can be set to zero)
+ *
+ * The "out" pointer should be sufficient to store the actual number of bits
+ * set.
+ *
+ * Returns how many values were actually decoded.
+ */
+size_t bitset_extract_intersection_setbits_uint16(const uint64_t * __restrict__ bitset1,
+                                                  const uint64_t * __restrict__ bitset2,
+                                                  size_t length, uint16_t *out,
+                                                  uint16_t base);
+
+/*
+ * Given a bitset having cardinality card, set all bit values in the list (there
+ * are length of them)
+ * and return the updated cardinality. This evidently assumes that the bitset
+ * already contained data.
+ */
+uint64_t bitset_set_list_withcard(void *bitset, uint64_t card,
+                                  const uint16_t *list, uint64_t length);
+/*
+ * Given a bitset, set all bit values in the list (there
+ * are length of them).
+ */
+void bitset_set_list(void *bitset, const uint16_t *list, uint64_t length);
+
+/*
+ * Given a bitset having cardinality card, unset all bit values in the list
+ * (there are length of them)
+ * and return the updated cardinality. This evidently assumes that the bitset
+ * already contained data.
+ */
+uint64_t bitset_clear_list(void *bitset, uint64_t card, const uint16_t *list,
+                           uint64_t length);
+
+/*
+ * Given a bitset having cardinality card, toggle all bit values in the list
+ * (there are length of them)
+ * and return the updated cardinality. This evidently assumes that the bitset
+ * already contained data.
+ */
+
+uint64_t bitset_flip_list_withcard(void *bitset, uint64_t card,
+                                   const uint16_t *list, uint64_t length);
+
+void bitset_flip_list(void *bitset, const uint16_t *list, uint64_t length);
+
+#ifdef USEAVX
+/***
+ * BEGIN Harley-Seal popcount functions.
+ */
+
+/**
+ * Compute the population count of a 256-bit word
+ * This is not especially fast, but it is convenient as part of other functions.
+ */
+static inline __m256i popcount256(__m256i v) {
+    const __m256i lookuppos = _mm256_setr_epi8(
+        /* 0 */ 4 + 0, /* 1 */ 4 + 1, /* 2 */ 4 + 1, /* 3 */ 4 + 2,
+        /* 4 */ 4 + 1, /* 5 */ 4 + 2, /* 6 */ 4 + 2, /* 7 */ 4 + 3,
+        /* 8 */ 4 + 1, /* 9 */ 4 + 2, /* a */ 4 + 2, /* b */ 4 + 3,
+        /* c */ 4 + 2, /* d */ 4 + 3, /* e */ 4 + 3, /* f */ 4 + 4,
+
+        /* 0 */ 4 + 0, /* 1 */ 4 + 1, /* 2 */ 4 + 1, /* 3 */ 4 + 2,
+        /* 4 */ 4 + 1, /* 5 */ 4 + 2, /* 6 */ 4 + 2, /* 7 */ 4 + 3,
+        /* 8 */ 4 + 1, /* 9 */ 4 + 2, /* a */ 4 + 2, /* b */ 4 + 3,
+        /* c */ 4 + 2, /* d */ 4 + 3, /* e */ 4 + 3, /* f */ 4 + 4);
+    const __m256i lookupneg = _mm256_setr_epi8(
+        /* 0 */ 4 - 0, /* 1 */ 4 - 1, /* 2 */ 4 - 1, /* 3 */ 4 - 2,
+        /* 4 */ 4 - 1, /* 5 */ 4 - 2, /* 6 */ 4 - 2, /* 7 */ 4 - 3,
+        /* 8 */ 4 - 1, /* 9 */ 4 - 2, /* a */ 4 - 2, /* b */ 4 - 3,
+        /* c */ 4 - 2, /* d */ 4 - 3, /* e */ 4 - 3, /* f */ 4 - 4,
+
+        /* 0 */ 4 - 0, /* 1 */ 4 - 1, /* 2 */ 4 - 1, /* 3 */ 4 - 2,
+        /* 4 */ 4 - 1, /* 5 */ 4 - 2, /* 6 */ 4 - 2, /* 7 */ 4 - 3,
+        /* 8 */ 4 - 1, /* 9 */ 4 - 2, /* a */ 4 - 2, /* b */ 4 - 3,
+        /* c */ 4 - 2, /* d */ 4 - 3, /* e */ 4 - 3, /* f */ 4 - 4);
+    const __m256i low_mask = _mm256_set1_epi8(0x0f);
+
+    const __m256i lo = _mm256_and_si256(v, low_mask);
+    const __m256i hi = _mm256_and_si256(_mm256_srli_epi16(v, 4), low_mask);
+    const __m256i popcnt1 = _mm256_shuffle_epi8(lookuppos, lo);
+    const __m256i popcnt2 = _mm256_shuffle_epi8(lookupneg, hi);
+    return _mm256_sad_epu8(popcnt1, popcnt2);
+}
+
+/**
+ * Simple CSA over 256 bits
+ */
+static inline void CSA(__m256i *h, __m256i *l, __m256i a, __m256i b,
+                       __m256i c) {
+    const __m256i u = _mm256_xor_si256(a, b);
+    *h = _mm256_or_si256(_mm256_and_si256(a, b), _mm256_and_si256(u, c));
+    *l = _mm256_xor_si256(u, c);
+}
+
+/**
+ * Fast Harley-Seal AVX population count function
+ */
+inline static uint64_t avx2_harley_seal_popcount256(const __m256i *data,
+                                                    const uint64_t size) {
+    __m256i total = _mm256_setzero_si256();
+    __m256i ones = _mm256_setzero_si256();
+    __m256i twos = _mm256_setzero_si256();
+    __m256i fours = _mm256_setzero_si256();
+    __m256i eights = _mm256_setzero_si256();
+    __m256i sixteens = _mm256_setzero_si256();
+    __m256i twosA, twosB, foursA, foursB, eightsA, eightsB;
+
+    const uint64_t limit = size - size % 16;
+    uint64_t i = 0;
+
+    for (; i < limit; i += 16) {
+        CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i),
+            _mm256_lddqu_si256(data + i + 1));
+        CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 2),
+            _mm256_lddqu_si256(data + i + 3));
+        CSA(&foursA, &twos, twos, twosA, twosB);
+        CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i + 4),
+            _mm256_lddqu_si256(data + i + 5));
+        CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 6),
+            _mm256_lddqu_si256(data + i + 7));
+        CSA(&foursB, &twos, twos, twosA, twosB);
+        CSA(&eightsA, &fours, fours, foursA, foursB);
+        CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i + 8),
+            _mm256_lddqu_si256(data + i + 9));
+        CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 10),
+            _mm256_lddqu_si256(data + i + 11));
+        CSA(&foursA, &twos, twos, twosA, twosB);
+        CSA(&twosA, &ones, ones, _mm256_lddqu_si256(data + i + 12),
+            _mm256_lddqu_si256(data + i + 13));
+        CSA(&twosB, &ones, ones, _mm256_lddqu_si256(data + i + 14),
+            _mm256_lddqu_si256(data + i + 15));
+        CSA(&foursB, &twos, twos, twosA, twosB);
+        CSA(&eightsB, &fours, fours, foursA, foursB);
+        CSA(&sixteens, &eights, eights, eightsA, eightsB);
+
+        total = _mm256_add_epi64(total, popcount256(sixteens));
+    }
+
+    total = _mm256_slli_epi64(total, 4);  // * 16
+    total = _mm256_add_epi64(
+        total, _mm256_slli_epi64(popcount256(eights), 3));  // += 8 * ...
+    total = _mm256_add_epi64(
+        total, _mm256_slli_epi64(popcount256(fours), 2));  // += 4 * ...
+    total = _mm256_add_epi64(
+        total, _mm256_slli_epi64(popcount256(twos), 1));  // += 2 * ...
+    total = _mm256_add_epi64(total, popcount256(ones));
+    for (; i < size; i++)
+        total =
+            _mm256_add_epi64(total, popcount256(_mm256_lddqu_si256(data + i)));
+
+    return (uint64_t)(_mm256_extract_epi64(total, 0)) +
+           (uint64_t)(_mm256_extract_epi64(total, 1)) +
+           (uint64_t)(_mm256_extract_epi64(total, 2)) +
+           (uint64_t)(_mm256_extract_epi64(total, 3));
+}
+
+#define AVXPOPCNTFNC(opname, avx_intrinsic)                                    \
+    static inline uint64_t avx2_harley_seal_popcount256_##opname(              \
+        const __m256i *data1, const __m256i *data2, const uint64_t size) {     \
+        __m256i total = _mm256_setzero_si256();                                \
+        __m256i ones = _mm256_setzero_si256();                                 \
+        __m256i twos = _mm256_setzero_si256();                                 \
+        __m256i fours = _mm256_setzero_si256();                                \
+        __m256i eights = _mm256_setzero_si256();                               \
+        __m256i sixteens = _mm256_setzero_si256();                             \
+        __m256i twosA, twosB, foursA, foursB, eightsA, eightsB;                \
+        __m256i A1, A2;                                                        \
+        const uint64_t limit = size - size % 16;                               \
+        uint64_t i = 0;                                                        \
+        for (; i < limit; i += 16) {                                           \
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i),                  \
+                               _mm256_lddqu_si256(data2 + i));                 \
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 1),              \
+                               _mm256_lddqu_si256(data2 + i + 1));             \
+            CSA(&twosA, &ones, ones, A1, A2);                                  \
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 2),              \
+                               _mm256_lddqu_si256(data2 + i + 2));             \
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 3),              \
+                               _mm256_lddqu_si256(data2 + i + 3));             \
+            CSA(&twosB, &ones, ones, A1, A2);                                  \
+            CSA(&foursA, &twos, twos, twosA, twosB);                           \
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 4),              \
+                               _mm256_lddqu_si256(data2 + i + 4));             \
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 5),              \
+                               _mm256_lddqu_si256(data2 + i + 5));             \
+            CSA(&twosA, &ones, ones, A1, A2);                                  \
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 6),              \
+                               _mm256_lddqu_si256(data2 + i + 6));             \
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 7),              \
+                               _mm256_lddqu_si256(data2 + i + 7));             \
+            CSA(&twosB, &ones, ones, A1, A2);                                  \
+            CSA(&foursB, &twos, twos, twosA, twosB);                           \
+            CSA(&eightsA, &fours, fours, foursA, foursB);                      \
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 8),              \
+                               _mm256_lddqu_si256(data2 + i + 8));             \
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 9),              \
+                               _mm256_lddqu_si256(data2 + i + 9));             \
+            CSA(&twosA, &ones, ones, A1, A2);                                  \
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 10),             \
+                               _mm256_lddqu_si256(data2 + i + 10));            \
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 11),             \
+                               _mm256_lddqu_si256(data2 + i + 11));            \
+            CSA(&twosB, &ones, ones, A1, A2);                                  \
+            CSA(&foursA, &twos, twos, twosA, twosB);                           \
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 12),             \
+                               _mm256_lddqu_si256(data2 + i + 12));            \
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 13),             \
+                               _mm256_lddqu_si256(data2 + i + 13));            \
+            CSA(&twosA, &ones, ones, A1, A2);                                  \
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 14),             \
+                               _mm256_lddqu_si256(data2 + i + 14));            \
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 15),             \
+                               _mm256_lddqu_si256(data2 + i + 15));            \
+            CSA(&twosB, &ones, ones, A1, A2);                                  \
+            CSA(&foursB, &twos, twos, twosA, twosB);                           \
+            CSA(&eightsB, &fours, fours, foursA, foursB);                      \
+            CSA(&sixteens, &eights, eights, eightsA, eightsB);                 \
+            total = _mm256_add_epi64(total, popcount256(sixteens));            \
+        }                                                                      \
+        total = _mm256_slli_epi64(total, 4);                                   \
+        total = _mm256_add_epi64(total,                                        \
+                                 _mm256_slli_epi64(popcount256(eights), 3));   \
+        total =                                                                \
+            _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(fours), 2)); \
+        total =                                                                \
+            _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(twos), 1));  \
+        total = _mm256_add_epi64(total, popcount256(ones));                    \
+        for (; i < size; i++) {                                                \
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i),                  \
+                               _mm256_lddqu_si256(data2 + i));                 \
+            total = _mm256_add_epi64(total, popcount256(A1));                  \
+        }                                                                      \
+        return (uint64_t)(_mm256_extract_epi64(total, 0)) +                    \
+               (uint64_t)(_mm256_extract_epi64(total, 1)) +                    \
+               (uint64_t)(_mm256_extract_epi64(total, 2)) +                    \
+               (uint64_t)(_mm256_extract_epi64(total, 3));                     \
+    }                                                                          \
+    static inline uint64_t avx2_harley_seal_popcount256andstore_##opname(      \
+        const __m256i *__restrict__ data1, const __m256i *__restrict__ data2,  \
+        __m256i *__restrict__ out, const uint64_t size) {                      \
+        __m256i total = _mm256_setzero_si256();                                \
+        __m256i ones = _mm256_setzero_si256();                                 \
+        __m256i twos = _mm256_setzero_si256();                                 \
+        __m256i fours = _mm256_setzero_si256();                                \
+        __m256i eights = _mm256_setzero_si256();                               \
+        __m256i sixteens = _mm256_setzero_si256();                             \
+        __m256i twosA, twosB, foursA, foursB, eightsA, eightsB;                \
+        __m256i A1, A2;                                                        \
+        const uint64_t limit = size - size % 16;                               \
+        uint64_t i = 0;                                                        \
+        for (; i < limit; i += 16) {                                           \
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i),                  \
+                               _mm256_lddqu_si256(data2 + i));                 \
+            _mm256_storeu_si256(out + i, A1);                                  \
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 1),              \
+                               _mm256_lddqu_si256(data2 + i + 1));             \
+            _mm256_storeu_si256(out + i + 1, A2);                              \
+            CSA(&twosA, &ones, ones, A1, A2);                                  \
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 2),              \
+                               _mm256_lddqu_si256(data2 + i + 2));             \
+            _mm256_storeu_si256(out + i + 2, A1);                              \
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 3),              \
+                               _mm256_lddqu_si256(data2 + i + 3));             \
+            _mm256_storeu_si256(out + i + 3, A2);                              \
+            CSA(&twosB, &ones, ones, A1, A2);                                  \
+            CSA(&foursA, &twos, twos, twosA, twosB);                           \
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 4),              \
+                               _mm256_lddqu_si256(data2 + i + 4));             \
+            _mm256_storeu_si256(out + i + 4, A1);                              \
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 5),              \
+                               _mm256_lddqu_si256(data2 + i + 5));             \
+            _mm256_storeu_si256(out + i + 5, A2);                              \
+            CSA(&twosA, &ones, ones, A1, A2);                                  \
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 6),              \
+                               _mm256_lddqu_si256(data2 + i + 6));             \
+            _mm256_storeu_si256(out + i + 6, A1);                              \
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 7),              \
+                               _mm256_lddqu_si256(data2 + i + 7));             \
+            _mm256_storeu_si256(out + i + 7, A2);                              \
+            CSA(&twosB, &ones, ones, A1, A2);                                  \
+            CSA(&foursB, &twos, twos, twosA, twosB);                           \
+            CSA(&eightsA, &fours, fours, foursA, foursB);                      \
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 8),              \
+                               _mm256_lddqu_si256(data2 + i + 8));             \
+            _mm256_storeu_si256(out + i + 8, A1);                              \
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 9),              \
+                               _mm256_lddqu_si256(data2 + i + 9));             \
+            _mm256_storeu_si256(out + i + 9, A2);                              \
+            CSA(&twosA, &ones, ones, A1, A2);                                  \
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 10),             \
+                               _mm256_lddqu_si256(data2 + i + 10));            \
+            _mm256_storeu_si256(out + i + 10, A1);                             \
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 11),             \
+                               _mm256_lddqu_si256(data2 + i + 11));            \
+            _mm256_storeu_si256(out + i + 11, A2);                             \
+            CSA(&twosB, &ones, ones, A1, A2);                                  \
+            CSA(&foursA, &twos, twos, twosA, twosB);                           \
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 12),             \
+                               _mm256_lddqu_si256(data2 + i + 12));            \
+            _mm256_storeu_si256(out + i + 12, A1);                             \
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 13),             \
+                               _mm256_lddqu_si256(data2 + i + 13));            \
+            _mm256_storeu_si256(out + i + 13, A2);                             \
+            CSA(&twosA, &ones, ones, A1, A2);                                  \
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 14),             \
+                               _mm256_lddqu_si256(data2 + i + 14));            \
+            _mm256_storeu_si256(out + i + 14, A1);                             \
+            A2 = avx_intrinsic(_mm256_lddqu_si256(data1 + i + 15),             \
+                               _mm256_lddqu_si256(data2 + i + 15));            \
+            _mm256_storeu_si256(out + i + 15, A2);                             \
+            CSA(&twosB, &ones, ones, A1, A2);                                  \
+            CSA(&foursB, &twos, twos, twosA, twosB);                           \
+            CSA(&eightsB, &fours, fours, foursA, foursB);                      \
+            CSA(&sixteens, &eights, eights, eightsA, eightsB);                 \
+            total = _mm256_add_epi64(total, popcount256(sixteens));            \
+        }                                                                      \
+        total = _mm256_slli_epi64(total, 4);                                   \
+        total = _mm256_add_epi64(total,                                        \
+                                 _mm256_slli_epi64(popcount256(eights), 3));   \
+        total =                                                                \
+            _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(fours), 2)); \
+        total =                                                                \
+            _mm256_add_epi64(total, _mm256_slli_epi64(popcount256(twos), 1));  \
+        total = _mm256_add_epi64(total, popcount256(ones));                    \
+        for (; i < size; i++) {                                                \
+            A1 = avx_intrinsic(_mm256_lddqu_si256(data1 + i),                  \
+                               _mm256_lddqu_si256(data2 + i));                 \
+            _mm256_storeu_si256(out + i, A1);                                  \
+            total = _mm256_add_epi64(total, popcount256(A1));                  \
+        }                                                                      \
+        return (uint64_t)(_mm256_extract_epi64(total, 0)) +                    \
+               (uint64_t)(_mm256_extract_epi64(total, 1)) +                    \
+               (uint64_t)(_mm256_extract_epi64(total, 2)) +                    \
+               (uint64_t)(_mm256_extract_epi64(total, 3));                     \
+    }
+
+AVXPOPCNTFNC(or, _mm256_or_si256)
+AVXPOPCNTFNC(union, _mm256_or_si256)
+AVXPOPCNTFNC(and, _mm256_and_si256)
+AVXPOPCNTFNC(intersection, _mm256_and_si256)
+AVXPOPCNTFNC (xor, _mm256_xor_si256)
+AVXPOPCNTFNC(andnot, _mm256_andnot_si256)
+
+/***
+ * END Harley-Seal popcount functions.
+ */
+
+#endif  // USEAVX
+
+#endif
+/* end file include/roaring/bitset_util.h */
+/* begin file include/roaring/containers/array.h */
+/*
+ * array.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_ARRAY_H_
+#define INCLUDE_CONTAINERS_ARRAY_H_
+
+#include <string.h>
+
+
+/* Containers with DEFAULT_MAX_SIZE or less integers should be arrays */
+enum { DEFAULT_MAX_SIZE = 4096 };
+
+/* struct array_container - sparse representation of a bitmap
+ *
+ * @cardinality: number of indices in `array` (and the bitmap)
+ * @capacity:    allocated size of `array`
+ * @array:       sorted list of integers
+ */
+struct array_container_s {
+    int32_t cardinality;
+    int32_t capacity;
+    uint16_t *array;
+};
+
+typedef struct array_container_s array_container_t;
+
+/* Create a new array with default. Return NULL in case of failure. See also
+ * array_container_create_given_capacity. */
+array_container_t *array_container_create(void);
+
+/* Create a new array with a specified capacity size. Return NULL in case of
+ * failure. */
+array_container_t *array_container_create_given_capacity(int32_t size);
+
+/* Create a new array containing all values in [min,max). */
+array_container_t * array_container_create_range(uint32_t min, uint32_t max);
+
+/*
+ * Shrink the capacity to the actual size, return the number of bytes saved.
+ */
+int array_container_shrink_to_fit(array_container_t *src);
+
+/* Free memory owned by `array'. */
+void array_container_free(array_container_t *array);
+
+/* Duplicate container */
+array_container_t *array_container_clone(const array_container_t *src);
+
+int32_t array_container_serialize(const array_container_t *container,
+                                  char *buf) WARN_UNUSED;
+
+uint32_t array_container_serialization_len(const array_container_t *container);
+
+void *array_container_deserialize(const char *buf, size_t buf_len);
+
+/* Get the cardinality of `array'. */
+static inline int array_container_cardinality(const array_container_t *array) {
+    return array->cardinality;
+}
+
+static inline bool array_container_nonzero_cardinality(
+    const array_container_t *array) {
+    return array->cardinality > 0;
+}
+
+/* Copy one container into another. We assume that they are distinct. */
+void array_container_copy(const array_container_t *src, array_container_t *dst);
+
+/*  Add all the values in [min,max) (included) at a distance k*step from min.
+    The container must have a size less or equal to DEFAULT_MAX_SIZE after this
+   addition. */
+void array_container_add_from_range(array_container_t *arr, uint32_t min,
+                                    uint32_t max, uint16_t step);
+
+/* Set the cardinality to zero (does not release memory). */
+static inline void array_container_clear(array_container_t *array) {
+    array->cardinality = 0;
+}
+
+static inline bool array_container_empty(const array_container_t *array) {
+    return array->cardinality == 0;
+}
+
+/* check whether the cardinality is equal to the capacity (this does not mean
+* that it contains 1<<16 elements) */
+static inline bool array_container_full(const array_container_t *array) {
+    return array->cardinality == array->capacity;
+}
+
+
+/* Compute the union of `src_1' and `src_2' and write the result to `dst'
+ * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
+void array_container_union(const array_container_t *src_1,
+                           const array_container_t *src_2,
+                           array_container_t *dst);
+
+/* symmetric difference, see array_container_union */
+void array_container_xor(const array_container_t *array_1,
+                         const array_container_t *array_2,
+                         array_container_t *out);
+
+/* Computes the intersection of src_1 and src_2 and write the result to
+ * dst. It is assumed that dst is distinct from both src_1 and src_2. */
+void array_container_intersection(const array_container_t *src_1,
+                                  const array_container_t *src_2,
+                                  array_container_t *dst);
+
+/* Check whether src_1 and src_2 intersect. */
+bool array_container_intersect(const array_container_t *src_1,
+                                  const array_container_t *src_2);
+
+
+/* computers the size of the intersection between two arrays.
+ */
+int array_container_intersection_cardinality(const array_container_t *src_1,
+                                             const array_container_t *src_2);
+
+/* computes the intersection of array1 and array2 and write the result to
+ * array1.
+ * */
+void array_container_intersection_inplace(array_container_t *src_1,
+                                          const array_container_t *src_2);
+
+/*
+ * Write out the 16-bit integers contained in this container as a list of 32-bit
+ * integers using base
+ * as the starting value (it might be expected that base has zeros in its 16
+ * least significant bits).
+ * The function returns the number of values written.
+ * The caller is responsible for allocating enough memory in out.
+ */
+int array_container_to_uint32_array(void *vout, const array_container_t *cont,
+                                    uint32_t base);
+
+/* Compute the number of runs */
+int32_t array_container_number_of_runs(const array_container_t *a);
+
+/*
+ * Print this container using printf (useful for debugging).
+ */
+void array_container_printf(const array_container_t *v);
+
+/*
+ * Print this container using printf as a comma-separated list of 32-bit
+ * integers starting at base.
+ */
+void array_container_printf_as_uint32_array(const array_container_t *v,
+                                            uint32_t base);
+
+/**
+ * Return the serialized size in bytes of a container having cardinality "card".
+ */
+static inline int32_t array_container_serialized_size_in_bytes(int32_t card) {
+    return card * 2 + 2;
+}
+
+/**
+ * Increase capacity to at least min.
+ * Whether the existing data needs to be copied over depends on the "preserve"
+ * parameter. If preserve is false, then the new content will be uninitialized,
+ * otherwise the old content is copied.
+ */
+void array_container_grow(array_container_t *container, int32_t min,
+                          bool preserve);
+
+bool array_container_iterate(const array_container_t *cont, uint32_t base,
+                             roaring_iterator iterator, void *ptr);
+bool array_container_iterate64(const array_container_t *cont, uint32_t base,
+                               roaring_iterator64 iterator, uint64_t high_bits,
+                               void *ptr);
+
+/**
+ * Writes the underlying array to buf, outputs how many bytes were written.
+ * This is meant to be byte-by-byte compatible with the Java and Go versions of
+ * Roaring.
+ * The number of bytes written should be
+ * array_container_size_in_bytes(container).
+ *
+ */
+int32_t array_container_write(const array_container_t *container, char *buf);
+/**
+ * Reads the instance from buf, outputs how many bytes were read.
+ * This is meant to be byte-by-byte compatible with the Java and Go versions of
+ * Roaring.
+ * The number of bytes read should be array_container_size_in_bytes(container).
+ * You need to provide the (known) cardinality.
+ */
+int32_t array_container_read(int32_t cardinality, array_container_t *container,
+                             const char *buf);
+
+/**
+ * Return the serialized size in bytes of a container (see
+ * bitset_container_write)
+ * This is meant to be compatible with the Java and Go versions of Roaring and
+ * assumes
+ * that the cardinality of the container is already known.
+ *
+ */
+static inline int32_t array_container_size_in_bytes(
+    const array_container_t *container) {
+    return container->cardinality * sizeof(uint16_t);
+}
+
+/**
+ * Return true if the two arrays have the same content.
+ */
+static inline bool array_container_equals(
+    const array_container_t *container1,
+    const array_container_t *container2) {
+
+    if (container1->cardinality != container2->cardinality) {
+        return false;
+    }
+    return memequals(container1->array, container2->array, container1->cardinality*2);
+}
+
+/**
+ * Return true if container1 is a subset of container2.
+ */
+bool array_container_is_subset(const array_container_t *container1,
+                               const array_container_t *container2);
+
+/**
+ * If the element of given rank is in this container, supposing that the first
+ * element has rank start_rank, then the function returns true and sets element
+ * accordingly.
+ * Otherwise, it returns false and update start_rank.
+ */
+static inline bool array_container_select(const array_container_t *container,
+                                          uint32_t *start_rank, uint32_t rank,
+                                          uint32_t *element) {
+    int card = array_container_cardinality(container);
+    if (*start_rank + card <= rank) {
+        *start_rank += card;
+        return false;
+    } else {
+        *element = container->array[rank - *start_rank];
+        return true;
+    }
+}
+
+/* Computes the  difference of array1 and array2 and write the result
+ * to array out.
