[genius] Tue Apr 18 17:43:13 2017 Jiri (George) Lebl <jirka 5z com>
- From: George Lebl <jirka src gnome org>
- To: commits-list gnome org
- Cc:
- Subject: [genius] Tue Apr 18 17:43:13 2017 Jiri (George) Lebl <jirka 5z com>
- Date: Tue, 18 Apr 2017 22:46:26 +0000 (UTC)
commit 3c1c584c1ecdf684d9bb15f1d59d639ad0bcb486
Author: Jiri (George) Lebl <jiri lebl gmail com>
Date: Tue Apr 18 17:46:42 2017 -0500
Tue Apr 18 17:43:13 2017 Jiri (George) Lebl <jirka 5z com>
* autogen.sh, configure.ac, Makefile.am: Remove gnome-common
dependency, and kill the documentation nonsense
* help/*: completely revamp how this is done, making it a lot simpler
(and simpler minded). Help is now HTML and displayed in a browser
therefore it actually always works regardless of desktop and the
current brokenness of yelp (meaning links now really do work)
* src/gnome-genius.c: the help is now HTML so use that
* src/*.c: fix a few warnings
* help/cs/cs.po: fix broken xml tag
ChangeLog | 16 ++
Makefile.am | 7 +-
NEWS | 8 +
RELEASE_TODO | 3 +
autogen.sh | 50 +++--
configure.ac | 30 ++--
help/C/html/ch01.html | 28 +++
help/C/html/ch02.html | 26 +++
help/C/html/ch02s02.html | 43 ++++
help/C/html/ch03.html | 44 ++++
help/C/html/ch03s02.html | 31 +++
help/C/html/ch03s03.html | 16 ++
help/C/html/ch04.html | 47 +++++
help/C/html/ch04s02.html | 21 ++
help/C/html/ch04s03.html | 23 +++
help/C/html/ch04s04.html | 27 +++
help/C/html/ch04s05.html | 28 +++
help/C/html/ch05.html | 126 ++++++++++++
help/C/html/ch05s02.html | 45 +++++
help/C/html/ch05s03.html | 74 +++++++
help/C/html/ch05s04.html | 28 +++
help/C/html/ch05s05.html | 10 +
help/C/html/ch05s06.html | 50 +++++
help/C/html/ch05s07.html | 247 +++++++++++++++++++++++
help/C/html/ch06.html | 19 ++
help/C/html/ch06s02.html | 54 +++++
help/C/html/ch06s03.html | 16 ++
help/C/html/ch06s04.html | 40 ++++
help/C/html/ch06s05.html | 113 +++++++++++
help/C/html/ch06s06.html | 18 ++
help/C/html/ch06s07.html | 17 ++
help/C/html/ch06s08.html | 35 ++++
help/C/html/ch06s09.html | 27 +++
help/C/html/ch07.html | 18 ++
help/C/html/ch07s02.html | 32 +++
help/C/html/ch07s03.html | 102 ++++++++++
help/C/html/ch07s04.html | 58 ++++++
help/C/html/ch07s05.html | 7 +
help/C/html/ch07s06.html | 10 +
help/C/html/ch08.html | 55 +++++
help/C/html/ch08s02.html | 21 ++
help/C/html/ch08s03.html | 32 +++
help/C/html/ch09.html | 51 +++++
help/C/html/ch10.html | 41 ++++
help/C/html/ch11.html | 7 +
help/C/html/ch11s02.html | 101 ++++++++++
help/C/html/ch11s03.html | 46 +++++
help/C/html/ch11s04.html | 44 ++++
help/C/html/ch11s05.html | 103 ++++++++++
help/C/html/ch11s06.html | 64 ++++++
help/C/html/ch11s07.html | 284 +++++++++++++++++++++++++++
help/C/html/ch11s08.html | 92 +++++++++
help/C/html/ch11s09.html | 285 +++++++++++++++++++++++++++
help/C/html/ch11s10.html | 113 +++++++++++
help/C/html/ch11s11.html | 120 +++++++++++
help/C/html/ch11s12.html | 82 ++++++++
help/C/html/ch11s13.html | 213 ++++++++++++++++++++
help/C/html/ch11s14.html | 20 ++
help/C/html/ch11s15.html | 21 ++
help/C/html/ch11s16.html | 1 +
help/C/html/ch11s17.html | 1 +
help/C/html/ch11s18.html | 1 +
help/C/html/ch11s19.html | 28 +++
help/C/html/ch11s20.html | 445 ++++++++++++++++++++++++++++++++++++++++++
help/C/html/ch12.html | 74 +++++++
help/C/html/ch13.html | 73 +++++++
help/C/html/ch13s02.html | 20 ++
help/C/html/ch13s03.html | 11 +
help/C/html/ch13s04.html | 20 ++
help/C/html/ch14.html | 22 ++
help/C/html/index.html | 71 +++++++
help/Makefile.am | 189 ++++++++++++++++--
help/cs/cs.po | 2 +-
help/cs/html/ch01.html | 1 +
help/cs/html/ch02.html | 1 +
help/cs/html/ch02s02.html | 1 +
help/cs/html/ch03.html | 8 +
help/cs/html/ch03s02.html | 1 +
help/cs/html/ch03s03.html | 1 +
help/cs/html/ch04.html | 1 +
help/cs/html/ch04s02.html | 1 +
help/cs/html/ch04s03.html | 1 +
help/cs/html/ch04s04.html | 1 +
help/cs/html/ch04s05.html | 1 +
help/cs/html/ch05.html | 27 +++
help/cs/html/ch05s02.html | 10 +
help/cs/html/ch05s03.html | 20 ++
help/cs/html/ch05s04.html | 2 +
help/cs/html/ch05s05.html | 5 +
help/cs/html/ch05s06.html | 10 +
help/cs/html/ch05s07.html | 6 +
help/cs/html/ch06.html | 8 +
help/cs/html/ch06s02.html | 15 ++
help/cs/html/ch06s03.html | 6 +
help/cs/html/ch06s04.html | 3 +
help/cs/html/ch06s05.html | 21 ++
help/cs/html/ch06s06.html | 2 +
help/cs/html/ch06s07.html | 9 +
help/cs/html/ch06s08.html | 8 +
help/cs/html/ch06s09.html | 5 +
help/cs/html/ch07.html | 8 +
help/cs/html/ch07s02.html | 10 +
help/cs/html/ch07s03.html | 27 +++
help/cs/html/ch07s04.html | 18 ++
help/cs/html/ch07s05.html | 1 +
help/cs/html/ch07s06.html | 5 +
help/cs/html/ch08.html | 21 ++
help/cs/html/ch08s02.html | 3 +
help/cs/html/ch08s03.html | 1 +
help/cs/html/ch09.html | 7 +
help/cs/html/ch10.html | 7 +
help/cs/html/ch11.html | 2 +
help/cs/html/ch11s02.html | 12 ++
help/cs/html/ch11s03.html | 2 +
help/cs/html/ch11s04.html | 1 +
help/cs/html/ch11s05.html | 25 +++
help/cs/html/ch11s06.html | 2 +
help/cs/html/ch11s07.html | 8 +
help/cs/html/ch11s08.html | 2 +
help/cs/html/ch11s09.html | 3 +
help/cs/html/ch11s10.html | 9 +
help/cs/html/ch11s11.html | 1 +
help/cs/html/ch11s12.html | 1 +
help/cs/html/ch11s13.html | 25 +++
help/cs/html/ch11s14.html | 1 +
help/cs/html/ch11s15.html | 2 +
help/cs/html/ch11s16.html | 1 +
help/cs/html/ch11s17.html | 1 +
help/cs/html/ch11s18.html | 1 +
help/cs/html/ch11s19.html | 5 +
help/cs/html/ch11s20.html | 35 ++++
help/cs/html/ch12.html | 54 +++++
help/cs/html/ch13.html | 28 +++
help/cs/html/ch13s02.html | 5 +
help/cs/html/ch13s03.html | 9 +
help/cs/html/ch13s04.html | 3 +
help/cs/html/ch14.html | 1 +
help/cs/html/index.html | 3 +
help/de/html/ch01.html | 1 +
help/de/html/ch02.html | 1 +
help/de/html/ch02s02.html | 27 +++
help/de/html/ch03.html | 31 +++
help/de/html/ch03s02.html | 31 +++
help/de/html/ch03s03.html | 6 +
help/de/html/ch04.html | 19 ++
help/de/html/ch04s02.html | 21 ++
help/de/html/ch04s03.html | 1 +
help/de/html/ch04s04.html | 1 +
help/de/html/ch04s05.html | 28 +++
help/de/html/ch05.html | 123 ++++++++++++
help/de/html/ch05s02.html | 33 +++
help/de/html/ch05s03.html | 74 +++++++
help/de/html/ch05s04.html | 28 +++
help/de/html/ch05s05.html | 10 +
help/de/html/ch05s06.html | 50 +++++
help/de/html/ch05s07.html | 243 +++++++++++++++++++++++
help/de/html/ch06.html | 19 ++
help/de/html/ch06s02.html | 54 +++++
help/de/html/ch06s03.html | 16 ++
help/de/html/ch06s04.html | 40 ++++
help/de/html/ch06s05.html | 113 +++++++++++
help/de/html/ch06s06.html | 18 ++
help/de/html/ch06s07.html | 14 ++
help/de/html/ch06s08.html | 35 ++++
help/de/html/ch06s09.html | 27 +++
help/de/html/ch07.html | 18 ++
help/de/html/ch07s02.html | 32 +++
help/de/html/ch07s03.html | 102 ++++++++++
help/de/html/ch07s04.html | 58 ++++++
help/de/html/ch07s05.html | 7 +
help/de/html/ch07s06.html | 10 +
help/de/html/ch08.html | 55 +++++
help/de/html/ch08s02.html | 21 ++
help/de/html/ch08s03.html | 32 +++
help/de/html/ch09.html | 51 +++++
help/de/html/ch10.html | 41 ++++
help/de/html/ch11.html | 3 +
help/de/html/ch11s02.html | 101 ++++++++++
help/de/html/ch11s03.html | 46 +++++
help/de/html/ch11s04.html | 44 ++++
help/de/html/ch11s05.html | 103 ++++++++++
help/de/html/ch11s06.html | 64 ++++++
help/de/html/ch11s07.html | 284 +++++++++++++++++++++++++++
help/de/html/ch11s08.html | 92 +++++++++
help/de/html/ch11s09.html | 285 +++++++++++++++++++++++++++
help/de/html/ch11s10.html | 113 +++++++++++
help/de/html/ch11s11.html | 120 +++++++++++
help/de/html/ch11s12.html | 82 ++++++++
help/de/html/ch11s13.html | 213 ++++++++++++++++++++
help/de/html/ch11s14.html | 20 ++
help/de/html/ch11s15.html | 21 ++
help/de/html/ch11s16.html | 1 +
help/de/html/ch11s17.html | 1 +
help/de/html/ch11s18.html | 1 +
help/de/html/ch11s19.html | 28 +++
help/de/html/ch11s20.html | 445 ++++++++++++++++++++++++++++++++++++++++++
help/de/html/ch12.html | 74 +++++++
help/de/html/ch13.html | 73 +++++++
help/de/html/ch13s02.html | 20 ++
help/de/html/ch13s03.html | 9 +
help/de/html/ch13s04.html | 20 ++
help/de/html/ch14.html | 22 ++
help/de/html/index.html | 4 +
help/el/html/ch01.html | 10 +
help/el/html/ch02.html | 2 +
help/el/html/ch02s02.html | 27 +++
help/el/html/ch03.html | 31 +++
help/el/html/ch03s02.html | 31 +++
help/el/html/ch03s03.html | 6 +
help/el/html/ch04.html | 6 +
help/el/html/ch04s02.html | 1 +
help/el/html/ch04s03.html | 1 +
help/el/html/ch04s04.html | 1 +
help/el/html/ch04s05.html | 16 ++
help/el/html/ch05.html | 48 +++++
help/el/html/ch05s02.html | 18 ++
help/el/html/ch05s03.html | 20 ++
help/el/html/ch05s04.html | 28 +++
help/el/html/ch05s05.html | 10 +
help/el/html/ch05s06.html | 21 ++
help/el/html/ch05s07.html | 47 +++++
help/el/html/ch06.html | 8 +
help/el/html/ch06s02.html | 32 +++
help/el/html/ch06s03.html | 6 +
help/el/html/ch06s04.html | 3 +
help/el/html/ch06s05.html | 41 ++++
help/el/html/ch06s06.html | 4 +
help/el/html/ch06s07.html | 9 +
help/el/html/ch06s08.html | 7 +
help/el/html/ch06s09.html | 13 ++
help/el/html/ch07.html | 8 +
help/el/html/ch07s02.html | 19 ++
help/el/html/ch07s03.html | 27 +++
help/el/html/ch07s04.html | 40 ++++
help/el/html/ch07s05.html | 1 +
help/el/html/ch07s06.html | 10 +
help/el/html/ch08.html | 43 ++++
help/el/html/ch08s02.html | 3 +
help/el/html/ch08s03.html | 1 +
help/el/html/ch09.html | 7 +
help/el/html/ch10.html | 7 +
help/el/html/ch11.html | 3 +
help/el/html/ch11s02.html | 38 ++++
help/el/html/ch11s03.html | 6 +
help/el/html/ch11s04.html | 36 ++++
help/el/html/ch11s05.html | 61 ++++++
help/el/html/ch11s06.html | 56 ++++++
help/el/html/ch11s07.html | 138 +++++++++++++
help/el/html/ch11s08.html | 23 +++
help/el/html/ch11s09.html | 158 +++++++++++++++
help/el/html/ch11s10.html | 58 ++++++
help/el/html/ch11s11.html | 13 ++
help/el/html/ch11s12.html | 31 +++
help/el/html/ch11s13.html | 113 +++++++++++
help/el/html/ch11s14.html | 1 +
help/el/html/ch11s15.html | 5 +
help/el/html/ch11s16.html | 1 +
help/el/html/ch11s17.html | 1 +
help/el/html/ch11s18.html | 1 +
help/el/html/ch11s19.html | 17 ++
help/el/html/ch11s20.html | 236 ++++++++++++++++++++++
help/el/html/ch12.html | 54 +++++
help/el/html/ch13.html | 37 ++++
help/el/html/ch13s02.html | 5 +
help/el/html/ch13s03.html | 9 +
help/el/html/ch13s04.html | 3 +
help/el/html/ch14.html | 13 ++
help/el/html/index.html | 10 +
help/es/html/ch01.html | 1 +
help/es/html/ch02.html | 1 +
help/es/html/ch02s02.html | 1 +
help/es/html/ch03.html | 9 +
help/es/html/ch03s02.html | 1 +
help/es/html/ch03s03.html | 1 +
help/es/html/ch04.html | 1 +
help/es/html/ch04s02.html | 1 +
help/es/html/ch04s03.html | 1 +
help/es/html/ch04s04.html | 1 +
help/es/html/ch04s05.html | 1 +
help/es/html/ch05.html | 27 +++
help/es/html/ch05s02.html | 10 +
help/es/html/ch05s03.html | 20 ++
help/es/html/ch05s04.html | 2 +
help/es/html/ch05s05.html | 5 +
help/es/html/ch05s06.html | 8 +
help/es/html/ch05s07.html | 6 +
help/es/html/ch06.html | 8 +
help/es/html/ch06s02.html | 15 ++
help/es/html/ch06s03.html | 6 +
help/es/html/ch06s04.html | 3 +
help/es/html/ch06s05.html | 18 ++
help/es/html/ch06s06.html | 2 +
help/es/html/ch06s07.html | 9 +
help/es/html/ch06s08.html | 8 +
help/es/html/ch06s09.html | 5 +
help/es/html/ch07.html | 8 +
help/es/html/ch07s02.html | 10 +
help/es/html/ch07s03.html | 27 +++
help/es/html/ch07s04.html | 18 ++
help/es/html/ch07s05.html | 1 +
help/es/html/ch07s06.html | 5 +
help/es/html/ch08.html | 21 ++
help/es/html/ch08s02.html | 3 +
help/es/html/ch08s03.html | 1 +
help/es/html/ch09.html | 7 +
help/es/html/ch10.html | 7 +
help/es/html/ch11.html | 2 +
help/es/html/ch11s02.html | 12 ++
help/es/html/ch11s03.html | 2 +
help/es/html/ch11s04.html | 1 +
help/es/html/ch11s05.html | 23 +++
help/es/html/ch11s06.html | 2 +
help/es/html/ch11s07.html | 8 +
help/es/html/ch11s08.html | 2 +
help/es/html/ch11s09.html | 3 +
help/es/html/ch11s10.html | 9 +
help/es/html/ch11s11.html | 1 +
help/es/html/ch11s12.html | 1 +
help/es/html/ch11s13.html | 25 +++
help/es/html/ch11s14.html | 1 +
help/es/html/ch11s15.html | 2 +
help/es/html/ch11s16.html | 1 +
help/es/html/ch11s17.html | 1 +
help/es/html/ch11s18.html | 1 +
help/es/html/ch11s19.html | 5 +
help/es/html/ch11s20.html | 35 ++++
help/es/html/ch12.html | 54 +++++
help/es/html/ch13.html | 28 +++
help/es/html/ch13s02.html | 5 +
help/es/html/ch13s03.html | 9 +
help/es/html/ch13s04.html | 3 +
help/es/html/ch14.html | 1 +
help/es/html/index.html | 3 +
help/fr/html/ch01.html | 10 +
help/fr/html/ch02.html | 2 +
help/fr/html/ch02s02.html | 32 +++
help/fr/html/ch03.html | 37 ++++
help/fr/html/ch03s02.html | 31 +++
help/fr/html/ch03s03.html | 6 +
help/fr/html/ch04.html | 19 ++
help/fr/html/ch04s02.html | 21 ++
help/fr/html/ch04s03.html | 1 +
help/fr/html/ch04s04.html | 1 +
help/fr/html/ch04s05.html | 28 +++
help/fr/html/ch05.html | 82 ++++++++
help/fr/html/ch05s02.html | 24 +++
help/fr/html/ch05s03.html | 47 +++++
help/fr/html/ch05s04.html | 28 +++
help/fr/html/ch05s05.html | 10 +
help/fr/html/ch05s06.html | 30 +++
help/fr/html/ch05s07.html | 115 +++++++++++
help/fr/html/ch06.html | 8 +
help/fr/html/ch06s02.html | 45 +++++
help/fr/html/ch06s03.html | 9 +
help/fr/html/ch06s04.html | 11 +
help/fr/html/ch06s05.html | 48 +++++
help/fr/html/ch06s06.html | 4 +
help/fr/html/ch06s07.html | 9 +
help/fr/html/ch06s08.html | 8 +
help/fr/html/ch06s09.html | 13 ++
help/fr/html/ch07.html | 8 +
help/fr/html/ch07s02.html | 19 ++
help/fr/html/ch07s03.html | 42 ++++
help/fr/html/ch07s04.html | 40 ++++
help/fr/html/ch07s05.html | 4 +
help/fr/html/ch07s06.html | 10 +
help/fr/html/ch08.html | 46 +++++
help/fr/html/ch08s02.html | 3 +
help/fr/html/ch08s03.html | 13 ++
help/fr/html/ch09.html | 7 +
help/fr/html/ch10.html | 7 +
help/fr/html/ch11.html | 3 +
help/fr/html/ch11s02.html | 52 +++++
help/fr/html/ch11s03.html | 10 +
help/fr/html/ch11s04.html | 36 ++++
help/fr/html/ch11s05.html | 63 ++++++
help/fr/html/ch11s06.html | 56 ++++++
help/fr/html/ch11s07.html | 171 ++++++++++++++++
help/fr/html/ch11s08.html | 39 ++++
help/fr/html/ch11s09.html | 180 +++++++++++++++++
help/fr/html/ch11s10.html | 61 ++++++
help/fr/html/ch11s11.html | 77 ++++++++
help/fr/html/ch11s12.html | 75 +++++++
help/fr/html/ch11s13.html | 146 ++++++++++++++
help/fr/html/ch11s14.html | 1 +
help/fr/html/ch11s15.html | 17 ++
help/fr/html/ch11s16.html | 1 +
help/fr/html/ch11s17.html | 1 +
help/fr/html/ch11s18.html | 1 +
help/fr/html/ch11s19.html | 19 ++
help/fr/html/ch11s20.html | 349 +++++++++++++++++++++++++++++++++
help/fr/html/ch12.html | 60 ++++++
help/fr/html/ch13.html | 47 +++++
help/fr/html/ch13s02.html | 14 ++
help/fr/html/ch13s03.html | 9 +
help/fr/html/ch13s04.html | 10 +
help/fr/html/ch14.html | 13 ++
help/fr/html/index.html | 10 +
help/pt_BR/html/ch01.html | 28 +++
help/pt_BR/html/ch02.html | 26 +++
help/pt_BR/html/ch02s02.html | 43 ++++
help/pt_BR/html/ch03.html | 44 ++++
help/pt_BR/html/ch03s02.html | 31 +++
help/pt_BR/html/ch03s03.html | 16 ++
help/pt_BR/html/ch04.html | 47 +++++
help/pt_BR/html/ch04s02.html | 21 ++
help/pt_BR/html/ch04s03.html | 23 +++
help/pt_BR/html/ch04s04.html | 27 +++
help/pt_BR/html/ch04s05.html | 28 +++
help/pt_BR/html/ch05.html | 126 ++++++++++++
help/pt_BR/html/ch05s02.html | 45 +++++
help/pt_BR/html/ch05s03.html | 74 +++++++
help/pt_BR/html/ch05s04.html | 28 +++
help/pt_BR/html/ch05s05.html | 10 +
help/pt_BR/html/ch05s06.html | 50 +++++
help/pt_BR/html/ch05s07.html | 247 +++++++++++++++++++++++
help/pt_BR/html/ch06.html | 19 ++
help/pt_BR/html/ch06s02.html | 54 +++++
help/pt_BR/html/ch06s03.html | 16 ++
help/pt_BR/html/ch06s04.html | 40 ++++
help/pt_BR/html/ch06s05.html | 113 +++++++++++
help/pt_BR/html/ch06s06.html | 18 ++
help/pt_BR/html/ch06s07.html | 17 ++
help/pt_BR/html/ch06s08.html | 35 ++++
help/pt_BR/html/ch06s09.html | 27 +++
help/pt_BR/html/ch07.html | 18 ++
help/pt_BR/html/ch07s02.html | 32 +++
help/pt_BR/html/ch07s03.html | 102 ++++++++++
help/pt_BR/html/ch07s04.html | 58 ++++++
help/pt_BR/html/ch07s05.html | 7 +
help/pt_BR/html/ch07s06.html | 10 +
help/pt_BR/html/ch08.html | 55 +++++
help/pt_BR/html/ch08s02.html | 21 ++
help/pt_BR/html/ch08s03.html | 32 +++
help/pt_BR/html/ch09.html | 51 +++++
help/pt_BR/html/ch10.html | 41 ++++
help/pt_BR/html/ch11.html | 7 +
help/pt_BR/html/ch11s02.html | 101 ++++++++++
help/pt_BR/html/ch11s03.html | 46 +++++
help/pt_BR/html/ch11s04.html | 44 ++++
help/pt_BR/html/ch11s05.html | 103 ++++++++++
help/pt_BR/html/ch11s06.html | 64 ++++++
help/pt_BR/html/ch11s07.html | 284 +++++++++++++++++++++++++++
help/pt_BR/html/ch11s08.html | 92 +++++++++
help/pt_BR/html/ch11s09.html | 285 +++++++++++++++++++++++++++
help/pt_BR/html/ch11s10.html | 113 +++++++++++
help/pt_BR/html/ch11s11.html | 120 +++++++++++
help/pt_BR/html/ch11s12.html | 82 ++++++++
help/pt_BR/html/ch11s13.html | 213 ++++++++++++++++++++
help/pt_BR/html/ch11s14.html | 20 ++
help/pt_BR/html/ch11s15.html | 21 ++
help/pt_BR/html/ch11s16.html | 1 +
help/pt_BR/html/ch11s17.html | 1 +
help/pt_BR/html/ch11s18.html | 1 +
help/pt_BR/html/ch11s19.html | 28 +++
help/pt_BR/html/ch11s20.html | 445 ++++++++++++++++++++++++++++++++++++++++++
help/pt_BR/html/ch12.html | 74 +++++++
help/pt_BR/html/ch13.html | 73 +++++++
help/pt_BR/html/ch13s02.html | 20 ++
help/pt_BR/html/ch13s03.html | 11 +
help/pt_BR/html/ch13s04.html | 20 ++
help/pt_BR/html/ch14.html | 22 ++
help/pt_BR/html/index.html | 10 +
help/ru/html/ch01.html | 22 ++
help/ru/html/ch02.html | 2 +
help/ru/html/ch02s02.html | 32 +++
help/ru/html/ch03.html | 37 ++++
help/ru/html/ch03s02.html | 31 +++
help/ru/html/ch03s03.html | 6 +
help/ru/html/ch04.html | 32 +++
help/ru/html/ch04s02.html | 21 ++
help/ru/html/ch04s03.html | 23 +++
help/ru/html/ch04s04.html | 27 +++
help/ru/html/ch04s05.html | 28 +++
help/ru/html/ch05.html | 82 ++++++++
help/ru/html/ch05s02.html | 24 +++
help/ru/html/ch05s03.html | 63 ++++++
help/ru/html/ch05s04.html | 28 +++
help/ru/html/ch05s05.html | 10 +
help/ru/html/ch05s06.html | 50 +++++
help/ru/html/ch05s07.html | 164 ++++++++++++++++
help/ru/html/ch06.html | 19 ++
help/ru/html/ch06s02.html | 51 +++++
help/ru/html/ch06s03.html | 9 +
help/ru/html/ch06s04.html | 27 +++
help/ru/html/ch06s05.html | 113 +++++++++++
help/ru/html/ch06s06.html | 18 ++
help/ru/html/ch06s07.html | 14 ++
help/ru/html/ch06s08.html | 35 ++++
help/ru/html/ch06s09.html | 27 +++
help/ru/html/ch07.html | 18 ++
help/ru/html/ch07s02.html | 32 +++
help/ru/html/ch07s03.html | 102 ++++++++++
help/ru/html/ch07s04.html | 58 ++++++
help/ru/html/ch07s05.html | 7 +
help/ru/html/ch07s06.html | 10 +
help/ru/html/ch08.html | 55 +++++
help/ru/html/ch08s02.html | 21 ++
help/ru/html/ch08s03.html | 32 +++
help/ru/html/ch09.html | 47 +++++
help/ru/html/ch10.html | 41 ++++
help/ru/html/ch11.html | 4 +
help/ru/html/ch11s02.html | 85 ++++++++
help/ru/html/ch11s03.html | 39 ++++
help/ru/html/ch11s04.html | 41 ++++
help/ru/html/ch11s05.html | 83 ++++++++
help/ru/html/ch11s06.html | 64 ++++++
help/ru/html/ch11s07.html | 277 ++++++++++++++++++++++++++
help/ru/html/ch11s08.html | 64 ++++++
help/ru/html/ch11s09.html | 284 +++++++++++++++++++++++++++
help/ru/html/ch11s10.html | 107 ++++++++++
help/ru/html/ch11s11.html | 120 +++++++++++
help/ru/html/ch11s12.html | 79 ++++++++
help/ru/html/ch11s13.html | 213 ++++++++++++++++++++
help/ru/html/ch11s14.html | 14 ++
help/ru/html/ch11s15.html | 21 ++
help/ru/html/ch11s16.html | 1 +
help/ru/html/ch11s17.html | 1 +
help/ru/html/ch11s18.html | 1 +
help/ru/html/ch11s19.html | 28 +++
help/ru/html/ch11s20.html | 445 ++++++++++++++++++++++++++++++++++++++++++
help/ru/html/ch12.html | 74 +++++++
help/ru/html/ch13.html | 73 +++++++
help/ru/html/ch13s02.html | 20 ++
help/ru/html/ch13s03.html | 9 +
help/ru/html/ch13s04.html | 20 ++
help/ru/html/ch14.html | 17 ++
help/ru/html/index.html | 69 +++++++
help/sv/html/ch01.html | 1 +
help/sv/html/ch02.html | 1 +
help/sv/html/ch02s02.html | 1 +
help/sv/html/ch03.html | 9 +
help/sv/html/ch03s02.html | 1 +
help/sv/html/ch03s03.html | 1 +
help/sv/html/ch04.html | 1 +
help/sv/html/ch04s02.html | 1 +
help/sv/html/ch04s03.html | 1 +
help/sv/html/ch04s04.html | 1 +
help/sv/html/ch04s05.html | 1 +
help/sv/html/ch05.html | 25 +++
help/sv/html/ch05s02.html | 10 +
help/sv/html/ch05s03.html | 20 ++
help/sv/html/ch05s04.html | 2 +
help/sv/html/ch05s05.html | 5 +
help/sv/html/ch05s06.html | 8 +
help/sv/html/ch05s07.html | 6 +
help/sv/html/ch06.html | 8 +
help/sv/html/ch06s02.html | 15 ++
help/sv/html/ch06s03.html | 6 +
help/sv/html/ch06s04.html | 3 +
help/sv/html/ch06s05.html | 21 ++
help/sv/html/ch06s06.html | 2 +
help/sv/html/ch06s07.html | 9 +
help/sv/html/ch06s08.html | 8 +
help/sv/html/ch06s09.html | 5 +
help/sv/html/ch07.html | 8 +
help/sv/html/ch07s02.html | 10 +
help/sv/html/ch07s03.html | 27 +++
help/sv/html/ch07s04.html | 18 ++
help/sv/html/ch07s05.html | 1 +
help/sv/html/ch07s06.html | 5 +
help/sv/html/ch08.html | 21 ++
help/sv/html/ch08s02.html | 3 +
help/sv/html/ch08s03.html | 1 +
help/sv/html/ch09.html | 7 +
help/sv/html/ch10.html | 7 +
help/sv/html/ch11.html | 2 +
help/sv/html/ch11s02.html | 12 ++
help/sv/html/ch11s03.html | 2 +
help/sv/html/ch11s04.html | 1 +
help/sv/html/ch11s05.html | 23 +++
help/sv/html/ch11s06.html | 2 +
help/sv/html/ch11s07.html | 8 +
help/sv/html/ch11s08.html | 2 +
help/sv/html/ch11s09.html | 3 +
help/sv/html/ch11s10.html | 9 +
help/sv/html/ch11s11.html | 1 +
help/sv/html/ch11s12.html | 1 +
help/sv/html/ch11s13.html | 25 +++
help/sv/html/ch11s14.html | 1 +
help/sv/html/ch11s15.html | 2 +
help/sv/html/ch11s16.html | 1 +
help/sv/html/ch11s17.html | 1 +
help/sv/html/ch11s18.html | 1 +
help/sv/html/ch11s19.html | 5 +
help/sv/html/ch11s20.html | 35 ++++
help/sv/html/ch12.html | 54 +++++
help/sv/html/ch13.html | 28 +++
help/sv/html/ch13s02.html | 5 +
help/sv/html/ch13s03.html | 9 +
help/sv/html/ch13s04.html | 3 +
help/sv/html/ch14.html | 1 +
help/sv/html/index.html | 3 +
src/binreloc.c | 2 +-
src/calc.c | 8 +-
src/calc.h | 4 +-
src/compil.c | 2 +-
src/eval.c | 26 ++--
src/eval.h | 6 +-
src/funclib.c | 106 +++++-----
src/genius.c | 12 +-
src/gnome-genius.c | 205 +++++++++++++-------
src/graphing.c | 21 +-
src/inter.c | 10 +-
src/inter.h | 4 +-
src/matop.c | 3 +-
src/matrixw.c | 3 +-
src/mpwrap.c | 57 +++++-
src/mpzextra.c | 8 +-
src/plugin.c | 8 +-
610 files changed, 21723 insertions(+), 244 deletions(-)
---
diff --git a/ChangeLog b/ChangeLog
index 54ddf74..328c765 100644
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,3 +1,19 @@
+Tue Apr 18 17:43:13 2017 Jiri (George) Lebl <jirka 5z com>
+
+ * autogen.sh, configure.ac, Makefile.am: Remove gnome-common
+ dependency, and kill the documentation nonsense
+
+ * help/*: completely revamp how this is done, making it a lot simpler
+ (and simpler minded). Help is now HTML and displayed in a browser
+ therefore it actually always works regardless of desktop and the
+ current brokenness of yelp (meaning links now really do work)
+
+ * src/gnome-genius.c: the help is now HTML so use that
+
+ * src/*.c: fix a few warnings
+
+ * help/cs/cs.po: fix broken xml tag
+
Tue Apr 18 12:44:38 2017 Jiri (George) Lebl <jirka 5z com>
* src/graphing.c: fix error checking on SurfacePlotDataGrid, thanks
diff --git a/Makefile.am b/Makefile.am
index 7c83fa7..3b68209 100644
--- a/Makefile.am
+++ b/Makefile.am
@@ -1,3 +1,5 @@
+ACLOCAL_AMFLAGS = -I m4 --install
+
SUBDIRS = ve gtkextra src pixmaps examples lib po help
mimeinfodir = $(datadir)/mime-info
@@ -34,14 +36,13 @@ EXTRA_DIST = \
genius.mime \
genius.keys \
genius.applications \
- gnome-doc-utils.make \
intltool-extract.in \
intltool-merge.in \
intltool-update.in \
- INSTALL.MacOSX
+ INSTALL.MacOSX \
+ m4/NOTES
DISTCLEANFILES = \
- gnome-doc-utils.make \
intltool-extract \
intltool-merge \
intltool-update
diff --git a/NEWS b/NEWS
index f8937cc..16ade77 100644
--- a/NEWS
+++ b/NEWS
@@ -1,3 +1,11 @@
+Changes to 1.0.23
+
+* Stop depending the build system on gnome-common
+* Help is now built as HTML and displayed in the browser,
+ meaning it actually works, links work, and it doesn't
+ depend on any particular desktop environment being installed
+* New example for Duffing equation
+
Changes to 1.0.22
* Add a line plot version of the heat equation FDM animation example,
diff --git a/RELEASE_TODO b/RELEASE_TODO
new file mode 100644
index 0000000..2056cf9
--- /dev/null
+++ b/RELEASE_TODO
@@ -0,0 +1,3 @@
+Things not to forget for release
+1) run ./update-xml-to-txt-html.sh in help
+2) ... FIXME?
diff --git a/autogen.sh b/autogen.sh
index bfe7632..5684d0d 100755
--- a/autogen.sh
+++ b/autogen.sh
@@ -1,25 +1,39 @@
#!/bin/sh
# Run this to generate all the initial makefiles, etc.
+test -n "$srcdir" || srcdir=$(dirname "$0")
+test -n "$srcdir" || srcdir=.
-REQUIRED_AUTOMAKE_VERSION=1.9
+olddir=$(pwd)
-srcdir=`dirname $0`
-test -z "$srcdir" && srcdir=.
+cd $srcdir
-PKG_NAME="Genius"
-
-(test -f $srcdir/configure.ac \
- && test -d $srcdir/src \
- && test -f $srcdir/src/calc.h) || {
- echo -n "**Error**: Directory "\`$srcdir\'" does not look like the"
- echo " top-level Genius directory"
- exit 1
+(test -f configure.ac) || {
+ echo "*** ERROR: Directory '$srcdir' does not look like the top-level project directory ***"
+ exit 1
}
-which gnome-autogen.sh || {
- echo "Missing gnome-autogen.sh"
- echo "You need to install gnome-common from the GNOME git,"
- echo "or possibly the \"gnome-common\" distribution package"
- exit 1
-}
-USE_GNOME2_MACROS=1 . gnome-autogen.sh
+# shellcheck disable=SC2016
+PKG_NAME=$(autoconf --trace 'AC_INIT:$1' configure.ac)
+
+if [ "$#" = 0 -a "x$NOCONFIGURE" = "x" ]; then
+ echo "*** WARNING: I am going to run 'configure' with no arguments." >&2
+ echo "*** If you wish to pass any to it, please specify them on the" >&2
+ echo "*** '$0' command line." >&2
+ echo "" >&2
+fi
+
+aclocal --install || exit 1
+glib-gettextize --force --copy || exit 1
+intltoolize --force --copy --automake || exit 1
+autoreconf --verbose --force --install || exit 1
+
+cd "$olddir"
+if [ "$NOCONFIGURE" = "" ]; then
+ $srcdir/configure "$@" || exit 1
+
+ if [ "$1" = "--help" ]; then exit 0 else
+ echo "Now type 'make' to compile $PKG_NAME" || exit 1
+ fi
+else
+ echo "Skipping configure process."
+fi
diff --git a/configure.ac b/configure.ac
index c5d531e..7232b55 100644
--- a/configure.ac
+++ b/configure.ac
@@ -1,4 +1,6 @@
-AC_INIT([genius], [1.0.22])
+AC_INIT([genius], [1.0.23])
+#AX_IS_RELEASE([git-directory])
+AX_IS_RELEASE([always])
AC_CONFIG_SRCDIR([src/calc.c])
AM_INIT_AUTOMAKE([dist-xz])
@@ -40,7 +42,7 @@ AC_PROG_YACC
AM_BINRELOC
-GNOME_COMPILE_WARNINGS
+AX_COMPILER_FLAGS([WARN_CFLAGS],[WARN_LDFLAGS])
dnl ================= Translation Stuff ==============================================
@@ -245,17 +247,17 @@ if test -z "$GTK_UPDATE_ICON_CACHE"; then
AC_MSG_ERROR([Could not find gtk-update-icon-cache])
fi
-dnl scrollkeeper checks
-AC_ARG_ENABLE([scrollkeeper],
- [AC_HELP_STRING([--disable-scrollkeeper],
- [do not make updates to the scrollkeeper database])],,
- enable_scrollkeeper=yes)
-AM_CONDITIONAL([ENABLE_SK],[test "$enable_scrollkeeper" = "yes"])
-
-AC_PATH_PROG(SCROLLKEEPER_CONFIG, scrollkeeper-config,no)
-if test x$SCROLLKEEPER_CONFIG = xno; then
- AC_MSG_ERROR(Couldn't find scrollkeeper-config. Please install the scrollkeeper package)
-fi
+#dnl scrollkeeper checks
+#AC_ARG_ENABLE([scrollkeeper],
+# [AC_HELP_STRING([--disable-scrollkeeper],
+# [do not make updates to the scrollkeeper database])],,
+# enable_scrollkeeper=yes)
+#AM_CONDITIONAL([ENABLE_SK],[test "$enable_scrollkeeper" = "yes"])
+#
+#AC_PATH_PROG(SCROLLKEEPER_CONFIG, scrollkeeper-config,no)
+#if test x$SCROLLKEEPER_CONFIG = xno; then
+# AC_MSG_ERROR(Couldn't find scrollkeeper-config. Please install the scrollkeeper package)
+#fi
dnl mime checks
AC_ARG_ENABLE(update-mimedb,
@@ -264,8 +266,6 @@ AC_ARG_ENABLE(update-mimedb,
enable_update_mimedb=yes)
AM_CONDITIONAL(ENABLE_UPDATE_MIMEDB, test x$enable_update_mimedb = xyes)
-GNOME_DOC_INIT
-
AC_OUTPUT([
genius.spec
Makefile
diff --git a/help/C/html/ch01.html b/help/C/html/ch01.html
new file mode 100644
index 0000000..a64287d
--- /dev/null
+++ b/help/C/html/ch01.html
@@ -0,0 +1,28 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapter 1.
Introduction</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="index.html" title="Genius Manual"><link
rel="prev" href="index.html" title="Genius Manual"><link rel="next" href="ch02.html" title="Chapter 2.
Getting Started"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Chapter 1. Introduction</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="index.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch02.html">Next</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-introduction"></a>Chapte
r 1. Introduction</h1></div></div></div><p>
+ The <span class="application">Genius Mathematics Tool</span> application is a general calculator for
use as a desktop
+ calculator, an educational tool in mathematics, and is useful even for
+ research. The language used in <span class="application">Genius Mathematics Tool</span> is designed
to be
+ ‘mathematical’ in the sense that it should be ‘what
+ you mean is what you get’. Of course that is not an
+ entirely attainable goal. <span class="application">Genius Mathematics Tool</span> features
rationals, arbitrary
+ precision integers and multiple precision floats using the GMP library.
+ It handles complex numbers using cartesian notation. It has good
+ vector and matrix manipulation and can handle basic linear algebra.
+ The programming language allows user defined functions, variables and
+ modification of parameters.
+ </p><p>
+ <span class="application">Genius Mathematics Tool</span> comes in two versions. One version is the
graphical GNOME
+ version, which features an IDE style interface and the ability
+ to plot functions of one or two variables.
+ The command line version does not require GNOME, but of course
+ does not implement any feature that requires the graphical interface.
+ </p><p>
+ Parts of this manual describe the graphical version of the calculator,
+ but the language is of course the same. The command line only version
+ lacks the graphing capabilities and all other capabilities that require
+ the graphical user interface.
+ </p><p>
+ Generally, when some feature of the language (function, operator, etc...)
+ is new in some version past 1.0.5, it is mentioned, but
+ below 1.0.5 you would have to look at the NEWS file.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="index.html">Prev</a> </td><td width="20%" align="center"> </td><td
width="40%" align="right"> <a accesskey="n" href="ch02.html">Next</a></td></tr><tr><td width="40%"
align="left" valign="top">Genius Manual </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Home</a></td><td width="40%" align="right" valign="top"> Chapter 2. Getting
Started</td></tr></table></div></body></html>
diff --git a/help/C/html/ch02.html b/help/C/html/ch02.html
new file mode 100644
index 0000000..fd03db1
--- /dev/null
+++ b/help/C/html/ch02.html
@@ -0,0 +1,26 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapter 2. Getting
Started</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="index.html" title="Genius Manual"><link
rel="prev" href="ch01.html" title="Chapter 1. Introduction"><link rel="next" href="ch02s02.html" title="When
You Start Genius"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Chapter 2. Getting Started</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch01.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch02s02.html">Next</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-getting-s
tarted"></a>Chapter 2. Getting Started</h1></div></div></div><div class="toc"><p><b>Table of
Contents</b></p><dl class="toc"><dt><span class="sect1"><a href="ch02.html#genius-to-start">To Start <span
class="application">Genius Mathematics Tool</span></a></span></dt><dt><span class="sect1"><a
href="ch02s02.html">When You Start Genius</a></span></dt></dl></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-to-start"></a>To Start
<span class="application">Genius Mathematics Tool</span></h2></div></div></div><p>You can start <span
class="application">Genius Mathematics Tool</span> in the following ways:
+ </p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><span
class="guimenu">Applications</span> menu</span></dt><dd><p>
+ Depending on your operating system and version, the
+ menu item for <span class="application">Genius Mathematics Tool</span> could appear in a number
of different
+ places. It can be in the
+ <span class="guisubmenu">Education</span>,
+ <span class="guisubmenu">Accessories</span>,
+ <span class="guisubmenu">Office</span>,
+ <span class="guisubmenu">Science</span>, or
+ similar submenu, depending on your particular setup.
+ The menu item name you are looking for is
+ <span class="guimenuitem">Genius Math Tool</span>. Once you locate
+ this menu item click on it to start <span class="application">Genius Mathematics Tool</span>.
+ </p></dd><dt><span class="term"><span class="guilabel">Run</span> dialog</span></dt><dd><p>
+ Depending on your system installation the menu item
+ may not be available. If it is not, you can open the Run dialog
+ and execute <span class="command"><strong>gnome-genius</strong></span>.
+ </p></dd><dt><span class="term">Command line</span></dt><dd><p>
+ To start the GNOME version of <span class="application">Genius Mathematics Tool</span> execute
+ <span class="command"><strong>gnome-genius</strong></span> from the command line.
+ </p><p>
+ To start the command line only version,
+ execute the following command: <span class="command"><strong>genius</strong></span>.
+ This version does not include the graphical environment
+ and some functionality such as plotting will not be available.
+ </p></dd></dl></div></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch01.html">Prev</a>
</td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch02s02.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 1. Introduction
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%"
align="right" valign="top"> When You Start Genius</td></tr></table></div></body></html>
diff --git a/help/C/html/ch02s02.html b/help/C/html/ch02s02.html
new file mode 100644
index 0000000..7bce0dd
--- /dev/null
+++ b/help/C/html/ch02s02.html
@@ -0,0 +1,43 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>When You Start
Genius</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch02.html" title="Chapter 2. Getting
Started"><link rel="prev" href="ch02.html" title="Chapter 2. Getting Started"><link rel="next"
href="ch03.html" title="Chapter 3. Basic Usage"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">When You Start Genius</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch02.html">Prev</a> </td><th width="60%" align="center">Chapter 2. Getting
Started</th><td width="20%" align="right"> <a accesskey="n"
href="ch03.html">Next</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" s
tyle="clear: both"><a name="genius-when-start"></a>When You Start Genius</h2></div></div></div><p>When you
start the GNOME edition of
+ <span class="application">Genius Mathematics Tool</span>, the window pictured in <a class="xref"
href="ch02s02.html#mainwindow-fig" title="Figure 2.1. Genius Mathematics Tool Window">Figure 2.1, “<span
class="application">Genius Mathematics Tool</span> Window”</a> is displayed.</p><div class="figure"><a
name="mainwindow-fig"></a><p class="title"><b>Figure 2.1. <span class="application">Genius Mathematics
Tool</span> Window</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/genius_window.png" alt="Shows Genius Mathematics Tool main window. Contains titlebar, menubar,
toolbar and working area. Menubar contains File, Edit, Calculator, Examples, Programs, Settings, and Help
menus."></div></div></div></div><br class="figure-break"><p>The <span class="application">Genius Mathematics
Tool</span> window contains the following elements:
+ </p><div class="variablelist"><dl class="variablelist"><dt><span
class="term">Menubar.</span></dt><dd><p>The menus on the menubar contain all of the commands that you need to
work with files in <span class="application">Genius Mathematics Tool</span>.
+ The <span class="guilabel">File</span> menu contains items for loading and saving items and
creating
+ new programs. The <span class="guilabel">Load and Run...</span> command does not open a new
window for
+ the program, but just executes the program directly. It is equivalent to the <span
class="command"><strong>load</strong></span>
+ command.</p><p>
+ The <span class="guilabel">Calculator</span> menu controls the
+calculator engine. It allows you to run the currently selected program or to
+interrupt the current calculation. You can also look at the full expression of
+the last answer (useful if the last answer was too large to fit onto the
+console), or you can view a listing of the values of all user defined
+variables. You can also monitor user variables, which is especially useful
+while a long calculation is running, or to debug a certain program.
+ Finally the <span class="guilabel">Calculator</span> allows plotting functions using a
user friendly dialog box.
+ </p><p>
+ The <span class="guilabel">Examples</span> menu is a list of example
+ programs or demos. If you open the menu, it will load the
+ example into a new program, which you can run, edit, modify,
+ and save. These programs should be well documented
+ and generally demonstrate either some feature of <span class="application">Genius
Mathematics Tool</span>
+ or some mathematical concept.
+ </p><p>
+ The <span class="guilabel">Programs</span> menu lists
+ the currently open programs and allows you to switch
+ between them.
+ </p><p>
+ The other menus have same familiar functions as in other applications.
+ </p></dd><dt><span class="term">Toolbar.</span></dt><dd><p>The toolbar contains a subset of the
commands that you can access from the menubar.</p></dd><dt><span class="term">Working area</span></dt><dd><p>
+ The working area is the primary method of interacting with
+ the application.
+ </p><p>
+ The working area initially has just the <span class="guilabel">Console</span> tab, which is
+ the main way of interacting with the calculator. Here you
+ type expressions and the results are immediately returned
+ after you hit the Enter key.
+ </p><p>
+ Alternatively you can write longer programs and those can
+ appear in separate tabs. The programs are a set of commands or
+ functions that can be run all at once rather than entering them
+ at the command line. The programs can be saved in files for later
+ retrieval.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch02.html">Prev</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch02.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch03.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 2. Getting Started
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%"
align="right" valign="top"> Chapter 3. Basic Usage</td></tr></table></div></body></html>
diff --git a/help/C/html/ch03.html b/help/C/html/ch03.html
new file mode 100644
index 0000000..315fc10
--- /dev/null
+++ b/help/C/html/ch03.html
@@ -0,0 +1,44 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapter 3. Basic
Usage</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="index.html" title="Genius Manual"><link
rel="prev" href="ch02s02.html" title="When You Start Genius"><link rel="next" href="ch03s02.html" title="To
Create a New Program"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Chapter 3. Basic Usage</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch02s02.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch03s02.html">Next</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-usage"></a>Ch
apter 3. Basic Usage</h1></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl
class="toc"><dt><span class="sect1"><a href="ch03.html#genius-usage-workarea">Using the Work
Area</a></span></dt><dt><span class="sect1"><a href="ch03s02.html">To Create a New Program
</a></span></dt><dt><span class="sect1"><a href="ch03s03.html">To Open and Run a Program
</a></span></dt></dl></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-usage-workarea"></a>Using the Work Area</h2></div></div></div><p>
+ Normally you interact with the calculator in the <span class="guilabel">Console</span> tab of the
+ work area. If you are running the text only version then the console
+ will be the only thing that is available to you. If you want to use
+ <span class="application">Genius Mathematics Tool</span> as a calculator only, just type in your
expression in the console, it
+ will be evaluated, and the returned value will be printed.
+ </p><p>
+ To evaluate an expression, type it into the <span class="guilabel">Console</span> work area and
press enter.
+ Expressions are written in a
+language called GEL. The most simple GEL expressions just looks like
+mathematics. For example
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>30*70 +
67^3.0 + ln(7) * (88.8/100)</code></strong>
+</pre><p>
+or
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>62734 +
812634 + 77^4 mod 5</code></strong>
+</pre><p>
+or
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>| sin(37) -
e^7 |</code></strong>
+</pre><p>
+or
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>sum n=1 to 70
do 1/n</code></strong>
+</pre><p>
+(Last is the harmonic sum from 1 to 70)
+</p><p>
+To get a list of functions and commands, type:
+</p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>help</code></strong>
+</pre><p>
+If you wish to get more help on a specific function, type:
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>help
FunctionName</code></strong>
+</pre><p>
+To view this manual, type:
+</p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>manual</code></strong>
+</pre><p>
+</p><p>
+Suppose you have previously saved some GEL commands as a program to a file and
+you now want to execute them.
+To load this program from the file <code class="filename">path/to/program.gel</code>,
+type
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>load
path/to/program.gel</code></strong>
+</pre><p>
+<span class="application">Genius Mathematics Tool</span> keeps track of the current directory.
+To list files in the current directory type <span class="command"><strong>ls</strong></span>, to change
directory
+do <strong class="userinput"><code>cd directory</code></strong> as in the UNIX command shell.
+</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch02s02.html">Prev</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch03s02.html">Next</a></td></tr><tr><td
width="40%" align="left" valign="top">When You Start Genius </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> To Create a New
Program </td></tr></table></div></body></html>
diff --git a/help/C/html/ch03s02.html b/help/C/html/ch03s02.html
new file mode 100644
index 0000000..3611554
--- /dev/null
+++ b/help/C/html/ch03s02.html
@@ -0,0 +1,31 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>To Create a New
Program</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch03.html" title="Chapter 3. Basic Usage"><link
rel="prev" href="ch03.html" title="Chapter 3. Basic Usage"><link rel="next" href="ch03s03.html" title="To
Open and Run a Program"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">To Create a New Program </th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch03.html">Prev</a> </td><th width="60%" align="center">Chapter 3. Basic Usage</th><td width="20%"
align="right"> <a accesskey="n" href="ch03s03.html">Next</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" s
tyle="clear: both"><a name="genius-usage-create-program"></a>To Create a New Program
</h2></div></div></div><p>
+ If you wish to enter several more complicated commands, or perhaps write a complicated
+ function using the <a class="link" href="ch05.html" title="Chapter 5. GEL Basics">GEL</a>
language, you can create a new
+ program.
+ </p><p>
+To start writing a new program, choose
+<span class="guimenu">File</span> → <span class="guimenuitem">New
+Program</span>. A new tab will appear in the work area. You
+can write a <a class="link" href="ch05.html" title="Chapter 5. GEL Basics">GEL</a> program in this work area.
+Once you have written your program you can run it by
+<span class="guimenu">Calculator</span> → <span class="guimenuitem">Run</span> (or
+the <span class="guilabel">Run</span> toolbar button).
+This will execute your program and will display any output on the <span class="guilabel">Console</span> tab.
+Executing a program is equivalent of taking the text of the program and
+typing it into the console. The only difference is that this input is done
+independent of the console and just the output goes onto the console.
+<span class="guimenu">Calculator</span> → <span class="guimenuitem">Run</span>
+will always run the currently selected program even if you are on the <span class="guilabel">Console</span>
+tab. The currently selected program has its tab in bold type. To select a
+program, just click on its tab.
+ </p><p>
+To save the program you've just written, choose <span class="guimenu">File</span> → <span
class="guimenuitem">Save As...</span>.
+Similarly as in other programs you can choose
+<span class="guimenu">File</span> → <span class="guimenuitem">Save</span> to save a program that already has
+a filename attached to it. If you have many opened programs you have edited and wish to save you can also
choose
+<span class="guimenu">File</span> → <span class="guimenuitem">Save All Unsaved</span>.
+ </p><p>
+ Programs that have unsaved changes will have a "[+]" next to their filename. This way you can
see if the file
+ on disk and the currently opened tab differ in content. Programs which have not yet had a
filename associated
+ with them are always considered unsaved and no "[+]" is printed.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch03.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch03.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch03s03.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 3. Basic Usage
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%"
align="right" valign="top"> To Open and Run a Program </td></tr></table></div></body></html>
diff --git a/help/C/html/ch03s03.html b/help/C/html/ch03s03.html
new file mode 100644
index 0000000..5a0a95d
--- /dev/null
+++ b/help/C/html/ch03s03.html
@@ -0,0 +1,16 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>To Open and Run a
Program</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch03.html" title="Chapter 3. Basic Usage"><link
rel="prev" href="ch03s02.html" title="To Create a New Program"><link rel="next" href="ch04.html"
title="Chapter 4. Plotting"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">To Open and Run a Program </th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch03s02.html">Prev</a> </td><th width="60%" align="center">Chapter 3. Basic Usage</th><td width="20%"
align="right"> <a accesskey="n" href="ch04.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" st
yle="clear: both"><a name="genius-usage-open-program"></a>To Open and Run a Program
</h2></div></div></div><p>
+To open a file, choose
+<span class="guimenu">File</span> → <span class="guimenuitem">Open</span>.
+A new tab containing the file will appear in the work area. You can use this to
+edit the file.
+ </p><p>
+To run a program from a file, choose
+<span class="guimenu">File</span> → <span class="guimenuitem">Load and
+Run...</span>. This will run the program without opening it
+in a separate tab. This is equivalent to the <span class="command"><strong>load</strong></span> command.
+ </p><p>
+ If you have made edits to a file you wish to throw away and want to reload to the version
that's on disk,
+ you can choose the
+ <span class="guimenu">File</span> → <span class="guimenuitem">Reload from Disk</span> menuitem.
This is useful for experimenting
+ with a program and making temporary edits, to run a program, but that you do not intend to keep.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch03s02.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch03.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch04.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">To Create a New Program
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%"
align="right" valign="top"> Chapter 4. Plotting</td></tr></table></div></body></html>
diff --git a/help/C/html/ch04.html b/help/C/html/ch04.html
new file mode 100644
index 0000000..a0a96db
--- /dev/null
+++ b/help/C/html/ch04.html
@@ -0,0 +1,47 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapter 4.
Plotting</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="index.html" title="Genius Manual"><link
rel="prev" href="ch03s03.html" title="To Open and Run a Program"><link rel="next" href="ch04s02.html"
title="Parametric Plots"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Chapter 4. Plotting</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch03s03.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch04s02.html">Next</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-gel-plotting"></a>Chap
ter 4. Plotting</h1></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl
class="toc"><dt><span class="sect1"><a href="ch04.html#genius-line-plots">Line Plots</a></span></dt><dt><span
class="sect1"><a href="ch04s02.html">Parametric Plots</a></span></dt><dt><span class="sect1"><a
href="ch04s03.html">Slopefield Plots</a></span></dt><dt><span class="sect1"><a
href="ch04s04.html">Vectorfield Plots</a></span></dt><dt><span class="sect1"><a href="ch04s05.html">Surface
Plots</a></span></dt></dl></div><p>
+ Plotting support is only available in the graphical GNOME version.
+ All plotting accessible from the graphical interface is available from
+ the <span class="guilabel">Create Plot</span> window. You can access this window by either clicking
+ on the <span class="guilabel">Plot</span> button on the toolbar or selecting <span
class="guilabel">Plot</span> from the <span class="guilabel">Calculator</span>
+ menu. You can also access the plotting functionality by using the
+ <a class="link" href="ch11s20.html" title="Plotting">plotting
+ functions</a> of the GEL language. See
+ <a class="xref" href="ch05.html" title="Chapter 5. GEL Basics">Chapter 5, <i>GEL Basics</i></a> to
find out how to
+ enter expressions that Genius understands.
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-line-plots"></a>Line Plots</h2></div></div></div><p>
+ To graph real valued functions of one variable open the <span class="guilabel">Create Plot</span>
+ window. You can also use the
+ <a class="link" href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a>
function
+ on the command line (see its documentation).
+ </p><p>
+ Once you click the <span class="guilabel">Plot</span> button, a window opens up with some notebooks
in it.
+ You want to be in the <span class="guilabel">Function line plot</span> notebook
+tab, and inside you want to be on the <span class="guilabel">Functions / Expressions</span> notebook tab.
+See <a class="xref" href="ch04.html#lineplot-fig" title="Figure 4.1. Create Plot Window">Figure 4.1, “Create
Plot Window”</a>.
+ </p><div class="figure"><a name="lineplot-fig"></a><p class="title"><b>Figure 4.1. Create Plot
Window</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/line_plot.png" alt="Shows the line plotting window."></div></div></div></div><br
class="figure-break"><p>
+ Type expressions with <strong class="userinput"><code>x</code></strong> as
+ the independent variable into the textboxes. Alternatively you can give names of functions such as
+ <strong class="userinput"><code>cos</code></strong> rather then having to type <strong
class="userinput"><code>cos(x)</code></strong>.
+ You can graph up to ten functions. If you make a mistake and Genius cannot
+ parse the input it will signify this with a warning icon on the right of the text
+ input box where the error occurred, as well as giving you an error dialog.
+ You can change the ranges of the dependent and independent variables in the bottom
+ part of the dialog.
+ The <code class="varname">y</code> (dependent) range can be set automatically by turning on the <span
class="guilabel">Fit dependent axis</span>
+ checkbox.
+ The names of the variables can also be changed.
+ Pressing the <span class="guilabel">Plot</span> button produces the graph shown in <a class="xref"
href="ch04.html#lineplot2-fig" title="Figure 4.2. Plot Window">Figure 4.2, “Plot Window”</a>.
+ </p><p>
+ The variables can be renamed by clicking the <span class="guilabel">Change variable
names...</span> button, which is useful if you wish to print or save the figure and don't want to use the
standard
+ names. Finally you can also avoid printing the legend and the axis labels completely,
+ which is also useful if printing or
+ saving, when the legend might simply be clutter.
+ </p><div class="figure"><a name="lineplot2-fig"></a><p class="title"><b>Figure 4.2. Plot
Window</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/line_plot_graph.png" alt="The graph produced."></div></div></div></div><br
class="figure-break"><p>
+ From here you can print out the plot, create encapsulated postscript
+ or a PNG version of the plot or change the zoom. If the dependent axis was
+ not set correctly you can have Genius fit it by finding out the extrema of
+ the graphed functions.
+ </p><p>
+ For plotting using the command line see the documentation of the
+ <a class="link" href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a>
function.
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch03s03.html">Prev</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch04s02.html">Next</a></td></tr><tr><td
width="40%" align="left" valign="top">To Open and Run a Program </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> Parametric
Plots</td></tr></table></div></body></html>
diff --git a/help/C/html/ch04s02.html b/help/C/html/ch04s02.html
new file mode 100644
index 0000000..e45fbcb
--- /dev/null
+++ b/help/C/html/ch04s02.html
@@ -0,0 +1,21 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Parametric
Plots</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch04.html" title="Chapter 4. Plotting"><link
rel="prev" href="ch04.html" title="Chapter 4. Plotting"><link rel="next" href="ch04s03.html"
title="Slopefield Plots"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Parametric Plots</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch04.html">Prev</a> </td><th width="60%" align="center">Chapter 4. Plotting</th><td width="20%"
align="right"> <a accesskey="n" href="ch04s03.html">Next</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="geniu
s-parametric-plots"></a>Parametric Plots</h2></div></div></div><p>
+ In the create plot window, you can also choose the <span class="guilabel">Parametric</span> notebook
+ tab to create two dimensional parametric plots. This way you can
+ plot a single parametric function. You can either specify the
+ points as <code class="varname">x</code> and <code class="varname">y</code>, or giving a single
complex number
+ as a function of the variable <code class="varname">t</code>.
+ The range of the variable <code class="varname">t</code> is given explicitly, and the function is
sampled
+ according to the given increment.
+ The <code class="varname">x</code> and <code class="varname">y</code> range can be set
+ automatically by turning on the <span class="guilabel">Fit dependent axis</span>
+ checkbox, or it can be specified explicitly.
+ See <a class="xref" href="ch04s02.html#paramplot-fig" title="Figure 4.3. Parametric Plot Tab">Figure
4.3, “Parametric Plot Tab”</a>.
+ </p><div class="figure"><a name="paramplot-fig"></a><p class="title"><b>Figure 4.3. Parametric Plot
Tab</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/parametric.png" alt="Parametric plotting tab in the Create Plot
window."></div></div></div></div><br class="figure-break"><p>
+ An example of a parametric plot is given in
+ <a class="xref" href="ch04s02.html#paramplot2-fig" title="Figure 4.4. Parametric Plot">Figure 4.4,
“Parametric Plot”</a>.
+ Similar operations can be
+ done on such graphs as can be done on the other line plots.
+ For plotting using the command line see the documentation of the
+ <a class="link" href="ch11s20.html#gel-function-LinePlotParametric"><code
class="function">LinePlotParametric</code></a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotCParametric"><code
class="function">LinePlotCParametric</code></a> function.
+ </p><div class="figure"><a name="paramplot2-fig"></a><p class="title"><b>Figure 4.4. Parametric
Plot</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/parametric_graph.png" alt="Parametric plot produced"></div></div></div></div><br
class="figure-break"></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch04.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch04s03.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 4. Plotting
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%"
align="right" valign="top"> Slopefield Plots</td></tr></table></div></body></html>
diff --git a/help/C/html/ch04s03.html b/help/C/html/ch04s03.html
new file mode 100644
index 0000000..7060fab
--- /dev/null
+++ b/help/C/html/ch04s03.html
@@ -0,0 +1,23 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Slopefield
Plots</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch04.html" title="Chapter 4. Plotting"><link
rel="prev" href="ch04s02.html" title="Parametric Plots"><link rel="next" href="ch04s04.html"
title="Vectorfield Plots"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Slopefield Plots</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch04s02.html">Prev</a> </td><th width="60%" align="center">Chapter 4. Plotting</th><td width="20%"
align="right"> <a accesskey="n" href="ch04s04.html">Next</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="gen
ius-slopefield-plots"></a>Slopefield Plots</h2></div></div></div><p>
+ In the create plot window, you can also choose the <span class="guilabel">Slope field</span> notebook
+ tab to create a two dimensional slope field plot.
+ Similar operations can be
+ done on such graphs as can be done on the other line plots.
+ For plotting using the command line see the documentation of the
+ <a class="link" href="ch11s20.html#gel-function-SlopefieldPlot"><code
class="function">SlopefieldPlot</code></a> function.
+ </p><p>
+ When a slope field is active, there is an extra <span class="guilabel">Solver</span> menu available,
+ through which you can bring up the solver dialog. Here you can have Genius plot specific
+ solutions for the given initial conditions. You can either specify initial conditions in the dialog,
+ or you can click on the plot directly to specify the initial point. While the solver dialog
+ is active, the zooming by clicking and dragging does not work. You have to close the dialog first
+ if you want to zoom using the mouse.
+ </p><p>
+ The solver uses the standard Runge-Kutta method.
+ The plots will stay on the screen until cleared. The solver will stop whenever it reaches the
boundary
+ of the plot window. Zooming does not change the limits or parameters of the solutions,
+ you will have to clear and redraw them with appropriate parameters.
+ You can also use the
+ <a class="link" href="ch11s20.html#gel-function-SlopefieldDrawSolution"><code
class="function">SlopefieldDrawSolution</code></a>
+ function to draw solutions from the command line or programs.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s02.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch04.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch04s04.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Parametric Plots </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Vectorfield Plots</td></tr></table></div></body></html>
diff --git a/help/C/html/ch04s04.html b/help/C/html/ch04s04.html
new file mode 100644
index 0000000..60a00fa
--- /dev/null
+++ b/help/C/html/ch04s04.html
@@ -0,0 +1,27 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Vectorfield
Plots</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch04.html" title="Chapter 4. Plotting"><link
rel="prev" href="ch04s03.html" title="Slopefield Plots"><link rel="next" href="ch04s05.html" title="Surface
Plots"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Vectorfield Plots</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch04s03.html">Prev</a> </td><th width="60%" align="center">Chapter 4. Plotting</th><td width="20%"
align="right"> <a accesskey="n" href="ch04s05.html">Next</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="geniu
s-vectorfield-plots"></a>Vectorfield Plots</h2></div></div></div><p>
+ In the create plot window, you can also choose the <span class="guilabel">Vector field</span> notebook
+ tab to create a two dimensional vector field plot.
+ Similar operations can be
+ done on such graphs as can be done on the other line plots.
+ For plotting using the command line see the documentation of the
+ <a class="link" href="ch11s20.html#gel-function-VectorfieldPlot"><code
class="function">VectorfieldPlot</code></a> function.
+ </p><p>
+ By default the direction and magnitude of the vector field is shown.
+ To only show direction and not the magnitude, check the appropriate
+ checkbox to normalize the arrow lengths.
+ </p><p>
+ When a vector field is active, there is an extra <span class="guilabel">Solver</span> menu available,
+ through which you can bring up the solver dialog. Here you can have Genius plot specific
+ solutions for the given initial conditions. You can either specify initial conditions in the dialog,
+ or you can click on the plot directly to specify the initial point. While the solver dialog
+ is active, the zooming by clicking and dragging does not work. You have to close the dialog first
+ if you want to zoom using the mouse.
+ </p><p>
+ The solver uses the standard Runge-Kutta method.
+ The plots will stay on the screen until cleared.
+ Zooming does not change the limits or parameters of the solutions,
+ you will have to clear and redraw them with appropriate parameters.