+ * Array out does not need to be distinct from array_1
+ */
+void array_container_andnot(const array_container_t *array_1,
+                            const array_container_t *array_2,
+                            array_container_t *out);
+
+/* Append x to the set. Assumes that the value is larger than any preceding
+ * values.  */
+static inline void array_container_append(array_container_t *arr,
+                                          uint16_t pos) {
+    const int32_t capacity = arr->capacity;
+
+    if (array_container_full(arr)) {
+        array_container_grow(arr, capacity + 1, true);
+    }
+
+    arr->array[arr->cardinality++] = pos;
+}
+
+/**
+ * Add value to the set if final cardinality doesn't exceed max_cardinality.
+ * Return code:
+ * 1  -- value was added
+ * 0  -- value was already present
+ * -1 -- value was not added because cardinality would exceed max_cardinality
+ */
+static inline int array_container_try_add(array_container_t *arr, uint16_t value,
+                                          int32_t max_cardinality) {
+    const int32_t cardinality = arr->cardinality;
+
+    // best case, we can append.
+    if ((array_container_empty(arr) || arr->array[cardinality - 1] < value) &&
+        cardinality < max_cardinality) {
+        array_container_append(arr, value);
+        return 1;
+    }
+
+    const int32_t loc = binarySearch(arr->array, cardinality, value);
+
+    if (loc >= 0) {
+        return 0;
+    } else if (cardinality < max_cardinality) {
+        if (array_container_full(arr)) {
+            array_container_grow(arr, arr->capacity + 1, true);
+        }
+        const int32_t insert_idx = -loc - 1;
+        memmove(arr->array + insert_idx + 1, arr->array + insert_idx,
+                (cardinality - insert_idx) * sizeof(uint16_t));
+        arr->array[insert_idx] = value;
+        arr->cardinality++;
+        return 1;
+    } else {
+        return -1;
+    }
+}
+
+/* Add value to the set. Returns true if x was not already present.  */
+static inline bool array_container_add(array_container_t *arr, uint16_t value) {
+    return array_container_try_add(arr, value, INT32_MAX) == 1;
+}
+
+/* Remove x from the set. Returns true if x was present.  */
+static inline bool array_container_remove(array_container_t *arr,
+                                          uint16_t pos) {
+    const int32_t idx = binarySearch(arr->array, arr->cardinality, pos);
+    const bool is_present = idx >= 0;
+    if (is_present) {
+        memmove(arr->array + idx, arr->array + idx + 1,
+                (arr->cardinality - idx - 1) * sizeof(uint16_t));
+        arr->cardinality--;
+    }
+
+    return is_present;
+}
+
+/* Check whether x is present.  */
+static inline bool array_container_contains(const array_container_t *arr,
+                                     uint16_t pos) {
+    //    return binarySearch(arr->array, arr->cardinality, pos) >= 0;
+    // binary search with fallback to linear search for short ranges
+    int32_t low = 0;
+    const uint16_t * carr = (const uint16_t *) arr->array;
+    int32_t high = arr->cardinality - 1;
+    //    while (high - low >= 0) {
+    while(high >= low + 16) {
+        int32_t middleIndex = (low + high)>>1;
+        uint16_t middleValue = carr[middleIndex];
+        if (middleValue < pos) {
+            low = middleIndex + 1;
+        } else if (middleValue > pos) {
+            high = middleIndex - 1;
+        } else {
+            return true;
+        }
+    }
+
+    for (int i=low; i <= high; i++) {
+        uint16_t v = carr[i];
+        if (v == pos) {
+            return true;
+        }
+        if ( v > pos ) return false;
+    }
+    return false;
+
+}
+
+//* Check whether a range of values from range_start (included) to range_end (excluded) is present. */
+static inline bool array_container_contains_range(const array_container_t *arr,
+                                                    uint32_t range_start, uint32_t range_end) {
+
+    const uint16_t rs_included = range_start;
+    const uint16_t re_included = range_end - 1;
+
+    const uint16_t *carr = (const uint16_t *) arr->array;
+
+    const int32_t start = advanceUntil(carr, -1, arr->cardinality, rs_included);
+    const int32_t end = advanceUntil(carr, start - 1, arr->cardinality, re_included);
+
+    return (start < arr->cardinality) && (end < arr->cardinality)
+            && (((uint16_t)(end - start)) == re_included - rs_included)
+            && (carr[start] == rs_included) && (carr[end] == re_included);
+}
+
+/* Returns the smallest value (assumes not empty) */
+static inline uint16_t array_container_minimum(const array_container_t *arr) {
+    if (arr->cardinality == 0) return 0;
+    return arr->array[0];
+}
+
+/* Returns the largest value (assumes not empty) */
+static inline uint16_t array_container_maximum(const array_container_t *arr) {
+    if (arr->cardinality == 0) return 0;
+    return arr->array[arr->cardinality - 1];
+}
+
+/* Returns the number of values equal or smaller than x */
+static inline int array_container_rank(const array_container_t *arr, uint16_t x) {
+    const int32_t idx = binarySearch(arr->array, arr->cardinality, x);
+    const bool is_present = idx >= 0;
+    if (is_present) {
+        return idx + 1;
+    } else {
+        return -idx - 1;
+    }
+}
+
+/* Returns the index of the first value equal or smaller than x, or -1 */
+static inline int array_container_index_equalorlarger(const array_container_t *arr, uint16_t x) {
+    const int32_t idx = binarySearch(arr->array, arr->cardinality, x);
+    const bool is_present = idx >= 0;
+    if (is_present) {
+        return idx;
+    } else {
+        int32_t candidate = - idx - 1;
+        if(candidate < arr->cardinality) return candidate;
+        return -1;
+    }
+}
+
+/*
+ * Adds all values in range [min,max] using hint:
+ *   nvals_less is the number of array values less than $min
+ *   nvals_greater is the number of array values greater than $max
+ */
+static inline void array_container_add_range_nvals(array_container_t *array,
+                                                   uint32_t min, uint32_t max,
+                                                   int32_t nvals_less,
+                                                   int32_t nvals_greater) {
+    int32_t union_cardinality = nvals_less + (max - min + 1) + nvals_greater;
+    if (union_cardinality > array->capacity) {
+        array_container_grow(array, union_cardinality, true);
+    }
+    memmove(&(array->array[union_cardinality - nvals_greater]),
+            &(array->array[array->cardinality - nvals_greater]),
+            nvals_greater * sizeof(uint16_t));
+    for (uint32_t i = 0; i <= max - min; i++) {
+        array->array[nvals_less + i] = min + i;
+    }
+    array->cardinality = union_cardinality;
+}
+
+/**
+ * Adds all values in range [min,max].
+ */
+static inline void array_container_add_range(array_container_t *array,
+                                             uint32_t min, uint32_t max) {
+    int32_t nvals_greater = count_greater(array->array, array->cardinality, max);
+    int32_t nvals_less = count_less(array->array, array->cardinality - nvals_greater, min);
+    array_container_add_range_nvals(array, min, max, nvals_less, nvals_greater);
+}
+
+/*
+ * Removes all elements array[pos] .. array[pos+count-1]
+ */
+static inline void array_container_remove_range(array_container_t *array,
+                                                uint32_t pos, uint32_t count) {
+  if (count != 0) {
+      memmove(&(array->array[pos]), &(array->array[pos+count]),
+              (array->cardinality - pos - count) * sizeof(uint16_t));
+      array->cardinality -= count;
+  }
+}
+
+#endif /* INCLUDE_CONTAINERS_ARRAY_H_ */
+/* end file include/roaring/containers/array.h */
+/* begin file include/roaring/containers/bitset.h */
+/*
+ * bitset.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_BITSET_H_
+#define INCLUDE_CONTAINERS_BITSET_H_
+
+#include <stdbool.h>
+#include <stdint.h>
+
+#ifdef USEAVX
+#define ALIGN_AVX __attribute__((aligned(sizeof(__m256i))))
+#else
+#define ALIGN_AVX
+#endif
+
+enum {
+    BITSET_CONTAINER_SIZE_IN_WORDS = (1 << 16) / 64,
+    BITSET_UNKNOWN_CARDINALITY = -1
+};
+
+struct bitset_container_s {
+    int32_t cardinality;
+    uint64_t *array;
+};
+
+typedef struct bitset_container_s bitset_container_t;
+
+/* Create a new bitset. Return NULL in case of failure. */
+bitset_container_t *bitset_container_create(void);
+
+/* Free memory. */
+void bitset_container_free(bitset_container_t *bitset);
+
+/* Clear bitset (sets bits to 0). */
+void bitset_container_clear(bitset_container_t *bitset);
+
+/* Set all bits to 1. */
+void bitset_container_set_all(bitset_container_t *bitset);
+
+/* Duplicate bitset */
+bitset_container_t *bitset_container_clone(const bitset_container_t *src);
+
+int32_t bitset_container_serialize(const bitset_container_t *container,
+                                   char *buf) WARN_UNUSED;
+
+uint32_t bitset_container_serialization_len(void);
+
+void *bitset_container_deserialize(const char *buf, size_t buf_len);
+
+/* Set the bit in [begin,end). WARNING: as of April 2016, this method is slow
+ * and
+ * should not be used in performance-sensitive code. Ever.  */
+void bitset_container_set_range(bitset_container_t *bitset, uint32_t begin,
+                                uint32_t end);
+
+#ifdef ASMBITMANIPOPTIMIZATION
+/* Set the ith bit.  */
+static inline void bitset_container_set(bitset_container_t *bitset,
+                                        uint16_t pos) {
+    uint64_t shift = 6;
+    uint64_t offset;
+    uint64_t p = pos;
+    ASM_SHIFT_RIGHT(p, shift, offset);
+    uint64_t load = bitset->array[offset];
+    ASM_SET_BIT_INC_WAS_CLEAR(load, p, bitset->cardinality);
+    bitset->array[offset] = load;
+}
+
+/* Unset the ith bit.  */
+static inline void bitset_container_unset(bitset_container_t *bitset,
+                                          uint16_t pos) {
+    uint64_t shift = 6;
+    uint64_t offset;
+    uint64_t p = pos;
+    ASM_SHIFT_RIGHT(p, shift, offset);
+    uint64_t load = bitset->array[offset];
+    ASM_CLEAR_BIT_DEC_WAS_SET(load, p, bitset->cardinality);
+    bitset->array[offset] = load;
+}
+
+/* Add `pos' to `bitset'. Returns true if `pos' was not present. Might be slower
+ * than bitset_container_set.  */
+static inline bool bitset_container_add(bitset_container_t *bitset,
+                                        uint16_t pos) {
+    uint64_t shift = 6;
+    uint64_t offset;
+    uint64_t p = pos;
+    ASM_SHIFT_RIGHT(p, shift, offset);
+    uint64_t load = bitset->array[offset];
+    // could be possibly slightly further optimized
+    const int32_t oldcard = bitset->cardinality;
+    ASM_SET_BIT_INC_WAS_CLEAR(load, p, bitset->cardinality);
+    bitset->array[offset] = load;
+    return bitset->cardinality - oldcard;
+}
+
+/* Remove `pos' from `bitset'. Returns true if `pos' was present.  Might be
+ * slower than bitset_container_unset.  */
+static inline bool bitset_container_remove(bitset_container_t *bitset,
+                                           uint16_t pos) {
+    uint64_t shift = 6;
+    uint64_t offset;
+    uint64_t p = pos;
+    ASM_SHIFT_RIGHT(p, shift, offset);
+    uint64_t load = bitset->array[offset];
+    // could be possibly slightly further optimized
+    const int32_t oldcard = bitset->cardinality;
+    ASM_CLEAR_BIT_DEC_WAS_SET(load, p, bitset->cardinality);
+    bitset->array[offset] = load;
+    return oldcard - bitset->cardinality;
+}
+
+/* Get the value of the ith bit.  */
+static inline bool bitset_container_get(const bitset_container_t *bitset,
+                                 uint16_t pos) {
+    uint64_t word = bitset->array[pos >> 6];
+    const uint64_t p = pos;
+    ASM_INPLACESHIFT_RIGHT(word, p);
+    return word & 1;
+}
+
+#else
+
+/* Set the ith bit.  */
+static inline void bitset_container_set(bitset_container_t *bitset,
+                                        uint16_t pos) {
+    const uint64_t old_word = bitset->array[pos >> 6];
+    const int index = pos & 63;
+    const uint64_t new_word = old_word | (UINT64_C(1) << index);
+    bitset->cardinality += (uint32_t)((old_word ^ new_word) >> index);
+    bitset->array[pos >> 6] = new_word;
+}
+
+/* Unset the ith bit.  */
+static inline void bitset_container_unset(bitset_container_t *bitset,
+                                          uint16_t pos) {
+    const uint64_t old_word = bitset->array[pos >> 6];
+    const int index = pos & 63;
+    const uint64_t new_word = old_word & (~(UINT64_C(1) << index));
+    bitset->cardinality -= (uint32_t)((old_word ^ new_word) >> index);
+    bitset->array[pos >> 6] = new_word;
+}
+
+/* Add `pos' to `bitset'. Returns true if `pos' was not present. Might be slower
+ * than bitset_container_set.  */
+static inline bool bitset_container_add(bitset_container_t *bitset,
+                                        uint16_t pos) {
+    const uint64_t old_word = bitset->array[pos >> 6];
+    const int index = pos & 63;
+    const uint64_t new_word = old_word | (UINT64_C(1) << index);
+    const uint64_t increment = (old_word ^ new_word) >> index;
+    bitset->cardinality += (uint32_t)increment;
+    bitset->array[pos >> 6] = new_word;
+    return increment > 0;
+}
+
+/* Remove `pos' from `bitset'. Returns true if `pos' was present.  Might be
+ * slower than bitset_container_unset.  */
+static inline bool bitset_container_remove(bitset_container_t *bitset,
+                                           uint16_t pos) {
+    const uint64_t old_word = bitset->array[pos >> 6];
+    const int index = pos & 63;
+    const uint64_t new_word = old_word & (~(UINT64_C(1) << index));
+    const uint64_t increment = (old_word ^ new_word) >> index;
+    bitset->cardinality -= (uint32_t)increment;
+    bitset->array[pos >> 6] = new_word;
+    return increment > 0;
+}
+
+/* Get the value of the ith bit.  */
+static inline bool bitset_container_get(const bitset_container_t *bitset,
+                                 uint16_t pos) {
+    const uint64_t word = bitset->array[pos >> 6];
+    return (word >> (pos & 63)) & 1;
+}
+
+#endif
+
+/*
+* Check if all bits are set in a range of positions from pos_start (included) to
+* pos_end (excluded).
+*/
+static inline bool bitset_container_get_range(const bitset_container_t *bitset,
+                                                uint32_t pos_start, uint32_t pos_end) {
+
+    const uint32_t start = pos_start >> 6;
+    const uint32_t end = pos_end >> 6;
+
+    const uint64_t first = ~((1ULL << (pos_start & 0x3F)) - 1);
+    const uint64_t last = (1ULL << (pos_end & 0x3F)) - 1;
+
+    if (start == end) return ((bitset->array[end] & first & last) == (first & last));
+    if ((bitset->array[start] & first) != first) return false;
+
+    if ((end < BITSET_CONTAINER_SIZE_IN_WORDS) && ((bitset->array[end] & last) != last)){
+
+        return false;
+    }
+
+    for (uint16_t i = start + 1; (i < BITSET_CONTAINER_SIZE_IN_WORDS) && (i < end); ++i){
+
+        if (bitset->array[i] != UINT64_C(0xFFFFFFFFFFFFFFFF)) return false;
+    }
+
+    return true;
+}
+
+/* Check whether `bitset' is present in `array'.  Calls bitset_container_get. */
+static inline bool bitset_container_contains(const bitset_container_t *bitset,
+                                      uint16_t pos) {
+    return bitset_container_get(bitset, pos);
+}
+
+/*
+* Check whether a range of bits from position `pos_start' (included) to `pos_end' (excluded)
+* is present in `bitset'.  Calls bitset_container_get_all.
+*/
+static inline bool bitset_container_contains_range(const bitset_container_t *bitset,
+                                       uint32_t pos_start, uint32_t pos_end) {
+    return bitset_container_get_range(bitset, pos_start, pos_end);
+}
+
+/* Get the number of bits set */
+static inline int bitset_container_cardinality(
+    const bitset_container_t *bitset) {
+    return bitset->cardinality;
+}
+
+
+
+
+/* Copy one container into another. We assume that they are distinct. */
+void bitset_container_copy(const bitset_container_t *source,
+                           bitset_container_t *dest);
+
+/*  Add all the values [min,max) at a distance k*step from min: min,
+ * min+step,.... */
+void bitset_container_add_from_range(bitset_container_t *bitset, uint32_t min,
+                                     uint32_t max, uint16_t step);
+
+/* Get the number of bits set (force computation). This does not modify bitset.
+ * To update the cardinality, you should do
+ * bitset->cardinality =  bitset_container_compute_cardinality(bitset).*/
+int bitset_container_compute_cardinality(const bitset_container_t *bitset);
+
+/* Get whether there is at least one bit set  (see bitset_container_empty for the reverse),
+   when the cardinality is unknown, it is computed and stored in the struct */
+static inline bool bitset_container_nonzero_cardinality(
+    bitset_container_t *bitset) {
+    // account for laziness
+    if (bitset->cardinality == BITSET_UNKNOWN_CARDINALITY) {
+        // could bail early instead with a nonzero result
+        bitset->cardinality = bitset_container_compute_cardinality(bitset);
+    }
+    return bitset->cardinality > 0;
+}
+
+/* Check whether this bitset is empty (see bitset_container_nonzero_cardinality for the reverse),
+ *  it never modifies the bitset struct. */
+static inline bool bitset_container_empty(
+    const bitset_container_t *bitset) {
+  if (bitset->cardinality == BITSET_UNKNOWN_CARDINALITY) {
+      for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i ++) {
+          if((bitset->array[i]) != 0) return false;
+      }
+      return true;
+  }
+  return bitset->cardinality == 0;
+}
+
+
+/* Get whether there is at least one bit set  (see bitset_container_empty for the reverse),
+   the bitset is never modified */
+static inline bool bitset_container_const_nonzero_cardinality(
+    const bitset_container_t *bitset) {
+    return !bitset_container_empty(bitset);
+}
+
+/*
+ * Check whether the two bitsets intersect
+ */
+bool bitset_container_intersect(const bitset_container_t *src_1,
+                                  const bitset_container_t *src_2);
+
+/* Computes the union of bitsets `src_1' and `src_2' into `dst'  and return the
+ * cardinality. */
+int bitset_container_or(const bitset_container_t *src_1,
+                        const bitset_container_t *src_2,
+                        bitset_container_t *dst);
+
+/* Computes the union of bitsets `src_1' and `src_2' and return the cardinality.
+ */
+int bitset_container_or_justcard(const bitset_container_t *src_1,
+                                 const bitset_container_t *src_2);
+
+/* Computes the union of bitsets `src_1' and `src_2' into `dst' and return the
+ * cardinality. Same as bitset_container_or. */
+int bitset_container_union(const bitset_container_t *src_1,
+                           const bitset_container_t *src_2,
+                           bitset_container_t *dst);
+
+/* Computes the union of bitsets `src_1' and `src_2'  and return the
+ * cardinality. Same as bitset_container_or_justcard. */
+int bitset_container_union_justcard(const bitset_container_t *src_1,
+                                    const bitset_container_t *src_2);
+
+/* Computes the union of bitsets `src_1' and `src_2' into `dst', but does not
+ * update the cardinality. Provided to optimize chained operations. */
+int bitset_container_or_nocard(const bitset_container_t *src_1,
+                               const bitset_container_t *src_2,
+                               bitset_container_t *dst);
+
+/* Computes the union of bitsets `src_1' and `src_2' into `dst', but does not
+ * update the cardinality. Same as bitset_container_or_nocard */
+int bitset_container_union_nocard(const bitset_container_t *src_1,
+                                  const bitset_container_t *src_2,
+                                  bitset_container_t *dst);
+
+/* Computes the intersection of bitsets `src_1' and `src_2' into `dst' and
+ * return the cardinality. */
+int bitset_container_and(const bitset_container_t *src_1,
+                         const bitset_container_t *src_2,
+                         bitset_container_t *dst);
+
+/* Computes the intersection of bitsets `src_1' and `src_2'  and return the
+ * cardinality. */
+int bitset_container_and_justcard(const bitset_container_t *src_1,
+                                  const bitset_container_t *src_2);
+
+/* Computes the intersection of bitsets `src_1' and `src_2' into `dst' and
+ * return the cardinality. Same as bitset_container_and. */
+int bitset_container_intersection(const bitset_container_t *src_1,
+                                  const bitset_container_t *src_2,
+                                  bitset_container_t *dst);
+
+/* Computes the intersection of bitsets `src_1' and `src_2' and return the
+ * cardinality. Same as bitset_container_and_justcard. */
+int bitset_container_intersection_justcard(const bitset_container_t *src_1,
+                                           const bitset_container_t *src_2);
+
+/* Computes the intersection of bitsets `src_1' and `src_2' into `dst', but does
+ * not update the cardinality. Provided to optimize chained operations. */
+int bitset_container_and_nocard(const bitset_container_t *src_1,
+                                const bitset_container_t *src_2,
+                                bitset_container_t *dst);
+
+/* Computes the intersection of bitsets `src_1' and `src_2' into `dst', but does
+ * not update the cardinality. Same as bitset_container_and_nocard */
+int bitset_container_intersection_nocard(const bitset_container_t *src_1,
+                                         const bitset_container_t *src_2,
+                                         bitset_container_t *dst);
+
+/* Computes the exclusive or of bitsets `src_1' and `src_2' into `dst' and
+ * return the cardinality. */
+int bitset_container_xor(const bitset_container_t *src_1,
+                         const bitset_container_t *src_2,
+                         bitset_container_t *dst);
+
+/* Computes the exclusive or of bitsets `src_1' and `src_2' and return the
+ * cardinality. */
+int bitset_container_xor_justcard(const bitset_container_t *src_1,
+                                  const bitset_container_t *src_2);
+
+/* Computes the exclusive or of bitsets `src_1' and `src_2' into `dst', but does
+ * not update the cardinality. Provided to optimize chained operations. */
+int bitset_container_xor_nocard(const bitset_container_t *src_1,
+                                const bitset_container_t *src_2,
+                                bitset_container_t *dst);
+
+/* Computes the and not of bitsets `src_1' and `src_2' into `dst' and return the
+ * cardinality. */
+int bitset_container_andnot(const bitset_container_t *src_1,
+                            const bitset_container_t *src_2,
+                            bitset_container_t *dst);
+
+/* Computes the and not of bitsets `src_1' and `src_2'  and return the
+ * cardinality. */
+int bitset_container_andnot_justcard(const bitset_container_t *src_1,
+                                     const bitset_container_t *src_2);
+
+/* Computes the and not or of bitsets `src_1' and `src_2' into `dst', but does
+ * not update the cardinality. Provided to optimize chained operations. */
+int bitset_container_andnot_nocard(const bitset_container_t *src_1,
+                                   const bitset_container_t *src_2,
+                                   bitset_container_t *dst);
+
+/*
+ * Write out the 16-bit integers contained in this container as a list of 32-bit
+ * integers using base
+ * as the starting value (it might be expected that base has zeros in its 16
+ * least significant bits).
+ * The function returns the number of values written.
+ * The caller is responsible for allocating enough memory in out.
+ * The out pointer should point to enough memory (the cardinality times 32
+ * bits).
+ */
+int bitset_container_to_uint32_array(void *out, const bitset_container_t *cont,
+                                     uint32_t base);
+
+/*
+ * Print this container using printf (useful for debugging).
+ */
+void bitset_container_printf(const bitset_container_t *v);
+
+/*
+ * Print this container using printf as a comma-separated list of 32-bit
+ * integers starting at base.
+ */
+void bitset_container_printf_as_uint32_array(const bitset_container_t *v,
+                                             uint32_t base);
+
+/**
+ * Return the serialized size in bytes of a container.
+ */
+static inline int32_t bitset_container_serialized_size_in_bytes(void) {
+    return BITSET_CONTAINER_SIZE_IN_WORDS * 8;
+}
+
+/**
+ * Return the the number of runs.
+ */
+int bitset_container_number_of_runs(bitset_container_t *b);
+
+bool bitset_container_iterate(const bitset_container_t *cont, uint32_t base,
+                              roaring_iterator iterator, void *ptr);
+bool bitset_container_iterate64(const bitset_container_t *cont, uint32_t base,
+                                roaring_iterator64 iterator, uint64_t high_bits,
+                                void *ptr);
+
+/**
+ * Writes the underlying array to buf, outputs how many bytes were written.
+ * This is meant to be byte-by-byte compatible with the Java and Go versions of
+ * Roaring.
+ * The number of bytes written should be
+ * bitset_container_size_in_bytes(container).
+ */
+int32_t bitset_container_write(const bitset_container_t *container, char *buf);
+
+/**
+ * Reads the instance from buf, outputs how many bytes were read.
+ * This is meant to be byte-by-byte compatible with the Java and Go versions of
+ * Roaring.
+ * The number of bytes read should be bitset_container_size_in_bytes(container).
+ * You need to provide the (known) cardinality.
+ */
+int32_t bitset_container_read(int32_t cardinality,
+                              bitset_container_t *container, const char *buf);
+/**
+ * Return the serialized size in bytes of a container (see
+ * bitset_container_write).
+ * This is meant to be compatible with the Java and Go versions of Roaring and
+ * assumes
+ * that the cardinality of the container is already known or can be computed.
+ */
+static inline int32_t bitset_container_size_in_bytes(
+    const bitset_container_t *container) {
+    (void)container;
+    return BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
+}
+
+/**
+ * Return true if the two containers have the same content.
+ */
+bool bitset_container_equals(const bitset_container_t *container1,
+                             const bitset_container_t *container2);
+
+/**
+* Return true if container1 is a subset of container2.
+*/
+bool bitset_container_is_subset(const bitset_container_t *container1,
+                                const bitset_container_t *container2);
+
+/**
+ * If the element of given rank is in this container, supposing that the first
+ * element has rank start_rank, then the function returns true and sets element
+ * accordingly.
+ * Otherwise, it returns false and update start_rank.
+ */
+bool bitset_container_select(const bitset_container_t *container,
+                             uint32_t *start_rank, uint32_t rank,
+                             uint32_t *element);
+
+/* Returns the smallest value (assumes not empty) */
+uint16_t bitset_container_minimum(const bitset_container_t *container);
+
+/* Returns the largest value (assumes not empty) */
+uint16_t bitset_container_maximum(const bitset_container_t *container);
+
+/* Returns the number of values equal or smaller than x */
+int bitset_container_rank(const bitset_container_t *container, uint16_t x);
+
+/* Returns the index of the first value equal or larger than x, or -1 */
+int bitset_container_index_equalorlarger(const bitset_container_t *container, uint16_t x);
+#endif /* INCLUDE_CONTAINERS_BITSET_H_ */
+/* end file include/roaring/containers/bitset.h */
+/* begin file include/roaring/containers/run.h */
+/*
+ * run.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_RUN_H_
+#define INCLUDE_CONTAINERS_RUN_H_
+
+#include <assert.h>
+#include <stdbool.h>
+#include <stdint.h>
+#include <string.h>
+
+
+/* struct rle16_s - run length pair
+ *
+ * @value:  start position of the run
+ * @length: length of the run is `length + 1`
+ *
+ * An RLE pair {v, l} would represent the integers between the interval
+ * [v, v+l+1], e.g. {3, 2} = [3, 4, 5].