+ You can also use the
+ <a class="link" href="ch11s20.html#gel-function-VectorfieldDrawSolution"><code
class="function">VectorfieldDrawSolution</code></a>
+ function to draw solutions from the command line or programs.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s03.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch04.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch04s05.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Slopefield Plots </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Surface Plots</td></tr></table></div></body></html>
diff --git a/help/C/html/ch04s05.html b/help/C/html/ch04s05.html
new file mode 100644
index 0000000..d934298
--- /dev/null
+++ b/help/C/html/ch04s05.html
@@ -0,0 +1,28 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Surface
Plots</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch04.html" title="Chapter 4. Plotting"><link
rel="prev" href="ch04s04.html" title="Vectorfield Plots"><link rel="next" href="ch05.html" title="Chapter 5.
GEL Basics"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Surface
Plots</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch04s04.html">Prev</a> </td><th
width="60%" align="center">Chapter 4. Plotting</th><td width="20%" align="right"> <a accesskey="n"
href="ch05.html">Next</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-s
urface-plots"></a>Surface Plots</h2></div></div></div><p>
+ Genius can also plot surfaces. Select the <span class="guilabel">Surface plot</span> tab in the
+ main notebook of the <span class="guilabel">Create Plot</span> window. Here you can specify a single
+ expression that should use either <code class="varname">x</code> and <code class="varname">y</code>
as real independent variables
+ or <code class="varname">z</code> as a complex variable (where <code class="varname">x</code> is the
real part of <code class="varname">z</code> and <code class="varname">y</code> is the
+ imaginary part). For example to plot the modulus of the cosine
+ function for complex parameters,
+ you could enter <strong class="userinput"><code>|cos(z)|</code></strong>. This would be
+ equivalent to <strong class="userinput"><code>|cos(x+1i*y)|</code></strong>.
+ See <a class="xref" href="ch04s05.html#surfaceplot-fig" title="Figure 4.5. Surface Plot">Figure 4.5,
“Surface Plot”</a>.
+ For plotting using the command line see the documentation of the
+ <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a> function.
+ </p><p>
+ The <code class="varname">z</code> range can be set automatically by turning on the <span
class="guilabel">Fit dependent axis</span>
+ checkbox. The variables can be renamed by clicking the <span class="guilabel">Change variable
names...</span> button, which is useful if you wish to print or save the figure and don't want to use the
standard
+ names. Finally you can also avoid printing the legend, which is also useful if printing or
+ saving, when the legend might simply be clutter.
+ </p><div class="figure"><a name="surfaceplot-fig"></a><p class="title"><b>Figure 4.5. Surface
Plot</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/surface_graph.png" alt="Modulus of the complex cosine function."></div></div></div></div><br
class="figure-break"><p>
+ In surface mode, left and right arrow keys on your keyboard will rotate the
+ view along the z axis. Alternatively you can rotate along any axis by
+ selecting <span class="guilabel">Rotate axis...</span> in the <span
class="guilabel">View</span>
+ menu. The <span class="guilabel">View</span> menu also has a top view mode which rotates the
+ graph so that the z axis is facing straight out, that is, we view the graph from the top
+ and get essentially just the colors that define the values of the function getting a
+ temperature plot of the function. Finally you should
+ try <span class="guilabel">Start rotate animation</span>, to start a continuous slow rotation.
+ This is especially good if using <span class="application">Genius Mathematics Tool</span> to
present to an audience.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s04.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch04.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Vectorfield Plots </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Chapter 5. GEL Basics</td></tr></table></div></body></html>
diff --git a/help/C/html/ch05.html b/help/C/html/ch05.html
new file mode 100644
index 0000000..c38c0bf
--- /dev/null
+++ b/help/C/html/ch05.html
@@ -0,0 +1,126 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapter 5. GEL
Basics</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="index.html" title="Genius Manual"><link
rel="prev" href="ch04s05.html" title="Surface Plots"><link rel="next" href="ch05s02.html" title="Using
Variables"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Chapter
5. GEL Basics</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch04s05.html">Prev</a>
</td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch05s02.html">Next</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-gel"></a>Chapter 5. GEL Basic
s</h1></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl class="toc"><dt><span
class="sect1"><a href="ch05.html#genius-gel-values">Values</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-numbers">Numbers</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-booleans">Booleans</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-strings">Strings</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-null">Null</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s02.html">Using Variables</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-setting">Setting Variables</a></span></dt><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-built-in">Built-in Variables</a></span></dt><dt><span
class="sect2"><a href="ch05s02.html#genius-gel-previous-result">Previous Result
Variable</a></span></dt></dl></dd><
dt><span class="sect1"><a href="ch05s03.html">Using Functions</a></span></dt><dd><dl><dt><span
class="sect2"><a href="ch05s03.html#genius-gel-functions-defining">Defining
Functions</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-variable-argument-lists">Variable Argument
Lists</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-passing-functions">Passing Functions to
Functions</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-operations">Operations on
Functions</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s04.html">Separator</a></span></dt><dt><span class="sect1"><a
href="ch05s05.html">Comments</a></span></dt><dt><span class="sect1"><a href="ch05s06.html">Modular
Evaluation</a></span></dt><dt><span class="sect1"><a href="ch05s07.html">List of GEL
Operators</a></span></dt></dl></div><p>
+ GEL stands for Genius Extension Language. It is the language you use
+ to write programs in Genius. A program in GEL is simply an
+ expression that evaluates to a number, a matrix, or another object
+ in GEL.
+ <span class="application">Genius Mathematics Tool</span> can be used as a simple calculator, or as a
+ powerful theoretical research tool. The syntax is meant to
+ have as shallow of a learning curve as possible, especially for use
+ as a calculator.
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-values"></a>Values</h2></div></div></div><p>
+ Values in GEL can be <a class="link" href="ch05.html#genius-gel-values-numbers"
title="Numbers">numbers</a>, <a class="link" href="ch05.html#genius-gel-values-booleans"
title="Booleans">Booleans</a>, or <a class="link" href="ch05.html#genius-gel-values-strings"
title="Strings">strings</a>. GEL also treats
+<a class="link" href="ch08.html" title="Chapter 8. Matrices in GEL">matrices</a> as values.
+ Values can be used in calculations, assigned to variables and returned from functions, among
other uses.
+ </p><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-numbers"></a>Numbers</h3></div></div></div><p>
+Integers are the first type of number in GEL. Integers are written in the normal way.
+</p><pre class="programlisting">1234
+</pre><p>
+Hexadecimal and octal numbers can be written using C notation. For example:
+</p><pre class="programlisting">0x123ABC
+01234
+</pre><p>
+Or you can type numbers in an arbitrary base using <code class="literal"><base>\<number></code>.
Digits higher than 10 use letters in a similar way to hexadecimal. For example, a number in base 23 could be
written:
+</p><pre class="programlisting">23\1234ABCD
+</pre><p>
+ </p><p>
+The second type of GEL number is rationals. Rationals are simply achieved by dividing two integers. So one
could write:
+</p><pre class="programlisting">3/4
+</pre><p>
+to get three quarters. Rationals also accept mixed fraction notation. So in order to get one and three
tenths you could write:
+</p><pre class="programlisting">1 3/10
+</pre><p>
+ </p><p>
+The next type of number is floating point. These are entered in a similar fashion to C notation. You can use
<code class="literal">E</code>, <code class="literal">e</code> or <code class="literal">@</code> as the
exponent delimiter. Note that using the exponent delimiter gives a float even if there is no decimal point in
the number. Examples:
+</p><pre class="programlisting">1.315
+7.887e77
+7.887e-77
+.3
+0.3
+77e5
+</pre><p>
+ When Genius prints a floating point number it will always append a
+ <code class="computeroutput">.0</code> even if the number is whole. This is to indicate that
+ floating point numbers are taken as imprecise quantities. When a number is written in the
+ scientific notation, it is always a floating point number and thus Genius does not
+ print the <code class="computeroutput">.0</code>.
+ </p><p>
+The final type of number in GEL is the complex numbers. You can enter a complex number as a sum of real and
imaginary parts. To add an imaginary part, append an <code class="literal">i</code>. Here are examples of
entering complex numbers:
+</p><pre class="programlisting">1+2i
+8.01i
+77*e^(1.3i)
+</pre><p>
+ </p><div class="important" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Important</h3><p>
+When entering imaginary numbers, a number must be in front of the <code class="literal">i</code>. If you use
<code class="literal">i</code> by itself, Genius will interpret this as referring to the variable <code
class="varname">i</code>. If you need to refer to <code class="literal">i</code> by itself, use <code
class="literal">1i</code> instead.
+ </p><p>
+In order to use mixed fraction notation with imaginary numbers you must have the mixed fraction in
parentheses. (i.e., <strong class="userinput"><code>(1 2/5)i</code></strong>)
+ </p></div></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-booleans"></a>Booleans</h3></div></div></div><p>
+Genius also supports native Boolean values. The two Boolean constants are
+defined as <code class="constant">true</code> and <code class="constant">false</code>; these
+identifiers can be used like any other variable. You can also use the
+identifiers <code class="constant">True</code>, <code class="constant">TRUE</code>,
+<code class="constant">False</code> and <code class="constant">FALSE</code> as aliases for the
+above.
+ </p><p>
+At any place where a Boolean expression is expected, you can use a Boolean
+value or any expression that produces either a number or a Boolean. If
+Genius needs to evaluate a number as a Boolean it will interpret
+0 as <code class="constant">false</code> and any other number as
+<code class="constant">true</code>.
+ </p><p>
+In addition, you can do arithmetic with Boolean values. For example:
+</p><pre class="programlisting">( (1 + true) - false ) * true
+</pre><p>
+is the same as:
+</p><pre class="programlisting">( (true or true) or not false ) and true
+</pre><p>
+Only addition, subtraction and multiplication are supported. If you mix numbers with Booleans in an
expression then the numbers are converted to Booleans as described above. This means that, for example:
+</p><pre class="programlisting">1 == true
+</pre><p>
+always evaluates to <code class="constant">true</code> since 1 will be converted to <code
class="constant">true</code> before being compared to <code class="constant">true</code>.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-strings"></a>Strings</h3></div></div></div><p>
+Like numbers and Booleans, strings in GEL can be stored as values inside variables and passed to functions.
You can also concatenate a string with another value using the plus operator. For example:
+</p><pre class="programlisting">a=2+3;"The result is: "+a
+</pre><p>
+will create the string:
+</p><pre class="programlisting">The result is: 5
+</pre><p>
+You can also use C-like escape sequences such as <code class="literal">\n</code>,<code
class="literal">\t</code>,<code class="literal">\b</code>,<code class="literal">\a</code> and <code
class="literal">\r</code>. To get a <code class="literal">\</code> or <code class="literal">"</code> into the
string you can quote it with a <code class="literal">\</code>. For example:
+</p><pre class="programlisting">"Slash: \\ Quotes: \" Tabs: \t1\t2\t3"
+</pre><p>
+will make a string:
+</p><pre class="programlisting">Slash: \ Quotes: " Tabs: 1 2 3
+</pre><p>
+Do note however that when a string is returned from a function, escapes are
+quoted, so that the output can be used as input. If you wish to print the
+string as it is (without escapes), use the
+<a class="link" href="ch11s02.html#gel-function-print"><code class="function">print</code></a>
+or
+<a class="link" href="ch11s02.html#gel-function-printn"><code class="function">printn</code></a> functions.
+ </p><p>
+ In addition, you can use the library function <a class="link"
href="ch11s02.html#gel-function-string"><code class="function">string</code></a> to convert anything to a
string. For example:
+</p><pre class="programlisting">string(22)
+</pre><p>
+will return
+</p><pre class="programlisting">"22"
+</pre><p>
+Strings can also be compared with <code class="literal">==</code> (equal), <code class="literal">!=</code>
(not equal) and <code class="literal"><=></code> (comparison) operators
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-null"></a>Null</h3></div></div></div><p>
+There is a special value called
+<code class="constant">null</code>. No operations can be performed on
+it, and nothing is printed when it is returned. Therefore,
+<code class="constant">null</code> is useful when you do not want output from an
+expression. The value <code class="constant">null</code> can be obtained as an expression when you
+type <code class="literal">.</code>, the constant <code class="constant">null</code> or nothing.
+By nothing we mean that if you end an expression with
+a separator <code class="literal">;</code>, it is equivalent to ending it with a
+separator followed by a <code class="constant">null</code>.
+ </p><p>
+Example:
+</p><pre class="programlisting">x=5;.
+x=5;
+</pre><p>
+ </p><p>
+Some functions return <code class="constant">null</code> when no value can be returned
+or an error happened. Also <code class="constant">null</code> is used as an empty vector
+or matrix, or an empty reference.
+</p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s05.html">Prev</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch05s02.html">Next</a></td></tr><tr><td
width="40%" align="left" valign="top">Surface Plots </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Home</a></td><td width="40%" align="right" valign="top"> Using
Variables</td></tr></table></div></body></html>
diff --git a/help/C/html/ch05s02.html b/help/C/html/ch05s02.html
new file mode 100644
index 0000000..6a2a57a
--- /dev/null
+++ b/help/C/html/ch05s02.html
@@ -0,0 +1,45 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Using
Variables</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch05.html" title="Chapter 5. GEL Basics"><link
rel="prev" href="ch05.html" title="Chapter 5. GEL Basics"><link rel="next" href="ch05s03.html" title="Using
Functions"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Using
Variables</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch05.html">Prev</a> </td><th
width="60%" align="center">Chapter 5. GEL Basics</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s03.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="ge
nius-gel-variables"></a>Using Variables</h2></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">VariableName
+</pre><p>
+Example:
+</p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>e</code></strong>
+= 2.71828182846
+</pre><p>
+ </p><p>
+To evaluate a variable by itself, just enter the name of the variable. This will return the value of the
variable. You can use a variable anywhere you would normally use a number or string. In addition, variables
are necessary when defining functions that take arguments (see <a class="xref"
href="ch05s03.html#genius-gel-functions-defining" title="Defining Functions">the section called “Defining
Functions”</a>).
+ </p><div class="tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Using Tab
completion</h3><p>
+You can use Tab completion to get Genius to complete variable names for you. Try typing the first few
letters of the name and pressing <strong class="userinput"><code>Tab</code></strong>.
+ </p></div><div class="important" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Variable names are case sensitive</h3><p>
+The names of variables are case sensitive. That means that variables named <code
class="varname">hello</code>, <code class="varname">HELLO</code> and <code class="varname">Hello</code> are
all different variables.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-variables-setting"></a>Setting Variables</h3></div></div></div><p>
+Syntax:
+</p><pre class="programlisting"><identifier> = <value>
+<identifier> := <value>
+</pre><p>
+Example:
+</p><pre class="programlisting">x = 3
+x := 3
+</pre><p>
+ </p><p>
+To assign a value to a variable, use the <code class="literal">=</code> or <code class="literal">:=</code>
operators. These operators set the value of the variable and return the value you set, so you can do things
like
+</p><pre class="programlisting">a = b = 5
+</pre><p>
+This will set <code class="varname">b</code> to 5 and then also set <code class="varname">a</code> to 5.
+ </p><p>
+The <code class="literal">=</code> and <code class="literal">:=</code> operators can both be used to set
variables. The difference between them is that the <code class="literal">:=</code> operator always acts as an
assignment operator, whereas the <code class="literal">=</code> operator may be interpreted as testing for
equality when used in a context where a Boolean expression is expected.
+ </p><p>
+ For more information about the scope of variables, that is when are what variables visible, see <a
class="xref" href="ch06s05.html" title="Global Variables and Scope of Variables">the section called “Global
Variables and Scope of Variables”</a>.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-variables-built-in"></a>Built-in Variables</h3></div></div></div><p>
+GEL has a number of built-in ‘variables’, such as
+<code class="varname">e</code>, <code class="varname">pi</code> or <code class="varname">GoldenRatio</code>.
These are widely used constants with a preset value, and
+they cannot be assigned new values.
+There are a number of other built-in variables.
+See <a class="xref" href="ch11s04.html" title="Constants">the section called “Constants”</a> for a full
list. Note that <code class="varname">i</code> is not by default
+the square root of negative one (the imaginary number), and is undefined to allow its use as a counter. If
you wish to write the imaginary number you need to
+use <strong class="userinput"><code>1i</code></strong>.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-previous-result"></a>Previous Result Variable</h3></div></div></div><p>
+The <code class="varname">Ans</code> and <code class="varname">ans</code> variables can be used to get the
result of the last expression. For example, if you had performed some calculation, to add 389 to the result
you could do:
+</p><pre class="programlisting">Ans+389
+</pre><p>
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch05.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05s03.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 5. GEL Basics
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%"
align="right" valign="top"> Using Functions</td></tr></table></div></body></html>
diff --git a/help/C/html/ch05s03.html b/help/C/html/ch05s03.html
new file mode 100644
index 0000000..1657939
--- /dev/null
+++ b/help/C/html/ch05s03.html
@@ -0,0 +1,74 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Using
Functions</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch05.html" title="Chapter 5. GEL Basics"><link
rel="prev" href="ch05s02.html" title="Using Variables"><link rel="next" href="ch05s04.html"
title="Separator"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Using Functions</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s02.html">Prev</a> </td><th width="60%" align="center">Chapter 5. GEL Basics</th><td width="20%"
align="right"> <a accesskey="n" href="ch05s04.html">Next</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-gel
-functions"></a>Using Functions</h2></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">FunctionName(argument1, argument2, ...)
+</pre><p>
+Example:
+</p><pre class="programlisting">Factorial(5)
+cos(2*pi)
+gcd(921,317)
+</pre><p>
+
+To evaluate a function, enter the name of the function, followed by the arguments (if any) to the function
in parentheses. This will return the result of applying the function to its arguments. The number of
arguments to the function is, of course, different for each function.
+ </p><p>
+ There are many built-in functions, such as <a class="link"
href="ch11s06.html#gel-function-sin"><code class="function">sin</code></a>, <a class="link"
href="ch11s06.html#gel-function-cos"><code class="function">cos</code></a> and <a class="link"
href="ch11s06.html#gel-function-tan"><code class="function">tan</code></a>. You can use the <a class="link"
href="ch11.html#gel-command-help"><code class="function">help</code></a> built-in command to get a list of
available functions, or see <a class="xref" href="ch11.html" title="Chapter 11. List of GEL
functions">Chapter 11, <i>List of GEL functions</i></a> for a full listing.
+ </p><div class="tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Using Tab
completion</h3><p>
+You can use Tab completion to get Genius to complete function names for you. Try typing the first few
letters of the name and pressing <strong class="userinput"><code>Tab</code></strong>.
+ </p></div><div class="important" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Function names are case sensitive</h3><p>
+The names of functions are case sensitive. That means that functions named <code
class="function">dosomething</code>, <code class="function">DOSOMETHING</code> and <code
class="function">DoSomething</code> are all different functions.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-defining"></a>Defining Functions</h3></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">function <identifier>(<comma separated arguments>) =
<function body>
+<identifier> = (`() = <function body>)
+</pre><p>
+The <code class="literal">`</code> is the backquote character, and signifies an anonymous function. By
setting it to a variable name you effectively define a function.
+ </p><p>
+A function takes zero or more comma separated arguments, and returns the result of the function body.
Defining your own functions is primarily a matter of convenience; one possible use is to have sets of
functions defined in GEL files that Genius can load in order to make them available.
+Example:
+</p><pre class="programlisting">function addup(a,b,c) = a+b+c
+</pre><p>
+then <strong class="userinput"><code>addup(1,4,9)</code></strong> yields 14
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-variable-argument-lists"></a>Variable Argument Lists</h3></div></div></div><p>
+If you include <code class="literal">...</code> after the last argument name in the function declaration,
then Genius will allow any number of arguments to be passed in place of that argument. If no arguments were
passed then that argument will be set to <code class="constant">null</code>. Otherwise, it will be a
horizontal vector containing all the arguments. For example:
+</p><pre class="programlisting">function f(a,b...) = b
+</pre><p>
+Then <strong class="userinput"><code>f(1,2,3)</code></strong> yields <code
class="computeroutput">[2,3]</code>, while <strong class="userinput"><code>f(1)</code></strong> yields a
<code class="constant">null</code>.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-passing-functions"></a>Passing Functions to Functions</h3></div></div></div><p>
+In Genius, it is possible to pass a function as an argument to another function. This can be done using
either ‘function nodes’ or anonymous functions.
+ </p><p>
+If you do not enter the parentheses after a function name, instead of being evaluated, the function will
instead be returned as a ‘function node’. The function node can then be passed to another function.
+Example:
+</p><pre class="programlisting">function f(a,b) = a(b)+1;
+function b(x) = x*x;
+f(b,2)
+</pre><p>
+ </p><p>
+To pass functions that are not defined,
+you can use an anonymous function (see <a class="xref" href="ch05s03.html#genius-gel-functions-defining"
title="Defining Functions">the section called “Defining Functions”</a>). That is, you want to pass a
function without giving it a name.
+Syntax:
+</p><pre class="programlisting">function(<comma separated arguments>) = <function body>
+`(<comma separated arguments>) = <function body>
+</pre><p>
+Example:
+</p><pre class="programlisting">function f(a,b) = a(b)+1;
+f(`(x) = x*x,2)
+</pre><p>
+This will return 5.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-operations"></a>Operations on Functions</h3></div></div></div><p>
+ Some functions allow arithmetic operations, and some single argument functions such as <a
class="link" href="ch11s05.html#gel-function-exp"><code class="function">exp</code></a> or <a class="link"
href="ch11s05.html#gel-function-ln"><code class="function">ln</code></a>, to operate on the function. For
example,
+</p><pre class="programlisting">exp(sin*cos+4)
+</pre><p>
+will return a function that takes <code class="varname">x</code> and returns <strong
class="userinput"><code>exp(sin(x)*cos(x)+4)</code></strong>. It is functionally equivalent
+to typing
+</p><pre class="programlisting">`(x) = exp(sin(x)*cos(x)+4)
+</pre><p>
+
+This operation can be useful when quickly defining functions. For example to create a function called <code
class="varname">f</code>
+to perform the above operation, you can just type:
+</p><pre class="programlisting">f = exp(sin*cos+4)
+</pre><p>
+It can also be used in plotting. For example, to plot sin squared you can enter:
+</p><pre class="programlisting">LinePlot(sin^2)
+</pre><p>
+ </p><div class="warning" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Warning</h3><p>
+Not all functions can be used in this way. For example, when you use a binary operation the functions must
take the same number of arguments.
+ </p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch05s02.html">Prev</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05s04.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Using Variables </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Separator</td></tr></table></div></body></html>
diff --git a/help/C/html/ch05s04.html b/help/C/html/ch05s04.html
new file mode 100644
index 0000000..379468f
--- /dev/null
+++ b/help/C/html/ch05s04.html
@@ -0,0 +1,28 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Separator</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Genius
Manual"><link rel="up" href="ch05.html" title="Chapter 5. GEL Basics"><link rel="prev" href="ch05s03.html"
title="Using Functions"><link rel="next" href="ch05s05.html" title="Comments"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Separator</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch05s03.html">Prev</a> </td><th width="60%" align="center">Chapter 5. GEL
Basics</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s05.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-separator"><
/a>Separator</h2></div></div></div><p>
+ GEL is somewhat different from other languages in how it deals with multiple commands and
functions.
+ In GEL you must chain commands together with a separator operator.
+That is, if you want to type more than one expression you have to use
+the <code class="literal">;</code> operator in between the expressions. This is
+a way in which both expressions are evaluated and the result of the second one (or the last one
+if there is more than two expressions) is returned.
+Suppose you type the following:
+</p><pre class="programlisting">3 ; 5
+</pre><p>
+This expression will yield 5.
+ </p><p>
+This will require some parenthesizing to make it unambiguous sometimes,
+especially if the <code class="literal">;</code> is not the top most primitive. This slightly differs from
+other programming languages where the <code class="literal">;</code> is a terminator of statements, whereas
+in GEL it’s actually a binary operator. If you are familiar with pascal
+this should be second nature. However genius can let you pretend it is a
+terminator to some degree. If a <code class="literal">;</code> is found at the end of a parenthesis or a
block,
+genius will append a null to it as if you would have written
+<strong class="userinput"><code>;null</code></strong>.
+This is useful in case you do not want to return a value from say a loop,
+or if you handle the return differently. Note that it will slightly slow down
+the code if it is executed too often as there is one more operator involved.
+ </p><p>
+ If you are typing expressions in a program you do not have to add a semicolon. In this case
+ genius will simply print the return value whenever it executes the expression. However, do
note that if you are defining a
+ function, the body of the function is a single expression.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s03.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch05.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05s05.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Using Functions </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Comments</td></tr></table></div></body></html>
diff --git a/help/C/html/ch05s05.html b/help/C/html/ch05s05.html
new file mode 100644
index 0000000..b2e74b8
--- /dev/null
+++ b/help/C/html/ch05s05.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Comments</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Genius
Manual"><link rel="up" href="ch05.html" title="Chapter 5. GEL Basics"><link rel="prev" href="ch05s04.html"
title="Separator"><link rel="next" href="ch05s06.html" title="Modular Evaluation"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Comments</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch05s04.html">Prev</a> </td><th width="60%"
align="center">Chapter 5. GEL Basics</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s06.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-comments">
</a>Comments</h2></div></div></div><p>
+ GEL is similar to other scripting languages in that <code class="literal">#</code> denotes
+ a comment, that is text that is not meant to be evaluated. Everything beyond the
+ pound sign till the end of line will just be ignored. For example,
+</p><pre class="programlisting"># This is just a comment
+# every line in a comment must have its own pound sign
+# in the next line we set x to the value 123
+x=123;
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s04.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch05.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05s06.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Separator </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Modular Evaluation</td></tr></table></div></body></html>
diff --git a/help/C/html/ch05s06.html b/help/C/html/ch05s06.html
new file mode 100644
index 0000000..2fccbd2
--- /dev/null
+++ b/help/C/html/ch05s06.html
@@ -0,0 +1,50 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Modular
Evaluation</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch05.html" title="Chapter 5. GEL Basics"><link
rel="prev" href="ch05s05.html" title="Comments"><link rel="next" href="ch05s07.html" title="List of GEL
Operators"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Modular
Evaluation</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch05s05.html">Prev</a> </td><th
width="60%" align="center">Chapter 5. GEL Basics</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s07.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name=
"genius-gel-modular-evaluation"></a>Modular Evaluation</h2></div></div></div><p>
+ Genius implements modular arithmetic.
+To use it you just add "mod <integer>" after
+the expression. Example:
+<strong class="userinput"><code>2^(5!) * 3^(6!) mod 5</code></strong>
+It could be possible to do modular arithmetic by computing with integers and then modding in the end with
+the <code class="literal">%</code> operator, which simply gives the remainder, but
+that may be time consuming if not impossible when working with larger numbers.
+For example, <strong class="userinput"><code>10^(10^10) % 6</code></strong> will simply not work (the
exponent
+will be too large), while
+<strong class="userinput"><code>10^(10^10) mod 6</code></strong> is instantaneous. The first expression
first tries to compute the integer
+<strong class="userinput"><code>10^(10^10)</code></strong> and then find remainder after division by 6,
while the second expression evaluates
+everything modulo 6 to begin with.
+ </p><p>
+You can calculate the inverses of numbers mod some integer by just using
+rational numbers (of course the inverse has to exist).
+Examples:
+</p><pre class="programlisting">10^-1 mod 101
+1/10 mod 101</pre><p>
+You can also do modular evaluation with matrices including taking inverses,
+powers and dividing.
+Example:
+</p><pre class="programlisting">A = [1,2;3,4]
+B = A^-1 mod 5
+A*B mod 5</pre><p>
+This should yield the identity matrix as B will be the inverse of A mod 5.
+ </p><p>
+Some functions such as
+<a class="link" href="ch11s05.html#gel-function-sqrt"><code class="function">sqrt</code></a> or
+<a class="link" href="ch11s05.html#gel-function-log"><code class="function">log</code></a>
+work in a different way when in modulo mode. These will then work like their
+discrete versions working within the ring of integers you selected. For
+example:
+</p><pre class="programlisting">genius> sqrt(4) mod 7
+=
+[2, 5]
+genius> 2*2 mod 7
+= 4</pre><p>
+ <code class="function">sqrt</code> will actually return all the possible square
+ roots.
+ </p><p>
+ Do not chain mod operators, simply place it at the end of the computation, all computations in
the expression on the left
+ will be carried out in mod arithmetic. If you place a mod inside
+ a mod, you will get unexpected results. If you simply want to
+ mod a single number and control exactly when remainders are
+ taken, best to use the <code class="literal">%</code> operator. When you
+ need to chain several expressions in modular arithmetic with
+ different divisors, it may be best to just split up the expression into several and use
+ temporary variables to avoid a mod inside a mod.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s05.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch05.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05s07.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Comments </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> List of GEL Operators</td></tr></table></div></body></html>
diff --git a/help/C/html/ch05s07.html b/help/C/html/ch05s07.html
new file mode 100644
index 0000000..9b75200
--- /dev/null
+++ b/help/C/html/ch05s07.html
@@ -0,0 +1,247 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>List of GEL
Operators</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch05.html" title="Chapter 5. GEL Basics"><link
rel="prev" href="ch05s06.html" title="Modular Evaluation"><link rel="next" href="ch06.html" title="Chapter 6.
Programming with GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">List of GEL Operators</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s06.html">Prev</a> </td><th width="60%" align="center">Chapter 5. GEL Basics</th><td width="20%"
align="right"> <a accesskey="n" href="ch06.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style=
"clear: both"><a name="genius-gel-operator-list"></a>List of GEL Operators</h2></div></div></div><p>
+ Everything in GEL is really just an expression. Expressions are stringed together with
+ different operators. As we have seen, even the separator is simply a binary operator
+ in GEL. Here is a list of the operators in GEL.
+ </p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><strong
class="userinput"><code>a;b</code></strong></span></dt><dd><p>
+ The separator, just evaluates both
+ <code class="varname">a</code> and
+ <code class="varname">b</code>,
+ but returns only the result of
+ <code class="varname">b</code>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a=b</code></strong></span></dt><dd><p>
+ The assignment operator. This assigns <code class="varname">b</code> to
+<code class="varname">a</code> (<code class="varname">a</code> must be a valid <a class="link"
href="ch06s09.html" title="Lvalues">lvalue</a>) (note however that this operator
+may be translated to <code class="literal">==</code> if used in a place where boolean
+expression is expected)
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a:=b</code></strong></span></dt><dd><p>
+ The assignment operator. Assigns <code class="varname">b</code> to
+<code class="varname">a</code> (<code class="varname">a</code> must be a valid <a class="link"
href="ch06s09.html" title="Lvalues">lvalue</a>). This is
+different from <code class="literal">=</code> because it never gets translated to a
+<code class="literal">==</code>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>|a|</code></strong></span></dt><dd><p>
+ Absolute value.
+ In case the expression is a complex number the result will be the modulus
+(distance from the origin). For example:
+<strong class="userinput"><code>|3 * e^(1i*pi)|</code></strong>
+returns 3.
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/AbsoluteValue.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a^b</code></strong></span></dt><dd><p>
+ Exponentiation, raises <code class="varname">a</code> to the <code class="varname">b</code>th
power.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a.^b</code></strong></span></dt><dd><p>
+ Element by element exponentiation. Raise each element of a matrix
+ <code class="varname">a</code> to the <code class="varname">b</code>th power. Or if
+ <code class="varname">b</code> is a matrix of the same size as
+ <code class="varname">a</code>, then do the operation element by element.
+ If <code class="varname">a</code> is a number and <code class="varname">b</code> is a
+ matrix then it creates matrix of the same size as
+ <code class="varname">b</code> with <code class="varname">a</code> raised to all the
+ different powers in <code class="varname">b</code>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a+b</code></strong></span></dt><dd><p>
+ Addition. Adds two numbers, matrices, functions or strings. If
+ you add a string to anything the result will just be a string. If one is
+ a square matrix and the other a number, then the number is multiplied by
+ the identity matrix.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a-b</code></strong></span></dt><dd><p>
+ Subtraction. Subtract two numbers, matrices or functions.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a*b</code></strong></span></dt><dd><p>
+ Multiplication. This is the normal matrix multiplication.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a.*b</code></strong></span></dt><dd><p>
+ Element by element multiplication if <code class="varname">a</code> and
+ <code class="varname">b</code> are matrices.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a/b</code></strong></span></dt><dd><p>
+ Division. When <code class="varname">a</code> and <code class="varname">b</code> are just
numbers
+ this is the normal division. When they are matrices, then this is
+ equivalent to <strong class="userinput"><code>a*b^-1</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a./b</code></strong></span></dt><dd><p>
+ Element by element division. Same as <strong class="userinput"><code>a/b</code></strong>
for
+ numbers, but operates element by element on matrices.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a\b</code></strong></span></dt><dd><p>
+ Back division. That is this is the same as <strong class="userinput"><code>b/a</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a.\b</code></strong></span></dt><dd><p>
+ Element by element back division.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a%b</code></strong></span></dt><dd><p>
+ The mod operator. This does not turn on the <a class="link" href="ch05s06.html" title="Modular
Evaluation">modular mode</a>, but
+ just returns the remainder of <strong class="userinput"><code>a/b</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a.%b</code></strong></span></dt><dd><p>
+ Element by element the mod operator. Returns the remainder
+ after element by element integer <strong class="userinput"><code>a./b</code></strong>.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a mod
b</code></strong></span></dt><dd><p>
+ Modular evaluation operator. The expression <code class="varname">a</code>
+ is evaluated modulo <code class="varname">b</code>. See <a class="xref" href="ch05s06.html"
title="Modular Evaluation">the section called “Modular Evaluation”</a>.
+ Some functions and operators behave differently modulo an integer.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a!</code></strong></span></dt><dd><p>
+ Factorial operator. This is like
+ <strong class="userinput"><code>1*...*(n-2)*(n-1)*n</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a!!</code></strong></span></dt><dd><p>
+ Double factorial operator. This is like
+ <strong class="userinput"><code>1*...*(n-4)*(n-2)*n</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a==b</code></strong></span></dt><dd><p>
+ Equality operator.
+ Returns <code class="constant">true</code> or <code class="constant">false</code>
+ depending on <code class="varname">a</code> and <code class="varname">b</code> being equal or
not.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a!=b</code></strong></span></dt><dd><p>
+ Inequality operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> does not
+ equal <code class="varname">b</code> else returns <code class="constant">false</code>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a<>b</code></strong></span></dt><dd><p>
+ Alternative inequality operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> does not
+ equal <code class="varname">b</code> else returns <code class="constant">false</code>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a<=b</code></strong></span></dt><dd><p>
+ Less than or equal operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> is
+ less than or equal to
+ <code class="varname">b</code> else returns <code class="constant">false</code>.
+ These can be chained as in <strong class="userinput"><code>a <= b <= c</code></strong> (can
+ also be combined with the less than operator).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a>=b</code></strong></span></dt><dd><p>
+ Greater than or equal operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> is
+ greater than or equal to
+ <code class="varname">b</code> else returns <code class="constant">false</code>.
+ These can be chained as in <strong class="userinput"><code>a >= b >= c</code></strong>
+ (can also be combine with the greater than operator).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a<b</code></strong></span></dt><dd><p>
+ Less than operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> is
+ less than
+ <code class="varname">b</code> else returns <code class="constant">false</code>.
+ These can be chained as in <strong class="userinput"><code>a < b < c</code></strong>
+ (can also be combine with the less than or equal to operator).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a>b</code></strong></span></dt><dd><p>
+ Greater than operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> is
+ greater than
+ <code class="varname">b</code> else returns <code class="constant">false</code>.
+ These can be chained as in <strong class="userinput"><code>a > b > c</code></strong>
+ (can also be combine with the greater than or equal to operator).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a<=>b</code></strong></span></dt><dd><p>
+ Comparison operator. If <code class="varname">a</code> is equal to
+ <code class="varname">b</code> it returns 0, if <code class="varname">a</code> is less
+ than <code class="varname">b</code> it returns -1 and if
+ <code class="varname">a</code> is greater than <code class="varname">b</code> it
+ returns 1.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a and
b</code></strong></span></dt><dd><p>
+ Logical and. Returns true if both
+ <code class="varname">a</code> and <code class="varname">b</code> are true,
+ else returns false. If given numbers, nonzero numbers
+ are treated as true.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a or
b</code></strong></span></dt><dd><p>
+ Logical or.
+ Returns true if either
+ <code class="varname">a</code> or <code class="varname">b</code> is true,
+ else returns false. If given numbers, nonzero numbers
+ are treated as true.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a xor
b</code></strong></span></dt><dd><p>
+ Logical xor.
+ Returns true exactly one of
+ <code class="varname">a</code> or <code class="varname">b</code> is true,
+ else returns false. If given numbers, nonzero numbers
+ are treated as true.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>not
a</code></strong></span></dt><dd><p>
+ Logical not. Returns the logical negation of <code class="varname">a</code>
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>-a</code></strong></span></dt><dd><p>
+ Negation operator. Returns the negative of a number or a matrix (works element-wise on a
matrix).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>&a</code></strong></span></dt><dd><p>
+ Variable referencing (to pass a reference to a variable).
+ See <a class="xref" href="ch06s08.html" title="References">the section called “References”</a>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>*a</code></strong></span></dt><dd><p>
+ Variable dereferencing (to access a referenced variable).
+ See <a class="xref" href="ch06s08.html" title="References">the section called “References”</a>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a'</code></strong></span></dt><dd><p>
+ Matrix conjugate transpose. That is, rows and columns get swapped and we take complex
conjugate of all entries. That is
+ if the i,j element of <code class="varname">a</code> is x+iy, then the j,i element of
<strong class="userinput"><code>a'</code></strong> is x-iy.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a.'</code></strong></span></dt><dd><p>
+ Matrix transpose, does not conjugate the entries. That is,
+ the i,j element of <code class="varname">a</code> becomes the j,i element of <strong
class="userinput"><code>a.'</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,c)</code></strong></span></dt><dd><p>
+ Get element of a matrix in row <code class="varname">b</code> and column
+ <code class="varname">c</code>. If <code class="varname">b</code>,
+ <code class="varname">c</code> are vectors, then this gets the corresponding
+ rows columns or submatrices.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,)</code></strong></span></dt><dd><p>
+ Get row of a matrix (or multiple rows if <code class="varname">b</code> is a vector).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,:)</code></strong></span></dt><dd><p>
+ Same as above.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(,c)</code></strong></span></dt><dd><p>
+ Get column of a matrix (or columns if <code class="varname">c</code> is a
+ vector).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(:,c)</code></strong></span></dt><dd><p>
+ Same as above.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b)</code></strong></span></dt><dd><p>
+ Get an element from a matrix treating it as a vector. This will
+ traverse the matrix row-wise.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a:b</code></strong></span></dt><dd><p>
+ Build a vector from <code class="varname">a</code> to <code class="varname">b</code> (or
specify a row, column region for the <code class="literal">@</code> operator). For example to get rows 2 to
4 of matrix <code class="varname">A</code> we could do
+ </p><pre class="programlisting">A@(2:4,)
+ </pre><p>
+ as <strong class="userinput"><code>2:4</code></strong> will return a vector
+ <strong class="userinput"><code>[2,3,4]</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a:b:c</code></strong></span></dt><dd><p>
+ Build a vector from <code class="varname">a</code> to <code class="varname">c</code>
+ with <code class="varname">b</code> as a step. That is for example
+ </p><pre class="programlisting">genius> 1:2:9
+=
+`[1, 3, 5, 7, 9]
+</pre><p>
+ </p><p>
+ When the numbers involved are floating point numbers, for example
+ <strong class="userinput"><code>1.0:0.4:3.0</code></strong>, the output is what is expected
+ even though adding 0.4 to 1.0 five times is actually just slightly
+ more than 3.0 due to the way that floating point numbers are
+ stored in base 2 (there is no 0.4, the actual number stored is
+ just ever so slightly bigger). The way this is handled is the
+ same as in the for, sum, and prod loops. If the end is within
+ <strong class="userinput"><code>2^-20</code></strong> times the step size of the endpoint,
+ the endpoint is used and we assume there were roundoff errors.
+ This is not perfect, but it handles the majority of the cases.
+ This check is done only from version 1.0.18 onwards, so execution
+ of your code may differ on older versions. If you want to avoid
+ dealing with this issue, use actual rational numbers, possibly
+ using the <code class="function">float</code> if you wish to get floating
+ point numbers in the end. For example
+ <strong class="userinput"><code>1:2/5:3</code></strong> does the right thing and
+ <strong class="userinput"><code>float(1:2/5:3)</code></strong> even gives you floating
+ point numbers and is ever so slightly more precise than
+ <strong class="userinput"><code>1.0:0.4:3.0</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>(a)i</code></strong></span></dt><dd><p>
+ Make a imaginary number (multiply <code class="varname">a</code> by the
+ imaginary). Note that normally the number <code class="varname">i</code> is
+ written as <strong class="userinput"><code>1i</code></strong>. So the above is equal to
+ </p><pre class="programlisting">(a)*1i
+ </pre><p>
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>`a</code></strong></span></dt><dd><p>
+ Quote an identifier so that it doesn't get evaluated. Or
+ quote a matrix so that it doesn't get expanded.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a swapwith
b</code></strong></span></dt><dd><p>
+ Swap value of <code class="varname">a</code> with the value
+ of <code class="varname">b</code>. Currently does not operate
+ on ranges of matrix elements.
+ It returns <code class="constant">null</code>.
+ Available from version 1.0.13.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>increment
a</code></strong></span></dt><dd><p>
+ Increment the variable <code class="varname">a</code> by 1. If
+ <code class="varname">a</code> is a matrix, then increment each element.
+ This is equivalent to <strong class="userinput"><code>a=a+1</code></strong>, but
+ it is somewhat faster. It returns <code class="constant">null</code>.
+ Available from version 1.0.13.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>increment a by
b</code></strong></span></dt><dd><p>
+ Increment the variable <code class="varname">a</code> by <code class="varname">b</code>.
If
+ <code class="varname">a</code> is a matrix, then increment each element.
+ This is equivalent to <strong class="userinput"><code>a=a+b</code></strong>, but
+ it is somewhat faster. It returns <code class="constant">null</code>.
+ Available from version 1.0.13.
+ </p></dd></dl></div><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Note</h3><p>
+The @() operator makes the : operator most useful. With this you can specify regions of a matrix. So that
a@(2:4,6) is the rows 2,3,4 of the column 6. Or a@(,1:2) will get you the first two columns of a matrix. You
can also assign to the @() operator, as long as the right value is a matrix that matches the region in size,
or if it is any other type of value.
+</p></div><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>
+The comparison operators (except for the <=> operator, which behaves normally), are not strictly
binary operators, they can in fact be grouped in the normal mathematical way, e.g.: (1<x<=y<5) is a
legal boolean expression and means just what it should, that is (1<x and x≤y and y<5)
+</p></div><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>
+The unitary minus operates in a different fashion depending on where it
+appears. If it appears before a number it binds very closely, if it appears in
+front of an expression it binds less than the power and factorial operators.
+So for example <strong class="userinput"><code>-1^k</code></strong> is really <strong
class="userinput"><code>(-1)^k</code></strong>,
+but <strong class="userinput"><code>-foo(1)^k</code></strong> is really <strong
class="userinput"><code>-(foo(1)^k)</code></strong>. So
+be careful how you use it and if in doubt, add parentheses.
+</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s06.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch05.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Modular Evaluation </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Chapter 6. Programming with GEL</td></tr></table></div></body></html>
diff --git a/help/C/html/ch06.html b/help/C/html/ch06.html
new file mode 100644
index 0000000..e9803d6
--- /dev/null
+++ b/help/C/html/ch06.html
@@ -0,0 +1,19 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapter 6. Programming
with GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="index.html" title="Genius Manual"><link
rel="prev" href="ch05s07.html" title="List of GEL Operators"><link rel="next" href="ch06s02.html"
title="Loops"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Chapter
6. Programming with GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s07.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch06s02.html">Next</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-gel-programmi
ng"></a>Chapter 6. Programming with GEL</h1></div></div></div><div class="toc"><p><b>Table of
Contents</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch06.html#genius-gel-conditionals">Conditionals</a></span></dt><dt><span class="sect1"><a
href="ch06s02.html">Loops</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-while">While Loops</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-for">For Loops</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-foreach">Foreach Loops</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-break-continue">Break and Continue</a></span></dt></dl></dd><dt><span
class="sect1"><a href="ch06s03.html">Sums and Products</a></span></dt><dt><span class="sect1"><a
href="ch06s04.html">Comparison Operators</a></span></dt><dt><span class="sect1"><a href="ch06s05.html">Global
Variables and Scope of Variables</a></span></dt><dt><span
class="sect1"><a href="ch06s06.html">Parameter variables</a></span></dt><dt><span class="sect1"><a
href="ch06s07.html">Returning</a></span></dt><dt><span class="sect1"><a
href="ch06s08.html">References</a></span></dt><dt><span class="sect1"><a
href="ch06s09.html">Lvalues</a></span></dt></dl></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-conditionals"></a>Conditionals</h2></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">if <expression1> then <expression2> [else <expression3>]
+</pre><p>
+If <code class="literal">else</code> is omitted, then if the <code class="literal">expression1</code> yields
<code class="constant">false</code> or 0, <code class="literal">NULL</code> is returned.
+ </p><p>
+Examples:
+</p><pre class="programlisting">if(a==5)then(a=a-1)
+if b<a then b=a
+if c>0 then c=c-1 else c=0
+a = ( if b>0 then b else 1 )
+</pre><p>
+Note that <code class="literal">=</code> will be translated to <code class="literal">==</code> if used
inside the expression for <code class="literal">if</code>, so
+</p><pre class="programlisting">if a=5 then a=a-1
+</pre><p>
+will be interpreted as:
+</p><pre class="programlisting">if a==5 then a:=a-1
+</pre><p>
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s07.html">Prev</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch06s02.html">Next</a></td></tr><tr><td
width="40%" align="left" valign="top">List of GEL Operators </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top">
Loops</td></tr></table></div></body></html>
diff --git a/help/C/html/ch06s02.html b/help/C/html/ch06s02.html
new file mode 100644
index 0000000..ad34edc
--- /dev/null
+++ b/help/C/html/ch06s02.html
@@ -0,0 +1,54 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Loops</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Genius
Manual"><link rel="up" href="ch06.html" title="Chapter 6. Programming with GEL"><link rel="prev"
href="ch06.html" title="Chapter 6. Programming with GEL"><link rel="next" href="ch06s03.html" title="Sums and
Products"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Loops</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch06.html">Prev</a>
</td><th width="60%" align="center">Chapter 6. Programming with GEL</th><td width="20%" align="right"> <a
accesskey="n" href="ch06s03.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"
<a name="genius-gel-loops"></a>Loops</h2></div></div></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a name="genius-gel-loops-while"></a>While
Loops</h3></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">while <expression1> do <expression2>
+until <expression1> do <expression2>
+do <expression2> while <expression1>
+do <expression2> until <expression1></pre><p>
+
+ These are similar to other languages. However, as in GEL it is simply an expression that must have
some return value, these
+ constructs will simply return the result of the last iteration or <code class="literal">NULL</code>
if no iteration was done. In the boolean expression, <code class="literal">=</code> is translated into <code
class="literal">==</code> just as for the <code class="literal">if</code> statement.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-for"></a>For Loops</h3></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">for <identifier> = <from> to <to> do <body>
+for <identifier> = <from> to <to> by <increment> do <body></pre><p>
+
+Loop with identifier being set to all values from <code class="literal"><from></code> to <code
class="literal"><to></code>, optionally using an increment other than 1. These are faster, nicer and
more compact than the normal loops such as above, but less flexible. The identifier must be an identifier and
can't be a dereference. The value of identifier is the last value of identifier, or <code
class="literal"><from></code> if body was never evaluated. The variable is guaranteed to be initialized
after a loop, so you can safely use it. Also the <code class="literal"><from></code>, <code
class="literal"><to></code> and <code class="literal"><increment></code> must be non complex
values. The <code class="literal"><to></code> is not guaranteed to be hit, but will never be overshot,
for example the following prints out odd numbers from 1 to 19:
+</p><pre class="programlisting">for i = 1 to 20 by 2 do print(i)
+</pre><p>
+ </p><p>
+ When one of the values is a floating point number, then the
+ final check is done to within 2^-20 of the step size. That is,
+ even if we overshoot by 2^-20 times the "by" above, we still execute the last
+ iteration. This way
+</p><pre class="programlisting">for x = 0 to 1 by 0.1 do print(x)
+</pre><p>
+does the expected even though adding 0.1 ten times becomes just slightly more than 1.0 due to the way that
floating point numbers
+are stored in base 2 (there is no 0.1, the actual number stored is just ever so slightly bigger). This is
not perfect but it handles
+the majority of the cases. If you want to avoid dealing with this issue, use actual rational numbers for
example:
+</p><pre class="programlisting">for x = 0 to 1 by 1/10 do print(x)
+</pre><p>
+ This check is done only from version 1.0.16 onwards, so execution of your code may differ on
older versions.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-foreach"></a>Foreach Loops</h3></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">for <identifier> in <matrix> do <body></pre><p>
+
+ For each element in the matrix, going row by row from left to right we execute the
body
+ with the identifier set to the current element. To
+print numbers 1,2,3 and 4 in this order you could do:
+</p><pre class="programlisting">for n in [1,2:3,4] do print(n)
+</pre><p>
+If you wish to run through the rows and columns of a matrix, you can use
+the RowsOf and ColumnsOf functions, which return a vector of the rows or
+columns of the matrix. So,
+</p><pre class="programlisting">for n in RowsOf ([1,2:3,4]) do print(n)
+</pre><p>
+will print out [1,2] and then [3,4].
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-break-continue"></a>Break and Continue</h3></div></div></div><p>
+You can also use the <code class="literal">break</code> and <code class="literal">continue</code> commands
in loops. The continue <code class="literal">continue</code> command will restart the current loop at its
next iteration, while the <code class="literal">break</code> command exits the current loop.
+</p><pre class="programlisting">while(<expression1>) do (
+ if(<expression2>) break
+ else if(<expression3>) continue;
+ <expression4>
+)
+</pre><p>
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch06.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s03.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 6. Programming
with GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%"
align="right" valign="top"> Sums and Products</td></tr></table></div></body></html>
diff --git a/help/C/html/ch06s03.html b/help/C/html/ch06s03.html
new file mode 100644
index 0000000..27f7589
--- /dev/null
+++ b/help/C/html/ch06s03.html
@@ -0,0 +1,16 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Sums and
Products</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch06.html" title="Chapter 6. Programming with
GEL"><link rel="prev" href="ch06s02.html" title="Loops"><link rel="next" href="ch06s04.html"
title="Comparison Operators"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Sums and Products</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s02.html">Prev</a> </td><th width="60%" align="center">Chapter 6. Programming with GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch06s04.html">Next</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-sums-products"></a>Sums and Products</h2></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">sum <identifier> = <from> to <to> do <body>
+sum <identifier> = <from> to <to> by <increment> do <body>
+sum <identifier> in <matrix> do <body>
+prod <identifier> = <from> to <to> do <body>
+prod <identifier> = <from> to <to> by <increment> do <body>
+prod <identifier> in <matrix> do <body></pre><p>
+
+If you substitute <code class="literal">for</code> with <code class="literal">sum</code> or <code
class="literal">prod</code>, then you will get a sum or a product instead of a <code
class="literal">for</code> loop. Instead of returning the last value, these will return the sum or the
product of the values respectively.
+ </p><p>
+If no body is executed (for example <strong class="userinput"><code>sum i=1 to 0 do ...</code></strong>)
then <code class="literal">sum</code> returns 0 and <code class="literal">prod</code> returns 1 as is the
standard convention.
+ </p><p>
+ For floating point numbers the same roundoff error protection is done as in the for loop.
+ See <a class="xref" href="ch06s02.html#genius-gel-loops-for" title="For Loops">the section
called “For Loops”</a>.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s02.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch06.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s04.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Loops </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Comparison Operators</td></tr></table></div></body></html>
diff --git a/help/C/html/ch06s04.html b/help/C/html/ch06s04.html
new file mode 100644
index 0000000..127f30a
--- /dev/null
+++ b/help/C/html/ch06s04.html
@@ -0,0 +1,40 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Comparison
Operators</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch06.html" title="Chapter 6. Programming with
GEL"><link rel="prev" href="ch06s03.html" title="Sums and Products"><link rel="next" href="ch06s05.html"
title="Global Variables and Scope of Variables"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Comparison Operators</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch06s03.html">Prev</a> </td><th width="60%" align="center">Chapter 6. Programming with
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s05.html">Next</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div>
<div><h2 class="title" style="clear: both"><a name="genius-gel-comparison-operators"></a>Comparison
Operators</h2></div></div></div><p>
+ The following standard comparison operators are supported in GEL and have the obvious meaning:
+ <code class="literal">==</code>, <code class="literal">>=</code>,
+ <code class="literal"><=</code>, <code class="literal">!=</code>,
+ <code class="literal"><></code>, <code class="literal"><</code>,
+ <code class="literal">></code>. They return <code class="constant">true</code> or
+ <code class="constant">false</code>.
+ The operators
+ <code class="literal">!=</code> and <code class="literal"><></code> are the same
+ thing and mean "is not equal to".
+ GEL also supports the operator
+ <code class="literal"><=></code>, which returns -1 if left side is
+ smaller, 0 if both sides are equal, 1 if left side is larger.
+ </p><p>
+ Normally <code class="literal">=</code> is translated to <code class="literal">==</code> if
+ it happens to be somewhere where GEL is expecting a condition such as
+ in the if condition. For example
+ </p><pre class="programlisting">if a=b then c
+if a==b then c
+</pre><p>
+ are the same thing in GEL. However you should really use
+ <code class="literal">==</code> or <code class="literal">:=</code> when you want to compare
+ or assign respectively if you want your code to be easy to read and
+ to avoid mistakes.
+ </p><p>
+ All the comparison operators (except for the
+ <code class="literal"><=></code> operator, which
+ behaves normally), are not strictly binary operators, they can in fact
+ be grouped in the normal mathematical way, e.g.:
+ (<code class="literal">1<x<=y<5</code>) is
+ a legal boolean expression and means just what it should, that is
+ (1<x and x≤y and y<5)
+ </p><p>
+ To build up logical expressions use the words <code class="literal">not</code>,
+ <code class="literal">and</code>, <code class="literal">or</code>, <code class="literal">xor</code>.
+ The operators <code class="literal">or</code> and <code class="literal">and</code> are
+special beasts as they evaluate their arguments one by one, so the usual trick
+for conditional evaluation works here as well. For example, <code class="literal">1 or a=1</code> will not
set
+<code class="literal">a=1</code> since the first argument was true.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s03.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch06.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s05.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Sums and Products
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%"
align="right" valign="top"> Global Variables and Scope of Variables</td></tr></table></div></body></html>
diff --git a/help/C/html/ch06s05.html b/help/C/html/ch06s05.html
new file mode 100644
index 0000000..9a9754d
--- /dev/null
+++ b/help/C/html/ch06s05.html
@@ -0,0 +1,113 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Global Variables and
Scope of Variables</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch06.html" title="Chapter 6. Programming with
GEL"><link rel="prev" href="ch06s04.html" title="Comparison Operators"><link rel="next" href="ch06s06.html"
title="Parameter variables"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Global Variables and Scope of Variables</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch06s04.html">Prev</a> </td><th width="60%" align="center">Chapter 6. Programming with
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s06.html">Next</a></td></tr></table><hr></div><div class="sect1"><div cl
ass="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-variables-global"></a>Global Variables and Scope of Variables</h2></div></div></div><p>
+ GEL is a
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Scope_%28programming%29" target="_top">
+ dynamically scoped language</a>. We will explain what this
+ means below. That is, normal variables and functions are dynamically
+ scoped. The exception are
+ <a class="link" href="ch06s06.html" title="Parameter variables">parameter variables</a>,
+ which are always global.
+ </p><p>
+ Like most programming languages, GEL has different types
+ of variables. Normally when a variable is defined in a function,
+ it is visible from that function and from all functions that are
+ called (all higher contexts). For example, suppose a function
+ <code class="function">f</code> defines a variable <code class="varname">a</code>
+ and then calls function <code class="function">g</code>. Then
+ function <code class="function">g</code> can reference
+ <code class="varname">a</code>. But once <code class="function">f</code> returns,
+ the variable <code class="varname">a</code> goes out of scope.
+ For example, the following code will print out 5.
+ The function <code class="function">g</code> cannot be called on the
+ top level (outside <code class="function">f</code> as <code class="varname">a</code>
+ will not be defined).
+</p><pre class="programlisting">function f() = (a:=5; g());
+function g() = print(a);
+f();
+</pre><p>
+ </p><p>
+ If you define a variable inside a function it will override
+ any variables defined in calling functions. For example,
+ we modify the above code and write:
+</p><pre class="programlisting">function f() = (a:=5; g());
+function g() = print(a);
+a:=10;
+f();
+</pre><p>
+ This code will still print out 5. But if you call
+ <code class="function">g</code> outside of <code class="function">f</code> then
+ you will get a printout of 10. Note that
+ setting <code class="varname">a</code>
+ to 5 inside <code class="function">f</code> does not change
+ the value of <code class="varname">a</code> at the top (global) level,
+ so if you now check the value of <code class="varname">a</code> it will
+ still be 10.
+ </p><p>
+ Function arguments are exactly like variables defined inside
+ the function, except that they are initialized with the value
+ that was passed to the function. Other than this point, they are
+ treated just like all other variables defined inside the
+ function.
+ </p><p>
+ Functions are treated exactly like variables. Hence you can
+ locally redefine functions. Normally (on the top level) you
+ cannot redefine protected variables and functions. But locally
+ you can do this. Consider the following session:
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>function f(x)
= sin(x)^2</code></strong>
+= (`(x)=(sin(x)^2))
+<code class="prompt">genius> </code><strong class="userinput"><code>function f(x) =
sin(x)^2</code></strong>
+= (`(x)=(sin(x)^2))
+<code class="prompt">genius> </code><strong class="userinput"><code>function g(x) = ((function
sin(x)=x^10);f(x))</code></strong>
+= (`(x)=((sin:=(`(x)=(x^10)));f(x)))
+<code class="prompt">genius> </code><strong class="userinput"><code>g(10)</code></strong>
+= 1e20
+</pre><p>
+ </p><p>
+ Functions and variables defined at the top level are
+ considered global. They are visible from anywhere. As we
+ said the following function <code class="function">f</code>
+ will not change the value of <code class="varname">a</code> to 5.
+</p><pre class="programlisting">a=6;
+function f() = (a:=5);
+f();
+</pre><p>
+ Sometimes, however, it is necessary to set
+a global variable from inside a function. When this behavior is needed,
+use the
+<a class="link" href="ch11s02.html#gel-function-set"><code class="function">set</code></a> function. Passing
a string or a quoted identifier to
+this function sets the variable globally (on the top level).
+For example, to set
+<code class="varname">a</code> to the value 3 you could call:
+</p><pre class="programlisting">set(`a,3)
+</pre><p>
+or:
+</p><pre class="programlisting">set("a",3)
+</pre><p>
+ </p><p>
+ The <code class="function">set</code> function always sets the toplevel
+ global. There is no way to set a local variable in some function
+ from a subroutine. If this is required, must use passing by
+ reference.
+ </p><p>
+ See also the
+ <a class="link" href="ch11s02.html#gel-function-SetElement"><code
class="function">SetElement</code></a> and
+ <a class="link" href="ch11s02.html#gel-function-SetVElement"><code
class="function">SetVElement</code></a> functions.
+ </p><p>
+ So to recap in a more technical language: Genius operates with
+ different numbered contexts. The top level is the context 0
+ (zero). Whenever a function is entered, the context is raised,
+ and when the function returns the context is lowered. A function
+ or a variable is always visible from all higher numbered contexts.
+ When a variable was defined in a lower numbered context, then
+ setting this variable has the effect of creating a new local
+ variable in the current context number and this variable
+ will now be visible from all higher numbered contexts.
+ </p><p>
+ There are also true local variables that are not seen from
+ anywhere but the current context. Also when returning functions
+ by value it may reference variables not visible from higher context
+ and this may be a problem. See the sections
+ <a class="link" href="ch07s04.html" title="True Local Variables">True
+ Local Variables</a> and
+ <a class="link" href="ch07s03.html" title="Returning Functions">Returning
+ Functions</a>.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s04.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch06.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s06.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Comparison Operators
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%"
align="right" valign="top"> Parameter variables</td></tr></table></div></body></html>
diff --git a/help/C/html/ch06s06.html b/help/C/html/ch06s06.html
new file mode 100644
index 0000000..eec5a0e
--- /dev/null
+++ b/help/C/html/ch06s06.html
@@ -0,0 +1,18 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Parameter
variables</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch06.html" title="Chapter 6. Programming with
GEL"><link rel="prev" href="ch06s05.html" title="Global Variables and Scope of Variables"><link rel="next"
href="ch06s07.html" title="Returning"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Parameter variables</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch06s05.html">Prev</a> </td><th width="60%" align="center">Chapter 6. Programming with
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s07.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 c
lass="title" style="clear: both"><a name="genius-gel-parameters"></a>Parameter
variables</h2></div></div></div><p>
+ As we said before, there exist special variables called parameters
+ that exist in all scopes. To declare a parameter called
+ <code class="varname">foo</code> with the initial value 1, we write
+</p><pre class="programlisting">parameter foo = 1
+</pre><p>
+ From then on, <code class="varname">foo</code> is a strictly global variable.
+ Setting <code class="varname">foo</code> inside any function will modify the
+ variable in all contexts, that is, functions do not have a private
+ copy of parameters.
+ </p><p>
+ When you undefine a parameter using the
+ <a class="link" href="ch11s02.html#gel-function-undefine">
+ <code class="function">undefine</code></a> function, it stops being
+ a parameter.
+ </p><p>
+ Some parameters are built-in and modify the behavior of genius.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s05.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch06.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s07.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Global Variables and
Scope of Variables </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td
width="40%" align="right" valign="top"> Returning</td></tr></table></div></body></html>
diff --git a/help/C/html/ch06s07.html b/help/C/html/ch06s07.html
new file mode 100644
index 0000000..b1f49de
--- /dev/null
+++ b/help/C/html/ch06s07.html
@@ -0,0 +1,17 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Returning</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Genius
Manual"><link rel="up" href="ch06.html" title="Chapter 6. Programming with GEL"><link rel="prev"
href="ch06s06.html" title="Parameter variables"><link rel="next" href="ch06s08.html"
title="References"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Returning</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s06.html">Prev</a> </td><th width="60%" align="center">Chapter 6. Programming with GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch06s08.html">Next</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a nam
e="genius-gel-returning"></a>Returning</h2></div></div></div><p>
+ Normally a function is one or several expressions separated by a
+semicolon, and the value of the last expression is returned. This is fine for
+simple functions, but
+sometimes you do not want a function to return the last thing calculated. You may, for example, want to
return from a middle of a function. In this case, you can use the <code class="literal">return</code>
keyword. <code class="literal">return</code> takes one argument, which is the value to be returned.
+ </p><p>
+Example:
+</p><pre class="programlisting">function f(x) = (
+ y=1;
+ while true do (
+ if x>50 then return y;
+ y=y+1;
+ x=x+1
+ )
+)
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s06.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch06.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s08.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Parameter variables
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%"
align="right" valign="top"> References</td></tr></table></div></body></html>
diff --git a/help/C/html/ch06s08.html b/help/C/html/ch06s08.html
new file mode 100644
index 0000000..2b62a24
--- /dev/null
+++ b/help/C/html/ch06s08.html
@@ -0,0 +1,35 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>References</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius Manual"><link rel="up" href="ch06.html"
title="Chapter 6. Programming with GEL"><link rel="prev" href="ch06s07.html" title="Returning"><link
rel="next" href="ch06s09.html" title="Lvalues"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">References</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch06s07.html">Prev</a> </td><th width="60%" align="center">Chapter 6. Programming with
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s09.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-g
el-references"></a>References</h2></div></div></div><p>
+ It may be necessary for some functions to return more than one value.
+ This may be accomplished by returning a vector of values, but many
+ times it is convenient to use passing a reference to a variable.
+ You pass a reference to a variable to a function, and the function
+ will set the variable for you using a dereference. You do not have
+ to use references only for this purpose, but this is their main use.
+ </p><p>
+ When using functions that return values through references
+ in the argument list, just pass the variable name with an ampersand.
+ For example the following code will compute an eigenvalue of a matrix
+ <code class="varname">A</code> with initial eigenvector guess
+ <code class="varname">x</code>, and store the computed eigenvector
+ into the variable named <code class="varname">v</code>:
+</p><pre class="programlisting">RayleighQuotientIteration (A,x,0.001,100,&v)
+</pre><p>
+ </p><p>
+The details of how references work and the syntax is similar to the C language.
+The operator
+<code class="literal">&</code> references a variable
+and <code class="literal">*</code> dereferences a variable. Both can only be applied to an identifier,
+so <code class="literal">**a</code> is not a legal expression in GEL.
+ </p><p>
+References are best explained by an example:
+</p><pre class="programlisting">a=1;
+b=&a;
+*b=2;
+</pre><p>
+now <code class="varname">a</code> contains 2. You can also reference functions:
+</p><pre class="programlisting">function f(x) = x+1;
+t=&f;
+*t(3)
+</pre><p>
+gives us 4.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s07.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch06.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s09.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Returning </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Lvalues</td></tr></table></div></body></html>
diff --git a/help/C/html/ch06s09.html b/help/C/html/ch06s09.html
new file mode 100644
index 0000000..0257def
--- /dev/null
+++ b/help/C/html/ch06s09.html
@@ -0,0 +1,27 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Lvalues</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Genius
Manual"><link rel="up" href="ch06.html" title="Chapter 6. Programming with GEL"><link rel="prev"
href="ch06s08.html" title="References"><link rel="next" href="ch07.html" title="Chapter 7. Advanced
Programming with GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Lvalues</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s08.html">Prev</a> </td><th width="60%" align="center">Chapter 6. Programming with GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch07.html">Next</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-lvalues"></a>Lvalues</h2></div></div></div><p>
+ An lvalue is the left hand side of an assignment. In other words, an
+ lvalue is what you assign something to. Valid lvalues are:
+</p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><strong
class="userinput"><code>a</code></strong></span></dt><dd><p>
+ Identifier. Here we would be setting the variable of name
+ <code class="varname">a</code>.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>*a</code></strong></span></dt><dd><p>
+ Dereference of an identifier. This will set whatever variable
+ <code class="varname">a</code> points to.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(<region>)</code></strong></span></dt><dd><p>
+ A region of a matrix. Here the region is specified normally as with
+ the regular @() operator, and can be a single entry, or an entire
+ region of the matrix.
+ </p></dd></dl></div><p>
+ </p><p>
+Examples:
+</p><pre class="programlisting">a:=4
+*tmp := 89
+a@(1,1) := 5
+a@(4:8,3) := [1,2,3,4,5]'
+</pre><p>
+Note that both <code class="literal">:=</code> and <code class="literal">=</code> can be used
+interchangeably. Except if the assignment appears in a condition.