+ */
+struct rle16_s {
+    uint16_t value;
+    uint16_t length;
+};
+
+typedef struct rle16_s rle16_t;
+
+/* struct run_container_s - run container bitmap
+ *
+ * @n_runs:   number of rle_t pairs in `runs`.
+ * @capacity: capacity in rle_t pairs `runs` can hold.
+ * @runs:     pairs of rle_t.
+ *
+ */
+struct run_container_s {
+    int32_t n_runs;
+    int32_t capacity;
+    rle16_t *runs;
+};
+
+typedef struct run_container_s run_container_t;
+
+/* Create a new run container. Return NULL in case of failure. */
+run_container_t *run_container_create(void);
+
+/* Create a new run container with given capacity. Return NULL in case of
+ * failure. */
+run_container_t *run_container_create_given_capacity(int32_t size);
+
+/*
+ * Shrink the capacity to the actual size, return the number of bytes saved.
+ */
+int run_container_shrink_to_fit(run_container_t *src);
+
+/* Free memory owned by `run'. */
+void run_container_free(run_container_t *run);
+
+/* Duplicate container */
+run_container_t *run_container_clone(const run_container_t *src);
+
+int32_t run_container_serialize(const run_container_t *container,
+                                char *buf) WARN_UNUSED;
+
+uint32_t run_container_serialization_len(const run_container_t *container);
+
+void *run_container_deserialize(const char *buf, size_t buf_len);
+
+/*
+ * Effectively deletes the value at index index, repacking data.
+ */
+static inline void recoverRoomAtIndex(run_container_t *run, uint16_t index) {
+    memmove(run->runs + index, run->runs + (1 + index),
+            (run->n_runs - index - 1) * sizeof(rle16_t));
+    run->n_runs--;
+}
+
+/**
+ * Good old binary search through rle data
+ */
+static inline int32_t interleavedBinarySearch(const rle16_t *array, int32_t lenarray,
+                                       uint16_t ikey) {
+    int32_t low = 0;
+    int32_t high = lenarray - 1;
+    while (low <= high) {
+        int32_t middleIndex = (low + high) >> 1;
+        uint16_t middleValue = array[middleIndex].value;
+        if (middleValue < ikey) {
+            low = middleIndex + 1;
+        } else if (middleValue > ikey) {
+            high = middleIndex - 1;
+        } else {
+            return middleIndex;
+        }
+    }
+    return -(low + 1);
+}
+
+/*
+ * Returns index of the run which contains $ikey
+ */
+static inline int32_t rle16_find_run(const rle16_t *array, int32_t lenarray,
+                                     uint16_t ikey) {
+    int32_t low = 0;
+    int32_t high = lenarray - 1;
+    while (low <= high) {
+        int32_t middleIndex = (low + high) >> 1;
+        uint16_t min = array[middleIndex].value;
+        uint16_t max = array[middleIndex].value + array[middleIndex].length;
+        if (ikey > max) {
+            low = middleIndex + 1;
+        } else if (ikey < min) {
+            high = middleIndex - 1;
+        } else {
+            return middleIndex;
+        }
+    }
+    return -(low + 1);
+}
+
+
+/**
+ * Returns number of runs which can'be be merged with the key because they
+ * are less than the key.
+ * Note that [5,6,7,8] can be merged with the key 9 and won't be counted.
+ */
+static inline int32_t rle16_count_less(const rle16_t* array, int32_t lenarray,
+                                       uint16_t key) {
+    if (lenarray == 0) return 0;
+    int32_t low = 0;
+    int32_t high = lenarray - 1;
+    while (low <= high) {
+        int32_t middleIndex = (low + high) >> 1;
+        uint16_t min_value = array[middleIndex].value;
+        uint16_t max_value = array[middleIndex].value + array[middleIndex].length;
+        if (max_value + UINT32_C(1) < key) { // uint32 arithmetic
+            low = middleIndex + 1;
+        } else if (key < min_value) {
+            high = middleIndex - 1;
+        } else {
+            return middleIndex;
+        }
+    }
+    return low;
+}
+
+static inline int32_t rle16_count_greater(const rle16_t* array, int32_t lenarray,
+                                          uint16_t key) {
+    if (lenarray == 0) return 0;
+    int32_t low = 0;
+    int32_t high = lenarray - 1;
+    while (low <= high) {
+        int32_t middleIndex = (low + high) >> 1;
+        uint16_t min_value = array[middleIndex].value;
+        uint16_t max_value = array[middleIndex].value + array[middleIndex].length;
+        if (max_value < key) {
+            low = middleIndex + 1;
+        } else if (key + UINT32_C(1) < min_value) { // uint32 arithmetic
+            high = middleIndex - 1;
+        } else {
+            return lenarray - (middleIndex + 1);
+        }
+    }
+    return lenarray - low;
+}
+
+/**
+ * increase capacity to at least min. Whether the
+ * existing data needs to be copied over depends on copy. If "copy" is false,
+ * then the new content will be uninitialized, otherwise a copy is made.
+ */
+void run_container_grow(run_container_t *run, int32_t min, bool copy);
+
+/**
+ * Moves the data so that we can write data at index
+ */
+static inline void makeRoomAtIndex(run_container_t *run, uint16_t index) {
+    /* This function calls realloc + memmove sequentially to move by one index.
+     * Potentially copying twice the array.
+     */
+    if (run->n_runs + 1 > run->capacity)
+        run_container_grow(run, run->n_runs + 1, true);
+    memmove(run->runs + 1 + index, run->runs + index,
+            (run->n_runs - index) * sizeof(rle16_t));
+    run->n_runs++;
+}
+
+/* Add `pos' to `run'. Returns true if `pos' was not present. */
+bool run_container_add(run_container_t *run, uint16_t pos);
+
+/* Remove `pos' from `run'. Returns true if `pos' was present. */
+static inline bool run_container_remove(run_container_t *run, uint16_t pos) {
+    int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos);
+    if (index >= 0) {
+        int32_t le = run->runs[index].length;
+        if (le == 0) {
+            recoverRoomAtIndex(run, (uint16_t)index);
+        } else {
+            run->runs[index].value++;
+            run->runs[index].length--;
+        }
+        return true;
+    }
+    index = -index - 2;  // points to preceding value, possibly -1
+    if (index >= 0) {    // possible match
+        int32_t offset = pos - run->runs[index].value;
+        int32_t le = run->runs[index].length;
+        if (offset < le) {
+            // need to break in two
+            run->runs[index].length = (uint16_t)(offset - 1);
+            // need to insert
+            uint16_t newvalue = pos + 1;
+            int32_t newlength = le - offset - 1;
+            makeRoomAtIndex(run, (uint16_t)(index + 1));
+            run->runs[index + 1].value = newvalue;
+            run->runs[index + 1].length = (uint16_t)newlength;
+            return true;
+
+        } else if (offset == le) {
+            run->runs[index].length--;
+            return true;
+        }
+    }
+    // no match
+    return false;
+}
+
+/* Check whether `pos' is present in `run'.  */
+static inline bool run_container_contains(const run_container_t *run, uint16_t pos) {
+    int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos);
+    if (index >= 0) return true;
+    index = -index - 2;  // points to preceding value, possibly -1
+    if (index != -1) {   // possible match
+        int32_t offset = pos - run->runs[index].value;
+        int32_t le = run->runs[index].length;
+        if (offset <= le) return true;
+    }
+    return false;
+}
+
+/*
+* Check whether all positions in a range of positions from pos_start (included)
+* to pos_end (excluded) is present in `run'.
+*/
+static inline bool run_container_contains_range(const run_container_t *run,
+                                                uint32_t pos_start, uint32_t pos_end) {
+    uint32_t count = 0;
+    int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos_start);
+    if (index < 0) {
+        index = -index - 2;
+        if ((index == -1) || ((pos_start - run->runs[index].value) > run->runs[index].length)){
+            return false;
+        }
+    }
+    for (int32_t i = index; i < run->n_runs; ++i) {
+        const uint32_t stop = run->runs[i].value + run->runs[i].length;
+        if (run->runs[i].value >= pos_end) break;
+        if (stop >= pos_end) {
+            count += (((pos_end - run->runs[i].value) > 0) ? (pos_end - run->runs[i].value) : 0);
+            break;
+        }
+        const uint32_t min = (stop - pos_start) > 0 ? (stop - pos_start) : 0;
+        count += (min < run->runs[i].length) ? min : run->runs[i].length;
+    }
+    return count >= (pos_end - pos_start - 1);
+}
+
+#ifdef USEAVX
+
+/* Get the cardinality of `run'. Requires an actual computation. */
+static inline int run_container_cardinality(const run_container_t *run) {
+    const int32_t n_runs = run->n_runs;
+    const rle16_t *runs = run->runs;
+
+    /* by initializing with n_runs, we omit counting the +1 for each pair. */
+    int sum = n_runs;
+    int32_t k = 0;
+    const int32_t step = sizeof(__m256i) / sizeof(rle16_t);
+    if (n_runs > step) {
+        __m256i total = _mm256_setzero_si256();
+        for (; k + step <= n_runs; k += step) {
+            __m256i ymm1 = _mm256_lddqu_si256((const __m256i *)(runs + k));
+            __m256i justlengths = _mm256_srli_epi32(ymm1, 16);
+            total = _mm256_add_epi32(total, justlengths);
+        }
+        // a store might be faster than extract?
+        uint32_t buffer[sizeof(__m256i) / sizeof(rle16_t)];
+        _mm256_storeu_si256((__m256i *)buffer, total);
+        sum += (buffer[0] + buffer[1]) + (buffer[2] + buffer[3]) +
+               (buffer[4] + buffer[5]) + (buffer[6] + buffer[7]);
+    }
+    for (; k < n_runs; ++k) {
+        sum += runs[k].length;
+    }
+
+    return sum;
+}
+
+#else
+
+/* Get the cardinality of `run'. Requires an actual computation. */
+static inline int run_container_cardinality(const run_container_t *run) {
+    const int32_t n_runs = run->n_runs;
+    const rle16_t *runs = run->runs;
+
+    /* by initializing with n_runs, we omit counting the +1 for each pair. */
+    int sum = n_runs;
+    for (int k = 0; k < n_runs; ++k) {
+        sum += runs[k].length;
+    }
+
+    return sum;
+}
+#endif
+
+/* Card > 0?, see run_container_empty for the reverse */
+static inline bool run_container_nonzero_cardinality(
+    const run_container_t *run) {
+    return run->n_runs > 0;  // runs never empty
+}
+
+/* Card == 0?, see run_container_nonzero_cardinality for the reverse */
+static inline bool run_container_empty(
+    const run_container_t *run) {
+    return run->n_runs == 0;  // runs never empty
+}
+
+
+
+/* Copy one container into another. We assume that they are distinct. */
+void run_container_copy(const run_container_t *src, run_container_t *dst);
+
+/* Set the cardinality to zero (does not release memory). */
+static inline void run_container_clear(run_container_t *run) {
+    run->n_runs = 0;
+}
+
+/**
+ * Append run described by vl to the run container, possibly merging.
+ * It is assumed that the run would be inserted at the end of the container, no
+ * check is made.
+ * It is assumed that the run container has the necessary capacity: caller is
+ * responsible for checking memory capacity.
+ *
+ *
+ * This is not a safe function, it is meant for performance: use with care.
+ */
+static inline void run_container_append(run_container_t *run, rle16_t vl,
+                                        rle16_t *previousrl) {
+    const uint32_t previousend = previousrl->value + previousrl->length;
+    if (vl.value > previousend + 1) {  // we add a new one
+        run->runs[run->n_runs] = vl;
+        run->n_runs++;
+        *previousrl = vl;
+    } else {
+        uint32_t newend = vl.value + vl.length + UINT32_C(1);
+        if (newend > previousend) {  // we merge
+            previousrl->length = (uint16_t)(newend - 1 - previousrl->value);
+            run->runs[run->n_runs - 1] = *previousrl;
+        }
+    }
+}
+
+/**
+ * Like run_container_append but it is assumed that the content of run is empty.
+ */
+static inline rle16_t run_container_append_first(run_container_t *run,
+                                                 rle16_t vl) {
+    run->runs[run->n_runs] = vl;
+    run->n_runs++;
+    return vl;
+}
+
+/**
+ * append a single value  given by val to the run container, possibly merging.
+ * It is assumed that the value would be inserted at the end of the container,
+ * no check is made.
+ * It is assumed that the run container has the necessary capacity: caller is
+ * responsible for checking memory capacity.
+ *
+ * This is not a safe function, it is meant for performance: use with care.
+ */
+static inline void run_container_append_value(run_container_t *run,
+                                              uint16_t val,
+                                              rle16_t *previousrl) {
+    const uint32_t previousend = previousrl->value + previousrl->length;
+    if (val > previousend + 1) {  // we add a new one
+        //*previousrl = (rle16_t){.value = val, .length = 0};// requires C99
+        previousrl->value = val;
+        previousrl->length = 0;
+
+        run->runs[run->n_runs] = *previousrl;
+        run->n_runs++;
+    } else if (val == previousend + 1) {  // we merge
+        previousrl->length++;
+        run->runs[run->n_runs - 1] = *previousrl;
+    }
+}
+
+/**
+ * Like run_container_append_value but it is assumed that the content of run is
+ * empty.
+ */
+static inline rle16_t run_container_append_value_first(run_container_t *run,
+                                                       uint16_t val) {
+    // rle16_t newrle = (rle16_t){.value = val, .length = 0};// requires C99
+    rle16_t newrle;
+    newrle.value = val;
+    newrle.length = 0;
+
+    run->runs[run->n_runs] = newrle;
+    run->n_runs++;
+    return newrle;
+}
+
+/* Check whether the container spans the whole chunk (cardinality = 1<<16).
+ * This check can be done in constant time (inexpensive). */
+static inline bool run_container_is_full(const run_container_t *run) {
+    rle16_t vl = run->runs[0];
+    return (run->n_runs == 1) && (vl.value == 0) && (vl.length == 0xFFFF);
+}
+
+/* Compute the union of `src_1' and `src_2' and write the result to `dst'
+ * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
+void run_container_union(const run_container_t *src_1,
+                         const run_container_t *src_2, run_container_t *dst);
+
+/* Compute the union of `src_1' and `src_2' and write the result to `src_1' */
+void run_container_union_inplace(run_container_t *src_1,
+                                 const run_container_t *src_2);
+
+/* Compute the intersection of src_1 and src_2 and write the result to
+ * dst. It is assumed that dst is distinct from both src_1 and src_2. */
+void run_container_intersection(const run_container_t *src_1,
+                                const run_container_t *src_2,
+                                run_container_t *dst);
+
+/* Compute the size of the intersection of src_1 and src_2 . */
+int run_container_intersection_cardinality(const run_container_t *src_1,
+                                           const run_container_t *src_2);
+
+/* Check whether src_1 and src_2 intersect. */
+bool run_container_intersect(const run_container_t *src_1,
+                                const run_container_t *src_2);
+
+/* Compute the symmetric difference of `src_1' and `src_2' and write the result
+ * to `dst'
+ * It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
+void run_container_xor(const run_container_t *src_1,
+                       const run_container_t *src_2, run_container_t *dst);
+
+/*
+ * Write out the 16-bit integers contained in this container as a list of 32-bit
+ * integers using base
+ * as the starting value (it might be expected that base has zeros in its 16
+ * least significant bits).
+ * The function returns the number of values written.
+ * The caller is responsible for allocating enough memory in out.
+ */
+int run_container_to_uint32_array(void *vout, const run_container_t *cont,
+                                  uint32_t base);
+
+/*
+ * Print this container using printf (useful for debugging).
+ */
+void run_container_printf(const run_container_t *v);
+
+/*
+ * Print this container using printf as a comma-separated list of 32-bit
+ * integers starting at base.
+ */
+void run_container_printf_as_uint32_array(const run_container_t *v,
+                                          uint32_t base);
+
+/**
+ * Return the serialized size in bytes of a container having "num_runs" runs.
+ */
+static inline int32_t run_container_serialized_size_in_bytes(int32_t num_runs) {
+    return sizeof(uint16_t) +
+           sizeof(rle16_t) * num_runs;  // each run requires 2 2-byte entries.
+}
+
+bool run_container_iterate(const run_container_t *cont, uint32_t base,
+                           roaring_iterator iterator, void *ptr);
+bool run_container_iterate64(const run_container_t *cont, uint32_t base,
+                             roaring_iterator64 iterator, uint64_t high_bits,
+                             void *ptr);
+
+/**
+ * Writes the underlying array to buf, outputs how many bytes were written.
+ * This is meant to be byte-by-byte compatible with the Java and Go versions of
+ * Roaring.
+ * The number of bytes written should be run_container_size_in_bytes(container).
+ */
+int32_t run_container_write(const run_container_t *container, char *buf);
+
+/**
+ * Reads the instance from buf, outputs how many bytes were read.
+ * This is meant to be byte-by-byte compatible with the Java and Go versions of
+ * Roaring.
+ * The number of bytes read should be bitset_container_size_in_bytes(container).
+ * The cardinality parameter is provided for consistency with other containers,
+ * but
+ * it might be effectively ignored..
+ */
+int32_t run_container_read(int32_t cardinality, run_container_t *container,
+                           const char *buf);
+
+/**
+ * Return the serialized size in bytes of a container (see run_container_write).
+ * This is meant to be compatible with the Java and Go versions of Roaring.
+ */
+static inline int32_t run_container_size_in_bytes(
+    const run_container_t *container) {
+    return run_container_serialized_size_in_bytes(container->n_runs);
+}
+
+/**
+ * Return true if the two containers have the same content.
+ */
+static inline bool run_container_equals(const run_container_t *container1,
+                          const run_container_t *container2) {
+    if (container1->n_runs != container2->n_runs) {
+        return false;
+    }
+    return memequals(container1->runs, container2->runs,
+                     container1->n_runs * sizeof(rle16_t));
+}
+
+/**
+* Return true if container1 is a subset of container2.
+*/
+bool run_container_is_subset(const run_container_t *container1,
+                             const run_container_t *container2);
+
+/**
+ * Used in a start-finish scan that appends segments, for XOR and NOT
+ */
+
+void run_container_smart_append_exclusive(run_container_t *src,
+                                          const uint16_t start,
+                                          const uint16_t length);
+
+/**
+* The new container consists of a single run [start,stop).
+* It is required that stop>start, the caller is responsability for this check.
+* It is required that stop <= (1<<16), the caller is responsability for this check.
+* The cardinality of the created container is stop - start.
+* Returns NULL on failure
+*/
+static inline run_container_t *run_container_create_range(uint32_t start,
+                                                          uint32_t stop) {
+    run_container_t *rc = run_container_create_given_capacity(1);
+    if (rc) {
+        rle16_t r;
+        r.value = (uint16_t)start;
+        r.length = (uint16_t)(stop - start - 1);
+        run_container_append_first(rc, r);
+    }
+    return rc;
+}
+
+/**
+ * If the element of given rank is in this container, supposing that the first
+ * element has rank start_rank, then the function returns true and sets element
+ * accordingly.
+ * Otherwise, it returns false and update start_rank.
+ */
+bool run_container_select(const run_container_t *container,
+                          uint32_t *start_rank, uint32_t rank,
+                          uint32_t *element);
+
+/* Compute the difference of src_1 and src_2 and write the result to
+ * dst. It is assumed that dst is distinct from both src_1 and src_2. */
+
+void run_container_andnot(const run_container_t *src_1,
+                          const run_container_t *src_2, run_container_t *dst);
+
+/* Returns the smallest value (assumes not empty) */
+static inline uint16_t run_container_minimum(const run_container_t *run) {
+    if (run->n_runs == 0) return 0;
+    return run->runs[0].value;
+}
+
+/* Returns the largest value (assumes not empty) */
+static inline uint16_t run_container_maximum(const run_container_t *run) {
+    if (run->n_runs == 0) return 0;
+    return run->runs[run->n_runs - 1].value + run->runs[run->n_runs - 1].length;
+}
+
+/* Returns the number of values equal or smaller than x */
+int run_container_rank(const run_container_t *arr, uint16_t x);
+
+/* Returns the index of the first run containing a value at least as large as x, or -1 */
+static inline int run_container_index_equalorlarger(const run_container_t *arr, uint16_t x) {
+    int32_t index = interleavedBinarySearch(arr->runs, arr->n_runs, x);
+    if (index >= 0) return index;
+    index = -index - 2;  // points to preceding run, possibly -1
+    if (index != -1) {   // possible match
+        int32_t offset = x - arr->runs[index].value;
+        int32_t le = arr->runs[index].length;
+        if (offset <= le) return index;
+    }
+    index += 1;
+    if(index  < arr->n_runs) {
+      return index;
+    }
+    return -1;
+}
+
+/*
+ * Add all values in range [min, max] using hint.
+ */
+static inline void run_container_add_range_nruns(run_container_t* run,
+                                                 uint32_t min, uint32_t max,
+                                                 int32_t nruns_less,
+                                                 int32_t nruns_greater) {
+    int32_t nruns_common = run->n_runs - nruns_less - nruns_greater;
+    if (nruns_common == 0) {
+        makeRoomAtIndex(run, nruns_less);
+        run->runs[nruns_less].value = min;
+        run->runs[nruns_less].length = max - min;
+    } else {
+        uint32_t common_min = run->runs[nruns_less].value;
+        uint32_t common_max = run->runs[nruns_less + nruns_common - 1].value +
+                              run->runs[nruns_less + nruns_common - 1].length;
+        uint32_t result_min = (common_min < min) ? common_min : min;
+        uint32_t result_max = (common_max > max) ? common_max : max;
+
+        run->runs[nruns_less].value = result_min;
+        run->runs[nruns_less].length = result_max - result_min;
+
+        memmove(&(run->runs[nruns_less + 1]),
+                &(run->runs[run->n_runs - nruns_greater]),
+                nruns_greater*sizeof(rle16_t));
+        run->n_runs = nruns_less + 1 + nruns_greater;
+    }
+}
+
+/**
+ * Add all values in range [min, max]
+ */
+static inline void run_container_add_range(run_container_t* run,
+                                           uint32_t min, uint32_t max) {
+    int32_t nruns_greater = rle16_count_greater(run->runs, run->n_runs, max);
+    int32_t nruns_less = rle16_count_less(run->runs, run->n_runs - nruns_greater, min);
+    run_container_add_range_nruns(run, min, max, nruns_less, nruns_greater);
+}
+
+/**
+ * Shifts last $count elements either left (distance < 0) or right (distance > 0)
+ */
+static inline void run_container_shift_tail(run_container_t* run,
+                                            int32_t count, int32_t distance) {
+    if (distance > 0) {
+        if (run->capacity < count+distance) {
+            run_container_grow(run, count+distance, true);
+        }
+    }
+    int32_t srcpos = run->n_runs - count;
+    int32_t dstpos = srcpos + distance;
+    memmove(&(run->runs[dstpos]), &(run->runs[srcpos]), sizeof(rle16_t) * count);
+    run->n_runs += distance;
+}
+
+/**
+ * Remove all elements in range [min, max]
+ */
+static inline void run_container_remove_range(run_container_t *run, uint32_t min, uint32_t max) {
+    int32_t first = rle16_find_run(run->runs, run->n_runs, min);
+    int32_t last = rle16_find_run(run->runs, run->n_runs, max);
+
+    if (first >= 0 && min > run->runs[first].value &&
+        max < ((uint32_t)run->runs[first].value + (uint32_t)run->runs[first].length)) {
+        // split this run into two adjacent runs
+
+        // right subinterval
+        makeRoomAtIndex(run, first+1);
+        run->runs[first+1].value = max + 1;
+        run->runs[first+1].length = (run->runs[first].value + run->runs[first].length) - (max + 1);
+
+        // left subinterval
+        run->runs[first].length = (min - 1) - run->runs[first].value;
+
+        return;
+    }
+
+    // update left-most partial run
+    if (first >= 0) {
+        if (min > run->runs[first].value) {
+            run->runs[first].length = (min - 1) - run->runs[first].value;
+            first++;
+        }
+    } else {
+        first = -first-1;
+    }
+
+    // update right-most run
+    if (last >= 0) {
+        uint16_t run_max = run->runs[last].value + run->runs[last].length;
+        if (run_max > max) {
+            run->runs[last].value = max + 1;
+            run->runs[last].length = run_max - (max + 1);
+            last--;
+        }
+    } else {
+        last = (-last-1) - 1;
+    }
+
+    // remove intermediate runs
+    if (first <= last) {
+        run_container_shift_tail(run, run->n_runs - (last+1), -(last-first+1));
+    }
+}
+
+
+#endif /* INCLUDE_CONTAINERS_RUN_H_ */
+/* end file include/roaring/containers/run.h */
+/* begin file include/roaring/containers/convert.h */
+/*
+ * convert.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_CONVERT_H_
+#define INCLUDE_CONTAINERS_CONVERT_H_
+
+
+/* Convert an array into a bitset. The input container is not freed or modified.
+ */
+bitset_container_t *bitset_container_from_array(const array_container_t *arr);
+
+/* Convert a run into a bitset. The input container is not freed or modified. */
+bitset_container_t *bitset_container_from_run(const run_container_t *arr);
+
+/* Convert a run into an array. The input container is not freed or modified. */
+array_container_t *array_container_from_run(const run_container_t *arr);
+
+/* Convert a bitset into an array. The input container is not freed or modified.
+ */
+array_container_t *array_container_from_bitset(const bitset_container_t *bits);
+
+/* Convert an array into a run. The input container is not freed or modified.
+ */
+run_container_t *run_container_from_array(const array_container_t *c);
+
+/* convert a run into either an array or a bitset
+ * might free the container. This does not free the input run container. */
+void *convert_to_bitset_or_array_container(run_container_t *r, int32_t card,
+                                           uint8_t *resulttype);
+
+/* convert containers to and from runcontainers, as is most space efficient.
+ * The container might be freed. */
+void *convert_run_optimize(void *c, uint8_t typecode_original,
+                           uint8_t *typecode_after);
+
+/* converts a run container to either an array or a bitset, IF it saves space.
+ */
+/* If a conversion occurs, the caller is responsible to free the original
+ * container and
+ * he becomes reponsible to free the new one. */
+void *convert_run_to_efficient_container(run_container_t *c,
+                                         uint8_t *typecode_after);
+// like convert_run_to_efficient_container but frees the old result if needed
+void *convert_run_to_efficient_container_and_free(run_container_t *c,
+                                                  uint8_t *typecode_after);
+
+/**
+ * Create new bitset container which is a union of run container and
+ * range [min, max]. Caller is responsible for freeing run container.
+ */
+bitset_container_t *bitset_container_from_run_range(const run_container_t *run,
+                                                    uint32_t min, uint32_t max);
+
+#endif /* INCLUDE_CONTAINERS_CONVERT_H_ */
+/* end file include/roaring/containers/convert.h */
+/* begin file include/roaring/containers/mixed_equal.h */
+/*
+ * mixed_equal.h
+ *
+ */
+
+#ifndef CONTAINERS_MIXED_EQUAL_H_
+#define CONTAINERS_MIXED_EQUAL_H_
+
+
+/**
+ * Return true if the two containers have the same content.
+ */
+bool array_container_equal_bitset(const array_container_t* container1,
+                                  const bitset_container_t* container2);
+
+/**
+ * Return true if the two containers have the same content.
+ */
+bool run_container_equals_array(const run_container_t* container1,
+                                const array_container_t* container2);
+/**
+ * Return true if the two containers have the same content.
+ */
+bool run_container_equals_bitset(const run_container_t* container1,
+                                 const bitset_container_t* container2);
+
+#endif /* CONTAINERS_MIXED_EQUAL_H_ */
+/* end file include/roaring/containers/mixed_equal.h */
+/* begin file include/roaring/containers/mixed_subset.h */
+/*
+ * mixed_subset.h
+ *
+ */
+
+#ifndef CONTAINERS_MIXED_SUBSET_H_
+#define CONTAINERS_MIXED_SUBSET_H_
+
+
+/**
+ * Return true if container1 is a subset of container2.
+ */
+bool array_container_is_subset_bitset(const array_container_t* container1,
+                                      const bitset_container_t* container2);
+
+/**
+* Return true if container1 is a subset of container2.
+ */
+bool run_container_is_subset_array(const run_container_t* container1,
+                                   const array_container_t* container2);
+
+/**
+* Return true if container1 is a subset of container2.
+ */
+bool array_container_is_subset_run(const array_container_t* container1,
+                                   const run_container_t* container2);
+
+/**
+* Return true if container1 is a subset of container2.
+ */
+bool run_container_is_subset_bitset(const run_container_t* container1,
+                                    const bitset_container_t* container2);
+
+/**
+* Return true if container1 is a subset of container2.
+*/
+bool bitset_container_is_subset_run(const bitset_container_t* container1,
+                                    const run_container_t* container2);
+
+#endif /* CONTAINERS_MIXED_SUBSET_H_ */
+/* end file include/roaring/containers/mixed_subset.h */
+/* begin file include/roaring/containers/mixed_andnot.h */
+/*
+ * mixed_andnot.h
+ */
+#ifndef INCLUDE_CONTAINERS_MIXED_ANDNOT_H_
+#define INCLUDE_CONTAINERS_MIXED_ANDNOT_H_
+
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst, a valid array container that could be the same as dst.*/
+void array_bitset_container_andnot(const array_container_t *src_1,
+                                   const bitset_container_t *src_2,
+                                   array_container_t *dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * src_1 */
+
+void array_bitset_container_iandnot(array_container_t *src_1,
+                                    const bitset_container_t *src_2);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst, which does not initially have a valid container.
+ * Return true for a bitset result; false for array
+ */
+
+bool bitset_array_container_andnot(const bitset_container_t *src_1,
+                                   const array_container_t *src_2, void **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+bool bitset_array_container_iandnot(bitset_container_t *src_1,
+                                    const array_container_t *src_2, void **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_andnot(const run_container_t *src_1,
+                                 const bitset_container_t *src_2, void **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_iandnot(run_container_t *src_1,
+                                  const bitset_container_t *src_2, void **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset").  dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool bitset_run_container_andnot(const bitset_container_t *src_1,
+                                 const run_container_t *src_2, void **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+bool bitset_run_container_iandnot(bitset_container_t *src_1,
+                                  const run_container_t *src_2, void **dst);
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any type of container.
+ */
+
+int run_array_container_andnot(const run_container_t *src_1,
+                               const array_container_t *src_2, void **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+int run_array_container_iandnot(run_container_t *src_1,
+                                const array_container_t *src_2, void **dst);
+
+/* dst must be a valid array container, allowed to be src_1 */
+
+void array_run_container_andnot(const array_container_t *src_1,
+                                const run_container_t *src_2,
+                                array_container_t *dst);
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any kind of container.
+ */
+
+void array_run_container_iandnot(array_container_t *src_1,
+                                 const run_container_t *src_2);
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any kind of container.
+ */
+
+int run_run_container_andnot(const run_container_t *src_1,
+                             const run_container_t *src_2, void **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+int run_run_container_iandnot(run_container_t *src_1,
+                              const run_container_t *src_2, void **dst);
+
+/*
+ * dst is a valid array container and may be the same as src_1
+ */
+
+void array_array_container_andnot(const array_container_t *src_1,
+                                  const array_container_t *src_2,
+                                  array_container_t *dst);
+
+/* inplace array-array andnot will always be able to reuse the space of
+ * src_1 */
+void array_array_container_iandnot(array_container_t *src_1,
+                                   const array_container_t *src_2);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially). Return value is
+ * "dst is a bitset"
+ */
+
+bool bitset_bitset_container_andnot(const bitset_container_t *src_1,
+                                    const bitset_container_t *src_2,
+                                    void **dst);
+
+/* Compute the andnot of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+bool bitset_bitset_container_iandnot(bitset_container_t *src_1,
+                                     const bitset_container_t *src_2,
+                                     void **dst);
+#endif
+/* end file include/roaring/containers/mixed_andnot.h */
+/* begin file include/roaring/containers/mixed_intersection.h */
+/*
+ * mixed_intersection.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_MIXED_INTERSECTION_H_
+#define INCLUDE_CONTAINERS_MIXED_INTERSECTION_H_
+
+/* These functions appear to exclude cases where the
+ * inputs have the same type and the output is guaranteed
+ * to have the same type as the inputs.  Eg, array intersection
+ */
+
+
+/* Compute the intersection of src_1 and src_2 and write the result to
+ * dst. It is allowed for dst to be equal to src_1. We assume that dst is a
+ * valid container. */
+void array_bitset_container_intersection(const array_container_t *src_1,
+                                         const bitset_container_t *src_2,
+                                         array_container_t *dst);
+
+/* Compute the size of the intersection of src_1 and src_2. */
+int array_bitset_container_intersection_cardinality(
+    const array_container_t *src_1, const bitset_container_t *src_2);
+
+
+
+/* Checking whether src_1 and src_2 intersect. */
+bool array_bitset_container_intersect(const array_container_t *src_1,
+                                         const bitset_container_t *src_2);
+
+/*
+ * Compute the intersection between src_1 and src_2 and write the result
+ * to *dst. If the return function is true, the result is a bitset_container_t
+ * otherwise is a array_container_t. We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+bool bitset_bitset_container_intersection(const bitset_container_t *src_1,
+                                          const bitset_container_t *src_2,
+                                          void **dst);
+
+/* Compute the intersection between src_1 and src_2 and write the result to
+ * dst. It is allowed for dst to be equal to src_1. We assume that dst is a
+ * valid container. */
+void array_run_container_intersection(const array_container_t *src_1,
+                                      const run_container_t *src_2,
+                                      array_container_t *dst);
+
+/* Compute the intersection between src_1 and src_2 and write the result to
+ * *dst. If the result is true then the result is a bitset_container_t
+ * otherwise is a array_container_t.
+ * If *dst == src_2, then an in-place intersection is attempted
+ **/
+bool run_bitset_container_intersection(const run_container_t *src_1,
+                                       const bitset_container_t *src_2,
+                                       void **dst);
+
+/* Compute the size of the intersection between src_1 and src_2 . */
+int array_run_container_intersection_cardinality(const array_container_t *src_1,
+                                                 const run_container_t *src_2);
+
+/* Compute the size of the intersection  between src_1 and src_2
+ **/
+int run_bitset_container_intersection_cardinality(const run_container_t *src_1,
+                                       const bitset_container_t *src_2);
+
+
+/* Check that src_1 and src_2 intersect. */
+bool array_run_container_intersect(const array_container_t *src_1,
+                                      const run_container_t *src_2);
+
+/* Check that src_1 and src_2 intersect.
+ **/
+bool run_bitset_container_intersect(const run_container_t *src_1,
+                                       const bitset_container_t *src_2);
+
+/*
+ * Same as bitset_bitset_container_intersection except that if the output is to
+ * be a
+ * bitset_container_t, then src_1 is modified and no allocation is made.
+ * If the output is to be an array_container_t, then caller is responsible
+ * to free the container.
+ * In all cases, the result is in *dst.
+ */
+bool bitset_bitset_container_intersection_inplace(
+    bitset_container_t *src_1, const bitset_container_t *src_2, void **dst);
+
+#endif /* INCLUDE_CONTAINERS_MIXED_INTERSECTION_H_ */
+/* end file include/roaring/containers/mixed_intersection.h */
+/* begin file include/roaring/containers/mixed_negation.h */
+/*
+ * mixed_negation.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_MIXED_NEGATION_H_
+#define INCLUDE_CONTAINERS_MIXED_NEGATION_H_
+
+
+/* Negation across the entire range of the container.
+ * Compute the  negation of src  and write the result
+ * to *dst. The complement of a
+ * sufficiently sparse set will always be dense and a hence a bitmap
+ * We assume that dst is pre-allocated and a valid bitset container
+ * There can be no in-place version.
+ */
+void array_container_negation(const array_container_t *src,
+                              bitset_container_t *dst);
+
+/* Negation across the entire range of the container
+ * Compute the  negation of src  and write the result
+ * to *dst.  A true return value indicates a bitset result,
+ * otherwise the result is an array container.
+ *  We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+bool bitset_container_negation(const bitset_container_t *src, void **dst);
+
+/* inplace version */
+/*
+ * Same as bitset_container_negation except that if the output is to
+ * be a
+ * bitset_container_t, then src is modified and no allocation is made.
+ * If the output is to be an array_container_t, then caller is responsible
+ * to free the container.
+ * In all cases, the result is in *dst.
+ */
+bool bitset_container_negation_inplace(bitset_container_t *src, void **dst);
+
+/* Negation across the entire range of container
+ * Compute the  negation of src  and write the result
+ * to *dst.
+ * Return values are the *_TYPECODES as defined * in containers.h
+ *  We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+int run_container_negation(const run_container_t *src, void **dst);
+
+/*
+ * Same as run_container_negation except that if the output is to
+ * be a
+ * run_container_t, and has the capacity to hold the result,
+ * then src is modified and no allocation is made.
+ * In all cases, the result is in *dst.
+ */
+int run_container_negation_inplace(run_container_t *src, void **dst);
+
+/* Negation across a range of the container.
+ * Compute the  negation of src  and write the result
+ * to *dst. Returns true if the result is a bitset container
+ * and false for an array container.  *dst is not preallocated.
+ */
+bool array_container_negation_range(const array_container_t *src,
+                                    const int range_start, const int range_end,
+                                    void **dst);
+
+/* Even when the result would fit, it is unclear how to make an
+ * inplace version without inefficient copying.  Thus this routine
+ * may be a wrapper for the non-in-place version
+ */
+bool array_container_negation_range_inplace(array_container_t *src,
+                                            const int range_start,
+                                            const int range_end, void **dst);
+
+/* Negation across a range of the container
+ * Compute the  negation of src  and write the result
+ * to *dst.  A true return value indicates a bitset result,
+ * otherwise the result is an array container.
+ *  We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+bool bitset_container_negation_range(const bitset_container_t *src,
+                                     const int range_start, const int range_end,
+                                     void **dst);
+
+/* inplace version */
+/*
+ * Same as bitset_container_negation except that if the output is to
+ * be a
+ * bitset_container_t, then src is modified and no allocation is made.
+ * If the output is to be an array_container_t, then caller is responsible
+ * to free the container.
+ * In all cases, the result is in *dst.
+ */
+bool bitset_container_negation_range_inplace(bitset_container_t *src,
+                                             const int range_start,
+                                             const int range_end, void **dst);
+
+/* Negation across a range of container
+ * Compute the  negation of src  and write the result
+ * to *dst.  Return values are the *_TYPECODES as defined * in containers.h
+ *  We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+int run_container_negation_range(const run_container_t *src,
+                                 const int range_start, const int range_end,
+                                 void **dst);
+
+/*
+ * Same as run_container_negation except that if the output is to
+ * be a
+ * run_container_t, and has the capacity to hold the result,
+ * then src is modified and no allocation is made.
+ * In all cases, the result is in *dst.
+ */
+int run_container_negation_range_inplace(run_container_t *src,
+                                         const int range_start,
+                                         const int range_end, void **dst);
+
+#endif /* INCLUDE_CONTAINERS_MIXED_NEGATION_H_ */
+/* end file include/roaring/containers/mixed_negation.h */
+/* begin file include/roaring/containers/mixed_union.h */
+/*
+ * mixed_intersection.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_MIXED_UNION_H_
+#define INCLUDE_CONTAINERS_MIXED_UNION_H_
+
+/* These functions appear to exclude cases where the
+ * inputs have the same type and the output is guaranteed
+ * to have the same type as the inputs.  Eg, bitset unions
+ */
+
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * dst. It is allowed for src_2 to be dst.   */
+void array_bitset_container_union(const array_container_t *src_1,
+                                  const bitset_container_t *src_2,
+                                  bitset_container_t *dst);
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * dst. It is allowed for src_2 to be dst.  This version does not
+ * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). */
+void array_bitset_container_lazy_union(const array_container_t *src_1,
+                                       const bitset_container_t *src_2,
+                                       bitset_container_t *dst);
+
+/*
+ * Compute the union between src_1 and src_2 and write the result
+ * to *dst. If the return function is true, the result is a bitset_container_t
+ * otherwise is a array_container_t. We assume that dst is not pre-allocated. In
+ * case of failure, *dst will be NULL.
+ */
+bool array_array_container_union(const array_container_t *src_1,
+                                 const array_container_t *src_2, void **dst);
+
+/*
+ * Compute the union between src_1 and src_2 and write the result
+ * to *dst if it cannot be written to src_1. If the return function is true,
+ * the result is a bitset_container_t
+ * otherwise is a array_container_t. When the result is an array_container_t, it
+ * it either written to src_1 (if *dst is null) or to *dst.
+ * If the result is a bitset_container_t and *dst is null, then there was a failure.
+ */
+bool array_array_container_inplace_union(array_container_t *src_1,
+                                 const array_container_t *src_2, void **dst);
+
+/*
+ * Same as array_array_container_union except that it will more eagerly produce
+ * a bitset.
+ */
+bool array_array_container_lazy_union(const array_container_t *src_1,
+                                      const array_container_t *src_2,
+                                      void **dst);
+
+/*
+ * Same as array_array_container_inplace_union except that it will more eagerly produce
+ * a bitset.
+ */
+bool array_array_container_lazy_inplace_union(array_container_t *src_1,
+                                      const array_container_t *src_2,
+                                      void **dst);
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * dst. We assume that dst is a
+ * valid container. The result might need to be further converted to array or
+ * bitset container,
+ * the caller is responsible for the eventual conversion. */
+void array_run_container_union(const array_container_t *src_1,
+                               const run_container_t *src_2,
+                               run_container_t *dst);
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * src2. The result might need to be further converted to array or
+ * bitset container,
+ * the caller is responsible for the eventual conversion. */
+void array_run_container_inplace_union(const array_container_t *src_1,
+                                       run_container_t *src_2);
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * dst. It is allowed for dst to be src_2.
+ * If run_container_is_full(src_1) is true, you must not be calling this
+ *function.
+ **/
+void run_bitset_container_union(const run_container_t *src_1,
+                                const bitset_container_t *src_2,
+                                bitset_container_t *dst);
+
+/* Compute the union of src_1 and src_2 and write the result to
+ * dst. It is allowed for dst to be src_2.  This version does not
+ * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY).
+ * If run_container_is_full(src_1) is true, you must not be calling this
+ * function.
+ * */
+void run_bitset_container_lazy_union(const run_container_t *src_1,
+                                     const bitset_container_t *src_2,
+                                     bitset_container_t *dst);
+
+#endif /* INCLUDE_CONTAINERS_MIXED_UNION_H_ */
+/* end file include/roaring/containers/mixed_union.h */
+/* begin file include/roaring/containers/mixed_xor.h */
+/*
+ * mixed_xor.h
+ *
+ */
+
+#ifndef INCLUDE_CONTAINERS_MIXED_XOR_H_
+#define INCLUDE_CONTAINERS_MIXED_XOR_H_
+
+/* These functions appear to exclude cases where the
+ * inputs have the same type and the output is guaranteed
+ * to have the same type as the inputs.  Eg, bitset unions
+ */
+
+/*
+ * Java implementation (as of May 2016) for array_run, run_run
+ * and  bitset_run don't do anything different for inplace.
+ * (They are not truly in place.)
+ */
+
+
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst (which has no container initially).
+ * Result is true iff dst is a bitset  */
+bool array_bitset_container_xor(const array_container_t *src_1,
+                                const bitset_container_t *src_2, void **dst);
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst. It is allowed for src_2 to be dst.  This version does not
+ * update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY).
+ */
+
+void array_bitset_container_lazy_xor(const array_container_t *src_1,
+                                     const bitset_container_t *src_2,
+                                     bitset_container_t *dst);
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst (which has no container initially). Return value is
+ * "dst is a bitset"
+ */
+
+bool bitset_bitset_container_xor(const bitset_container_t *src_1,
+                                 const bitset_container_t *src_2, void **dst);
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_xor(const run_container_t *src_1,
+                              const bitset_container_t *src_2, void **dst);
+
+/* lazy xor.  Dst is initialized and may be equal to src_2.
+ *  Result is left as a bitset container, even if actual
+ *  cardinality would dictate an array container.
+ */
+
+void run_bitset_container_lazy_xor(const run_container_t *src_1,
+                                   const bitset_container_t *src_2,
+                                   bitset_container_t *dst);
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any kind of container.
+ */
+
+int array_run_container_xor(const array_container_t *src_1,
+                            const run_container_t *src_2, void **dst);
+
+/* dst does not initially have a valid container.  Creates either
+ * an array or a bitset container, indicated by return code
+ */
+
+bool array_array_container_xor(const array_container_t *src_1,
+                               const array_container_t *src_2, void **dst);
+
+/* dst does not initially have a valid container.  Creates either
+ * an array or a bitset container, indicated by return code.
+ * A bitset container will not have a valid cardinality and the
+ * container type might not be correct for the actual cardinality
+ */
+
+bool array_array_container_lazy_xor(const array_container_t *src_1,
+                                    const array_container_t *src_2, void **dst);
+
+/* Dst is a valid run container. (Can it be src_2? Let's say not.)
+ * Leaves result as run container, even if other options are
+ * smaller.
+ */
+
+void array_run_container_lazy_xor(const array_container_t *src_1,
+                                  const run_container_t *src_2,
+                                  run_container_t *dst);
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any kind of container.
+ */
+
+int run_run_container_xor(const run_container_t *src_1,
+                          const run_container_t *src_2, void **dst);
+
+/* INPLACE versions (initial implementation may not exploit all inplace
+ * opportunities (if any...)
+ */
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst (which has no container initially).  It will modify src_1
+ * to be dst if the result is a bitset.  Otherwise, it will
+ * free src_1 and dst will be a new array container.  In both
+ * cases, the caller is responsible for deallocating dst.
+ * Returns true iff dst is a bitset  */
+
+bool bitset_array_container_ixor(bitset_container_t *src_1,
+                                 const array_container_t *src_2, void **dst);
+
+bool bitset_bitset_container_ixor(bitset_container_t *src_1,
+                                  const bitset_container_t *src_2, void **dst);
+
+bool array_bitset_container_ixor(array_container_t *src_1,
+                                 const bitset_container_t *src_2, void **dst);
+
+/* Compute the xor of src_1 and src_2 and write the result to
+ * dst. Result may be either a bitset or an array container
+ * (returns "result is bitset"). dst does not initially have
+ * any container, but becomes either a bitset container (return
+ * result true) or an array container.
+ */
+
+bool run_bitset_container_ixor(run_container_t *src_1,
+                               const bitset_container_t *src_2, void **dst);
+
+bool bitset_run_container_ixor(bitset_container_t *src_1,
+                               const run_container_t *src_2, void **dst);
+
+/* dst does not indicate a valid container initially.  Eventually it
+ * can become any kind of container.
+ */
+
+int array_run_container_ixor(array_container_t *src_1,
+                             const run_container_t *src_2, void **dst);
+
+int run_array_container_ixor(run_container_t *src_1,
+                             const array_container_t *src_2, void **dst);
+
+bool array_array_container_ixor(array_container_t *src_1,
+                                const array_container_t *src_2, void **dst);
+
+int run_run_container_ixor(run_container_t *src_1, const run_container_t *src_2,
+                           void **dst);
+#endif
+/* end file include/roaring/containers/mixed_xor.h */
+/* begin file include/roaring/containers/containers.h */
+#ifndef CONTAINERS_CONTAINERS_H
+#define CONTAINERS_CONTAINERS_H
+
+#include <assert.h>
+#include <stdbool.h>
+#include <stdio.h>
+
+
+// would enum be possible or better?
+
+/**
+ * The switch case statements follow
+ * BITSET_CONTAINER_TYPE_CODE -- ARRAY_CONTAINER_TYPE_CODE --
+ * RUN_CONTAINER_TYPE_CODE
+ * so it makes more sense to number them 1, 2, 3 (in the vague hope that the
+ * compiler might exploit this ordering).
+ */
+
+#define BITSET_CONTAINER_TYPE_CODE 1
+#define ARRAY_CONTAINER_TYPE_CODE 2
+#define RUN_CONTAINER_TYPE_CODE 3
+#define SHARED_CONTAINER_TYPE_CODE 4
+
+// macro for pairing container type codes
+#define CONTAINER_PAIR(c1, c2) (4 * (c1) + (c2))
+
+/**
+ * A shared container is a wrapper around a container
+ * with reference counting.
+ */
+
+struct shared_container_s {
+    void *container;
+    uint8_t typecode;
+    uint32_t counter;  // to be managed atomically
+};
+
+typedef struct shared_container_s shared_container_t;
+
+/*
+ * With copy_on_write = true
+ *  Create a new shared container if the typecode is not SHARED_CONTAINER_TYPE,
+ * otherwise, increase the count
+ * If copy_on_write = false, then clone.
+ * Return NULL in case of failure.
+ **/
+void *get_copy_of_container(void *container, uint8_t *typecode,
+                            bool copy_on_write);
+
+/* Frees a shared container (actually decrement its counter and only frees when
+ * the counter falls to zero). */
+void shared_container_free(shared_container_t *container);
+
+/* extract a copy from the shared container, freeing the shared container if
+there is just one instance left,
+clone instances when the counter is higher than one
+*/
+void *shared_container_extract_copy(shared_container_t *container,
+                                    uint8_t *typecode);
+
+/* access to container underneath */
+static inline const void *container_unwrap_shared(
+    const void *candidate_shared_container, uint8_t *type) {
+    if (*type == SHARED_CONTAINER_TYPE_CODE) {
+        *type =
+            ((const shared_container_t *)candidate_shared_container)->typecode;
+        assert(*type != SHARED_CONTAINER_TYPE_CODE);
+        return ((const shared_container_t *)candidate_shared_container)->container;
+    } else {
+        return candidate_shared_container;
+    }
+}
+
+
+/* access to container underneath */
+static inline void *container_mutable_unwrap_shared(
+    void *candidate_shared_container, uint8_t *type) {
+    if (*type == SHARED_CONTAINER_TYPE_CODE) {
+        *type =
+            ((shared_container_t *)candidate_shared_container)->typecode;
+        assert(*type != SHARED_CONTAINER_TYPE_CODE);
+        return ((shared_container_t *)candidate_shared_container)->container;
+    } else {
+        return candidate_shared_container;
+    }
+}
+
+/* access to container underneath and queries its type */
+static inline uint8_t get_container_type(const void *container, uint8_t type) {
+    if (type == SHARED_CONTAINER_TYPE_CODE) {
+        return ((const shared_container_t *)container)->typecode;
+    } else {
+        return type;
+    }
+}
+
+/**
+ * Copies a container, requires a typecode. This allocates new memory, caller
+ * is responsible for deallocation. If the container is not shared, then it is
+ * physically cloned. Sharable containers are not cloneable.