+It is thus always safer to just use
+<code class="literal">:=</code> when you mean assignment, and <code class="literal">==</code>
+when you mean comparison.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s08.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch06.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">References </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Chapter 7. Advanced Programming with GEL</td></tr></table></div></body></html>
diff --git a/help/C/html/ch07.html b/help/C/html/ch07.html
new file mode 100644
index 0000000..3c01fed
--- /dev/null
+++ b/help/C/html/ch07.html
@@ -0,0 +1,18 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapter 7. Advanced
Programming with GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="index.html" title="Genius Manual"><link
rel="prev" href="ch06s09.html" title="Lvalues"><link rel="next" href="ch07s02.html" title="Toplevel
Syntax"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Chapter
7. Advanced Programming with GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s09.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch07s02.html">Next</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius
-gel-programming-advanced"></a>Chapter 7. Advanced Programming with GEL</h1></div></div></div><div
class="toc"><p><b>Table of Contents</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch07.html#genius-gel-error-handling">Error Handling</a></span></dt><dt><span class="sect1"><a
href="ch07s02.html">Toplevel Syntax</a></span></dt><dt><span class="sect1"><a href="ch07s03.html">Returning
Functions</a></span></dt><dt><span class="sect1"><a href="ch07s04.html">True Local
Variables</a></span></dt><dt><span class="sect1"><a href="ch07s05.html">GEL Startup
Procedure</a></span></dt><dt><span class="sect1"><a href="ch07s06.html">Loading
Programs</a></span></dt></dl></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-error-handling"></a>Error Handling</h2></div></div></div><p>
+If you detect an error in your function, you can bail out of it. For normal
+errors, such as wrong types of arguments, you can fail to compute the function
+by adding the statement <code class="literal">bailout</code>. If something went
+really wrong and you want to completely kill the current computation, you can
+use <code class="literal">exception</code>.
+ </p><p>
+ For example if you want to check for arguments in your function. You
+could use the following code.
+</p><pre class="programlisting">function f(M) = (
+ if not IsMatrix (M) then (
+ error ("M not a matrix!");
+ bailout
+ );
+ ...
+)
+</pre><p>
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s09.html">Prev</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch07s02.html">Next</a></td></tr><tr><td
width="40%" align="left" valign="top">Lvalues </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Home</a></td><td width="40%" align="right" valign="top"> Toplevel
Syntax</td></tr></table></div></body></html>
diff --git a/help/C/html/ch07s02.html b/help/C/html/ch07s02.html
new file mode 100644
index 0000000..ea65d04
--- /dev/null
+++ b/help/C/html/ch07s02.html
@@ -0,0 +1,32 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Toplevel
Syntax</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch07.html" title="Chapter 7. Advanced
Programming with GEL"><link rel="prev" href="ch07.html" title="Chapter 7. Advanced Programming with
GEL"><link rel="next" href="ch07s03.html" title="Returning Functions"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Toplevel Syntax</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07.html">Prev</a> </td><th width="60%" align="center">Chapter 7.
Advanced Programming with GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s03.html">Next</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage
"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-toplevel-syntax"></a>Toplevel
Syntax</h2></div></div></div><p>
+ The syntax is slightly different if you enter statements on
+ the top level versus when they are inside parentheses or
+ inside functions. On the top level, enter acts the same as if
+ you press return on the command line. Therefore think of programs
+ as just sequence of lines as if were entered on the command line.
+ In particular, you do not need to enter the separator at the end of the
+ line (unless it is of course part of several statements inside
+ parentheses).
+ </p><p>
+ The following code will produce an error when entered on the top
+ level of a program, while it will work just fine in a function.
+</p><pre class="programlisting">if Something() then
+ DoSomething()
+else
+ DoSomethingElse()
+</pre><p>
+ </p><p>
+ The problem is that after <span class="application">Genius Mathematics Tool</span> sees the end of
line after the
+ second line, it will decide that we have whole statement and
+ it will execute it. After the execution is done, <span class="application">Genius Mathematics
Tool</span> will
+ go on to the next
+ line, it will see <code class="literal">else</code>, and it will produce
+ a parsing error. To fix this, use parentheses. <span class="application">Genius Mathematics
Tool</span> will not
+ be satisfied until it has found that all parentheses are closed.
+</p><pre class="programlisting">if Something() then (
+ DoSomething()
+) else (
+ DoSomethingElse()
+)
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch07.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07s03.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 7. Advanced
Programming with GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td
width="40%" align="right" valign="top"> Returning Functions</td></tr></table></div></body></html>
diff --git a/help/C/html/ch07s03.html b/help/C/html/ch07s03.html
new file mode 100644
index 0000000..fa74cb4
--- /dev/null
+++ b/help/C/html/ch07s03.html
@@ -0,0 +1,102 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Returning
Functions</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch07.html" title="Chapter 7. Advanced
Programming with GEL"><link rel="prev" href="ch07s02.html" title="Toplevel Syntax"><link rel="next"
href="ch07s04.html" title="True Local Variables"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Returning Functions</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch07s02.html">Prev</a> </td><th width="60%" align="center">Chapter 7. Advanced
Programming with GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s04.html">Next</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div>
<h2 class="title" style="clear: both"><a name="genius-gel-returning-functions"></a>Returning
Functions</h2></div></div></div><p>
+ It is possible to return functions as value. This way you can
+ build functions that construct special purpose functions according
+ to some parameters. The tricky bit is what variables does the
+ function see. The way this works in GEL is that when a function
+ returns another function, all identifiers referenced in the
+ function body that went out of scope
+ are prepended a private dictionary of the returned
+ function. So the function will see all variables that were in
+ scope
+ when it was defined. For example, we define a function that
+ returns a function that adds 5 to its argument.
+</p><pre class="programlisting">function f() = (
+ k = 5;
+ `(x) = (x+k)
+)
+</pre><p>
+ Notice that the function adds <code class="varname">k</code> to
+ <code class="varname">x</code>. You could use this as follows.
+</p><pre class="programlisting">g = f();
+g(5)
+</pre><p>
+ And <strong class="userinput"><code>g(5)</code></strong> should return 10.
+ </p><p>
+ One thing to note is that the value of <code class="varname">k</code>
+ that is used is the one that's in effect when the
+ <code class="function">f</code> returns. For example:
+</p><pre class="programlisting">function f() = (
+ k := 5;
+ function r(x) = (x+k);
+ k := 10;
+ r
+)
+</pre><p>
+ will return a function that adds 10 to its argument rather than
+ 5. This is because the extra dictionary is created only when
+ the context
+ in which the function was defined ends, which is when the function
+ <code class="function">f</code> returns. This is consistent with how you
+ would expect the function <code class="function">r</code> to work inside
+ the function <code class="function">f</code> according to the rules of
+ scope of variables in GEL. Only those variables are added to the
+ extra dictionary that are in the context that just ended and
+ no longer exists. Variables
+ used in the function that are in still valid contexts will work
+ as usual, using the current value of the variable.
+ The only difference is with global variables and functions.
+ All identifiers that referenced global variables at time of
+ the function definition are not added to the private dictionary.
+ This is to avoid much unnecessary work when returning functions
+ and would rarely be a problem. For example, suppose that you
+ delete the "k=5" from the function <code class="function">f</code>,
+ and at the top level you define <code class="varname">k</code> to be
+ say 5. Then when you run <code class="function">f</code>, the function
+ <code class="function">r</code> will not put <code class="varname">k</code> into
+ the private dictionary because it was global (toplevel)
+ at the time of definition of <code class="function">r</code>.
+ </p><p>
+ Sometimes it is better to have more control over how variables
+ are copied into the private dictionary. Since version 1.0.7,
+ you can specify which
+ variables are copied into the private dictionary by putting
+ extra square brackets after the arguments with the list of
+ variables to be copied separated by commas.
+ If you do this, then variables are
+ copied into the private dictionary at time of the function
+ definition, and the private dictionary is not touched afterwards.
+ For example
+</p><pre class="programlisting">function f() = (
+ k := 5;
+ function r(x) [k] = (x+k);
+ k := 10;
+ r
+)
+</pre><p>
+ will return a function that when called will add 5 to its
+ argument. The local copy of <code class="varname">k</code> was created
+ when the function was defined.
+ </p><p>
+ When you want the function to not have any private dictionary
+ then put empty square brackets after the argument list. Then
+ no private dictionary will be created at all. Doing this is
+ good to increase efficiency when a private dictionary is not
+ needed or when you want the function to lookup all variables
+ as it sees them when called. For example suppose you want
+ the function returned from <code class="function">f</code> to see
+ the value of <code class="varname">k</code> from the toplevel despite
+ there being a local variable of the same name during definition.
+ So the code
+</p><pre class="programlisting">function f() = (
+ k := 5;
+ function r(x) [] = (x+k);
+ r
+);
+k := 10;
+g = f();
+g(10)
+</pre><p>
+ will return 20 and not 15, which would happen if
+ <code class="varname">k</code> with a value of 5 was added to the private
+ dictionary.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07s02.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch07.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07s04.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Toplevel Syntax </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> True Local Variables</td></tr></table></div></body></html>
diff --git a/help/C/html/ch07s04.html b/help/C/html/ch07s04.html
new file mode 100644
index 0000000..de8dff4
--- /dev/null
+++ b/help/C/html/ch07s04.html
@@ -0,0 +1,58 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>True Local
Variables</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch07.html" title="Chapter 7. Advanced
Programming with GEL"><link rel="prev" href="ch07s03.html" title="Returning Functions"><link rel="next"
href="ch07s05.html" title="GEL Startup Procedure"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">True Local Variables</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch07s03.html">Prev</a> </td><th width="60%" align="center">Chapter 7. Advanced
Programming with GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s05.html">Next</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><di
v><div><h2 class="title" style="clear: both"><a name="genius-gel-true-local-variables"></a>True Local
Variables</h2></div></div></div><p>
+ When passing functions into other functions, the normal scoping of
+ variables might be undesired. For example:
+</p><pre class="programlisting">k := 10;
+function r(x) = (x+k);
+function f(g,x) = (
+ k := 5;
+ g(x)
+);
+f(r,1)
+</pre><p>
+ you probably want the function <code class="function">r</code>
+ when passed as <code class="function">g</code> into <code class="function">f</code>
+ to see <code class="varname">k</code> as 10 rather than 5, so that
+ the code returns 11 and not 6. However, as written, the function
+ when executed will see the <code class="varname">k</code> that is
+ equal to 5. There are two ways to solve this. One would be
+ to have <code class="function">r</code> get <code class="varname">k</code> in a
+ private dictionary using the square bracket notation section
+ <a class="link" href="ch07s03.html" title="Returning Functions">Returning
+ Functions</a>.
+ </p><p>
+ But there is another solution. Since version 1.0.7 there are
+ true local variables. These are variables that are visible only
+ from the current context and not from any called functions.
+ We could define <code class="varname">k</code> as a local variable in the
+ function <code class="function">f</code>. To do this add a
+ <span class="command"><strong>local</strong></span> statement as the first statement in the
+ function (it must always be the first statement in the function).
+ You can also make any arguments be local variables as well.
+ That is,
+</p><pre class="programlisting">function f(g,x) = (
+ local g,x,k;
+ k := 5;
+ g(x)
+);
+</pre><p>
+ Then the code will work as expected and prints out 11.
+ Note that the <span class="command"><strong>local</strong></span> statement initializes
+ all the referenced variables (except for function arguments) to
+ a <code class="constant">null</code>.
+ </p><p>
+ If all variables are to be created as locals you can just pass an
+ asterisk instead of a list of variables. In this case the variables
+ will not be initialized until they are actually set of course.
+ So the following definition of <code class="function">f</code>
+ will also work:
+</p><pre class="programlisting">function f(g,x) = (
+ local *;
+ k := 5;
+ g(x)
+);
+</pre><p>
+ </p><p>
+ It is good practice that all functions that take other functions
+ as arguments use local variables. This way the passed function
+ does not see implementation details and get confused.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07s03.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch07.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07s05.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Returning Functions
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%"
align="right" valign="top"> GEL Startup Procedure</td></tr></table></div></body></html>
diff --git a/help/C/html/ch07s05.html b/help/C/html/ch07s05.html
new file mode 100644
index 0000000..7ab8e95
--- /dev/null
+++ b/help/C/html/ch07s05.html
@@ -0,0 +1,7 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>GEL Startup
Procedure</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch07.html" title="Chapter 7. Advanced
Programming with GEL"><link rel="prev" href="ch07s04.html" title="True Local Variables"><link rel="next"
href="ch07s06.html" title="Loading Programs"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">GEL Startup Procedure</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch07s04.html">Prev</a> </td><th width="60%" align="center">Chapter 7. Advanced
Programming with GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s06.html">Next</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div>
<div><h2 class="title" style="clear: both"><a name="genius-gel-startup-procedure"></a>GEL Startup
Procedure</h2></div></div></div><p>
+First the program looks for the installed library file (the compiled version <code
class="filename">lib.cgel</code>) in the installed directory, then it looks into the current directory, and
then it tries to load an uncompiled file called
+<code class="filename">~/.geniusinit</code>.
+ </p><p>
+If you ever change the library in its installed place, you’ll have to
+first compile it with <span class="command"><strong>genius --compile loader.gel > lib.cgel</strong></span>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07s04.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch07.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07s06.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">True Local Variables
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%"
align="right" valign="top"> Loading Programs</td></tr></table></div></body></html>
diff --git a/help/C/html/ch07s06.html b/help/C/html/ch07s06.html
new file mode 100644
index 0000000..1a23c99
--- /dev/null
+++ b/help/C/html/ch07s06.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Loading
Programs</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch07.html" title="Chapter 7. Advanced
Programming with GEL"><link rel="prev" href="ch07s05.html" title="GEL Startup Procedure"><link rel="next"
href="ch08.html" title="Chapter 8. Matrices in GEL"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Loading Programs</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch07s05.html">Prev</a> </td><th width="60%" align="center">Chapter 7. Advanced
Programming with GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch08.html">Next</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><di
v><h2 class="title" style="clear: both"><a name="genius-gel-loading-programs"></a>Loading
Programs</h2></div></div></div><p>
+Sometimes you have a larger program you wrote into a file and want to read that file into <span
class="application">Genius Mathematics Tool</span>. In these situations, you have two options. You can keep
the functions you use most inside the <code class="filename">~/.geniusinit</code> file. Or if you want to
load up a file in a middle of a session (or from within another file), you can type <span
class="command"><strong>load <list of filenames></strong></span> at the prompt. This has to be done on
the top level and not inside any function or whatnot, and it cannot be part of any expression. It also has a
slightly different syntax than the rest of genius, more similar to a shell. You can enter the file in quotes.
If you use the '' quotes, you will get exactly the string that you typed, if you use the "" quotes, special
characters will be unescaped as they are for strings. Example:
+</p><pre class="programlisting">load program1.gel program2.gel
+load "Weird File Name With SPACES.gel"
+</pre><p>
+There are also <span class="command"><strong>cd</strong></span>, <span
class="command"><strong>pwd</strong></span> and <span class="command"><strong>ls</strong></span> commands
built in. <span class="command"><strong>cd</strong></span> will take one argument, <span
class="command"><strong>ls</strong></span> will take an argument that is like the glob in the UNIX shell
(i.e., you can use wildcards). <span class="command"><strong>pwd</strong></span> takes no arguments. For
example:
+</p><pre class="programlisting">cd directory_with_gel_programs
+ls *.gel
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07s05.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch07.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch08.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">GEL Startup Procedure
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%"
align="right" valign="top"> Chapter 8. Matrices in GEL</td></tr></table></div></body></html>
diff --git a/help/C/html/ch08.html b/help/C/html/ch08.html
new file mode 100644
index 0000000..40864b3
--- /dev/null
+++ b/help/C/html/ch08.html
@@ -0,0 +1,55 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapter 8. Matrices in
GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="index.html" title="Genius Manual"><link
rel="prev" href="ch07s06.html" title="Loading Programs"><link rel="next" href="ch08s02.html" title="Conjugate
Transpose and Transpose Operator"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Chapter 8. Matrices in GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch07s06.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch08s02.html">Next</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name
="genius-gel-matrices"></a>Chapter 8. Matrices in GEL</h1></div></div></div><div class="toc"><p><b>Table of
Contents</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch08.html#genius-gel-matrix-support">Entering Matrices</a></span></dt><dt><span class="sect1"><a
href="ch08s02.html">Conjugate Transpose and Transpose Operator</a></span></dt><dt><span class="sect1"><a
href="ch08s03.html">Linear Algebra</a></span></dt></dl></div><p>
+ Genius has support for vectors and matrices and possesses a sizable library of
+ matrix manipulation and linear algebra functions.
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-matrix-support"></a>Entering Matrices</h2></div></div></div><p>
+To enter matrices, you can use one of the following two syntaxes. You can either enter
+the matrix on one line, separating values by commas and rows by semicolons. Or you
+can enter each row on one line, separating
+values by commas.
+You can also just combine the two methods.
+So to enter a 3x3 matrix
+of numbers 1-9 you could do
+</p><pre class="programlisting">[1,2,3;4,5,6;7,8,9]
+</pre><p>
+or
+</p><pre class="programlisting">[1, 2, 3
+ 4, 5, 6
+ 7, 8, 9]
+</pre><p>
+Do not use both ';' and return at once on the same line though.
+ </p><p>
+You can also use the matrix expansion functionality to enter matrices.
+For example you can do:
+</p><pre class="programlisting">a = [ 1, 2, 3
+ 4, 5, 6
+ 7, 8, 9]
+b = [ a, 10
+ 11, 12]
+</pre><p>
+and you should get
+</p><pre class="programlisting">[1, 2, 3, 10
+ 4, 5, 6, 10
+ 7, 8, 9, 10
+ 11, 11, 11, 12]
+</pre><p>
+similarly you can build matrices out of vectors and other stuff like that.
+ </p><p>
+Another thing is that non-specified spots are initialized to 0, so
+</p><pre class="programlisting">[1, 2, 3
+ 4, 5
+ 6]
+</pre><p>
+will end up being
+</p><pre class="programlisting">
+[1, 2, 3
+ 4, 5, 0
+ 6, 0, 0]
+</pre><p>
+ </p><p>
+ When matrices are evaluated, they are evaluated and traversed row-wise. This is just
+ like the <code class="literal">M@(j)</code> operator, which traverses the matrix row-wise.
+ </p><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>
+Be careful about using returns for expressions inside the
+<code class="literal">[ ]</code> brackets, as they have a slightly different meaning
+there. You will start a new row.
+ </p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch07s06.html">Prev</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch08s02.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Loading Programs </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Conjugate Transpose and Transpose Operator</td></tr></table></div></body></html>
diff --git a/help/C/html/ch08s02.html b/help/C/html/ch08s02.html
new file mode 100644
index 0000000..296d07b
--- /dev/null
+++ b/help/C/html/ch08s02.html
@@ -0,0 +1,21 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Conjugate Transpose
and Transpose Operator</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Genius Manual"><link rel="up" href="ch08.html" title="Chapter 8. Matrices
in GEL"><link rel="prev" href="ch08.html" title="Chapter 8. Matrices in GEL"><link rel="next"
href="ch08s03.html" title="Linear Algebra"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Conjugate Transpose and Transpose Operator</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch08.html">Prev</a> </td><th width="60%"
align="center">Chapter 8. Matrices in GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch08s03.html">Next</a></td></tr></table><hr></div><div class="sect1"><div class="ti
tlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-matrix-transpose"></a>Conjugate
Transpose and Transpose Operator</h2></div></div></div><p>
+You can conjugate transpose a matrix by using the <code class="literal">'</code> operator. That is
+the entry in the
+<code class="varname">i</code>th column and the <code class="varname">j</code>th row will be
+the complex conjugate of the entry in the
+<code class="varname">j</code>th column and the <code class="varname">i</code>th row of the original matrix.
+ For example:
+</p><pre class="programlisting">[1,2,3]*[4,5,6]'
+</pre><p>
+We transpose the second vector to make matrix multiplication possible.
+If you just want to transpose a matrix without conjugating it, you would
+use the <code class="literal">.'</code> operator. For example:
+</p><pre class="programlisting">[1,2,3]*[4,5,6i].'
+</pre><p>
+ </p><p>
+ Note that normal transpose, that is the <code class="literal">.'</code> operator, is much faster
+ and will not create a new copy of the matrix in memory. The conjugate transpose does
+ create a new copy unfortunately.
+ It is recommended to always use the <code class="literal">.'</code> operator when working with real
+ matrices and vectors.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch08.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch08.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch08s03.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 8. Matrices in
GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%"
align="right" valign="top"> Linear Algebra</td></tr></table></div></body></html>
diff --git a/help/C/html/ch08s03.html b/help/C/html/ch08s03.html
new file mode 100644
index 0000000..ebe1591
--- /dev/null
+++ b/help/C/html/ch08s03.html
@@ -0,0 +1,32 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Linear
Algebra</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch08.html" title="Chapter 8. Matrices in
GEL"><link rel="prev" href="ch08s02.html" title="Conjugate Transpose and Transpose Operator"><link rel="next"
href="ch09.html" title="Chapter 9. Polynomials in GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Linear Algebra</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch08s02.html">Prev</a> </td><th width="60%" align="center">Chapter 8. Matrices in
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch09.html">Next</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
cl
ass="title" style="clear: both"><a name="genius-gel-matrix-linalg"></a>Linear
Algebra</h2></div></div></div><p>
+ Genius implements many useful linear algebra and matrix manipulation
+routines. See the <a class="link" href="ch11s09.html" title="Linear Algebra">Linear Algebra</a> and
+<a class="link" href="ch11s08.html" title="Matrix Manipulation">Matrix Manipulation</a>
+sections of the GEL function listing.
+ </p><p>
+ The linear algebra routines implemented in GEL do not currently come
+from a well tested numerical package, and thus should not be used for critical
+numerical computation. On the other hand, Genius implements very well many
+linear algebra operations with rational and integer coefficients. These are
+inherently exact and in fact will give you much better results than common
+double precision routines for linear algebra.
+ </p><p>
+ For example, it is pointless to compute the rank and nullspace of a
+floating point matrix since for all practical purposes, we need to consider the
+matrix as having some slight errors. You are likely to get a different result
+than you expect. The problem is that under a small perturbation every matrix
+is of full rank and invertible. If the matrix however is of rational numbers,
+then the rank and nullspace are always exact.
+ </p><p>
+ In general when Genius computes the basis of a certain vectorspace
+ (for example with the <a class="link" href="ch11s09.html#gel-function-NullSpace"><code
class="function">NullSpace</code></a>) it will give the basis as
+a matrix, in which the columns are the vectors of the basis. That is, when
+Genius talks of a linear subspace it means a matrix whose column space is
+the given linear subspace.
+ </p><p>
+ It should be noted that Genius can remember certain properties of a
+matrix. For example, it will remember that a matrix is in row reduced form.
+If many calls are made to functions that internally use row reduced form of
+the matrix, we can just row reduce the matrix beforehand once. Successive
+calls to <a class="link" href="ch11s09.html#gel-function-rref"><code class="function">rref</code></a> will
be very fast.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch08s02.html">Prev</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch08.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch09.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Conjugate Transpose and
Transpose Operator </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td
width="40%" align="right" valign="top"> Chapter 9. Polynomials in GEL</td></tr></table></div></body></html>
diff --git a/help/C/html/ch09.html b/help/C/html/ch09.html
new file mode 100644
index 0000000..0b50ac1
--- /dev/null
+++ b/help/C/html/ch09.html
@@ -0,0 +1,51 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapter 9. Polynomials
in GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="index.html" title="Genius Manual"><link
rel="prev" href="ch08s03.html" title="Linear Algebra"><link rel="next" href="ch10.html" title="Chapter 10.
Set Theory in GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Chapter 9. Polynomials in GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch08s03.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch10.html">Next</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-gel-
polynomials"></a>Chapter 9. Polynomials in GEL</h1></div></div></div><div class="toc"><p><b>Table of
Contents</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch09.html#genius-gel-polynomials-using">Using Polynomials</a></span></dt></dl></div><p>
+ Currently Genius can handle polynomials of one variable written out
+ as vectors, and do some basic operations with these. It is planned to
+ expand this support further.
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-polynomials-using"></a>Using Polynomials</h2></div></div></div><p>
+Currently
+polynomials in one variable are just horizontal vectors with value only nodes.
+The power of the term is the position in the vector, with the first position
+being 0. So,
+</p><pre class="programlisting">[1,2,3]
+</pre><p>
+translates to a polynomial of
+</p><pre class="programlisting">1 + 2*x + 3*x^2
+</pre><p>
+ </p><p>
+You can add, subtract and multiply polynomials using the
+<a class="link" href="ch11s15.html#gel-function-AddPoly"><code class="function">AddPoly</code></a>,
+<a class="link" href="ch11s15.html#gel-function-SubtractPoly"><code
class="function">SubtractPoly</code></a>, and
+<a class="link" href="ch11s15.html#gel-function-MultiplyPoly"><code class="function">MultiplyPoly</code></a>
functions respectively.
+You can print a polynomial using the
+<a class="link" href="ch11s15.html#gel-function-PolyToString"><code class="function">PolyToString</code></a>
+function.
+For example,
+</p><pre class="programlisting">PolyToString([1,2,3],"y")
+</pre><p>
+gives
+</p><pre class="programlisting">3*y^2 + 2*y + 1
+</pre><p>
+You can also get a function representation of the polynomial so that you can
+evaluate it. This is done by using
+<a class="link" href="ch11s15.html#gel-function-PolyToFunction"><code
class="function">PolyToFunction</code></a>,
+which
+returns an anonymous function.
+</p><pre class="programlisting">f = PolyToFunction([0,1,1])
+f(2)
+</pre><p>
+ </p><p>
+ It is also possible to find roots of polynomials of degrees 1 through 4 by using the
+function
+<a class="link" href="ch11s13.html#gel-function-PolynomialRoots"><code
class="function">PolynomialRoots</code></a>,
+which calls the appropriate formula function. Higher degree polynomials must be converted to
+functions and solved
+numerically using a function such as
+<a class="link" href="ch11s13.html#gel-function-FindRootBisection"><code
class="function">FindRootBisection</code></a>,
+<a class="link" href="ch11s13.html#gel-function-FindRootFalsePosition"><code
class="function">FindRootFalsePosition</code></a>,
+<a class="link" href="ch11s13.html#gel-function-FindRootMullersMethod"><code
class="function">FindRootMullersMethod</code></a>, or
+<a class="link" href="ch11s13.html#gel-function-FindRootSecant"><code
class="function">FindRootSecant</code></a>.
+ </p><p>
+See <a class="xref" href="ch11s15.html" title="Polynomials">the section called “Polynomials”</a> in the
function list
+for the rest of functions acting on polynomials.
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch08s03.html">Prev</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch10.html">Next</a></td></tr><tr><td width="40%"
align="left" valign="top">Linear Algebra </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Home</a></td><td width="40%" align="right" valign="top"> Chapter 10. Set Theory in
GEL</td></tr></table></div></body></html>
diff --git a/help/C/html/ch10.html b/help/C/html/ch10.html
new file mode 100644
index 0000000..710d5e6
--- /dev/null
+++ b/help/C/html/ch10.html
@@ -0,0 +1,41 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapter 10. Set Theory
in GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="index.html" title="Genius Manual"><link
rel="prev" href="ch09.html" title="Chapter 9. Polynomials in GEL"><link rel="next" href="ch11.html"
title="Chapter 11. List of GEL functions"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Chapter 10. Set Theory in GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch09.html">Prev</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch11.html">Next</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 class="title"><a na
me="genius-gel-settheory"></a>Chapter 10. Set Theory in GEL</h1></div></div></div><div
class="toc"><p><b>Table of Contents</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch10.html#genius-gel-sets-using">Using Sets</a></span></dt></dl></div><p>
+ Genius has some basic set theoretic functionality built in. Currently a set is
+ just a vector (or a matrix). Every distinct object is treated as a different element.
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-sets-using"></a>Using Sets</h2></div></div></div><p>
+ Just like vectors, objects
+ in sets can include numbers, strings, <code class="constant">null</code>, matrices and vectors. It is
+ planned in the future to have a dedicated type for sets, rather than using vectors.
+ Note that floating point numbers are distinct from integers, even if they appear the same.
+ That is, Genius will treat <code class="constant">0</code> and <code class="constant">0.0</code>
+ as two distinct elements. The <code class="constant">null</code> is treated as an empty set.
+ </p><p>
+ To build a set out of a vector, use the
+ <a class="link" href="ch11s16.html#gel-function-MakeSet"><code class="function">MakeSet</code></a>
function.
+ Currently, it will just return a new vector where every element is unique.
+</p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>MakeSet([1,2,2,3])</code></strong>
+= [1, 2, 3]
+</pre><p>
+</p><p>
+ Similarly there are functions
+ <a class="link" href="ch11s16.html#gel-function-Union"><code class="function">Union</code></a>,
+ <a class="link" href="ch11s16.html#gel-function-Intersection"><code
class="function">Intersection</code></a>,
+ <a class="link" href="ch11s16.html#gel-function-SetMinus"><code class="function">SetMinus</code></a>,
which
+ are rather self explanatory. For example:
+</p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>Union([1,2,3], [1,2,4])</code></strong>
+= [1, 2, 4, 3]
+</pre><p>
+ Note that no order is guaranteed for the return values. If you wish to sort the vector you
+should use the
+ <a class="link" href="ch11s08.html#gel-function-SortVector"><code
class="function">SortVector</code></a> function.
+ </p><p>
+ For testing membership, there are functions
+ <a class="link" href="ch11s16.html#gel-function-IsIn"><code class="function">IsIn</code></a> and
+ <a class="link" href="ch11s16.html#gel-function-IsSubset"><code class="function">IsSubset</code></a>,
+ which return a boolean value. For example:
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>IsIn (1,
[0,1,2])</code></strong>
+= true
+</pre><p>
+ The input <strong class="userinput"><code>IsIn(x,X)</code></strong> is of course equivalent to
+ <strong class="userinput"><code>IsSubset([x],X)</code></strong>. Note that since the empty set is a
subset
+ of every set, <strong class="userinput"><code>IsSubset(null,X)</code></strong> is always true.
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch09.html">Prev</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch11.html">Next</a></td></tr><tr><td width="40%"
align="left" valign="top">Chapter 9. Polynomials in GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Home</a></td><td width="40%" align="right" valign="top"> Chapter 11. List of GEL
functions</td></tr></table></div></body></html>
diff --git a/help/C/html/ch11.html b/help/C/html/ch11.html
new file mode 100644
index 0000000..0726270
--- /dev/null
+++ b/help/C/html/ch11.html
@@ -0,0 +1,7 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapter 11. List of
GEL functions</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="index.html" title="Genius Manual"><link
rel="prev" href="ch10.html" title="Chapter 10. Set Theory in GEL"><link rel="next" href="ch11s02.html"
title="Basic"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Chapter
11. List of GEL functions</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch10.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch11s02.html">Next</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-gel-f
unction-list"></a>Chapter 11. List of GEL functions</h1></div></div></div><div class="toc"><p><b>Table of
Contents</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch11.html#genius-gel-function-list-commands">Commands</a></span></dt><dt><span class="sect1"><a
href="ch11s02.html">Basic</a></span></dt><dt><span class="sect1"><a
href="ch11s03.html">Parameters</a></span></dt><dt><span class="sect1"><a
href="ch11s04.html">Constants</a></span></dt><dt><span class="sect1"><a
href="ch11s05.html">Numeric</a></span></dt><dt><span class="sect1"><a
href="ch11s06.html">Trigonometry</a></span></dt><dt><span class="sect1"><a href="ch11s07.html">Number
Theory</a></span></dt><dt><span class="sect1"><a href="ch11s08.html">Matrix
Manipulation</a></span></dt><dt><span class="sect1"><a href="ch11s09.html">Linear
Algebra</a></span></dt><dt><span class="sect1"><a href="ch11s10.html">Combinatorics</a></span></dt><dt><span
class="sect1"><a href="ch11s11.html">Calculus</a></span></dt><dt><sp
an class="sect1"><a href="ch11s12.html">Functions</a></span></dt><dt><span class="sect1"><a
href="ch11s13.html">Equation Solving</a></span></dt><dt><span class="sect1"><a
href="ch11s14.html">Statistics</a></span></dt><dt><span class="sect1"><a
href="ch11s15.html">Polynomials</a></span></dt><dt><span class="sect1"><a href="ch11s16.html">Set
Theory</a></span></dt><dt><span class="sect1"><a href="ch11s17.html">Commutative
Algebra</a></span></dt><dt><span class="sect1"><a href="ch11s18.html">Miscellaneous</a></span></dt><dt><span
class="sect1"><a href="ch11s19.html">Symbolic Operations</a></span></dt><dt><span class="sect1"><a
href="ch11s20.html">Plotting</a></span></dt></dl></div><p>
+To get help on a specific function from the console type:
+</p><pre class="programlisting">help FunctionName
+</pre><p>
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-commands"></a>Commands</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a name="gel-command-help"></a>help</span></dt><dd><pre
class="synopsis">help</pre><pre class="synopsis">help FunctionName</pre><p>Print help (or help on a
function/command).</p></dd><dt><span class="term"><a name="gel-command-load"></a>load</span></dt><dd><pre
class="synopsis">load "file.gel"</pre><p>Load a file into the interpreter. The file will execute
+as if it were typed onto the command line.</p></dd><dt><span class="term"><a
name="gel-command-cd"></a>cd</span></dt><dd><pre class="synopsis">cd /directory/name</pre><p>Change working
directory to <code class="filename">/directory/name</code>.</p></dd><dt><span class="term"><a
name="gel-command-pwd"></a>pwd</span></dt><dd><pre class="synopsis">pwd</pre><p>Print the current working
directory.</p></dd><dt><span class="term"><a name="gel-command-ls"></a>ls</span></dt><dd><pre
class="synopsis">ls</pre><p>List files in the current directory.</p></dd><dt><span class="term"><a
name="gel-command-plugin"></a>plugin</span></dt><dd><pre class="synopsis">plugin plugin_name</pre><p>Load a
plugin. Plugin of that name must be installed on the system
+in the proper directory.</p></dd></dl></div></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch10.html">Prev</a>
</td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch11s02.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 10. Set Theory in
GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%"
align="right" valign="top"> Basic</td></tr></table></div></body></html>
diff --git a/help/C/html/ch11s02.html b/help/C/html/ch11s02.html
new file mode 100644
index 0000000..0a0a30b
--- /dev/null
+++ b/help/C/html/ch11s02.html
@@ -0,0 +1,101 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Basic</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Genius
Manual"><link rel="up" href="ch11.html" title="Chapter 11. List of GEL functions"><link rel="prev"
href="ch11.html" title="Chapter 11. List of GEL functions"><link rel="next" href="ch11s03.html"
title="Parameters"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Basic</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch11.html">Prev</a>
</td><th width="60%" align="center">Chapter 11. List of GEL functions</th><td width="20%" align="right"> <a
accesskey="n" href="ch11s03.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="genius-gel-function-list-basic"></a>Basic</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-AskButtons"></a>AskButtons</span></dt><dd><pre class="synopsis">AskButtons
(query)</pre><pre class="synopsis">AskButtons (query, button1, ...)</pre><p>Asks a question and presents a
list of buttons to the user (or
+a menu of options in text mode). Returns the 1-based index of the button
+pressed. That is, returns 1 if the first button was pressed, 2 if the second
+button was pressed, and so on. If the user closes the window (or simply hits
+enter in text mode), then <code class="constant">null</code> is returned. The execution
+of the program is blocked until the user responds.</p><p>Version 1.0.10 onwards.</p></dd><dt><span
class="term"><a name="gel-function-AskString"></a>AskString</span></dt><dd><pre class="synopsis">AskString
(query)</pre><pre class="synopsis">AskString (query, default)</pre><p>Asks a question and lets the user enter
a string, which
+it then returns. If the user cancels or closes the window, then
+<code class="constant">null</code> is returned. The execution of the program
+is blocked until the user responds. If <code class="varname">default</code> is given, then it is pre-typed
in for the user to just press enter on (version 1.0.6 onwards).</p></dd><dt><span class="term"><a
name="gel-function-Compose"></a>Compose</span></dt><dd><pre class="synopsis">Compose (f,g)</pre><p>Compose
two functions and return a function that is the composition of <code class="function">f</code> and <code
class="function">g</code>.</p></dd><dt><span class="term"><a
name="gel-function-ComposePower"></a>ComposePower</span></dt><dd><pre class="synopsis">ComposePower
(f,n,x)</pre><p>Compose and execute a function with itself <code class="varname">n</code> times, passing
<code class="varname">x</code> as argument. Returning <code class="varname">x</code> if
+<code class="varname">n</code> equals 0.
+ Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>function f(x) = x^2 ;</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>ComposePower (f,3,7)</code></strong>
+= 5764801
+<code class="prompt">genius></code> <strong class="userinput"><code>f(f(f(7)))</code></strong>
+= 5764801
+</pre><p>
+ </p></dd><dt><span class="term"><a name="gel-function-Evaluate"></a>Evaluate</span></dt><dd><pre
class="synopsis">Evaluate (str)</pre><p>Parses and evaluates a string.</p></dd><dt><span class="term"><a
name="gel-function-GetCurrentModulo"></a>GetCurrentModulo</span></dt><dd><pre
class="synopsis">GetCurrentModulo</pre><p>Get current modulo from the context outside the function. That is,
if outside of
+the function was executed in modulo (using <code class="literal">mod</code>) then this returns what
+this modulo was. Normally the body of the function called is not executed in modular arithmetic,
+and this builtin function makes it possible to make GEL functions aware of modular
arithmetic.</p></dd><dt><span class="term"><a name="gel-function-Identity"></a>Identity</span></dt><dd><pre
class="synopsis">Identity (x)</pre><p>Identity function, returns its argument. It is equivalent to <strong
class="userinput"><code>function Identity(x)=x</code></strong>.</p></dd><dt><span class="term"><a
name="gel-function-IntegerFromBoolean"></a>IntegerFromBoolean</span></dt><dd><pre
class="synopsis">IntegerFromBoolean (bval)</pre><p>
+ Make integer (0 for <code class="constant">false</code> or 1 for
+ <code class="constant">true</code>) from a boolean value.
+ <code class="varname">bval</code> can also be a number in which case a
+ non-zero value will be interpreted as <code class="constant">true</code> and
+ zero will be interpreted as <code class="constant">false</code>.
+ </p></dd><dt><span class="term"><a name="gel-function-IsBoolean"></a>IsBoolean</span></dt><dd><pre
class="synopsis">IsBoolean (arg)</pre><p>Check if argument is a boolean (and not a number).</p></dd><dt><span
class="term"><a name="gel-function-IsDefined"></a>IsDefined</span></dt><dd><pre class="synopsis">IsDefined
(id)</pre><p>Check if an id is defined. You should pass a string or
+ and identifier. If you pass a matrix, each entry will be
+ evaluated separately and the matrix should contain strings
+ or identifiers.</p></dd><dt><span class="term"><a
name="gel-function-IsFunction"></a>IsFunction</span></dt><dd><pre class="synopsis">IsFunction
(arg)</pre><p>Check if argument is a function.</p></dd><dt><span class="term"><a
name="gel-function-IsFunctionOrIdentifier"></a>IsFunctionOrIdentifier</span></dt><dd><pre
class="synopsis">IsFunctionOrIdentifier (arg)</pre><p>Check if argument is a function or an
identifier.</p></dd><dt><span class="term"><a
name="gel-function-IsFunctionRef"></a>IsFunctionRef</span></dt><dd><pre class="synopsis">IsFunctionRef
(arg)</pre><p>Check if argument is a function reference. This includes variable
+references.</p></dd><dt><span class="term"><a name="gel-function-IsMatrix"></a>IsMatrix</span></dt><dd><pre
class="synopsis">IsMatrix (arg)</pre><p>Check if argument is a matrix. Even though <code
class="constant">null</code> is
+sometimes considered an empty matrix, the function <code class="function">IsMatrix</code> does
+not consider <code class="constant">null</code> a matrix.</p></dd><dt><span class="term"><a
name="gel-function-IsNull"></a>IsNull</span></dt><dd><pre class="synopsis">IsNull (arg)</pre><p>Check if
argument is a <code class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsString"></a>IsString</span></dt><dd><pre class="synopsis">IsString (arg)</pre><p>Check
if argument is a text string.</p></dd><dt><span class="term"><a
name="gel-function-IsValue"></a>IsValue</span></dt><dd><pre class="synopsis">IsValue (arg)</pre><p>Check if
argument is a number.</p></dd><dt><span class="term"><a
name="gel-function-Parse"></a>Parse</span></dt><dd><pre class="synopsis">Parse (str)</pre><p>Parses but does
not evaluate a string. Note that certain
+ pre-computation is done during the parsing stage.</p></dd><dt><span class="term"><a
name="gel-function-SetFunctionFlags"></a>SetFunctionFlags</span></dt><dd><pre
class="synopsis">SetFunctionFlags (id,flags...)</pre><p>Set flags for a function, currently <code
class="literal">"PropagateMod"</code> and <code class="literal">"NoModuloArguments"</code>.
+If <code class="literal">"PropagateMod"</code> is set, then the body of the function is evaluated in modular
arithmetic when the function
+is called inside a block that was evaluated using modular arithmetic (using <code
class="literal">mod</code>). If
+<code class="literal">"NoModuloArguments"</code>, then the arguments of the function are never evaluated
using modular arithmetic.
+ </p></dd><dt><span class="term"><a name="gel-function-SetHelp"></a>SetHelp</span></dt><dd><pre
class="synopsis">SetHelp (id,category,desc)</pre><p>Set the category and help description line for a
function.</p></dd><dt><span class="term"><a
name="gel-function-SetHelpAlias"></a>SetHelpAlias</span></dt><dd><pre class="synopsis">SetHelpAlias
(id,alias)</pre><p>Sets up a help alias.</p></dd><dt><span class="term"><a
name="gel-function-chdir"></a>chdir</span></dt><dd><pre class="synopsis">chdir (dir)</pre><p>Changes current
directory, same as the <span class="command"><strong>cd</strong></span>.</p></dd><dt><span class="term"><a
name="gel-function-CurrentTime"></a>CurrentTime</span></dt><dd><pre
class="synopsis">CurrentTime</pre><p>Returns the current UNIX time with microsecond precision as a floating
point number. That is, returns the number of seconds since January 1st 1970.</p><p>Version 1.0.15
onwards.</p></dd><dt><span class="term"><a name="gel-function-display"></a>display
</span></dt><dd><pre class="synopsis">display (str,expr)</pre><p>Display a string and an expression with a
colon to separate them.</p></dd><dt><span class="term"><a
name="gel-function-DisplayVariables"></a>DisplayVariables</span></dt><dd><pre
class="synopsis">DisplayVariables (var1,var2,...)</pre><p>Display set of variables. The variables can be
given as
+ strings or identifiers. For example:
+ </p><pre class="programlisting">DisplayVariables(`x,`y,`z)
+ </pre><p>
+ </p><p>
+ If called without arguments (must supply empty argument list) as
+ </p><pre class="programlisting">DisplayVariables()
+ </pre><p>
+ then all variables are printed including a stacktrace similar to
+ <span class="guilabel">Show user variables</span> in the graphical version.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-error"></a>error</span></dt><dd><pre class="synopsis">error (str)</pre><p>Prints a string
to the error stream (onto the console).</p></dd><dt><span class="term"><a
name="gel-function-exit"></a>exit</span></dt><dd><pre class="synopsis">exit</pre><p>Aliases: <code
class="function">quit</code></p><p>Exits the program.</p></dd><dt><span class="term"><a
name="gel-function-false"></a>false</span></dt><dd><pre class="synopsis">false</pre><p>Aliases: <code
class="function">False</code> <code class="function">FALSE</code></p><p>The <code
class="constant">false</code> boolean value.</p></dd><dt><span class="term"><a
name="gel-function-manual"></a>manual</span></dt><dd><pre class="synopsis">manual</pre><p>Displays the user
manual.</p></dd><dt><span class="term"><a name="gel-function-print"></a>print</span></dt><dd><pre
class="synopsis">print (str)</pre><p>Prints an expression and then print a newline
. The argument <code class="varname">str</code> can be any expression. It is
+made into a string before being printed.</p></dd><dt><span class="term"><a
name="gel-function-printn"></a>printn</span></dt><dd><pre class="synopsis">printn (str)</pre><p>Prints an
expression without a trailing newline. The argument <code class="varname">str</code> can be any expression.
It is
+made into a string before being printed.</p></dd><dt><span class="term"><a
name="gel-function-PrintTable"></a>PrintTable</span></dt><dd><pre class="synopsis">PrintTable
(f,v)</pre><p>Print a table of values for a function. The values are in the
+ vector <code class="varname">v</code>. You can use the vector
+ building notation as follows:
+ </p><pre class="programlisting">PrintTable (f,[0:10])
+ </pre><p>
+ If <code class="varname">v</code> is a positive integer, then the table of
+ integers from 1 up to and including v will be used.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-protect"></a>protect</span></dt><dd><pre class="synopsis">protect (id)</pre><p>Protect a
variable from being modified. This is used on the internal GEL functions to
+avoid them being accidentally overridden.</p></dd><dt><span class="term"><a
name="gel-function-ProtectAll"></a>ProtectAll</span></dt><dd><pre class="synopsis">ProtectAll
()</pre><p>Protect all currently defined variables, parameters and
+functions from being modified. This is used on the internal GEL functions to
+avoid them being accidentally overridden. Normally <span class="application">Genius Mathematics Tool</span>
considers
+unprotected variables as user defined.</p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-set"></a>set</span></dt><dd><pre class="synopsis">set (id,val)</pre><p>Set a global
variable. The <code class="varname">id</code>
+ can be either a string or a quoted identifier.
+ For example:
+ </p><pre class="programlisting">set(`x,1)
+ </pre><p>
+ will set the global variable <code class="varname">x</code> to the value 1.
+ </p><p>The function returns the <code class="varname">val</code>, to be
+ usable in chaining.</p></dd><dt><span class="term"><a
name="gel-function-SetElement"></a>SetElement</span></dt><dd><pre class="synopsis">SetElement
(id,row,col,val)</pre><p>Set an element of a global variable which is a matrix.
+ The <code class="varname">id</code>
+ can be either a string or a quoted identifier.
+ For example:
+ </p><pre class="programlisting">SetElement(`x,2,3,1)
+ </pre><p>
+ will set the second row third column element of the global variable <code
class="varname">x</code> to the value 1. If no global variable of the name exists, or if it is set to
something that's not a matrix, a new zero matrix of appropriate size will be created.
+ </p><p>The <code class="varname">row</code> and <code class="varname">col</code> can also be
ranges, and the semantics are the same as for regular setting of the elements with an equals sign.
+ </p><p>The function returns the <code class="varname">val</code>, to be
+ usable in chaining.</p><p>Available from 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SetVElement"></a>SetVElement</span></dt><dd><pre class="synopsis">SetElement
(id,elt,val)</pre><p>Set an element of a global variable which is a vector.
+ The <code class="varname">id</code>
+ can be either a string or a quoted identifier.
+ For example:
+ </p><pre class="programlisting">SetElement(`x,2,1)
+ </pre><p>
+ will set the second element of the global vector variable <code class="varname">x</code> to the
value 1. If no global variable of the name exists, or if it is set to something that's not a vector
(matrix), a new zero row vector of appropriate size will be created.
+ </p><p>The <code class="varname">elt</code> can also be a range, and the semantics are the same as
for regular setting of the elements with an equals sign.
+ </p><p>The function returns the <code class="varname">val</code>, to be
+ usable in chaining.</p><p>Available from 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-string"></a>string</span></dt><dd><pre class="synopsis">string (s)</pre><p>Make a string.
This will make a string out of any argument.</p></dd><dt><span class="term"><a
name="gel-function-true"></a>true</span></dt><dd><pre class="synopsis">true</pre><p>Aliases: <code
class="function">True</code> <code class="function">TRUE</code></p><p>The <code class="constant">true</code>
boolean value.</p></dd><dt><span class="term"><a
name="gel-function-undefine"></a>undefine</span></dt><dd><pre class="synopsis">undefine (id)</pre><p>Alias:
<code class="function">Undefine</code></p><p>Undefine a variable. This includes locals and globals,
+ every value on all context levels is wiped. This function
+ should really not be used on local variables. A vector of
+ identifiers can also be passed to undefine several variables.
+ </p></dd><dt><span class="term"><a
name="gel-function-UndefineAll"></a>UndefineAll</span></dt><dd><pre class="synopsis">UndefineAll
()</pre><p>Undefine all unprotected global variables
+ (including functions and parameters). Normally <span class="application">Genius Mathematics
Tool</span>
+ considers protected variables as system defined functions
+ and variables. Note that <code class="function">UndefineAll</code>
+ only removes the global definition of symbols not local ones,
+ so that it may be run from inside other functions safely.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-unprotect"></a>unprotect</span></dt><dd><pre class="synopsis">unprotect
(id)</pre><p>Unprotect a variable from being modified.</p></dd><dt><span class="term"><a
name="gel-function-UserVariables"></a>UserVariables</span></dt><dd><pre class="synopsis">UserVariables
()</pre><p>Return a vector of identifiers of
+ user defined (unprotected) global variables.</p><p>Version 1.0.7 onwards.</p></dd><dt><span
class="term"><a name="gel-function-wait"></a>wait</span></dt><dd><pre class="synopsis">wait
(secs)</pre><p>Waits a specified number of seconds. <code class="varname">secs</code>
+must be non-negative. Zero is accepted and nothing happens in this case,
+except possibly user interface events are processed.</p><p>Since version 1.0.18, <code
class="varname">secs</code> can be a noninteger number, so
+ <strong class="userinput"><code>wait(0.1)</code></strong> will wait for one tenth of a
second.</p></dd><dt><span class="term"><a name="gel-function-version"></a>version</span></dt><dd><pre
class="synopsis">version</pre><p>Returns the version of Genius as a horizontal 3-vector with
+ major version first, then minor version and finally the patch level.</p></dd><dt><span
class="term"><a name="gel-function-warranty"></a>warranty</span></dt><dd><pre
class="synopsis">warranty</pre><p>Gives the warranty information.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s03.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 11. List of GEL
functions </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%"
align="right" valign="top"> Parameters</td></tr></table></div></body></html>
diff --git a/help/C/html/ch11s03.html b/help/C/html/ch11s03.html
new file mode 100644
index 0000000..87974ee
--- /dev/null
+++ b/help/C/html/ch11s03.html
@@ -0,0 +1,46 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Parameters</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius Manual"><link rel="up" href="ch11.html"
title="Chapter 11. List of GEL functions"><link rel="prev" href="ch11s02.html" title="Basic"><link rel="next"
href="ch11s04.html" title="Constants"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Parameters</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s02.html">Prev</a> </td><th width="60%" align="center">Chapter 11. List of GEL
functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s04.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius
-gel-function-parameters"></a>Parameters</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-ChopTolerance"></a>ChopTolerance</span></dt><dd><pre class="synopsis">ChopTolerance =
number</pre><p>Tolerance of the <code class="function">Chop</code> function.</p></dd><dt><span
class="term"><a name="gel-function-ContinuousNumberOfTries"></a>ContinuousNumberOfTries</span></dt><dd><pre
class="synopsis">ContinuousNumberOfTries = number</pre><p>How many iterations to try to find the limit for
continuity and limits.</p></dd><dt><span class="term"><a
name="gel-function-ContinuousSFS"></a>ContinuousSFS</span></dt><dd><pre class="synopsis">ContinuousSFS =
number</pre><p>How many successive steps to be within tolerance for calculation of
continuity.</p></dd><dt><span class="term"><a
name="gel-function-ContinuousTolerance"></a>ContinuousTolerance</span></dt><dd><pre
class="synopsis">ContinuousTolerance = number</pre><p>Toler
ance for continuity of functions and for calculating the limit.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeNumberOfTries"></a>DerivativeNumberOfTries</span></dt><dd><pre
class="synopsis">DerivativeNumberOfTries = number</pre><p>How many iterations to try to find the limit for
derivative.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeSFS"></a>DerivativeSFS</span></dt><dd><pre class="synopsis">DerivativeSFS =
number</pre><p>How many successive steps to be within tolerance for calculation of
derivative.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeTolerance"></a>DerivativeTolerance</span></dt><dd><pre
class="synopsis">DerivativeTolerance = number</pre><p>Tolerance for calculating the derivatives of
functions.</p></dd><dt><span class="term"><a
name="gel-function-ErrorFunctionTolerance"></a>ErrorFunctionTolerance</span></dt><dd><pre
class="synopsis">ErrorFunctionTolerance = number</pre><p>Tolerance of the <a class="link" href
="ch11s12.html#gel-function-ErrorFunction"><code
class="function">ErrorFunction</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-FloatPrecision"></a>FloatPrecision</span></dt><dd><pre class="synopsis">FloatPrecision =
number</pre><p>Floating point precision.</p></dd><dt><span class="term"><a
name="gel-function-FullExpressions"></a>FullExpressions</span></dt><dd><pre class="synopsis">FullExpressions
= boolean</pre><p>Print full expressions, even if more than a line.</p></dd><dt><span class="term"><a
name="gel-function-GaussDistributionTolerance"></a>GaussDistributionTolerance</span></dt><dd><pre
class="synopsis">GaussDistributionTolerance = number</pre><p>Tolerance of the <a class="link"
href="ch11s14.html#gel-function-GaussDistribution"><code class="function">GaussDistribution</code></a>
function.</p></dd><dt><span class="term"><a
name="gel-function-IntegerOutputBase"></a>IntegerOutputBase</span></dt><dd><pre
class="synopsis">IntegerOutputBase = number</pre><
p>Integer output base.</p></dd><dt><span class="term"><a
name="gel-function-IsPrimeMillerRabinReps"></a>IsPrimeMillerRabinReps</span></dt><dd><pre
class="synopsis">IsPrimeMillerRabinReps = number</pre><p>Number of extra Miller-Rabin tests to run on a
number before declaring it a prime in <a class="link" href="ch11s07.html#gel-function-IsPrime"><code
class="function">IsPrime</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawLegends"></a>LinePlotDrawLegends</span></dt><dd><pre
class="synopsis">LinePlotDrawLegends = true</pre><p>Tells genius to draw the legends for <a class="link"
href="ch11s20.html" title="Plotting">line plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawAxisLabels"></a>LinePlotDrawAxisLabels</span></dt><dd><pre
class="synopsis">LinePlotDrawAxisLabels = true</pre><p>Tells genius to draw the axis labels for <a
class="link" href="ch11s20.html" title="Plotting">line plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotVariableNames"></a>LinePlotVariableNames</span></dt><dd><pre
class="synopsis">LinePlotVariableNames = ["x","y","z","t"]</pre><p>Tells genius which variable names are used
as default names for <a class="link" href="ch11s20.html" title="Plotting">line plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a> and friends.
+ </p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotWindow"></a>LinePlotWindow</span></dt><dd><pre class="synopsis">LinePlotWindow =
[x1,x2,y1,y2]</pre><p>Sets the limits for <a class="link" href="ch11s20.html" title="Plotting">line plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>.
+ </p></dd><dt><span class="term"><a name="gel-function-MaxDigits"></a>MaxDigits</span></dt><dd><pre
class="synopsis">MaxDigits = number</pre><p>Maximum digits to display.</p></dd><dt><span class="term"><a
name="gel-function-MaxErrors"></a>MaxErrors</span></dt><dd><pre class="synopsis">MaxErrors =
number</pre><p>Maximum errors to display.</p></dd><dt><span class="term"><a
name="gel-function-MixedFractions"></a>MixedFractions</span></dt><dd><pre class="synopsis">MixedFractions =
boolean</pre><p>If true, mixed fractions are printed.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegralFunction"></a>NumericalIntegralFunction</span></dt><dd><pre
class="synopsis">NumericalIntegralFunction = function</pre><p>The function used for numerical integration in
<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegralSteps"></a>Nume
ricalIntegralSteps</span></dt><dd><pre class="synopsis">NumericalIntegralSteps = number</pre><p>Steps to
perform in <a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-OutputChopExponent"></a>OutputChopExponent</span></dt><dd><pre
class="synopsis">OutputChopExponent = number</pre><p>When another number in the object being printed (a
matrix or a
+value) is greater than
+10<sup>-OutputChopWhenExponent</sup>, and
+the number being printed is less than
+10<sup>-OutputChopExponent</sup>, then
+display <code class="computeroutput">0.0</code> instead of the number.
+</p><p>
+Output is never chopped if <code class="function">OutputChopExponent</code> is zero.
+It must be a non-negative integer.
+</p><p>
+If you want output always chopped according to
+<code class="function">OutputChopExponent</code>, then set
+<code class="function">OutputChopWhenExponent</code>, to something
+greater than or equal to
+<code class="function">OutputChopExponent</code>.
+</p></dd><dt><span class="term"><a
name="gel-function-OutputChopWhenExponent"></a>OutputChopWhenExponent</span></dt><dd><pre
class="synopsis">OutputChopWhenExponent = number</pre><p>When to chop output. See
+ <a class="link" href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>.
+</p></dd><dt><span class="term"><a name="gel-function-OutputStyle"></a>OutputStyle</span></dt><dd><pre
class="synopsis">OutputStyle = string</pre><p>
+ Output style, this can be <code class="literal">normal</code>, <code
class="literal">latex</code>, <code class="literal">mathml</code> or <code class="literal">troff</code>.
+ </p><p>
+ This affects mostly how matrices and fractions are printed out and
+ is useful for pasting into documents. For example you can set this
+ to the latex by:
+ </p><pre class="programlisting">OutputStyle = "latex"
+</pre><p>
+ </p></dd><dt><span class="term"><a
name="gel-function-ResultsAsFloats"></a>ResultsAsFloats</span></dt><dd><pre class="synopsis">ResultsAsFloats
= boolean</pre><p>Convert all results to floats before printing.</p></dd><dt><span class="term"><a
name="gel-function-ScientificNotation"></a>ScientificNotation</span></dt><dd><pre
class="synopsis">ScientificNotation = boolean</pre><p>Use scientific notation.</p></dd><dt><span
class="term"><a name="gel-function-SlopefieldTicks"></a>SlopefieldTicks</span></dt><dd><pre
class="synopsis">SlopefieldTicks = [vertical,horizontal]</pre><p>Sets the number of vertical and horizontal
ticks in a
+slopefield plot. (See <a class="link" href="ch11s20.html#gel-function-SlopefieldPlot"><code
class="function">SlopefieldPlot</code></a>).
+ </p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SumProductNumberOfTries"></a>SumProductNumberOfTries</span></dt><dd><pre
class="synopsis">SumProductNumberOfTries = number</pre><p>How many iterations to try for <a class="link"
href="ch11s11.html#gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a> and <a
class="link" href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SumProductSFS"></a>SumProductSFS</span></dt><dd><pre class="synopsis">SumProductSFS =
number</pre><p>How many successive steps to be within tolerance for <a class="link"
href="ch11s11.html#gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a> and <a
class="link" href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SumProductTolerance
"></a>SumProductTolerance</span></dt><dd><pre class="synopsis">SumProductTolerance =
number</pre><p>Tolerance for <a class="link" href="ch11s11.html#gel-function-InfiniteSum"><code
class="function">InfiniteSum</code></a> and <a class="link"
href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawLegends"></a>SurfacePlotDrawLegends</span></dt><dd><pre
class="synopsis">SurfacePlotDrawLegends = true</pre><p>Tells genius to draw the legends for <a class="link"
href="ch11s20.html" title="Plotting">surface plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotVariableNames"></a>SurfacePlotVariableNames</span></dt><dd><pre
class="synopsis">SurfacePlotVariableNames = ["x","y","z"]</pre><p>Tells genius which variable names are used
as default names for <a class="link" href="ch11s20.html" title="Plotting">surface plotting
+ functions</a> using <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>.
+ Note that the <code class="varname">z</code> does not refer to the dependent (vertical) axis, but
to the independent complex variable
+ <strong class="userinput"><code>z=x+iy</code></strong>.
+ </p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotWindow"></a>SurfacePlotWindow</span></dt><dd><pre
class="synopsis">SurfacePlotWindow = [x1,x2,y1,y2,z1,z2]</pre><p>Sets the limits for surface plotting (See <a
class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>).</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldNormalized"></a>VectorfieldNormalized</span></dt><dd><pre
class="synopsis">VectorfieldNormalized = true</pre><p>Should the vectorfield plotting have normalized arrow
length. If true, vector fields will only show direction
+ and not magnitude. (See <a class="link" href="ch11s20.html#gel-function-VectorfieldPlot"><code
class="function">VectorfieldPlot</code></a>).
+ </p></dd><dt><span class="term"><a
name="gel-function-VectorfieldTicks"></a>VectorfieldTicks</span></dt><dd><pre
class="synopsis">VectorfieldTicks = [vertical,horizontal]</pre><p>Sets the number of vertical and horizontal
ticks in a
+vectorfield plot. (See <a class="link" href="ch11s20.html#gel-function-VectorfieldPlot"><code
class="function">VectorfieldPlot</code></a>).
+ </p><p>Version 1.0.10 onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s02.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s04.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Basic </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Constants</td></tr></table></div></body></html>
diff --git a/help/C/html/ch11s04.html b/help/C/html/ch11s04.html
new file mode 100644
index 0000000..af54505
--- /dev/null
+++ b/help/C/html/ch11s04.html
@@ -0,0 +1,44 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Constants</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Genius
Manual"><link rel="up" href="ch11.html" title="Chapter 11. List of GEL functions"><link rel="prev"
href="ch11s03.html" title="Parameters"><link rel="next" href="ch11s05.html" title="Numeric"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Constants</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch11s03.html">Prev</a> </td><th width="60%"
align="center">Chapter 11. List of GEL functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s05.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="geniu
s-gel-function-list-constants"></a>Constants</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-CatalanConstant"></a>CatalanConstant</span></dt><dd><pre
class="synopsis">CatalanConstant</pre><p>
+ Catalan's Constant, approximately 0.915... It is defined to be the series where terms are
<strong class="userinput"><code>(-1^k)/((2*k+1)^2)</code></strong>, where <code class="varname">k</code>
ranges from 0 to infinity.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Catalan%27s_constant"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/CatalansConstant.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EulerConstant"></a>EulerConstant</span></dt><dd><pre
class="synopsis">EulerConstant</pre><p>Aliases: <code class="function">gamma</code></p><p>
+ Euler's constant gamma. Sometimes called the
+ Euler-Mascheroni constant.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Euler-Mascheroni_constant"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/MascheroniConstant" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Euler-MascheroniConstant.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GoldenRatio"></a>GoldenRatio</span></dt><dd><pre class="synopsis">GoldenRatio</pre><p>The
Golden Ratio.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Golden_ratio" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/GoldenRatio" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/GoldenRatio.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Gravity"></a>Gravity</span></dt><dd><pre
class="synopsis">Gravity</pre><p>Free fall acceleration at sea level in meters per second squared. This is
the standard gravity constant 9.80665. The gravity
+ in your particular neck of the woods might be different due to different altitude and the
fact that the earth is not perfectly
+ round and uniform.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Standard_gravity" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-e"></a>e</span></dt><dd><pre
class="synopsis">e</pre><p>
+ The base of the natural logarithm. <strong class="userinput"><code>e^x</code></strong>
+ is the exponential function
+ <a class="link" href="ch11s05.html#gel-function-exp"><code class="function">exp</code></a>. It
is approximately
+ 2.71828182846... This number is sometimes called Euler's number, although there are
+ several numbers that are also called Euler's. An example is the gamma constant: <a class="link"
href="ch11s04.html#gel-function-EulerConstant"><code class="function">EulerConstant</code></a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/E_(mathematical_constant)"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/E" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/e.html" target="_top">Mathworld</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-pi"></a>pi</span></dt><dd><pre
class="synopsis">pi</pre><p>
+ The number pi, that is the ratio of a circle's circumference
+ to its diameter. This is approximately 3.14159265359...
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Pi" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Pi" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Pi.html" target="_top">Mathworld</a> for more
information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s03.html">Prev</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s05.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Parameters </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Numeric</td></tr></table></div></body></html>
diff --git a/help/C/html/ch11s05.html b/help/C/html/ch11s05.html
new file mode 100644
index 0000000..b05e4c3
--- /dev/null
+++ b/help/C/html/ch11s05.html
@@ -0,0 +1,103 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Numeric</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Genius
Manual"><link rel="up" href="ch11.html" title="Chapter 11. List of GEL functions"><link rel="prev"
href="ch11s04.html" title="Constants"><link rel="next" href="ch11s06.html" title="Trigonometry"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Numeric</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch11s04.html">Prev</a> </td><th width="60%"
align="center">Chapter 11. List of GEL functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s06.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="geniu
s-gel-function-list-numeric"></a>Numeric</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-AbsoluteValue"></a>AbsoluteValue</span></dt><dd><pre class="synopsis">AbsoluteValue
(x)</pre><p>Aliases: <code class="function">abs</code></p><p>
+ Absolute value of a number and if <code class="varname">x</code> is
+ a complex value the modulus of <code class="varname">x</code>. I.e. this
+ the distance of <code class="varname">x</code> to the origin. This is equivalent
+ to <strong class="userinput"><code>|x|</code></strong>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Absolute_value" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/AbsoluteValue" target="_top">Planetmath (absolute
value)</a>,
+ <a class="ulink" href="http://planetmath.org/ModulusOfComplexNumber" target="_top">Planetmath
(modulus)</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/AbsoluteValue.html" target="_top">Mathworld
(absolute value)</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/ComplexModulus.html" target="_top">Mathworld
(complex modulus)</a>
+for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Chop"></a>Chop</span></dt><dd><pre
class="synopsis">Chop (x)</pre><p>Replace very small number with zero.</p></dd><dt><span class="term"><a
name="gel-function-ComplexConjugate"></a>ComplexConjugate</span></dt><dd><pre
class="synopsis">ComplexConjugate (z)</pre><p>Aliases: <code class="function">conj</code> <code
class="function">Conj</code></p><p>Calculates the complex conjugate of the complex number <code
class="varname">z</code>. If <code class="varname">z</code> is a vector or matrix,
+all its elements are conjugated.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Complex_conjugate"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Denominator"></a>Denominator</span></dt><dd><pre class="synopsis">Denominator
(x)</pre><p>Get the denominator of a rational number.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Denominator" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FractionalPart"></a>FractionalPart</span></dt><dd><pre class="synopsis">FractionalPart
(x)</pre><p>Return the fractional part of a number.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fractional_part" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Im"></a>Im</span></dt><dd><pre
class="synopsis">Im (z)</pre><p>Aliases: <code class="function">ImaginaryPart</code></p><p>Get the imaginary
part of a complex number. For example <strong class="userinput"><code>Re(3+4i)</code></strong> yields
4.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Imaginary_part" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IntegerQuotient"></a>IntegerQuotient</span></dt><dd><pre class="synopsis">IntegerQuotient
(m,n)</pre><p>Division without remainder.</p></dd><dt><span class="term"><a
name="gel-function-IsComplex"></a>IsComplex</span></dt><dd><pre class="synopsis">IsComplex
(num)</pre><p>Check if argument is a complex (non-real) number. Do note that we really mean nonreal number.
That is,
+ <strong class="userinput"><code>IsComplex(3)</code></strong> yields false, while
+ <strong class="userinput"><code>IsComplex(3-1i)</code></strong> yields true.</p></dd><dt><span
class="term"><a name="gel-function-IsComplexRational"></a>IsComplexRational</span></dt><dd><pre
class="synopsis">IsComplexRational (num)</pre><p>Check if argument is a possibly complex rational number.
That is, if both real and imaginary parts are
+ given as rational numbers. Of course rational simply means "not stored as a floating point
number."</p></dd><dt><span class="term"><a name="gel-function-IsFloat"></a>IsFloat</span></dt><dd><pre
class="synopsis">IsFloat (num)</pre><p>Check if argument is a real floating point number
(non-complex).</p></dd><dt><span class="term"><a
name="gel-function-IsGaussInteger"></a>IsGaussInteger</span></dt><dd><pre class="synopsis">IsGaussInteger
(num)</pre><p>Aliases: <code class="function">IsComplexInteger</code></p><p>Check if argument is a possibly
complex integer. That is a complex integer is a number of
+ the form <strong class="userinput"><code>n+1i*m</code></strong> where <code
class="varname">n</code> and <code class="varname">m</code>
+ are integers.</p></dd><dt><span class="term"><a
name="gel-function-IsInteger"></a>IsInteger</span></dt><dd><pre class="synopsis">IsInteger
(num)</pre><p>Check if argument is an integer (non-complex).</p></dd><dt><span class="term"><a
name="gel-function-IsNonNegativeInteger"></a>IsNonNegativeInteger</span></dt><dd><pre
class="synopsis">IsNonNegativeInteger (num)</pre><p>Check if argument is a non-negative real integer. That
is, either a positive integer or zero.</p></dd><dt><span class="term"><a
name="gel-function-IsPositiveInteger"></a>IsPositiveInteger</span></dt><dd><pre
class="synopsis">IsPositiveInteger (num)</pre><p>Aliases: <code
class="function">IsNaturalNumber</code></p><p>Check if argument is a positive real integer. Note that
+we accept the convention that 0 is not a natural number.</p></dd><dt><span class="term"><a
name="gel-function-IsRational"></a>IsRational</span></dt><dd><pre class="synopsis">IsRational
(num)</pre><p>Check if argument is a rational number (non-complex). Of course rational simply means "not
stored as a floating point number."</p></dd><dt><span class="term"><a
name="gel-function-IsReal"></a>IsReal</span></dt><dd><pre class="synopsis">IsReal (num)</pre><p>Check if
argument is a real number.</p></dd><dt><span class="term"><a
name="gel-function-Numerator"></a>Numerator</span></dt><dd><pre class="synopsis">Numerator (x)</pre><p>Get
the numerator of a rational number.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Numerator" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Re"></a>Re</span></dt><dd><pre
class="synopsis">Re (z)</pre><p>Aliases: <code class="function">RealPart</code></p><p>Get the real part of a
complex number. For example <strong class="userinput"><code>Re(3+4i)</code></strong> yields 3.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Real_part" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Sign"></a>Sign</span></dt><dd><pre
class="synopsis">Sign (x)</pre><p>Aliases: <code class="function">sign</code></p><p>Return the sign of a
number. That is returns
+<code class="literal">-1</code> if value is negative,
+<code class="literal">0</code> if value is zero and
+<code class="literal">1</code> if value is positive. If <code class="varname">x</code> is a complex
+value then <code class="function">Sign</code> returns the direction or 0.
+ </p></dd><dt><span class="term"><a name="gel-function-ceil"></a>ceil</span></dt><dd><pre
class="synopsis">ceil (x)</pre><p>Aliases: <code class="function">Ceiling</code></p><p>Get the lowest integer
more than or equal to <code class="varname">n</code>. Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>ceil(1.1)</code></strong>
+= 2
+<code class="prompt">genius></code> <strong class="userinput"><code>ceil(-1.1)</code></strong>
+= -1
+</pre><p>
+ </p><p>Note that you should be careful and notice that floating point
+ numbers are stored in binary and so may not be what you
+ expect. For example <strong class="userinput"><code>ceil(420/4.2)</code></strong>
+ returns 101 instead of the expected 100. This is because
+ 4.2 is actually very slightly less than 4.2. Use rational
+ representation <strong class="userinput"><code>42/10</code></strong> if you want
+ exact arithmetic.
+ </p></dd><dt><span class="term"><a name="gel-function-exp"></a>exp</span></dt><dd><pre
class="synopsis">exp (x)</pre><p>
+ The exponential function. This is the function
+ <strong class="userinput"><code>e^x</code></strong> where <code class="varname">e</code>
+ is the <a class="link" href="ch11s04.html#gel-function-e">base of the natural
+ logarithm</a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Exponential_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/LogarithmFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/ExponentialFunction.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-float"></a>float</span></dt><dd><pre
class="synopsis">float (x)</pre><p>Make number a floating point value. That is returns the floating point
representation of the number <code class="varname">x</code>.</p></dd><dt><span class="term"><a
name="gel-function-floor"></a>floor</span></dt><dd><pre class="synopsis">floor (x)</pre><p>Aliases: <code
class="function">Floor</code></p><p>Get the highest integer less than or equal to <code
class="varname">n</code>.</p></dd><dt><span class="term"><a name="gel-function-ln"></a>ln</span></dt><dd><pre
class="synopsis">ln (x)</pre><p>The natural logarithm, the logarithm to base <code
class="varname">e</code>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Natural_logarithm"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/LogarithmFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/NaturalLogarithm.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-log"></a>log</span></dt><dd><pre
class="synopsis">log (x)</pre><pre class="synopsis">log (x,b)</pre><p>Logarithm of <code
class="varname">x</code> base <code class="varname">b</code> (calls <a class="link"
href="ch11s07.html#gel-function-DiscreteLog"><code class="function">DiscreteLog</code></a> if in modulo
mode), if base is not given, <a class="link" href="ch11s04.html#gel-function-e"><code
class="varname">e</code></a> is used.</p></dd><dt><span class="term"><a
name="gel-function-log10"></a>log10</span></dt><dd><pre class="synopsis">log10 (x)</pre><p>Logarithm of <code
class="varname">x</code> base 10.</p></dd><dt><span class="term"><a
name="gel-function-log2"></a>log2</span></dt><dd><pre class="synopsis">log2 (x)</pre><p>Aliases: <code
class="function">lg</code></p><p>Logarithm of <code class="varname">x</code> base 2.</p></dd><dt><span
class="term"><a name="gel-function-max"></a>max</span></dt><dd><pre class="synop
sis">max (a,args...)</pre><p>Aliases: <code class="function">Max</code> <code
class="function">Maximum</code></p><p>Returns the maximum of arguments or matrix.</p></dd><dt><span
class="term"><a name="gel-function-min"></a>min</span></dt><dd><pre class="synopsis">min
(a,args...)</pre><p>Aliases: <code class="function">Min</code> <code
class="function">Minimum</code></p><p>Returns the minimum of arguments or matrix.</p></dd><dt><span
class="term"><a name="gel-function-rand"></a>rand</span></dt><dd><pre class="synopsis">rand
(size...)</pre><p>Generate random float in the range <code class="literal">[0,1)</code>.
+If size is given then a matrix (if two numbers are specified) or vector (if one
+number is specified) of the given size returned.</p></dd><dt><span class="term"><a
name="gel-function-randint"></a>randint</span></dt><dd><pre class="synopsis">randint
(max,size...)</pre><p>Generate random integer in the range
+<code class="literal">[0,max)</code>.
+If size is given then a matrix (if two numbers are specified) or vector (if one
+number is specified) of the given size returned. For example,
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>randint(4)</code></strong>
+= 3
+<code class="prompt">genius></code> <strong class="userinput"><code>randint(4,2)</code></strong>
+=
+[0 1]
+<code class="prompt">genius></code> <strong class="userinput"><code>randint(4,2,3)</code></strong>
+=
+[2 2 1
+ 0 0 3]
+</pre><p>
+ </p></dd><dt><span class="term"><a name="gel-function-round"></a>round</span></dt><dd><pre
class="synopsis">round (x)</pre><p>Aliases: <code class="function">Round</code></p><p>Round a
number.</p></dd><dt><span class="term"><a name="gel-function-sqrt"></a>sqrt</span></dt><dd><pre
class="synopsis">sqrt (x)</pre><p>Aliases: <code class="function">SquareRoot</code></p><p>The square root.
When operating modulo some integer will return either a <code class="constant">null</code> or a vector of the
square roots. Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>sqrt(2)</code></strong>
+= 1.41421356237
+<code class="prompt">genius></code> <strong class="userinput"><code>sqrt(-1)</code></strong>
+= 1i
+<code class="prompt">genius></code> <strong class="userinput"><code>sqrt(4) mod 7</code></strong>
+=
+[2 5]
+<code class="prompt">genius></code> <strong class="userinput"><code>2*2 mod 7</code></strong>
+= 4
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Square_root" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/SquareRoot" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-trunc"></a>trunc</span></dt><dd><pre
class="synopsis">trunc (x)</pre><p>Aliases: <code class="function">Truncate</code> <code
class="function">IntegerPart</code></p><p>Truncate number to an integer (return the integer
part).</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s04.html">Prev</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s06.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Constants </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Trigonometry</td></tr></table></div></body></html>
diff --git a/help/C/html/ch11s06.html b/help/C/html/ch11s06.html
new file mode 100644
index 0000000..71fe61e
--- /dev/null
+++ b/help/C/html/ch11s06.html
@@ -0,0 +1,64 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Trigonometry</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius Manual"><link rel="up" href="ch11.html"
title="Chapter 11. List of GEL functions"><link rel="prev" href="ch11s05.html" title="Numeric"><link
rel="next" href="ch11s07.html" title="Number Theory"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Trigonometry</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s05.html">Prev</a> </td><th width="60%" align="center">Chapter 11. List of GEL
functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s07.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a na
me="genius-gel-function-list-trigonometry"></a>Trigonometry</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-acos"></a>acos</span></dt><dd><pre class="synopsis">acos (x)</pre><p>Aliases: <code
class="function">arccos</code></p><p>The arccos (inverse cos) function.</p></dd><dt><span class="term"><a
name="gel-function-acosh"></a>acosh</span></dt><dd><pre class="synopsis">acosh (x)</pre><p>Aliases: <code
class="function">arccosh</code></p><p>The arccosh (inverse cosh) function.</p></dd><dt><span class="term"><a
name="gel-function-acot"></a>acot</span></dt><dd><pre class="synopsis">acot (x)</pre><p>Aliases: <code
class="function">arccot</code></p><p>The arccot (inverse cot) function.</p></dd><dt><span class="term"><a
name="gel-function-acoth"></a>acoth</span></dt><dd><pre class="synopsis">acoth (x)</pre><p>Aliases: <code
class="function">arccoth</code></p><p>The arccoth (inverse coth) function.</p></dd><dt><spa
n class="term"><a name="gel-function-acsc"></a>acsc</span></dt><dd><pre class="synopsis">acsc
(x)</pre><p>Aliases: <code class="function">arccsc</code></p><p>The inverse cosecant
function.</p></dd><dt><span class="term"><a name="gel-function-acsch"></a>acsch</span></dt><dd><pre
class="synopsis">acsch (x)</pre><p>Aliases: <code class="function">arccsch</code></p><p>The inverse
hyperbolic cosecant function.</p></dd><dt><span class="term"><a
name="gel-function-asec"></a>asec</span></dt><dd><pre class="synopsis">asec (x)</pre><p>Aliases: <code
class="function">arcsec</code></p><p>The inverse secant function.</p></dd><dt><span class="term"><a
name="gel-function-asech"></a>asech</span></dt><dd><pre class="synopsis">asech (x)</pre><p>Aliases: <code
class="function">arcsech</code></p><p>The inverse hyperbolic secant function.</p></dd><dt><span
class="term"><a name="gel-function-asin"></a>asin</span></dt><dd><pre class="synopsis">asin
(x)</pre><p>Aliases: <code class="function">arcsi
n</code></p><p>The arcsin (inverse sin) function.</p></dd><dt><span class="term"><a
name="gel-function-asinh"></a>asinh</span></dt><dd><pre class="synopsis">asinh (x)</pre><p>Aliases: <code
class="function">arcsinh</code></p><p>The arcsinh (inverse sinh) function.</p></dd><dt><span class="term"><a
name="gel-function-atan"></a>atan</span></dt><dd><pre class="synopsis">atan (x)</pre><p>Aliases: <code
class="function">arctan</code></p><p>Calculates the arctan (inverse tan) function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Arctangent" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/InverseTangent.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-atanh"></a>atanh</span></dt><dd><pre
class="synopsis">atanh (x)</pre><p>Aliases: <code class="function">arctanh</code></p><p>The arctanh (inverse
tanh) function.</p></dd><dt><span class="term"><a name="gel-function-atan2"></a>atan2</span></dt><dd><pre
class="synopsis">atan2 (y, x)</pre><p>Aliases: <code class="function">arctan2</code></p><p>Calculates the
arctan2 function. If
+ <strong class="userinput"><code>x>0</code></strong> then it returns
+ <strong class="userinput"><code>atan(y/x)</code></strong>. If <strong
class="userinput"><code>x<0</code></strong>
+ then it returns <strong class="userinput"><code>sign(y) * (pi - atan(|y/x|)</code></strong>.
+ When <strong class="userinput"><code>x=0</code></strong> it returns <strong
class="userinput"><code>sign(y) *
+ pi/2</code></strong>. <strong class="userinput"><code>atan2(0,0)</code></strong> returns 0
+ rather than failing.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Atan2" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/InverseTangent.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-cos"></a>cos</span></dt><dd><pre
class="synopsis">cos (x)</pre><p>Calculates the cosine function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-cosh"></a>cosh</span></dt><dd><pre
class="synopsis">cosh (x)</pre><p>Calculates the hyperbolic cosine function.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-cot"></a>cot</span></dt><dd><pre
class="synopsis">cot (x)</pre><p>The cotangent function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-coth"></a>coth</span></dt><dd><pre
class="synopsis">coth (x)</pre><p>The hyperbolic cotangent function.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-csc"></a>csc</span></dt><dd><pre
class="synopsis">csc (x)</pre><p>The cosecant function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-csch"></a>csch</span></dt><dd><pre
class="synopsis">csch (x)</pre><p>The hyperbolic cosecant function.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sec"></a>sec</span></dt><dd><pre
class="synopsis">sec (x)</pre><p>The secant function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sech"></a>sech</span></dt><dd><pre
class="synopsis">sech (x)</pre><p>The hyperbolic secant function.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sin"></a>sin</span></dt><dd><pre
class="synopsis">sin (x)</pre><p>Calculates the sine function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sinh"></a>sinh</span></dt><dd><pre
class="synopsis">sinh (x)</pre><p>Calculates the hyperbolic sine function.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-tan"></a>tan</span></dt><dd><pre
class="synopsis">tan (x)</pre><p>Calculates the tan function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-tanh"></a>tanh</span></dt><dd><pre
class="synopsis">tanh (x)</pre><p>The hyperbolic tangent function.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s05.html">Prev</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s07.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Numeric </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Number Theory</td></tr></table></div></body></html>
diff --git a/help/C/html/ch11s07.html b/help/C/html/ch11s07.html
new file mode 100644
index 0000000..fada9af
--- /dev/null
+++ b/help/C/html/ch11s07.html
@@ -0,0 +1,284 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Number
Theory</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch11.html" title="Chapter 11. List of GEL
functions"><link rel="prev" href="ch11s06.html" title="Trigonometry"><link rel="next" href="ch11s08.html"
title="Matrix Manipulation"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Number Theory</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s06.html">Prev</a> </td><th width="60%" align="center">Chapter 11. List of GEL functions</th><td
width="20%" align="right"> <a accesskey="n" href="ch11s08.html">Next</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear
: both"><a name="genius-gel-function-list-number-theory"></a>Number Theory</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AreRelativelyPrime"></a>AreRelativelyPrime</span></dt><dd><pre
class="synopsis">AreRelativelyPrime (a,b)</pre><p>
+ Are the real integers <code class="varname">a</code> and <code class="varname">b</code>
relatively prime?
+ Returns <code class="constant">true</code> or <code class="constant">false</code>.
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Coprime_integers"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/RelativelyPrime" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/RelativelyPrime.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-BernoulliNumber"></a>BernoulliNumber</span></dt><dd><pre class="synopsis">BernoulliNumber
(n)</pre><p>Return the <code class="varname">n</code>th Bernoulli number.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bernoulli_number" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://mathworld.wolfram.com/BernoulliNumber.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ChineseRemainder"></a>ChineseRemainder</span></dt><dd><pre
class="synopsis">ChineseRemainder (a,m)</pre><p>Aliases: <code class="function">CRT</code></p><p>Find the
<code class="varname">x</code> that solves the system given by
+ the vector <code class="varname">a</code> and modulo the elements of
+ <code class="varname">m</code>, using the Chinese Remainder Theorem.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Chinese_remainder_theorem"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/ChineseRemainderTheorem"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/ChineseRemainderTheorem.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CombineFactorizations"></a>CombineFactorizations</span></dt><dd><pre
class="synopsis">CombineFactorizations (a,b)</pre><p>Given two factorizations, give the factorization of the
+ product.</p><p>See <a class="link"
href="ch11s07.html#gel-function-Factorize">Factorize</a>.</p></dd><dt><span class="term"><a
name="gel-function-ConvertFromBase"></a>ConvertFromBase</span></dt><dd><pre class="synopsis">ConvertFromBase
(v,b)</pre><p>Convert a vector of values indicating powers of b to a number.</p></dd><dt><span
class="term"><a name="gel-function-ConvertToBase"></a>ConvertToBase</span></dt><dd><pre
class="synopsis">ConvertToBase (n,b)</pre><p>Convert a number to a vector of powers for elements in base
<code class="varname">b</code>.</p></dd><dt><span class="term"><a
name="gel-function-DiscreteLog"></a>DiscreteLog</span></dt><dd><pre class="synopsis">DiscreteLog
(n,b,q)</pre><p>Find discrete log of <code class="varname">n</code> base <code class="varname">b</code> in
+ F<sub>q</sub>, the finite field of order <code class="varname">q</code>, where <code
class="varname">q</code>
+ is a prime, using the Silver-Pohlig-Hellman algorithm.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Discrete_logarithm"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/DiscreteLogarithm" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/DiscreteLogarithm.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Divides"></a>Divides</span></dt><dd><pre
class="synopsis">Divides (m,n)</pre><p>Checks divisibility (if <code class="varname">m</code> divides <code
class="varname">n</code>).</p></dd><dt><span class="term"><a
name="gel-function-EulerPhi"></a>EulerPhi</span></dt><dd><pre class="synopsis">EulerPhi (n)</pre><p>
+ Compute the Euler phi function for <code class="varname">n</code>, that is
+ the number of integers between 1 and <code class="varname">n</code>
+ relatively prime to <code class="varname">n</code>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Euler_phi" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/EulerPhifunction" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/TotientFunction.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ExactDivision"></a>ExactDivision</span></dt><dd><pre class="synopsis">ExactDivision
(n,d)</pre><p>
+ Return <strong class="userinput"><code>n/d</code></strong> but only if <code
class="varname">d</code>
+ divides <code class="varname">n</code>. If <code class="varname">d</code>
+ does not divide <code class="varname">n</code> then this function returns
+ garbage. This is a lot faster for very large numbers
+ than the operation <strong class="userinput"><code>n/d</code></strong>, but of course only
+ useful if you know that the division is exact.
+ </p></dd><dt><span class="term"><a name="gel-function-Factorize"></a>Factorize</span></dt><dd><pre
class="synopsis">Factorize (n)</pre><p>
+ Return factorization of a number as a matrix. The first
+ row is the primes in the factorization (including 1) and the
+ second row are the powers. So for example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>Factorize(11*11*13)</code></strong>
+=
+[1 11 13
+ 1 2 1]</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Factorization" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Factors"></a>Factors</span></dt><dd><pre
class="synopsis">Factors (n)</pre><p>
+ Return all factors of <code class="varname">n</code> in a vector. This
+ includes all the non-prime factors as well. It includes 1 and the
+ number itself. So for example to print all the perfect numbers
+ (those that are sums of their factors) up to the number 1000 you
+ could do (this is of course very inefficient)
+ </p><pre class="programlisting">for n=1 to 1000 do (
+ if MatrixSum (Factors(n)) == 2*n then
+ print(n)
+)
+</pre><p>
+ </p></dd><dt><span class="term"><a
name="gel-function-FermatFactorization"></a>FermatFactorization</span></dt><dd><pre
class="synopsis">FermatFactorization (n,tries)</pre><p>
+ Attempt Fermat factorization of <code class="varname">n</code> into
+ <strong class="userinput"><code>(t-s)*(t+s)</code></strong>, returns <code
class="varname">t</code>
+ and <code class="varname">s</code> as a vector if possible, <code class="constant">null</code>
otherwise.
+ <code class="varname">tries</code> specifies the number of tries before
+ giving up.
+ </p><p>
+ This is a fairly good factorization if your number is the product
+ of two factors that are very close to each other.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fermat_factorization"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FindPrimitiveElementMod"></a>FindPrimitiveElementMod</span></dt><dd><pre
class="synopsis">FindPrimitiveElementMod (q)</pre><p>Find the first primitive element in F<sub>q</sub>, the
finite
+group of order <code class="varname">q</code>. Of course <code class="varname">q</code> must be a
prime.</p></dd><dt><span class="term"><a
name="gel-function-FindRandomPrimitiveElementMod"></a>FindRandomPrimitiveElementMod</span></dt><dd><pre
class="synopsis">FindRandomPrimitiveElementMod (q)</pre><p>Find a random primitive element in F<sub>q</sub>,
the finite
+group of order <code class="varname">q</code> (q must be a prime).</p></dd><dt><span class="term"><a
name="gel-function-IndexCalculus"></a>IndexCalculus</span></dt><dd><pre class="synopsis">IndexCalculus
(n,b,q,S)</pre><p>Compute discrete log base <code class="varname">b</code> of n in F<sub>q</sub>, the finite
+group of order <code class="varname">q</code> (<code class="varname">q</code> a prime), using the
+factor base <code class="varname">S</code>. <code class="varname">S</code> should be a column of
+primes possibly with second column precalculated by
+<a class="link" href="ch11s07.html#gel-function-IndexCalculusPrecalculation"><code
class="function">IndexCalculusPrecalculation</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-IndexCalculusPrecalculation"></a>IndexCalculusPrecalculation</span></dt><dd><pre
class="synopsis">IndexCalculusPrecalculation (b,q,S)</pre><p>Run the precalculation step of
+ <a class="link" href="ch11s07.html#gel-function-IndexCalculus"><code
class="function">IndexCalculus</code></a> for logarithms base <code class="varname">b</code> in
+F<sub>q</sub>, the finite group of order <code class="varname">q</code>
+(<code class="varname">q</code> a prime), for the factor base <code class="varname">S</code> (where
+<code class="varname">S</code> is a column vector of primes). The logs will be
+precalculated and returned in the second column.</p></dd><dt><span class="term"><a
name="gel-function-IsEven"></a>IsEven</span></dt><dd><pre class="synopsis">IsEven (n)</pre><p>Tests if an
integer is even.</p></dd><dt><span class="term"><a
name="gel-function-IsMersennePrimeExponent"></a>IsMersennePrimeExponent</span></dt><dd><pre
class="synopsis">IsMersennePrimeExponent (p)</pre><p>
+ Tests if a positive integer <code class="varname">p</code> is a
+ Mersenne prime exponent. That is if
+ 2<sup>p</sup>-1 is a prime. It does this
+ by looking it up in a table of known values, which is relatively
+ short.
+ See also
+ <a class="link" href="ch11s07.html#gel-function-MersennePrimeExponents">MersennePrimeExponents</a>
+ and
+ <a class="link" href="ch11s07.html#gel-function-LucasLehmer">LucasLehmer</a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Mersenne_prime" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MersenneNumbers" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/MersennePrime.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://www.mersenne.org/" target="_top">GIMPS</a>
+ for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsNthPower"></a>IsNthPower</span></dt><dd><pre class="synopsis">IsNthPower (m,n)</pre><p>
+ Tests if a rational number <code class="varname">m</code> is a perfect
+ <code class="varname">n</code>th power. See also
+ <a class="link" href="ch11s07.html#gel-function-IsPerfectPower">IsPerfectPower</a>
+ and
+ <a class="link" href="ch11s07.html#gel-function-IsPerfectSquare">IsPerfectSquare</a>.
+ </p></dd><dt><span class="term"><a name="gel-function-IsOdd"></a>IsOdd</span></dt><dd><pre
class="synopsis">IsOdd (n)</pre><p>Tests if an integer is odd.</p></dd><dt><span class="term"><a
name="gel-function-IsPerfectPower"></a>IsPerfectPower</span></dt><dd><pre class="synopsis">IsPerfectPower
(n)</pre><p>Check an integer for being any perfect power, a<sup>b</sup>.</p></dd><dt><span class="term"><a
name="gel-function-IsPerfectSquare"></a>IsPerfectSquare</span></dt><dd><pre class="synopsis">IsPerfectSquare
(n)</pre><p>
+ Check an integer for being a perfect square of an integer. The number must
+ be a real integer. Negative integers are of course never perfect
+ squares of real integers.
+ </p></dd><dt><span class="term"><a name="gel-function-IsPrime"></a>IsPrime</span></dt><dd><pre
class="synopsis">IsPrime (n)</pre><p>
+ Tests primality of integers, for numbers less than 2.5e10 the
+ answer is deterministic (if Riemann hypothesis is true). For
+ numbers larger, the probability of a false positive
+ depends on
+ <a class="link" href="ch11s03.html#gel-function-IsPrimeMillerRabinReps">
+ <code class="function">IsPrimeMillerRabinReps</code></a>. That
+ is the probability of false positive is 1/4 to the power
+ <code class="function">IsPrimeMillerRabinReps</code>. The default
+ value of 22 yields a probability of about 5.7e-14.
+ </p><p>
+ If <code class="constant">false</code> is returned, you can be sure that
+ the number is a composite. If you want to be absolutely sure
+ that you have a prime you can use
+ <a class="link" href="ch11s07.html#gel-function-MillerRabinTestSure">
+ <code class="function">MillerRabinTestSure</code></a> but it may take
+ a lot longer.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsPrimitiveMod"></a>IsPrimitiveMod</span></dt><dd><pre class="synopsis">IsPrimitiveMod
(g,q)</pre><p>Check if <code class="varname">g</code> is primitive in F<sub>q</sub>, the finite
+group of order <code class="varname">q</code>, where <code class="varname">q</code> is a prime. If <code
class="varname">q</code> is not prime results are bogus.</p></dd><dt><span class="term"><a
name="gel-function-IsPrimitiveModWithPrimeFactors"></a>IsPrimitiveModWithPrimeFactors</span></dt><dd><pre
class="synopsis">IsPrimitiveModWithPrimeFactors (g,q,f)</pre><p>Check if <code class="varname">g</code> is
primitive in F<sub>q</sub>, the finite
+group of order <code class="varname">q</code>, where <code class="varname">q</code> is a prime and
+<code class="varname">f</code> is a vector of prime factors of <code class="varname">q</code>-1.
+If <code class="varname">q</code> is not prime results are bogus.</p></dd><dt><span class="term"><a
name="gel-function-IsPseudoprime"></a>IsPseudoprime</span></dt><dd><pre class="synopsis">IsPseudoprime
(n,b)</pre><p>If <code class="varname">n</code> is a pseudoprime base <code class="varname">b</code> but not
a prime,
+ that is if <strong class="userinput"><code>b^(n-1) == 1 mod n</code></strong>. This calls
the <a class="link" href="ch11s07.html#gel-function-PseudoprimeTest"><code
class="function">PseudoprimeTest</code></a></p></dd><dt><span class="term"><a
name="gel-function-IsStrongPseudoprime"></a>IsStrongPseudoprime</span></dt><dd><pre
class="synopsis">IsStrongPseudoprime (n,b)</pre><p>Test if <code class="varname">n</code> is a strong
pseudoprime to base <code class="varname">b</code> but not a prime.</p></dd><dt><span class="term"><a
name="gel-function-Jacobi"></a>Jacobi</span></dt><dd><pre class="synopsis">Jacobi (a,b)</pre><p>Aliases:
<code class="function">JacobiSymbol</code></p><p>Calculate the Jacobi symbol (a/b) (b should be
odd).</p></dd><dt><span class="term"><a
name="gel-function-JacobiKronecker"></a>JacobiKronecker</span></dt><dd><pre class="synopsis">JacobiKronecker
(a,b)</pre><p>Aliases: <code class="function">JacobiKroneckerSymbol</code></p><p>Calculate the Jacobi s
ymbol (a/b) with the Kronecker extension (a/2)=(2/a) when a odd, or (a/2)=0 when a even.</p></dd><dt><span
class="term"><a name="gel-function-LeastAbsoluteResidue"></a>LeastAbsoluteResidue</span></dt><dd><pre
class="synopsis">LeastAbsoluteResidue (a,n)</pre><p>Return the residue of <code class="varname">a</code> mod
<code class="varname">n</code> with the least absolute value (in the interval -n/2 to n/2).</p></dd><dt><span
class="term"><a name="gel-function-Legendre"></a>Legendre</span></dt><dd><pre class="synopsis">Legendre
(a,p)</pre><p>Aliases: <code class="function">LegendreSymbol</code></p><p>Calculate the Legendre symbol
(a/p).</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/LegendreSymbol" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/LegendreSymbol.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-LucasLehmer"></a>LucasLehmer</span></dt><dd><pre class="synopsis">LucasLehmer
(p)</pre><p>Test if 2<sup>p</sup>-1 is a Mersenne prime using the Lucas-Lehmer test.
+ See also
+ <a class="link" href="ch11s07.html#gel-function-MersennePrimeExponents">MersennePrimeExponents</a>
+ and
+ <a class="link"
href="ch11s07.html#gel-function-IsMersennePrimeExponent">IsMersennePrimeExponent</a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LucasLhemer" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/Lucas-LehmerTest.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-LucasNumber"></a>LucasNumber</span></dt><dd><pre class="synopsis">LucasNumber
(n)</pre><p>Returns the <code class="varname">n</code>th Lucas number.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lucas_number" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LucasNumbers" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/LucasNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MaximalPrimePowerFactors"></a>MaximalPrimePowerFactors</span></dt><dd><pre
class="synopsis">MaximalPrimePowerFactors (n)</pre><p>Return all maximal prime power factors of a
number.</p></dd><dt><span class="term"><a
name="gel-function-MersennePrimeExponents"></a>MersennePrimeExponents</span></dt><dd><pre
class="synopsis">MersennePrimeExponents</pre><p>
+ A vector of known Mersenne prime exponents, that is
+ a list of positive integers
+ <code class="varname">p</code> such that
+ 2<sup>p</sup>-1 is a prime.
+ See also
+ <a class="link"
href="ch11s07.html#gel-function-IsMersennePrimeExponent">IsMersennePrimeExponent</a>
+ and
+ <a class="link" href="ch11s07.html#gel-function-LucasLehmer">LucasLehmer</a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Mersenne_prime" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MersenneNumbers" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/MersennePrime.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://www.mersenne.org/" target="_top">GIMPS</a>
+ for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MillerRabinTest"></a>MillerRabinTest</span></dt><dd><pre class="synopsis">MillerRabinTest
(n,reps)</pre><p>
+ Use the Miller-Rabin primality test on <code class="varname">n</code>,
+ <code class="varname">reps</code> number of times. The probability of false
+ positive is <strong class="userinput"><code>(1/4)^reps</code></strong>. It is probably
+ usually better to use
+ <a class="link" href="ch11s07.html#gel-function-IsPrime">
+ <code class="function">IsPrime</code></a> since that is faster and
+ better on smaller integers.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/MillerRabinPrimeTest" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MillerRabinTestSure"></a>MillerRabinTestSure</span></dt><dd><pre
class="synopsis">MillerRabinTestSure (n)</pre><p>
+ Use the Miller-Rabin primality test on <code class="varname">n</code> with
+ enough bases that assuming the Generalized Riemann Hypothesis the
+ result is deterministic.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MillerRabinPrimeTest" target="_top">Planetmath</a>,
or
+ <a class="ulink" href="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-ModInvert"></a>ModInvert</span></dt><dd><pre
class="synopsis">ModInvert (n,m)</pre><p>Returns inverse of n mod m.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/ModularInverse.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-MoebiusMu"></a>MoebiusMu</span></dt><dd><pre
class="synopsis">MoebiusMu (n)</pre><p>
+ Return the Moebius mu function evaluated in <code class="varname">n</code>.
+ That is, it returns 0 if <code class="varname">n</code> is not a product
+ of distinct primes and <strong class="userinput"><code>(-1)^k</code></strong> if it is
+ a product of <code class="varname">k</code> distinct primes.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MoebiusFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/MoebiusFunction.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-NextPrime"></a>NextPrime</span></dt><dd><pre
class="synopsis">NextPrime (n)</pre><p>
+ Returns the least prime greater than <code class="varname">n</code>.
+ Negatives of primes are considered prime and so to get the
+ previous prime you can use <strong class="userinput"><code>-NextPrime(-n)</code></strong>.
+ </p><p>
+ This function uses the GMPs <code class="function">mpz_nextprime</code>,
+ which in turn uses the probabilistic Miller-Rabin test
+ (See also <a class="link" href="ch11s07.html#gel-function-MillerRabinTest"><code
class="function">MillerRabinTest</code></a>).
+ The probability
+ of false positive is not tunable, but is low enough
+ for all practical purposes.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PadicValuation"></a>PadicValuation</span></dt><dd><pre class="synopsis">PadicValuation
(n,p)</pre><p>Returns the p-adic valuation (number of trailing zeros in base <code
class="varname">p</code>).</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/P-adic_order" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/PAdicValuation" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-PowerMod"></a>PowerMod</span></dt><dd><pre
class="synopsis">PowerMod (a,b,m)</pre><p>
+ Compute <strong class="userinput"><code>a^b mod m</code></strong>. The
+ <code class="varname">b</code>'s power of <code class="varname">a</code> modulo
+ <code class="varname">m</code>. It is not necessary to use this function
+ as it is automatically used in modulo mode. Hence
+ <strong class="userinput"><code>a^b mod m</code></strong> is just as fast.
+ </p></dd><dt><span class="term"><a name="gel-function-Prime"></a>Prime</span></dt><dd><pre
class="synopsis">Prime (n)</pre><p>Aliases: <code class="function">prime</code></p><p>Return the <code
class="varname">n</code>th prime (up to a limit).</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PrimeFactors"></a>PrimeFactors</span></dt><dd><pre class="synopsis">PrimeFactors
(n)</pre><p>Return all prime factors of a number as a vector.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Prime_factor" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeFactor.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PseudoprimeTest"></a>PseudoprimeTest</span></dt><dd><pre class="synopsis">PseudoprimeTest
(n,b)</pre><p>Pseudoprime test, returns <code class="constant">true</code> if and only if
+ <strong class="userinput"><code>b^(n-1) == 1 mod n</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Pseudoprime" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Pseudoprime.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RemoveFactor"></a>RemoveFactor</span></dt><dd><pre class="synopsis">RemoveFactor
(n,m)</pre><p>Removes all instances of the factor <code class="varname">m</code> from the number <code
class="varname">n</code>. That is divides by the largest power of <code class="varname">m</code>, that
divides <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Divisibility" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Factor.html" target="_top">Mathworld</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SilverPohligHellmanWithFactorization"></a>SilverPohligHellmanWithFactorization</span></dt><dd><pre
class="synopsis">SilverPohligHellmanWithFactorization (n,b,q,f)</pre><p>Find discrete log of <code
class="varname">n</code> base <code class="varname">b</code> in F<sub>q</sub>, the finite group of order
<code class="varname">q</code>, where <code class="varname">q</code> is a prime using the
Silver-Pohlig-Hellman algorithm, given <code class="varname">f</code> being the factorization of <code
class="varname">q</code>-1.</p></dd><dt><span class="term"><a
name="gel-function-SqrtModPrime"></a>SqrtModPrime</span></dt><dd><pre class="synopsis">SqrtModPrime
(n,p)</pre><p>Find square root of <code class="varname">n</code> modulo <code class="varname">p</code> (where
<code class="varname">p</code> is a prime). Null is returned if not a quadratic residue.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/QuadraticResidue" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/QuadraticResidue.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-StrongPseudoprimeTest"></a>StrongPseudoprimeTest</span></dt><dd><pre
class="synopsis">StrongPseudoprimeTest (n,b)</pre><p>Run the strong pseudoprime test base <code
class="varname">b</code> on <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Strong_pseudoprime"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/StrongPseudoprime" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/StrongPseudoprime.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-gcd"></a>gcd</span></dt><dd><pre
class="synopsis">gcd (a,args...)</pre><p>Aliases: <code class="function">GCD</code></p><p>
+ Greatest common divisor of integers. You can enter as many
+ integers as you want in the argument list, or you can give
+ a vector or a matrix of integers. If you give more than
+ one matrix of the same size then GCD is done element by
+ element.
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Greatest_common_divisor"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/GreatestCommonDivisor" target="_top">Planetmath</a>,
or
+ <a class="ulink" href="http://mathworld.wolfram.com/GreatestCommonDivisor.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-lcm"></a>lcm</span></dt><dd><pre
class="synopsis">lcm (a,args...)</pre><p>Aliases: <code class="function">LCM</code></p><p>
+ Least common multiplier of integers. You can enter as many
+ integers as you want in the argument list, or you can give a
+ vector or a matrix of integers. If you give more than one
+ matrix of the same size then LCM is done element by element.
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Least_common_multiple"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LeastCommonMultiple" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/LeastCommonMultiple.html"
target="_top">Mathworld</a> for more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s06.html">Prev</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s08.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Trigonometry </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Matrix Manipulation</td></tr></table></div></body></html>
diff --git a/help/C/html/ch11s08.html b/help/C/html/ch11s08.html
new file mode 100644
index 0000000..3ccdc54
--- /dev/null
+++ b/help/C/html/ch11s08.html
@@ -0,0 +1,92 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Matrix
Manipulation</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch11.html" title="Chapter 11. List of GEL
functions"><link rel="prev" href="ch11s07.html" title="Number Theory"><link rel="next" href="ch11s09.html"
title="Linear Algebra"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Matrix Manipulation</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s07.html">Prev</a> </td><th width="60%" align="center">Chapter 11. List of GEL functions</th><td
width="20%" align="right"> <a accesskey="n" href="ch11s09.html">Next</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" styl
e="clear: both"><a name="genius-gel-function-list-matrix"></a>Matrix Manipulation</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ApplyOverMatrix"></a>ApplyOverMatrix</span></dt><dd><pre class="synopsis">ApplyOverMatrix
(a,func)</pre><p>Apply a function over all entries of a matrix and return a matrix of the
results.</p></dd><dt><span class="term"><a
name="gel-function-ApplyOverMatrix2"></a>ApplyOverMatrix2</span></dt><dd><pre
class="synopsis">ApplyOverMatrix2 (a,b,func)</pre><p>Apply a function over all entries of 2 matrices (or 1
value and 1 matrix) and return a matrix of the results.</p></dd><dt><span class="term"><a
name="gel-function-ColumnsOf"></a>ColumnsOf</span></dt><dd><pre class="synopsis">ColumnsOf (M)</pre><p>Gets
the columns of a matrix as a horizontal vector.</p></dd><dt><span class="term"><a
name="gel-function-ComplementSubmatrix"></a>ComplementSubmatrix</span></dt><dd><pre class="synopsis">
ComplementSubmatrix (m,r,c)</pre><p>Remove column(s) and row(s) from a matrix.</p></dd><dt><span
class="term"><a name="gel-function-CompoundMatrix"></a>CompoundMatrix</span></dt><dd><pre
class="synopsis">CompoundMatrix (k,A)</pre><p>Calculate the kth compound matrix of A.</p></dd><dt><span
class="term"><a name="gel-function-CountZeroColumns"></a>CountZeroColumns</span></dt><dd><pre
class="synopsis">CountZeroColumns (M)</pre><p>
+ Count the number of zero columns in a matrix. For example
+ once your column reduce a matrix you can use this to find
+ the nullity. See <a class="link" href="ch11s09.html#gel-function-cref"><code
class="function">cref</code></a>
+ and <a class="link" href="ch11s09.html#gel-function-Nullity"><code
class="function">Nullity</code></a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-DeleteColumn"></a>DeleteColumn</span></dt><dd><pre class="synopsis">DeleteColumn
(M,col)</pre><p>Delete a column of a matrix.</p></dd><dt><span class="term"><a
name="gel-function-DeleteRow"></a>DeleteRow</span></dt><dd><pre class="synopsis">DeleteRow
(M,row)</pre><p>Delete a row of a matrix.</p></dd><dt><span class="term"><a
name="gel-function-DiagonalOf"></a>DiagonalOf</span></dt><dd><pre class="synopsis">DiagonalOf
(M)</pre><p>Gets the diagonal entries of a matrix as a column vector.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Diagonal_of_a_matrix#Matrices"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-DotProduct"></a>DotProduct</span></dt><dd><pre class="synopsis">DotProduct
(u,v)</pre><p>Get the dot product of two vectors. The vectors must be of the
+ same size. No conjugates are taken so this is a bilinear form even if working over the
complex numbers; This is the bilinear scalar product not the sesquilinear scalar product. See <a
class="link" href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a> for the standard
sesquilinear inner product.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Dot_product" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DotProduct" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ExpandMatrix"></a>ExpandMatrix</span></dt><dd><pre class="synopsis">ExpandMatrix
(M)</pre><p>
+ Expands a matrix just like we do on unquoted matrix input.
+ That is we expand any internal matrices as blocks. This is
+ a way to construct matrices out of smaller ones and this is
+ normally done automatically on input unless the matrix is quoted.
+ </p></dd><dt><span class="term"><a
name="gel-function-HermitianProduct"></a>HermitianProduct</span></dt><dd><pre
class="synopsis">HermitianProduct (u,v)</pre><p>Aliases: <code class="function">InnerProduct</code></p><p>Get
the Hermitian product of two vectors. The vectors must be of the same size. This is a sesquilinear form
using the identity matrix.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Sesquilinear_form"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/HermitianInnerProduct.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-I"></a>I</span></dt><dd><pre
class="synopsis">I (n)</pre><p>Aliases: <code class="function">eye</code></p><p>Return an identity matrix of
a given size, that is <code class="varname">n</code> by <code class="varname">n</code>. If <code
class="varname">n</code> is zero, returns <code class="constant">null</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Identity_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/IdentityMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IndexComplement"></a>IndexComplement</span></dt><dd><pre class="synopsis">IndexComplement
(vec,msize)</pre><p>Return the index complement of a vector of indexes. Everything is one based. For
example for vector <strong class="userinput"><code>[2,3]</code></strong> and size
+<strong class="userinput"><code>5</code></strong>, we return <strong
class="userinput"><code>[1,4,5]</code></strong>. If
+<code class="varname">msize</code> is 0, we always return <code
class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsDiagonal"></a>IsDiagonal</span></dt><dd><pre class="synopsis">IsDiagonal (M)</pre><p>Is
a matrix diagonal.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Diagonal_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/DiagonalMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsIdentity"></a>IsIdentity</span></dt><dd><pre class="synopsis">IsIdentity
(x)</pre><p>Check if a matrix is the identity matrix. Automatically returns <code
class="constant">false</code>
+ if the matrix is not square. Also works on numbers, in which
+ case it is equivalent to <strong class="userinput"><code>x==1</code></strong>. When <code
class="varname">x</code> is
+ <code class="constant">null</code> (we could think of that as a 0 by 0 matrix),
+ no error is generated and <code class="constant">false</code> is returned.</p></dd><dt><span
class="term"><a name="gel-function-IsLowerTriangular"></a>IsLowerTriangular</span></dt><dd><pre
class="synopsis">IsLowerTriangular (M)</pre><p>Is a matrix lower triangular. That is, are all the entries
above the diagonal zero.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixInteger"></a>IsMatrixInteger</span></dt><dd><pre class="synopsis">IsMatrixInteger
(M)</pre><p>Check if a matrix is a matrix of integers (non-complex).</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixNonnegative"></a>IsMatrixNonnegative</span></dt><dd><pre
class="synopsis">IsMatrixNonnegative (M)</pre><p>Check if a matrix is non-negative, that is if each element
is non-negative.
+ Do not confuse positive matrices with positive semi-definite matrices.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Positive_matrix" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsMatrixPositive"></a>IsMatrixPositive</span></dt><dd><pre
class="synopsis">IsMatrixPositive (M)</pre><p>Check if a matrix is positive, that is if each element is
+positive (and hence real). In particular, no element is 0. Do not confuse
+positive matrices with positive definite matrices.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Positive_matrix" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsMatrixRational"></a>IsMatrixRational</span></dt><dd><pre
class="synopsis">IsMatrixRational (M)</pre><p>Check if a matrix is a matrix of rational (non-complex)
+numbers.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixReal"></a>IsMatrixReal</span></dt><dd><pre class="synopsis">IsMatrixReal
(M)</pre><p>Check if a matrix is a matrix of real (non-complex) numbers.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixSquare"></a>IsMatrixSquare</span></dt><dd><pre class="synopsis">IsMatrixSquare
(M)</pre><p>
+ Check if a matrix is square, that is its width is equal to
+ its height.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsUpperTriangular"></a>IsUpperTriangular</span></dt><dd><pre
class="synopsis">IsUpperTriangular (M)</pre><p>Is a matrix upper triangular? That is, a matrix is upper
triangular if all the entries below the diagonal are zero.</p></dd><dt><span class="term"><a
name="gel-function-IsValueOnly"></a>IsValueOnly</span></dt><dd><pre class="synopsis">IsValueOnly
(M)</pre><p>Check if a matrix is a matrix of numbers only. Many internal
+functions make this check. Values can be any number including complex numbers.</p></dd><dt><span
class="term"><a name="gel-function-IsVector"></a>IsVector</span></dt><dd><pre class="synopsis">IsVector
(v)</pre><p>
+ Is argument a horizontal or a vertical vector. Genius does
+ not distinguish between a matrix and a vector and a vector
+ is just a 1 by <code class="varname">n</code> or <code class="varname">n</code> by 1 matrix.
+ </p></dd><dt><span class="term"><a name="gel-function-IsZero"></a>IsZero</span></dt><dd><pre
class="synopsis">IsZero (x)</pre><p>Check if a matrix is composed of all zeros. Also works on numbers, in
which
+ case it is equivalent to <strong class="userinput"><code>x==0</code></strong>. When <code
class="varname">x</code> is
+ <code class="constant">null</code> (we could think of that as a 0 by 0 matrix),
+ no error is generated and <code class="constant">true</code> is returned as the condition is
+ vacuous.
+ </p></dd><dt><span class="term"><a
name="gel-function-LowerTriangular"></a>LowerTriangular</span></dt><dd><pre class="synopsis">LowerTriangular
(M)</pre><p>Returns a copy of the matrix <code class="varname">M</code> with all the entries above the
diagonal set to zero.</p></dd><dt><span class="term"><a
name="gel-function-MakeDiagonal"></a>MakeDiagonal</span></dt><dd><pre class="synopsis">MakeDiagonal
(v,arg...)</pre><p>Aliases: <code class="function">diag</code></p><p>Make diagonal matrix from a vector.
Alternatively you can pass
+ in the values to put on the diagonal as arguments. So
+ <strong class="userinput"><code>MakeDiagonal([1,2,3])</code></strong> is the same as
+ <strong class="userinput"><code>MakeDiagonal(1,2,3)</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Diagonal_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/DiagonalMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MakeVector"></a>MakeVector</span></dt><dd><pre class="synopsis">MakeVector
(A)</pre><p>Make column vector out of matrix by putting columns above
+ each other. Returns <code class="constant">null</code> when given <code
class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-MatrixProduct"></a>MatrixProduct</span></dt><dd><pre class="synopsis">MatrixProduct
(A)</pre><p>
+ Calculate the product of all elements in a matrix or vector.
+ That is we multiply all the elements and return a number that
+ is the product of all the elements.
+ </p></dd><dt><span class="term"><a name="gel-function-MatrixSum"></a>MatrixSum</span></dt><dd><pre
class="synopsis">MatrixSum (A)</pre><p>
+ Calculate the sum of all elements in a matrix or vector. That is
+ we add all the elements and return a number that is the
+ sum of all the elements.
+ </p></dd><dt><span class="term"><a
name="gel-function-MatrixSumSquares"></a>MatrixSumSquares</span></dt><dd><pre
class="synopsis">MatrixSumSquares (A)</pre><p>Calculate the sum of squares of all elements in a matrix
+ or vector.</p></dd><dt><span class="term"><a
name="gel-function-NonzeroColumns"></a>NonzeroColumns</span></dt><dd><pre class="synopsis">NonzeroColumns
(M)</pre><p>Returns a row vector of the indices of nonzero columns in the matrix <code
class="varname">M</code>.</p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NonzeroElements"></a>NonzeroElements</span></dt><dd><pre class="synopsis">NonzeroElements
(v)</pre><p>Returns a row vector of the indices of nonzero elements in the vector <code
class="varname">v</code>.</p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-OuterProduct"></a>OuterProduct</span></dt><dd><pre class="synopsis">OuterProduct
(u,v)</pre><p>Get the outer product of two vectors. That is, suppose that
+<code class="varname">u</code> and <code class="varname">v</code> are vertical vectors, then
+the outer product is <strong class="userinput"><code>v * u.'</code></strong>.</p></dd><dt><span
class="term"><a name="gel-function-ReverseVector"></a>ReverseVector</span></dt><dd><pre
class="synopsis">ReverseVector (v)</pre><p>Reverse elements in a vector. Return <code
class="constant">null</code> if given <code class="constant">null</code></p></dd><dt><span class="term"><a
name="gel-function-RowSum"></a>RowSum</span></dt><dd><pre class="synopsis">RowSum (m)</pre><p>Calculate sum
of each row in a matrix and return a vertical
+vector with the result.</p></dd><dt><span class="term"><a
name="gel-function-RowSumSquares"></a>RowSumSquares</span></dt><dd><pre class="synopsis">RowSumSquares
(m)</pre><p>Calculate sum of squares of each row in a matrix and return a vertical vector with the
results.</p></dd><dt><span class="term"><a name="gel-function-RowsOf"></a>RowsOf</span></dt><dd><pre
class="synopsis">RowsOf (M)</pre><p>Gets the rows of a matrix as a vertical vector. Each element
+of the vector is a horizontal vector that is the corresponding row of
+<code class="varname">M</code>. This function is useful if you wish to loop over the
+rows of a matrix. For example, as <strong class="userinput"><code>for r in RowsOf(M) do
+something(r)</code></strong>.</p></dd><dt><span class="term"><a
name="gel-function-SetMatrixSize"></a>SetMatrixSize</span></dt><dd><pre class="synopsis">SetMatrixSize
(M,rows,columns)</pre><p>Make new matrix of given size from old one. That is, a new
+ matrix will be returned to which the old one is copied. Entries that
+ don't fit are clipped and extra space is filled with zeros.
+ If <code class="varname">rows</code> or <code class="varname">columns</code> are zero
+ then <code class="constant">null</code> is returned.
+ </p></dd><dt><span class="term"><a
name="gel-function-ShuffleVector"></a>ShuffleVector</span></dt><dd><pre class="synopsis">ShuffleVector
(v)</pre><p>Shuffle elements in a vector. Return <code class="constant">null</code> if given <code
class="constant">null</code>.</p><p>Version 1.0.13 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SortVector"></a>SortVector</span></dt><dd><pre class="synopsis">SortVector
(v)</pre><p>Sort vector elements in an increasing order.</p></dd><dt><span class="term"><a
name="gel-function-StripZeroColumns"></a>StripZeroColumns</span></dt><dd><pre
class="synopsis">StripZeroColumns (M)</pre><p>Removes any all-zero columns of <code
class="varname">M</code>.</p></dd><dt><span class="term"><a
name="gel-function-StripZeroRows"></a>StripZeroRows</span></dt><dd><pre class="synopsis">StripZeroRows
(M)</pre><p>Removes any all-zero rows of <code class="varname">M</code>.</p></dd><dt><span class="term"><a
name="gel-function-Submatrix"></a>Sub
matrix</span></dt><dd><pre class="synopsis">Submatrix (m,r,c)</pre><p>Return column(s) and row(s) from a
matrix. This is
+just equivalent to <strong class="userinput"><code>m@(r,c)</code></strong>. <code class="varname">r</code>
+and <code class="varname">c</code> should be vectors of rows and columns (or single numbers if only one row
or column is needed).</p></dd><dt><span class="term"><a
name="gel-function-SwapRows"></a>SwapRows</span></dt><dd><pre class="synopsis">SwapRows
(m,row1,row2)</pre><p>Swap two rows in a matrix.</p></dd><dt><span class="term"><a
name="gel-function-UpperTriangular"></a>UpperTriangular</span></dt><dd><pre class="synopsis">UpperTriangular
(M)</pre><p>Returns a copy of the matrix <code class="varname">M</code> with all the entries below the
diagonal set to zero.</p></dd><dt><span class="term"><a
name="gel-function-columns"></a>columns</span></dt><dd><pre class="synopsis">columns (M)</pre><p>Get the
number of columns of a matrix.</p></dd><dt><span class="term"><a
name="gel-function-elements"></a>elements</span></dt><dd><pre class="synopsis">elements (M)</pre><p>Get the
total number of elements of a matrix. This is the
+number of columns times the number of rows.</p></dd><dt><span class="term"><a
name="gel-function-ones"></a>ones</span></dt><dd><pre class="synopsis">ones (rows,columns...)</pre><p>Make an
matrix of all ones (or a row vector if only one argument is given). Returns <code
class="constant">null</code> if either rows or columns are zero.</p></dd><dt><span class="term"><a
name="gel-function-rows"></a>rows</span></dt><dd><pre class="synopsis">rows (M)</pre><p>Get the number of
rows of a matrix.</p></dd><dt><span class="term"><a name="gel-function-zeros"></a>zeros</span></dt><dd><pre
class="synopsis">zeros (rows,columns...)</pre><p>Make a matrix of all zeros (or a row vector if only one
argument is given). Returns <code class="constant">null</code> if either rows or columns are
zero.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s07.html">Prev</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s09.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Number Theory </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Linear Algebra</td></tr></table></div></body></html>
diff --git a/help/C/html/ch11s09.html b/help/C/html/ch11s09.html
new file mode 100644
index 0000000..d405579
--- /dev/null
+++ b/help/C/html/ch11s09.html
@@ -0,0 +1,285 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Linear
Algebra</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch11.html" title="Chapter 11. List of GEL
functions"><link rel="prev" href="ch11s08.html" title="Matrix Manipulation"><link rel="next"
href="ch11s10.html" title="Combinatorics"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Linear Algebra</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s08.html">Prev</a> </td><th width="60%" align="center">Chapter 11. List of GEL
functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s10.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="cl
ear: both"><a name="genius-gel-function-list-linear-algebra"></a>Linear Algebra</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AuxiliaryUnitMatrix"></a>AuxiliaryUnitMatrix</span></dt><dd><pre
class="synopsis">AuxiliaryUnitMatrix (n)</pre><p>Get the auxiliary unit matrix of size <code
class="varname">n</code>. This is a square matrix with that is all zero except the
+superdiagonal being all ones. It is the Jordan block matrix of one zero eigenvalue.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/JordanCanonicalFormTheorem"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/JordanBlock.html" target="_top">Mathworld</a>
for more information on Jordan Canonical Form.
+ </p></dd><dt><span class="term"><a
name="gel-function-BilinearForm"></a>BilinearForm</span></dt><dd><pre class="synopsis">BilinearForm
(v,A,w)</pre><p>Evaluate (v,w) with respect to the bilinear form given by the matrix A.</p></dd><dt><span
class="term"><a name="gel-function-BilinearFormFunction"></a>BilinearFormFunction</span></dt><dd><pre
class="synopsis">BilinearFormFunction (A)</pre><p>Return a function that evaluates two vectors with respect
to the bilinear form given by A.</p></dd><dt><span class="term"><a
name="gel-function-CharacteristicPolynomial"></a>CharacteristicPolynomial</span></dt><dd><pre
class="synopsis">CharacteristicPolynomial (M)</pre><p>Aliases: <code
class="function">CharPoly</code></p><p>Get the characteristic polynomial as a vector. That is, return
+the coefficients of the polynomial starting with the constant term. This is
+the polynomial defined by <strong class="userinput"><code>det(M-xI)</code></strong>. The roots of this
+polynomial are the eigenvalues of <code class="varname">M</code>.
+See also <a class="link"
href="ch11s09.html#gel-function-CharacteristicPolynomialFunction">CharacteristicPolynomialFunction</a>.
+</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Characteristic_polynomial"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/CharacteristicEquation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CharacteristicPolynomialFunction"></a>CharacteristicPolynomialFunction</span></dt><dd><pre
class="synopsis">CharacteristicPolynomialFunction (M)</pre><p>Get the characteristic polynomial as a
function. This is
+the polynomial defined by <strong class="userinput"><code>det(M-xI)</code></strong>. The roots of this
+polynomial are the eigenvalues of <code class="varname">M</code>.
+See also <a class="link"
href="ch11s09.html#gel-function-CharacteristicPolynomial">CharacteristicPolynomial</a>.
+</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Characteristic_polynomial"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/CharacteristicEquation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ColumnSpace"></a>ColumnSpace</span></dt><dd><pre class="synopsis">ColumnSpace
(M)</pre><p>Get a basis matrix for the columnspace of a matrix. That is,
+return a matrix whose columns are the basis for the column space of
+<code class="varname">M</code>. That is the space spanned by the columns of
+<code class="varname">M</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Row_and_column_spaces"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CommutationMatrix"></a>CommutationMatrix</span></dt><dd><pre
class="synopsis">CommutationMatrix (m, n)</pre><p>Return the commutation matrix <strong
class="userinput"><code>K(m,n)</code></strong>, which is the unique <strong
class="userinput"><code>m*n</code></strong> by
+ <strong class="userinput"><code>m*n</code></strong> matrix such that <strong
class="userinput"><code>K(m,n) * MakeVector(A) = MakeVector(A.')</code></strong> for all <code
class="varname">m</code> by <code class="varname">n</code>
+ matrices <code class="varname">A</code>.</p></dd><dt><span class="term"><a
name="gel-function-CompanionMatrix"></a>CompanionMatrix</span></dt><dd><pre class="synopsis">CompanionMatrix
(p)</pre><p>Companion matrix of a polynomial (as vector).</p></dd><dt><span class="term"><a
name="gel-function-ConjugateTranspose"></a>ConjugateTranspose</span></dt><dd><pre
class="synopsis">ConjugateTranspose (M)</pre><p>Conjugate transpose of a matrix (adjoint). This is the
+ same as the <strong class="userinput"><code>'</code></strong> operator.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Conjugate_transpose"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/ConjugateTranspose" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Convolution"></a>Convolution</span></dt><dd><pre class="synopsis">Convolution
(a,b)</pre><p>Aliases: <code class="function">convol</code></p><p>Calculate convolution of two horizontal
vectors.</p></dd><dt><span class="term"><a
name="gel-function-ConvolutionVector"></a>ConvolutionVector</span></dt><dd><pre
class="synopsis">ConvolutionVector (a,b)</pre><p>Calculate convolution of two horizontal vectors. Return
+result as a vector and not added together.</p></dd><dt><span class="term"><a
name="gel-function-CrossProduct"></a>CrossProduct</span></dt><dd><pre class="synopsis">CrossProduct
(v,w)</pre><p>CrossProduct of two vectors in R<sup>3</sup> as
+ a column vector.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Cross_product" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-DeterminantalDivisorsInteger"></a>DeterminantalDivisorsInteger</span></dt><dd><pre
class="synopsis">DeterminantalDivisorsInteger (M)</pre><p>Get the determinantal divisors of an integer
matrix.</p></dd><dt><span class="term"><a name="gel-function-DirectSum"></a>DirectSum</span></dt><dd><pre
class="synopsis">DirectSum (M,N...)</pre><p>Direct sum of matrices.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Matrix_addition#directsum"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-DirectSumMatrixVector"></a>DirectSumMatrixVector</span></dt><dd><pre
class="synopsis">DirectSumMatrixVector (v)</pre><p>Direct sum of a vector of matrices.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Matrix_addition#directsum"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Eigenvalues"></a>Eigenvalues</span></dt><dd><pre class="synopsis">Eigenvalues
(M)</pre><p>Aliases: <code class="function">eig</code></p><p>Get the eigenvalues of a square matrix.
+ Currently only works for matrices of size up to 4 by 4, or for
+ triangular matrices (for which the eigenvalues are on the
+ diagonal).
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eigenvalue" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/Eigenvalue" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/Eigenvalue.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Eigenvectors"></a>Eigenvectors</span></dt><dd><pre class="synopsis">Eigenvectors
(M)</pre><pre class="synopsis">Eigenvectors (M, &eigenvalues)</pre><pre class="synopsis">Eigenvectors (M,
&eigenvalues, &multiplicities)</pre><p>Get the eigenvectors of a square matrix. Optionally get also
+the eigenvalues and their algebraic multiplicities.
+ Currently only works for matrices of size up to 2 by 2.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eigenvector" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/Eigenvector" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/Eigenvector.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GramSchmidt"></a>GramSchmidt</span></dt><dd><pre class="synopsis">GramSchmidt
(v,B...)</pre><p>Apply the Gram-Schmidt process (to the columns) with respect to
+inner product given by <code class="varname">B</code>. If <code class="varname">B</code> is not
+given then the standard Hermitian product is used. <code class="varname">B</code> can
+either be a sesquilinear function of two arguments or it can be a matrix giving
+a sesquilinear form. The vectors will be made orthonormal with respect to
+<code class="varname">B</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/GramSchmidtOrthogonalization"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-HankelMatrix"></a>HankelMatrix</span></dt><dd><pre class="synopsis">HankelMatrix
(c,r)</pre><p>Hankel matrix, a matrix whose skew-diagonals are constant. <code class="varname">c</code> is
the first row and <code class="varname">r</code> is the
+ last column. It is assumed that both arguments are vectors and the last element of <code
class="varname">c</code> is the same
+ as the first element of <code class="varname">r</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hankel_matrix" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-HilbertMatrix"></a>HilbertMatrix</span></dt><dd><pre class="synopsis">HilbertMatrix
(n)</pre><p>Hilbert matrix of order <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hilbert_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/HilbertMatrix" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-Image"></a>Image</span></dt><dd><pre
class="synopsis">Image (T)</pre><p>Get the image (columnspace) of a linear transform.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Row_and_column_spaces"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-InfNorm"></a>InfNorm</span></dt><dd><pre
class="synopsis">InfNorm (v)</pre><p>Get the Inf Norm of a vector, sometimes called the sup norm or the max
norm.</p></dd><dt><span class="term"><a
name="gel-function-InvariantFactorsInteger"></a>InvariantFactorsInteger</span></dt><dd><pre
class="synopsis">InvariantFactorsInteger (M)</pre><p>Get the invariant factors of a square integer
matrix.</p></dd><dt><span class="term"><a
name="gel-function-InverseHilbertMatrix"></a>InverseHilbertMatrix</span></dt><dd><pre
class="synopsis">InverseHilbertMatrix (n)</pre><p>Inverse Hilbert matrix of order <code
class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hilbert_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/HilbertMatrix" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsHermitian"></a>IsHermitian</span></dt><dd><pre class="synopsis">IsHermitian
(M)</pre><p>Is a matrix Hermitian. That is, is it equal to its conjugate transpose.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hermitian_matrix"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HermitianMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsInSubspace"></a>IsInSubspace</span></dt><dd><pre class="synopsis">IsInSubspace
(v,W)</pre><p>Test if a vector is in a subspace.</p></dd><dt><span class="term"><a
name="gel-function-IsInvertible"></a>IsInvertible</span></dt><dd><pre class="synopsis">IsInvertible
(n)</pre><p>Is a matrix (or number) invertible (Integer matrix is invertible if and only if it is invertible
over the integers).</p></dd><dt><span class="term"><a
name="gel-function-IsInvertibleField"></a>IsInvertibleField</span></dt><dd><pre
class="synopsis">IsInvertibleField (n)</pre><p>Is a matrix (or number) invertible over a
field.</p></dd><dt><span class="term"><a name="gel-function-IsNormal"></a>IsNormal</span></dt><dd><pre
class="synopsis">IsNormal (M)</pre><p>Is <code class="varname">M</code> a normal matrix. That is,
+ does <strong class="userinput"><code>M*M' == M'*M</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/NormalMatrix" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/NormalMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsPositiveDefinite"></a>IsPositiveDefinite</span></dt><dd><pre
class="synopsis">IsPositiveDefinite (M)</pre><p>Is <code class="varname">M</code> a Hermitian positive
definite matrix. That is if
+<strong class="userinput"><code>HermitianProduct(M*v,v)</code></strong> is always strictly positive for
+any vector <code class="varname">v</code>.
+<code class="varname">M</code> must be square and Hermitian to be positive definite.
+The check that is performed is that every principal submatrix has a non-negative
+determinant.
+(See <a class="link" href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a>)</p><p>
+ Note that some authors (for example Mathworld) do not require that
+ <code class="varname">M</code> be Hermitian, and then the condition is
+ on the real part of the inner product, but we do not take this
+ view. If you wish to perform this check, just check the
+ Hermitian part of the matrix <code class="varname">M</code> as follows:
+ <strong class="userinput"><code>IsPositiveDefinite(M+M')</code></strong>.
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Positive-definite_matrix"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/PositiveDefinite" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/PositiveDefiniteMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsPositiveSemidefinite"></a>IsPositiveSemidefinite</span></dt><dd><pre
class="synopsis">IsPositiveSemidefinite (M)</pre><p>Is <code class="varname">M</code> a Hermitian positive
semidefinite matrix. That is if
+<strong class="userinput"><code>HermitianProduct(M*v,v)</code></strong> is always non-negative for
+any vector <code class="varname">v</code>.
+<code class="varname">M</code> must be square and Hermitian to be positive semidefinite.
+The check that is performed is that every principal submatrix has a non-negative
+determinant.