+ */
+void *container_clone(const void *container, uint8_t typecode);
+
+/* access to container underneath, cloning it if needed */
+static inline void *get_writable_copy_if_shared(
+    void *candidate_shared_container, uint8_t *type) {
+    if (*type == SHARED_CONTAINER_TYPE_CODE) {
+        return shared_container_extract_copy(
+            (shared_container_t *)candidate_shared_container, type);
+    } else {
+        return candidate_shared_container;
+    }
+}
+
+/**
+ * End of shared container code
+ */
+
+static const char *container_names[] = {"bitset", "array", "run", "shared"};
+static const char *shared_container_names[] = {
+    "bitset (shared)", "array (shared)", "run (shared)"};
+
+// no matter what the initial container was, convert it to a bitset
+// if a new container is produced, caller responsible for freeing the previous
+// one
+// container should not be a shared container
+static inline void *container_to_bitset(void *container, uint8_t typecode) {
+    bitset_container_t *result = NULL;
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return container;  // nothing to do
+        case ARRAY_CONTAINER_TYPE_CODE:
+            result =
+                bitset_container_from_array((array_container_t *)container);
+            return result;
+        case RUN_CONTAINER_TYPE_CODE:
+            result = bitset_container_from_run((run_container_t *)container);
+            return result;
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return 0;  // unreached
+    }
+}
+
+/**
+ * Get the container name from the typecode
+ */
+static inline const char *get_container_name(uint8_t typecode) {
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return container_names[0];
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return container_names[1];
+        case RUN_CONTAINER_TYPE_CODE:
+            return container_names[2];
+        case SHARED_CONTAINER_TYPE_CODE:
+            return container_names[3];
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return "unknown";
+    }
+}
+
+static inline const char *get_full_container_name(const void *container,
+                                                  uint8_t typecode) {
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return container_names[0];
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return container_names[1];
+        case RUN_CONTAINER_TYPE_CODE:
+            return container_names[2];
+        case SHARED_CONTAINER_TYPE_CODE:
+            switch (((const shared_container_t *)container)->typecode) {
+                case BITSET_CONTAINER_TYPE_CODE:
+                    return shared_container_names[0];
+                case ARRAY_CONTAINER_TYPE_CODE:
+                    return shared_container_names[1];
+                case RUN_CONTAINER_TYPE_CODE:
+                    return shared_container_names[2];
+                default:
+                    assert(false);
+                    __builtin_unreachable();
+                    return "unknown";
+            }
+            break;
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return "unknown";
+    }
+    __builtin_unreachable();
+    return NULL;
+}
+
+/**
+ * Get the container cardinality (number of elements), requires a  typecode
+ */
+static inline int container_get_cardinality(const void *container,
+                                            uint8_t typecode) {
+    container = container_unwrap_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return bitset_container_cardinality(
+                (const bitset_container_t *)container);
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return array_container_cardinality(
+                (const array_container_t *)container);
+        case RUN_CONTAINER_TYPE_CODE:
+            return run_container_cardinality(
+                (const run_container_t *)container);
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return 0;  // unreached
+    }
+}
+
+
+
+// returns true if a container is known to be full. Note that a lazy bitset
+// container
+// might be full without us knowing
+static inline bool container_is_full(const void *container, uint8_t typecode) {
+    container = container_unwrap_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return bitset_container_cardinality(
+                       (const bitset_container_t *)container) == (1 << 16);
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return array_container_cardinality(
+                       (const array_container_t *)container) == (1 << 16);
+        case RUN_CONTAINER_TYPE_CODE:
+            return run_container_is_full((const run_container_t *)container);
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return 0;  // unreached
+    }
+}
+
+static inline int container_shrink_to_fit(void *container, uint8_t typecode) {
+    container = container_mutable_unwrap_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return 0;  // no shrinking possible
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return array_container_shrink_to_fit(
+                (array_container_t *)container);
+        case RUN_CONTAINER_TYPE_CODE:
+            return run_container_shrink_to_fit((run_container_t *)container);
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return 0;  // unreached
+    }
+}
+
+
+/**
+ * make a container with a run of ones
+ */
+/* initially always use a run container, even if an array might be
+ * marginally
+ * smaller */
+static inline void *container_range_of_ones(uint32_t range_start,
+                                            uint32_t range_end,
+                                            uint8_t *result_type) {
+    assert(range_end >= range_start);
+    uint64_t cardinality =  range_end - range_start + 1;
+    if(cardinality <= 2) {
+      *result_type = ARRAY_CONTAINER_TYPE_CODE;
+      return array_container_create_range(range_start, range_end);
+    } else {
+      *result_type = RUN_CONTAINER_TYPE_CODE;
+      return run_container_create_range(range_start, range_end);
+    }
+}
+
+
+/*  Create a container with all the values between in [min,max) at a
+    distance k*step from min. */
+static inline void *container_from_range(uint8_t *type, uint32_t min,
+                                         uint32_t max, uint16_t step) {
+    if (step == 0) return NULL;  // being paranoid
+    if (step == 1) {
+        return container_range_of_ones(min,max,type);
+        // Note: the result is not always a run (need to check the cardinality)
+        //*type = RUN_CONTAINER_TYPE_CODE;
+        //return run_container_create_range(min, max);
+    }
+    int size = (max - min + step - 1) / step;
+    if (size <= DEFAULT_MAX_SIZE) {  // array container
+        *type = ARRAY_CONTAINER_TYPE_CODE;
+        array_container_t *array = array_container_create_given_capacity(size);
+        array_container_add_from_range(array, min, max, step);
+        assert(array->cardinality == size);
+        return array;
+    } else {  // bitset container
+        *type = BITSET_CONTAINER_TYPE_CODE;
+        bitset_container_t *bitset = bitset_container_create();
+        bitset_container_add_from_range(bitset, min, max, step);
+        assert(bitset->cardinality == size);
+        return bitset;
+    }
+}
+
+/**
+ * "repair" the container after lazy operations.
+ */
+static inline void *container_repair_after_lazy(void *container,
+                                                uint8_t *typecode) {
+    container = get_writable_copy_if_shared(
+        container, typecode);  // TODO: this introduces unnecessary cloning
+    void *result = NULL;
+    switch (*typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            ((bitset_container_t *)container)->cardinality =
+                bitset_container_compute_cardinality(
+                    (bitset_container_t *)container);
+            if (((bitset_container_t *)container)->cardinality <=
+                DEFAULT_MAX_SIZE) {
+                result = array_container_from_bitset(
+                    (const bitset_container_t *)container);
+                bitset_container_free((bitset_container_t *)container);
+                *typecode = ARRAY_CONTAINER_TYPE_CODE;
+                return result;
+            }
+            return container;
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return container;  // nothing to do
+        case RUN_CONTAINER_TYPE_CODE:
+            return convert_run_to_efficient_container_and_free(
+                (run_container_t *)container, typecode);
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return 0;  // unreached
+    }
+}
+
+/**
+ * Writes the underlying array to buf, outputs how many bytes were written.
+ * This is meant to be byte-by-byte compatible with the Java and Go versions of
+ * Roaring.
+ * The number of bytes written should be
+ * container_write(container, buf).
+ *
+ */
+static inline int32_t container_write(const void *container, uint8_t typecode,
+                                      char *buf) {
+    container = container_unwrap_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return bitset_container_write((const bitset_container_t *)container, buf);
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return array_container_write((const array_container_t *)container, buf);
+        case RUN_CONTAINER_TYPE_CODE:
+            return run_container_write((const run_container_t *)container, buf);
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return 0;  // unreached
+    }
+}
+
+/**
+ * Get the container size in bytes under portable serialization (see
+ * container_write), requires a
+ * typecode
+ */
+static inline int32_t container_size_in_bytes(const void *container,
+                                              uint8_t typecode) {
+    container = container_unwrap_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return bitset_container_size_in_bytes(
+                (const bitset_container_t *)container);
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return array_container_size_in_bytes(
+                (const array_container_t *)container);
+        case RUN_CONTAINER_TYPE_CODE:
+            return run_container_size_in_bytes((const run_container_t *)container);
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return 0;  // unreached
+    }
+}
+
+/**
+ * print the container (useful for debugging), requires a  typecode
+ */
+void container_printf(const void *container, uint8_t typecode);
+
+/**
+ * print the content of the container as a comma-separated list of 32-bit values
+ * starting at base, requires a  typecode
+ */
+void container_printf_as_uint32_array(const void *container, uint8_t typecode,
+                                      uint32_t base);
+
+/**
+ * Checks whether a container is not empty, requires a  typecode
+ */
+static inline bool container_nonzero_cardinality(const void *container,
+                                                 uint8_t typecode) {
+    container = container_unwrap_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return bitset_container_const_nonzero_cardinality(
+                (const bitset_container_t *)container);
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return array_container_nonzero_cardinality(
+                (const array_container_t *)container);
+        case RUN_CONTAINER_TYPE_CODE:
+            return run_container_nonzero_cardinality(
+                (const run_container_t *)container);
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return 0;  // unreached
+    }
+}
+
+/**
+ * Recover memory from a container, requires a  typecode
+ */
+void container_free(void *container, uint8_t typecode);
+
+/**
+ * Convert a container to an array of values, requires a  typecode as well as a
+ * "base" (most significant values)
+ * Returns number of ints added.
+ */
+static inline int container_to_uint32_array(uint32_t *output,
+                                            const void *container,
+                                            uint8_t typecode, uint32_t base) {
+    container = container_unwrap_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return bitset_container_to_uint32_array(
+                output, (const bitset_container_t *)container, base);
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return array_container_to_uint32_array(
+                output, (const array_container_t *)container, base);
+        case RUN_CONTAINER_TYPE_CODE:
+            return run_container_to_uint32_array(
+                output, (const run_container_t *)container, base);
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return 0;  // unreached
+    }
+}
+
+/**
+ * Add a value to a container, requires a  typecode, fills in new_typecode and
+ * return (possibly different) container.
+ * This function may allocate a new container, and caller is responsible for
+ * memory deallocation
+ */
+static inline void *container_add(void *container, uint16_t val,
+                                  uint8_t typecode, uint8_t *new_typecode) {
+    container = get_writable_copy_if_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            bitset_container_set((bitset_container_t *)container, val);
+            *new_typecode = BITSET_CONTAINER_TYPE_CODE;
+            return container;
+        case ARRAY_CONTAINER_TYPE_CODE: {
+            array_container_t *ac = (array_container_t *)container;
+            if (array_container_try_add(ac, val, DEFAULT_MAX_SIZE) != -1) {
+                *new_typecode = ARRAY_CONTAINER_TYPE_CODE;
+                return ac;
+            } else {
+                bitset_container_t* bitset = bitset_container_from_array(ac);
+                bitset_container_add(bitset, val);
+                *new_typecode = BITSET_CONTAINER_TYPE_CODE;
+                return bitset;
+            }
+        } break;
+        case RUN_CONTAINER_TYPE_CODE:
+            // per Java, no container type adjustments are done (revisit?)
+            run_container_add((run_container_t *)container, val);
+            *new_typecode = RUN_CONTAINER_TYPE_CODE;
+            return container;
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return NULL;
+    }
+}
+
+/**
+ * Remove a value from a container, requires a  typecode, fills in new_typecode
+ * and
+ * return (possibly different) container.
+ * This function may allocate a new container, and caller is responsible for
+ * memory deallocation
+ */
+static inline void *container_remove(void *container, uint16_t val,
+                                     uint8_t typecode, uint8_t *new_typecode) {
+    container = get_writable_copy_if_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            if (bitset_container_remove((bitset_container_t *)container, val)) {
+                if (bitset_container_cardinality(
+                        (bitset_container_t *)container) <= DEFAULT_MAX_SIZE) {
+                    *new_typecode = ARRAY_CONTAINER_TYPE_CODE;
+                    return array_container_from_bitset(
+                        (bitset_container_t *)container);
+                }
+            }
+            *new_typecode = typecode;
+            return container;
+        case ARRAY_CONTAINER_TYPE_CODE:
+            *new_typecode = typecode;
+            array_container_remove((array_container_t *)container, val);
+            return container;
+        case RUN_CONTAINER_TYPE_CODE:
+            // per Java, no container type adjustments are done (revisit?)
+            run_container_remove((run_container_t *)container, val);
+            *new_typecode = RUN_CONTAINER_TYPE_CODE;
+            return container;
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return NULL;
+    }
+}
+
+/**
+ * Check whether a value is in a container, requires a  typecode
+ */
+static inline bool container_contains(const void *container, uint16_t val,
+                               uint8_t typecode) {
+    container = container_unwrap_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return bitset_container_get((const bitset_container_t *)container,
+                                        val);
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return array_container_contains(
+                (const array_container_t *)container, val);
+        case RUN_CONTAINER_TYPE_CODE:
+            return run_container_contains((const run_container_t *)container,
+                                          val);
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return false;
+    }
+}
+
+/**
+ * Check whether a range of values from range_start (included) to range_end (excluded)
+ * is in a container, requires a typecode
+ */
+static inline bool container_contains_range(const void *container, uint32_t range_start,
+                                       uint32_t range_end, uint8_t typecode) {
+    container = container_unwrap_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return bitset_container_get_range((const bitset_container_t *)container,
+                                                range_start, range_end);
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return array_container_contains_range((const array_container_t *)container,
+                                                    range_start, range_end);
+        case RUN_CONTAINER_TYPE_CODE:
+            return run_container_contains_range((const run_container_t *)container,
+                                                    range_start, range_end);
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return false;
+    }
+}
+
+int32_t container_serialize(const void *container, uint8_t typecode,
+                            char *buf) WARN_UNUSED;
+
+uint32_t container_serialization_len(const void *container, uint8_t typecode);
+
+void *container_deserialize(uint8_t typecode, const char *buf, size_t buf_len);
+
+/**
+ * Returns true if the two containers have the same content. Note that
+ * two containers having different types can be "equal" in this sense.
+ */
+static inline bool container_equals(const void *c1, uint8_t type1,
+                                    const void *c2, uint8_t type2) {
+    c1 = container_unwrap_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    switch (CONTAINER_PAIR(type1, type2)) {
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            return bitset_container_equals((const bitset_container_t *)c1,
+                                           (const bitset_container_t *)c2);
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            RUN_CONTAINER_TYPE_CODE):
+            return run_container_equals_bitset((const run_container_t *)c2,
+                                               (const bitset_container_t *)c1);
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            return run_container_equals_bitset((const run_container_t *)c1,
+                                               (const bitset_container_t *)c2);
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            // java would always return false?
+            return array_container_equal_bitset((const array_container_t *)c2,
+                                                (const bitset_container_t *)c1);
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            // java would always return false?
+            return array_container_equal_bitset((const array_container_t *)c1,
+                                                (const bitset_container_t *)c2);
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            return run_container_equals_array((const run_container_t *)c2,
+                                              (const array_container_t *)c1);
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE):
+            return run_container_equals_array((const run_container_t *)c1,
+                                              (const array_container_t *)c2);
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            return array_container_equals((const array_container_t *)c1,
+                                          (const array_container_t *)c2);
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            return run_container_equals((const run_container_t *)c1,
+                                        (const run_container_t *)c2);
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return false;
+    }
+}
+
+/**
+ * Returns true if the container c1 is a subset of the container c2. Note that
+ * c1 can be a subset of c2 even if they have a different type.
+ */
+static inline bool container_is_subset(const void *c1, uint8_t type1,
+                                       const void *c2, uint8_t type2) {
+    c1 = container_unwrap_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    switch (CONTAINER_PAIR(type1, type2)) {
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            return bitset_container_is_subset((const bitset_container_t *)c1,
+                                              (const bitset_container_t *)c2);
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            RUN_CONTAINER_TYPE_CODE):
+            return bitset_container_is_subset_run((const bitset_container_t *)c1,
+                                                  (const run_container_t *)c2);
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            return run_container_is_subset_bitset((const run_container_t *)c1,
+                                                  (const bitset_container_t *)c2);
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            return false;  // by construction, size(c1) > size(c2)
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            return array_container_is_subset_bitset((const array_container_t *)c1,
+                                                    (const bitset_container_t *)c2);
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            return array_container_is_subset_run((const array_container_t *)c1,
+                                                 (const run_container_t *)c2);
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE):
+            return run_container_is_subset_array((const run_container_t *)c1,
+                                                 (const array_container_t *)c2);
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            return array_container_is_subset((const array_container_t *)c1,
+                                             (const array_container_t *)c2);
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            return run_container_is_subset((const run_container_t *)c1,
+                                           (const run_container_t *)c2);
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return false;
+    }
+}
+
+// macro-izations possibilities for generic non-inplace binary-op dispatch
+
+/**
+ * Compute intersection between two containers, generate a new container (having
+ * type result_type), requires a typecode. This allocates new memory, caller
+ * is responsible for deallocation.
+ */
+static inline void *container_and(const void *c1, uint8_t type1, const void *c2,
+                                  uint8_t type2, uint8_t *result_type) {
+    c1 = container_unwrap_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    void *result = NULL;
+    switch (CONTAINER_PAIR(type1, type2)) {
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            *result_type = bitset_bitset_container_intersection(
+                               (const bitset_container_t *)c1,
+                               (const bitset_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            result = array_container_create();
+            array_container_intersection((const array_container_t *)c1,
+                                         (const array_container_t *)c2,
+                                         (array_container_t *)result);
+            *result_type = ARRAY_CONTAINER_TYPE_CODE;  // never bitset
+            return result;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            result = run_container_create();
+            run_container_intersection((const run_container_t *)c1,
+                                       (const run_container_t *)c2,
+                                       (run_container_t *)result);
+            return convert_run_to_efficient_container_and_free(
+                (run_container_t *)result, result_type);
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            result = array_container_create();
+            array_bitset_container_intersection((const array_container_t *)c2,
+                                                (const bitset_container_t *)c1,
+                                                (array_container_t *)result);
+            *result_type = ARRAY_CONTAINER_TYPE_CODE;  // never bitset
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            result = array_container_create();
+            *result_type = ARRAY_CONTAINER_TYPE_CODE;  // never bitset
+            array_bitset_container_intersection((const array_container_t *)c1,
+                                                (const bitset_container_t *)c2,
+                                                (array_container_t *)result);
+            return result;
+
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            RUN_CONTAINER_TYPE_CODE):
+            *result_type = run_bitset_container_intersection(
+                               (const run_container_t *)c2,
+                               (const bitset_container_t *)c1, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            *result_type = run_bitset_container_intersection(
+                               (const run_container_t *)c1,
+                               (const bitset_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            result = array_container_create();
+            *result_type = ARRAY_CONTAINER_TYPE_CODE;  // never bitset
+            array_run_container_intersection((const array_container_t *)c1,
+                                             (const run_container_t *)c2,
+                                             (array_container_t *)result);
+            return result;
+
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE):
+            result = array_container_create();
+            *result_type = ARRAY_CONTAINER_TYPE_CODE;  // never bitset
+            array_run_container_intersection((const array_container_t *)c2,
+                                             (const run_container_t *)c1,
+                                             (array_container_t *)result);
+            return result;
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return NULL;
+    }
+}
+
+/**
+ * Compute the size of the intersection between two containers.
+ */
+static inline int container_and_cardinality(const void *c1, uint8_t type1,
+                                            const void *c2, uint8_t type2) {
+    c1 = container_unwrap_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    switch (CONTAINER_PAIR(type1, type2)) {
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            return bitset_container_and_justcard(
+                (const bitset_container_t *)c1, (const bitset_container_t *)c2);
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            return array_container_intersection_cardinality(
+                (const array_container_t *)c1, (const array_container_t *)c2);
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            return run_container_intersection_cardinality(
+                (const run_container_t *)c1, (const run_container_t *)c2);
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            return array_bitset_container_intersection_cardinality(
+                (const array_container_t *)c2, (const bitset_container_t *)c1);
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            return array_bitset_container_intersection_cardinality(
+                (const array_container_t *)c1, (const bitset_container_t *)c2);
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            RUN_CONTAINER_TYPE_CODE):
+            return run_bitset_container_intersection_cardinality(
+                (const run_container_t *)c2, (const bitset_container_t *)c1);
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            return run_bitset_container_intersection_cardinality(
+                (const run_container_t *)c1, (const bitset_container_t *)c2);
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            return array_run_container_intersection_cardinality(
+                (const array_container_t *)c1, (const run_container_t *)c2);
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE):
+            return array_run_container_intersection_cardinality(
+                (const array_container_t *)c2, (const run_container_t *)c1);
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return 0;
+    }
+}
+
+/**
+ * Check whether two containers intersect.
+ */
+static inline bool container_intersect(const void *c1, uint8_t type1, const void *c2,
+                                  uint8_t type2) {
+    c1 = container_unwrap_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    switch (CONTAINER_PAIR(type1, type2)) {
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            return bitset_container_intersect(
+                               (const bitset_container_t *)c1,
+                               (const bitset_container_t *)c2);
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            return array_container_intersect((const array_container_t *)c1,
+                                         (const array_container_t *)c2);
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            return run_container_intersect((const run_container_t *)c1,
+                                       (const run_container_t *)c2);
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            return array_bitset_container_intersect((const array_container_t *)c2,
+                                                (const bitset_container_t *)c1);
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            return array_bitset_container_intersect((const array_container_t *)c1,
+                                                (const bitset_container_t *)c2);
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            RUN_CONTAINER_TYPE_CODE):
+            return run_bitset_container_intersect(
+                               (const run_container_t *)c2,
+                               (const bitset_container_t *)c1);
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            return run_bitset_container_intersect(
+                               (const run_container_t *)c1,
+                               (const bitset_container_t *)c2);
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            return array_run_container_intersect((const array_container_t *)c1,
+                                             (const run_container_t *)c2);
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE):
+            return array_run_container_intersect((const array_container_t *)c2,
+                                             (const run_container_t *)c1);
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return 0;
+    }
+}
+
+/**
+ * Compute intersection between two containers, with result in the first
+ container if possible. If the returned pointer is identical to c1,
+ then the container has been modified. If the returned pointer is different
+ from c1, then a new container has been created and the caller is responsible
+ for freeing it.
+ The type of the first container may change. Returns the modified
+ (and possibly new) container.
+*/
+static inline void *container_iand(void *c1, uint8_t type1, const void *c2,
+                                   uint8_t type2, uint8_t *result_type) {
+    c1 = get_writable_copy_if_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    void *result = NULL;
+    switch (CONTAINER_PAIR(type1, type2)) {
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            *result_type =
+                bitset_bitset_container_intersection_inplace(
+                    (bitset_container_t *)c1, (const bitset_container_t *)c2, &result)
+                    ? BITSET_CONTAINER_TYPE_CODE
+                    : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            array_container_intersection_inplace((array_container_t *)c1,
+                                                 (const array_container_t *)c2);
+            *result_type = ARRAY_CONTAINER_TYPE_CODE;
+            return c1;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            result = run_container_create();
+            run_container_intersection((const run_container_t *)c1,
+                                       (const run_container_t *)c2,
+                                       (run_container_t *)result);
+            // as of January 2016, Java code used non-in-place intersection for
+            // two runcontainers
+            return convert_run_to_efficient_container_and_free(
+                (run_container_t *)result, result_type);
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            // c1 is a bitmap so no inplace possible
+            result = array_container_create();
+            array_bitset_container_intersection((const array_container_t *)c2,
+                                                (const bitset_container_t *)c1,
+                                                (array_container_t *)result);
+            *result_type = ARRAY_CONTAINER_TYPE_CODE;  // never bitset
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            *result_type = ARRAY_CONTAINER_TYPE_CODE;  // never bitset
+            array_bitset_container_intersection(
+                (const array_container_t *)c1, (const bitset_container_t *)c2,
+                (array_container_t *)c1);  // allowed
+            return c1;
+
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            RUN_CONTAINER_TYPE_CODE):
+            // will attempt in-place computation
+            *result_type = run_bitset_container_intersection(
+                               (const run_container_t *)c2,
+                               (const bitset_container_t *)c1, &c1)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return c1;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            *result_type = run_bitset_container_intersection(
+                               (const run_container_t *)c1,
+                               (const bitset_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            result = array_container_create();
+            *result_type = ARRAY_CONTAINER_TYPE_CODE;  // never bitset
+            array_run_container_intersection((const array_container_t *)c1,
+                                             (const run_container_t *)c2,
+                                             (array_container_t *)result);
+            return result;
+
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE):
+            result = array_container_create();
+            *result_type = ARRAY_CONTAINER_TYPE_CODE;  // never bitset
+            array_run_container_intersection((const array_container_t *)c2,
+                                             (const run_container_t *)c1,
+                                             (array_container_t *)result);
+            return result;
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return NULL;
+    }
+}
+
+/**
+ * Compute union between two containers, generate a new container (having type
+ * result_type), requires a typecode. This allocates new memory, caller
+ * is responsible for deallocation.
+ */
+static inline void *container_or(const void *c1, uint8_t type1, const void *c2,
+                                 uint8_t type2, uint8_t *result_type) {
+    c1 = container_unwrap_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    void *result = NULL;
+    switch (CONTAINER_PAIR(type1, type2)) {
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            result = bitset_container_create();
+            bitset_container_or((const bitset_container_t *)c1,
+                                (const bitset_container_t *)c2,
+                                (bitset_container_t *)result);
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            *result_type = array_array_container_union(
+                               (const array_container_t *)c1,
+                               (const array_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            result = run_container_create();
+            run_container_union((const run_container_t *)c1,
+                                (const run_container_t *)c2,
+                                (run_container_t *)result);
+            *result_type = RUN_CONTAINER_TYPE_CODE;
+            // todo: could be optimized since will never convert to array
+            result = convert_run_to_efficient_container_and_free(
+                (run_container_t *)result, (uint8_t *)result_type);
+            return result;
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            result = bitset_container_create();
+            array_bitset_container_union((const array_container_t *)c2,
+                                         (const bitset_container_t *)c1,
+                                         (bitset_container_t *)result);
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            result = bitset_container_create();
+            array_bitset_container_union((const array_container_t *)c1,
+                                         (const bitset_container_t *)c2,
+                                         (bitset_container_t *)result);
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            RUN_CONTAINER_TYPE_CODE):
+            if (run_container_is_full((const run_container_t *)c2)) {
+                result = run_container_create();
+                *result_type = RUN_CONTAINER_TYPE_CODE;
+                run_container_copy((const run_container_t *)c2,
+                                   (run_container_t *)result);
+                return result;
+            }
+            result = bitset_container_create();
+            run_bitset_container_union((const run_container_t *)c2,
+                                       (const bitset_container_t *)c1,
+                                       (bitset_container_t *)result);
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            if (run_container_is_full((const run_container_t *)c1)) {
+                result = run_container_create();
+                *result_type = RUN_CONTAINER_TYPE_CODE;
+                run_container_copy((const run_container_t *)c1,
+                                   (run_container_t *)result);
+                return result;
+            }
+            result = bitset_container_create();
+            run_bitset_container_union((const run_container_t *)c1,
+                                       (const bitset_container_t *)c2,
+                                       (bitset_container_t *)result);
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            result = run_container_create();
+            array_run_container_union((const array_container_t *)c1,
+                                      (const run_container_t *)c2,
+                                      (run_container_t *)result);
+            result = convert_run_to_efficient_container_and_free(
+                (run_container_t *)result, (uint8_t *)result_type);
+            return result;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE):
+            result = run_container_create();
+            array_run_container_union((const array_container_t *)c2,
+                                      (const run_container_t *)c1,
+                                      (run_container_t *)result);
+            result = convert_run_to_efficient_container_and_free(
+                (run_container_t *)result, (uint8_t *)result_type);
+            return result;
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return NULL;  // unreached
+    }
+}
+
+/**
+ * Compute union between two containers, generate a new container (having type
+ * result_type), requires a typecode. This allocates new memory, caller
+ * is responsible for deallocation.
+ *
+ * This lazy version delays some operations such as the maintenance of the
+ * cardinality. It requires repair later on the generated containers.