+(See <a class="link" href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a>)</p><p>
+ Note that some authors do not require that
+ <code class="varname">M</code> be Hermitian, and then the condition is
+ on the real part of the inner product, but we do not take this
+ view. If you wish to perform this check, just check the
+ Hermitian part of the matrix <code class="varname">M</code> as follows:
+ <strong class="userinput"><code>IsPositiveSemidefinite(M+M')</code></strong>.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PositiveSemidefinite" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PositiveSemidefiniteMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsSkewHermitian"></a>IsSkewHermitian</span></dt><dd><pre class="synopsis">IsSkewHermitian
(M)</pre><p>Is a matrix skew-Hermitian. That is, is the conjugate transpose equal to negative of the
matrix.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SkewHermitianMatrix" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-IsUnitary"></a>IsUnitary</span></dt><dd><pre
class="synopsis">IsUnitary (M)</pre><p>Is a matrix unitary? That is, does
+ <strong class="userinput"><code>M'*M</code></strong> and <strong
class="userinput"><code>M*M'</code></strong>
+ equal the identity.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/UnitaryTransformation" target="_top">Planetmath</a>
or
+ <a class="ulink" href="http://mathworld.wolfram.com/UnitaryMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-JordanBlock"></a>JordanBlock</span></dt><dd><pre class="synopsis">JordanBlock
(n,lambda)</pre><p>Aliases: <code class="function">J</code></p><p>Get the Jordan block corresponding to the
eigenvalue
+ <code class="varname">lambda</code> with multiplicity <code class="varname">n</code>.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/JordanCanonicalFormTheorem"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/JordanBlock.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Kernel"></a>Kernel</span></dt><dd><pre
class="synopsis">Kernel (T)</pre><p>Get the kernel (nullspace) of a linear transform.</p><p>
+ (See <a class="link" href="ch11s09.html#gel-function-NullSpace">NullSpace</a>)
+ </p></dd><dt><span class="term"><a
name="gel-function-KroneckerProduct"></a>KroneckerProduct</span></dt><dd><pre
class="synopsis">KroneckerProduct (M, N)</pre><p>Aliases: <code class="function">TensorProduct</code></p><p>
+ Compute the Kronecker product (tensor product in standard basis)
+ of two matrices.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Kronecker_product"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/KroneckerProduct" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/KroneckerProduct.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LUDecomposition"></a>LUDecomposition</span></dt><dd><pre class="synopsis">LUDecomposition
(A, L, U)</pre><p>
+ Get the LU decomposition of <code class="varname">A</code>, that is
+ find a lower triangular matrix and upper triangular
+ matrix whose product is <code class="varname">A</code>.
+ Store the result in the <code class="varname">L</code> and
+ <code class="varname">U</code>, which should be references. It returns <code
class="constant">true</code>
+ if successful.
+ For example suppose that A is a square matrix, then after running:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LUDecomposition(A,&L,&U)</code></strong>
+</pre><p>
+ You will have the lower matrix stored in a variable called
+ <code class="varname">L</code> and the upper matrix in a variable called
+ <code class="varname">U</code>.
+ </p><p>
+ This is the LU decomposition of a matrix aka Crout and/or Cholesky
+ reduction.
+ (ISBN 0-201-11577-8 pp.99-103)
+ The upper triangular matrix features a diagonal
+ of values 1 (one). This is not Doolittle's Method, which features
+ the 1's diagonal on the lower matrix.
+ </p><p>
+ Not all matrices have LU decompositions, for example
+ <strong class="userinput"><code>[0,1;1,0]</code></strong> does not and this function returns
+ <code class="constant">false</code> in this case and sets <code class="varname">L</code>
+ and <code class="varname">U</code> to <code class="constant">null</code>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/LU_decomposition" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LUDecomposition" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/LUDecomposition.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Minor"></a>Minor</span></dt><dd><pre
class="synopsis">Minor (M,i,j)</pre><p>Get the <code class="varname">i</code>-<code class="varname">j</code>
minor of a matrix.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Minor" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-NonPivotColumns"></a>NonPivotColumns</span></dt><dd><pre class="synopsis">NonPivotColumns
(M)</pre><p>Return the columns that are not the pivot columns of a matrix.</p></dd><dt><span class="term"><a
name="gel-function-Norm"></a>Norm</span></dt><dd><pre class="synopsis">Norm (v,p...)</pre><p>Aliases: <code
class="function">norm</code></p><p>Get the p Norm (or 2 Norm if no p is supplied) of a
vector.</p></dd><dt><span class="term"><a name="gel-function-NullSpace"></a>NullSpace</span></dt><dd><pre
class="synopsis">NullSpace (T)</pre><p>Get the nullspace of a matrix. That is the kernel of the
+ linear mapping that the matrix represents. This is returned
+ as a matrix whose column space is the nullspace of
+ <code class="varname">T</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Nullspace" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-Nullity"></a>Nullity</span></dt><dd><pre
class="synopsis">Nullity (M)</pre><p>Aliases: <code class="function">nullity</code></p><p>Get the nullity of
a matrix. That is, return the dimension of
+the nullspace; the dimension of the kernel of <code class="varname">M</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Nullity" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-OrthogonalComplement"></a>OrthogonalComplement</span></dt><dd><pre
class="synopsis">OrthogonalComplement (M)</pre><p>Get the orthogonal complement of the
columnspace.</p></dd><dt><span class="term"><a
name="gel-function-PivotColumns"></a>PivotColumns</span></dt><dd><pre class="synopsis">PivotColumns
(M)</pre><p>Return pivot columns of a matrix, that is columns that have a leading 1 in row reduced form.
Also returns the row where they occur.</p></dd><dt><span class="term"><a
name="gel-function-Projection"></a>Projection</span></dt><dd><pre class="synopsis">Projection
(v,W,B...)</pre><p>Projection of vector <code class="varname">v</code> onto subspace
+<code class="varname">W</code> with respect to inner product given by
+<code class="varname">B</code>. If <code class="varname">B</code> is not given then the standard
+Hermitian product is used. <code class="varname">B</code> can either be a sesquilinear
+function of two arguments or it can be a matrix giving a sesquilinear form.
+ </p></dd><dt><span class="term"><a
name="gel-function-QRDecomposition"></a>QRDecomposition</span></dt><dd><pre class="synopsis">QRDecomposition
(A, Q)</pre><p>
+ Get the QR decomposition of a square matrix <code class="varname">A</code>,
+ returns the upper triangular matrix <code class="varname">R</code>
+ and sets <code class="varname">Q</code> to the orthogonal (unitary) matrix.
+ <code class="varname">Q</code> should be a reference or <code class="constant">null</code> if you
don't
+ want any return.
+ For example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong class="userinput"><code>R
= QRDecomposition(A,&Q)</code></strong>
+</pre><p>
+ You will have the upper triangular matrix stored in
+ a variable called
+ <code class="varname">R</code> and the orthogonal (unitary) matrix stored in
+ <code class="varname">Q</code>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/QR_decomposition" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/QRDecomposition" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/QRDecomposition.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RayleighQuotient"></a>RayleighQuotient</span></dt><dd><pre
class="synopsis">RayleighQuotient (A,x)</pre><p>Return the Rayleigh quotient (also called the Rayleigh-Ritz
quotient or ratio) of a matrix and a vector.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RayleighQuotient" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RayleighQuotientIteration"></a>RayleighQuotientIteration</span></dt><dd><pre
class="synopsis">RayleighQuotientIteration (A,x,epsilon,maxiter,vecref)</pre><p>Find eigenvalues of <code
class="varname">A</code> using the Rayleigh
+ quotient iteration method. <code class="varname">x</code> is a guess
+ at a eigenvector and could be random. It should have
+ nonzero imaginary part if it will have any chance at finding
+ complex eigenvalues. The code will run at most
+ <code class="varname">maxiter</code> iterations and return <code class="constant">null</code>
+ if we cannot get within an error of <code class="varname">epsilon</code>.
+ <code class="varname">vecref</code> should either be <code class="constant">null</code> or a
reference
+ to a variable where the eigenvector should be stored.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RayleighQuotient" target="_top">Planetmath</a> for
more information on Rayleigh quotient.
+ </p></dd><dt><span class="term"><a name="gel-function-Rank"></a>Rank</span></dt><dd><pre
class="synopsis">Rank (M)</pre><p>Aliases: <code class="function">rank</code></p><p>Get the rank of a
matrix.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SylvestersLaw" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RosserMatrix"></a>RosserMatrix</span></dt><dd><pre class="synopsis">RosserMatrix
()</pre><p>Returns the Rosser matrix, which is a classic symmetric eigenvalue test problem.</p></dd><dt><span
class="term"><a name="gel-function-Rotation2D"></a>Rotation2D</span></dt><dd><pre class="synopsis">Rotation2D
(angle)</pre><p>Aliases: <code class="function">RotationMatrix</code></p><p>Return the matrix corresponding
to rotation around origin in R<sup>2</sup>.</p></dd><dt><span class="term"><a
name="gel-function-Rotation3DX"></a>Rotation3DX</span></dt><dd><pre class="synopsis">Rotation3DX
(angle)</pre><p>Return the matrix corresponding to rotation around origin in R<sup>3</sup> about the
x-axis.</p></dd><dt><span class="term"><a name="gel-function-Rotation3DY"></a>Rotation3DY</span></dt><dd><pre
class="synopsis">Rotation3DY (angle)</pre><p>Return the matrix corresponding to rotation around origin in
R<sup>3</sup> about the
y-axis.</p></dd><dt><span class="term"><a
name="gel-function-Rotation3DZ"></a>Rotation3DZ</span></dt><dd><pre class="synopsis">Rotation3DZ
(angle)</pre><p>Return the matrix corresponding to rotation around origin in R<sup>3</sup> about the
z-axis.</p></dd><dt><span class="term"><a name="gel-function-RowSpace"></a>RowSpace</span></dt><dd><pre
class="synopsis">RowSpace (M)</pre><p>Get a basis matrix for the rowspace of a matrix.</p></dd><dt><span
class="term"><a name="gel-function-SesquilinearForm"></a>SesquilinearForm</span></dt><dd><pre
class="synopsis">SesquilinearForm (v,A,w)</pre><p>Evaluate (v,w) with respect to the sesquilinear form given
by the matrix A.</p></dd><dt><span class="term"><a
name="gel-function-SesquilinearFormFunction"></a>SesquilinearFormFunction</span></dt><dd><pre
class="synopsis">SesquilinearFormFunction (A)</pre><p>Return a function that evaluates two vectors with
respect to the sesquilinear form given by A.</p></dd><dt><span class="term"><a name="gel
-function-SmithNormalFormField"></a>SmithNormalFormField</span></dt><dd><pre
class="synopsis">SmithNormalFormField (A)</pre><p>Returns the Smith normal form of a matrix over fields (will
end up with 1's on the diagonal).</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Smith_normal_form"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SmithNormalFormInteger"></a>SmithNormalFormInteger</span></dt><dd><pre
class="synopsis">SmithNormalFormInteger (M)</pre><p>Return the Smith normal form for square integer matrices
over integers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Smith_normal_form"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SolveLinearSystem"></a>SolveLinearSystem</span></dt><dd><pre
class="synopsis">SolveLinearSystem (M,V,args...)</pre><p>Solve linear system Mx=V, return solution V if there
is a unique solution, <code class="constant">null</code> otherwise. Extra two reference parameters can
optionally be used to get the reduced M and V.</p></dd><dt><span class="term"><a
name="gel-function-ToeplitzMatrix"></a>ToeplitzMatrix</span></dt><dd><pre class="synopsis">ToeplitzMatrix (c,
r...)</pre><p>Return the Toeplitz matrix constructed given the first column c
+and (optionally) the first row r. If only the column c is given then it is
+conjugated and the nonconjugated version is used for the first row to give a
+Hermitian matrix (if the first element is real of course).</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Toeplitz_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/ToeplitzMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Trace"></a>Trace</span></dt><dd><pre
class="synopsis">Trace (M)</pre><p>Aliases: <code class="function">trace</code></p><p>Calculate the trace of
a matrix. That is the sum of the diagonal elements.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trace_(linear_algebra)"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Trace" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-Transpose"></a>Transpose</span></dt><dd><pre
class="synopsis">Transpose (M)</pre><p>Transpose of a matrix. This is the same as the
+ <strong class="userinput"><code>.'</code></strong> operator.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Transpose" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Transpose" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-VandermondeMatrix"></a>VandermondeMatrix</span></dt><dd><pre
class="synopsis">VandermondeMatrix (v)</pre><p>Aliases: <code class="function">vander</code></p><p>Return the
Vandermonde matrix.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Vandermonde_matrix"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-VectorAngle"></a>VectorAngle</span></dt><dd><pre class="synopsis">VectorAngle
(v,w,B...)</pre><p>The angle of two vectors with respect to inner product given by
+<code class="varname">B</code>. If <code class="varname">B</code> is not given then the standard
+Hermitian product is used. <code class="varname">B</code> can either be a sesquilinear
+function of two arguments or it can be a matrix giving a sesquilinear form.
+</p></dd><dt><span class="term"><a
name="gel-function-VectorSpaceDirectSum"></a>VectorSpaceDirectSum</span></dt><dd><pre
class="synopsis">VectorSpaceDirectSum (M,N)</pre><p>The direct sum of the vector spaces M and
N.</p></dd><dt><span class="term"><a
name="gel-function-VectorSubspaceIntersection"></a>VectorSubspaceIntersection</span></dt><dd><pre
class="synopsis">VectorSubspaceIntersection (M,N)</pre><p>Intersection of the subspaces given by M and
N.</p></dd><dt><span class="term"><a
name="gel-function-VectorSubspaceSum"></a>VectorSubspaceSum</span></dt><dd><pre
class="synopsis">VectorSubspaceSum (M,N)</pre><p>The sum of the vector spaces M and N, that is {w | w=m+n, m
in M, n in N}.</p></dd><dt><span class="term"><a name="gel-function-adj"></a>adj</span></dt><dd><pre
class="synopsis">adj (m)</pre><p>Aliases: <code class="function">Adjugate</code></p><p>Get the classical
adjoint (adjugate) of a matrix.</p></dd><dt><span class="term"><a name="gel-function-cref"></a>cref</spa
n></dt><dd><pre class="synopsis">cref (M)</pre><p>Aliases: <code class="function">CREF</code> <code
class="function">ColumnReducedEchelonForm</code></p><p>Compute the Column Reduced Echelon
Form.</p></dd><dt><span class="term"><a name="gel-function-det"></a>det</span></dt><dd><pre
class="synopsis">det (M)</pre><p>Aliases: <code class="function">Determinant</code></p><p>Get the determinant
of a matrix.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Determinant" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Determinant2" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-ref"></a>ref</span></dt><dd><pre
class="synopsis">ref (M)</pre><p>Aliases: <code class="function">REF</code> <code
class="function">RowEchelonForm</code></p><p>Get the row echelon form of a matrix. That is, apply gaussian
+elimination but not backaddition to <code class="varname">M</code>. The pivot rows are
+divided to make all pivots 1.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Row_echelon_form" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/RowEchelonForm" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-rref"></a>rref</span></dt><dd><pre
class="synopsis">rref (M)</pre><p>Aliases: <code class="function">RREF</code> <code
class="function">ReducedRowEchelonForm</code></p><p>Get the reduced row echelon form of a matrix. That is,
apply gaussian elimination together with backaddition to <code class="varname">M</code>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Reduced_row_echelon_form"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/ReducedRowEchelonForm" target="_top">Planetmath</a>
for more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s08.html">Prev</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s10.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Matrix Manipulation
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%"
align="right" valign="top"> Combinatorics</td></tr></table></div></body></html>
diff --git a/help/C/html/ch11s10.html b/help/C/html/ch11s10.html
new file mode 100644
index 0000000..f41e157
--- /dev/null
+++ b/help/C/html/ch11s10.html
@@ -0,0 +1,113 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Combinatorics</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius Manual"><link rel="up" href="ch11.html"
title="Chapter 11. List of GEL functions"><link rel="prev" href="ch11s09.html" title="Linear Algebra"><link
rel="next" href="ch11s11.html" title="Calculus"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Combinatorics</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s09.html">Prev</a> </td><th width="60%" align="center">Chapter 11. List of GEL
functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s11.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><
a name="genius-gel-function-list-combinatorics"></a>Combinatorics</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Catalan"></a>Catalan</span></dt><dd><pre class="synopsis">Catalan (n)</pre><p>Get <code
class="varname">n</code>th Catalan number.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/CatalanNumbers" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Combinations"></a>Combinations</span></dt><dd><pre class="synopsis">Combinations
(k,n)</pre><p>Get all combinations of k numbers from 1 to n as a vector of vectors.
+ (See also <a class="link" href="ch11s10.html#gel-function-NextCombination">NextCombination</a>)
+</p></dd><dt><span class="term"><a
name="gel-function-DoubleFactorial"></a>DoubleFactorial</span></dt><dd><pre class="synopsis">DoubleFactorial
(n)</pre><p>Double factorial: <strong class="userinput"><code>n(n-2)(n-4)...</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/DoubleFactorial" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Factorial"></a>Factorial</span></dt><dd><pre
class="synopsis">Factorial (n)</pre><p>Factorial: <strong
class="userinput"><code>n(n-1)(n-2)...</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Factorial" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FallingFactorial"></a>FallingFactorial</span></dt><dd><pre
class="synopsis">FallingFactorial (n,k)</pre><p>Falling factorial: <strong class="userinput"><code>(n)_k =
n(n-1)...(n-(k-1))</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/FallingFactorial" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Fibonacci"></a>Fibonacci</span></dt><dd><pre
class="synopsis">Fibonacci (x)</pre><p>Aliases: <code class="function">fib</code></p><p>
+ Calculate <code class="varname">n</code>th Fibonacci number. That
+ is the number defined recursively by
+ <strong class="userinput"><code>Fibonacci(n) = Fibonacci(n-1) + Fibonacci(n-2)</code></strong>
+ and
+ <strong class="userinput"><code>Fibonacci(1) = Fibonacci(2) = 1</code></strong>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fibonacci_number" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/FibonacciSequence" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FibonacciNumber.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FrobeniusNumber"></a>FrobeniusNumber</span></dt><dd><pre class="synopsis">FrobeniusNumber
(v,arg...)</pre><p>
+ Calculate the Frobenius number. That is calculate smallest
+ number that cannot be given as a non-negative integer linear
+ combination of a given vector of non-negative integers.
+ The vector can be given as separate numbers or a single vector.
+ All the numbers given should have GCD of 1.
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/FrobeniusNumber.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GaloisMatrix"></a>GaloisMatrix</span></dt><dd><pre class="synopsis">GaloisMatrix
(combining_rule)</pre><p>Galois matrix given a linear combining rule
(a_1*x_1+...+a_n*x_n=x_(n+1)).</p></dd><dt><span class="term"><a
name="gel-function-GreedyAlgorithm"></a>GreedyAlgorithm</span></dt><dd><pre class="synopsis">GreedyAlgorithm
(n,v)</pre><p>
+ Find the vector <code class="varname">c</code> of non-negative integers
+ such that taking the dot product with <code class="varname">v</code> is
+ equal to n. If not possible returns <code class="constant">null</code>. <code
class="varname">v</code>
+ should be given sorted in increasing order and should consist
+ of non-negative integers.
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/GreedyAlgorithm.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-HarmonicNumber"></a>HarmonicNumber</span></dt><dd><pre class="synopsis">HarmonicNumber
(n,r)</pre><p>Aliases: <code class="function">HarmonicH</code></p><p>Harmonic Number, the <code
class="varname">n</code>th harmonic number of order <code class="varname">r</code>.</p></dd><dt><span
class="term"><a name="gel-function-Hofstadter"></a>Hofstadter</span></dt><dd><pre class="synopsis">Hofstadter
(n)</pre><p>Hofstadter's function q(n) defined by q(1)=1, q(2)=1,
q(n)=q(n-q(n-1))+q(n-q(n-2)).</p></dd><dt><span class="term"><a
name="gel-function-LinearRecursiveSequence"></a>LinearRecursiveSequence</span></dt><dd><pre
class="synopsis">LinearRecursiveSequence (seed_values,combining_rule,n)</pre><p>Compute linear recursive
sequence using Galois stepping.</p></dd><dt><span class="term"><a
name="gel-function-Multinomial"></a>Multinomial</span></dt><dd><pre class="synopsis">Multinomial
(v,arg...)</pre><p>Calculate multinomial coeffi
cients. Takes a vector of
+ <code class="varname">k</code>
+ non-negative integers and computes the multinomial coefficient.
+ This corresponds to the coefficient in the homogeneous polynomial
+ in <code class="varname">k</code> variables with the corresponding powers.
+ </p><p>
+ The formula for <strong class="userinput"><code>Multinomial(a,b,c)</code></strong>
+ can be written as:
+</p><pre class="programlisting">(a+b+c)! / (a!b!c!)
+</pre><p>
+ In other words, if we would have only two elements, then
+<strong class="userinput"><code>Multinomial(a,b)</code></strong> is the same thing as
+<strong class="userinput"><code>Binomial(a+b,a)</code></strong> or
+<strong class="userinput"><code>Binomial(a+b,b)</code></strong>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Multinomial_theorem"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MultinomialTheorem" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/MultinomialCoefficient.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-NextCombination"></a>NextCombination</span></dt><dd><pre class="synopsis">NextCombination
(v,n)</pre><p>Get combination that would come after v in call to
+combinations, first combination should be <strong class="userinput"><code>[1:k]</code></strong>. This
+function is useful if you have many combinations to go through and you don't
+want to waste memory to store them all.
+ </p><p>
+ For example with Combinations you would normally write a loop like:
+ </p><pre class="screen"><strong class="userinput"><code>for n in Combinations (4,6) do (
+ SomeFunction (n)
+);</code></strong>
+</pre><p>
+ But with NextCombination you would write something like:
+ </p><pre class="screen"><strong class="userinput"><code>n:=[1:4];
+do (
+ SomeFunction (n)
+) while not IsNull(n:=NextCombination(n,6));</code></strong>
+</pre><p>
+ See also <a class="link" href="ch11s10.html#gel-function-Combinations">Combinations</a>.
+ </p></dd><dt><span class="term"><a name="gel-function-Pascal"></a>Pascal</span></dt><dd><pre
class="synopsis">Pascal (i)</pre><p>Get the Pascal's triangle as a matrix. This will return
+ an <code class="varname">i</code>+1 by <code class="varname">i</code>+1 lower diagonal
+ matrix that is the Pascal's triangle after <code class="varname">i</code>
+ iterations.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PascalsTriangle" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Permutations"></a>Permutations</span></dt><dd><pre class="synopsis">Permutations
(k,n)</pre><p>Get all permutations of <code class="varname">k</code> numbers from 1 to <code
class="varname">n</code> as a vector of vectors.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/Permutation.html" target="_top">Mathworld</a>
or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Permutation" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RisingFactorial"></a>RisingFactorial</span></dt><dd><pre class="synopsis">RisingFactorial
(n,k)</pre><p>Aliases: <code class="function">Pochhammer</code></p><p>(Pochhammer) Rising factorial: (n)_k =
n(n+1)...(n+(k-1)).</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RisingFactorial" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-StirlingNumberFirst"></a>StirlingNumberFirst</span></dt><dd><pre
class="synopsis">StirlingNumberFirst (n,m)</pre><p>Aliases: <code
class="function">StirlingS1</code></p><p>Stirling number of the first kind.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/StirlingNumbersOfTheFirstKind"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-StirlingNumberSecond"></a>StirlingNumberSecond</span></dt><dd><pre
class="synopsis">StirlingNumberSecond (n,m)</pre><p>Aliases: <code
class="function">StirlingS2</code></p><p>Stirling number of the second kind.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/StirlingNumbersSecondKind"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Subfactorial"></a>Subfactorial</span></dt><dd><pre class="synopsis">Subfactorial
(n)</pre><p>Subfactorial: n! times sum_{k=0}^n (-1)^k/k!.</p></dd><dt><span class="term"><a
name="gel-function-Triangular"></a>Triangular</span></dt><dd><pre class="synopsis">Triangular
(nth)</pre><p>Calculate the <code class="varname">n</code>th triangular number.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/TriangularNumbers" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-nCr"></a>nCr</span></dt><dd><pre
class="synopsis">nCr (n,r)</pre><p>Aliases: <code class="function">Binomial</code></p><p>Calculate
combinations, that is, the binomial coefficient.
+ <code class="varname">n</code> can be any real number.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Choose" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-nPr"></a>nPr</span></dt><dd><pre
class="synopsis">nPr (n,r)</pre><p>Calculate the number of permutations of size
+ <code class="varname">r</code> of numbers from 1 to <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/Permutation.html" target="_top">Mathworld</a>
or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Permutation" target="_top">Wikipedia</a> for
more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s09.html">Prev</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s11.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Linear Algebra </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Calculus</td></tr></table></div></body></html>
diff --git a/help/C/html/ch11s11.html b/help/C/html/ch11s11.html
new file mode 100644
index 0000000..d38c659
--- /dev/null
+++ b/help/C/html/ch11s11.html
@@ -0,0 +1,120 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Calculus</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Genius
Manual"><link rel="up" href="ch11.html" title="Chapter 11. List of GEL functions"><link rel="prev"
href="ch11s10.html" title="Combinatorics"><link rel="next" href="ch11s12.html" title="Functions"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Calculus</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch11s10.html">Prev</a> </td><th width="60%"
align="center">Chapter 11. List of GEL functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s12.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="ge
nius-gel-function-list-calculus"></a>Calculus</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-CompositeSimpsonsRule"></a>CompositeSimpsonsRule</span></dt><dd><pre
class="synopsis">CompositeSimpsonsRule (f,a,b,n)</pre><p>Integration of f by Composite Simpson's Rule on the
interval [a,b] with n subintervals with error of max(f'''')*h^4*(b-a)/180, note that n should be even.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SimpsonsRule" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CompositeSimpsonsRuleTolerance"></a>CompositeSimpsonsRuleTolerance</span></dt><dd><pre
class="synopsis">CompositeSimpsonsRuleTolerance (f,a,b,FourthDerivativeBound,Tolerance)</pre><p>Integration
of f by Composite Simpson's Rule on the interval [a,b] with the number of steps calculated by the fourth
derivative bound and the desired tolerance.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SimpsonsRule" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Derivative"></a>Derivative</span></dt><dd><pre class="synopsis">Derivative
(f,x0)</pre><p>Attempt to calculate derivative by trying first symbolically and then numerically.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EvenPeriodicExtension"></a>EvenPeriodicExtension</span></dt><dd><pre
class="synopsis">EvenPeriodicExtension (f,L)</pre><p>Return a function that is the even periodic extension of
+<code class="function">f</code> with half period <code class="varname">L</code>. That
+is a function defined on the interval <strong class="userinput"><code>[0,L]</code></strong>
+extended to be even on <strong class="userinput"><code>[-L,L]</code></strong> and then
+extended to be periodic with period <strong class="userinput"><code>2*L</code></strong>.</p><p>
+ See also
+ <a class="link" href="ch11s11.html#gel-function-OddPeriodicExtension">OddPeriodicExtension</a>
+ and
+ <a class="link" href="ch11s11.html#gel-function-PeriodicExtension">PeriodicExtension</a>.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-FourierSeriesFunction"></a>FourierSeriesFunction</span></dt><dd><pre
class="synopsis">FourierSeriesFunction (a,b,L)</pre><p>Return a function that is a Fourier series with the
+coefficients given by the vectors <code class="varname">a</code> (sines) and
+<code class="varname">b</code> (cosines). Note that <strong class="userinput"><code>a@(1)</code></strong> is
+the constant coefficient! That is, <strong class="userinput"><code>a@(n)</code></strong> refers to
+the term <strong class="userinput"><code>cos(x*(n-1)*pi/L)</code></strong>, while
+<strong class="userinput"><code>b@(n)</code></strong> refers to the term
+<strong class="userinput"><code>sin(x*n*pi/L)</code></strong>. Either <code class="varname">a</code>
+or <code class="varname">b</code> can be <code class="constant">null</code>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierSeries.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-InfiniteProduct"></a>InfiniteProduct</span></dt><dd><pre class="synopsis">InfiniteProduct
(func,start,inc)</pre><p>Try to calculate an infinite product for a single parameter
function.</p></dd><dt><span class="term"><a
name="gel-function-InfiniteProduct2"></a>InfiniteProduct2</span></dt><dd><pre
class="synopsis">InfiniteProduct2 (func,arg,start,inc)</pre><p>Try to calculate an infinite product for a
double parameter function with func(arg,n).</p></dd><dt><span class="term"><a
name="gel-function-InfiniteSum"></a>InfiniteSum</span></dt><dd><pre class="synopsis">InfiniteSum
(func,start,inc)</pre><p>Try to calculate an infinite sum for a single parameter function.</p></dd><dt><span
class="term"><a name="gel-function-InfiniteSum2"></a>InfiniteSum2</span></dt><dd><pre
class="synopsis">InfiniteSum2 (func,arg,start,inc)</pre><p>Try to calculate an infinite sum for a double
parameter function with func(arg,n).</p></dd><d
t><span class="term"><a name="gel-function-IsContinuous"></a>IsContinuous</span></dt><dd><pre
class="synopsis">IsContinuous (f,x0)</pre><p>Try and see if a real-valued function is continuous at x0 by
calculating the limit there.</p></dd><dt><span class="term"><a
name="gel-function-IsDifferentiable"></a>IsDifferentiable</span></dt><dd><pre
class="synopsis">IsDifferentiable (f,x0)</pre><p>Test for differentiability by approximating the left and
right limits and comparing.</p></dd><dt><span class="term"><a
name="gel-function-LeftLimit"></a>LeftLimit</span></dt><dd><pre class="synopsis">LeftLimit
(f,x0)</pre><p>Calculate the left limit of a real-valued function at x0.</p></dd><dt><span class="term"><a
name="gel-function-Limit"></a>Limit</span></dt><dd><pre class="synopsis">Limit (f,x0)</pre><p>Calculate the
limit of a real-valued function at x0. Tries to calculate both left and right limits.</p></dd><dt><span
class="term"><a name="gel-function-MidpointRule"></a>MidpointRule</sp
an></dt><dd><pre class="synopsis">MidpointRule (f,a,b,n)</pre><p>Integration by midpoint
rule.</p></dd><dt><span class="term"><a
name="gel-function-NumericalDerivative"></a>NumericalDerivative</span></dt><dd><pre
class="synopsis">NumericalDerivative (f,x0)</pre><p>Aliases: <code
class="function">NDerivative</code></p><p>Attempt to calculate numerical derivative.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSeriesCoefficients"></a>NumericalFourierSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierSeriesCoefficients (f,L,N)</pre><p>Return a vector of vectors <strong
class="userinput"><code>[a,b]</code></strong>
+where <code class="varname">a</code> are the cosine coefficients and
+<code class="varname">b</code> are the sine coefficients of
+the Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code> (that is defined
+on <strong class="userinput"><code>[-L,L]</code></strong> and extended periodically) with coefficients
+up to <code class="varname">N</code>th harmonic computed numerically. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSeriesFunction"></a>NumericalFourierSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierSeriesFunction (f,L,N)</pre><p>Return a function that is the Fourier series
of
+<code class="function">f</code> with half-period <code class="varname">L</code> (that is defined
+on <strong class="userinput"><code>[-L,L]</code></strong> and extended periodically) with coefficients
+up to <code class="varname">N</code>th harmonic computed numerically. This is the
+trigonometric real series composed of sines and cosines. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierCosineSeriesCoefficients"></a>NumericalFourierCosineSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierCosineSeriesCoefficients (f,L,N)</pre><p>Return a vector of coefficients of
+the cosine Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code>. That is,
+we take <code class="function">f</code> defined on <strong class="userinput"><code>[0,L]</code></strong>
+take the even periodic extension and compute the Fourier series, which
+only has cosine terms. The series is computed up to the
+<code class="varname">N</code>th harmonic. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.
+Note that <strong class="userinput"><code>a@(1)</code></strong> is
+the constant coefficient! That is, <strong class="userinput"><code>a@(n)</code></strong> refers to
+the term <strong class="userinput"><code>cos(x*(n-1)*pi/L)</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierCosineSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierCosineSeriesFunction"></a>NumericalFourierCosineSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierCosineSeriesFunction (f,L,N)</pre><p>Return a function that is the cosine
Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code>. That is,
+we take <code class="function">f</code> defined on <strong class="userinput"><code>[0,L]</code></strong>
+take the even periodic extension and compute the Fourier series, which
+only has cosine terms. The series is computed up to the
+<code class="varname">N</code>th harmonic. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierCosineSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSineSeriesCoefficients"></a>NumericalFourierSineSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierSineSeriesCoefficients (f,L,N)</pre><p>Return a vector of coefficients of
+the sine Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code>. That is,
+we take <code class="function">f</code> defined on <strong class="userinput"><code>[0,L]</code></strong>
+take the odd periodic extension and compute the Fourier series, which
+only has sine terms. The series is computed up to the
+<code class="varname">N</code>th harmonic. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierSineSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSineSeriesFunction"></a>NumericalFourierSineSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierSineSeriesFunction (f,L,N)</pre><p>Return a function that is the sine
Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code>. That is,
+we take <code class="function">f</code> defined on <strong class="userinput"><code>[0,L]</code></strong>
+take the odd periodic extension and compute the Fourier series, which
+only has sine terms. The series is computed up to the
+<code class="varname">N</code>th harmonic. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierSineSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegral"></a>NumericalIntegral</span></dt><dd><pre
class="synopsis">NumericalIntegral (f,a,b)</pre><p>Integration by rule set in NumericalIntegralFunction of f
from a to b using NumericalIntegralSteps steps.</p></dd><dt><span class="term"><a
name="gel-function-NumericalLeftDerivative"></a>NumericalLeftDerivative</span></dt><dd><pre
class="synopsis">NumericalLeftDerivative (f,x0)</pre><p>Attempt to calculate numerical left
derivative.</p></dd><dt><span class="term"><a
name="gel-function-NumericalLimitAtInfinity"></a>NumericalLimitAtInfinity</span></dt><dd><pre
class="synopsis">NumericalLimitAtInfinity (_f,step_fun,tolerance,successive_for_success,N)</pre><p>Attempt to
calculate the limit of f(step_fun(i)) as i goes from 1 to N.</p></dd><dt><span class="term"><a
name="gel-function-NumericalRightDerivative"></a>NumericalRightDerivative</span></dt><dd><pre
class="synopsis">Nume
ricalRightDerivative (f,x0)</pre><p>Attempt to calculate numerical right derivative.</p></dd><dt><span
class="term"><a name="gel-function-OddPeriodicExtension"></a>OddPeriodicExtension</span></dt><dd><pre
class="synopsis">OddPeriodicExtension (f,L)</pre><p>Return a function that is the odd periodic extension of
+<code class="function">f</code> with half period <code class="varname">L</code>. That
+is a function defined on the interval <strong class="userinput"><code>[0,L]</code></strong>
+extended to be odd on <strong class="userinput"><code>[-L,L]</code></strong> and then
+extended to be periodic with period <strong class="userinput"><code>2*L</code></strong>.</p><p>
+ See also
+ <a class="link" href="ch11s11.html#gel-function-EvenPeriodicExtension">EvenPeriodicExtension</a>
+ and
+ <a class="link" href="ch11s11.html#gel-function-PeriodicExtension">PeriodicExtension</a>.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-OneSidedFivePointFormula"></a>OneSidedFivePointFormula</span></dt><dd><pre
class="synopsis">OneSidedFivePointFormula (f,x0,h)</pre><p>Compute one-sided derivative using five point
formula.</p></dd><dt><span class="term"><a
name="gel-function-OneSidedThreePointFormula"></a>OneSidedThreePointFormula</span></dt><dd><pre
class="synopsis">OneSidedThreePointFormula (f,x0,h)</pre><p>Compute one-sided derivative using three-point
formula.</p></dd><dt><span class="term"><a
name="gel-function-PeriodicExtension"></a>PeriodicExtension</span></dt><dd><pre
class="synopsis">PeriodicExtension (f,a,b)</pre><p>Return a function that is the periodic extension of
+<code class="function">f</code> defined on the interval <strong class="userinput"><code>[a,b]</code></strong>
+and has period <strong class="userinput"><code>b-a</code></strong>.</p><p>
+ See also
+ <a class="link" href="ch11s11.html#gel-function-OddPeriodicExtension">OddPeriodicExtension</a>
+ and
+ <a class="link" href="ch11s11.html#gel-function-EvenPeriodicExtension">EvenPeriodicExtension</a>.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-RightLimit"></a>RightLimit</span></dt><dd><pre class="synopsis">RightLimit
(f,x0)</pre><p>Calculate the right limit of a real-valued function at x0.</p></dd><dt><span class="term"><a
name="gel-function-TwoSidedFivePointFormula"></a>TwoSidedFivePointFormula</span></dt><dd><pre
class="synopsis">TwoSidedFivePointFormula (f,x0,h)</pre><p>Compute two-sided derivative using five-point
formula.</p></dd><dt><span class="term"><a
name="gel-function-TwoSidedThreePointFormula"></a>TwoSidedThreePointFormula</span></dt><dd><pre
class="synopsis">TwoSidedThreePointFormula (f,x0,h)</pre><p>Compute two-sided derivative using three-point
formula.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s10.html">Prev</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Up</a></td><td w
idth="40%" align="right"> <a accesskey="n" href="ch11s12.html">Next</a></td></tr><tr><td width="40%"
align="left" valign="top">Combinatorics </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Home</a></td><td width="40%" align="right" valign="top">
Functions</td></tr></table></div></body></html>
diff --git a/help/C/html/ch11s12.html b/help/C/html/ch11s12.html
new file mode 100644
index 0000000..6f38ad5
--- /dev/null
+++ b/help/C/html/ch11s12.html
@@ -0,0 +1,82 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Functions</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Genius
Manual"><link rel="up" href="ch11.html" title="Chapter 11. List of GEL functions"><link rel="prev"
href="ch11s11.html" title="Calculus"><link rel="next" href="ch11s13.html" title="Equation
Solving"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Functions</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s11.html">Prev</a> </td><th width="60%" align="center">Chapter 11. List of GEL functions</th><td
width="20%" align="right"> <a accesskey="n" href="ch11s13.html">Next</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name
="genius-gel-function-list-functions"></a>Functions</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a name="gel-function-Argument"></a>Argument</span></dt><dd><pre
class="synopsis">Argument (z)</pre><p>Aliases: <code class="function">Arg</code> <code
class="function">arg</code></p><p>argument (angle) of complex number.</p></dd><dt><span class="term"><a
name="gel-function-BesselJ0"></a>BesselJ0</span></dt><dd><pre class="synopsis">BesselJ0 (x)</pre><p>Bessel
function of the first kind of order 0. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselJ1"></a>BesselJ1</span></dt><dd><pre class="synopsis">BesselJ1 (x)</pre><p>Bessel
function of the first kind of order 1. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselJn"></a>BesselJn</span></dt><dd><pre class="synopsis">BesselJn (n,x)</pre><p>Bessel
function of the first kind of order <code class="varname">n</code>. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselY0"></a>BesselY0</span></dt><dd><pre class="synopsis">BesselY0 (x)</pre><p>Bessel
function of the second kind of order 0. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselY1"></a>BesselY1</span></dt><dd><pre class="synopsis">BesselY1 (x)</pre><p>Bessel
function of the second kind of order 1. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselYn"></a>BesselYn</span></dt><dd><pre class="synopsis">BesselYn (n,x)</pre><p>Bessel
function of the second kind of order <code class="varname">n</code>. Only implemented for real
numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-DirichletKernel"></a>DirichletKernel</span></dt><dd><pre class="synopsis">DirichletKernel
(n,t)</pre><p>Dirichlet kernel of order <code class="varname">n</code>.</p></dd><dt><span class="term"><a
name="gel-function-DiscreteDelta"></a>DiscreteDelta</span></dt><dd><pre class="synopsis">DiscreteDelta
(v)</pre><p>Returns 1 if and only if all elements are zero.</p></dd><dt><span class="term"><a
name="gel-function-ErrorFunction"></a>ErrorFunction</span></dt><dd><pre class="synopsis">ErrorFunction
(x)</pre><p>Aliases: <code class="function">erf</code></p><p>The error function, 2/sqrt(pi) * int_0^x
e^(-t^2) dt.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Error_function" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/ErrorFunction" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FejerKernel"></a>FejerKernel</span></dt><dd><pre class="synopsis">FejerKernel
(n,t)</pre><p>Fejer kernel of order <code class="varname">n</code> evaluated at
+ <code class="varname">t</code></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/FejerKernel" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GammaFunction"></a>GammaFunction</span></dt><dd><pre class="synopsis">GammaFunction
(x)</pre><p>Aliases: <code class="function">Gamma</code></p><p>The Gamma function. Currently only
implemented for real values.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/GammaFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Gamma_function" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-KroneckerDelta"></a>KroneckerDelta</span></dt><dd><pre class="synopsis">KroneckerDelta
(v)</pre><p>Returns 1 if and only if all elements are equal.</p></dd><dt><span class="term"><a
name="gel-function-LambertW"></a>LambertW</span></dt><dd><pre class="synopsis">LambertW (x)</pre><p>
+ The principal branch of Lambert W function computed for only
+ real values greater than or equal to <strong class="userinput"><code>-1/e</code></strong>.
+ That is, <code class="function">LambertW</code> is the inverse of
+ the expression <strong class="userinput"><code>x*e^x</code></strong>. Even for
+ real <code class="varname">x</code> this expression is not one to one and
+ therefore has two branches over <strong class="userinput"><code>[-1/e,0)</code></strong>.
+ See <a class="link" href="ch11s12.html#gel-function-LambertWm1"><code
class="function">LambertWm1</code></a> for the other real branch.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lambert_W_function"
target="_top">Wikipedia</a> for more information.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LambertWm1"></a>LambertWm1</span></dt><dd><pre class="synopsis">LambertWm1 (x)</pre><p>
+ The minus-one branch of Lambert W function computed for only
+ real values greater than or equal to <strong class="userinput"><code>-1/e</code></strong>
+ and less than 0.
+ That is, <code class="function">LambertWm1</code> is the second
+ branch of the inverse of <strong class="userinput"><code>x*e^x</code></strong>.
+ See <a class="link" href="ch11s12.html#gel-function-LambertW"><code
class="function">LambertW</code></a> for the principal branch.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lambert_W_function"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MinimizeFunction"></a>MinimizeFunction</span></dt><dd><pre
class="synopsis">MinimizeFunction (func,x,incr)</pre><p>Find the first value where f(x)=0.</p></dd><dt><span
class="term"><a name="gel-function-MoebiusDiskMapping"></a>MoebiusDiskMapping</span></dt><dd><pre
class="synopsis">MoebiusDiskMapping (a,z)</pre><p>Moebius mapping of the disk to itself mapping a to 0.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMapping"></a>MoebiusMapping</span></dt><dd><pre class="synopsis">MoebiusMapping
(z,z2,z3,z4)</pre><p>Moebius mapping using the cross ratio taking z2,z3,z4 to 1,0, and infinity
respectively.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToInfty"></a>MoebiusMappingInftyToInfty</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToInfty (z,z2,z3)</pre><p>Moebius mapping using the cross ratio taking
infinity to infinity and z2,z3 to 1 and 0 respectively.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToOne"></a>MoebiusMappingInftyToOne</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToOne (z,z3,z4)</pre><p>Moebius mapping using the cross ratio taking
infinity to 1 and z3,z4 to 0 and infinity respectively.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToZero"></a>MoebiusMappingInftyToZero</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToZero (z,z2,z4)</pre><p>Moebius mapping using the cross ratio taking
infinity to 0 and z2,z4 to 1 and infinity respectively.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PoissonKernel"></a>PoissonKernel</span></dt><dd><pre class="synopsis">PoissonKernel
(r,sigma)</pre><p>Poisson kernel on D(0,1) (not normalized to 1, that is integral of this is
2pi).</p></dd><dt><span class="term"><a
name="gel-function-PoissonKernelRadius"></a>PoissonKernelRadius</span></dt><dd><pre
class="synopsis">PoissonKernelRadius (r,sigma)</pre><p>Poisson kernel on D(0,R) (not normalized to
1).</p></dd><dt><span class="term"><a name="gel-function-RiemannZeta"></a>RiemannZeta</span></dt><dd><pre
class="synopsis">RiemannZeta (x)</pre><p>Aliases: <code class="function">zeta</code></p><p>The Riemann zeta
function. Currently only implemented for real values.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RiemannZetaFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Riemann_zeta_function"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-UnitStep"></a>UnitStep</span></dt><dd><pre
class="synopsis">UnitStep (x)</pre><p>The unit step function is 0 for x<0, 1 otherwise. This is the
integral of the Dirac Delta function. Also called the Heaviside function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Unit_step" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-cis"></a>cis</span></dt><dd><pre
class="synopsis">cis (x)</pre><p>
+ The <code class="function">cis</code> function, that is the same as
+ <strong class="userinput"><code>cos(x)+1i*sin(x)</code></strong>
+ </p></dd><dt><span class="term"><a name="gel-function-deg2rad"></a>deg2rad</span></dt><dd><pre
class="synopsis">deg2rad (x)</pre><p>Convert degrees to radians.</p></dd><dt><span class="term"><a
name="gel-function-rad2deg"></a>rad2deg</span></dt><dd><pre class="synopsis">rad2deg (x)</pre><p>Convert
radians to degrees.</p></dd><dt><span class="term"><a name="gel-function-sinc"></a>sinc</span></dt><dd><pre
class="synopsis">sinc (x)</pre><p>Calculates the unnormalized sinc function, that is
+ <strong class="userinput"><code>sin(x)/x</code></strong>.
+ If you want the normalized function call <strong
class="userinput"><code>sinc(pi*x)</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Sinc" target="_top">Wikipedia</a> for more
information.
+ </p><p>Version 1.0.16 onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s11.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s13.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Calculus </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Equation Solving</td></tr></table></div></body></html>
diff --git a/help/C/html/ch11s13.html b/help/C/html/ch11s13.html
new file mode 100644
index 0000000..a383fdc
--- /dev/null
+++ b/help/C/html/ch11s13.html
@@ -0,0 +1,213 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Equation
Solving</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch11.html" title="Chapter 11. List of GEL
functions"><link rel="prev" href="ch11s12.html" title="Functions"><link rel="next" href="ch11s14.html"
title="Statistics"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Equation Solving</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s12.html">Prev</a> </td><th width="60%" align="center">Chapter 11. List of GEL functions</th><td
width="20%" align="right"> <a accesskey="n" href="ch11s14.html">Next</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both
"><a name="genius-gel-function-list-equation-solving"></a>Equation Solving</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-CubicFormula"></a>CubicFormula</span></dt><dd><pre class="synopsis">CubicFormula
(p)</pre><p>
+ Compute roots of a cubic (degree 3) polynomial using the
+ cubic formula. The polynomial should be given as a
+ vector of coefficients. That is
+ <strong class="userinput"><code>4*x^3 + 2*x + 1</code></strong> corresponds to the vector
+ <strong class="userinput"><code>[1,2,0,4]</code></strong>.
+ Returns a column vector of the three solutions. The first solution is always
+ the real one as a cubic always has one real solution.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/CubicFormula" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/CubicFormula.html"
target="_top">Mathworld</a>, or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Cubic_equation" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EulersMethod"></a>EulersMethod</span></dt><dd><pre class="synopsis">EulersMethod
(f,x0,y0,x1,n)</pre><p>
+ Use classical Euler's method to numerically solve y'=f(x,y) for
+ initial <code class="varname">x0</code>, <code class="varname">y0</code> going to
+ <code class="varname">x1</code> with <code class="varname">n</code> increments,
+ returns <code class="varname">y</code> at <code class="varname">x1</code>.
+ Unless you explicitly want to use Euler's method, you should really
+ think about using
+ <a class="link" href="ch11s13.html#gel-function-RungeKutta">RungeKutta</a>
+ for solving ODE.
+ </p><p>
+ Systems can be solved by just having <code class="varname">y</code> be a
+ (column) vector everywhere. That is, <code class="varname">y0</code> can
+ be a vector in which case <code class="varname">f</code> should take a number
+ <code class="varname">x</code> and a vector of the same size for the second
+ argument and should return a vector of the same size.
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/EulerForwardMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eulers_method" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EulersMethodFull"></a>EulersMethodFull</span></dt><dd><pre
class="synopsis">EulersMethodFull (f,x0,y0,x1,n)</pre><p>
+ Use classical Euler's method to numerically solve y'=f(x,y) for
+ initial <code class="varname">x0</code>, <code class="varname">y0</code> going to
+ <code class="varname">x1</code> with <code class="varname">n</code> increments,
+ returns a 2 by <strong class="userinput"><code>n+1</code></strong> matrix with the
+ <code class="varname">x</code> and <code class="varname">y</code> values.
+ Unless you explicitly want to use Euler's method, you should really
+ think about using
+ <a class="link" href="ch11s13.html#gel-function-RungeKuttaFull">RungeKuttaFull</a>
+ for solving ODE.
+ Suitable
+ for plugging into
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawPoints">LinePlotDrawPoints</a>.
+ </p><p>
+ Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>line =
EulersMethodFull(`(x,y)=y,0,1.0,3.0,50);</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(line,"window","fit","color","blue","legend","Exponential
growth");</code></strong>
+</pre><p>
+ </p><p>
+ Systems can be solved by just having <code class="varname">y</code> be a
+ (column) vector everywhere. That is, <code class="varname">y0</code> can
+ be a vector in which case <code class="varname">f</code> should take a number
+ <code class="varname">x</code> and a vector of the same size for the second
+ argument and should return a vector of the same size.
+ </p><p>
+ The output for a system is still a n by 2 matrix with the second
+ entry being a vector. If you wish to plot the line, make sure to use row vectors, and then
flatten the matrix with
+ <a class="link" href="ch11s08.html#gel-function-ExpandMatrix">ExpandMatrix</a>,
+ and pick out the right columns. Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
EulersMethodFull(`(x,y)=[y@(2),-y@(1)],0,[1.0,1.0],10.0,500);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
ExpandMatrix(lines);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>firstline =
lines@(,[1,2]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>secondline =
lines@(,[1,3]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>LinePlotWindow =
[0,10,-2,2];</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(firstline,"color","blue","legend","First");</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(secondline,"color","red","thickness",3,"legend","Second");</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/EulerForwardMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eulers_method" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-FindRootBisection"></a>FindRootBisection</span></dt><dd><pre
class="synopsis">FindRootBisection (f,a,b,TOL,N)</pre><p>Find root of a function using the bisection method.
+ <code class="varname">a</code> and <code class="varname">b</code> are the initial guess
interval,
+ <strong class="userinput"><code>f(a)</code></strong> and <strong
class="userinput"><code>f(b)</code></strong> should have opposite signs.
+ <code class="varname">TOL</code> is the desired tolerance and
+<code class="varname">N</code> is the limit on the number of iterations to run, 0 means no limit. The
function returns a vector <strong class="userinput"><code>[success,value,iteration]</code></strong>, where
<code class="varname">success</code> is a boolean indicating success, <code class="varname">value</code> is
the last value computed, and <code class="varname">iteration</code> is the number of iterations
done.</p></dd><dt><span class="term"><a
name="gel-function-FindRootFalsePosition"></a>FindRootFalsePosition</span></dt><dd><pre
class="synopsis">FindRootFalsePosition (f,a,b,TOL,N)</pre><p>Find root of a function using the method of
false position.
+ <code class="varname">a</code> and <code class="varname">b</code> are the initial guess
interval,
+ <strong class="userinput"><code>f(a)</code></strong> and <strong
class="userinput"><code>f(b)</code></strong> should have opposite signs.
+ <code class="varname">TOL</code> is the desired tolerance and
+<code class="varname">N</code> is the limit on the number of iterations to run, 0 means no limit. The
function returns a vector <strong class="userinput"><code>[success,value,iteration]</code></strong>, where
<code class="varname">success</code> is a boolean indicating success, <code class="varname">value</code> is
the last value computed, and <code class="varname">iteration</code> is the number of iterations
done.</p></dd><dt><span class="term"><a
name="gel-function-FindRootMullersMethod"></a>FindRootMullersMethod</span></dt><dd><pre
class="synopsis">FindRootMullersMethod (f,x0,x1,x2,TOL,N)</pre><p>Find root of a function using the Muller's
method.
+ <code class="varname">TOL</code> is the desired tolerance and
+<code class="varname">N</code> is the limit on the number of iterations to run, 0 means no limit. The
function returns a vector <strong class="userinput"><code>[success,value,iteration]</code></strong>, where
<code class="varname">success</code> is a boolean indicating success, <code class="varname">value</code> is
the last value computed, and <code class="varname">iteration</code> is the number of iterations
done.</p></dd><dt><span class="term"><a
name="gel-function-FindRootSecant"></a>FindRootSecant</span></dt><dd><pre class="synopsis">FindRootSecant
(f,a,b,TOL,N)</pre><p>Find root of a function using the secant method.
+ <code class="varname">a</code> and <code class="varname">b</code> are the initial guess
interval,
+ <strong class="userinput"><code>f(a)</code></strong> and <strong
class="userinput"><code>f(b)</code></strong> should have opposite signs.
+ <code class="varname">TOL</code> is the desired tolerance and
+<code class="varname">N</code> is the limit on the number of iterations to run, 0 means no limit. The
function returns a vector <strong class="userinput"><code>[success,value,iteration]</code></strong>, where
<code class="varname">success</code> is a boolean indicating success, <code class="varname">value</code> is
the last value computed, and <code class="varname">iteration</code> is the number of iterations
done.</p></dd><dt><span class="term"><a
name="gel-function-HalleysMethod"></a>HalleysMethod</span></dt><dd><pre class="synopsis">HalleysMethod
(f,df,ddf,guess,epsilon,maxn)</pre><p>Find zeros using Halley's method. <code class="varname">f</code> is
+ the function, <code class="varname">df</code> is the derivative of
+ <code class="varname">f</code>, and <code class="varname">ddf</code> is the second
derivative of
+ <code class="varname">f</code>. <code class="varname">guess</code> is the initial
+ guess. The function returns after two successive values are
+ within <code class="varname">epsilon</code> of each other, or after <code
class="varname">maxn</code> tries, in which case the function returns <code class="constant">null</code>
indicating failure.
+ </p><p>
+ See also <a class="link" href="ch11s13.html#gel-function-NewtonsMethod"><code
class="function">NewtonsMethod</code></a> and <a class="link"
href="ch11s19.html#gel-function-SymbolicDerivative"><code class="function">SymbolicDerivative</code></a>.
+ </p><p>
+ Example to find the square root of 10:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>HalleysMethod(`(x)=x^2-10,`(x)=2*x,`(x)=2,3,10^-10,100)</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Halley%27s_method"
target="_top">Wikipedia</a> for more information.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NewtonsMethod"></a>NewtonsMethod</span></dt><dd><pre class="synopsis">NewtonsMethod
(f,df,guess,epsilon,maxn)</pre><p>Find zeros using Newton's method. <code class="varname">f</code> is
+ the function and <code class="varname">df</code> is the derivative of
+ <code class="varname">f</code>. <code class="varname">guess</code> is the initial
+ guess. The function returns after two successive values are
+ within <code class="varname">epsilon</code> of each other, or after <code
class="varname">maxn</code> tries, in which case the function returns <code class="constant">null</code>
indicating failure.
+ </p><p>
+ See also <a class="link" href="ch11s15.html#gel-function-NewtonsMethodPoly"><code
class="function">NewtonsMethodPoly</code></a> and <a class="link"
href="ch11s19.html#gel-function-SymbolicDerivative"><code class="function">SymbolicDerivative</code></a>.
+ </p><p>
+ Example to find the square root of 10:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>NewtonsMethod(`(x)=x^2-10,`(x)=2*x,3,10^-10,100)</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Newtons_method" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-PolynomialRoots"></a>PolynomialRoots</span></dt><dd><pre class="synopsis">PolynomialRoots
(p)</pre><p>
+ Compute roots of a polynomial (degrees 1 through 4)
+ using one of the formulas for such polynomials.
+ The polynomial should be given as a
+ vector of coefficients. That is
+ <strong class="userinput"><code>4*x^3 + 2*x + 1</code></strong> corresponds to the vector
+ <strong class="userinput"><code>[1,2,0,4]</code></strong>.
+ Returns a column vector of the solutions.
+ </p><p>
+ The function calls
+ <a class="link" href="ch11s13.html#gel-function-QuadraticFormula">QuadraticFormula</a>,
+ <a class="link" href="ch11s13.html#gel-function-CubicFormula">CubicFormula</a>, and
+ <a class="link" href="ch11s13.html#gel-function-QuarticFormula">QuarticFormula</a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-QuadraticFormula"></a>QuadraticFormula</span></dt><dd><pre
class="synopsis">QuadraticFormula (p)</pre><p>
+ Compute roots of a quadratic (degree 2) polynomial using the
+ quadratic formula. The polynomial should be given as a
+ vector of coefficients. That is
+ <strong class="userinput"><code>3*x^2 + 2*x + 1</code></strong> corresponds to the vector
+ <strong class="userinput"><code>[1,2,3]</code></strong>.
+ Returns a column vector of the two solutions.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/QuadraticFormula" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/QuadraticFormula.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-QuarticFormula"></a>QuarticFormula</span></dt><dd><pre class="synopsis">QuarticFormula
(p)</pre><p>
+ Compute roots of a quartic (degree 4) polynomial using the
+ quartic formula. The polynomial should be given as a
+ vector of coefficients. That is
+ <strong class="userinput"><code>5*x^4 + 2*x + 1</code></strong> corresponds to the vector
+ <strong class="userinput"><code>[1,2,0,0,5]</code></strong>.
+ Returns a column vector of the four solutions.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/QuarticFormula" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/QuarticEquation.html"
target="_top">Mathworld</a>, or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Quartic_equation" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RungeKutta"></a>RungeKutta</span></dt><dd><pre class="synopsis">RungeKutta
(f,x0,y0,x1,n)</pre><p>
+ Use classical non-adaptive fourth order Runge-Kutta method to
+ numerically solve
+ y'=f(x,y) for initial <code class="varname">x0</code>, <code class="varname">y0</code>
+ going to <code class="varname">x1</code> with <code class="varname">n</code>
+ increments, returns <code class="varname">y</code> at <code class="varname">x1</code>.
+ </p><p>
+ Systems can be solved by just having <code class="varname">y</code> be a
+ (column) vector everywhere. That is, <code class="varname">y0</code> can
+ be a vector in which case <code class="varname">f</code> should take a number
+ <code class="varname">x</code> and a vector of the same size for the second
+ argument and should return a vector of the same size.
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/Runge-KuttaMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Runge-Kutta_methods"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RungeKuttaFull"></a>RungeKuttaFull</span></dt><dd><pre class="synopsis">RungeKuttaFull
(f,x0,y0,x1,n)</pre><p>
+ Use classical non-adaptive fourth order Runge-Kutta method to
+ numerically solve
+ y'=f(x,y) for initial <code class="varname">x0</code>, <code class="varname">y0</code>
+ going to <code class="varname">x1</code> with <code class="varname">n</code>
+ increments,
+ returns a 2 by <strong class="userinput"><code>n+1</code></strong> matrix with the
+ <code class="varname">x</code> and <code class="varname">y</code> values. Suitable
+ for plugging into
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawPoints">LinePlotDrawPoints</a>.
+ </p><p>
+ Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>line =
RungeKuttaFull(`(x,y)=y,0,1.0,3.0,50);</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(line,"window","fit","color","blue","legend","Exponential
growth");</code></strong>
+</pre><p>
+ </p><p>
+ Systems can be solved by just having <code class="varname">y</code> be a
+ (column) vector everywhere. That is, <code class="varname">y0</code> can
+ be a vector in which case <code class="varname">f</code> should take a number
+ <code class="varname">x</code> and a vector of the same size for the second
+ argument and should return a vector of the same size.
+ </p><p>
+ The output for a system is still a n by 2 matrix with the second
+ entry being a vector. If you wish to plot the line, make sure to use row vectors, and then
flatten the matrix with
+ <a class="link" href="ch11s08.html#gel-function-ExpandMatrix">ExpandMatrix</a>,
+ and pick out the right columns. Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
RungeKuttaFull(`(x,y)=[y@(2),-y@(1)],0,[1.0,1.0],10.0,100);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
ExpandMatrix(lines);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>firstline =
lines@(,[1,2]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>secondline =
lines@(,[1,3]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>LinePlotWindow =
[0,10,-2,2];</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(firstline,"color","blue","legend","First");</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(secondline,"color","red","thickness",3,"legend","Second");</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/Runge-KuttaMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Runge-Kutta_methods"
target="_top">Wikipedia</a> for more information.
+ </p><p>Version 1.0.10 onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s12.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s14.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Functions </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Statistics</td></tr></table></div></body></html>
diff --git a/help/C/html/ch11s14.html b/help/C/html/ch11s14.html
new file mode 100644
index 0000000..00093d4
--- /dev/null
+++ b/help/C/html/ch11s14.html
@@ -0,0 +1,20 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Statistics</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius Manual"><link rel="up" href="ch11.html"
title="Chapter 11. List of GEL functions"><link rel="prev" href="ch11s13.html" title="Equation Solving"><link
rel="next" href="ch11s15.html" title="Polynomials"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Statistics</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s13.html">Prev</a> </td><th width="60%" align="center">Chapter 11. List of GEL
functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s15.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-statistics"></a>Statistics</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Average"></a>Average</span></dt><dd><pre class="synopsis">Average (m)</pre><p>Aliases:
<code class="function">average</code> <code class="function">Mean</code> <code
class="function">mean</code></p><p>Calculate average of an entire matrix.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/ArithmeticMean.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GaussDistribution"></a>GaussDistribution</span></dt><dd><pre
class="synopsis">GaussDistribution (x,sigma)</pre><p>Integral of the GaussFunction from 0 to <code
class="varname">x</code> (area under the normal curve).</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/NormalDistribution.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GaussFunction"></a>GaussFunction</span></dt><dd><pre class="synopsis">GaussFunction
(x,sigma)</pre><p>The normalized Gauss distribution function (the normal curve).</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/NormalDistribution.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Median"></a>Median</span></dt><dd><pre
class="synopsis">Median (m)</pre><p>Aliases: <code class="function">median</code></p><p>Calculate median of
an entire matrix.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/StatisticalMedian.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PopulationStandardDeviation"></a>PopulationStandardDeviation</span></dt><dd><pre
class="synopsis">PopulationStandardDeviation (m)</pre><p>Aliases: <code
class="function">stdevp</code></p><p>Calculate the population standard deviation of a whole
matrix.</p></dd><dt><span class="term"><a name="gel-function-RowAverage"></a>RowAverage</span></dt><dd><pre
class="synopsis">RowAverage (m)</pre><p>Aliases: <code class="function">RowMean</code></p><p>Calculate
average of each row in a matrix.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/ArithmeticMean.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-RowMedian"></a>RowMedian</span></dt><dd><pre
class="synopsis">RowMedian (m)</pre><p>Calculate median of each row in a matrix and return a column
+ vector of the medians.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/StatisticalMedian.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RowPopulationStandardDeviation"></a>RowPopulationStandardDeviation</span></dt><dd><pre
class="synopsis">RowPopulationStandardDeviation (m)</pre><p>Aliases: <code
class="function">rowstdevp</code></p><p>Calculate the population standard deviations of rows of a matrix and
return a vertical vector.</p></dd><dt><span class="term"><a
name="gel-function-RowStandardDeviation"></a>RowStandardDeviation</span></dt><dd><pre
class="synopsis">RowStandardDeviation (m)</pre><p>Aliases: <code
class="function">rowstdev</code></p><p>Calculate the standard deviations of rows of a matrix and return a
vertical vector.</p></dd><dt><span class="term"><a
name="gel-function-StandardDeviation"></a>StandardDeviation</span></dt><dd><pre
class="synopsis">StandardDeviation (m)</pre><p>Aliases: <code class="function">stdev</code></p><p>Calculate
the standard deviation of a whole matrix.</p></dd></dl></div></div><div class="navfooter"><hr><table widt
h="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s13.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s15.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Equation Solving </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Polynomials</td></tr></table></div></body></html>
diff --git a/help/C/html/ch11s15.html b/help/C/html/ch11s15.html
new file mode 100644
index 0000000..c4e84a1
--- /dev/null
+++ b/help/C/html/ch11s15.html
@@ -0,0 +1,21 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Polynomials</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius Manual"><link rel="up" href="ch11.html"
title="Chapter 11. List of GEL functions"><link rel="prev" href="ch11s14.html" title="Statistics"><link
rel="next" href="ch11s16.html" title="Set Theory"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Polynomials</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s14.html">Prev</a> </td><th width="60%" align="center">Chapter 11. List of GEL
functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s16.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name
="genius-gel-function-list-polynomials"></a>Polynomials</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a name="gel-function-AddPoly"></a>AddPoly</span></dt><dd><pre
class="synopsis">AddPoly (p1,p2)</pre><p>Add two polynomials (vectors).</p></dd><dt><span class="term"><a
name="gel-function-DividePoly"></a>DividePoly</span></dt><dd><pre class="synopsis">DividePoly
(p,q,&r)</pre><p>Divide two polynomials (as vectors) using long division.
+ Returns the quotient
+ of the two polynomials. The optional argument <code class="varname">r</code>
+ is used to return the remainder. The remainder will have lower
+ degree than <code class="varname">q</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PolynomialLongDivision" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-IsPoly"></a>IsPoly</span></dt><dd><pre
class="synopsis">IsPoly (p)</pre><p>Check if a vector is usable as a polynomial.</p></dd><dt><span
class="term"><a name="gel-function-MultiplyPoly"></a>MultiplyPoly</span></dt><dd><pre
class="synopsis">MultiplyPoly (p1,p2)</pre><p>Multiply two polynomials (as vectors).</p></dd><dt><span
class="term"><a name="gel-function-NewtonsMethodPoly"></a>NewtonsMethodPoly</span></dt><dd><pre
class="synopsis">NewtonsMethodPoly (poly,guess,epsilon,maxn)</pre><p>Find a root of a polynomial using
Newton's method. <code class="varname">poly</code> is
+ the polynomial as a vector and <code class="varname">guess</code> is the initial
+ guess. The function returns after two successive values are
+ within <code class="varname">epsilon</code> of each other, or after <code
class="varname">maxn</code> tries, in which case the function returns <code class="constant">null</code>
indicating failure.
+ </p><p>
+ See also <a class="link" href="ch11s13.html#gel-function-NewtonsMethod"><code
class="function">NewtonsMethod</code></a>.
+ </p><p>
+ Example to find the square root of 10:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>NewtonsMethodPoly([-10,0,1],3,10^-10,100)</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Newtons_method" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Poly2ndDerivative"></a>Poly2ndDerivative</span></dt><dd><pre
class="synopsis">Poly2ndDerivative (p)</pre><p>Take second polynomial (as vector)
derivative.</p></dd><dt><span class="term"><a
name="gel-function-PolyDerivative"></a>PolyDerivative</span></dt><dd><pre class="synopsis">PolyDerivative
(p)</pre><p>Take polynomial (as vector) derivative.</p></dd><dt><span class="term"><a
name="gel-function-PolyToFunction"></a>PolyToFunction</span></dt><dd><pre class="synopsis">PolyToFunction
(p)</pre><p>Make function out of a polynomial (as vector).</p></dd><dt><span class="term"><a
name="gel-function-PolyToString"></a>PolyToString</span></dt><dd><pre class="synopsis">PolyToString
(p,var...)</pre><p>Make string out of a polynomial (as vector).</p></dd><dt><span class="term"><a
name="gel-function-SubtractPoly"></a>SubtractPoly</span></dt><dd><pre class="synopsis">SubtractPoly
(p1,p2)</pre><p>Subtract two polynomials (as vectors).
</p></dd><dt><span class="term"><a name="gel-function-TrimPoly"></a>TrimPoly</span></dt><dd><pre
class="synopsis">TrimPoly (p)</pre><p>Trim zeros from a polynomial (as vector).</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s14.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s16.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Statistics </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Set Theory</td></tr></table></div></body></html>
diff --git a/help/C/html/ch11s16.html b/help/C/html/ch11s16.html
new file mode 100644
index 0000000..29b5c7d
--- /dev/null
+++ b/help/C/html/ch11s16.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Set
Theory</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch11.html" title="Chapter 11. List of GEL
functions"><link rel="prev" href="ch11s15.html" title="Polynomials"><link rel="next" href="ch11s17.html"
title="Commutative Algebra"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Set Theory</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s15.html">Prev</a> </td><th width="60%" align="center">Chapter 11. List of GEL functions</th><td
width="20%" align="right"> <a accesskey="n" href="ch11s17.html">Next</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"
<a name="genius-gel-function-list-set-theory"></a>Set Theory</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Intersection"></a>Intersection</span></dt><dd><pre class="synopsis">Intersection
(X,Y)</pre><p>Returns a set theoretic intersection of X and Y (X and Y are vectors pretending to be
sets).</p></dd><dt><span class="term"><a name="gel-function-IsIn"></a>IsIn</span></dt><dd><pre
class="synopsis">IsIn (x,X)</pre><p>Returns <code class="constant">true</code> if the element x is in the
set X (where X is a vector pretending to be a set).</p></dd><dt><span class="term"><a
name="gel-function-IsSubset"></a>IsSubset</span></dt><dd><pre class="synopsis">IsSubset (X,
Y)</pre><p>Returns <code class="constant">true</code> if X is a subset of Y (X and Y are vectors pretending
to be sets).</p></dd><dt><span class="term"><a name="gel-function-MakeSet"></a>MakeSet</span></dt><dd><pre
class="synopsis">MakeSet (X)</pre>
<p>Returns a vector where every element of X appears only once.</p></dd><dt><span class="term"><a
name="gel-function-SetMinus"></a>SetMinus</span></dt><dd><pre class="synopsis">SetMinus (X,Y)</pre><p>Returns
a set theoretic difference X-Y (X and Y are vectors pretending to be sets).</p></dd><dt><span class="term"><a
name="gel-function-Union"></a>Union</span></dt><dd><pre class="synopsis">Union (X,Y)</pre><p>Returns a set
theoretic union of X and Y (X and Y are vectors pretending to be sets).</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s15.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s17.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Polynomials </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><
td width="40%" align="right" valign="top"> Commutative Algebra</td></tr></table></div></body></html>
diff --git a/help/C/html/ch11s17.html b/help/C/html/ch11s17.html
new file mode 100644
index 0000000..490d3cb
--- /dev/null
+++ b/help/C/html/ch11s17.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Commutative
Algebra</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch11.html" title="Chapter 11. List of GEL
functions"><link rel="prev" href="ch11s16.html" title="Set Theory"><link rel="next" href="ch11s18.html"
title="Miscellaneous"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Commutative Algebra</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s16.html">Prev</a> </td><th width="60%" align="center">Chapter 11. List of GEL functions</th><td
width="20%" align="right"> <a accesskey="n" href="ch11s18.html">Next</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="c
lear: both"><a name="genius-gel-function-list-commutative-algebra"></a>Commutative
Algebra</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-MacaulayBound"></a>MacaulayBound</span></dt><dd><pre class="synopsis">MacaulayBound
(c,d)</pre><p>For a Hilbert function that is c for degree d, given the Macaulay bound for the Hilbert
function of degree d+1 (The c^<d> operator from Green's proof).</p><p>Version 1.0.15
onwards.</p></dd><dt><span class="term"><a
name="gel-function-MacaulayLowerOperator"></a>MacaulayLowerOperator</span></dt><dd><pre
class="synopsis">MacaulayLowerOperator (c,d)</pre><p>The c_<d> operator from Green's proof of
Macaulay's Theorem.</p><p>Version 1.0.15 onwards.</p></dd><dt><span class="term"><a
name="gel-function-MacaulayRep"></a>MacaulayRep</span></dt><dd><pre class="synopsis">MacaulayRep
(c,d)</pre><p>Return the dth Macaulay representation of a positive integer c.</p><p>Version
1.0.15 onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s16.html">Prev</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s18.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Set Theory </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Miscellaneous</td></tr></table></div></body></html>
diff --git a/help/C/html/ch11s18.html b/help/C/html/ch11s18.html
new file mode 100644
index 0000000..e9d0a65
--- /dev/null
+++ b/help/C/html/ch11s18.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Miscellaneous</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius Manual"><link rel="up" href="ch11.html"
title="Chapter 11. List of GEL functions"><link rel="prev" href="ch11s17.html" title="Commutative
Algebra"><link rel="next" href="ch11s19.html" title="Symbolic Operations"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Miscellaneous</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch11s17.html">Prev</a> </td><th width="60%" align="center">Chapter 11.
List of GEL functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s19.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style
="clear: both"><a name="genius-gel-function-list-miscellaneous"></a>Miscellaneous</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ASCIIToString"></a>ASCIIToString</span></dt><dd><pre class="synopsis">ASCIIToString
(vec)</pre><p>Convert a vector of ASCII values to a string.</p></dd><dt><span class="term"><a
name="gel-function-AlphabetToString"></a>AlphabetToString</span></dt><dd><pre
class="synopsis">AlphabetToString (vec,alphabet)</pre><p>Convert a vector of 0-based alphabet values
(positions in the alphabet string) to a string.</p></dd><dt><span class="term"><a
name="gel-function-StringToASCII"></a>StringToASCII</span></dt><dd><pre class="synopsis">StringToASCII
(str)</pre><p>Convert a string to a vector of ASCII values.</p></dd><dt><span class="term"><a
name="gel-function-StringToAlphabet"></a>StringToAlphabet</span></dt><dd><pre
class="synopsis">StringToAlphabet (str,alphabet)</pre><p>Convert a string t
o a vector of 0-based alphabet values (positions in the alphabet string), -1's for unknown
letters.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s17.html">Prev</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s19.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Commutative Algebra
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%"
align="right" valign="top"> Symbolic Operations</td></tr></table></div></body></html>
diff --git a/help/C/html/ch11s19.html b/help/C/html/ch11s19.html
new file mode 100644
index 0000000..d2fd593
--- /dev/null
+++ b/help/C/html/ch11s19.html
@@ -0,0 +1,28 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Symbolic
Operations</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="ch11.html" title="Chapter 11. List of GEL
functions"><link rel="prev" href="ch11s18.html" title="Miscellaneous"><link rel="next" href="ch11s20.html"
title="Plotting"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Symbolic Operations</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s18.html">Prev</a> </td><th width="60%" align="center">Chapter 11. List of GEL functions</th><td
width="20%" align="right"> <a accesskey="n" href="ch11s20.html">Next</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="cle
ar: both"><a name="genius-gel-function-list-symbolic"></a>Symbolic Operations</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-SymbolicDerivative"></a>SymbolicDerivative</span></dt><dd><pre
class="synopsis">SymbolicDerivative (f)</pre><p>Attempt to symbolically differentiate the function f, where f
is a function of one variable.</p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SymbolicDerivative(sin)</code></strong>
+= (`(x)=cos(x))
+<code class="prompt">genius></code> <strong
class="userinput"><code>SymbolicDerivative(`(x)=7*x^2)</code></strong>
+= (`(x)=(7*(2*x)))
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicDerivativeTry"></a>SymbolicDerivativeTry</span></dt><dd><pre
class="synopsis">SymbolicDerivativeTry (f)</pre><p>Attempt to symbolically differentiate the function f,
where f is a function of one variable, returns <code class="constant">null</code> if unsuccessful but is
silent.
+ (See <a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicNthDerivative"></a>SymbolicNthDerivative</span></dt><dd><pre
class="synopsis">SymbolicNthDerivative (f,n)</pre><p>Attempt to symbolically differentiate a function n times.
+ (See <a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicNthDerivativeTry"></a>SymbolicNthDerivativeTry</span></dt><dd><pre
class="synopsis">SymbolicNthDerivativeTry (f,n)</pre><p>Attempt to symbolically differentiate a function n
times quietly and return <code class="constant">null</code> on failure
+ (See <a class="link" href="ch11s19.html#gel-function-SymbolicNthDerivative"><code
class="function">SymbolicNthDerivative</code></a>)
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicTaylorApproximationFunction"></a>SymbolicTaylorApproximationFunction</span></dt><dd><pre
class="synopsis">SymbolicTaylorApproximationFunction (f,x0,n)</pre><p>Attempt to construct the Taylor
approximation function around x0 to the nth degree.
+ (See <a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s18.html">Prev</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s20.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Miscellaneous </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Plotting</td></tr></table></div></body></html>
diff --git a/help/C/html/ch11s20.html b/help/C/html/ch11s20.html
new file mode 100644
index 0000000..dc4e50f
--- /dev/null
+++ b/help/C/html/ch11s20.html
@@ -0,0 +1,445 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Plotting</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Genius
Manual"><link rel="up" href="ch11.html" title="Chapter 11. List of GEL functions"><link rel="prev"
href="ch11s19.html" title="Symbolic Operations"><link rel="next" href="ch12.html" title="Chapter 12. Example
Programs in GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Plotting</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s19.html">Prev</a> </td><th width="60%" align="center">Chapter 11. List of GEL functions</th><td
width="20%" align="right"> <a accesskey="n" href="ch12.html">Next</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" sty
le="clear: both"><a name="genius-gel-function-list-plotting"></a>Plotting</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ExportPlot"></a>ExportPlot</span></dt><dd><pre class="synopsis">ExportPlot
(file,type)</pre><pre class="synopsis">ExportPlot (file)</pre><p>
+ Export the contents of the plotting window to a file.
+ The type is a string that specifies the file type to
+ use, "png", "eps", or "ps". If the type is not
+ specified, then it is taken to be the extension, in
+ which case the extension must be ".png", ".eps", or ".ps".
+ </p><p>
+ Note that files are overwritten without asking.
+ </p><p>
+ On successful export, true is returned. Otherwise
+ error is printed and exception is raised.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>ExportPlot("file.png")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>ExportPlot("/directory/file","eps")</code></strong>
+</pre><p>
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LinePlot"></a>LinePlot</span></dt><dd><pre class="synopsis">LinePlot
(func1,func2,func3,...)</pre><pre class="synopsis">LinePlot (func1,func2,func3,x1,x2)</pre><pre
class="synopsis">LinePlot (func1,func2,func3,x1,x2,y1,y2)</pre><pre class="synopsis">LinePlot
(func1,func2,func3,[x1,x2])</pre><pre class="synopsis">LinePlot (func1,func2,func3,[x1,x2,y1,y2])</pre><p>
+ Plot a function (or several functions) with a line.
+ First (up to 10) arguments are functions, then optionally
+ you can specify the limits of the plotting window as
+ <code class="varname">x1</code>, <code class="varname">x2</code>,
+ <code class="varname">y1</code>, <code class="varname">y2</code>. If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>)
+ If the y limits are not specified, then the functions are computed and then the maxima and minima
+ are used.
+ </p><p>
+ The parameter
+ <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a>
+ controls the drawing of the legend.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlot(sin,cos)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlot(`(x)=x^2,-1,1,0,1)</code></strong>
+</pre><p>
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotClear"></a>LinePlotClear</span></dt><dd><pre class="synopsis">LinePlotClear
()</pre><p>
+ Show the line plot window and clear out functions and any other
+ lines that were drawn.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotCParametric"></a>LinePlotCParametric</span></dt><dd><pre
class="synopsis">LinePlotCParametric (func,...)</pre><pre class="synopsis">LinePlotCParametric
(func,t1,t2,tinc)</pre><pre class="synopsis">LinePlotCParametric (func,t1,t2,tinc,x1,x2,y1,y2)</pre><p>
+ Plot a parametric complex valued function with a line. First comes
+the function that returns <code class="computeroutput">x+iy</code>,
+then optionally the <code class="varname">t</code> limits as <strong
class="userinput"><code>t1,t2,tinc</code></strong>, then
+optionally the limits as <strong class="userinput"><code>x1,x2,y1,y2</code></strong>.
+ </p><p>
+ If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).
+ If instead the string "fit" is given for the x and y limits, then the limits are the maximum
extent of
+ the graph
+ </p><p>
+ The parameter
+ <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a>
+ controls the drawing of the legend.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawLine"></a>LinePlotDrawLine</span></dt><dd><pre
class="synopsis">LinePlotDrawLine (x1,y1,x2,y2,...)</pre><pre class="synopsis">LinePlotDrawLine
(v,...)</pre><p>
+ Draw a line from <code class="varname">x1</code>,<code class="varname">y1</code> to
+ <code class="varname">x2</code>,<code class="varname">y2</code>.
+ <code class="varname">x1</code>,<code class="varname">y1</code>,
+ <code class="varname">x2</code>,<code class="varname">y2</code> can be replaced by an
+ <code class="varname">n</code> by 2 matrix for a longer polyline.
+ Alternatively the vector <code class="varname">v</code> may be a column vector of complex numbers,
+ that is an <code class="varname">n</code> by 1 matrix and each complex number is then
+ considered a point in the plane.
+ </p><p>
+ Extra parameters can be added to specify line color, thickness,
+ arrows, the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ <strong class="userinput"><code>"arrow"</code></strong>, or <strong
class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 4-vector, type of arrow, or the legend. (Arrow and window are from version 1.0.6 onwards.)
+ </p><p>
+ If the line is to be treated as a filled polygon, filled with the given color, you
+ can specify the argument <strong class="userinput"><code>"filled"</code></strong>. Since version
1.0.22 onwards.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally, since version 1.0.18, the color
+ can also be specified as a real vector specifying the red green and
+ blue components where the components are between 0 and 1, e.g. <strong
class="userinput"><code>[1.0,0.5,0.1]</code></strong>.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>
+ Arrow specification should be
+ <strong class="userinput"><code>"origin"</code></strong>,
+ <strong class="userinput"><code>"end"</code></strong>,
+ <strong class="userinput"><code>"both"</code></strong>, or
+ <strong class="userinput"><code>"none"</code></strong>.
+ </p><p>
+ Finally, legend should be a string that can be used as the legend in the
+ graph. That is, if legends are being printed.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(0,0,1,1,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;1,-1;-1,-1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;1,1],"arrow","end")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(RungeKuttaFull(`(x,y)=y,0,3,100),"color","blue","legend","The
Solution")</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>for r=0.0 to 1.0 by 0.1 do
LinePlotDrawLine([0,0;1,r],"color",[r,(1-r),0.5],"window",[0,1,0,1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;10,0;10,10;0,10],"filled","color","green")</code></strong>
+</pre><p>
+ </p><p>
+ Unlike many other functions that do not care if they take a
+ column or a row vector, if specifying points as a vector of
+ complex values, due to possible ambiguities, it must always
+ be given as a column vector.
+ </p><p>
+ Specifying <code class="varname">v</code> as a column vector of complex numbers is
+ implemented from version 1.0.22 and onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawPoints"></a>LinePlotDrawPoints</span></dt><dd><pre
class="synopsis">LinePlotDrawPoints (x,y,...)</pre><pre class="synopsis">LinePlotDrawPoints (v,...)</pre><p>
+ Draw a point at <code class="varname">x</code>,<code class="varname">y</code>.
+ The input can be an <code class="varname">n</code> by 2 matrix
+ for <code class="varname">n</code> different points. This function has essentially the same
+ input as <a class="link"
href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a>.
+ Alternatively the vector <code class="varname">v</code> may be a column vector of complex
numbers,
+ that is an <code class="varname">n</code> by 1 matrix and each complex number is then
+ considered a point in the plane.
+ </p><p>
+ Extra parameters can be added to specify color, thickness,
+ the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ or <strong class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 4-vector, or the legend.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally the color can also be specified as a real vector specifying the
red green
+ and blue components where the components are between 0 and 1.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>
+ Finally, legend should be a string that can be used as the legend in the
+ graph. That is, if legends are being printed.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(0,0,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints([0,0;1,-1;-1,-1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(RungeKuttaFull(`(x,y)=y,0,3,100),"color","blue","legend","The
Solution")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints([1;1+1i;1i;0],"thickness",5)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(ApplyOverMatrix((0:6)',`(k)=exp(k*2*pi*1i/7)),"thickness",3,"legend","The
7th roots of unity")</code></strong>
+</pre><p>
+ </p><p>
+ Unlike many other functions that do not care if they take a
+ column or a row vector, if specifying points as a vector of
+ complex values, due to possible ambiguities, it must always
+ be given as a column vector. Therefore, notice in the
+ last example the transpose of the vector <strong class="userinput"><code>0:6</code></strong>
+ to make it into a column vector.
+ </p><p>
+ Available from version 1.0.18 onwards. Specifying
+ <code class="varname">v</code> as a column vector of complex numbers is
+ implemented from version 1.0.22 and onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotMouseLocation"></a>LinePlotMouseLocation</span></dt><dd><pre
class="synopsis">LinePlotMouseLocation ()</pre><p>
+ Returns a row vector of a point on the line plot corresponding to
+ the current mouse location. If the line plot is not visible,
+ then prints an error and returns <code class="constant">null</code>.
+ In this case you should run
+ <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotClear"><code
class="function">LinePlotClear</code></a>
+ to put the graphing window into the line plot mode.
+ See also
+ <a class="link" href="ch11s20.html#gel-function-LinePlotWaitForClick"><code
class="function">LinePlotWaitForClick</code></a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotParametric"></a>LinePlotParametric</span></dt><dd><pre
class="synopsis">LinePlotParametric (xfunc,yfunc,...)</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc)</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc,x1,x2,y1,y2)</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc,[x1,x2,y1,y2])</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc,"fit")</pre><p>
+ Plot a parametric function with a line. First come the functions
+for <code class="varname">x</code> and <code class="varname">y</code> then optionally the <code
class="varname">t</code> limits as <strong class="userinput"><code>t1,t2,tinc</code></strong>, then
optionally the
+limits as <strong class="userinput"><code>x1,x2,y1,y2</code></strong>.
+ </p><p>
+ If x and y limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).
+ If instead the string "fit" is given for the x and y limits, then the limits are the maximum
extent of
+ the graph
+ </p><p>
+ The parameter
+ <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a>
+ controls the drawing of the legend.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotWaitForClick"></a>LinePlotWaitForClick</span></dt><dd><pre
class="synopsis">LinePlotWaitForClick ()</pre><p>
+ If in line plot mode, waits for a click on the line plot window
+ and returns the location of the click as a row vector.
+ If the window is closed
+ the function returns immediately with <code class="constant">null</code>.
+ If the window is not in line plot mode, it is put in it and shown
+ if not shown.
+ See also
+ <a class="link" href="ch11s20.html#gel-function-LinePlotMouseLocation"><code
class="function">LinePlotMouseLocation</code></a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-PlotCanvasFreeze"></a>PlotCanvasFreeze</span></dt><dd><pre
class="synopsis">PlotCanvasFreeze ()</pre><p>
+ Freeze drawing of the canvas plot temporarily. Useful if you need to draw a bunch of
elements
+ and want to delay drawing everything to avoid flicker in an animation. After everything
+ has been drawn you should call <a class="link"
href="ch11s20.html#gel-function-PlotCanvasThaw"><code class="function">PlotCanvasThaw</code></a>.
+ </p><p>
+ The canvas is always thawed after end of any execution, so it will never remain frozen.
The moment
+ a new command line is shown for example the plot canvas is thawed automatically. Also note
that
+ calls to freeze and thaw may be safely nested.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-PlotCanvasThaw"></a>PlotCanvasThaw</span></dt><dd><pre class="synopsis">PlotCanvasThaw
()</pre><p>
+ Thaw the plot canvas frozen by
+ <a class="link" href="ch11s20.html#gel-function-PlotCanvasFreeze"><code
class="function">PlotCanvasFreeze</code></a>
+ and redraw the canvas immediately. The canvas is also always thawed after end of execution
+ of any program.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-PlotWindowPresent"></a>PlotWindowPresent</span></dt><dd><pre
class="synopsis">PlotWindowPresent ()</pre><p>
+ Show and raise the plot window, creating it if necessary.
+ Normally the window is created when one of the plotting
+ functions is called, but it is not always raised if it
+ happens to be below other windows. So this function is
+ good to call in scripts where the plot window might have
+ been created before, and by now is hidden behind the
+ console or other windows.
+ </p><p>Version 1.0.19 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SlopefieldClearSolutions"></a>SlopefieldClearSolutions</span></dt><dd><pre
class="synopsis">SlopefieldClearSolutions ()</pre><p>
+ Clears the solutions drawn by the
+ <a class="link" href="ch11s20.html#gel-function-SlopefieldDrawSolution"><code
class="function">SlopefieldDrawSolution</code></a>
+ function.
+ </p></dd><dt><span class="term"><a
name="gel-function-SlopefieldDrawSolution"></a>SlopefieldDrawSolution</span></dt><dd><pre
class="synopsis">SlopefieldDrawSolution (x, y, dx)</pre><p>
+ When a slope field plot is active, draw a solution with
+ the specified initial condition. The standard
+ Runge-Kutta method is used with increment <code class="varname">dx</code>.
+ Solutions stay on the graph until a different plot is shown or until
+ you call
+ <a class="link" href="ch11s20.html#gel-function-SlopefieldClearSolutions"><code
class="function">SlopefieldClearSolutions</code></a>.
+ You can also use the graphical interface to draw solutions and specify
+ initial conditions with the mouse.
+ </p></dd><dt><span class="term"><a
name="gel-function-SlopefieldPlot"></a>SlopefieldPlot</span></dt><dd><pre class="synopsis">SlopefieldPlot
(func)</pre><pre class="synopsis">SlopefieldPlot (func,x1,x2,y1,y2)</pre><p>
+ Plot a slope field. The function <code class="varname">func</code>
+ should take two real numbers <code class="varname">x</code>
+ and <code class="varname">y</code>, or a single complex
+ number.
+ Optionally you can specify the limits of the plotting window as
+ <code class="varname">x1</code>, <code class="varname">x2</code>,
+ <code class="varname">y1</code>, <code class="varname">y2</code>. If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).
+ </p><p>
+ The parameter
+ <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a>
+ controls the drawing of the legend.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SlopefieldPlot(`(x,y)=sin(x-y),-5,5,-5,5)</code></strong>
+</pre><p>
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlot"></a>SurfacePlot</span></dt><dd><pre class="synopsis">SurfacePlot
(func)</pre><pre class="synopsis">SurfacePlot (func,x1,x2,y1,y2,z1,z2)</pre><pre class="synopsis">SurfacePlot
(func,x1,x2,y1,y2)</pre><pre class="synopsis">SurfacePlot (func,[x1,x2,y1,y2,z1,z2])</pre><pre
class="synopsis">SurfacePlot (func,[x1,x2,y1,y2])</pre><p>
+ Plot a surface function that takes either two arguments or a complex number. First comes the
function then optionally limits as <code class="varname">x1</code>, <code class="varname">x2</code>,
+ <code class="varname">y1</code>, <code class="varname">y2</code>,
+ <code class="varname">z1</code>, <code class="varname">z2</code>. If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-SurfacePlotWindow"><code
class="function">SurfacePlotWindow</code></a>).
+ Genius can only plot a single surface function at this time.
+ </p><p>
+ If the z limits are not specified then the maxima and minima of the function are used.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(|sin|,-1,1,-1,1,0,1.5)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(`(x,y)=x^2+y,-1,1,-1,1,-2,2)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(`(z)=|z|^2,-1,1,-1,1,0,2)</code></strong>
+</pre><p>
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotClear"></a>SurfacePlotClear</span></dt><dd><pre
class="synopsis">SurfacePlotClear ()</pre><p>
+ Show the surface plot window and clear out functions and any other
+ lines that were drawn.
+ </p><p>
+ Available in version 1.0.19 and onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotData"></a>SurfacePlotData</span></dt><dd><pre class="synopsis">SurfacePlotData
(data)</pre><pre class="synopsis">SurfacePlotData (data,label)</pre><pre class="synopsis">SurfacePlotData
(data,x1,x2,y1,y2,z1,z2)</pre><pre class="synopsis">SurfacePlotData (data,label,x1,x2,y1,y2,z1,z2)</pre><pre
class="synopsis">SurfacePlotData (data,[x1,x2,y1,y2,z1,z2])</pre><pre class="synopsis">SurfacePlotData
(data,label,[x1,x2,y1,y2,z1,z2])</pre><p>
+ Plot a surface from data. The data is an n by 3 matrix whose
+ rows are the x, y and z coordinates. The data can also be
+ simply a vector whose length is a multiple of 3 and so
+ contains the triples of x, y, z. The data should contain at
+ least 3 points.
+ </p><p>
+ Optionally we can give the label and also optionally the
+ limits. If limits are not given, they are computed from
+ the data, <a class="link" href="ch11s03.html#gel-function-SurfacePlotWindow"><code
class="function">SurfacePlotWindow</code></a>
+ is not used, if you want to use it, pass it in explicitly.
+ If label is not given then empty label is used.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData([0,0,0;1,0,1;0,1,1;1,1,3])</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>SurfacePlotData(data,"My
data")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData(data,-1,1,-1,1,0,10)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData(data,SurfacePlotWindow)</code></strong>
+</pre><p>
+ </p><p>
+ Here's an example of how to plot in polar coordinates,
+ in particular how to plot the function
+ <strong class="userinput"><code>-r^2 * theta</code></strong>:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>d:=null; for r=0 to 1 by 0.1 do for theta=0 to 2*pi by pi/5 do
d=[d;[r*cos(theta),r*sin(theta),-r^2*theta]];</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>SurfacePlotData(d)</code></strong>
+</pre><p>
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDataGrid"></a>SurfacePlotDataGrid</span></dt><dd><pre
class="synopsis">SurfacePlotDataGrid (data,[x1,x2,y1,y2])</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2,z1,z2])</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2],label)</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2,z1,z2],label)</pre><p>
+ Plot a surface from regular rectangular data.
+ The data is given in a n by m matrix where the rows are the
+ x coordinate and the columns are the y coordinate.
+ The x coordinate is divided into equal n-1 subintervals
+ and y coordinate is divided into equal m-1 subintervals.
+ The limits <code class="varname">x1</code> and <code class="varname">x2</code>
+ give the interval on the x-axis that we use, and
+ the limits <code class="varname">y1</code> and <code class="varname">y2</code>
+ give the interval on the y-axis that we use.
+ If the limits <code class="varname">z1</code> and <code class="varname">z2</code>
+ are not given they are computed from the data (to be
+ the extreme values from the data).
+ </p><p>
+ Optionally we can give the label, if label is not given then
+ empty label is used.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid([1,2;3,4],[0,1,0,1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid(data,[-1,1,-1,1],"My data")</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>d:=null; for i=1 to 20 do for j=1 to
10 do d@(i,j) = (0.1*i-1)^2-(0.1*j)^2;</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid(d,[-1,1,0,1],"half a saddle")</code></strong>
+</pre><p>
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawLine"></a>SurfacePlotDrawLine</span></dt><dd><pre
class="synopsis">SurfacePlotDrawLine (x1,y1,z1,x2,y2,z2,...)</pre><pre class="synopsis">SurfacePlotDrawLine
(v,...)</pre><p>
+ Draw a line from <code class="varname">x1</code>,<code class="varname">y1</code>,<code
class="varname">z1</code> to
+ <code class="varname">x2</code>,<code class="varname">y2</code>,<code class="varname">z2</code>.
+ <code class="varname">x1</code>,<code class="varname">y1</code>,<code class="varname">z1</code>,
+ <code class="varname">x2</code>,<code class="varname">y2</code>,<code class="varname">z2</code>
can be replaced by an
+ <code class="varname">n</code> by 3 matrix for a longer polyline.
+ </p><p>
+ Extra parameters can be added to specify line color, thickness,
+ arrows, the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ or <strong class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 6-vector, or the legend.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally, since version 1.0.18, the color
+ can also be specified as a real vector specifying the red green and
+ blue components where the components are between 0 and 1, e.g. <strong
class="userinput"><code>[1.0,0.5,0.1]</code></strong>.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2,z1,z2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>
+ Finally, legend should be a string that can be used as the legend in the
+ graph. That is, if legends are being printed.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawLine(0,0,0,1,1,1,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawLine([0,0,0;1,-1,2;-1,-1,-3])</code></strong>
+</pre><p>
+ </p><p>
+ Available from version 1.0.19 onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawPoints"></a>SurfacePlotDrawPoints</span></dt><dd><pre
class="synopsis">SurfacePlotDrawPoints (x,y,z,...)</pre><pre class="synopsis">SurfacePlotDrawPoints
(v,...)</pre><p>
+ Draw a point at <code class="varname">x</code>,<code class="varname">y</code>,<code
class="varname">z</code>.
+ The input can be an <code class="varname">n</code> by 3 matrix
+ for <code class="varname">n</code> different points. This function has essentially the same
+ input as <a class="link"
href="ch11s20.html#gel-function-SurfacePlotDrawLine">SurfacePlotDrawLine</a>.
+ </p><p>
+ Extra parameters can be added to specify line color, thickness,
+ the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ or <strong class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 6-vector, or the legend.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally the color can also be specified as a real vector specifying the
red green
+ and blue components where the components are between 0 and 1.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2,z1,z2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>
+ Finally, legend should be a string that can be used as the legend in the
+ graph. That is, if legends are being printed.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawPoints(0,0,0,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawPoints([0,0,0;1,-1,2;-1,-1,1])</code></strong>
+</pre><p>
+ </p><p>
+ Available from version 1.0.19 onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-VectorfieldClearSolutions"></a>VectorfieldClearSolutions</span></dt><dd><pre
class="synopsis">VectorfieldClearSolutions ()</pre><p>
+ Clears the solutions drawn by the
+ <a class="link" href="ch11s20.html#gel-function-VectorfieldDrawSolution"><code
class="function">VectorfieldDrawSolution</code></a>
+ function.
+ </p><p>Version 1.0.6 onwards.</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldDrawSolution"></a>VectorfieldDrawSolution</span></dt><dd><pre
class="synopsis">VectorfieldDrawSolution (x, y, dt, tlen)</pre><p>
+ When a vector field plot is active, draw a solution with
+ the specified initial condition. The standard
+ Runge-Kutta method is used with increment <code class="varname">dt</code>
+ for an interval of length <code class="varname">tlen</code>.
+ Solutions stay on the graph until a different plot is shown or until
+ you call
+ <a class="link" href="ch11s20.html#gel-function-VectorfieldClearSolutions"><code
class="function">VectorfieldClearSolutions</code></a>.
+ You can also use the graphical interface to draw solutions and specify
+ initial conditions with the mouse.
+ </p><p>Version 1.0.6 onwards.</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldPlot"></a>VectorfieldPlot</span></dt><dd><pre class="synopsis">VectorfieldPlot
(funcx, funcy)</pre><pre class="synopsis">VectorfieldPlot (funcx, funcy, x1, x2, y1, y2)</pre><p>
+ Plot a two dimensional vector field. The function
+ <code class="varname">funcx</code>
+ should be the dx/dt of the vectorfield and the function
+ <code class="varname">funcy</code> should be the dy/dt of the vectorfield.
+ The functions
+ should take two real numbers <code class="varname">x</code>
+ and <code class="varname">y</code>, or a single complex
+ number. When the parameter
+ <a class="link" href="ch11s03.html#gel-function-VectorfieldNormalized"><code
class="function">VectorfieldNormalized</code></a>
+ is <code class="constant">true</code>, then the magnitude of the vectors is normalized. That is,
only
+ the direction and not the magnitude is shown.
+ </p><p>
+ Optionally you can specify the limits of the plotting window as
+ <code class="varname">x1</code>, <code class="varname">x2</code>,
+ <code class="varname">y1</code>, <code class="varname">y2</code>. If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).
+ </p><p>
+ The parameter
+ <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a>
+ controls the drawing of the legend.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>VectorfieldPlot(`(x,y)=x^2-y, `(x,y)=y^2-x, -1, 1, -1, 1)</code></strong>
+</pre><p>
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s19.html">Prev</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch12.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Symbolic Operations </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Chapter 12. Example Programs in GEL</td></tr></table></div></body></html>
diff --git a/help/C/html/ch12.html b/help/C/html/ch12.html
new file mode 100644
index 0000000..335dd6b
--- /dev/null
+++ b/help/C/html/ch12.html
@@ -0,0 +1,74 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapter 12. Example
Programs in GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="index.html" title="Genius Manual"><link
rel="prev" href="ch11s20.html" title="Plotting"><link rel="next" href="ch13.html" title="Chapter 13.
Settings"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Chapter
12. Example Programs in GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s20.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch13.html">Next</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-gel-exa
mple-programs"></a>Chapter 12. Example Programs in GEL</h1></div></div></div><p>
+Here is a function that calculates factorials:
+</p><pre class="programlisting">function f(x) = if x <= 1 then 1 else (f(x-1)*x)
+</pre><p>
+ </p><p>
+With indentation it becomes:
+</p><pre class="programlisting">function f(x) = (
+ if x <= 1 then
+ 1
+ else
+ (f(x-1)*x)
+)
+</pre><p>
+ </p><p>
+This is a direct port of the factorial function from the <span class="application">bc</span> manpage. The
syntax seems similar to <span class="application">bc</span>, but different in that in GEL, the last
expression is the one that is returned. Using the <code class="literal">return</code> function instead, it
would be:
+</p><pre class="programlisting">function f(x) = (
+ if (x <= 1) then return (1);
+ return (f(x-1) * x)
+)
+</pre><p>
+ </p><p>
+By far the easiest way to define a factorial function would be using
+the product loop as follows. This is not only the shortest and fastest,
+but also probably the most readable version.
+</p><pre class="programlisting">function f(x) = prod k=1 to x do k
+</pre><p>
+ </p><p>
+Here is a larger example, this basically redefines the internal
+<a class="link" href="ch11s09.html#gel-function-ref"><code class="function">ref</code></a> function to
calculate the row echelon form of a
+matrix. The function <code class="function">ref</code> is built in and much faster,
+but this example demonstrates some of the more complex features of GEL.
+</p><pre class="programlisting"># Calculate the row-echelon form of a matrix
+function MyOwnREF(m) = (
+ if not IsMatrix(m) or not IsValueOnly(m) then
+ (error("MyOwnREF: argument not a value only matrix");bailout);
+ s := min(rows(m), columns(m));
+ i := 1;
+ d := 1;
+ while d <= s and i <= columns(m) do (
+
+ # This just makes the anchor element non-zero if at
+ # all possible
+ if m@(d,i) == 0 then (
+ j := d+1;
+ while j <= rows(m) do (
+ if m@(j,i) == 0 then
+ (j=j+1;continue);
+ a := m@(j,);
+ m@(j,) := m@(d,);
+ m@(d,) := a;
+ j := j+1;
+ break
+ )
+ );
+ if m@(d,i) == 0 then
+ (i:=i+1;continue);
+
+ # Here comes the actual zeroing of all but the anchor
+ # element rows
+ j := d+1;
+ while j <= rows(m)) do (
+ if m@(j,i) != 0 then (
+ m@(j,) := m@(j,)-(m@(j,i)/m@(d,i))*m@(d,)
+ );
+ j := j+1
+ );
+ m@(d,) := m@(d,) * (1/m@(d,i));
+ d := d+1;
+ i := i+1
+ );
+ m
+)
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch11s20.html">Prev</a> </td><td width="20%" align="center"> </td><td
width="40%" align="right"> <a accesskey="n" href="ch13.html">Next</a></td></tr><tr><td width="40%"
align="left" valign="top">Plotting </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Home</a></td><td width="40%" align="right" valign="top"> Chapter 13.
Settings</td></tr></table></div></body></html>
diff --git a/help/C/html/ch13.html b/help/C/html/ch13.html
new file mode 100644
index 0000000..82415a5
--- /dev/null
+++ b/help/C/html/ch13.html
@@ -0,0 +1,73 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapter 13.
Settings</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius Manual"><link rel="up" href="index.html" title="Genius Manual"><link
rel="prev" href="ch12.html" title="Chapter 12. Example Programs in GEL"><link rel="next" href="ch13s02.html"
title="Precision"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Chapter 13. Settings</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch12.html">Prev</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch13s02.html">Next</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-prefs"></a>Chapter 1
3. Settings</h1></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl class="toc"><dt><span
class="sect1"><a href="ch13.html#genius-prefs-output">Output</a></span></dt><dt><span class="sect1"><a
href="ch13s02.html">Precision</a></span></dt><dt><span class="sect1"><a
href="ch13s03.html">Terminal</a></span></dt><dt><span class="sect1"><a
href="ch13s04.html">Memory</a></span></dt></dl></div><p>
+ To configure <span class="application">Genius Mathematics Tool</span>, choose
+ <span class="guimenu">Settings</span> → <span class="guimenuitem">Preferences</span>.
+ There are several basic parameters provided by the calculator in addition
+ to the ones provided by the standard library. These control how the
+ calculator behaves.
+ </p><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Changing
Settings with GEL</h3><p>
+ Many of the settings in Genius are simply global variables, and can
+ be evaluated and assigned to in the same way as normal variables. See
+ <a class="xref" href="ch05s02.html" title="Using Variables">the section called “Using Variables”</a>
about evaluating and assigning
+ to variables, and <a class="xref" href="ch11s03.html" title="Parameters">the section called
“Parameters”</a> for
+ a list of settings that can be modified in this way.
+ </p><p>
+As an example, you can set the maximum number of digits in a result to 12 by typing:
+</p><pre class="programlisting">MaxDigits = 12
+</pre><p>
+ </p></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-prefs-output"></a>Output</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Maximum digits to output</span>
+ </span></dt><dd><p>The maximum digits in a result (<a class="link"
href="ch11s03.html#gel-function-MaxDigits"><code class="function">MaxDigits</code></a>)</p></dd><dt><span
class="term">
+ <span class="guilabel">Results as floats</span>
+ </span></dt><dd><p>If the results should be always printed as floats (<a class="link"
href="ch11s03.html#gel-function-ResultsAsFloats"><code
class="function">ResultsAsFloats</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Floats in scientific notation</span>
+ </span></dt><dd><p>If floats should be in scientific notation (<a class="link"
href="ch11s03.html#gel-function-ScientificNotation"><code
class="function">ScientificNotation</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Always print full expressions</span>
+ </span></dt><dd><p>Should we print out full expressions for non-numeric return values (longer than a
line) (<a class="link" href="ch11s03.html#gel-function-FullExpressions"><code
class="function">FullExpressions</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Use mixed fractions</span>
+ </span></dt><dd><p>If fractions should be printed as mixed fractions such as "1 1/3" rather than
"4/3". (<a class="link" href="ch11s03.html#gel-function-MixedFractions"><code
class="function">MixedFractions</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Display 0.0 when floating point number is less than 10^-x (0=never
chop)</span>
+ </span></dt><dd><p>How to chop output. But only when other numbers nearby are large.
+ See the documentation of the parameter
+ <a class="link" href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>. </p></dd><dt><span class="term">
+ <span class="guilabel">Only chop numbers when another number is greater than 10^-x</span>
+ </span></dt><dd><p>When to chop output. This is set by the parameter <a class="link"
href="ch11s03.html#gel-function-OutputChopWhenExponent"><code
class="function">OutputChopWhenExponent</code></a>.
+ See the documentation of the parameter
+ <a class="link" href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>. </p></dd><dt><span class="term">
+ <span class="guilabel">Remember output settings across sessions</span>
+ </span></dt><dd><p>Should the output settings in the <span class="guilabel">Number/Expression output
options</span> frame
+ be remembered for next session. Does not apply to the <span class="guilabel">Error/Info output
options</span> frame.</p><p>
+ If unchecked,
+ either the default or any previously saved settings are used each time Genius starts
+ up. Note that
+ settings are saved at the end of the session, so if you wish to change the defaults
+ check this box, restart <span class="application">Genius Mathematics Tool</span> and then uncheck
it again.
+ </p></dd><dt><span class="term">
+ <span class="guilabel">Display errors in a dialog</span>
+ </span></dt><dd><p>If set the errors will be displayed in a separate dialog, if
+ unset the errors will be printed on the console.</p></dd><dt><span class="term">
+ <span class="guilabel">Display information messages in a dialog</span>
+ </span></dt><dd><p>If set the information messages will be displayed in a separate
+ dialog, if unset the information messages will be printed on the
+ console.</p></dd><dt><span class="term">
+ <span class="guilabel">Maximum errors to display</span>
+ </span></dt><dd><p>
+ The maximum number of errors to return on one evaluation
+ (<a class="link" href="ch11s03.html#gel-function-MaxErrors"><code
class="function">MaxErrors</code></a>). If you set this to 0 then
+ all errors are always returned. Usually if some loop causes
+ many errors, then it is unlikely that you will be able to make
+ sense out of more than a few of these, so seeing a long list
+ of errors is usually not helpful.
+ </p></dd></dl></div><p>
+ In addition to these preferences, there are some preferences that can
+ only be changed by setting them in the workspace console. For others
+ that may affect the output see <a class="xref" href="ch11s03.html" title="Parameters">the section
called “Parameters”</a>.
+ </p><div class="variablelist"><dl class="variablelist"><dt><span class="term">
+ <code class="function">IntegerOutputBase</code>
+ </span></dt><dd><p>The base that will be used to output integers</p></dd><dt><span class="term">
+ <code class="function">OutputStyle</code>
+ </span></dt><dd><p>A string, can be <code class="literal">"normal"</code>,
+<code class="literal">"latex"</code>, <code class="literal">"mathml"</code> or
+<code class="literal">"troff"</code> and it will affect how matrices (and perhaps other
+stuff) is printed, useful for pasting into documents. Normal style is the
+default human readable printing style of <span class="application">Genius Mathematics Tool</span>. The
other styles are for
+typesetting in LaTeX, MathML (XML), or in Troff.</p></dd></dl></div></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch12.html">Prev</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> <a accesskey="n" href="ch13s02.html">Next</a></td></tr><tr><td width="40%" align="left"
valign="top">Chapter 12. Example Programs in GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Home</a></td><td width="40%" align="right" valign="top">
Precision</td></tr></table></div></body></html>
diff --git a/help/C/html/ch13s02.html b/help/C/html/ch13s02.html
new file mode 100644
index 0000000..1cdcc87
--- /dev/null
+++ b/help/C/html/ch13s02.html
@@ -0,0 +1,20 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Precision</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Genius
Manual"><link rel="up" href="ch13.html" title="Chapter 13. Settings"><link rel="prev" href="ch13.html"
title="Chapter 13. Settings"><link rel="next" href="ch13s03.html" title="Terminal"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Precision</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch13.html">Prev</a> </td><th width="60%"
align="center">Chapter 13. Settings</th><td width="20%" align="right"> <a accesskey="n"
href="ch13s03.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-prefs-precision">
</a>Precision</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span
class="term">
+ <span class="guilabel">Floating point precision</span>
+ </span></dt><dd><p>
+ The floating point precision in bits
+ (<a class="link" href="ch11s03.html#gel-function-FloatPrecision"><code
class="function">FloatPrecision</code></a>).
+ Note that changing this only affects newly computed quantities.
+ Old values stored in variables are obviously still in the old
+ precision and if you want to have them more precise you will have
+ to recompute them. Exceptions to this are the system constants
+ such as <a class="link" href="ch11s04.html#gel-function-pi"><code class="function">pi</code></a> or
+ <a class="link" href="ch11s04.html#gel-function-e"><code class="function">e</code></a>.
+ </p></dd><dt><span class="term">
+ <span class="guilabel">Remember precision setting across sessions</span>
+ </span></dt><dd><p>
+ Should the precision setting be remembered for the next session. If unchecked,
+ either the default or any previously saved setting is used each time Genius starts
+ up. Note that
+ settings are saved at the end of the session, so if you wish to change the default
+ check this box, restart genius and then uncheck it again.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13.html">Prev</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch13.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch13s03.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 13. Settings
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%"
align="right" valign="top"> Terminal</td></tr></table></div></body></html>
diff --git a/help/C/html/ch13s03.html b/help/C/html/ch13s03.html
new file mode 100644
index 0000000..6c2a223
--- /dev/null
+++ b/help/C/html/ch13s03.html
@@ -0,0 +1,11 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Terminal</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Genius
Manual"><link rel="up" href="ch13.html" title="Chapter 13. Settings"><link rel="prev" href="ch13s02.html"
title="Precision"><link rel="next" href="ch13s04.html" title="Memory"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Terminal</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch13s02.html">Prev</a> </td><th width="60%" align="center">Chapter 13.
Settings</th><td width="20%" align="right"> <a accesskey="n"
href="ch13s04.html">Next</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-prefs-terminal"></a>Terminal
</h2></div></div></div><p>
+ Terminal refers to the console in the work area.
+ </p><div class="variablelist"><dl class="variablelist"><dt><span class="term">
+ <span class="guilabel">Scrollback lines</span>
+ </span></dt><dd><p>Lines of scrollback in the terminal.</p></dd><dt><span class="term">
+ <span class="guilabel">Font</span>
+ </span></dt><dd><p>The font to use on the terminal.</p></dd><dt><span class="term">
+ <span class="guilabel">Black on white</span>
+ </span></dt><dd><p>If to use black on white on the terminal.</p></dd><dt><span class="term">
+ <span class="guilabel">Blinking cursor</span>
+ </span></dt><dd><p>If the cursor in the terminal should blink when the terminal is in focus. This can
sometimes be annoying and it generates idle traffic if you are using Genius
remotely.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13s02.html">Prev</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch13.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch13s04.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Precision </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Memory</td></tr></table></div></body></html>
diff --git a/help/C/html/ch13s04.html b/help/C/html/ch13s04.html
new file mode 100644
index 0000000..b5593c2
--- /dev/null
+++ b/help/C/html/ch13s04.html
@@ -0,0 +1,20 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Memory</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Genius
Manual"><link rel="up" href="ch13.html" title="Chapter 13. Settings"><link rel="prev" href="ch13s03.html"
title="Terminal"><link rel="next" href="ch14.html" title="Chapter 14. About Genius Mathematics
Tool"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Memory</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch13s03.html">Prev</a>
</td><th width="60%" align="center">Chapter 13. Settings</th><td width="20%" align="right"> <a accesskey="n"
href="ch14.html">Next</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-pr
efs-memory"></a>Memory</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span
class="term">
+ <span class="guilabel">Maximum number of nodes to allocate</span>
+ </span></dt><dd><p>
+ Internally all data is put onto small nodes in memory. This gives
+ a limit on the maximum number of nodes to allocate for
+ computations. This limit avoids the problem of running out of memory
+ if you do something by mistake that uses too much memory, such
+ as a recursion without end. This could slow your computer and make
+ it hard to even interrupt the program.
+ </p><p>
+ Once the limit is reached, <span class="application">Genius Mathematics Tool</span> asks if you
wish to interrupt
+ the computation or if you wish to continue. If you continue, no
+ limit is applied and it will be possible to run your computer
+ out of memory. The limit will be applied again next time you
+ execute a program or an expression on the Console regardless of how
+ you answered the question.
+ </p><p>
+ Setting the limit to zero means there is no limit to the amount of
+ memory that genius uses.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13s03.html">Prev</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch13.html">Up</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch14.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Terminal </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right"
valign="top"> Chapter 14. About <span class="application">Genius Mathematics
Tool</span></td></tr></table></div></body></html>
diff --git a/help/C/html/ch14.html b/help/C/html/ch14.html
new file mode 100644
index 0000000..a9bc727
--- /dev/null
+++ b/help/C/html/ch14.html
@@ -0,0 +1,22 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapter 14. About
Genius Mathematics Tool</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Genius Manual"><link rel="up" href="index.html" title="Genius
Manual"><link rel="prev" href="ch13s04.html" title="Memory"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Chapter 14. About <span class="application">Genius Mathematics
Tool</span></th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch13s04.html">Prev</a> </td><th
width="60%" align="center"> </th><td width="20%" align="right"> </td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="genius-about"></a>Chapter 14.
About <span class="application">Genius Mathema
tics Tool</span></h1></div></div></div><p> <span class="application">Genius Mathematics Tool</span> was
written by Jiří (George) Lebl
+(<code class="email"><<a class="email" href="mailto:jirka 5z com">jirka 5z com</a>></code>). The
history of <span class="application">Genius Mathematics Tool</span> goes back to late
+1997. It was the first calculator program for GNOME, but it then grew
+beyond being just a desktop calculator. To find more information about
+<span class="application">Genius Mathematics Tool</span>, please visit the <a class="ulink"
href="http://www.jirka.org/genius.html" target="_top">Genius Web page</a>.
+ </p><p>
+ To report a bug or make a suggestion regarding this application or
+ this manual, send email to me (the author) or post to the mailing
+ list (see the web page).
+ </p><p> This program is distributed under the terms of the GNU
+ General Public license as published by the Free Software
+ Foundation; either version 3 of the License, or (at your option)
+ any later version. A copy of this license can be found at this
+ <a class="ulink" href="http://www.gnu.org/copyleft/gpl.html" target="_top">link</a>, or in the file
+ COPYING included with the source code of this program. </p><p>Jiří Lebl was during various parts of
the development
+ partially supported for the work by NSF grants DMS 0900885,
+ DMS 1362337,
+ the University of Illinois at Urbana-Champaign,
+ the University of California at San Diego,
+ the University of Wisconsin-Madison, and
+ Oklahoma State University. The software has
+ been used for both teaching and research.</p></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13s04.html">Prev</a>
</td><td width="20%" align="center"> </td><td width="40%" align="right"> </td></tr><tr><td width="40%"
align="left" valign="top">Memory </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Home</a></td><td width="40%" align="right" valign="top">
</td></tr></table></div></body></html>
diff --git a/help/C/html/genius.proc b/help/C/html/genius.proc
new file mode 100644
index 0000000..e69de29
diff --git a/help/C/html/index.html b/help/C/html/index.html
new file mode 100644
index 0000000..e1bf261
--- /dev/null
+++ b/help/C/html/index.html
@@ -0,0 +1,71 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Genius
Manual</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><meta name="description"
content="Manual for the Genius Math Tool."><link rel="home" href="index.html" title="Genius Manual"><link
rel="next" href="ch01.html" title="Chapter 1. Introduction"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Genius Manual</th></tr><tr><td width="20%" align="left"> </td><th
width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch01.html">Next</a></td></tr></table><hr></div><div lang="en" class="book"><div
class="titlepage"><div><div><h1 class="title"><a name="index"></a>Genius Manual</h1></div><div><div
class="authorgroup"><div class="author"><h3 class="author"><span class="firstname">Jiří</sp
an> <span class="surname">Lebl</span></h3><div class="affiliation"><span class="orgname">Oklahoma State
University<br></span><div class="address"><p> <code class="email"><<a class="email" href="mailto:jirka 5z
com">jirka 5z com</a>></code> </p></div></div></div><div class="author"><h3 class="author"><span
class="firstname">Kai</span> <span class="surname">Willadsen</span></h3><div class="affiliation"><span
class="orgname">University of Queensland, Australia<br></span><div class="address"><p> <code
class="email"><<a class="email" href="mailto:kaiw itee uq edu au">kaiw itee uq edu au</a>></code>
</p></div></div></div></div></div><div><p class="releaseinfo">This manual describes version 1.0.22 of Genius.
+ </p></div><div><p class="copyright">Copyright © 1997-2016 Jiří (George) Lebl</p></div><div><p
class="copyright">Copyright © 2004 Kai Willadsen</p></div><div><div class="legalnotice"><a
name="legalnotice"></a><p>
+ Permission is granted to copy, distribute and/or modify this
+ document under the terms of the GNU Free Documentation
+ License (GFDL), Version 1.1 or any later version published
+ by the Free Software Foundation with no Invariant Sections,
+ no Front-Cover Texts, and no Back-Cover Texts. You can find
+ a copy of the GFDL at this <a class="ulink" href="ghelp:fdl" target="_top">link</a> or in the file
COPYING-DOCS
+ distributed with this manual.
+ </p><p> This manual is part of a collection of GNOME manuals
+ distributed under the GFDL. If you want to distribute this
+ manual separately from the collection, you can do so by
+ adding a copy of the license to the manual, as described in
+ section 6 of the license.
+ </p><p>
+ Many of the names used by companies to distinguish their
+ products and services are claimed as trademarks. Where those
+ names appear in any GNOME documentation, and the members of
+ the GNOME Documentation Project are made aware of those
+ trademarks, then the names are in capital letters or initial
+ capital letters.
+ </p><p>
+ DOCUMENT AND MODIFIED VERSIONS OF THE DOCUMENT ARE PROVIDED
+ UNDER THE TERMS OF THE GNU FREE DOCUMENTATION LICENSE
+ WITH THE FURTHER UNDERSTANDING THAT:
+
+ </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>DOCUMENT IS
PROVIDED ON AN "AS IS" BASIS,
+ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
+ IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES
+ THAT THE DOCUMENT OR MODIFIED VERSION OF THE
+ DOCUMENT IS FREE OF DEFECTS MERCHANTABLE, FIT FOR
+ A PARTICULAR PURPOSE OR NON-INFRINGING. THE ENTIRE
+ RISK AS TO THE QUALITY, ACCURACY, AND PERFORMANCE
+ OF THE DOCUMENT OR MODIFIED VERSION OF THE
+ DOCUMENT IS WITH YOU. SHOULD ANY DOCUMENT OR
+ MODIFIED VERSION PROVE DEFECTIVE IN ANY RESPECT,
+ YOU (NOT THE INITIAL WRITER, AUTHOR OR ANY
+ CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY
+ SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER
+ OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS
+ LICENSE. NO USE OF ANY DOCUMENT OR MODIFIED
+ VERSION OF THE DOCUMENT IS AUTHORIZED HEREUNDER
+ EXCEPT UNDER THIS DISCLAIMER; AND
+ </p></li><li class="listitem"><p>UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL
+ THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE),
+ CONTRACT, OR OTHERWISE, SHALL THE AUTHOR,
+ INITIAL WRITER, ANY CONTRIBUTOR, OR ANY
+ DISTRIBUTOR OF THE DOCUMENT OR MODIFIED VERSION
+ OF THE DOCUMENT, OR ANY SUPPLIER OF ANY OF SUCH
+ PARTIES, BE LIABLE TO ANY PERSON FOR ANY
+ DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
+ CONSEQUENTIAL DAMAGES OF ANY CHARACTER
+ INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS
+ OF GOODWILL, WORK STOPPAGE, COMPUTER FAILURE OR
+ MALFUNCTION, OR ANY AND ALL OTHER DAMAGES OR
+ LOSSES ARISING OUT OF OR RELATING TO USE OF THE
+ DOCUMENT AND MODIFIED VERSIONS OF THE DOCUMENT,
+ EVEN IF SUCH PARTY SHALL HAVE BEEN INFORMED OF
+ THE POSSIBILITY OF SUCH DAMAGES.
+ </p></li></ol></div><p>
+ </p></div></div><div><div class="legalnotice"><a name="idm45453684982368"></a><p
class="legalnotice-title"><b>Feedback</b></p><p>
+ To report a bug or make a suggestion regarding the <span class="application">Genius Mathematics
Tool</span>
+ application or this manual, please visit the
+ <a class="ulink" href="http://www.jirka.org/genius.html" target="_top">Genius
+ Web page</a>
+ or email me at <code class="email"><<a class="email" href="mailto:jirka 5z com">jirka 5z
com</a>></code>.
+ </p></div></div><div><div class="revhistory"><table style="border-style:solid; width:100%;"
summary="Revision History"><tr><th align="left" valign="top" colspan="2"><b>Revision
History</b></th></tr><tr><td align="left">Revision 0.2</td><td align="left">September 2016</td></tr><tr><td
align="left" colspan="2">
+ <p class="author">Jiri (George) Lebl
+ <code class="email"><<a class="email" href="mailto:jirka 5z com">jirka 5z
com</a>></code>
+ </p>
+ </td></tr></table></div></div><div><div class="abstract"><p
class="title"><b>Abstract</b></p><p>Manual for the Genius Math Tool.</p></div></div></div><hr></div><div
class="toc"><p><b>Table of Contents</b></p><dl class="toc"><dt><span class="chapter"><a href="ch01.html">1.
Introduction</a></span></dt><dt><span class="chapter"><a href="ch02.html">2. Getting
Started</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch02.html#genius-to-start">To Start <span
class="application">Genius Mathematics Tool</span></a></span></dt><dt><span class="sect1"><a
href="ch02s02.html">When You Start Genius</a></span></dt></dl></dd><dt><span class="chapter"><a
href="ch03.html">3. Basic Usage</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch03.html#genius-usage-workarea">Using the Work Area</a></span></dt><dt><span class="sect1"><a
href="ch03s02.html">To Create a New Program </a></span></dt><dt><span class="sect1"><a href="ch03s03.html">To
Open and Run a Program </a></span></dt></
dl></dd><dt><span class="chapter"><a href="ch04.html">4. Plotting</a></span></dt><dd><dl><dt><span
class="sect1"><a href="ch04.html#genius-line-plots">Line Plots</a></span></dt><dt><span class="sect1"><a
href="ch04s02.html">Parametric Plots</a></span></dt><dt><span class="sect1"><a href="ch04s03.html">Slopefield
Plots</a></span></dt><dt><span class="sect1"><a href="ch04s04.html">Vectorfield
Plots</a></span></dt><dt><span class="sect1"><a href="ch04s05.html">Surface
Plots</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch05.html">5. GEL
Basics</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch05.html#genius-gel-values">Values</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-numbers">Numbers</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-booleans">Booleans</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-strings">Strings</a></span></dt><dt><span class="sect2"><a href=
"ch05.html#genius-gel-values-null">Null</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s02.html">Using Variables</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-setting">Setting Variables</a></span></dt><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-built-in">Built-in Variables</a></span></dt><dt><span
class="sect2"><a href="ch05s02.html#genius-gel-previous-result">Previous Result
Variable</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch05s03.html">Using
Functions</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-defining">Defining Functions</a></span></dt><dt><span
class="sect2"><a href="ch05s03.html#genius-gel-functions-variable-argument-lists">Variable Argument
Lists</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-passing-functions">Passing Functions to
Functions</a></span></dt><dt><span class="sect2"><a href="c
h05s03.html#genius-gel-functions-operations">Operations on Functions</a></span></dt></dl></dd><dt><span
class="sect1"><a href="ch05s04.html">Separator</a></span></dt><dt><span class="sect1"><a
href="ch05s05.html">Comments</a></span></dt><dt><span class="sect1"><a href="ch05s06.html">Modular
Evaluation</a></span></dt><dt><span class="sect1"><a href="ch05s07.html">List of GEL
Operators</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch06.html">6. Programming with
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch06.html#genius-gel-conditionals">Conditionals</a></span></dt><dt><span class="sect1"><a
href="ch06s02.html">Loops</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-while">While Loops</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-for">For Loops</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-foreach">Foreach Loops</a></span></dt><dt><span class="sect
2"><a href="ch06s02.html#genius-gel-loops-break-continue">Break and
Continue</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch06s03.html">Sums and
Products</a></span></dt><dt><span class="sect1"><a href="ch06s04.html">Comparison
Operators</a></span></dt><dt><span class="sect1"><a href="ch06s05.html">Global Variables and Scope of
Variables</a></span></dt><dt><span class="sect1"><a href="ch06s06.html">Parameter
variables</a></span></dt><dt><span class="sect1"><a href="ch06s07.html">Returning</a></span></dt><dt><span
class="sect1"><a href="ch06s08.html">References</a></span></dt><dt><span class="sect1"><a
href="ch06s09.html">Lvalues</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch07.html">7.
Advanced Programming with GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch07.html#genius-gel-error-handling">Error Handling</a></span></dt><dt><span class="sect1"><a
href="ch07s02.html">Toplevel Syntax</a></span></dt><dt><span class="sect1"><a href="ch
07s03.html">Returning Functions</a></span></dt><dt><span class="sect1"><a href="ch07s04.html">True Local
Variables</a></span></dt><dt><span class="sect1"><a href="ch07s05.html">GEL Startup
Procedure</a></span></dt><dt><span class="sect1"><a href="ch07s06.html">Loading
Programs</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch08.html">8. Matrices in
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch08.html#genius-gel-matrix-support">Entering
Matrices</a></span></dt><dt><span class="sect1"><a href="ch08s02.html">Conjugate Transpose and Transpose
Operator</a></span></dt><dt><span class="sect1"><a href="ch08s03.html">Linear
Algebra</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch09.html">9. Polynomials in
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch09.html#genius-gel-polynomials-using">Using
Polynomials</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch10.html">10. Set Theory in
GEL</a></span></dt><dd><dl><dt><
span class="sect1"><a href="ch10.html#genius-gel-sets-using">Using Sets</a></span></dt></dl></dd><dt><span
class="chapter"><a href="ch11.html">11. List of GEL functions</a></span></dt><dd><dl><dt><span
class="sect1"><a href="ch11.html#genius-gel-function-list-commands">Commands</a></span></dt><dt><span
class="sect1"><a href="ch11s02.html">Basic</a></span></dt><dt><span class="sect1"><a
href="ch11s03.html">Parameters</a></span></dt><dt><span class="sect1"><a
href="ch11s04.html">Constants</a></span></dt><dt><span class="sect1"><a
href="ch11s05.html">Numeric</a></span></dt><dt><span class="sect1"><a
href="ch11s06.html">Trigonometry</a></span></dt><dt><span class="sect1"><a href="ch11s07.html">Number
Theory</a></span></dt><dt><span class="sect1"><a href="ch11s08.html">Matrix
Manipulation</a></span></dt><dt><span class="sect1"><a href="ch11s09.html">Linear
Algebra</a></span></dt><dt><span class="sect1"><a href="ch11s10.html">Combinatorics</a></span></dt><dt><span
class="sect1"><a
href="ch11s11.html">Calculus</a></span></dt><dt><span class="sect1"><a
href="ch11s12.html">Functions</a></span></dt><dt><span class="sect1"><a href="ch11s13.html">Equation
Solving</a></span></dt><dt><span class="sect1"><a href="ch11s14.html">Statistics</a></span></dt><dt><span
class="sect1"><a href="ch11s15.html">Polynomials</a></span></dt><dt><span class="sect1"><a
href="ch11s16.html">Set Theory</a></span></dt><dt><span class="sect1"><a href="ch11s17.html">Commutative
Algebra</a></span></dt><dt><span class="sect1"><a href="ch11s18.html">Miscellaneous</a></span></dt><dt><span
class="sect1"><a href="ch11s19.html">Symbolic Operations</a></span></dt><dt><span class="sect1"><a
href="ch11s20.html">Plotting</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch12.html">12.
Example Programs in GEL</a></span></dt><dt><span class="chapter"><a href="ch13.html">13.
Settings</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch13.html#genius-prefs-output">Output</a></span>
</dt><dt><span class="sect1"><a href="ch13s02.html">Precision</a></span></dt><dt><span class="sect1"><a
href="ch13s03.html">Terminal</a></span></dt><dt><span class="sect1"><a
href="ch13s04.html">Memory</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch14.html">14. About
<span class="application">Genius Mathematics Tool</span></a></span></dt></dl></div><div
class="list-of-figures"><p><b>List of Figures</b></p><dl><dt>2.1. <a href="ch02s02.html#mainwindow-fig"><span
class="application">Genius Mathematics Tool</span> Window</a></dt><dt>4.1. <a
href="ch04.html#lineplot-fig">Create Plot Window</a></dt><dt>4.2. <a href="ch04.html#lineplot2-fig">Plot
Window</a></dt><dt>4.3. <a href="ch04s02.html#paramplot-fig">Parametric Plot Tab</a></dt><dt>4.4. <a
href="ch04s02.html#paramplot2-fig">Parametric Plot</a></dt><dt>4.5. <a
href="ch04s05.html#surfaceplot-fig">Surface Plot</a></dt></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr>
<td width="40%" align="left"> </td><td width="20%" align="center"> </td><td width="40%" align="right"> <a
accesskey="n" href="ch01.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top"> </td><td
width="20%" align="center"> </td><td width="40%" align="right" valign="top"> Chapter 1.
Introduction</td></tr></table></div></body></html>
diff --git a/help/Makefile.am b/help/Makefile.am
index 9d4ca8a..e056eda 100644
--- a/help/Makefile.am
+++ b/help/Makefile.am
@@ -1,30 +1,181 @@
-include $(top_srcdir)/gnome-doc-utils.make
-dist-hook: doc-dist-hook
+# After updating docs run ./update-xml-to-txt-html.sh
+# Read that script for what it does. I'll run this script before releasing.
+# The output is stored in git and it is not run on make or make dist or some
+# such.