+ */
+static inline void *container_lazy_or(const void *c1, uint8_t type1,
+                                      const void *c2, uint8_t type2,
+                                      uint8_t *result_type) {
+    c1 = container_unwrap_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    void *result = NULL;
+    switch (CONTAINER_PAIR(type1, type2)) {
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            result = bitset_container_create();
+            bitset_container_or_nocard(
+                (const bitset_container_t *)c1, (const bitset_container_t *)c2,
+                (bitset_container_t *)result);  // is lazy
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            *result_type = array_array_container_lazy_union(
+                               (const array_container_t *)c1,
+                               (const array_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            result = run_container_create();
+            run_container_union((const run_container_t *)c1,
+                                (const run_container_t *)c2,
+                                (run_container_t *)result);
+            *result_type = RUN_CONTAINER_TYPE_CODE;
+            // we are being lazy
+            result = convert_run_to_efficient_container(
+                (run_container_t *)result, result_type);
+            return result;
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            result = bitset_container_create();
+            array_bitset_container_lazy_union(
+                (const array_container_t *)c2, (const bitset_container_t *)c1,
+                (bitset_container_t *)result);  // is lazy
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            result = bitset_container_create();
+            array_bitset_container_lazy_union(
+                (const array_container_t *)c1, (const bitset_container_t *)c2,
+                (bitset_container_t *)result);  // is lazy
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            RUN_CONTAINER_TYPE_CODE):
+            if (run_container_is_full((const run_container_t *)c2)) {
+                result = run_container_create();
+                *result_type = RUN_CONTAINER_TYPE_CODE;
+                run_container_copy((const run_container_t *)c2,
+                                   (run_container_t *)result);
+                return result;
+            }
+            result = bitset_container_create();
+            run_bitset_container_lazy_union(
+                (const run_container_t *)c2, (const bitset_container_t *)c1,
+                (bitset_container_t *)result);  // is lazy
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            if (run_container_is_full((const run_container_t *)c1)) {
+                result = run_container_create();
+                *result_type = RUN_CONTAINER_TYPE_CODE;
+                run_container_copy((const run_container_t *)c1,
+                                   (run_container_t *)result);
+                return result;
+            }
+            result = bitset_container_create();
+            run_bitset_container_lazy_union(
+                (const run_container_t *)c1, (const bitset_container_t *)c2,
+                (bitset_container_t *)result);  // is lazy
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            result = run_container_create();
+            array_run_container_union((const array_container_t *)c1,
+                                      (const run_container_t *)c2,
+                                      (run_container_t *)result);
+            *result_type = RUN_CONTAINER_TYPE_CODE;
+            // next line skipped since we are lazy
+            // result = convert_run_to_efficient_container(result, result_type);
+            return result;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE):
+            result = run_container_create();
+            array_run_container_union(
+                (const array_container_t *)c2, (const run_container_t *)c1,
+                (run_container_t *)result);  // TODO make lazy
+            *result_type = RUN_CONTAINER_TYPE_CODE;
+            // next line skipped since we are lazy
+            // result = convert_run_to_efficient_container(result, result_type);
+            return result;
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return NULL;  // unreached
+    }
+}
+
+/**
+ * Compute the union between two containers, with result in the first container.
+ * If the returned pointer is identical to c1, then the container has been
+ * modified.
+ * If the returned pointer is different from c1, then a new container has been
+ * created and the caller is responsible for freeing it.
+ * The type of the first container may change. Returns the modified
+ * (and possibly new) container
+*/
+static inline void *container_ior(void *c1, uint8_t type1, const void *c2,
+                                  uint8_t type2, uint8_t *result_type) {
+    c1 = get_writable_copy_if_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    void *result = NULL;
+    switch (CONTAINER_PAIR(type1, type2)) {
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            bitset_container_or((const bitset_container_t *)c1,
+                                (const bitset_container_t *)c2,
+                                (bitset_container_t *)c1);
+#ifdef OR_BITSET_CONVERSION_TO_FULL
+            if (((bitset_container_t *)c1)->cardinality ==
+                (1 << 16)) {  // we convert
+                result = run_container_create_range(0, (1 << 16));
+                *result_type = RUN_CONTAINER_TYPE_CODE;
+                return result;
+            }
+#endif
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            return c1;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            *result_type = array_array_container_inplace_union(
+                               (array_container_t *)c1,
+                               (const array_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            if((result == NULL)
+               && (*result_type == ARRAY_CONTAINER_TYPE_CODE)) {
+                 return c1; // the computation was done in-place!
+            }
+            return result;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            run_container_union_inplace((run_container_t *)c1,
+                                        (const run_container_t *)c2);
+            return convert_run_to_efficient_container((run_container_t *)c1,
+                                                      result_type);
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            array_bitset_container_union((const array_container_t *)c2,
+                                         (const bitset_container_t *)c1,
+                                         (bitset_container_t *)c1);
+            *result_type = BITSET_CONTAINER_TYPE_CODE;  // never array
+            return c1;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            // c1 is an array, so no in-place possible
+            result = bitset_container_create();
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            array_bitset_container_union((const array_container_t *)c1,
+                                         (const bitset_container_t *)c2,
+                                         (bitset_container_t *)result);
+            return result;
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            RUN_CONTAINER_TYPE_CODE):
+            if (run_container_is_full((const run_container_t *)c2)) {
+                result = run_container_create();
+                *result_type = RUN_CONTAINER_TYPE_CODE;
+                run_container_copy((const run_container_t *)c2,
+                                   (run_container_t *)result);
+                return result;
+            }
+            run_bitset_container_union((const run_container_t *)c2,
+                                       (const bitset_container_t *)c1,
+                                       (bitset_container_t *)c1);  // allowed
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            return c1;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            if (run_container_is_full((const run_container_t *)c1)) {
+                *result_type = RUN_CONTAINER_TYPE_CODE;
+
+                return c1;
+            }
+            result = bitset_container_create();
+            run_bitset_container_union((const run_container_t *)c1,
+                                       (const bitset_container_t *)c2,
+                                       (bitset_container_t *)result);
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            result = run_container_create();
+            array_run_container_union((const array_container_t *)c1,
+                                      (const run_container_t *)c2,
+                                      (run_container_t *)result);
+            result = convert_run_to_efficient_container_and_free(
+                (run_container_t *)result, result_type);
+            return result;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE):
+            array_run_container_inplace_union((const array_container_t *)c2,
+                                              (run_container_t *)c1);
+            c1 = convert_run_to_efficient_container((run_container_t *)c1,
+                                                    result_type);
+            return c1;
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return NULL;
+    }
+}
+
+/**
+ * Compute the union between two containers, with result in the first container.
+ * If the returned pointer is identical to c1, then the container has been
+ * modified.
+ * If the returned pointer is different from c1, then a new container has been
+ * created and the caller is responsible for freeing it.
+ * The type of the first container may change. Returns the modified
+ * (and possibly new) container
+ *
+ * This lazy version delays some operations such as the maintenance of the
+ * cardinality. It requires repair later on the generated containers.
+*/
+static inline void *container_lazy_ior(void *c1, uint8_t type1, const void *c2,
+                                       uint8_t type2, uint8_t *result_type) {
+    assert(type1 != SHARED_CONTAINER_TYPE_CODE);
+    // c1 = get_writable_copy_if_shared(c1,&type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    void *result = NULL;
+    switch (CONTAINER_PAIR(type1, type2)) {
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+#ifdef LAZY_OR_BITSET_CONVERSION_TO_FULL
+            // if we have two bitsets, we might as well compute the cardinality
+            bitset_container_or((const bitset_container_t *)c1,
+                                (const bitset_container_t *)c2,
+                                (bitset_container_t *)c1);
+            // it is possible that two bitsets can lead to a full container
+            if (((bitset_container_t *)c1)->cardinality ==
+                (1 << 16)) {  // we convert
+                result = run_container_create_range(0, (1 << 16));
+                *result_type = RUN_CONTAINER_TYPE_CODE;
+                return result;
+            }
+#else
+            bitset_container_or_nocard((const bitset_container_t *)c1,
+                                       (const bitset_container_t *)c2,
+                                       (bitset_container_t *)c1);
+
+#endif
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            return c1;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            *result_type = array_array_container_lazy_inplace_union(
+                               (array_container_t *)c1,
+                               (const array_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            if((result == NULL)
+               && (*result_type == ARRAY_CONTAINER_TYPE_CODE)) {
+                 return c1; // the computation was done in-place!
+            }
+            return result;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            run_container_union_inplace((run_container_t *)c1,
+                                        (const run_container_t *)c2);
+            *result_type = RUN_CONTAINER_TYPE_CODE;
+            return convert_run_to_efficient_container((run_container_t *)c1,
+                                                      result_type);
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            array_bitset_container_lazy_union(
+                (const array_container_t *)c2, (const bitset_container_t *)c1,
+                (bitset_container_t *)c1);              // is lazy
+            *result_type = BITSET_CONTAINER_TYPE_CODE;  // never array
+            return c1;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            // c1 is an array, so no in-place possible
+            result = bitset_container_create();
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            array_bitset_container_lazy_union(
+                (const array_container_t *)c1, (const bitset_container_t *)c2,
+                (bitset_container_t *)result);  // is lazy
+            return result;
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            RUN_CONTAINER_TYPE_CODE):
+            if (run_container_is_full((const run_container_t *)c2)) {
+                result = run_container_create();
+                *result_type = RUN_CONTAINER_TYPE_CODE;
+                run_container_copy((const run_container_t *)c2,
+                                   (run_container_t *)result);
+                return result;
+            }
+            run_bitset_container_lazy_union(
+                (const run_container_t *)c2, (const bitset_container_t *)c1,
+                (bitset_container_t *)c1);  // allowed //  lazy
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            return c1;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            if (run_container_is_full((const run_container_t *)c1)) {
+                *result_type = RUN_CONTAINER_TYPE_CODE;
+                return c1;
+            }
+            result = bitset_container_create();
+            run_bitset_container_lazy_union(
+                (const run_container_t *)c1, (const bitset_container_t *)c2,
+                (bitset_container_t *)result);  //  lazy
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            result = run_container_create();
+            array_run_container_union((const array_container_t *)c1,
+                                      (const run_container_t *)c2,
+                                      (run_container_t *)result);
+            *result_type = RUN_CONTAINER_TYPE_CODE;
+            // next line skipped since we are lazy
+            // result = convert_run_to_efficient_container_and_free(result,
+            // result_type);
+            return result;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE):
+            array_run_container_inplace_union((const array_container_t *)c2,
+                                              (run_container_t *)c1);
+            *result_type = RUN_CONTAINER_TYPE_CODE;
+            // next line skipped since we are lazy
+            // result = convert_run_to_efficient_container_and_free(result,
+            // result_type);
+            return c1;
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return NULL;
+    }
+}
+
+/**
+ * Compute symmetric difference (xor) between two containers, generate a new
+ * container (having type result_type), requires a typecode. This allocates new
+ * memory, caller is responsible for deallocation.
+ */
+static inline void *container_xor(const void *c1, uint8_t type1, const void *c2,
+                                  uint8_t type2, uint8_t *result_type) {
+    c1 = container_unwrap_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    void *result = NULL;
+    switch (CONTAINER_PAIR(type1, type2)) {
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            *result_type = bitset_bitset_container_xor(
+                               (const bitset_container_t *)c1,
+                               (const bitset_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            *result_type = array_array_container_xor(
+                               (const array_container_t *)c1,
+                               (const array_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            *result_type =
+                run_run_container_xor((const run_container_t *)c1,
+                                      (const run_container_t *)c2, &result);
+            return result;
+
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            *result_type = array_bitset_container_xor(
+                               (const array_container_t *)c2,
+                               (const bitset_container_t *)c1, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            *result_type = array_bitset_container_xor(
+                               (const array_container_t *)c1,
+                               (const bitset_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            RUN_CONTAINER_TYPE_CODE):
+            *result_type = run_bitset_container_xor(
+                               (const run_container_t *)c2,
+                               (const bitset_container_t *)c1, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+
+            *result_type = run_bitset_container_xor(
+                               (const run_container_t *)c1,
+                               (const bitset_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            *result_type =
+                array_run_container_xor((const array_container_t *)c1,
+                                        (const run_container_t *)c2, &result);
+            return result;
+
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE):
+            *result_type =
+                array_run_container_xor((const array_container_t *)c2,
+                                        (const run_container_t *)c1, &result);
+            return result;
+
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return NULL;  // unreached
+    }
+}
+
+/**
+ * Compute xor between two containers, generate a new container (having type
+ * result_type), requires a typecode. This allocates new memory, caller
+ * is responsible for deallocation.
+ *
+ * This lazy version delays some operations such as the maintenance of the
+ * cardinality. It requires repair later on the generated containers.
+ */
+static inline void *container_lazy_xor(const void *c1, uint8_t type1,
+                                       const void *c2, uint8_t type2,
+                                       uint8_t *result_type) {
+    c1 = container_unwrap_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    void *result = NULL;
+    switch (CONTAINER_PAIR(type1, type2)) {
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            result = bitset_container_create();
+            bitset_container_xor_nocard(
+                (const bitset_container_t *)c1, (const bitset_container_t *)c2,
+                (bitset_container_t *)result);  // is lazy
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            *result_type = array_array_container_lazy_xor(
+                               (const array_container_t *)c1,
+                               (const array_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            // nothing special done yet.
+            *result_type =
+                run_run_container_xor((const run_container_t *)c1,
+                                      (const run_container_t *)c2, &result);
+            return result;
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            result = bitset_container_create();
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            array_bitset_container_lazy_xor((const array_container_t *)c2,
+                                            (const bitset_container_t *)c1,
+                                            (bitset_container_t *)result);
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            result = bitset_container_create();
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            array_bitset_container_lazy_xor((const array_container_t *)c1,
+                                            (const bitset_container_t *)c2,
+                                            (bitset_container_t *)result);
+            return result;
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            RUN_CONTAINER_TYPE_CODE):
+            result = bitset_container_create();
+            run_bitset_container_lazy_xor((const run_container_t *)c2,
+                                          (const bitset_container_t *)c1,
+                                          (bitset_container_t *)result);
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            result = bitset_container_create();
+            run_bitset_container_lazy_xor((const run_container_t *)c1,
+                                          (const bitset_container_t *)c2,
+                                          (bitset_container_t *)result);
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            result = run_container_create();
+            array_run_container_lazy_xor((const array_container_t *)c1,
+                                         (const run_container_t *)c2,
+                                         (run_container_t *)result);
+            *result_type = RUN_CONTAINER_TYPE_CODE;
+            // next line skipped since we are lazy
+            // result = convert_run_to_efficient_container(result, result_type);
+            return result;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE):
+            result = run_container_create();
+            array_run_container_lazy_xor((const array_container_t *)c2,
+                                         (const run_container_t *)c1,
+                                         (run_container_t *)result);
+            *result_type = RUN_CONTAINER_TYPE_CODE;
+            // next line skipped since we are lazy
+            // result = convert_run_to_efficient_container(result, result_type);
+            return result;
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return NULL;  // unreached
+    }
+}
+
+/**
+ * Compute the xor between two containers, with result in the first container.
+ * If the returned pointer is identical to c1, then the container has been
+ * modified.
+ * If the returned pointer is different from c1, then a new container has been
+ * created and the caller is responsible for freeing it.
+ * The type of the first container may change. Returns the modified
+ * (and possibly new) container
+*/
+static inline void *container_ixor(void *c1, uint8_t type1, const void *c2,
+                                   uint8_t type2, uint8_t *result_type) {
+    c1 = get_writable_copy_if_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    void *result = NULL;
+    switch (CONTAINER_PAIR(type1, type2)) {
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            *result_type = bitset_bitset_container_ixor(
+                               (bitset_container_t *)c1,
+                               (const bitset_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            *result_type = array_array_container_ixor(
+                               (array_container_t *)c1,
+                               (const array_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            *result_type = run_run_container_ixor(
+                (run_container_t *)c1, (const run_container_t *)c2, &result);
+            return result;
+
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            *result_type = bitset_array_container_ixor(
+                               (bitset_container_t *)c1,
+                               (const array_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            *result_type = array_bitset_container_ixor(
+                               (array_container_t *)c1,
+                               (const bitset_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+
+            return result;
+
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            RUN_CONTAINER_TYPE_CODE):
+            *result_type =
+                bitset_run_container_ixor((bitset_container_t *)c1,
+                                          (const run_container_t *)c2, &result)
+                    ? BITSET_CONTAINER_TYPE_CODE
+                    : ARRAY_CONTAINER_TYPE_CODE;
+
+            return result;
+
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            *result_type = run_bitset_container_ixor(
+                               (run_container_t *)c1,
+                               (const bitset_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+
+            return result;
+
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            *result_type = array_run_container_ixor(
+                (array_container_t *)c1, (const run_container_t *)c2, &result);
+            return result;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE):
+            *result_type = run_array_container_ixor(
+                (run_container_t *)c1, (const array_container_t *)c2, &result);
+            return result;
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return NULL;
+    }
+}
+
+/**
+ * Compute the xor between two containers, with result in the first container.
+ * If the returned pointer is identical to c1, then the container has been
+ * modified.
+ * If the returned pointer is different from c1, then a new container has been
+ * created and the caller is responsible for freeing it.
+ * The type of the first container may change. Returns the modified
+ * (and possibly new) container
+ *
+ * This lazy version delays some operations such as the maintenance of the
+ * cardinality. It requires repair later on the generated containers.
+*/
+static inline void *container_lazy_ixor(void *c1, uint8_t type1, const void *c2,
+                                        uint8_t type2, uint8_t *result_type) {
+    assert(type1 != SHARED_CONTAINER_TYPE_CODE);
+    // c1 = get_writable_copy_if_shared(c1,&type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    switch (CONTAINER_PAIR(type1, type2)) {
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            bitset_container_xor_nocard((bitset_container_t *)c1,
+                                        (const bitset_container_t *)c2,
+                                        (bitset_container_t *)c1);  // is lazy
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            return c1;
+        // TODO: other cases being lazy, esp. when we know inplace not likely
+        // could see the corresponding code for union
+        default:
+            // we may have a dirty bitset (without a precomputed cardinality) and
+            // calling container_ixor on it might be unsafe.
+            if( (type1 == BITSET_CONTAINER_TYPE_CODE)
+              && (((const bitset_container_t *)c1)->cardinality == BITSET_UNKNOWN_CARDINALITY)) {
+                ((bitset_container_t *)c1)->cardinality = 
bitset_container_compute_cardinality((bitset_container_t *)c1);
+            }
+            return container_ixor(c1, type1, c2, type2, result_type);
+    }
+}
+
+/**
+ * Compute difference (andnot) between two containers, generate a new
+ * container (having type result_type), requires a typecode. This allocates new
+ * memory, caller is responsible for deallocation.
+ */
+static inline void *container_andnot(const void *c1, uint8_t type1,
+                                     const void *c2, uint8_t type2,
+                                     uint8_t *result_type) {
+    c1 = container_unwrap_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    void *result = NULL;
+    switch (CONTAINER_PAIR(type1, type2)) {
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            *result_type = bitset_bitset_container_andnot(
+                               (const bitset_container_t *)c1,
+                               (const bitset_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            result = array_container_create();
+            array_array_container_andnot((const array_container_t *)c1,
+                                         (const array_container_t *)c2,
+                                         (array_container_t *)result);
+            *result_type = ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            if (run_container_is_full((const run_container_t *)c2)) {
+                result = array_container_create();
+                *result_type = ARRAY_CONTAINER_TYPE_CODE;
+                return result;
+            }
+            *result_type =
+                run_run_container_andnot((const run_container_t *)c1,
+                                         (const run_container_t *)c2, &result);
+            return result;
+
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            *result_type = bitset_array_container_andnot(
+                               (const bitset_container_t *)c1,
+                               (const array_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            result = array_container_create();
+            array_bitset_container_andnot((const array_container_t *)c1,
+                                          (const bitset_container_t *)c2,
+                                          (array_container_t *)result);
+            *result_type = ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            RUN_CONTAINER_TYPE_CODE):
+            if (run_container_is_full((const run_container_t *)c2)) {
+                result = array_container_create();
+                *result_type = ARRAY_CONTAINER_TYPE_CODE;
+                return result;
+            }
+            *result_type = bitset_run_container_andnot(
+                               (const bitset_container_t *)c1,
+                               (const run_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+
+            *result_type = run_bitset_container_andnot(
+                               (const run_container_t *)c1,
+                               (const bitset_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            if (run_container_is_full((const run_container_t *)c2)) {
+                result = array_container_create();
+                *result_type = ARRAY_CONTAINER_TYPE_CODE;
+                return result;
+            }
+            result = array_container_create();
+            array_run_container_andnot((const array_container_t *)c1,
+                                       (const run_container_t *)c2,
+                                       (array_container_t *)result);
+            *result_type = ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE):
+            *result_type = run_array_container_andnot(
+                (const run_container_t *)c1, (const array_container_t *)c2,
+                &result);
+            return result;
+
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return NULL;  // unreached
+    }
+}
+
+/**
+ * Compute the andnot between two containers, with result in the first
+ * container.
+ * If the returned pointer is identical to c1, then the container has been
+ * modified.
+ * If the returned pointer is different from c1, then a new container has been
+ * created and the caller is responsible for freeing it.
+ * The type of the first container may change. Returns the modified
+ * (and possibly new) container
+*/
+static inline void *container_iandnot(void *c1, uint8_t type1, const void *c2,
+                                      uint8_t type2, uint8_t *result_type) {
+    c1 = get_writable_copy_if_shared(c1, &type1);
+    c2 = container_unwrap_shared(c2, &type2);
+    void *result = NULL;
+    switch (CONTAINER_PAIR(type1, type2)) {
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            *result_type = bitset_bitset_container_iandnot(
+                               (bitset_container_t *)c1,
+                               (const bitset_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            array_array_container_iandnot((array_container_t *)c1,
+                                          (const array_container_t *)c2);
+            *result_type = ARRAY_CONTAINER_TYPE_CODE;
+            return c1;
+
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            *result_type = run_run_container_iandnot(
+                (run_container_t *)c1, (const run_container_t *)c2, &result);
+            return result;
+
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            ARRAY_CONTAINER_TYPE_CODE):
+            *result_type = bitset_array_container_iandnot(
+                               (bitset_container_t *)c1,
+                               (const array_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            *result_type = ARRAY_CONTAINER_TYPE_CODE;
+
+            array_bitset_container_iandnot((array_container_t *)c1,
+                                           (const bitset_container_t *)c2);
+            return c1;
+
+        case CONTAINER_PAIR(BITSET_CONTAINER_TYPE_CODE,
+                            RUN_CONTAINER_TYPE_CODE):
+            *result_type = bitset_run_container_iandnot(
+                               (bitset_container_t *)c1,
+                               (const run_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+
+            return result;
+
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE,
+                            BITSET_CONTAINER_TYPE_CODE):
+            *result_type = run_bitset_container_iandnot(
+                               (run_container_t *)c1,
+                               (const bitset_container_t *)c2, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+
+            return result;
+
+        case CONTAINER_PAIR(ARRAY_CONTAINER_TYPE_CODE, RUN_CONTAINER_TYPE_CODE):
+            *result_type = ARRAY_CONTAINER_TYPE_CODE;
+            array_run_container_iandnot((array_container_t *)c1,
+                                        (const run_container_t *)c2);
+            return c1;
+        case CONTAINER_PAIR(RUN_CONTAINER_TYPE_CODE, ARRAY_CONTAINER_TYPE_CODE):
+            *result_type = run_array_container_iandnot(
+                (run_container_t *)c1, (const array_container_t *)c2, &result);
+            return result;
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return NULL;
+    }
+}
+
+/**
+ * Visit all values x of the container once, passing (base+x,ptr)
+ * to iterator. You need to specify a container and its type.
+ * Returns true if the iteration should continue.
+ */
+static inline bool container_iterate(const void *container, uint8_t typecode,
+                                     uint32_t base, roaring_iterator iterator,
+                                     void *ptr) {
+    container = container_unwrap_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return bitset_container_iterate(
+                (const bitset_container_t *)container, base, iterator, ptr);
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return array_container_iterate((const array_container_t *)container,
+                                           base, iterator, ptr);
+        case RUN_CONTAINER_TYPE_CODE:
+            return run_container_iterate((const run_container_t *)container,
+                                         base, iterator, ptr);
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return false;
+    }
+}
+
+static inline bool container_iterate64(const void *container, uint8_t typecode,
+                                       uint32_t base,
+                                       roaring_iterator64 iterator,
+                                       uint64_t high_bits, void *ptr) {
+    container = container_unwrap_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return bitset_container_iterate64(
+                (const bitset_container_t *)container, base, iterator,
+                high_bits, ptr);
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return array_container_iterate64(
+                (const array_container_t *)container, base, iterator, high_bits,
+                ptr);
+        case RUN_CONTAINER_TYPE_CODE:
+            return run_container_iterate64((const run_container_t *)container,
+                                           base, iterator, high_bits, ptr);
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return false;
+    }
+}
+
+static inline void *container_not(const void *c, uint8_t typ,
+                                  uint8_t *result_type) {
+    c = container_unwrap_shared(c, &typ);
+    void *result = NULL;
+    switch (typ) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            *result_type = bitset_container_negation(
+                               (const bitset_container_t *)c, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case ARRAY_CONTAINER_TYPE_CODE:
+            result = bitset_container_create();
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            array_container_negation((const array_container_t *)c,
+                                     (bitset_container_t *)result);
+            return result;
+        case RUN_CONTAINER_TYPE_CODE:
+            *result_type =
+                run_container_negation((const run_container_t *)c, &result);
+            return result;
+
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return NULL;
+    }
+}
+
+static inline void *container_not_range(const void *c, uint8_t typ,
+                                        uint32_t range_start,
+                                        uint32_t range_end,
+                                        uint8_t *result_type) {
+    c = container_unwrap_shared(c, &typ);
+    void *result = NULL;
+    switch (typ) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            *result_type =
+                bitset_container_negation_range((const bitset_container_t *)c,
+                                                range_start, range_end, &result)
+                    ? BITSET_CONTAINER_TYPE_CODE
+                    : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case ARRAY_CONTAINER_TYPE_CODE:
+            *result_type =
+                array_container_negation_range((const array_container_t *)c,
+                                               range_start, range_end, &result)
+                    ? BITSET_CONTAINER_TYPE_CODE
+                    : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case RUN_CONTAINER_TYPE_CODE:
+            *result_type = run_container_negation_range(
+                (const run_container_t *)c, range_start, range_end, &result);
+            return result;
+
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return NULL;
+    }
+}
+
+static inline void *container_inot(void *c, uint8_t typ, uint8_t *result_type) {
+    c = get_writable_copy_if_shared(c, &typ);
+    void *result = NULL;
+    switch (typ) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            *result_type = bitset_container_negation_inplace(
+                               (bitset_container_t *)c, &result)
+                               ? BITSET_CONTAINER_TYPE_CODE
+                               : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case ARRAY_CONTAINER_TYPE_CODE:
+            // will never be inplace
+            result = bitset_container_create();
+            *result_type = BITSET_CONTAINER_TYPE_CODE;
+            array_container_negation((array_container_t *)c,
+                                     (bitset_container_t *)result);
+            array_container_free((array_container_t *)c);
+            return result;
+        case RUN_CONTAINER_TYPE_CODE:
+            *result_type =
+                run_container_negation_inplace((run_container_t *)c, &result);
+            return result;
+
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return NULL;
+    }
+}
+
+static inline void *container_inot_range(void *c, uint8_t typ,
+                                         uint32_t range_start,
+                                         uint32_t range_end,
+                                         uint8_t *result_type) {
+    c = get_writable_copy_if_shared(c, &typ);
+    void *result = NULL;
+    switch (typ) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            *result_type =
+                bitset_container_negation_range_inplace(
+                    (bitset_container_t *)c, range_start, range_end, &result)
+                    ? BITSET_CONTAINER_TYPE_CODE
+                    : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case ARRAY_CONTAINER_TYPE_CODE:
+            *result_type =
+                array_container_negation_range_inplace(
+                    (array_container_t *)c, range_start, range_end, &result)
+                    ? BITSET_CONTAINER_TYPE_CODE
+                    : ARRAY_CONTAINER_TYPE_CODE;
+            return result;
+        case RUN_CONTAINER_TYPE_CODE:
+            *result_type = run_container_negation_range_inplace(
+                (run_container_t *)c, range_start, range_end, &result);
+            return result;
+
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return NULL;
+    }
+}
+
+/**
+ * If the element of given rank is in this container, supposing that
+ * the first
+ * element has rank start_rank, then the function returns true and
+ * sets element
+ * accordingly.