+#
+# to update an existing po file, you can run ./update-po.sh LANG
+# or just use xml2po manually
+
+
+# FIXME: this should be some sort of a loop
+# DOC_LINGUAS = cs de el es fr pt_BR ru sv
+# If adding languages make sure to also update the update-xml-to-txt-html.sh
+
+#C
+THE_CFIGURES = C/figures/parametric.png \
+ C/figures/genius_window.png \
+ C/figures/line_plot_graph.png \
+ C/figures/line_plot.png \
+ C/figures/parametric_graph.png \
+ C/figures/surface_graph.png
+
+manualxmlCdir = $(datadir)/genius/help/C
+manualxmlC_DATA = C/genius.xml C/legal.xml
+manualxmlCfiguresdir = $(datadir)/genius/help/C/figures
+manualxmlCfigures_DATA = $(THE_CFIGURES)
+
+manualhtmlCdir = $(datadir)/genius/help/C/html
+manualhtmlC_DATA = C/html/*.html
+manualhtmlCfiguresdir = $(datadir)/genius/help/C/html/figures
+manualhtmlCfigures_DATA = $(THE_CFIGURES)
+
+#cs
+THE_csFIGURES = cs/figures/parametric.png \
+ cs/figures/genius_window.png \
+ cs/figures/line_plot_graph.png \
+ cs/figures/line_plot.png \
+ cs/figures/parametric_graph.png \
+ cs/figures/surface_graph.png
+
+manualxmlcsdir = $(datadir)/genius/help/cs
+manualxmlcs_DATA = cs/genius.xml
+manualxmlcsfiguresdir = $(datadir)/genius/help/cs/figures
+manualxmlcsfigures_DATA = $(THE_csFIGURES)
+
+manualhtmlcsdir = $(datadir)/genius/help/cs/html
+manualhtmlcs_DATA = cs/html/*.html
+manualhtmlcsfiguresdir = $(datadir)/genius/help/cs/html/figures
+manualhtmlcsfigures_DATA = $(THE_csFIGURES)
+
+#de
+THE_deFIGURES = de/figures/parametric.png \
+ de/figures/genius_window.png \
+ de/figures/line_plot_graph.png \
+ de/figures/line_plot.png \
+ de/figures/parametric_graph.png \
+ de/figures/surface_graph.png
+
+manualxmldedir = $(datadir)/genius/help/de
+manualxmlde_DATA = de/genius.xml
+manualxmldefiguresdir = $(datadir)/genius/help/de/figures
+manualxmldefigures_DATA = $(THE_deFIGURES)
+
+manualhtmldedir = $(datadir)/genius/help/de/html
+manualhtmlde_DATA = de/html/*.html
+manualhtmldefiguresdir = $(datadir)/genius/help/de/html/figures
+manualhtmldefigures_DATA = $(THE_deFIGURES)
+
+#el
+manualxmleldir = $(datadir)/genius/help/el
+manualxmlel_DATA = el/genius.xml
+manualxmlelfiguresdir = $(datadir)/genius/help/el/figures
+manualxmlelfigures_DATA = $(THE_CFIGURES)
-DOC_MODULE = genius
-DOC_FIGURES = figures/parametric.png \
- figures/genius_window.png \
- figures/line_plot_graph.png \
- figures/line_plot.png \
- figures/parametric_graph.png \
- figures/surface_graph.png
+manualhtmleldir = $(datadir)/genius/help/el/html
+manualhtmlel_DATA = el/html/*.html
+manualhtmlelfiguresdir = $(datadir)/genius/help/el/html/figures
+manualhtmlelfigures_DATA = $(THE_CFIGURES)
-DOC_ENTITIES = legal.xml
+#es
+manualxmlesdir = $(datadir)/genius/help/es
+manualxmles_DATA = es/genius.xml
+manualxmlesfiguresdir = $(datadir)/genius/help/es/figures
+manualxmlesfigures_DATA = $(THE_esFIGURES)
-DOC_LINGUAS = cs de el es fr pt_BR ru sv
+manualhtmlesdir = $(datadir)/genius/help/es/html
+manualhtmles_DATA = es/html/*.html
+manualhtmlesfiguresdir = $(datadir)/genius/help/es/html/figures
+manualhtmlesfigures_DATA = $(THE_esFIGURES)
+
+#fr
+THE_frFIGURES = fr/figures/parametric.png \
+ fr/figures/genius_window.png \
+ fr/figures/line_plot_graph.png \
+ fr/figures/line_plot.png \
+ fr/figures/parametric_graph.png \
+ fr/figures/surface_graph.png
+
+manualxmlfrdir = $(datadir)/genius/help/fr
+manualxmlfr_DATA = fr/genius.xml
+manualxmlfrfiguresdir = $(datadir)/genius/help/fr/figures
+manualxmlfrfigures_DATA = $(THE_frFIGURES)
+
+manualhtmlfrdir = $(datadir)/genius/help/fr/html
+manualhtmlfr_DATA = fr/html/*.html
+manualhtmlfrfiguresdir = $(datadir)/genius/help/fr/html/figures
+manualhtmlfrfigures_DATA = $(THE_frFIGURES)
+
+#pt_BR
+manualxmlpt_BRdir = $(datadir)/genius/help/pt_BR
+manualxmlpt_BR_DATA = pt_BR/genius.xml
+manualxmlpt_BRfiguresdir = $(datadir)/genius/help/pt_BR/figures
+manualxmlpt_BRfigures_DATA = $(THE_CFIGURES)
+
+manualhtmlpt_BRdir = $(datadir)/genius/help/pt_BR/html
+manualhtmlpt_BR_DATA = pt_BR/html/*.html
+manualhtmlpt_BRfiguresdir = $(datadir)/genius/help/pt_BR/html/figures
+manualhtmlpt_BRfigures_DATA = $(THE_CFIGURES)
+
+#ru
+manualxmlrudir = $(datadir)/genius/help/ru
+manualxmlru_DATA = ru/genius.xml
+manualxmlrufiguresdir = $(datadir)/genius/help/ru/figures
+manualxmlrufigures_DATA = $(THE_CFIGURES)
+
+manualhtmlrudir = $(datadir)/genius/help/ru/html
+manualhtmlru_DATA = ru/html/*.html
+manualhtmlrufiguresdir = $(datadir)/genius/help/ru/html/figures
+manualhtmlrufigures_DATA = $(THE_CFIGURES)
+
+#sv
+THE_svFIGURES = sv/figures/parametric.png \
+ sv/figures/genius_window.png \
+ sv/figures/line_plot_graph.png \
+ sv/figures/line_plot.png \
+ sv/figures/parametric_graph.png \
+ sv/figures/surface_graph.png
+
+manualxmlsvdir = $(datadir)/genius/help/sv
+manualxmlsv_DATA = sv/genius.xml
+manualxmlsvfiguresdir = $(datadir)/genius/help/sv/figures
+manualxmlsvfigures_DATA = $(THE_svFIGURES)
+
+manualhtmlsvdir = $(datadir)/genius/help/sv/html
+manualhtmlsv_DATA = sv/html/*.html
+manualhtmlsvfiguresdir = $(datadir)/genius/help/sv/html/figures
+manualhtmlsvfigures_DATA = $(THE_svFIGURES)
#
# Text version
-#
-
-# Run this by hand for now
-#genius.txt: genius.xml $(entities)
-# docbook2txt C/genius.xml
-# dos2unix genius.txt
manualdir = $(datadir)/genius
-
manual_DATA = genius.txt
-EXTRA_DIST = genius.txt
+EXTRA_DIST = genius.txt \
+ C/legal.xml \
+ C/genius.xml \
+ C/html/*.html \
+ cs/genius.xml \
+ cs/html/*.html \
+ de/genius.xml \
+ de/html/*.html \
+ el/genius.xml \
+ el/html/*.html \
+ es/genius.xml \
+ es/html/*.html \
+ fr/genius.xml \
+ fr/html/*.html \
+ pt_BR/genius.xml \
+ pt_BR/html/*.html \
+ ru/genius.xml \
+ ru/html/*.html \
+ sv/genius.xml \
+ sv/html/*.html \
+ $(THE_CFIGURES) \
+ $(THE_csFIGURES) \
+ $(THE_deFIGURES) \
+ $(THE_frFIGURES) \
+ $(THE_svFIGURES) \
+ update-po.sh \
+ update-xml-to-txt-html.sh
diff --git a/help/cs/cs.po b/help/cs/cs.po
index e851468..cf60bdd 100644
--- a/help/cs/cs.po
+++ b/help/cs/cs.po
@@ -2016,7 +2016,7 @@ msgstr ""
"mezi výrazy použít operátor <literal>;</literal>. Tímto způsobem se "
"vyhodnotí oba výrazy a výsledek druhého (nebo posledního, pokud je výrazů "
"více než dva) je vrácen. Předpokládejme, že jste napsali následující: "
-"<placeholder-1> Tento výraz vyplodí 5."
+"<placeholder-1/> Tento výraz vyplodí 5."
#: C/genius.xml:1158(para)
msgid ""
diff --git a/help/cs/html/ch01.html b/help/cs/html/ch01.html
new file mode 100644
index 0000000..9fbcfcb
--- /dev/null
+++ b/help/cs/html/ch01.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitola 1.
Úvod</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="index.html" title="Příručka k
aplikaci Genius"><link rel="prev" href="index.html" title="Příručka k aplikaci Genius"><link rel="next"
href="ch02.html" title="Kapitola 2. Začínáme"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitola 1. Úvod</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="index.html">Předcházející</a> </td><th width="60%" align="center"> </th><td width="20%"
align="right"> <a accesskey="n" href="ch02.html">Další</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 class="titl
e"><a name="genius-introduction"></a>Kapitola 1. Úvod</h1></div></div></div><p>Aplikace <span
class="application">matematický nástroj Genius</span> je obecný kalkulátor pro potřeby jako pracovní
kalkulátor, výukový nástroj v matematice a rovněž je použitelný ve vědeckých oborech. Jazyk, který <span
class="application">matematický nástroj Genius</span> používá, je navržen jako „matematický“ v tom smyslu, že
by mělo platit „dostanete to, co si myslíte“. To ale samozřejmě není zcela dosažitelný cíl. <span
class="application">Matematický nástroj Genius</span> zahrnuje racionální čísla, celá čísla s libovolnou
přesností a desetinná čísla s vícenásobnou přesností díky knihovně GMP. Pracuje s komplexními čísly v
kartézské notaci. Umí dobře zpracovávat vektory a matice a umí základy lineární algebry. Programovací jazyk
dovoluje definovat uživatelské funkce, proměnné a upravovat parametry.</p><p><span clas
s="application">Matematický nástroj Genius</span> je šířen ve dvou verzích. Jedna verze je grafická verze
GNOME, ve stylu rozhraní IDE a schopností vykreslovat funkce jedné nebo dvou proměnných. Verze pro příkazový
řádek nevyžaduje GNOME, ale samozřejmě neimplementuje funkce, které vyžadují grafické rozhraní.</p><p>Některé
části této příručky popisují grafickou verzi kalkulátoru, ale jazyk je samozřejmě tentýž. Verze pouze pro
příkazový řádek postrádá grafické funkce a všechnu další funkčnost vyžadující grafické uživatelské
rozhraní.</p><p>Obecně, pokud se jedná o vlastnost jazyka (funkci, operátor apod.) jako novinku od verze
1.0.5, je to zmíněno, ale ohledně starších verzí než 1.0.5 byste se měli podívat do souboru
NEWS.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="index.html">Předcházející</a> </td><td wi
dth="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch02.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Příručka k aplikaci Genius
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Kapitola 2. Začínáme</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch02.html b/help/cs/html/ch02.html
new file mode 100644
index 0000000..2264c3d
--- /dev/null
+++ b/help/cs/html/ch02.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitola 2.
Začínáme</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="index.html" title="Příručka k
aplikaci Genius"><link rel="prev" href="ch01.html" title="Kapitola 1. Úvod"><link rel="next"
href="ch02s02.html" title="Když spustíte aplikaci Genius"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitola 2. Začínáme</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch01.html">Předcházející</a> </td><th width="60%" align="center"> </th><td width="20%"
align="right"> <a accesskey="n" href="ch02s02.html">Další</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1
class="title"><a name="genius-getting-started"></a>Kapitola 2. Začínáme</h1></div></div></div><div
class="toc"><p><b>Obsah</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch02.html#genius-to-start">Jak spustit <span class="application">matematický nástroj
Genius</span></a></span></dt><dt><span class="sect1"><a href="ch02s02.html">Když spustíte aplikaci
Genius</a></span></dt></dl></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-to-start"></a>Jak spustit <span class="application">matematický nástroj
Genius</span></h2></div></div></div><p><span class="application">Matematický nástroj Genius</span> můžete
spustit následujícími způsoby:</p><div class="variablelist"><dl class="variablelist"><dt><span
class="term">Nabídka <span class="guimenu">Aplikace</span></span></dt><dd><p>V závislosti na vašem operačním
systému a jeho verzi se může položka nabídky <span class="application">Matema
tický nástroj Genius</span> vyskytovat na různých místech. Může být v podnabídkách <span
class="guisubmenu">Vzdělávání</span>, <span class="guisubmenu">Příslušenství</span>, <span
class="guisubmenu">Kancelář</span>, <span class="guisubmenu">Věda</span> nebo podobných, záleží na vašem
konkrétním nastavení. Název položky, kterou hledáte je <span class="application">Matematický nástroj
Genius</span>. Až položku v nabídce naleznete, klikněte na ni a tím <span class="application">matematický
nástroj Genius</span> spustíte.</p></dd><dt><span class="term">Dialogové okno <span class="guilabel">Spustit
aplikaci</span></span></dt><dd><p>Položka nabídky nemusí být v závislosti na instalaci vašeho systému
dostupná. Pokud se tak stane, můžete otevřít dialogové okno Spustit aplikaci a spustit <span
class="command"><strong>gnome-genius</strong></span>.</p></dd><dt><span class="term">Příkazový
řádek</span></dt><dd><p>Pro spuštěn
í <span class="application">Matematického nástroje Genius</span> ve verzi pro GNOME spusťte z příkazového
řádku <span class="command"><strong>gnome-genius</strong></span>.</p><p>Pokud chcete spustit jen verzi pro
příkazový řádek, spusťte následující příkaz: <span class="command"><strong>genius</strong></span>. Tato verze
nezahrnuje grafické prostředí a některá funkcionalita, jako kreslení, nebude
dostupná.</p></dd></dl></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch01.html">Předcházející</a> </td><td
width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch02s02.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitola 1. Úvod
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Když spustíte aplikaci Gen
ius</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch02s02.html b/help/cs/html/ch02s02.html
new file mode 100644
index 0000000..6fb2484
--- /dev/null
+++ b/help/cs/html/ch02s02.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Když spustíte aplikaci
Genius</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch02.html" title="Kapitola 2.
Začínáme"><link rel="prev" href="ch02.html" title="Kapitola 2. Začínáme"><link rel="next" href="ch03.html"
title="Kapitola 3. Základy používání"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Když spustíte aplikaci Genius</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch02.html">Předcházející</a> </td><th width="60%" align="center">Kapitola
2. Začínáme</th><td width="20%" align="right"> <a accesskey="n"
href="ch03.html">Další</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-when-start"></a>Když
spustíte aplikaci Genius</h2></div></div></div><p>Když spustíte <span class="application">matematický nástroj
Genius</span> ve vydání GNOME, zobrazí se okno jako je na obrázku <a class="xref"
href="ch02s02.html#mainwindow-fig" title="Obrázek 2.1. Okno Matematického nástroje Genius">2.1 – „Okno <span
class="application">Matematického nástroje Genius</span>“</a>.</p><div class="figure"><a
name="mainwindow-fig"></a><p class="title"><b>Obrázek 2.1. Okno <span class="application">Matematického
nástroje Genius</span></b></p><div class="figure-contents"><div class="screenshot"><div
class="mediaobject"><img src="figures/genius_window.png" alt="Ukazuje hlavní okno aplikace Matematický
nástroj Genius. Obsahuje záhlaví, nabídkovou lištu, nástrojovou lištu a pracovní oblast. Nabídková lišta
obsahuje nabídky Soubor, Upravit, Kalkulátor, Příklady,
Programy, Nastavení a Nápověda."></div></div></div></div><br class="figure-break"><p>Okno <span
class="application">Matematického nástroje Genius</span> obsahuje následující prvky:</p><div
class="variablelist"><dl class="variablelist"><dt><span class="term">Lišta nabídek</span></dt><dd><p>Nabídky
v liště nabídek obsahují všechny příkazy, které potřebujete pro práci se soubory v <span
class="application">Matematickém nástroji Genius</span>. Nabídka <span class="guilabel">Soubor</span>
obsahuje položky pro načítání a ukládání položek a vytváření nových programů. Příkaz <span
class="guilabel">Načíst a spustit…</span> neotevírá nové okno pro program, ale program jen přímo spustí. To
je to stejné, co dělá příkaz <span class="command"><strong>load</strong></span>.</p><p>Nabídka <span
class="guilabel">Kalkulátor</span> ovládá výpočetní jádro. Umožňuje vám spustit právě vybraný program nebo
přerušit právě prob
íhající výpočet. Můžete také hledat v úplných výrazech poslední odpovědi (to je užitečné, když je poslední
odpověď delší, než se vloze do jedné obrazovky konzoly) nebo si zobrazovat seznam hodnot všech uživatelem
definovaných proměnných. Rovněž můžete sledovat uživatelské proměnné, což se hodí hlavně, když běží dlouhý
výpočet nebo některý program ladíte. A nakonec poskytuje kreslící funkce přes uživatelsky přívětivé dialogové
okno.</p><p>Pod nabídkou <span class="guilabel">Příklady</span> je seznam příkladů a ukázkových programů.
Když nabídku otevřete, načte se příklad jako nový program, který můžete spouštět, upravovat, měnit a ukládat.
Tyto programy by měly být dobře zdokumentované a obecně předvádět některé z vlastností <span
class="application">matematického nástroje Genius</span> nebo nějaký matematický koncept.</p><p>Pod nabídkou
<span class="guilabel">Programy</span> je
seznam právě otevřených programů a umožňuje mezi nimi přepínat.</p><p>Ostatní nabídky mají funkce podobné
jako v jiných aplikacích.</p></dd><dt><span class="term">Lišta nástrojů</span></dt><dd><p>Lišta nástrojů
obsahuje podmnožinu příkazů, které jsou dostupné z lišty nabídek.</p></dd><dt><span class="term">Pracovní
oblast</span></dt><dd><p>Pracovní oblast je hlavní způsob, jak s aplikací komunikovat.</p><p>Na začátku má
pracovní oblast jedinou kartu <span class="guilabel">Konzola</span>, která je hlavním způsobem, jak
komunikovat s kalkulátorem. V ní zapisujete výrazy a po zmáčknutí klávesy Enter jsou v ní hned vraceny
výsledky.</p><p>Případně můžete psát delší programy a ty se pak mohou objevit v samostatných kartách.
Programy jsou sady příkazů nebo funkcí, které mohou být spuštěny naráz jako jeden celek, aniž byste je museli
postupně zadávat do příkazkového řádku. Programy mohou být uloženy do s
ouborů pro pozdější opětovné použití.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch02.html">Předcházející</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch02.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch03.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitola 2. Začínáme
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Kapitola 3. Základy používání</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch03.html b/help/cs/html/ch03.html
new file mode 100644
index 0000000..65c1e48
--- /dev/null
+++ b/help/cs/html/ch03.html
@@ -0,0 +1,8 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitola 3. Základy
používání</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="index.html" title="Příručka k
aplikaci Genius"><link rel="prev" href="ch02s02.html" title="Když spustíte aplikaci Genius"><link rel="next"
href="ch03s02.html" title="Jak vytvořit nový program"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitola 3. Základy používání</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch02s02.html">Předcházející</a> </td><th width="60%" align="center">
</th><td width="20%" align="right"> <a accesskey="n"
href="ch03s02.html">Další</a></td></tr></table><hr></div><div class="chapter
"><div class="titlepage"><div><div><h1 class="title"><a name="genius-usage"></a>Kapitola 3. Základy
používání</h1></div></div></div><div class="toc"><p><b>Obsah</b></p><dl class="toc"><dt><span
class="sect1"><a href="ch03.html#genius-usage-workarea">Používání pracovní oblasti</a></span></dt><dt><span
class="sect1"><a href="ch03s02.html">Jak vytvořit nový program</a></span></dt><dt><span class="sect1"><a
href="ch03s03.html">Jak otevřít a spustit program</a></span></dt></dl></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-usage-workarea"></a>Používání pracovní oblasti</h2></div></div></div><p>Normálně s kalkulátorem
komunikujete na kartě <span class="guilabel">Konzola</span> v pracovní oblasti. Pokud spustíte pouze textovou
verzi, je konzola jediná dostupná věc. Jestli chcete používat <span class="application">matematický nástroj
Genius</span> pouze jako kalkulačku, jednoduše napi�
�te výraz do konzoly. Bude vyhodnocen a vrácený výsledek vypsán.</p><p>Když chcete vyhodnotit výraz, zapište
jej do <span class="guilabel">Konzoly</span> v pracovní oblasti a zmáčkněte Enter. Výrazy se zapisují v
jazyce nazývaném GEL. Většina jednoduchých výrazů v jazyce GEL vypadá podobně, jak je zvykem v matematice
(respektive programovacích jazycích). Například: </p><pre class="screen"><code class="prompt">genius>
</code><strong class="userinput"><code>30*70 + 67^3.0 + ln(7) * (88.8/100)</code></strong>
+</pre><p> nebo </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>62734 + 812634 + 77^4 mod 5</code></strong>
+</pre><p> nebo </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>| sin(37) - e^7 |</code></strong>
+</pre><p> nebo </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>sum n=1 to 70 do 1/n</code></strong>
+</pre><p> (Poslední je součet harmonické řady od 1 do 70)</p><p>Seznam funkcí a příkazů získáte zadáním:
</p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>help</code></strong></pre><p>
+Když chcete získat podrobnější nápovědu ke konkrétní funkci, zadejte: </p><pre class="screen"><code
class="prompt">genius> </code><strong class="userinput"><code>help NázevFunkce</code></strong></pre><p>
+Pro zobrazení této příručky zadejte: </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>manual</code></strong></pre><p>Předpokládejme, že jste si již dříve uložili nějaké
příkazy GEL jako program do souboru a teď je chcete spustit. Program ze souboru <code
class="filename">cesta/k/programu.gel</code> spustíte tak, že napíšete: </p><pre class="screen"><code
class="prompt">genius> </code><strong class="userinput"><code>load
cesta/k/programu.gel</code></strong></pre><p>
+<span class="application">Matematický nástroj Genius</span> sleduje, která složka je aktuální. Soubory v
této aktuální složce vypíšete příkazem <span class="command"><strong>ls</strong></span>, aktuální složku
změníte pomocí <strong class="userinput"><code>cd složka</code></strong>, stejně jako v UNIXovém příkazovém
řádku.</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch02s02.html">Předcházející</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch03s02.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Když spustíte aplikaci
Genius </td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Jak vytvořit nový program</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch03s02.html b/help/cs/html/ch03s02.html
new file mode 100644
index 0000000..90bf364
--- /dev/null
+++ b/help/cs/html/ch03s02.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Jak vytvořit nový
program</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch03.html" title="Kapitola 3.
Základy používání"><link rel="prev" href="ch03.html" title="Kapitola 3. Základy používání"><link rel="next"
href="ch03s03.html" title="Jak otevřít a spustit program"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Jak vytvořit nový program</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch03.html">Předcházející</a> </td><th width="60%" align="center">Kapitola
3. Základy používání</th><td width="20%" align="right"> <a accesskey="n"
href="ch03s03.html">Další</a></td></tr></table><hr></
div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-usage-create-program"></a>Jak vytvořit nový program</h2></div></div></div><p>Když si přejete
zadat několik komplikovaných příkazů nebo napsat složitou funkci pomocí jazyka <a class="link"
href="ch05.html" title="Kapitola 5. Základy jazyka GEL">GEL</a>, můžete vytvořit nový program.</p><p>Když
chcete začít psát nový program, zvolte <span class="guimenu">Soubor</span> → <span class="guimenuitem">Nový
program</span> a v pracovní oblasti se objeví nová karta. V té můžete nový program v jazyce <a class="link"
href="ch05.html" title="Kapitola 5. Základy jazyka GEL">GEL</a> psát. Až jej dopíšete, můžete jej spustit
pomocí <span class="guimenu">Kalkulátor</span> → <span class="guimenuitem">Spustit</span> (nebo tlačítkem
<span class="guilabel">Spustit</span> na nástrojové liště). Tím se váš program provede a na kartě <span c
lass="guilabel">Konzola</span> zobrazí výstup. Ve výsledku je to stejné, jako byste vzali text celého
programu a napsali jej do konzoly. Jediný rozdíl je v tom, že vstup je proveden nezávisle na konzole, zatímco
výstup jde na konzolu. <span class="guimenu">Kalkulátor</span> → <span class="guimenuitem">Spustit</span>
vždy spustí aktuálně vybraný program, i když jste zrovna na kartě <span class="guilabel">Konzola</span>.
Aktuálně vybraný program má svoji kartu označenou tučným písmem a vybere se tak, že na kartu prostě
kliknete.</p><p>Abyste napsaný program uložili, zvolte <span class="guimenu">Soubor</span> → <span
class="guimenuitem">Uložit jako… PodobnSoubor Ulo pro uloSoubor Ulo.</span></p><p>Programy, ve kterých jsou
neuložené změny, mají vedle svého názvu souboru „[+]“. Díky tomu můžete rychle poznat, jestli se soubor na
disku a otevřený v kartě odlišují. Programy, které zatím nemají přidělený název souboru,
jsou stále považovány za neuložené a „[+]“ se u nich nevypisuje.</p></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch03.html">Předcházející</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch03.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch03s03.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitola 3. Základy
používání </td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Jak otevřít a spustit program</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch03s03.html b/help/cs/html/ch03s03.html
new file mode 100644
index 0000000..89e166d
--- /dev/null
+++ b/help/cs/html/ch03s03.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Jak otevřít a spustit
program</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch03.html" title="Kapitola 3.
Základy používání"><link rel="prev" href="ch03s02.html" title="Jak vytvořit nový program"><link rel="next"
href="ch04.html" title="Kapitola 4. Vykreslování"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Jak otevřít a spustit program</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch03s02.html">Předcházející</a> </td><th width="60%"
align="center">Kapitola 3. Základy používání</th><td width="20%" align="right"> <a accesskey="n"
href="ch04.html">Další</a></td></tr></table><hr></div>
<div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-usage-open-program"></a>Jak otevřít a spustit program</h2></div></div></div><p>Když chcete
otevřít soubor, zvolte <span class="guimenu">Soubor</span> → <span class="guimenuitem">Otevřít</span>. V
pracovní oblasti se objeví nová karta obsahující daný soubor. Můžete ji využít k upravě souboru.</p><p>Pro
spuštění programu ze souboru zvolte <span class="guimenu">Soubor</span> → <span class="guimenuitem">Načíst a
spustit…</span> Tím se program spustí, aniž by se otevírala zvláštní karta. To odpovídá chování příkazu <span
class="command"><strong>load</strong></span>.</p><p>Pokud jste v souboru provedli úpravy, které si přejte
zahodit a načíst znovu původní verzi z disku, můžete zvolit položku nabídky <span
class="guimenu">Soubor</span> → <span class="guimenuitem">Znovu načíst z disku</span>. To se hodí při
experimentov
ání s programem a při provádění dočasných změn, kdy chcete spustit upravený program, ale změny nechcete
uchovat.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch03s02.html">Předcházející</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch03.html">Nahoru</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch04.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Jak vytvořit
nový program </td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td
width="40%" align="right" valign="top"> Kapitola 4. Vykreslování</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch04.html b/help/cs/html/ch04.html
new file mode 100644
index 0000000..0b49e20
--- /dev/null
+++ b/help/cs/html/ch04.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitola 4.
Vykreslování</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="index.html" title="Příručka k
aplikaci Genius"><link rel="prev" href="ch03s03.html" title="Jak otevřít a spustit program"><link rel="next"
href="ch04s02.html" title="Parametrické grafy"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitola 4. Vykreslování</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch03s03.html">Předcházející</a> </td><th width="60%" align="center">
</th><td width="20%" align="right"> <a accesskey="n"
href="ch04s02.html">Další</a></td></tr></table><hr></div><div class="chapter"><div class="titlepage"
<div><div><h1 class="title"><a name="genius-gel-plotting"></a>Kapitola 4.
Vykreslování</h1></div></div></div><div class="toc"><p><b>Obsah</b></p><dl class="toc"><dt><span
class="sect1"><a href="ch04.html#genius-line-plots">Čárové grafy</a></span></dt><dt><span class="sect1"><a
href="ch04s02.html">Parametrické grafy</a></span></dt><dt><span class="sect1"><a href="ch04s03.html">Grafy
směrových polí</a></span></dt><dt><span class="sect1"><a href="ch04s04.html">Grafy vektorových
polí</a></span></dt><dt><span class="sect1"><a href="ch04s05.html">Plošné
grafy</a></span></dt></dl></div><p>Vykreslování je podporováno pouze ve v grafické verzi GNOME. Veškeré
vykreslování je přístupné z grafického rozhraní, ke kterému se dostanete z okna <span
class="guilabel">Vytvoření grafu</span>. K tomuto oknu se dostanete kliknutím na tlačítko <span
class="guilabel">Graf</span> na liště nástrojů nebo výběrem <span
class="guilabel">Vykrestlit</span></p><div c
lass="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-line-plots"></a>Čárové grafy</h2></div></div></div><p>Pro vykreslení grafu reálně vyjadřujícího
funkce jedné proměnné otevřete okno <span class="guilabel">Vytvoření grafu</span>. Můžete také použít funkci
<a class="link" href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a> z
příkazového řádku (viz její dokumentace).</p><p>Když kliknete na tlačítko <span
class="guilabel">Vykreslit</span>, otevře se okno s několika kartami. Musíte být na kartě <span
class="guilabel">Čárový graf funkce</span> a v ní na kartě <span class="guilabel">Funkce/výrazy</span>. Viz
<a class="xref" href="ch04.html#lineplot-fig" title="Obrázek 4.1. Okno Vytváření grafu">4.1 – „Okno Vytváření
grafu“</a>.</p><div class="figure"><a name="lineplot-fig"></a><p class="title"><b>Obrázek 4.1. Okno Vytváření
grafu</b></p><div cl
ass="figure-contents"><div class="screenshot"><div class="mediaobject"><img src="figures/line_plot.png"
alt="Ukazuje okno vytváření čárového grafu."></div></div></div></div><br class="figure-break"><p>Do textových
polí zapište výrazy, ve kterých je <strong class="userinput"><code>x</code></strong> nezávislou proměnnou.
Stačí i napsat jen název funkce, jako <strong class="userinput"><code>cos</code></strong>, namísto vypisování
<strong class="userinput"><code>cos(x)</code></strong>. Naráz můžete vykreslit grafy až deseti funkcí. Pokud
uděláte chybu a Genius nemůže výstup zpracovat, naznačí to varovnou ikonou napravo od textového pole, ve
kterém se chyba vyskytla a zároveň se objeví dialogové okno s chybovým hlášením. V dolní části dialogového
okna můžete měnit rozsah závislé a nezávislé proměnné. Rozsah proměnné <code class="varname">y</code>
(závislé) můžete nechat nastavit aumoticky tím, že zaškrtnete políčko
<span class="guilabel">Přizpůsobit závislou osu</span>. Měnit můžete také názvy proměnných. Zmáčknutím
tlačítka <span class="guilabel">Vykreslit</span> se graf zobrazí, podobně jako na obrázku <a class="xref"
href="ch04.html#lineplot2-fig" title="Obrázek 4.2. Okno s grafem">4.2 – „Okno s grafem“</a>.</p><p>Proměnné
lze přejmenovat kliknutím na tlačítko <span class="guilabel">Změnit názvy proměnných…</span>, což se hodí,
když chcete vytisknout nebo uložit obrázek a nechcete použít standardní názvy. Nakonec můžete také úplně
zakázat tisk legendy a popisů os, což se opět hodí při tisku nebo ukládání, když by tyto texty způsobovaly
nepřehlednost.</p><div class="figure"><a name="lineplot2-fig"></a><p class="title"><b>Obrázek 4.2. Okno s
grafem</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/line_plot_graph.png" alt="Výsledný graf."></div></div></div></div><br c
lass="figure-break"><p>Z tohoto místa můžete graf vytisknout, vytvořit z něj dokument ve formátu uzavřený
postskript nebo PNG a nebo změnit zvětšení. Pokud není závislá osa správně nastavena, můžete Genius přimět,
aby ji přizpůsobil pomocí nalezení extrému vykreslené funkce.</p><p>Ohledně kreslení pomocí příkazového řádku
se podívejte do dokumentace na funkci <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>.</p></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch03s03.html">Předcházející</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> <a accesskey="n" href="ch04s02.html">Další</a></td></tr><tr><td width="40%" align="left"
valign="top">Jak otevřít a spustit program </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Domů</a></td><td width
="40%" align="right" valign="top"> Parametrické grafy</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch04s02.html b/help/cs/html/ch04s02.html
new file mode 100644
index 0000000..c4f5b48
--- /dev/null
+++ b/help/cs/html/ch04s02.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Parametrické
grafy</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch04.html" title="Kapitola 4.
Vykreslování"><link rel="prev" href="ch04.html" title="Kapitola 4. Vykreslování"><link rel="next"
href="ch04s03.html" title="Grafy směrových polí"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Parametrické grafy</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch04.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 4.
Vykreslování</th><td width="20%" align="right"> <a accesskey="n"
href="ch04s03.html">Další</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><d
iv><div><h2 class="title" style="clear: both"><a name="genius-parametric-plots"></a>Parametrické
grafy</h2></div></div></div><p>Na kartě vytváření grafu můžete zvolit také kartu <span
class="guilabel">Parametrické</span>, pomocí které můžete vytvářet dvourozměrné parametrické grafy. Jde o
způsob, jak vykreslit jednoduchou parametrickou funkci. Můžete zadat také body jako <code
class="varname">x</code> a <code class="varname">y</code> nebo poskytnout jedno komplexní číslo jako funkci
proměnné <code class="varname">t</code>. Rozsah proměnné <code class="varname">t</code> je dán explicitně a
funkce je vzorkována v zadaných krocích. Rozsah <code class="varname">x</code> a <code
class="varname">y</code> může být zvolen automaticky zaškrtnutím políčka <span class="guilabel">Přizpůsobit
závislou osu</span> nebo může být určen explicitně. Viz <a class="xref" href="ch04s02.html#paramplot-fig"
title="Obrázek 4.3. Karta parametrických
grafů">4.3 – „Karta parametrických grafů“</a>.</p><div class="figure"><a name="paramplot-fig"></a><p
class="title"><b>Obrázek 4.3. Karta parametrických grafů</b></p><div class="figure-contents"><div
class="screenshot"><div class="mediaobject"><img src="figures/parametric.png" alt="Parametrický graf v okně
Vytváření grafu."></div></div></div></div><br class="figure-break"><p>Příklad parametrického grafu je uveden
na obrázku <a class="xref" href="ch04s02.html#paramplot2-fig" title="Obrázek 4.4. Parametrické grafy">4.4 –
„Parametrické grafy“</a>. Dělat můžete podobné operace jako u jiných čárových grafů. Na to, jak vykreslení
provést z příkazového řádku, se podívejte do dokumentace na funkci <a class="link"
href="ch11s20.html#gel-function-LinePlotParametric"><code class="function">LinePlotParametric</code></a> nebo
<a class="link" href="ch11s20.html#gel-function-LinePlotCParametric"><code
class="function">LinePlotCParametric</code>
</a>.</p><div class="figure"><a name="paramplot2-fig"></a><p class="title"><b>Obrázek 4.4. Parametrické
grafy</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/parametric_graph.png" alt="Výslední parametrický graf."></div></div></div></div><br
class="figure-break"></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04.html">Předcházející</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch04.html">Nahoru</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch04s03.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitola
4. Vykreslování </td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td
width="40%" align="right" valign="top"> Grafy směrových polí</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch04s03.html b/help/cs/html/ch04s03.html
new file mode 100644
index 0000000..5da42b9
--- /dev/null
+++ b/help/cs/html/ch04s03.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Grafy směrových
polí</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch04.html" title="Kapitola 4.
Vykreslování"><link rel="prev" href="ch04s02.html" title="Parametrické grafy"><link rel="next"
href="ch04s04.html" title="Grafy vektorových polí"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Grafy směrových polí</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch04s02.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 4.
Vykreslování</th><td width="20%" align="right"> <a accesskey="n"
href="ch04s04.html">Další</a></td></tr></table><hr></div><div class="sect1"><div class="title
page"><div><div><h2 class="title" style="clear: both"><a name="genius-slopefield-plots"></a>Grafy směrových
polí</h2></div></div></div><p>Na kartě vytváření grafu můžete zvolit také kartu <span
class="guilabel">Směrové pole</span>, pomocí které můžete vytvářet dvourozměrný graf směrového pole. Dělat
můžete podobné operace jako u jiných čárových grafů. Na to, jak vykreslení provést z příkazového řádku, se
podívejte do dokumentace na funkci <a class="link" href="ch11s20.html#gel-function-SlopefieldPlot"><code
class="function">SlopefieldPlot</code></a>.</p><p>Když je aktivováno směrové pole, je přístupná dodatečná
nabídka <span class="guilabel">Řešitel</span>, přes kterou můžete zobrazit dialogové okno řešitele. Zde
můžete Genius přimět vykreslit konkrétní řešení pro zadané počáteční podmínky. Buď můžete počáteční podmínky
zadat v dialogovém okně nebo kliknout přímo do grafu a tím určit počá
teční bod. Dokud je dialogové okno řešitele aktivní, nefunguje zvětšování/zmenšování kliknutím a tažením.
Pokud chcete měnit velikost pomocí myši, musíte dialogové okno nejdříve zavřít.</p><p>Řešitel používá
standardní Rungeho-Kuttovu metodu. Grafy na obrazovce zůstávají, dokud nejsou vymazány. Řešitel se zastaví
vždy, když dosáhne hranice okna s grafem. Změnou velikosti omezení nebo parametru se řešení nemění, musíte
graf vymazat a znovu vykreslit se správnými parametry. Můžete také využít funkci <a class="link"
href="ch11s20.html#gel-function-SlopefieldDrawSolution"><code
class="function">SlopefieldDrawSolution</code></a> k vykreslení řešení z příkazového řádku nebo
programu.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s02.html">Předcházející</a> </td><td width="20%"
align="center"><a accesskey="u" href="c
h04.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch04s04.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Parametrické grafy
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Grafy vektorových polí</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch04s04.html b/help/cs/html/ch04s04.html
new file mode 100644
index 0000000..2fa9ac5
--- /dev/null
+++ b/help/cs/html/ch04s04.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Grafy vektorových
polí</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch04.html" title="Kapitola 4.
Vykreslování"><link rel="prev" href="ch04s03.html" title="Grafy směrových polí"><link rel="next"
href="ch04s05.html" title="Plošné grafy"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Grafy vektorových polí</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch04s03.html">Předcházející</a> </td><th width="60%"
align="center">Kapitola 4. Vykreslování</th><td width="20%" align="right"> <a accesskey="n"
href="ch04s05.html">Další</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage
"><div><div><h2 class="title" style="clear: both"><a name="genius-vectorfield-plots"></a>Grafy vektorových
polí</h2></div></div></div><p>Na kartě vytváření grafu můžete zvolit také kartu <span
class="guilabel">Vektorové pole</span>, pomocí které můžete vytvářet dvourozměrný graf vektorového pole.
Dělat můžete podobné operace jako u jiných čárových grafů. Na to, jak vykreslení provést z příkazového řádku,
se podívejte do dokumentace na funkci <a class="link" href="ch11s20.html#gel-function-VectorfieldPlot"><code
class="function">VectorfieldPlot</code></a>.</p><p>Standardně je zobrazen směr a velikost vektorového pole.
Pokud chcete zobrazovat jen směr a velikost ne, zaškrtněte příslušné políčko a délka šipek se
sjednotí.</p><p>Když je aktivováno vektorové pole, je přístupná dodatečná nabídka <span
class="guilabel">Řešitel</span>, přes kterou můžete zobrazit dialogové okno řešitele. Zde můžete Genius přimět
vykreslit konkrétní řešení pro zadané počáteční podmínky. Buď můžete počáteční podmínky zadat v dialogovém
okně nebo kliknout přímo do grafu a tím určit počáteční bod. Dokud je dialogové okno řešitele aktivní,
nefunguje zvětšování/zmenšování kliknutím a tažením. Pokud chcete měnit velikost pomocí myši, musíte
dialogové okno nejdříve zavřít.</p><p>Řešitel používá standardní Rungeho-Kuttovu metodu. Grafy na obrazovce
zůstávají, dokud nejsou vymazány. Změnou velikosti omezení nebo parametru se řešení nemění, musíte graf
vymazat a znovu vykreslit se správnými parametry. Můžete také využít funkci <a class="link"
href="ch11s20.html#gel-function-VectorfieldDrawSolution"><code
class="function">VectorfieldDrawSolution</code></a> k vykreslení řešení z příkazového řádku nebo
programu.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left">
<a accesskey="p" href="ch04s03.html">Předcházející</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch04.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch04s05.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Grafy směrových polí
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Plošné grafy</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch04s05.html b/help/cs/html/ch04s05.html
new file mode 100644
index 0000000..1bc6fb5
--- /dev/null
+++ b/help/cs/html/ch04s05.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Plošné
grafy</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch04.html" title="Kapitola 4.
Vykreslování"><link rel="prev" href="ch04s04.html" title="Grafy vektorových polí"><link rel="next"
href="ch05.html" title="Kapitola 5. Základy jazyka GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Plošné grafy</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch04s04.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 4.
Vykreslování</th><td width="20%" align="right"> <a accesskey="n"
href="ch05.html">Další</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><
div><h2 class="title" style="clear: both"><a name="genius-surface-plots"></a>Plošné
grafy</h2></div></div></div><p>Genius umí vykreslovat i plochy. Vyberte kartu <span class="guilabel">Plošný
graf</span> v hlavním sešitu okna <span class="guilabel">Vytváření grafu</span>. Zde můžete zadat jeden
výraz, který by měl používat buď <code class="varname">x</code> a <code class="varname">y</code> jako reálné
nezávislé proměnné nebo <code class="varname">z</code> jako komplexní proměnnou (kde <code
class="varname">x</code> je reálné část <code class="varname">z</code> a <code class="varname">y</code> jeho
imaginární část). Například pro vykreslení absolutní hodnoty funkce kosinus pro komplexní parametry, můžete
zadat <strong class="userinput"><code>|cos(z)|</code></strong>. To je ekvivalentní k <strong
class="userinput"><code>|cos(x+1i*y)|</code></strong>. Viz <a class="xref"
href="ch04s05.html#surfaceplot-fig" title="Obrázek 4.5. Plošný
graf">4.5 – „Plošný graf“</a>. Na to, jak vykreslení provést z příkazového řádku, se podívejte do
dokumentace na funkci <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>.</p><p>Rozsah <code class="varname">z</code> může být nastaven
automaticky zapnutím zaškrtávacího políčka <span class="guilabel">Přizpůsobit závislou osu</span>. Proměnné
mohou být přejmenovány kliknutím na tlačítko <span class="guilabel">Změnit názvy proměnných…</span>, což se
hodí, když chcete vytisknout nebo uložit obrázek a nechcete na něm použít standardní názvy. Nakonec můžete
zakázat tisk legendy, což se opět hodí při tisku a ukládání, když by legenda způsobovala
nepřehlednost.</p><div class="figure"><a name="surfaceplot-fig"></a><p class="title"><b>Obrázek 4.5. Plošný
graf</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/sur
face_graph.png" alt="Modul (absolutní hodnota) komplexní funkce kosinus."></div></div></div></div><br
class="figure-break"><p>V režimu plošných grafů levá a pravá šipka na klávesnici otáčí zobrazení okolo osy z.
Případně můžete otáčet kolem libovolné osy pomocí <span class="guilabel">Otočit osu…</span> v nabídce <span
class="guilabel">Zobrazit</span>. Nabídka <span class="guilabel">Zobrazit</span> obsahuje také režim pohledu
shora, který otáčí graf tak, že osa z směřuje ven, tj. díváte se na graf shora a dostanete základní barvy,
které definují hodnoty funkce získávající teplotní graf funkce. Nakonec byste také měli zkusit <span
class="guilabel">Spustit animované otáčení…</span>, které spustí plynulé pomalé otáčení. To je dobré hlavně
na předvádění <span class="application">matematického nástroje Genius</span> publiku.</p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr
<td width="40%" align="left"><a accesskey="p" href="ch04s04.html">Předcházející</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch04.html">Nahoru</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Grafy
vektorových polí </td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td
width="40%" align="right" valign="top"> Kapitola 5. Základy jazyka GEL</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch05.html b/help/cs/html/ch05.html
new file mode 100644
index 0000000..2f3ae0a
--- /dev/null
+++ b/help/cs/html/ch05.html
@@ -0,0 +1,27 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitola 5. Základy
jazyka GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="index.html" title="Příručka k
aplikaci Genius"><link rel="prev" href="ch04s05.html" title="Plošné grafy"><link rel="next"
href="ch05s02.html" title="Používání proměnných"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitola 5. Základy jazyka GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch04s05.html">Předcházející</a> </td><th width="60%" align="center">
</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s02.html">Další</a></td></tr></table><hr></div><div class="chapter"><div class="titlepage"
<div><div><h1 class="title"><a name="genius-gel"></a>Kapitola 5. Základy jazyka
GEL</h1></div></div></div><div class="toc"><p><b>Obsah</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch05.html#genius-gel-values">Hodnoty</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-numbers">Čísla</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-booleans">Pravdivostní hodnoty</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-strings">Řetězce</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-null">Null</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s02.html">Používání proměnných</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-setting">Nastavování proměnných</a></span></dt><dt><span
class="sect2"><a href="ch05s02.html#genius-gel-variables-built-in">Vestavěné
proměnné</a></span></dt><dt><span cla
ss="sect2"><a href="ch05s02.html#genius-gel-previous-result">Proměnná s posledním
výsledkem</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch05s03.html">Používání
funkcí</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-defining">Definování funkcí</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-variable-argument-lists">Proměnný seznam
argumentů</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-passing-functions">Předávání funkcí funkcím</a></span></dt><dt><span
class="sect2"><a href="ch05s03.html#genius-gel-functions-operations">Operace s
funkcemi</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s04.html">Oddělovač</a></span></dt><dt><span class="sect1"><a
href="ch05s05.html">Komentáře</a></span></dt><dt><span class="sect1"><a href="ch05s06.html">Modulární
aritmetika</a></span></dt><dt><span class="sect1"><a href="ch05s0
7.html">Seznam operátorů GEL</a></span></dt></dl></div><p>GEL znamená Genius Extension Language (rozšiřující
jazyk Genius). Jedná se o jazyk, ve kterém píšete programy v kalkulátoru Genius. Program v jazyce GEL je
jednoduše výraz, který je vyhodnocen jako číslo, matice nebo nějaký jiný objekt v GEL. <span
class="application">Matematický nástroj Genius</span> tak může sloužit jako jednoduchý kalkulátor a nebo jako
mocný nástroj pro teoretický vědecký výzkum. Cílem syntaxe je, aby byla snadná na naučení, jak jen to jde,
zejména pro používání aplikace jako kalkulačky.</p><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-values"></a>Hodnoty</h2></div></div></div><p>Hodnotami
v jazyce GEL mohou být <a class="link" href="ch05.html#genius-gel-values-numbers" title="Čísla">čísla</a>, <a
class="link" href="ch05.html#genius-gel-values-booleans" title="Pravdivostní hodnoty">prav
divostní hodnoty</a> nebo <a class="link" href="ch05.html#genius-gel-values-strings"
title="Řetězce">řetězce</a>. GEL zachází jako s hodnotami i s <a class="link" href="ch08.html"
title="Kapitola 8. Matice v jazyce GEL">maticemi</a>. Hodnoty mohou být mimo jiných věcí použity k výpočtům,
přiřazovány do proměnných a vraceny z funkcí.</p><div class="sect2"><div class="titlepage"><div><div><h3
class="title"><a name="genius-gel-values-numbers"></a>Čísla</h3></div></div></div><p>Prvním typem čísel v GEL
jsou celá čísla (integer). Celá čísla se zapisují normálním způsobem. </p><pre class="programlisting">1234
+</pre><p>V šestnáctkové a osmičkové soustavě mohou být zapsána pomoci notace jazyka C. Například: </p><pre
class="programlisting">0x123ABC
+01234
+</pre><p> Nebo můžete čísla zapsat v libovolné soustavě pomocí <code
class="literal"><základ>\<číslo></code>. Číslice větší než 9 se zapisují pomocí písmen podobně
jako u šestnáctkové soustavy. Například číslo v třiadvacítkové soustavě můžete zapsat: </p><pre
class="programlisting">23\1234ABCD
+</pre><p>Druhým typem čísel v GEL jsou racionální čísla (rational). Racionální čísla vznikají podělením dvou
celých čísel. Takže můžete zapsat: </p><pre class="programlisting">3/4
+</pre><p> abyste získali tři čtvrtiny. Racionální čísla rovněž akceptují smíšené zlomky. Takže abyste
získali jedna a tři desetiny, můžete napsat: </p><pre class="programlisting">1 3/10
+</pre><p>Dalším typem čísel jsou desetinná čísla – čísla s plovoucí desetinnou čárkou (floating). Zadávají
se ve formátu podobném notaci C. Jako oddělovač exponentu můžete použít <code class="literal">E</code>, <code
class="literal">e</code> or <code class="literal">@</code>. Upozorňujeme, že když použijete oddělovač
exponentu, bude číslo bráno jako desetinné, i když neobsahuje desetinnou tečku. Například: </p><pre
class="programlisting">1.315
+7.887e77
+7.887e-77
+.3
+0.3
+77e5
+</pre><p> Když Genius vypisuje desetinné číslo, vždy u něj přidá <code class="computeroutput">.0</code>, i
když je celé. Tím se dává najevo, že desetinná čísla nemají dokonalou přesnost. Pokud je číslo zapsáno ve
vědecké notaci, jedná se vždy o desetinné číslo a Genius tak nemusí vypisovat <code
class="computeroutput">.0</code>.</p><p>Posledním typem čísel v GEL jsou komplexní čísla (complex). Komplexní
číslo můžete zadat jako součet reálné a imaginární části. Imaginární část přidáte doplněním <code
class="literal">i</code>. Zde jsou příklady zápisu komplexních čísel: </p><pre class="programlisting">1+2i
+8.01i
+77*e^(1.3i)
+</pre><div class="important" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Důležité</h3><p>Při zadávání imaginárních čísel musí číslo vždy předcházet před <code
class="literal">i</code>. Pokud byste použili samotné <code class="literal">i</code>, Genius by se k němu
stavěl, jako k odkazu na proměnnou <code class="varname">i</code>. Pokud potřebujete použít právě <code
class="literal">i</code>, použijte místo toho <code class="literal">1i</code>.</p><p>Pokud chcete u
imaginárních čísel použít notaci složených zlomků, musíte složený zlomek uzavřít do závorek, např. <strong
class="userinput"><code>(1 2/5)i</code></strong>.</p></div></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a name="genius-gel-values-booleans"></a>Pravdivostní
hodnoty</h3></div></div></div><p>Genius také nativně podporuje pravdivostní hodnoty (boolean). Jsou
definovány dvě pravdivostní konstanty, <code cla
ss="constant">true</code> (pravda) a <code class="constant">false</code> (nepravda). Tyto identifikátory
mohou být použity stejně jako jiné proměnné. Případně můžete použít i varianty <code
class="constant">True</code>, <code class="constant">TRUE</code>, <code class="constant">False</code> a <code
class="constant">FALSE</code>.</p><p>Všude, kde je očekáván pravdivostní výraz, můžete použít pravdivostní
hodnotu nebo libovolný výraz, jehož výsledkem je číslo nebo pravdivostní hodnota. V případě, že má Genius
vyhodnotit číslo jako pravdivostní hodnotu, pak je nula brána jako <code class="constant">false</code> a
všechna ostatní čísla jako <code class="constant">true</code>.</p><p>Navíc můžete s pravdivostními hodnotami
provádět aritmetické operace. Například: </p><pre class="programlisting">( (1 + true) - false ) * true
+</pre><p> je to stejné jako: </p><pre class="programlisting">( (true or true) or not false ) and true
+</pre><p> Podporovány jsou akorát sčítání, odčítání a násobení. Pokud mícháte ve výrazu dohromady čísla s
pravdivostními hodnotami, jsou čísla nejprve převedena na pravdivostní hodnoty podle pravidel popsaných výše.
To znamená, že například: </p><pre class="programlisting">1 == true
+</pre><p> je vždy vyhodnoceno jako <code class="constant">true</code>, protože 1 bude před porovnáním s
<code class="constant">true</code> převedeno na <code class="constant">true</code>.</p></div><div
class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-strings"></a>Řetězce</h3></div></div></div><p>Stejně jako čísla a pravdivostní
hodnoty, mohou být i řetězce (string) uloženy jako hodnoty v proměnných a předávány do funkcí. Můžete také
spojit řetězec s jiným řetězcem pomocí operátoru plus. Například: </p><pre
class="programlisting">a=2+3;"Výsledek je: "+a
+</pre><p> vytvoří řetězec: </p><pre class="programlisting">Výsledek je: 5
+</pre><p> Rovněž můžete používat escape sekvence ve stylu C, jako <code class="literal">\n</code>,<code
class="literal">\t</code>,<code class="literal">\b</code>,<code class="literal">\a</code> a <code
class="literal">\r</code>. Když potřebujete v řetězci <code class="literal">\</code> nebo <code
class="literal">"</code>, musíte mu předřadit <code class="literal">\</code>. Například: </p><pre
class="programlisting">"Lomítko: \\ Uvozovky: \" Tabulátory: \t1\t2\t3"
+</pre><p> vytvoří řetězec: </p><pre class="programlisting">Lomítko: \ Uvozovky: " Tabulátory: 1 2
3
+</pre><p> Je třeba ale poznamenat, že když je řetězec vrácen z funkce, jsou zpětná lomítka ošetřena, takže
takovýto výstup může být použit jako vstup. Pokud chcete řetězec vypsat jak je (bez použití escape sekvencí),
použijte funkci <a class="link" href="ch11s02.html#gel-function-print"><code
class="function">print</code></a> nebo <a class="link" href="ch11s02.html#gel-function-printn"><code
class="function">printn</code></a>.</p><p>Navíc můžete použít knihovní funkci <a class="link"
href="ch11s02.html#gel-function-string"><code class="function">string</code></a> k převodu čehokoliv na
řetězec. Například: </p><pre class="programlisting">string(22)
+</pre><p> vrátí </p><pre class="programlisting">"22"
+</pre><p> Řetězce je také možné porovnávat pomocí operátorů <code class="literal">==</code> (rovno), <code
class="literal">!=</code> (není rovno) a <code class="literal"><=></code> (porovnání).</p></div><div
class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-null"></a>Null</h3></div></div></div><p>Existuje speciální hodnota nazývaná <code
class="constant">null</code>. Nelze s ní provádět žádné operace a když je vrácena, není nic vypsáno. Proto je
hodnota <code class="constant">null</code> užitečná, když nechcete z výrazu získat žádný výstup. Hodnotu
<code class="constant">null</code> získáte tak, že napíšete výraz <code class="literal">.</code>, konstantu
<code class="constant">null</code> nebo nic. Tím se nemyslí nic jiného, než že když výraz zakončíte
oddělovačem <code class="literal">;</code>, je to stejné, jako byste jej zakončili oddělovačem následovaným
<code class
="constant">null</code>.</p><p>Příklad: </p><pre class="programlisting">x=5;.
+x=5;
+</pre><p>Některé funkce vrací <code class="constant">null</code> v případě, že nelze vrátit žádnou hodnotu
nebo nastane chyba. <code class="constant">null</code> se rovněž používá jako prázdný vektor, prázdná matice
nebo prázdná reference (odkaz).</p></div></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch04s05.html">Předcházející</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> <a accesskey="n" href="ch05s02.html">Další</a></td></tr><tr><td width="40%" align="left"
valign="top">Plošné grafy </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Domů</a></td><td width="40%" align="right" valign="top"> Používání
proměnných</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch05s02.html b/help/cs/html/ch05s02.html
new file mode 100644
index 0000000..15eee04
--- /dev/null
+++ b/help/cs/html/ch05s02.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Používání
proměnných</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch05.html" title="Kapitola 5.
Základy jazyka GEL"><link rel="prev" href="ch05.html" title="Kapitola 5. Základy jazyka GEL"><link rel="next"
href="ch05s03.html" title="Používání funkcí"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Používání proměnných</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch05.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 5. Základy
jazyka GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s03.html">Další</a></td></tr></table><hr></div><div class="sect1
"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-variables"></a>Používání proměnných</h2></div></div></div><p>Syntaxe: </p><pre
class="programlisting">NazevPromenne
+</pre><p> Příklad: </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>e</code></strong>
+= 2.71828182846
+</pre><p>Pro vyhodnocení proměnné jako takové jednoduše napište její název. Bude vrácena hodnota proměnné.
Proměnnou můžete použít kdekoliv, kde by se normálně použilo číslo nebo řetězec. Navíc jsou proměnné nutné
při definici funkcí, které vyžadují argumenty (viz <a class="xref"
href="ch05s03.html#genius-gel-functions-defining" title="Definování funkcí">„Definování funkcí“</a>).</p><div
class="tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Dokončování pomocí
Tab</h3><p>Můžete používat klávesu Tab, aby vám Genius dokončoval názvy proměnných. Zkuste napsat prvních pár
písmen názvu a zmáčknout <strong class="userinput"><code>Tab</code></strong>.</p></div><div class="important"
style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Názvy proměnných rozlišují velikost
písmen</h3><p>U názvů proměnných se rozlišuje velikost písmen. To znamená, že proměnné <code class=
"varname">ahoj</code>, <code class="varname">AHOJ</code> a <code class="varname">Ahoj</code> jsou
různé.</p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-variables-setting"></a>Nastavování proměnných</h3></div></div></div><p>Syntaxe: </p><pre
class="programlisting"><identifier> = <value>
+<identifier> := <value>
+</pre><p> Příklad: </p><pre class="programlisting">x = 3
+x := 3
+</pre><p>Pro přiřazení hodnoty do proměnné se používá operátor <code class="literal">=</code> nebo <code
class="literal">:=</code>. Tyto operátory nastaví hodnotu proměnné a vrátí hodnotu, kterou jste nastavili,
takže můžete dělat věci jako </p><pre class="programlisting">a = b = 5
+</pre><p> Tím se nastaví <code class="varname">b</code> na 5 a rovněž se nastaví <code
class="varname">a</code> na 5.</p><p>Pro nastavení proměnné lze použít jak operátor <code
class="literal">=</code>, tak <code class="literal">:=</code>. Rozdíl mezi nimi je v tom, že operátor <code
class="literal">:=</code> vždy vystupuje jako operátor přiřazení, zatímco operátor <code
class="literal">=</code> může být interpretován jako test rovnosti, jestliže je použit v místě, kde je
očekáván pravdivostní výraz.</p><p>Ohledně více informací o rozsahu působnosti proměnných, čímž je míněno,
kdy je která proměnná viditelná, se podívejte na kapitolu <a class="xref" href="ch06s05.html" title="Globální
proměnné a působnost proměnných">„Globální proměnné a působnost proměnných“</a>.</p></div><div
class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-variables-built-in"></a>Vestavěné proměnné<
/h3></div></div></div><p>Jazyk GEL má několik vestavěných „proměnných“, jako třeba <code
class="varname">e</code>, <code class="varname">pi</code> nebo <code class="varname">GoldenRatio</code>.
Jedná se o široce používané konstanty s příslušnými hodnotami, do kterých nelze přiřadit nové hodnoty. Těchto
vestavěných proměnných je celá řada, viz <a class="xref" href="ch11s04.html"
title="Konstanty">„Konstanty“</a> pro kompletní seznam. Upozorňujeme, že <code class="varname">i</code> není
standardně definována jako druhá odmocnina z mínus jedné (imaginární číslo) a ve výchozím stavu je
nedefinovaná, takže ji můžete používat jako počítadlo, jak je zvykem. Když chcete zapsat imaginární číslo,
musíte použít <strong class="userinput"><code>1i</code></strong>.</p></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a name="genius-gel-previous-result"></a>Proměnná s posledním
výsledkem</h3></
div></div></div><p>Proměnné <code class="varname">Ans</code> a <code class="varname">ans</code> je možné
použít k získání výsledku posledního výrazu. Například, když máte proveden nějaký výpočet a chcete k výsledku
přičíst 389, můžete to udělat takto: </p><pre class="programlisting">Ans+389
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05.html">Předcházející</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Nahoru</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05s03.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitola
5. Základy jazyka GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td
width="40%" align="right" valign="top"> Používání funkcí</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch05s03.html b/help/cs/html/ch05s03.html
new file mode 100644
index 0000000..a7ac3b7
--- /dev/null
+++ b/help/cs/html/ch05s03.html
@@ -0,0 +1,20 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Používání
funkcí</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch05.html" title="Kapitola 5.
Základy jazyka GEL"><link rel="prev" href="ch05s02.html" title="Používání proměnných"><link rel="next"
href="ch05s04.html" title="Oddělovač"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Používání funkcí</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch05s02.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 5. Základy
jazyka GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s04.html">Další</a></td></tr></table><hr></div><div class="sect1"><div class="title
page"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-functions"></a>Používání
funkcí</h2></div></div></div><p>Syntaxe: </p><pre class="programlisting">NazevFunkce (argument1,argument2,...)
+</pre><p> Příklad: </p><pre class="programlisting">Factorial(5)
+cos(2*pi)
+gcd(921,317)
+</pre><p> Když chcete vyhodnotit funkci, zadejte její název následovaný argumenty v závorkách (pokud nějaké
má). Vrátí se výsledek vzniklý za použití argumentů. Počet argumentů se samozřejmě liší funkci od
funkce.</p><p>Existuje množství zabudovaných funkcí, jako třeba <a class="link"
href="ch11s06.html#gel-function-sin"><code class="function">sin</code></a>, <a class="link"
href="ch11s06.html#gel-function-cos"><code class="function">cos</code></a> a <a class="link"
href="ch11s06.html#gel-function-tan"><code class="function">tan</code></a>. Můžete použít zabudovanou funkci
<a class="link" href="ch11.html#gel-command-help"><code class="function">help</code></a> k výpisu dostupných
funkcí nebo si přečíst kapitolu <a class="xref" href="ch11.html" title="Kapitola 11. Seznam funkcí GEL">11 –
„<i>Seznam funkcí GEL</i>“</a>.</p><div class="tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Dokončování pomocí Tab
</h3><p>Můžete používat klávesu Tab, aby vám Genius dokončoval názvy funkcí. Zkuste napsat prvních pár
písmen názvu a zmáčknout <strong class="userinput"><code>Tab</code></strong>.</p></div><div class="important"
style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Názvy funkcí rozlišují velikost
písmen</h3><p>U názvů funkcí se rozlišuje velikost písmen. To znamená, že funkce pojmenované <code
class="function">necoudelat</code>, <code class="function">NECOUDELAT</code> a <code
class="function">NecoUdelat</code> jsou rozdílné funkce.</p></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a name="genius-gel-functions-defining"></a>Definování
funkcí</h3></div></div></div><p>Syntaxe: </p><pre class="programlisting">function
<identifier>(<comma separated arguments>) = <function body>
+<identifier> = (`() = <function body>)
+</pre><p> Znak <code class="literal">`</code> je zpětná uvozovka a je důležitý u anonymních funkcí. Jeho
nastavením do názvu proměnné se účinně definuje funkce.</p><p>Funkce přebírá buď žádný nebo více argumentů
oddělených čárkou a vrací výsledek podle těla funkce. Pro definování vašich vlastních funkcí je hlavním
důvodem pohodlí. Jednou z možností je mít sady funkcí definovaných v souborech GEL, které může Genius načíst
a ty pak budou k dispozici. Například: </p><pre class="programlisting">function addup(a,b,c) = a+b+c
+</pre><p> a <strong class="userinput"><code>addup(1,4,9)</code></strong> pak bude vracet 14.</p></div><div
class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-variable-argument-lists"></a>Proměnný seznam
argumentů</h3></div></div></div><p>Když za název posledního argumentu v deklaraci funkce vložíte <code
class="literal">...</code>, dovolí Genius v místě tohoto argumentu zadat libovolný počet argumentů. Pokud
není předán žádný argument, pak je tento argument nastaven na <code class="constant">null</code>. V jiných
případech bude vektorem obsahujícím všechny argumenty. Například: </p><pre class="programlisting">function
f(a,b...) = b
+</pre><p> Pak <strong class="userinput"><code>f(1,2,3)</code></strong> poskytne <code
class="computeroutput">[2,3]</code>, zatímco <strong class="userinput"><code>f(1)</code></strong> poskytne
<code class="constant">null</code>.</p></div><div class="sect2"><div class="titlepage"><div><div><h3
class="title"><a name="genius-gel-functions-passing-functions"></a>Předávání funkcí
funkcím</h3></div></div></div><p>V aplikaci Genius je možné předat funkci jako argument jiné funkci. To lze
udělat buď pomocí „uzlů funkcí“ nebo anonymních funkcí.</p><p>Když za název funkce nezadáte závorky, bude
funkce vrácena jako „uzel funkce“, namísto toho, aby byla vyhodnocena. Uzel funkce je možné předat jiné
funkci. Například: </p><pre class="programlisting">function f(a,b) = a(b)+1;
+function b(x) = x*x;
+f(b,2)
+</pre><p>Pro předání funkce, která není definována, můžete použít anonymní funkce (viz <a class="xref"
href="ch05s03.html#genius-gel-functions-defining" title="Definování funkcí">„Definování funkcí“</a>). Tzn.,
že můžete předat funkci, aniž byste ji pojmenovali. Syntaxe: </p><pre
class="programlisting">function(<comma separated arguments>) = <function body>
+`(<comma separated arguments>) = <function body>
+</pre><p> Příklad: </p><pre class="programlisting">function f(a,b) = a(b)+1;
+f(`(x) = x*x,2)
+</pre><p> Vrátí hodnotu 5.</p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-operations"></a>Operace s funkcemi</h3></div></div></div><p>Některé funkce
dovolují aritmetické operace a některé funkce s jedním argumentem, jako <a class="link"
href="ch11s05.html#gel-function-exp"><code class="function">exp</code></a> nebo <a class="link"
href="ch11s05.html#gel-function-ln"><code class="function">ln</code></a>, operace s funkcemi. Například
</p><pre class="programlisting">exp(sin*cos+4)
+</pre><p> vrátí funkci, která vezme <code class="varname">x</code> a vrátí <strong
class="userinput"><code>exp(sin(x)*cos(x)+4)</code></strong>. To funkčně odpovídá tomu, jako byste napsali
</p><pre class="programlisting">`(x) = exp(sin(x)*cos(x)+4)
+</pre><p> Takováto operace může být výhodná, kdy potřebujete rychle definovat funkci. Například k vytvoření
funkce nazvané <code class="varname">f</code>, která bude provádět operaci jako výše, prostě napište:
</p><pre class="programlisting">f = exp(sin*cos+4)
+</pre><p> Využít se to dá také při vykreslování grafů. Například k vykreslení druhé mocniny sinu zadejte:
</p><pre class="programlisting">LinePlot(sin^2)
+</pre><div class="warning" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Varování</h3><p>Ne všechny funkce je možné použít tímto způsobem. Například, pokud použijete
binární operaci, musí funkce přebírat stejný počet argumentů.</p></div></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch05s02.html">Předcházející</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch05.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05s04.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Používání proměnných
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Oddělovač</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch05s04.html b/help/cs/html/ch05s04.html
new file mode 100644
index 0000000..d34e75a
--- /dev/null
+++ b/help/cs/html/ch05s04.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Oddělovač</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Příručka
k aplikaci Genius"><link rel="up" href="ch05.html" title="Kapitola 5. Základy jazyka GEL"><link rel="prev"
href="ch05s03.html" title="Používání funkcí"><link rel="next" href="ch05s05.html"
title="Komentáře"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Oddělovač</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s03.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 5. Základy jazyka
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s05.html">Další</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class
="title" style="clear: both"><a name="genius-gel-separator"></a>Oddělovač</h2></div></div></div><p>GEL je
poněkud odlišný od jiných jazyků v tom, jak zachází s více příkazy a funkcemi. V GEL musíte příkazy řetězit
dohromady pomocí oddělovacího operátoru. To znamená, že když chcete napsat více než jeden výraz, musíte mezi
výrazy použít operátor <code class="literal">;</code>. Tímto způsobem se vyhodnotí oba výrazy a výsledek
druhého (nebo posledního, pokud je výrazů více než dva) je vrácen. Předpokládejme, že jste napsali
následující: </p><pre class="programlisting">3 ; 5
+</pre><p> Tento výraz vyplodí 5.</p><p>Občas to vyžaduje použití závorek, aby se předešlo nejednoznačnostem,
zvláště když <code class="literal">;</code> není nejvyšším primitivem. Liší se to trochu od jiných
programovacích jazyků, kde <code class="literal">;</code> je zakončovacím symbolem příkazů, zatímco v jazyce
GEL je to v současnosti binární operátor. Pokud jste zběhlí v jazyce Pascal, mělo by to pro vás být
přirozené. Nicméně Genius může do určité míry předstírat, že se jedná o zakončovací symbol. Když se <code
class="literal">;</code> nachází na konci závorek nebo bloku, Genius za něj připojí prázdný uzel podobně,
jako byste napsali <strong class="userinput"><code>;null</code></strong>. To je užitečné v případě, kdy
chcete vrátit hodnotu, řekněme ze smyčky, nebo když pracujete s návratovými hodnotami odděleně. Upozorňujeme,
že to mírně zpomaluje provádění kódu, pokud je spouštěn č
asto, protože je v něm navíc další operátor.</p><p>Když v programu píšete výraz, nemusíte za něj přidávat
středník. V takovém případě bude Genius prostě vypisovat vrácenou hodnotu, kdykoliv se výraz vyhodnotí.