+ * Otherwise, it returns false and update start_rank.
+ */
+static inline bool container_select(const void *container, uint8_t typecode,
+                                    uint32_t *start_rank, uint32_t rank,
+                                    uint32_t *element) {
+    container = container_unwrap_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return bitset_container_select((const bitset_container_t *)container,
+                                           start_rank, rank, element);
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return array_container_select((const array_container_t *)container,
+                                          start_rank, rank, element);
+        case RUN_CONTAINER_TYPE_CODE:
+            return run_container_select((const run_container_t *)container,
+                                        start_rank, rank, element);
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return false;
+    }
+}
+
+static inline uint16_t container_maximum(const void *container,
+                                         uint8_t typecode) {
+    container = container_unwrap_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return bitset_container_maximum((const bitset_container_t *)container);
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return array_container_maximum((const array_container_t *)container);
+        case RUN_CONTAINER_TYPE_CODE:
+            return run_container_maximum((const run_container_t *)container);
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return false;
+    }
+}
+
+static inline uint16_t container_minimum(const void *container,
+                                         uint8_t typecode) {
+    container = container_unwrap_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return bitset_container_minimum((const bitset_container_t *)container);
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return array_container_minimum((const array_container_t *)container);
+        case RUN_CONTAINER_TYPE_CODE:
+            return run_container_minimum((const run_container_t *)container);
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return false;
+    }
+}
+
+// number of values smaller or equal to x
+static inline int container_rank(const void *container, uint8_t typecode,
+                                 uint16_t x) {
+    container = container_unwrap_shared(container, &typecode);
+    switch (typecode) {
+        case BITSET_CONTAINER_TYPE_CODE:
+            return bitset_container_rank((const bitset_container_t *)container, x);
+        case ARRAY_CONTAINER_TYPE_CODE:
+            return array_container_rank((const array_container_t *)container, x);
+        case RUN_CONTAINER_TYPE_CODE:
+            return run_container_rank((const run_container_t *)container, x);
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            assert(false);
+            __builtin_unreachable();
+            return false;
+    }
+}
+
+/**
+ * Add all values in range [min, max] to a given container.
+ *
+ * If the returned pointer is different from $container, then a new container
+ * has been created and the caller is responsible for freeing it.
+ * The type of the first container may change. Returns the modified
+ * (and possibly new) container.
+ */
+static inline void *container_add_range(void *container, uint8_t type,
+                                        uint32_t min, uint32_t max,
+                                        uint8_t *result_type) {
+    // NB: when selecting new container type, we perform only inexpensive checks
+    switch (type) {
+        case BITSET_CONTAINER_TYPE_CODE: {
+            bitset_container_t *bitset = (bitset_container_t *) container;
+
+            int32_t union_cardinality = 0;
+            union_cardinality += bitset->cardinality;
+            union_cardinality += max - min + 1;
+            union_cardinality -= bitset_lenrange_cardinality(bitset->array, min, max-min);
+
+            if (union_cardinality == INT32_C(0x10000)) {
+                *result_type = RUN_CONTAINER_TYPE_CODE;
+                return run_container_create_range(0, INT32_C(0x10000));
+            } else {
+                *result_type = BITSET_CONTAINER_TYPE_CODE;
+                bitset_set_lenrange(bitset->array, min, max - min);
+                bitset->cardinality = union_cardinality;
+                return bitset;
+            }
+        }
+        case ARRAY_CONTAINER_TYPE_CODE: {
+            array_container_t *array = (array_container_t *) container;
+
+            int32_t nvals_greater = count_greater(array->array, array->cardinality, max);
+            int32_t nvals_less = count_less(array->array, array->cardinality - nvals_greater, min);
+            int32_t union_cardinality = nvals_less + (max - min + 1) + nvals_greater;
+
+            if (union_cardinality == INT32_C(0x10000)) {
+                *result_type = RUN_CONTAINER_TYPE_CODE;
+                return run_container_create_range(0, INT32_C(0x10000));
+            } else if (union_cardinality <= DEFAULT_MAX_SIZE) {
+                *result_type = ARRAY_CONTAINER_TYPE_CODE;
+                array_container_add_range_nvals(array, min, max, nvals_less, nvals_greater);
+                return array;
+            } else {
+                *result_type = BITSET_CONTAINER_TYPE_CODE;
+                bitset_container_t *bitset = bitset_container_from_array(array);
+                bitset_set_lenrange(bitset->array, min, max - min);
+                bitset->cardinality = union_cardinality;
+                return bitset;
+            }
+        }
+        case RUN_CONTAINER_TYPE_CODE: {
+            run_container_t *run = (run_container_t *) container;
+
+            int32_t nruns_greater = rle16_count_greater(run->runs, run->n_runs, max);
+            int32_t nruns_less = rle16_count_less(run->runs, run->n_runs - nruns_greater, min);
+
+            int32_t run_size_bytes = (nruns_less + 1 + nruns_greater) * sizeof(rle16_t);
+            int32_t bitset_size_bytes = BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
+
+            if (run_size_bytes <= bitset_size_bytes) {
+                run_container_add_range_nruns(run, min, max, nruns_less, nruns_greater);
+                *result_type = RUN_CONTAINER_TYPE_CODE;
+                return run;
+            } else {
+                *result_type = BITSET_CONTAINER_TYPE_CODE;
+                return bitset_container_from_run_range(run, min, max);
+            }
+        }
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            __builtin_unreachable();
+    }
+}
+
+/*
+ * Removes all elements in range [min, max].
+ * Returns one of:
+ *   - NULL if no elements left
+ *   - pointer to the original container
+ *   - pointer to a newly-allocated container (if it is more efficient)
+ *
+ * If the returned pointer is different from $container, then a new container
+ * has been created and the caller is responsible for freeing the original container.
+ */
+static inline void *container_remove_range(void *container, uint8_t type,
+                                           uint32_t min, uint32_t max,
+                                           uint8_t *result_type) {
+     switch (type) {
+        case BITSET_CONTAINER_TYPE_CODE: {
+            bitset_container_t *bitset = (bitset_container_t *) container;
+
+            int32_t result_cardinality = bitset->cardinality -
+                bitset_lenrange_cardinality(bitset->array, min, max-min);
+
+            if (result_cardinality == 0) {
+                return NULL;
+            } else if (result_cardinality < DEFAULT_MAX_SIZE) {
+                *result_type = ARRAY_CONTAINER_TYPE_CODE;
+                bitset_reset_range(bitset->array, min, max+1);
+                bitset->cardinality = result_cardinality;
+                return array_container_from_bitset(bitset);
+            } else {
+                *result_type = BITSET_CONTAINER_TYPE_CODE;
+                bitset_reset_range(bitset->array, min, max+1);
+                bitset->cardinality = result_cardinality;
+                return bitset;
+            }
+        }
+        case ARRAY_CONTAINER_TYPE_CODE: {
+            array_container_t *array = (array_container_t *) container;
+
+            int32_t nvals_greater = count_greater(array->array, array->cardinality, max);
+            int32_t nvals_less = count_less(array->array, array->cardinality - nvals_greater, min);
+            int32_t result_cardinality = nvals_less + nvals_greater;
+
+            if (result_cardinality == 0) {
+                return NULL;
+            } else {
+                *result_type = ARRAY_CONTAINER_TYPE_CODE;
+                array_container_remove_range(array, nvals_less,
+                    array->cardinality - result_cardinality);
+                return array;
+            }
+        }
+        case RUN_CONTAINER_TYPE_CODE: {
+            run_container_t *run = (run_container_t *) container;
+
+            if (run->n_runs == 0) {
+                return NULL;
+            }
+            if (min <= run_container_minimum(run) && max >= run_container_maximum(run)) {
+                return NULL;
+            }
+
+            run_container_remove_range(run, min, max);
+
+            if (run_container_serialized_size_in_bytes(run->n_runs) <=
+                    bitset_container_serialized_size_in_bytes()) {
+                *result_type = RUN_CONTAINER_TYPE_CODE;
+                return run;
+            } else {
+                *result_type = BITSET_CONTAINER_TYPE_CODE;
+                return bitset_container_from_run(run);
+            }
+        }
+        case SHARED_CONTAINER_TYPE_CODE:
+        default:
+            __builtin_unreachable();
+     }
+}
+
+#endif
+/* end file include/roaring/containers/containers.h */
+/* begin file include/roaring/roaring_array.h */
+#ifndef INCLUDE_ROARING_ARRAY_H
+#define INCLUDE_ROARING_ARRAY_H
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include <assert.h>
+#include <stdbool.h>
+#include <stdint.h>
+
+#define MAX_CONTAINERS 65536
+
+#define SERIALIZATION_ARRAY_UINT32 1
+#define SERIALIZATION_CONTAINER 2
+
+#define ROARING_FLAG_COW UINT8_C(0x1)
+#define ROARING_FLAG_FROZEN UINT8_C(0x2)
+
+enum {
+    SERIAL_COOKIE_NO_RUNCONTAINER = 12346,
+    SERIAL_COOKIE = 12347,
+    FROZEN_COOKIE = 13766,
+    NO_OFFSET_THRESHOLD = 4
+};
+
+/**
+ * Roaring arrays are array-based key-value pairs having containers as values
+ * and 16-bit integer keys. A roaring bitmap  might be implemented as such.
+ */
+
+// parallel arrays.  Element sizes quite different.
+// Alternative is array
+// of structs.  Which would have better
+// cache performance through binary searches?
+
+typedef struct roaring_array_s {
+    int32_t size;
+    int32_t allocation_size;
+    void **containers;
+    uint16_t *keys;
+    uint8_t *typecodes;
+    uint8_t flags;
+} roaring_array_t;
+
+/**
+ * Create a new roaring array
+ */
+roaring_array_t *ra_create(void);
+
+/**
+ * Initialize an existing roaring array with the specified capacity (in number
+ * of containers)
+ */
+bool ra_init_with_capacity(roaring_array_t *new_ra, uint32_t cap);
+
+/**
+ * Initialize with zero capacity
+ */
+void ra_init(roaring_array_t *t);
+
+/**
+ * Copies this roaring array, we assume that dest is not initialized
+ */
+bool ra_copy(const roaring_array_t *source, roaring_array_t *dest,
+             bool copy_on_write);
+
+/*
+ * Shrinks the capacity, returns the number of bytes saved.
+ */
+int ra_shrink_to_fit(roaring_array_t *ra);
+
+/**
+ * Copies this roaring array, we assume that dest is initialized
+ */
+bool ra_overwrite(const roaring_array_t *source, roaring_array_t *dest,
+                  bool copy_on_write);
+
+/**
+ * Frees the memory used by a roaring array
+ */
+void ra_clear(roaring_array_t *r);
+
+/**
+ * Frees the memory used by a roaring array, but does not free the containers
+ */
+void ra_clear_without_containers(roaring_array_t *r);
+
+/**
+ * Frees just the containers
+ */
+void ra_clear_containers(roaring_array_t *ra);
+
+/**
+ * Get the index corresponding to a 16-bit key
+ */
+static inline int32_t ra_get_index(const roaring_array_t *ra, uint16_t x) {
+    if ((ra->size == 0) || ra->keys[ra->size - 1] == x) return ra->size - 1;
+    return binarySearch(ra->keys, (int32_t)ra->size, x);
+}
+
+/**
+ * Retrieves the container at index i, filling in the typecode
+ */
+static inline void *ra_get_container_at_index(const roaring_array_t *ra, uint16_t i,
+                                       uint8_t *typecode) {
+    *typecode = ra->typecodes[i];
+    return ra->containers[i];
+}
+
+/**
+ * Retrieves the key at index i
+ */
+uint16_t ra_get_key_at_index(const roaring_array_t *ra, uint16_t i);
+
+/**
+ * Add a new key-value pair at index i
+ */
+void ra_insert_new_key_value_at(roaring_array_t *ra, int32_t i, uint16_t key,
+                                void *container, uint8_t typecode);
+
+/**
+ * Append a new key-value pair
+ */
+void ra_append(roaring_array_t *ra, uint16_t s, void *c, uint8_t typecode);
+
+/**
+ * Append a new key-value pair to ra, cloning (in COW sense) a value from sa
+ * at index index
+ */
+void ra_append_copy(roaring_array_t *ra, const roaring_array_t *sa,
+                    uint16_t index, bool copy_on_write);
+
+/**
+ * Append new key-value pairs to ra, cloning (in COW sense)  values from sa
+ * at indexes
+ * [start_index, end_index)
+ */
+void ra_append_copy_range(roaring_array_t *ra, const roaring_array_t *sa,
+                          int32_t start_index, int32_t end_index,
+                          bool copy_on_write);
+
+/** appends from sa to ra, ending with the greatest key that is
+ * is less or equal stopping_key
+ */
+void ra_append_copies_until(roaring_array_t *ra, const roaring_array_t *sa,
+                            uint16_t stopping_key, bool copy_on_write);
+
+/** appends from sa to ra, starting with the smallest key that is
+ * is strictly greater than before_start
+ */
+
+void ra_append_copies_after(roaring_array_t *ra, const roaring_array_t *sa,
+                            uint16_t before_start, bool copy_on_write);
+
+/**
+ * Move the key-value pairs to ra from sa at indexes
+ * [start_index, end_index), old array should not be freed
+ * (use ra_clear_without_containers)
+ **/
+void ra_append_move_range(roaring_array_t *ra, roaring_array_t *sa,
+                          int32_t start_index, int32_t end_index);
+/**
+ * Append new key-value pairs to ra,  from sa at indexes
+ * [start_index, end_index)
+ */
+void ra_append_range(roaring_array_t *ra, roaring_array_t *sa,
+                     int32_t start_index, int32_t end_index,
+                     bool copy_on_write);
+
+/**
+ * Set the container at the corresponding index using the specified
+ * typecode.
+ */
+static inline void ra_set_container_at_index(const roaring_array_t *ra, int32_t i,
+                                      void *c, uint8_t typecode) {
+    assert(i < ra->size);
+    ra->containers[i] = c;
+    ra->typecodes[i] = typecode;
+}
+
+/**
+ * If needed, increase the capacity of the array so that it can fit k values
+ * (at
+ * least);
+ */
+bool extend_array(roaring_array_t *ra, int32_t k);
+
+static inline int32_t ra_get_size(const roaring_array_t *ra) { return ra->size; }
+
+static inline int32_t ra_advance_until(const roaring_array_t *ra, uint16_t x,
+                                       int32_t pos) {
+    return advanceUntil(ra->keys, pos, ra->size, x);
+}
+
+int32_t ra_advance_until_freeing(roaring_array_t *ra, uint16_t x, int32_t pos);
+
+void ra_downsize(roaring_array_t *ra, int32_t new_length);
+
+static inline void ra_replace_key_and_container_at_index(roaring_array_t *ra,
+                                                  int32_t i, uint16_t key,
+                                                  void *c, uint8_t typecode) {
+    assert(i < ra->size);
+
+    ra->keys[i] = key;
+    ra->containers[i] = c;
+    ra->typecodes[i] = typecode;
+}
+
+// write set bits to an array
+void ra_to_uint32_array(const roaring_array_t *ra, uint32_t *ans);
+
+bool ra_range_uint32_array(const roaring_array_t *ra, size_t offset, size_t limit, uint32_t *ans);
+
+/**
+ * write a bitmap to a buffer. This is meant to be compatible with
+ * the
+ * Java and Go versions. Return the size in bytes of the serialized
+ * output (which should be ra_portable_size_in_bytes(ra)).
+ */
+size_t ra_portable_serialize(const roaring_array_t *ra, char *buf);
+
+/**
+ * read a bitmap from a serialized version. This is meant to be compatible
+ * with the Java and Go versions.
+ * maxbytes  indicates how many bytes available from buf.
+ * When the function returns true, roaring_array_t is populated with the data
+ * and *readbytes indicates how many bytes were read. In all cases, if the function
+ * returns true, then maxbytes >= *readbytes.
+ */
+bool ra_portable_deserialize(roaring_array_t *ra, const char *buf, const size_t maxbytes, size_t * 
readbytes);
+
+/**
+ * Quickly checks whether there is a serialized bitmap at the pointer,
+ * not exceeding size "maxbytes" in bytes. This function does not allocate
+ * memory dynamically.
+ *
+ * This function returns 0 if and only if no valid bitmap is found.
+ * Otherwise, it returns how many bytes are occupied by the bitmap data.
+ */
+size_t ra_portable_deserialize_size(const char *buf, const size_t maxbytes);
+
+/**
+ * How many bytes are required to serialize this bitmap (meant to be
+ * compatible
+ * with Java and Go versions)
+ */
+size_t ra_portable_size_in_bytes(const roaring_array_t *ra);
+
+/**
+ * return true if it contains at least one run container.
+ */
+bool ra_has_run_container(const roaring_array_t *ra);
+
+/**
+ * Size of the header when serializing (meant to be compatible
+ * with Java and Go versions)
+ */
+uint32_t ra_portable_header_size(const roaring_array_t *ra);
+
+/**
+ * If the container at the index i is share, unshare it (creating a local
+ * copy if needed).
+ */
+static inline void ra_unshare_container_at_index(roaring_array_t *ra,
+                                                 uint16_t i) {
+    assert(i < ra->size);
+    ra->containers[i] =
+        get_writable_copy_if_shared(ra->containers[i], &ra->typecodes[i]);
+}
+
+/**
+ * remove at index i, sliding over all entries after i
+ */
+void ra_remove_at_index(roaring_array_t *ra, int32_t i);
+
+
+/**
+* clears all containers, sets the size at 0 and shrinks the memory usage.
+*/
+void ra_reset(roaring_array_t *ra);
+
+/**
+ * remove at index i, sliding over all entries after i. Free removed container.
+ */
+void ra_remove_at_index_and_free(roaring_array_t *ra, int32_t i);
+
+/**
+ * remove a chunk of indices, sliding over entries after it
+ */
+// void ra_remove_index_range(roaring_array_t *ra, int32_t begin, int32_t end);
+
+// used in inplace andNot only, to slide left the containers from
+// the mutated RoaringBitmap that are after the largest container of
+// the argument RoaringBitmap.  It is followed by a call to resize.
+//
+void ra_copy_range(roaring_array_t *ra, uint32_t begin, uint32_t end,
+                   uint32_t new_begin);
+
+/**
+ * Shifts rightmost $count containers to the left (distance < 0) or
+ * to the right (distance > 0).
+ * Allocates memory if necessary.
+ * This function doesn't free or create new containers.
+ * Caller is responsible for that.
+ */
+void ra_shift_tail(roaring_array_t *ra, int32_t count, int32_t distance);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
+/* end file include/roaring/roaring_array.h */
+/* begin file include/roaring/misc/configreport.h */
+/*
+ * configreport.h
+ *
+ */
+
+#ifndef INCLUDE_MISC_CONFIGREPORT_H_
+#define INCLUDE_MISC_CONFIGREPORT_H_
+
+#include <stddef.h>  // for size_t
+#include <stdint.h>
+#include <stdio.h>
+
+
+#ifdef IS_X64
+// useful for basic info (0)
+static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
+                                unsigned int *ecx, unsigned int *edx) {
+#ifdef ROARING_INLINE_ASM
+    __asm volatile("cpuid"
+                   : "=a"(*eax), "=b"(*ebx), "=c"(*ecx), "=d"(*edx)
+                   : "0"(*eax), "2"(*ecx));
+#endif /* not sure what to do when inline assembly is unavailable*/
+}
+
+// CPUID instruction takes no parameters as CPUID implicitly uses the EAX
+// register.
+// The EAX register should be loaded with a value specifying what information to
+// return
+static inline void cpuinfo(int code, int *eax, int *ebx, int *ecx, int *edx) {
+#ifdef ROARING_INLINE_ASM
+    __asm__ volatile("cpuid;"  //  call cpuid instruction
+                     : "=a"(*eax), "=b"(*ebx), "=c"(*ecx),
+                       "=d"(*edx)  // output equal to "movl  %%eax %1"
+                     : "a"(code)   // input equal to "movl %1, %%eax"
+                     //:"%eax","%ebx","%ecx","%edx"// clobbered register
+                     );
+#endif /* not sure what to do when inline assembly is unavailable*/
+}
+
+static inline int computecacheline(void) {
+    int eax = 0, ebx = 0, ecx = 0, edx = 0;
+    cpuinfo((int)0x80000006, &eax, &ebx, &ecx, &edx);
+    return ecx & 0xFF;
+}
+
+// this is quite imperfect, but can be handy
+static inline const char *guessprocessor(void) {
+    unsigned eax = 1, ebx = 0, ecx = 0, edx = 0;
+    native_cpuid(&eax, &ebx, &ecx, &edx);
+    const char *codename;
+    switch (eax >> 4) {
+        case 0x506E:
+            codename = "Skylake";
+            break;
+        case 0x406C:
+            codename = "CherryTrail";
+            break;
+        case 0x306D:
+            codename = "Broadwell";
+            break;
+        case 0x306C:
+            codename = "Haswell";
+            break;
+        case 0x306A:
+            codename = "IvyBridge";
+            break;
+        case 0x206A:
+        case 0x206D:
+            codename = "SandyBridge";
+            break;
+        case 0x2065:
+        case 0x206C:
+        case 0x206F:
+            codename = "Westmere";
+            break;
+        case 0x106E:
+        case 0x106A:
+        case 0x206E:
+            codename = "Nehalem";
+            break;
+        case 0x1067:
+        case 0x106D:
+            codename = "Penryn";
+            break;
+        case 0x006F:
+        case 0x1066:
+            codename = "Merom";
+            break;
+        case 0x0066:
+            codename = "Presler";
+            break;
+        case 0x0063:
+        case 0x0064:
+            codename = "Prescott";
+            break;
+        case 0x006D:
+            codename = "Dothan";
+            break;
+        case 0x0366:
+            codename = "Cedarview";
+            break;
+        case 0x0266:
+            codename = "Lincroft";
+            break;
+        case 0x016C:
+            codename = "Pineview";
+            break;
+        default:
+            codename = "UNKNOWN";
+            break;
+    }
+    return codename;
+}
+
+static inline void tellmeall(void) {
+    printf("Intel processor:  %s\t", guessprocessor());
+
+#ifdef __VERSION__
+    printf(" compiler version: %s\t", __VERSION__);
+#endif
+    printf("\tBuild option USEAVX ");
+#ifdef USEAVX
+    printf("enabled\n");
+#else
+    printf("disabled\n");
+#endif
+#ifndef __AVX2__
+    printf("AVX2 is NOT available.\n");
+#endif
+
+    if ((sizeof(int) != 4) || (sizeof(long) != 8)) {
+        printf("number of bytes: int = %lu long = %lu \n",
+               (long unsigned int)sizeof(size_t),
+               (long unsigned int)sizeof(int));
+    }
+#if defined(__LITTLE_ENDIAN__) && __LITTLE_ENDIAN__
+// This is what we expect!
+// printf("you have little endian machine");
+#endif
+#if defined(__BIG_ENDIAN__) && __BIG_ENDIAN__
+    printf("you have a big endian machine");
+#endif
+#if __CHAR_BIT__
+    if (__CHAR_BIT__ != 8) printf("on your machine, chars don't have 8bits???");
+#endif
+    if (computecacheline() != 64)
+        printf("cache line: %d bytes\n", computecacheline());
+}
+#else
+
+static inline void tellmeall(void) {
+    printf("Non-X64  processor\n");
+#ifdef __arm__
+    printf("ARM processor detected\n");
+#endif
+#ifdef __VERSION__
+    printf(" compiler version: %s\t", __VERSION__);
+#endif
+    if ((sizeof(int) != 4) || (sizeof(long) != 8)) {
+        printf("number of bytes: int = %lu long = %lu \n",
+               (long unsigned int)sizeof(size_t),
+               (long unsigned int)sizeof(int));
+    }
+#if __LITTLE_ENDIAN__
+// This is what we expect!
+// printf("you have little endian machine");
+#endif
+#if __BIG_ENDIAN__
+    printf("you have a big endian machine");
+#endif
+#if __CHAR_BIT__
+    if (__CHAR_BIT__ != 8) printf("on your machine, chars don't have 8bits???");
+#endif
+}
+
+#endif
+
+#endif /* INCLUDE_MISC_CONFIGREPORT_H_ */
+/* end file include/roaring/misc/configreport.h */
+/* begin file include/roaring/roaring.h */
+/*
+An implementation of Roaring Bitmaps in C.
+*/
+
+#ifndef ROARING_H
+#define ROARING_H
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include <stdbool.h>
+
+typedef struct roaring_bitmap_s {
+    roaring_array_t high_low_container;
+} roaring_bitmap_t;
+
+/**
+ * Creates a new bitmap (initially empty)
+ */
+roaring_bitmap_t *roaring_bitmap_create(void);
+
+/**
+ * Add all the values between min (included) and max (excluded) that are at a
+ * distance k*step from min.
+*/
+roaring_bitmap_t *roaring_bitmap_from_range(uint64_t min, uint64_t max,
+                                            uint32_t step);
+
+/**
+ * Creates a new bitmap (initially empty) with a provided
+ * container-storage capacity (it is a performance hint).
+ */
+roaring_bitmap_t *roaring_bitmap_create_with_capacity(uint32_t cap);
+
+/**
+ * Creates a new bitmap from a pointer of uint32_t integers
+ */
+roaring_bitmap_t *roaring_bitmap_of_ptr(size_t n_args, const uint32_t *vals);
+
+/*
+ * Whether you want to use copy-on-write.
+ * Saves memory and avoids copies but needs more care in a threaded context.
+ * Most users should ignore this flag.
+ * Note: if you do turn this flag to 'true', enabling COW,
+ * then ensure that you do so for all of your bitmaps since
+ * interactions between bitmaps with and without COW is unsafe.
+ */
+static inline bool roaring_bitmap_get_copy_on_write(const roaring_bitmap_t* r) {
+    return r->high_low_container.flags & ROARING_FLAG_COW;
+}
+static inline void roaring_bitmap_set_copy_on_write(roaring_bitmap_t* r, bool cow) {
+    if (cow) {
+        r->high_low_container.flags |= ROARING_FLAG_COW;
+    } else {
+        r->high_low_container.flags &= ~ROARING_FLAG_COW;
+    }
+}
+
+/**
+ * Describe the inner structure of the bitmap.
+ */
+void roaring_bitmap_printf_describe(const roaring_bitmap_t *ra);
+
+/**
+ * Creates a new bitmap from a list of uint32_t integers
+ */
+roaring_bitmap_t *roaring_bitmap_of(size_t n, ...);
+
+/**
+ * Copies a  bitmap. This does memory allocation. The caller is responsible for
+ * memory management.
+ *
+ */
+roaring_bitmap_t *roaring_bitmap_copy(const roaring_bitmap_t *r);
+
+
+/**
+ * Copies a  bitmap from src to dest. It is assumed that the pointer dest
+ * is to an already allocated bitmap. The content of the dest bitmap is
+ * freed/deleted.
+ *
+ * It might be preferable and simpler to call roaring_bitmap_copy except
+ * that roaring_bitmap_overwrite can save on memory allocations.
+ *
+ */
+bool roaring_bitmap_overwrite(roaring_bitmap_t *dest,
+                                     const roaring_bitmap_t *src);
+
+/**
+ * Print the content of the bitmap.
+ */
+void roaring_bitmap_printf(const roaring_bitmap_t *ra);
+
+/**
+ * Computes the intersection between two bitmaps and returns new bitmap. The
+ * caller is
+ * responsible for memory management.
+ *
+ */
+roaring_bitmap_t *roaring_bitmap_and(const roaring_bitmap_t *x1,
+                                     const roaring_bitmap_t *x2);
+
+/**
+ * Computes the size of the intersection between two bitmaps.
+ *
+ */
+uint64_t roaring_bitmap_and_cardinality(const roaring_bitmap_t *x1,
+                                        const roaring_bitmap_t *x2);
+
+
+/**
+ * Check whether two bitmaps intersect.
+ *
+ */
+bool roaring_bitmap_intersect(const roaring_bitmap_t *x1,
+                                     const roaring_bitmap_t *x2);
+
+/**
+ * Computes the Jaccard index between two bitmaps. (Also known as the Tanimoto
+ * distance,
+ * or the Jaccard similarity coefficient)
+ *
+ * The Jaccard index is undefined if both bitmaps are empty.
+ *
+ */
+double roaring_bitmap_jaccard_index(const roaring_bitmap_t *x1,
+                                    const roaring_bitmap_t *x2);
+
+/**
+ * Computes the size of the union between two bitmaps.
+ *
+ */
+uint64_t roaring_bitmap_or_cardinality(const roaring_bitmap_t *x1,
+                                       const roaring_bitmap_t *x2);
+
+/**
+ * Computes the size of the difference (andnot) between two bitmaps.
+ *
+ */
+uint64_t roaring_bitmap_andnot_cardinality(const roaring_bitmap_t *x1,
+                                           const roaring_bitmap_t *x2);
+
+/**
+ * Computes the size of the symmetric difference (andnot) between two bitmaps.
+ *
+ */
+uint64_t roaring_bitmap_xor_cardinality(const roaring_bitmap_t *x1,
+                                        const roaring_bitmap_t *x2);
+
+/**
+ * Inplace version modifies x1, x1 == x2 is allowed
+ */
+void roaring_bitmap_and_inplace(roaring_bitmap_t *x1,
+                                const roaring_bitmap_t *x2);
+
+/**
+ * Computes the union between two bitmaps and returns new bitmap. The caller is
+ * responsible for memory management.
+ */
+roaring_bitmap_t *roaring_bitmap_or(const roaring_bitmap_t *x1,
+                                    const roaring_bitmap_t *x2);
+
+/**
+ * Inplace version of roaring_bitmap_or, modifies x1. TDOO: decide whether x1 ==
+ *x2 ok
+ *
+ */
+void roaring_bitmap_or_inplace(roaring_bitmap_t *x1,
+                               const roaring_bitmap_t *x2);
+
+/**
+ * Compute the union of 'number' bitmaps. See also roaring_bitmap_or_many_heap.
+ * Caller is responsible for freeing the
+ * result.
+ *
+ */
+roaring_bitmap_t *roaring_bitmap_or_many(size_t number,
+                                         const roaring_bitmap_t **x);
+
+/**
+ * Compute the union of 'number' bitmaps using a heap. This can
+ * sometimes be faster than roaring_bitmap_or_many which uses
+ * a naive algorithm. Caller is responsible for freeing the
+ * result.
+ *
+ */
+roaring_bitmap_t *roaring_bitmap_or_many_heap(uint32_t number,
+                                              const roaring_bitmap_t **x);
+
+/**
+ * Computes the symmetric difference (xor) between two bitmaps
+ * and returns new bitmap. The caller is responsible for memory management.
+ */
+roaring_bitmap_t *roaring_bitmap_xor(const roaring_bitmap_t *x1,
+                                     const roaring_bitmap_t *x2);
+
+/**
+ * Inplace version of roaring_bitmap_xor, modifies x1. x1 != x2.
+ *
+ */
+void roaring_bitmap_xor_inplace(roaring_bitmap_t *x1,
+                                const roaring_bitmap_t *x2);
+
+/**
+ * Compute the xor of 'number' bitmaps.
+ * Caller is responsible for freeing the
+ * result.
+ *
+ */
+roaring_bitmap_t *roaring_bitmap_xor_many(size_t number,
+                                          const roaring_bitmap_t **x);
+
+/**
+ * Computes the  difference (andnot) between two bitmaps
+ * and returns new bitmap. The caller is responsible for memory management.
+ */
+roaring_bitmap_t *roaring_bitmap_andnot(const roaring_bitmap_t *x1,
+                                        const roaring_bitmap_t *x2);
+
+/**
+ * Inplace version of roaring_bitmap_andnot, modifies x1. x1 != x2.
+ *
+ */
+void roaring_bitmap_andnot_inplace(roaring_bitmap_t *x1,
+                                   const roaring_bitmap_t *x2);
+
+/**
+ * TODO: consider implementing:
+ * Compute the xor of 'number' bitmaps using a heap. This can
+ * sometimes be faster than roaring_bitmap_xor_many which uses
+ * a naive algorithm. Caller is responsible for freeing the
+ * result.
+ *
+ * roaring_bitmap_t *roaring_bitmap_xor_many_heap(uint32_t number,
+ *                                              const roaring_bitmap_t **x);
+ */
+
+/**
+ * Frees the memory.
+ */
+void roaring_bitmap_free(const roaring_bitmap_t *r);
+
+/**
+ * Add value n_args from pointer vals, faster than repeatedly calling
+ * roaring_bitmap_add
+ *
+ */
+void roaring_bitmap_add_many(roaring_bitmap_t *r, size_t n_args,
+                             const uint32_t *vals);
+
+/**
+ * Add value x
+ *
+ */
+void roaring_bitmap_add(roaring_bitmap_t *r, uint32_t x);
+
+/**
+ * Add value x
+ * Returns true if a new value was added, false if the value was already existing.
+ */
+bool roaring_bitmap_add_checked(roaring_bitmap_t *r, uint32_t x);
+
+/**
+ * Add all values in range [min, max]
+ */
+void roaring_bitmap_add_range_closed(roaring_bitmap_t *ra, uint32_t min, uint32_t max);
+
+/**
+ * Add all values in range [min, max)
+ */
+static inline void roaring_bitmap_add_range(roaring_bitmap_t *ra, uint64_t min, uint64_t max) {
+  if(max == min) return;
+  roaring_bitmap_add_range_closed(ra, (uint32_t)min, (uint32_t)(max - 1));
+}
+
+/**
+ * Remove value x
+ *
+ */
+void roaring_bitmap_remove(roaring_bitmap_t *r, uint32_t x);
+
+/** Remove all values in range [min, max] */
+void roaring_bitmap_remove_range_closed(roaring_bitmap_t *ra, uint32_t min, uint32_t max);
+
+/** Remove all values in range [min, max) */
+static inline void roaring_bitmap_remove_range(roaring_bitmap_t *ra, uint64_t min, uint64_t max) {
+    if(max == min) return;
+    roaring_bitmap_remove_range_closed(ra, (uint32_t)min, (uint32_t)(max - 1));
+}
+
+/** Remove multiple values */
+void roaring_bitmap_remove_many(roaring_bitmap_t *r, size_t n_args,
+                                const uint32_t *vals);
+
+/**
+ * Remove value x
+ * Returns true if a new value was removed, false if the value was not existing.
+ */
+bool roaring_bitmap_remove_checked(roaring_bitmap_t *r, uint32_t x);
+
+/**
+ * Check if value x is present
+ */
+static inline bool roaring_bitmap_contains(const roaring_bitmap_t *r, uint32_t val) {
+    const uint16_t hb = val >> 16;
+    /*
+     * the next function call involves a binary search and lots of branching.
+     */
+    int32_t i = ra_get_index(&r->high_low_container, hb);
+    if (i < 0) return false;
+
+    uint8_t typecode;
+    // next call ought to be cheap
+    void *container =
+        ra_get_container_at_index(&r->high_low_container, i, &typecode);
+    // rest might be a tad expensive, possibly involving another round of binary search
+    return container_contains(container, val & 0xFFFF, typecode);
+}
+
+/**
+ * Check whether a range of values from range_start (included) to range_end (excluded) is present
+ */
+bool roaring_bitmap_contains_range(const roaring_bitmap_t *r, uint64_t range_start, uint64_t range_end);
+
+/**
+ * Get the cardinality of the bitmap (number of elements).
+ */
+uint64_t roaring_bitmap_get_cardinality(const roaring_bitmap_t *ra);
+
+/**
+ * Returns the number of elements in the range [range_start, range_end).
+ */
+uint64_t roaring_bitmap_range_cardinality(const roaring_bitmap_t *ra,
+                                          uint64_t range_start, uint64_t range_end);
+
+/**
+* Returns true if the bitmap is empty (cardinality is zero).
+*/
+bool roaring_bitmap_is_empty(const roaring_bitmap_t *ra);
+
+
+/**
+* Empties the bitmap
+*/
+void roaring_bitmap_clear(roaring_bitmap_t *ra);
+
+/**
+ * Convert the bitmap to an array. Write the output to "ans",
+ * caller is responsible to ensure that there is enough memory
+ * allocated
+ * (e.g., ans = malloc(roaring_bitmap_get_cardinality(mybitmap)
+ *   * sizeof(uint32_t))
+ */
+void roaring_bitmap_to_uint32_array(const roaring_bitmap_t *ra, uint32_t *ans);
+
+
+/**
+ * Convert the bitmap to an array from "offset" by "limit". Write the output to "ans".
+ * so, you can get data in paging.
+ * caller is responsible to ensure that there is enough memory
+ * allocated
+ * (e.g., ans = malloc(roaring_bitmap_get_cardinality(limit)
+ *   * sizeof(uint32_t))
+ * Return false in case of failure (e.g., insufficient memory)
+ */
+bool roaring_bitmap_range_uint32_array(const roaring_bitmap_t *ra, size_t offset, size_t limit, uint32_t 
*ans);
+
+/**
+ *  Remove run-length encoding even when it is more space efficient
+ *  return whether a change was applied
+ */
+bool roaring_bitmap_remove_run_compression(roaring_bitmap_t *r);
+
+/** convert array and bitmap containers to run containers when it is more
+ * efficient;
+ * also convert from run containers when more space efficient.  Returns
+ * true if the result has at least one run container.
+ * Additional savings might be possible by calling shrinkToFit().
+ */
+bool roaring_bitmap_run_optimize(roaring_bitmap_t *r);
+
+/**
+ * If needed, reallocate memory to shrink the memory usage. Returns
+ * the number of bytes saved.
+*/
+size_t roaring_bitmap_shrink_to_fit(roaring_bitmap_t *r);
+
+/**
+* write the bitmap to an output pointer, this output buffer should refer to
+* at least roaring_bitmap_size_in_bytes(ra) allocated bytes.
+*
+* see roaring_bitmap_portable_serialize if you want a format that's compatible
+* with Java and Go implementations
+*
+* this format has the benefit of being sometimes more space efficient than
+* roaring_bitmap_portable_serialize
+* e.g., when the data is sparse.
+*
+* Returns how many bytes were written which should be
+* roaring_bitmap_size_in_bytes(ra).
+*/
+size_t roaring_bitmap_serialize(const roaring_bitmap_t *ra, char *buf);
+
+/**  use with roaring_bitmap_serialize
+* see roaring_bitmap_portable_deserialize if you want a format that's
+* compatible with Java and Go implementations
+*/
+roaring_bitmap_t *roaring_bitmap_deserialize(const void *buf);
+
+/**
+ * How many bytes are required to serialize this bitmap (NOT compatible
+ * with Java and Go versions)
+ */
+size_t roaring_bitmap_size_in_bytes(const roaring_bitmap_t *ra);
+
+/**
+ * read a bitmap from a serialized version. This is meant to be compatible with
+ * the Java and Go versions. See format specification at
+ * https://github.com/RoaringBitmap/RoaringFormatSpec
+ * In case of failure, a null pointer is returned.
+ * This function is unsafe in the sense that if there is no valid serialized
+ * bitmap at the pointer, then many bytes could be read, possibly causing a buffer
+ * overflow. For a safer approach,
+ * call roaring_bitmap_portable_deserialize_safe.
+ */
+roaring_bitmap_t *roaring_bitmap_portable_deserialize(const char *buf);
+
+/**
+ * read a bitmap from a serialized version in a safe manner (reading up to maxbytes).
+ * This is meant to be compatible with
+ * the Java and Go versions. See format specification at
+ * https://github.com/RoaringBitmap/RoaringFormatSpec
+ * In case of failure, a null pointer is returned.
+ */
+roaring_bitmap_t *roaring_bitmap_portable_deserialize_safe(const char *buf, size_t maxbytes);
+
+/**
+ * Check how many bytes would be read (up to maxbytes) at this pointer if there
+ * is a bitmap, returns zero if there is no valid bitmap.
+ * This is meant to be compatible with
+ * the Java and Go versions. See format specification at
+ * https://github.com/RoaringBitmap/RoaringFormatSpec
+ */
+size_t roaring_bitmap_portable_deserialize_size(const char *buf, size_t maxbytes);
+
+
+/**
+ * How many bytes are required to serialize this bitmap (meant to be compatible
+ * with Java and Go versions).  See format specification at
+ * https://github.com/RoaringBitmap/RoaringFormatSpec
+ */
+size_t roaring_bitmap_portable_size_in_bytes(const roaring_bitmap_t *ra);
+
+/**
+ * write a bitmap to a char buffer.  The output buffer should refer to at least
+ *  roaring_bitmap_portable_size_in_bytes(ra) bytes of allocated memory.
+ * This is meant to be compatible with
+ * the
+ * Java and Go versions. Returns how many bytes were written which should be
+ * roaring_bitmap_portable_size_in_bytes(ra).  See format specification at
+ * https://github.com/RoaringBitmap/RoaringFormatSpec
+ */
+size_t roaring_bitmap_portable_serialize(const roaring_bitmap_t *ra, char *buf);
+
+/*
+ * "Frozen" serialization format imitates memory layout of roaring_bitmap_t.
+ * Deserialized bitmap is a constant view of the underlying buffer.
+ * This significantly reduces amount of allocations and copying required during
+ * deserialization.
+ * It can be used with memory mapped files.
+ * Example can be found in benchmarks/frozen_benchmark.c
+ *
+ *         [#####] const roaring_bitmap_t *
+ *          | | |
+ *     +----+ | +-+
+ *     |      |   |
+ * [#####################################] underlying buffer
+ *
+ * Note that because frozen serialization format imitates C memory layout
+ * of roaring_bitmap_t, it is not fixed. It is different on big/little endian
+ * platforms and can be changed in future.
+ */
+
+/**
+ * Returns number of bytes required to serialize bitmap using frozen format.
+ */
+size_t roaring_bitmap_frozen_size_in_bytes(const roaring_bitmap_t *ra);
+
+/**
+ * Serializes bitmap using frozen format.
+ * Buffer size must be at least roaring_bitmap_frozen_size_in_bytes().
+ */
+void roaring_bitmap_frozen_serialize(const roaring_bitmap_t *ra, char *buf);
+
+/**
+ * Creates constant bitmap that is a view of a given buffer.
+ * Buffer must contain data previously written by roaring_bitmap_frozen_serialize(),
+ * and additionally its beginning must be aligned by 32 bytes.
+ * Length must be equal exactly to roaring_bitmap_frozen_size_in_bytes().
+ *
+ * On error, NULL is returned.
+ *
+ * Bitmap returned by this function can be used in all readonly contexts.
+ * Bitmap must be freed as usual, by calling roaring_bitmap_free().
+ * Underlying buffer must not be freed or modified while it backs any bitmaps.
+ */
+const roaring_bitmap_t *roaring_bitmap_frozen_view(const char *buf, size_t length);
+
+
+/**
+ * Iterate over the bitmap elements. The function iterator is called once for
+ *  all the values with ptr (can be NULL) as the second parameter of each call.
+ *
+ *  roaring_iterator is simply a pointer to a function that returns bool
+ *  (true means that the iteration should continue while false means that it
+ * should stop),
+ *  and takes (uint32_t,void*) as inputs.
+ *
+ *  Returns true if the roaring_iterator returned true throughout (so that
+ *  all data points were necessarily visited).
+ */
+bool roaring_iterate(const roaring_bitmap_t *ra, roaring_iterator iterator,
+                     void *ptr);
+
+bool roaring_iterate64(const roaring_bitmap_t *ra, roaring_iterator64 iterator,
+                       uint64_t high_bits, void *ptr);
+
+/**
+ * Return true if the two bitmaps contain the same elements.
+ */
+bool roaring_bitmap_equals(const roaring_bitmap_t *ra1,
+                           const roaring_bitmap_t *ra2);
+
+/**
+ * Return true if all the elements of ra1 are also in ra2.
+ */
+bool roaring_bitmap_is_subset(const roaring_bitmap_t *ra1,
+                              const roaring_bitmap_t *ra2);
+
+/**
+ * Return true if all the elements of ra1 are also in ra2 and ra2 is strictly
+ * greater
+ * than ra1.
+ */
+bool roaring_bitmap_is_strict_subset(const roaring_bitmap_t *ra1,
+                                            const roaring_bitmap_t *ra2);
+
+/**
+ * (For expert users who seek high performance.)
+ *
+ * Computes the union between two bitmaps and returns new bitmap. The caller is
+ * responsible for memory management.
+ *
+ * The lazy version defers some computations such as the maintenance of the
+ * cardinality counts. Thus you need
+ * to call roaring_bitmap_repair_after_lazy after executing "lazy" computations.
+ * It is safe to repeatedly call roaring_bitmap_lazy_or_inplace on the result.
+ * The bitsetconversion conversion is a flag which determines
+ * whether container-container operations force a bitset conversion.
+ **/
+roaring_bitmap_t *roaring_bitmap_lazy_or(const roaring_bitmap_t *x1,
+                                         const roaring_bitmap_t *x2,
+                                         const bool bitsetconversion);
+
+/**
+ * (For expert users who seek high performance.)
+ * Inplace version of roaring_bitmap_lazy_or, modifies x1
+ * The bitsetconversion conversion is a flag which determines
+ * whether container-container operations force a bitset conversion.
+ */
+void roaring_bitmap_lazy_or_inplace(roaring_bitmap_t *x1,
+                                    const roaring_bitmap_t *x2,
+                                    const bool bitsetconversion);
+
+/**
+ * (For expert users who seek high performance.)
+ *
+ * Execute maintenance operations on a bitmap created from
+ * roaring_bitmap_lazy_or
+ * or modified with roaring_bitmap_lazy_or_inplace.
+ */
+void roaring_bitmap_repair_after_lazy(roaring_bitmap_t *x1);
+
+/**
+ * Computes the symmetric difference between two bitmaps and returns new bitmap.
+ *The caller is
+ * responsible for memory management.
+ *
+ * The lazy version defers some computations such as the maintenance of the
+ * cardinality counts. Thus you need
+ * to call roaring_bitmap_repair_after_lazy after executing "lazy" computations.
+ * It is safe to repeatedly call roaring_bitmap_lazy_xor_inplace on the result.
+ *
+ */
+roaring_bitmap_t *roaring_bitmap_lazy_xor(const roaring_bitmap_t *x1,
+                                          const roaring_bitmap_t *x2);
+
+/**
+ * (For expert users who seek high performance.)
+ * Inplace version of roaring_bitmap_lazy_xor, modifies x1. x1 != x2
+ *
+ */
+void roaring_bitmap_lazy_xor_inplace(roaring_bitmap_t *x1,
+                                     const roaring_bitmap_t *x2);
+
+/**
+ * compute the negation of the roaring bitmap within a specified
+ * interval: [range_start, range_end). The number of negated values is
+ * range_end - range_start.
+ * Areas outside the range are passed through unchanged.
+ */
+
+roaring_bitmap_t *roaring_bitmap_flip(const roaring_bitmap_t *x1,
+                                      uint64_t range_start, uint64_t range_end);
+
+/**
+ * compute (in place) the negation of the roaring bitmap within a specified
+ * interval: [range_start, range_end). The number of negated values is
+ * range_end - range_start.
+ * Areas outside the range are passed through unchanged.
+ */
+
+void roaring_bitmap_flip_inplace(roaring_bitmap_t *x1, uint64_t range_start,
+                                 uint64_t range_end);
+
+/**
+ * Selects the element at index 'rank' where the smallest element is at index 0.
+ * If the size of the roaring bitmap is strictly greater than rank, then this
+   function returns true and sets element to the element of given rank.
+   Otherwise, it returns false.
+ */
+bool roaring_bitmap_select(const roaring_bitmap_t *ra, uint32_t rank,
+                           uint32_t *element);
+/**
+* roaring_bitmap_rank returns the number of integers that are smaller or equal
+* to x. Thus if x is the first element, this function will return 1. If
+* x is smaller than the smallest element, this function will return 0.
+*
+* The indexing convention differs between roaring_bitmap_select and
+* roaring_bitmap_rank: roaring_bitmap_select refers to the smallest value
+* as having index 0, whereas roaring_bitmap_rank returns 1 when ranking
+* the smallest value.
+*/
+uint64_t roaring_bitmap_rank(const roaring_bitmap_t *bm, uint32_t x);
+
+/**
+* roaring_bitmap_smallest returns the smallest value in the set.
+* Returns UINT32_MAX if the set is empty.
+*/
+uint32_t roaring_bitmap_minimum(const roaring_bitmap_t *bm);
+
+/**
+* roaring_bitmap_smallest returns the greatest value in the set.
+* Returns 0 if the set is empty.
+*/
+uint32_t roaring_bitmap_maximum(const roaring_bitmap_t *bm);
+
+/**
+*  (For advanced users.)
+* Collect statistics about the bitmap, see roaring_types.h for
+* a description of roaring_statistics_t
+*/
+void roaring_bitmap_statistics(const roaring_bitmap_t *ra,
+                               roaring_statistics_t *stat);
+
+/*********************
+* What follows is code use to iterate through values in a roaring bitmap
+
+roaring_bitmap_t *ra =...
+roaring_uint32_iterator_t   i;
+roaring_create_iterator(ra, &i);
+while(i.has_value) {
+  printf("value = %d\n", i.current_value);
+  roaring_advance_uint32_iterator(&i);
+}
+
+Obviously, if you modify the underlying bitmap, the iterator
+becomes invalid. So don't.
+*/
+
+typedef struct roaring_uint32_iterator_s {
+    const roaring_bitmap_t *parent;  // owner
+    int32_t container_index;         // point to the current container index
+    int32_t in_container_index;  // for bitset and array container, this is out
+                                 // index
+    int32_t run_index;           // for run container, this points  at the run
+
+    uint32_t current_value;
+    bool has_value;
+
+    const void
+        *container;  // should be:
+                     // parent->high_low_container.containers[container_index];
+    uint8_t typecode;  // should be:
+                       // parent->high_low_container.typecodes[container_index];
+    uint32_t highbits;  // should be:
+                        // parent->high_low_container.keys[container_index]) <<
+                        // 16;
+
+} roaring_uint32_iterator_t;
+
+/**
+* Initialize an iterator object that can be used to iterate through the
+* values. If there is a  value, then this iterator points to the first value
+* and it->has_value is true. The value is in it->current_value.
+*/
+void roaring_init_iterator(const roaring_bitmap_t *ra,
+                           roaring_uint32_iterator_t *newit);
+
+/**
+* Initialize an iterator object that can be used to iterate through the
+* values. If there is a value, then this iterator points to the last value
+* and it->has_value is true. The value is in it->current_value.
+*/
+void roaring_init_iterator_last(const roaring_bitmap_t *ra,
+                                roaring_uint32_iterator_t *newit);
+
+/**
+* Create an iterator object that can be used to iterate through the
+* values. Caller is responsible for calling roaring_free_iterator.
+* The iterator is initialized. If there is a  value, then this iterator
+* points to the first value and it->has_value is true.
+* The value is in it->current_value.
+*
+* This function calls roaring_init_iterator.
+*/
+roaring_uint32_iterator_t *roaring_create_iterator(const roaring_bitmap_t *ra);
+
+/**
+* Advance the iterator. If there is a new value, then it->has_value is true.
+* The new value is in it->current_value. Values are traversed in increasing
+* orders. For convenience, returns it->has_value.
+*/
+bool roaring_advance_uint32_iterator(roaring_uint32_iterator_t *it);
+
+/**
+* Decrement the iterator. If there is a new value, then it->has_value is true.
+* The new value is in it->current_value. Values are traversed in decreasing
+* orders. For convenience, returns it->has_value.
+*/
+bool roaring_previous_uint32_iterator(roaring_uint32_iterator_t *it);
+
+/**
+* Move the iterator to the first value >= val. If there is a such a value, then it->has_value is true.
+* The new value is in it->current_value. For convenience, returns it->has_value.
+*/
+bool roaring_move_uint32_iterator_equalorlarger(roaring_uint32_iterator_t *it, uint32_t val) ;
+/**
+* Creates a copy of an iterator.
+* Caller must free it.
+*/
+roaring_uint32_iterator_t *roaring_copy_uint32_iterator(
+    const roaring_uint32_iterator_t *it);
+
+/**
+* Free memory following roaring_create_iterator
+*/
+void roaring_free_uint32_iterator(roaring_uint32_iterator_t *it);
+
+/*
+ * Reads next ${count} values from iterator into user-supplied ${buf}.
+ * Returns the number of read elements.
+ * This number can be smaller than ${count}, which means that iterator is drained.
+ *
+ * This function satisfies semantics of iteration and can be used together with
+ * other iterator functions.
+ *  - first value is copied from ${it}->current_value
+ *  - after function returns, iterator is positioned at the next element
+ */
+uint32_t roaring_read_uint32_iterator(roaring_uint32_iterator_t *it, uint32_t* buf, uint32_t count);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
+/* end file include/roaring/roaring.h */



[Date Prev][Date Next]   [Thread Prev][Thread Next]   [Thread Index] [Date Index] [Author Index]