Nicméně vezměte na vědomí, že když definujete funkci, je celé tělo funkce jediný výraz.</p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch05s03.html">Předcházející</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch05.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05s05.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Používání funkcí
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Komentáře</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch05s05.html b/help/cs/html/ch05s05.html
new file mode 100644
index 0000000..dd51c35
--- /dev/null
+++ b/help/cs/html/ch05s05.html
@@ -0,0 +1,5 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Komentáře</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Příručka
k aplikaci Genius"><link rel="up" href="ch05.html" title="Kapitola 5. Základy jazyka GEL"><link rel="prev"
href="ch05s04.html" title="Oddělovač"><link rel="next" href="ch05s06.html" title="Modulární
aritmetika"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Komentáře</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s04.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 5. Základy jazyka
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s06.html">Další</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 clas
s="title" style="clear: both"><a name="genius-gel-comments"></a>Komentáře</h2></div></div></div><p>V jazyce
GEL, podobně jako v jiných skriptovacích jazycích, <code class="literal">#</code> označuje komentář, cože je
text, který se nemá vyhodnocovat. Vše za znakem mřížky až po konec řádku je jednoduše ignorováno. Například
</p><pre class="programlisting"># Právě toto je komentář
+# každý řádek komentáře musí mít vlastní znak „mřížky“
+# na následujícím řádku se x nastaví na hodnotu 123
+x=123;
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch05s04.html">Předcházející</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch05.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05s06.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Oddělovač </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%" align="right"
valign="top"> Modulární aritmetika</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch05s06.html b/help/cs/html/ch05s06.html
new file mode 100644
index 0000000..5a91b68
--- /dev/null
+++ b/help/cs/html/ch05s06.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Modulární
aritmetika</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch05.html" title="Kapitola 5.
Základy jazyka GEL"><link rel="prev" href="ch05s05.html" title="Komentáře"><link rel="next"
href="ch05s07.html" title="Seznam operátorů GEL"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Modulární aritmetika</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch05s05.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 5. Základy
jazyka GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s07.html">Další</a></td></tr></table><hr></div><div class="sect1"><div class="titlepa
ge"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-modular-evaluation"></a>Modulární
aritmetika</h2></div></div></div><p>Genius má implementovánu modulární aritmetiku. Když ji chcete použít,
stačí přidat „mod <celé_číslo>“ za výraz. Například: <strong class="userinput"><code>2^(5!) * 3^(6!)
mod 5</code></strong> Pro modulární aritmetiku by bylo možné použít i počítání s celými čísly a následně
určením zbytku na konci pomocí operátoru <code class="literal">%</code>, ale to je časově náročné, ne-li
nemožné, při práci s většími čísly. Například <strong class="userinput"><code>10^(10^10) % 6</code></strong>
jednoduše nebude pracovat (exponent bude příliš velký), zatímco <strong class="userinput"><code>10^(10^10)
mod 6</code></strong> je spočteno v mžiku. V prvním příkladu se zkusí vypočítat <strong
class="userinput"><code>10^(10^10)</code></strong> a pak najít zbytek po dělení 6,
zatímco v druhém příkladu se vyhodnotí vše modulo 6 už na začátku.</p><p>Můžete počítat převrácenou hodnotu
čísla mod nějaké celé číslo jednoduše pomocí racionálních čísel (samozřejmě musí převrácená hodnota
existovat). Například: </p><pre class="programlisting">10^-1 mod 101
+1/10 mod 101</pre><p> Modulární aritmetiku můžete použít i pro výpočty s maticemi, včetně inverze,
umocňování a dělení. Příklad: </p><pre class="programlisting">A = [1,2;3,4]
+B = A^-1 mod 5
+A*B mod 5</pre><p> Takto byste měli získat jednotkovou matici, protože B bude inverzní maticí A mod
5.</p><p>Některé funkce, jako třeba <a class="link" href="ch11s05.html#gel-function-sqrt"><code
class="function">sqrt</code></a> nebo <a class="link" href="ch11s05.html#gel-function-log"><code
class="function">log</code></a> pracují v modulární aritmetice jiným způsobem. Budou pracovat jako jejich
diskrétní verze pracující v okruhu vámi vybraných celých čísel. Například </p><pre
class="programlisting">genius> sqrt(4) mod 7
+=
+[2, 5]
+genius> 2*2 mod 7
+= 4
+genius> 5*5 mod 7
+= 4</pre><p><code class="function">sqrt</code> bude ve skutečnosti vracet všechny možné
odmocniny.</p><p>Nezřetězujte operátory mod, umístěte jen jeden na konce výpočtu a všechny početní operace ve
výrazu nalevo budou ošetřeny v modulární aritmetice. Když umístíte mod do mod, obdržíte neočekávané výsledky.
Pokud chcete použít modulo na jediné číslo a jen zjistit, zda zůstane zbytek, je lepší použít operátor <code
class="literal">%</code>. Když potřebujete zřetězit několik výrazů v modulární aritmetice s různými děliteli,
může být lepší rozdělit výraz na více výrazů a použít dočasné proměnné, aby se předešlo vložení mod do
mod.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch05s05.html">Předcházející</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch05.html">Nahoru</a></td><td width="40%" align
="right"> <a accesskey="n" href="ch05s07.html">Další</a></td></tr><tr><td width="40%" align="left"
valign="top">Komentáře </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Domů</a></td><td width="40%" align="right" valign="top"> Seznam operátorů
GEL</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch05s07.html b/help/cs/html/ch05s07.html
new file mode 100644
index 0000000..f261f33
--- /dev/null
+++ b/help/cs/html/ch05s07.html
@@ -0,0 +1,6 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Seznam operátorů
GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch05.html" title="Kapitola 5.
Základy jazyka GEL"><link rel="prev" href="ch05s06.html" title="Modulární aritmetika"><link rel="next"
href="ch06.html" title="Kapitola 6. Programování s jazykem GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Seznam operátorů GEL</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch05s06.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 5. Základy
jazyka GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06.html">Další</a></td></tr></table><hr></div><div class="sec
t1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-operator-list"></a>Seznam operátorů GEL</h2></div></div></div><p>Vše v jazyce GEL jsou ve
skutečnosti jen výrazy. Výrazy jsou dohromady řetězeny pomocí různých operátorů. Jak jste již viděli, i
oddělovač je ve skutečnosti jen binární operátor jazyka. Zde je seznam operátorů jazyka GEL.</p><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><strong
class="userinput"><code>a;b</code></strong></span></dt><dd><p>Oddělovač, který vyhodnocuje jak <code
class="varname">a</code>, tak <code class="varname">b</code>, ale vrací výsledek pouze z <code
class="varname">b</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a=b</code></strong></span></dt><dd><p>Operátor přiřazení. </p></dd><dt><span
class="term"><strong class="userinput"><code>a:=b</code></strong></span></dt><dd><p>Operátor přiřazení.
Přiřadí <code cla
ss="varname">b</code> do <code class="varname">a</code> (<code class="varname">a</code> musí být platná <a
class="link" href="ch06s09.html" title="L-hodnoty">l-hodnota</a>). Liší se od <code class="literal">=</code>,
protože se nikdy nepřevádí na <code class="literal">==</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>|a|</code></strong></span></dt><dd><p>Absolutní hodnota. V případě, že výraz je
komplexní číslo, je vrácen modul (absolutní hodnota komplexního čísla, někdy také nazýván norma), což je
vzdálenost od počátku. Například: <strong class="userinput"><code>|3 * e^(1i*pi)|</code></strong> vrátí
3.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://mathworld.wolfram.com/AbsoluteValue.html" target="_top">Mathworld</a> (text je v angličtině) a
<a class="ulink" href="http://cs.wikipedia.org/wiki/Absolutn%C3%AD_hodnota"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a^b</code></strong></span></dt><dd><p>Umocnění, umocní <code
class="varname">a</code> na <code class="varname">b</code>-tou.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.^b</code></strong></span></dt><dd><p>Umocňování prvek po prvku. Umocní každý prvek
matice <code class="varname">a</code> na <code class="varname">b</code>-tou. Nebo, když je <code
class="varname">b</code> matice stejné velikosti jako <code class="varname">a</code>, umocňuje se prvek po
prvku. Pokud je <code class="varname">a</code> číslo a <code class="varname">b</code> je matice, pak se
vytvoří matice stejné velikosti jako <code class="varname">b</code> s <code class="varname">a</code>
umocněným na všechny různé mocnitele v <code class="varname">b</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a+b</code></strong></span></dt><dd><p>Sčítání. Sečte dvě čísla, matice, funkce nebo
řetězce. Pokud přičtete řetě
zec k čemukoliv, výsledkem bude vždy řetězec. Pokud je jeden operand čtvercová matice a druhý číslo, je
číslo vynásobeno jednotkovou maticí.</p></dd><dt><span class="term"><strong
class="userinput"><code>a-b</code></strong></span></dt><dd><p>Odčítání. Odečte dvě čísla, matice nebo
funkce.</p></dd><dt><span class="term"><strong
class="userinput"><code>a*b</code></strong></span></dt><dd><p>Násobení. Jedná se o normální násobení
matic.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.*b</code></strong></span></dt><dd><p>Násobení prvek po prvku v situaci, kdy <code
class="varname">a</code> a <code class="varname">b</code> jsou matice.</p></dd><dt><span class="term"><strong
class="userinput"><code>a/b</code></strong></span></dt><dd><p>Dělení. Pokud jsou <code
class="varname">a</code> a <code class="varname">b</code> čísla, jedná se o běžné dělení. Pokud to jsou
matice, odpovídá to <strong class="userinput"><code>a*b^-1</c
ode></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a./b</code></strong></span></dt><dd><p>Dělení prvek po prvku. Pro čísla je to stejné
jako <strong class="userinput"><code>a/b</code></strong>, ale u matic to funguje prvek po
prvku.</p></dd><dt><span class="term"><strong
class="userinput"><code>a\b</code></strong></span></dt><dd><p>Zpětné dělení. Je to to stejné, jako <strong
class="userinput"><code>b/a</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.\b</code></strong></span></dt><dd><p>Zpětné dělení prvků prvky.</p></dd><dt><span
class="term"><strong class="userinput"><code>a%b</code></strong></span></dt><dd><p>Operátor zbytku. Nepřepíná
do režimu <a class="link" href="ch05s06.html" title="Modulární aritmetika">modulární aritmetiky</a>, ale jen
prostě vrátí zbytek podílu <strong class="userinput"><code>a/b</code></strong>.</p></dd><dt><span
class="term"><strong class="userinput"><code>a
.%b</code></strong></span></dt><dd><p>Operátor zbytku dělení prvků prvky. Vrací zbytky po dělení
celočíselných prvků celočíselnými prvky <strong
class="userinput"><code>a./b</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a mod b</code></strong></span></dt><dd><p>Operátor modulární aritmetiky. Výraz <code
class="varname">a</code> je vyhodnocen modulární aritmetikou vůči <code class="varname">b</code>. Viz <a
class="xref" href="ch05s06.html" title="Modulární aritmetika">„Modulární aritmetika“</a>. Některé funkce a
operátory se chovají odlišně při modulární aritmetice s celými čísly.</p></dd><dt><span class="term"><strong
class="userinput"><code>a!</code></strong></span></dt><dd><p>Operátor faktoriálu. Je to jako <strong
class="userinput"><code>1*…*(n-2)*(n-1)*n</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a!!</code></strong></span></dt><dd><p>Operátor dvojitého f
aktoriálu. Je to jako <strong class="userinput"><code>1*…*(n-4)*(n-2)*n</code></strong>.</p></dd><dt><span
class="term"><strong class="userinput"><code>a==b</code></strong></span></dt><dd><p>Operátor rovnosti, vrací
<code class="constant">true</code> (pravda) nebo <code class="constant">false</code> (nepravda) podle toho,
zda <code class="varname">a</code> je <code class="varname">b</code> rovno nebo není rovno.</p></dd><dt><span
class="term"><strong class="userinput"><code>a!=b</code></strong></span></dt><dd><p>Operátor nerovnosti,
vrací <code class="constant">true</code> (pravda) v případě, že <code class="varname">a</code> se nerovná
<code class="varname">b</code>, jinak vrací <code class="constant">false</code> (nepravda).</p></dd><dt><span
class="term"><strong class="userinput"><code>a<>b</code></strong></span></dt><dd><p>Alternativní
operátor nerovnosti, vrací <code class="constant">true</code> (pravda) v případě, že <code class="varname">a</
code> se nerovná <code class="varname">b</code>, jinak vrací <code class="constant">false</code>
(nepravda).</p></dd><dt><span class="term"><strong
class="userinput"><code>a<=b</code></strong></span></dt><dd><p>Operátor menší než nebo rovno, vrací <code
class="constant">true</code> (pravda) v případě, že <code class="varname">a</code> je menší než nebo se rovná
<code class="varname">b</code>, jinak vrací <code class="constant">false</code> (nepravda). Je možné řetězit
ve stylu <strong class="userinput"><code>a <= b <= c</code></strong> (a může se kombinovat s operátorem
menší než).</p></dd><dt><span class="term"><strong
class="userinput"><code>a>=b</code></strong></span></dt><dd><p>Operátor větší než nebo rovno, vrací <code
class="constant">true</code> (pravda) v případě, že <code class="varname">a</code> je větší než nebo se rovná
<code class="varname">b</code>, jinak vrací <code class="constant">false</code> (nepravda).
Je možné řetězit ve stylu <strong class="userinput"><code>a >= b >= c</code></strong> (a může se
kombinovat s operátorem větší než).</p></dd><dt><span class="term"><strong
class="userinput"><code>a<=b</code></strong></span></dt><dd><p>Operátor menší než, vrací <code
class="constant">true</code> (pravda) v případě, že <code class="varname">a</code> je menší než <code
class="varname">b</code>, jinak vrací <code class="constant">false</code> (nepravda). Je možné řetězit ve
stylu <strong class="userinput"><code>a < b < c</code></strong> (a může se kombinovat s operátorem
menší než nebo rovno).</p></dd><dt><span class="term"><strong
class="userinput"><code>a>=b</code></strong></span></dt><dd><p>Operátor větší než, vrací <code
class="constant">true</code> (pravda) v případě, že <code class="varname">a</code> je větší než <code
class="varname">b</code>, jinak vrací <code class="constant">false</code> (nepravda). Je
možné řetězit ve stylu <strong class="userinput"><code>a > b > c</code></strong> (a může se
kombinovat s operátorem větší než nebo rovno).</p></dd><dt><span class="term"><strong
class="userinput"><code>a<=>b</code></strong></span></dt><dd><p>Operátor porovnání. V případě, že <code
class="varname">a</code> je rovno <code class="varname">b</code>, vrací 0, pokud je <code
class="varname">a</code> menší než <code class="varname">b</code> vrací -1 a pokud je <code
class="varname">a</code> větší než <code class="varname">b</code>, vrací 1.</p></dd><dt><span
class="term"><strong class="userinput"><code>a and b</code></strong></span></dt><dd><p>Logické A (AND). Vrací
pravda, když <code class="varname">a</code> i <code class="varname">b</code> jsou pravda, ve všech ostatních
případech nepravda. Pokud jsou předána čísla, je se všemi nenulovými zacházeno jako s pravdivostní hodnotou
pravda.</p></dd><dt><span class="term"><strong c
lass="userinput"><code>a or b</code></strong></span></dt><dd><p>Logické NEBO (OR). Vrací pravda, když je
<code class="varname">a</code> nebo <code class="varname">b</code> (nebo oboje) pravda, jinak vrací nepravda.
Pokud jsou předána čísla, je se všemi nenulovými zacházeno jako s pravdivostní hodnotou
pravda.</p></dd><dt><span class="term"><strong class="userinput"><code>a xor
b</code></strong></span></dt><dd><p>Logické vylučovací NEBO (XOR). Vrací pravda, když právě <code
class="varname">a</code> nebo <code class="varname">b</code> pravda, ve všech ostatních případech nepravda.
Pokud jsou předána čísla, je se všemi nenulovými zacházeno jako s pravdivostní hodnotou
pravda.</p></dd><dt><span class="term"><strong class="userinput"><code>not
a</code></strong></span></dt><dd><p>Logická negace (NOT). Vrací logickou negaci <code
class="varname">a</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>-a</code></strong></span></dt><d
d><p>Operátor negace. Vrací opačné číslo nebo matici (u matice pracuje prvek po prvku).</p></dd><dt><span
class="term"><strong class="userinput"><code>&a</code></strong></span></dt><dd><p>Reference proměnné (pro
předání odkazu na proměnnou). Viz <a class="xref" href="ch06s08.html"
title="Reference">„Reference“</a>.</p></dd><dt><span class="term"><strong
class="userinput"><code>*a</code></strong></span></dt><dd><p>Dereference proměnné (pro přístup k odkazované
proměnné). Viz <a class="xref" href="ch06s08.html" title="Reference">„Reference“</a>.</p></dd><dt><span
class="term"><strong class="userinput"><code>a'</code></strong></span></dt><dd><p>Transponovat matici
komplexně sdruženou (Hermiteovsky sdružená matice). Tj. řádky a sloupce se prohodí a vezmou se komplexně
sdružená čísla ke všem prvkům. To znamená, že když prvek i,j matice <code class="varname">a</code> je x+iy,
pak prvek j,i matice <strong class="userinput"><code>a'</c
ode></strong> je x-iy.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.'</code></strong></span></dt><dd><p>Transponovat matici (bez komplexního sdružení).
To znamená, že prvek i,j matice <code class="varname">a</code> se stane prvkem j,i matice <strong
class="userinput"><code>a.'</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,c)</code></strong></span></dt><dd><p>Získat prvek matice v řádku <code
class="varname">b</code> a sloupci <code class="varname">c</code>. Pokud jsou <code class="varname">b</code>,
<code class="varname">c</code> vektory, získají se odpovídající řádky, sloupce nebo
podmatice.</p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,)</code></strong></span></dt><dd><p>Získat řádek matice (nebo více řádků, pokud
je <code class="varname">b</code> vektor).</p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,:)</code></strong></span></dt><dd><p>Stejné jako
předchozí.</p></dd><dt><span class="term"><strong
class="userinput"><code>a@(,c)</code></strong></span></dt><dd><p>Získat sloupec matice (nebo sloupce, pokud
je <code class="varname">c</code> vektor).</p></dd><dt><span class="term"><strong
class="userinput"><code>a@(:,c)</code></strong></span></dt><dd><p>Stejné jako předchozí.</p></dd><dt><span
class="term"><strong class="userinput"><code>a@(b)</code></strong></span></dt><dd><p>Získat prvek z matice, s
kterou se zachází jako s vektorem. Matice se prochází řádek pro řádku.</p></dd><dt><span class="term"><strong
class="userinput"><code>a:b</code></strong></span></dt><dd><p>Sestavit vektor od <code
class="varname">a</code> do <code class="varname">b</code> (nebo zadané části řádku, sloupce pro operátor
<code class="literal">@</code>). Například pro získání řádků 2 až 4 z matice <code class="varname">A</code>
byste mohli použít </p><pre class="programlisting">A@(2:4,)
+ </pre><p>, kdy <strong class="userinput"><code>2:4</code></strong> vrátí vektor <strong
class="userinput"><code>[2,3,4]</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a:b:c</code></strong></span></dt><dd><p>Sestavit vektor od <code
class="varname">a</code> do <code class="varname">c</code> s krokem <code class="varname">b</code>. Tj.
například </p><pre class="programlisting">genius> 1:2:9
+=
+`[1, 3, 5, 7, 9]
+</pre><p>Když jsou použita desetinná čísla, například <strong
class="userinput"><code>1.0:0.4:3.0</code></strong>, je výstupem to, co očekáváte, přestože se k 1,0 pětkrát
přidá 0,4, je to jen o něco více než 3,0 z důvodu, jakým jsou desetinná čísla uchována ve dvojkové soustavě
(není to přesně 0,4, ale uložené číslo je obvykle o trochu větší). Způsob, jakým je to zpracováváno, je
stejný jako u cyklu a sčítacích a násobících smyček. Pokud je konec v rámci <strong
class="userinput"><code>2^-20</code></strong>násobku velikosti kroku koncového bodu, je koncový bod použit a
předpokládá se, že nastaly chyby zaokrouhlení. To sice není perfektní, ale řeší to většinu případů. Tato
kontrola se provádí až ve verzi 1.0.18 a novějších, takže provádění vašeho kódu může být ve starších verzích
odlišné. Pokud chcete této záležitosti předejít, používejte opravdová racionální čísla, případn
ě použijte funkci <code class="function">float</code>, když si přejete na konci dostat desetinné číslo.
Například <strong class="userinput"><code>1:2/5:3</code></strong> funguje správně a <strong
class="userinput"><code>float(1:2/5:3)</code></strong> vám poskytne desetinné číslo a přitom to bude nepatrně
přesnější než <strong class="userinput"><code>1.0:0.4:3.0</code></strong>.</p></dd><dt><span
class="term"><strong class="userinput"><code>(a)i</code></strong></span></dt><dd><p>Vytvořit imaginární číslo
(vynásobit <code class="varname">a</code> imaginárním <code class="varname">i</code>). Všimněte si, že
normálně se <code class="varname">i</code> zapisuje jako <code class="varname">1i</code>. Takže předchozí je
vlastně ekvivalentní </p><pre class="programlisting">(a)*1i
+ </pre></dd><dt><span class="term"><strong
class="userinput"><code>`a</code></strong></span></dt><dd><p>Uvozovat identifikátor, kterýžto nebude
vyhodnocen. Nebo uvozovat matici, takže nebude rozšířena.</p></dd><dt><span class="term"><strong
class="userinput"><code>a swapwith b</code></strong></span></dt><dd><p>Přehodit hodnotu proměnné <code
class="varname">a</code> s hodnotou proměnné <code class="varname">b</code>. V současnosti nepracuje s částmi
prvků matice. Vrací <code class="constant">null</code>. Dostupné od verze 1.0.13.</p></dd><dt><span
class="term"><strong class="userinput"><code>increment a</code></strong></span></dt><dd><p>Zvýšit hodnotu
proměnné <code class="varname">a</code> o 1. V případě, že <code class="varname">a</code> je matice, je o 1
zvýšen každý prvek. Dělá to vlastně to stejné co <strong class="userinput"><code>a=a+1</code></strong>,
akorát o něco rychleji. Vrací <code class="constant">null</code>. Dostupné
od verze 1.0.13.</p></dd><dt><span class="term"><strong class="userinput"><code>increment a by
b</code></strong></span></dt><dd><p>Zvýšit hodnotu proměnné <code class="varname">a</code> o <code
class="varname">b</code>. V případě, že <code class="varname">a</code> je matice, je o zvýšen každý prvek.
Dělá to vlastně to stejné co <strong class="userinput"><code>a=a+b</code></strong>, akorát o něco rychleji.
Vrací <code class="constant">null</code>. Dostupné od verze 1.0.13.</p></dd></dl></div><div class="note"
style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Poznámka</h3><p>Operátor @() dává
operátoru : více možností. S ním můžete určovat části matice. Takže a@(2:4,6) jsou řádky 2,3,4 sloupce 6.
Nebo a@(,1:2) vám dá první dva sloupce matice. Do operátoru @() můžete i přiřazovat, stačí když je pravou
hodnotou matice o stejném rozměru jako určená oblast nebo je to jiný typ hodnoty.</p></div><div class="note"
style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Poznámka</h3><p>Porovnávací operátory
(vyjma operátoru <=>, který se chová normálně) nejsou striktně binární operátory, mohou být fakticky
seskupovány běžným matematickým způsobem, např.: (1<x<=y<5) je platný pravdivostní výraz a znamená
přesně to, co by měl, tj. (1<x a x≤y a y<5)</p></div><div class="note" style="margin-left: 0.5in;
margin-right: 0.5in;"><h3 class="title">Poznámka</h3><p>Unární operátor mínus funguje různými způsoby v
závislosti na tom, kde se vyskytuje. Když se objeví před číslem, váže se přímo k němu. Když se objeví před
výrazem, má slabší vazbu než mocnina a faktoriál. Například <strong
class="userinput"><code>-1^k</code></strong> je ve skutečnosti <strong
class="userinput"><code>(-1)^k</code></strong>, ale <strong
class="userinput"><code>-neco(1)^k</code></strong> je ve skutečnosti <strong class="userinpu
t"><code>-(neco(1)^k)</code></strong>. Takže věnujte pozornost tomu, jak je používáte a pokud máte
pochybnosti, raději přidejte závorky.</p></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch05s06.html">Předcházející</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch05.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Modulární aritmetika
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Kapitola 6. Programování s jazykem GEL</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch06.html b/help/cs/html/ch06.html
new file mode 100644
index 0000000..b414deb
--- /dev/null
+++ b/help/cs/html/ch06.html
@@ -0,0 +1,8 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitola 6.
Programování s jazykem GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="index.html"
title="Příručka k aplikaci Genius"><link rel="prev" href="ch05s07.html" title="Seznam operátorů GEL"><link
rel="next" href="ch06s02.html" title="Smyčky"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitola 6. Programování s jazykem GEL</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch05s07.html">Předcházející</a> </td><th width="60%"
align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch06s02.html">Další</a></td></tr></table><hr></div><div class="chapter"><div class="tit
lepage"><div><div><h1 class="title"><a name="genius-gel-programming"></a>Kapitola 6. Programování s jazykem
GEL</h1></div></div></div><div class="toc"><p><b>Obsah</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch06.html#genius-gel-conditionals">Podmínky</a></span></dt><dt><span class="sect1"><a
href="ch06s02.html">Smyčky</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-while">Smyčky while</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-for">Smyčky for</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-foreach">Smyčky foreach</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-break-continue">Break a continue</a></span></dt></dl></dd><dt><span
class="sect1"><a href="ch06s03.html">Součty a součiny</a></span></dt><dt><span class="sect1"><a
href="ch06s04.html">Porovnávací operátory</a></span></dt><dt><span class="sect1"><a href="ch06s05.htm
l">Globální proměnné a působnost proměnných</a></span></dt><dt><span class="sect1"><a
href="ch06s06.html">Proměnné parametrů</a></span></dt><dt><span class="sect1"><a href="ch06s07.html">Návrat
hodnot</a></span></dt><dt><span class="sect1"><a href="ch06s08.html">Reference</a></span></dt><dt><span
class="sect1"><a href="ch06s09.html">L-hodnoty</a></span></dt></dl></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-conditionals"></a>Podmínky</h2></div></div></div><p>Syntaxe: </p><pre
class="programlisting">if <expression1> then <expression2> [else <expression3>]
+</pre><p> Pokud je vynecháno <code class="literal">else</code> a <code class="literal">výraz1</code> je
vyhodnocen jako <code class="constant">false</code> nebo 0, je vráceno <code
class="literal">NULL</code>.</p><p>Příklady: </p><pre class="programlisting">if(a==5)then(a=a-1)
+if b<a then b=a
+if c>0 then c=c-1 else c=0
+a = ( if b>0 then b else 1 )
+</pre><p> Všimněte si, že když je <code class="literal">=</code> použito uvnitř výrazu pro <code
class="literal">if</code>, je změněno na <code class="literal">==</code>, takže </p><pre
class="programlisting">if a=5 then a=a-1
+</pre><p> bude interpretováno jako: </p><pre class="programlisting">if a==5 then a:=a-1
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s07.html">Předcházející</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch06s02.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Seznam operátorů GEL
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Smyčky</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch06s02.html b/help/cs/html/ch06s02.html
new file mode 100644
index 0000000..11be0f7
--- /dev/null
+++ b/help/cs/html/ch06s02.html
@@ -0,0 +1,15 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Smyčky</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Příručka
k aplikaci Genius"><link rel="up" href="ch06.html" title="Kapitola 6. Programování s jazykem GEL"><link
rel="prev" href="ch06.html" title="Kapitola 6. Programování s jazykem GEL"><link rel="next"
href="ch06s03.html" title="Součty a součiny"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Smyčky</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 6. Programování s jazykem
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s03.html">Další</a></td></tr></table><hr></div><div class="sect1"><div class="
titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-loops"></a>Smyčky</h2></div></div></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a name="genius-gel-loops-while"></a>Smyčky
while</h3></div></div></div><p>Syntaxe: </p><pre class="programlisting">while <expression1> do
<expression2>
+until <expression1> do <expression2>
+do <expression2> while <expression1>
+do <expression2> until <expression1></pre><p> Je to podobné jako v jiných jazycích. Jelikož v
jazyce GEL jde ve skutečnosti jen o výraz, musí vracet nějakou hodnotu a proto konstrukce vrací výsledek
poslední iterace nebo <code class="literal">NULL</code>, pokud žádná iterace neproběhne. V pravdivostních
výrazech se <code class="literal">=</code> převádí na <code class="literal">==</code>, stejně jako u příkazu
<code class="literal">if</code>.</p></div><div class="sect2"><div class="titlepage"><div><div><h3
class="title"><a name="genius-gel-loops-for"></a>Smyčky for</h3></div></div></div><p>Syntaxe: </p><pre
class="programlisting">for <identifier> = <from> to <to> do <body>
+for <identifier> = <from> to <to> by <increment> do <body></pre><p> Smyčka s
identifikátorem, který je postupně nastaven na všechny hodnoty od <code class="literal"><from></code>
do <code class="literal"><to></code>, volitelně se použije jiný krok než 1. Jedná se o rychlejší, hezčí
a kompaktnější řešení, než je normální smyčka uvedená výše, ale je méně flexibilní. Identifikátor musí být
identifikátor a nemůže být dereferencí. Hodnota identifikátoru je poslední hodnotou identifikátoru nebo <code
class="literal"><from></code>, pokud tělo nebylo vůbec vyhodnoceno. Je zaručeno, že proměnná bude po
smyčce inicializována, takže ji můžete bezpečně použít. <code class="literal"><from></code>, <code
class="literal"><to></code> a <code class="literal"><increment></code> nesmí být komplexní
hodnoty. Není zaručeno, že bude dosaženo <code class="literal"><t
o></code>, ale rozhodně nebude nikdy překročeno, například následující kód vypíše lichá čísla od 1 do 19:
</p><pre class="programlisting">for i = 1 to 20 by 2 do print(i)
+</pre><p>Pokud je jedna z hodnot desetinné číslo, je závěrečná kontrola prováděna v rozmezí 2^-20 z
velikosti kroku. To znamená, že i když se překročí 2^-20 krát více, stále ještě bude provedena poslední
iterace. Tímto způsobem dá </p><pre class="programlisting">for x = 0 to 1 by 0.1 do print(x)
+</pre><p> očekávané výsledky, i když přičtením desetkrát 0,1 dostaneme o něco víc než 1,0 z důvodu, jakým
jsou desetinná čísla uložena ve dvojkové soustavě (není to 0,1, skutečné uložené číslo je nepatrně větší).
Není to sice perfektní řešení, ale stačí pro většinu případů. Jestli se chcete vyhnout tomuto problému,
použijte racionální číslo, například: </p><pre class="programlisting">for x = 0 to 1 by 1/10 do print(x)
+</pre><p>. Tato kontrola se dělá až do verze 1.0.16, takže provádění kódu se u starších verzí může
lišit.</p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-foreach"></a>Smyčky foreach</h3></div></div></div><p>Syntaxe: </p><pre
class="programlisting">for <identifier> in <matrix> do <body></pre><p> Pro každý prvek
matice, postupně řádek po řádku zleva doprava, se provede tělo s identifikátorem nastaveným na aktuální
prvek. Když chcete vypsat čísla 1,2,3 a 4 právě v takovémto pořadí, můžete to udělat takto: </p><pre
class="programlisting">for n in [1,2:3,4] do print(n)
+</pre><p> Jestli potřebujete projít řádky a sloupce matice, můžete použít funkce RowsOf a ColumnsOf, které
vrací vektor řádků nebo sloupců matice. Takže </p><pre class="programlisting">for n in RowsOf ([1,2:3,4]) do
print(n)
+</pre><p> vypíše [1,2] a pak [3,4].</p></div><div class="sect2"><div class="titlepage"><div><div><h3
class="title"><a name="genius-gel-loops-break-continue"></a>Break a continue</h3></div></div></div><p>Ve
smyčkách můžete použít také příkazy <code class="literal">break</code> a <code
class="literal">continue</code>. Příkaz <code class="literal">continue</code> posune smyčku na začátek
následující iterace, zatímco příkaz <code class="literal">break</code> aktuální smyčku ukončí. </p><pre
class="programlisting">while(<expression1>) do (
+ if(<expression2>) break
+ else if(<expression3>) continue;
+ <expression4>
+)
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06.html">Předcházející</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Nahoru</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s03.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitola
6. Programování s jazykem GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Domů</a></td><td width="40%" align="right" valign="top"> Součty a
součiny</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch06s03.html b/help/cs/html/ch06s03.html
new file mode 100644
index 0000000..9fb9b80
--- /dev/null
+++ b/help/cs/html/ch06s03.html
@@ -0,0 +1,6 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Součty a
součiny</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch06.html" title="Kapitola 6.
Programování s jazykem GEL"><link rel="prev" href="ch06s02.html" title="Smyčky"><link rel="next"
href="ch06s04.html" title="Porovnávací operátory"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Součty a součiny</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch06s02.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 6.
Programování s jazykem GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s04.html">Další</a></td></tr></table><hr></div><div class="sect1"><div class=
"titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-sums-products"></a>Součty a
součiny</h2></div></div></div><p>Syntaxe: </p><pre class="programlisting">sum <identifier> =
<from> to <to> do <body>
+sum <identifier> = <from> to <to> by <increment> do <body>
+sum <identifier> in <matrix> do <body>
+prod <identifier> = <from> to <to> do <body>
+prod <identifier> = <from> to <to> by <increment> do <body>
+prod <identifier> in <matrix> do <body></pre><p> Když <code class="literal">for</code>
nahradíte za <code class="literal">sum</code> nebo <code class="literal">prod</code>, pak místo smyčky <code
class="literal">for</code> získáte součet nebo součin. Místo aby byla vrácena poslední hodnota, je vrácen
součet nebo součin hodnot.</p><p>Pokud tělo není vůbec provedeno (například <strong
class="userinput"><code>sum i=1 to 0 do …</code></strong>), vrátí <code class="literal">sum</code> hodnotu 0
a <code class="literal">prod</code> hodnotu 1, což je standardní konvence.</p><p>Pro desetinná čísla se dělá
stejná ochrana proti chybám zaokrouhlování jako u smyčky for. Viz <a class="xref"
href="ch06s02.html#genius-gel-loops-for" title="Smyčky for">„Smyčky for“</a>.</p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch06s02.html">Předcházej
ící</a> </td><td width="20%" align="center"><a accesskey="u" href="ch06.html">Nahoru</a></td><td width="40%"
align="right"> <a accesskey="n" href="ch06s04.html">Další</a></td></tr><tr><td width="40%" align="left"
valign="top">Smyčky </td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td
width="40%" align="right" valign="top"> Porovnávací operátory</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch06s04.html b/help/cs/html/ch06s04.html
new file mode 100644
index 0000000..f2c5f80
--- /dev/null
+++ b/help/cs/html/ch06s04.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Porovnávací
operátory</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch06.html" title="Kapitola 6.
Programování s jazykem GEL"><link rel="prev" href="ch06s03.html" title="Součty a součiny"><link rel="next"
href="ch06s05.html" title="Globální proměnné a působnost proměnných"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Porovnávací operátory</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch06s03.html">Předcházející</a> </td><th width="60%"
align="center">Kapitola 6. Programování s jazykem GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s05.html">Další</a></td></tr></
table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-comparison-operators"></a>Porovnávací operátory</h2></div></div></div><p>V jazyce GEL jsou
podporovány následující porovnávací operátory a mají obvyklý význam: <code class="literal">==</code>, <code
class="literal">>=</code>, <code class="literal"><=</code>, <code class="literal">!=</code>, <code
class="literal"><></code>, <code class="literal"><</code>, <code class="literal">></code>. Vrací
<code class="constant">true</code> nebo <code class="constant">false</code>. Operátory <code
class="literal">!=</code> a <code class="literal"><></code> jsou stejné a znamenají „není rovno“. GEL
podporuje také operátor <code class="literal"><=></code>, který vrací -1, když je levá strana menší, 0,
když jsou si strany rovny, a 1, když je levá strana větší.</p><p>Pokud se <code class="literal">=</code
vyskytne někde, kde GEL očekává podmínku, jako v podmínce if, je převedeno na <code
class="literal">==</code>. Například </p><pre class="programlisting">if a=b then c
+if a==b then c
+</pre><p> jsou v jazyce GEL totéž. Ale jestli chcete, aby váš kód byl dobře čitelný a abyste se vyvarovali
chyb, měli byste ve skutečnosti používat jako operátor porovnání nebo přiřazení <code
class="literal">==</code> nebo <code class="literal">:=</code>.</p><p>Všechny operátory porovnávání (vyjma
operátoru <code class="literal"><=></code>, který se chová normálně) nejsou striktně binární operátory,
takže mohou být seskupovány běžným matematickým způsobem, např. (<code
class="literal">1<x<=y<5</code>) je platný pravdivostní výraz a znamená přesně to, co by měl, což je
(1<x a x≤y a y<5)</p><p>Pro sestavení logických výrazů používejte slov <code
class="literal">not</code>, <code class="literal">and</code>, <code class="literal">or</code> a <code
class="literal">xor</code>. Operátory <code class="literal">or</code> a <code class="literal">and</code> jsou
zrádné v tom, že vyhodnocují své argumen
ty jeden po druhém, takže zde funguje obvyklý trik pro podmíněné vyhodnocení. Například <code
class="literal">1 or a=1</code> nikdy nenastaví <code class="literal">a=1</code>, protože první argument je
pravdivý.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s03.html">Předcházející</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Nahoru</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s05.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Součty a
součiny </td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Globální proměnné a působnost proměnných</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch06s05.html b/help/cs/html/ch06s05.html
new file mode 100644
index 0000000..0fbe714
--- /dev/null
+++ b/help/cs/html/ch06s05.html
@@ -0,0 +1,21 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Globální proměnné a
působnost proměnných</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch06.html" title="Kapitola 6.
Programování s jazykem GEL"><link rel="prev" href="ch06s04.html" title="Porovnávací operátory"><link
rel="next" href="ch06s06.html" title="Proměnné parametrů"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Globální proměnné a působnost proměnných</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch06s04.html">Předcházející</a> </td><th width="60%"
align="center">Kapitola 6. Programování s jazykem GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s06.htm
l">Další</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-variables-global"></a>Globální proměnné a působnost
proměnných</h2></div></div></div><p>GEL je <a class="ulink"
href="http://en.wikipedia.org/wiki/Scope_%28programming%29" target="_top">jazyk s dynamickým rozsahem
platnosti</a>. Co to znamená hned vysvětlíme. Je to to, že normální proměnné a funkce mají dynamicky
vymezenou platnost. Výjimkou jsou <a class="link" href="ch06s06.html" title="Proměnné parametrů">proměnné
parametrů</a>, kterou jsou vždy globální.</p><p>Podobně jako většina programovacích jazyků, i GEL má různé
typy proměnných. Když je proměnná normálně definována ve funkci, je viditelná z této funkce a ze všech
funkcí, které jsou z ní volány (všechny kontexty s vyšším číslem). Například předpokládejme, že funkce <code
class="function">f</code> definuje p
roměnnou <code class="varname">a</code> a pak volá funkci <code class="function">g</code>. Potom se funkce
<code class="function">g</code> může odkazovat na proměnnou <code class="varname">a</code>. Ale jakmile dojde
k návratu z funkce <code class="function">f</code>, platnost <code class="varname">a</code> zaniká. Např.
následují kód vypíše 5. Funkce <code class="function">g</code> nemůže být volána z nejvyšší úrovně (mimo
funkci <code class="function">f</code>, protože proměnná <code class="varname">a</code> pak není definována).
</p><pre class="programlisting">function f() = (a:=5; g());
+function g() = print(a);
+f();
+</pre><p>Pokud definujete proměnnou uvnitř funkce, přepíše jinou proměnnou definovanou ve volající funkci.
Například upravíme předchozí kód a napíšeme: </p><pre class="programlisting">function f() = (a:=5; g());
+function g() = print(a);
+a:=10;
+f();
+</pre><p> Tento kód bude stále vypisovat 5. Ale když zavoláte <code class="function">g</code> mimo funkci
<code class="function">f</code>, dostanete ve výpise 10. Všimněte si, že nastavení <code
class="varname">a</code> na 5 uvnitř funkce <code class="function">f</code> nemění hodnotu <code
class="varname">a</code> ve nejvyšší (globální) úrovni, takže když si nyní ověříte hodnotu <code
class="varname">a</code>, bude stále 10.</p><p>Argumenty funkce jsou úplně stejné jako proměnné definované
uvnitř funkce vyjma toho, že jsou inicializovány na hodnotu, která je funkci předána. Kromě této jediné věci
se s nimi zachází úplně stejně, jako se všemi ostatními proměnnými definovanými uvnitř funkce.</p><p>S
funkcemi je zacházeno stejně jako s proměnnými. Proto také můžete lokálně předefinovávat funkce. Normálně (v
nejvyšší úrovni) nemůžete předefinovávat chráněné proměnné a funkce. Ale lokálně to udělat
můžete. Uvažujme následující situaci: </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>function f(x) = sin(x)^2</code></strong>
+= (`(x)=(sin(x)^2))
+<code class="prompt">genius> </code><strong class="userinput"><code>function f(x) =
sin(x)^2</code></strong>
+= (`(x)=(sin(x)^2))
+<code class="prompt">genius> </code><strong class="userinput"><code>function g(x) = ((function
sin(x)=x^10);f(x))</code></strong>
+= (`(x)=((sin:=(`(x)=(x^10)));f(x)))
+<code class="prompt">genius> </code><strong class="userinput"><code>g(10)</code></strong>
+= 1e20
+</pre><p>Funkce a proměnné definované v nejvyšší úrovni jsou považovány za globální. Jsou viditelné
odkudkoliv. Jak již bylo řečeno, následující funkce <code class="function">f</code> nezmění hodnotu <code
class="varname">a</code> na 5. </p><pre class="programlisting">a=6;
+function f() = (a:=5);
+f();
+</pre><p> Občas je ale nutné nastavit globální proměnnou uvnitř funkce. Když je takové chování zapotřebí,
použijte funkci <a class="link" href="ch11s02.html#gel-function-set"><code class="function">set</code></a>.
Předáním řetězce nebo identifikátoru s uvozovkou do této funkce se nastaví globální proměnná (v nejvyšší
úrovni). Například pro nastavení <code class="varname">a</code> na hodnotu 3 byste mohli zavolat: </p><pre
class="programlisting">set(`a,3)
+</pre><p> nebo: </p><pre class="programlisting">set("a",3)
+</pre><p>Funkce <code class="function">set</code> nastavuje vždy globální proměnné v nejvyšší úrovni.
Neexistuje žádný způsob, jak nastavit lokální proměnnou v nějaké funkce z podřízené funkce. Pokud něco
takového potřebujete, musíte jedině použít předání reference (odkazu).</p><p>Viz také funkce <a class="link"
href="ch11s02.html#gel-function-SetElement"><code class="function">SetElement</code></a> a <a class="link"
href="ch11s02.html#gel-function-SetVElement"><code class="function">SetVElement</code></a>.</p><p>Takže
sesumírováno do technického jazyka: Genius pracuje s různými očíslovanými kontexty. Nejvyšší úroveň je
kontext 0 (nula). Kdykoliv se vstoupí do funkce, je kontext zvýšen a když se funkce opouští, je kontext
snížen. Funkce nebo proměnná je vždy viditelná ze všech kontextů, které mají vyšší číslo. Když byla proměnná
definována v kontextu s nižším číslem, má nastavení této proměnné v
liv na vytváření nové lokální proměnné v aktuálním čísle kontextu a tato proměnná bude nyní viditelná ze
všech kontextů s vyšším číslem.</p><p>Existují i skutečně lokální proměnné, které nejsou vidět nikde jinde,
než v aktuálním kontextu. Rovněž při vracení funkcí hodnotou je možné odkazovat na proměnnou, která není
viditelná z vyššího kontextu a to může být problém. Viz oddíl <a class="link" href="ch07s04.html"
title="Skutečně lokální proměnné">Skutečně lokální proměnné</a> a <a class="link" href="ch07s03.html"
title="Vracení funkcí">Vracení funkcí</a>.</p></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch06s04.html">Předcházející</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch06.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s06.html">Další</a></td></tr><tr><t
d width="40%" align="left" valign="top">Porovnávací operátory </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Domů</a></td><td width="40%" align="right" valign="top"> Proměnné
parametrů</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch06s06.html b/help/cs/html/ch06s06.html
new file mode 100644
index 0000000..a5c0950
--- /dev/null
+++ b/help/cs/html/ch06s06.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Proměnné
parametrů</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch06.html" title="Kapitola 6.
Programování s jazykem GEL"><link rel="prev" href="ch06s05.html" title="Globální proměnné a působnost
proměnných"><link rel="next" href="ch06s07.html" title="Návrat hodnot"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Proměnné parametrů</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch06s05.html">Předcházející</a> </td><th width="60%"
align="center">Kapitola 6. Programování s jazykem GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s07.html">Další</a></td></tr></table><hr>
</div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-parameters"></a>Proměnné parametrů</h2></div></div></div><p>Jak jsme uvedli již dříve,
existují speciální proměnné nazývané parametry, které jsou platné všude. Pro deklaraci parametru nazvaného
<code class="varname">foo</code> s počáteční hodnotou 1, napište </p><pre class="programlisting">parameter
foo = 1
+</pre><p> Od toho okamžiku je <code class="varname">foo</code> striktně globální proměnnou. Nastavením
proměnné <code class="varname">foo</code> uvnitř funkce se změní proměnná ve všech kontextech, což je tím, že
funkce nemají privátní kopii parametrů.</p><p>Když zrušíte definici parametru pomocí funkce <a class="link"
href="ch11s02.html#gel-function-undefine"><code class="function">undefine</code></a>, přestane být
parametrem.</p><p>Některé parametry jsou vestavěné a mění chování kalkulátoru Genius.</p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch06s05.html">Předcházející</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch06.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s07.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Globální proměnné a
působnost proměnných�
�</td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Návrat hodnot</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch06s07.html b/help/cs/html/ch06s07.html
new file mode 100644
index 0000000..c0a0997
--- /dev/null
+++ b/help/cs/html/ch06s07.html
@@ -0,0 +1,9 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Návrat
hodnot</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch06.html" title="Kapitola 6.
Programování s jazykem GEL"><link rel="prev" href="ch06s06.html" title="Proměnné parametrů"><link rel="next"
href="ch06s08.html" title="Reference"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Návrat hodnot</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch06s06.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 6.
Programování s jazykem GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s08.html">Další</a></td></tr></table><hr></div><div class="sect1"><div class="titlepag
e"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-returning"></a>Návrat
hodnot</h2></div></div></div><p>Normálně je funkce tvořena jedním nebo několika výrazy oddělenými středníky a
vrací se hodnota posledního výrazu. To je fajn pro jednoduché funkce, ale někdy nechcete, aby funkce vracela
to, co vypočítala naposledy. Můžete se například chtít vrátit z prostředku funkce. V takovém případě můžete
použít klíčové slovo <code class="literal">return</code>. <code class="literal">return</code> přebírá jeden
argument, který je hodnotou, která bude vrácena.</p><p>Příklad: </p><pre class="programlisting">function f(x)
= (
+ y=1;
+ while true do (
+ if x>50 then return y;
+ y=y+1;
+ x=x+1
+ )
+)
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch06s06.html">Předcházející</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch06.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s08.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Proměnné parametrů
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Reference</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch06s08.html b/help/cs/html/ch06s08.html
new file mode 100644
index 0000000..23eaa13
--- /dev/null
+++ b/help/cs/html/ch06s08.html
@@ -0,0 +1,8 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Reference</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Příručka
k aplikaci Genius"><link rel="up" href="ch06.html" title="Kapitola 6. Programování s jazykem GEL"><link
rel="prev" href="ch06s07.html" title="Návrat hodnot"><link rel="next" href="ch06s09.html"
title="L-hodnoty"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Reference</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s07.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 6. Programování s jazykem
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s09.html">Další</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-references"></a>Reference</h2></div></div></div><p>Pro
některé funkce je nutné, aby vracely více než jednu hodnotu. To lze zajistit vrácením vektoru hodnot, ale
častokrát je praktičtější použít předávání reference (odkazu) na proměnnou. Předáte funkci referenci na
proměnnou a funkce proměnnou nastaví pomocí dereference. Nemusíte se s používáním referencí omezovat jen na
tento účel, ale tohle je jejich hlavní využití.</p><p>Když používáte funkce, které vracejí hodnoty skrze
reference v seznamu argumentů, jednoduše předejte název proměnné s ampersandem. Například následující kód
bude počítat vlastní čísla matice <code class="varname">A</code> s počátečním vlastním vektorem odhadů <code
class="varname">x</code> a uloží vypočítaný vlastní vektor do proměnné pojmenované <code
class="varname">v</code>: </p><pre class="programlisting">RayleighQuotientIter
ation (A,x,0.001,100,&v)
+</pre><p>V detailech fungování a syntaxi jsou reference podobné jako v jazyku C. Operátor <code
class="literal">&</code> odkazuje na proměnnou a <code class="literal">*</code> provádí dereferenci
proměnné. Obojí lze uplatnit pouze na identifikátory, takže <code class="literal">**a</code> není v jazyce
GEL platný výraz.</p><p>Reference je nejlépe vysvětlit na příkladu: </p><pre class="programlisting">a=1;
+b=&a;
+*b=2;
+</pre><p> <code class="varname">a</code> nyní obsahuje 2. Můžete používat i reference na funkce: </p><pre
class="programlisting">function f(x) = x+1;
+t=&f;
+*t(3)
+</pre><p> vrátí 4.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch06s07.html">Předcházející</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch06.html">Nahoru</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s09.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Návrat
hodnot </td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> L-hodnoty</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch06s09.html b/help/cs/html/ch06s09.html
new file mode 100644
index 0000000..e460c49
--- /dev/null
+++ b/help/cs/html/ch06s09.html
@@ -0,0 +1,5 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>L-hodnoty</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Příručka
k aplikaci Genius"><link rel="up" href="ch06.html" title="Kapitola 6. Programování s jazykem GEL"><link
rel="prev" href="ch06s08.html" title="Reference"><link rel="next" href="ch07.html" title="Kapitola 7.
Pokročilé programování v jazyce GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">L-hodnoty</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s08.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 6. Programování s jazykem
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07.html">Další</a></td></tr></table><hr></div><div class="sect1"><div c
lass="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-lvalues"></a>L-hodnoty</h2></div></div></div><p>L-hodnota je levou stranou v přiřazení.
Jinými slovy, l-hodnota to, do čeho přiřazujete. Platné l-hodnoty jsou: </p><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><strong
class="userinput"><code>a</code></strong></span></dt><dd><p>Identifikátor. V tomto případě by se nastavila
proměnná s názvem <code class="varname">a</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>*a</code></strong></span></dt><dd><p>Dereference identifikátoru. Nastaví to, na co
proměnná <code class="varname">a</code> ukazuje.</p></dd><dt><span class="term"><strong
class="userinput"><code>a@(<část>)</code></strong></span></dt><dd><p>Část matice. Část je určena
normálně jako u běžného operátoru @() a může být jedinou hodnotou nebo celou oblastí
matice.</p></dd></dl></div><p>Příklady: <
/p><pre class="programlisting">a:=4
+*tmp := 89
+a@(1,1) := 5
+a@(4:8,3) := [1,2,3,4,5]'
+</pre><p> Poznamenejme, že oba operátory <code class="literal">:=</code> a <code class="literal">=</code>
lze zaměňovat. Jedinou výjimkou je, když se objeví v podmínce. Proto je bezpečnější dodržovat pravidlo, že
<code class="literal">:=</code> se použije, když myslíte přiřazení, a <code class="literal">==</code>, když
máte na mysli porovnání.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch06s08.html">Předcházející</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch06.html">Nahoru</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch07.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Reference
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Kapitola 7. Pokročilé programování v jazyce GEL</td></tr></table></div></body><
/html>
diff --git a/help/cs/html/ch07.html b/help/cs/html/ch07.html
new file mode 100644
index 0000000..ff4c05c
--- /dev/null
+++ b/help/cs/html/ch07.html
@@ -0,0 +1,8 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitola 7. Pokročilé
programování v jazyce GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="index.html"
title="Příručka k aplikaci Genius"><link rel="prev" href="ch06s09.html" title="L-hodnoty"><link rel="next"
href="ch07s02.html" title="Syntaxe v nejvyšší úrovni"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitola 7. Pokročilé programování v jazyce GEL</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch06s09.html">Předcházející</a> </td><th width="60%"
align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch07s02.html">Další</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 class="title"><a
name="genius-gel-programming-advanced"></a>Kapitola 7. Pokročilé programování v jazyce
GEL</h1></div></div></div><div class="toc"><p><b>Obsah</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch07.html#genius-gel-error-handling">Obsluha chyb</a></span></dt><dt><span class="sect1"><a
href="ch07s02.html">Syntaxe v nejvyšší úrovni</a></span></dt><dt><span class="sect1"><a
href="ch07s03.html">Vracení funkcí</a></span></dt><dt><span class="sect1"><a href="ch07s04.html">Skutečně
lokální proměnné</a></span></dt><dt><span class="sect1"><a href="ch07s05.html">Spouštěcí procedura
GEL</a></span></dt><dt><span class="sect1"><a href="ch07s06.html">Načítání
programů</a></span></dt></dl></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-error-handling"></a>Obsluha chyb</h2></div></div></div><p>Pokud je
zjištěna chyba ve vaš�
� funkci, provádění funkce se přeruší. Pro normální chyby, jako jsou nesprávné typy argumentů, můžete
vyvolat selhání funkce přidáním výrazu <code class="literal">bailout</code>. Když nastane něco opravdu
špatného a vy chcete aktuální výpočet kompletně zabít, můžete použít <code
class="literal">exception</code>.</p><p>Když například chcete ve své funkci kontrolovat argumenty, můžete
použít následující kód. </p><pre class="programlisting">function f(M) = (
+ if not IsMatrix (M) then (
+ error ("M není matice!");
+ bailout
+ );
+ …
+)
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s09.html">Předcházející</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch07s02.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">L-hodnoty </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%" align="right"
valign="top"> Syntaxe v nejvyšší úrovni</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch07s02.html b/help/cs/html/ch07s02.html
new file mode 100644
index 0000000..00ebf0d
--- /dev/null
+++ b/help/cs/html/ch07s02.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Syntaxe v nejvyšší
úrovni</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch07.html" title="Kapitola 7.
Pokročilé programování v jazyce GEL"><link rel="prev" href="ch07.html" title="Kapitola 7. Pokročilé
programování v jazyce GEL"><link rel="next" href="ch07s03.html" title="Vracení funkcí"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Syntaxe v nejvyšší
úrovni</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch07.html">Předcházející</a> </td><th
width="60%" align="center">Kapitola 7. Pokročilé programování v jazyce GEL</th><td width="20%" align="right">
<a accesskey="n" href="ch07s03.h
tml">Další</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-toplevel-syntax"></a>Syntaxe v nejvyšší
úrovni</h2></div></div></div><p>Syntaxe se lehce liší, když zadáváte příkazy v nejvyšší úrovni a když jsou
uvnitř závorek nebo uvnitř funkce. Na nejvyšší úrovni zadání funguje stejně, jako když zmáčknete Enter na
příkazovém řádku. Proto uvažujte o programu, jako o sekvenci řádků, které byste zadávali na příkazovém řádku.
Především nepotřebujete zadávat oddělovač na konci řádku (ledaže se jedná o část několika příkazů v
závorkách).</p><p>Následující kód skončí chybou, pokud jej zadáte v nejvyšší úrovni programu, zatímco ve
funkci bude pracovat bez problémů. </p><pre class="programlisting">if Neco() then
+ UdelatNeco()
+else
+ UdelatNecoJineho()
+</pre><p>Problémem je, že po té, co <span class="application">matematický nástroj Genius</span> uvidí konec
řádku po druhém řádku, usoudí, že příkaz už je celý a provede jej. Po té, co je provádění dokončeno, bude
<span class="application">matematický nástroj Genius</span> pokračovat na následujícím řádku, uvidí <code
class="literal">else</code>, a vyvolá chybu zpracování. Řešením je použít závorek. <span
class="application">Matematický nástroj Genius</span> nebude spokojen, dokud nenalezne všechny závorky
uzavřené. </p><pre class="programlisting">if Neco() then (
+ UdelatNeco()
+) else (
+ UdelatNecoJineho()
+)
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch07.html">Předcházející</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch07.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07s03.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitola 7. Pokročilé
programování v jazyce GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Domů</a></td><td width="40%" align="right" valign="top"> Vracení
funkcí</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch07s03.html b/help/cs/html/ch07s03.html
new file mode 100644
index 0000000..c5c45f3
--- /dev/null
+++ b/help/cs/html/ch07s03.html
@@ -0,0 +1,27 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Vracení
funkcí</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch07.html" title="Kapitola 7.
Pokročilé programování v jazyce GEL"><link rel="prev" href="ch07s02.html" title="Syntaxe v nejvyšší
úrovni"><link rel="next" href="ch07s04.html" title="Skutečně lokální proměnné"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Vracení funkcí</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07s02.html">Předcházející</a> </td><th width="60%"
align="center">Kapitola 7. Pokročilé programování v jazyce GEL</th><td width="20%" align="right"> <a
accesskey="n" href="ch07s04.html">Další</a></td></tr><
/table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-returning-functions"></a>Vracení funkcí</h2></div></div></div><p>Existuje možnost,
jak vracet funkce jako hodnoty. Tímto způsobem můžete vytvářet funkce, které konstruují funkce pro speciální
účely podle určitých parametrů. Trochu trik je, jak udělat proměnné, aby je funkce viděla. Způsob, který
funguje v jazyce GEL je, že když funkce vrací jinou funkci, tak všechny identifikátory odkazované v těle
funkce, které jdou mimo rozsah působnosti, mají předřazen privátní slovník vracené funkce. Takže funkce bude
vidět všechny proměnné, které byly v rozsahu působnosti, když byla definována. Například nadefinujeme funkci,
která vrací funkci, která přičítá 5 ke svému argumentu. </p><pre class="programlisting">function f() = (
+ k = 5;
+ `(x) = (x+k)
+)
+</pre><p> Všimněte si, že funkce přičítá <code class="varname">k</code> k <code class="varname">x</code>.
Použili byste ji následovně: </p><pre class="programlisting">g = f();
+g(5)
+</pre><p> A <strong class="userinput"><code>g(5)</code></strong> by mělo vrátit 10.</p><p>Jedna věc, kterou
je potřeba si uvědomit, je, že hodnota <code class="varname">k</code>, která je použita, je ve skutečnosti ta
ve chvíli, kdy se vrací funkce <code class="function">f</code>. Například </p><pre
class="programlisting">function f() = (
+ k := 5;
+ function r(x) = (x+k);
+ k := 10;
+ r
+)
+</pre><p> bude vracet funkci, která ke svému argumentu přičítá 10 a ne 5. To proto, že je vytvořen dodatečný
slovník, jen když kontext, ve kterém končí definice funkce, je ten jako když se funkce <code
class="function">f</code> vrací. Což je konzistentní s tím, jak byste očekávali, že bude funkce <code
class="function">r</code> pracovat uvnitř funkce <code class="function">f</code> podle pravidel o rozsahu
působnosti proměnných v jazyce GEL. Do dodatečného slovníku jsou přidány jen ty proměnné, které jsou v
kontextu, který právě končí a nadále již neexistuje. Proměnné použité ve funkci, které jsou ve stále platném
kontextu, budou pracovat obvykle s použitím aktuální hodnoty proměnné. Jediný rozdíl je v globálních
proměnných a funkcích. Všechny identifikátory, které odkazovaly na globální proměnné ve chvíli, kdy definice
funkce není přidána do privátního slovníku. To je kvůli tomu, aby se zabránilo
nepotřebné práci, když se vrací funkce a zřídka by byly problémem. Například předpokládejme, že vymažete z
funkce <code class="function">f</code> výraz „n=5“ a v nejvyšší úrovni definujete <code
class="varname">k</code>, které bude řekněme 5. Když pak spustíte funkci <code class="function">f</code>,
funkce <code class="function">r</code> nebude proměnnou <code class="varname">k</code> vkládat do privátního
slovníku, protože je v době definice <code class="function">r</code> globální (v nejvyšší
úrovni).</p><p>Někdy je lepší mít větší kontrolu na tím, jak jsou proměnné kopírovány do privátního slovníku.
Od verze 1.0.7 můžete určovat, které proměnné jsou kopírovány do privátního slovníku tak, že za argumenty
vložíte dodatečné hranaté závorky se seznamem proměnných oddělených čárkou, které se mají kopírovat. Pokud
tak učiníte, proměnné jsou zkopírovány do privátního slovníku v okamžiku
definice funkce a dodatečně se již slovník nemění. Například </p><pre class="programlisting">function f() =
(
+ k := 5;
+ function r(x) [k] = (x+k);
+ k := 10;
+ r
+)
+</pre><p> bude vracet funkci, která při zavolání přičte 5 ke svému argumentu. Lokální kopie <code
class="varname">k</code> byla vytvořena ve chvíli, kdy byla funkce definována.</p><p>Když chcete, aby funkce
neměla žádný privátní slovník, tak vložte za seznam argumentů prázdné hranaté závorky. V takovém případě
nebude vytvořen vůbec žádný privátní slovník. To je dobré pro zvýšení efektivity v situacích, kdy žádný
privátní slovník není zapotřebí nebo když chcete, aby funkce hledala všechny proměnné takové, jaké jsou v
okamžiku volání. Například předpokládejme že chcete, aby funkce vracená funkcí <code
class="function">f</code> viděla hodnotu <code class="varname">n</code> z nejvyšší úrovně, přestože existuje
lokální proměnná stejného jména během definování. Potom kód </p><pre class="programlisting">function f() = (
+ k := 5;
+ function r(x) [] = (x+k);
+ r
+);
+k := 10;
+g = f();
+g(10)
+</pre><p> bude vrace 20 a ne 15, což by nastalo v případě, že <code class="varname">n</code> s hodnotou 5
bylo přidáno do privátního slovníku.</p></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch07s02.html">Předcházející</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch07.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07s04.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Syntaxe v nejvyšší
úrovni </td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Skutečně lokální proměnné</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch07s04.html b/help/cs/html/ch07s04.html
new file mode 100644
index 0000000..acf1bbc
--- /dev/null
+++ b/help/cs/html/ch07s04.html
@@ -0,0 +1,18 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Skutečně lokální
proměnné</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch07.html" title="Kapitola 7.
Pokročilé programování v jazyce GEL"><link rel="prev" href="ch07s03.html" title="Vracení funkcí"><link
rel="next" href="ch07s05.html" title="Spouštěcí procedura GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Skutečně lokální proměnné</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07s03.html">Předcházející</a> </td><th width="60%"
align="center">Kapitola 7. Pokročilé programování v jazyce GEL</th><td width="20%" align="right"> <a
accesskey="n" href="ch07s05.html">Další</a
</td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-true-local-variables"></a>Skutečně lokální
proměnné</h2></div></div></div><p>Když předáváte funkce do jiných funkcí, může být normální rozsah
působnosti proměnných nežádoucí. Například u </p><pre class="programlisting">k := 10;
+function r(x) = (x+k);
+function f(g,x) = (
+ k := 5;
+ g(x)
+);
+f(r,1)
+</pre><p> budete pravděpodobně chtít, aby funkce <code class="function">r</code> při předání jako <code
class="function">g</code> do <code class="function">f</code> viděla v proměnné <code class="varname">k</code>
hodnotu 10 a ne 5, a kód tak vracel 11 a ne 6. Ale tak, jak je to napsáno, funkce při spuštění bude vidět
<code class="varname">k</code> rovno 5. Existují dva způsoby, jak to vyřešit. Jeden je přimět funkci <code
class="function">r</code>, aby dostala <code class="varname">k</code> v privátním slovníku pomocí notace s
hranatými závorkami, jak je ukázáno v kapitole <a class="link" href="ch07s03.html" title="Vracení
funkcí">Vracení funkcí</a>.</p><p>Je zde ale i jiné řešení. Od verze 1.0.7 jsou k dispozici skutečně lokální
proměnné. Jde o proměnné, které jsou viditelné pouze z aktuálního kontextu a ne z jakékoliv volané funkce.
Mohli bychom definovat <code class="varname">k</code> jako lokální proměnnou ve funkc
i <code class="function">f</code>. Uděláte to tak, že přidáte příkaz <span
class="command"><strong>local</strong></span> jako první příkaz ve funkci (musí to být vždy první příkaz ve
funkci). Lokální proměnnou můžete udělat také z kteréhokoliv argumentu. Pak to bude takto </p><pre
class="programlisting">function f(g,x) = (
+ local g,x,k;
+ k := 5;
+ g(x)
+);
+</pre><p> a kód bude pracovat jak očekáváte a vypisovat 11. Upozorňujeme, že příkaz <span
class="command"><strong>local</strong></span> inicializuje všechny odkazované proměnné (vyjma argumentů
funkce) na <code class="constant">null</code>.</p><p>Pokud mají být jako lokální vytvořeny všechny proměnné,
můžete místo seznamu proměnných prostě předat hvězdičku. V takovém případě nebudou proměnné inicializovány,
dokud opravdu nejsou nastaveny. Takto bude i následující definice <code class="function">f</code> pracovat:
</p><pre class="programlisting">function f(g,x) = (
+ local *;
+ k := 5;
+ g(x)
+);
+</pre><p>Je dobrým zvykem, aby všechny funkce, které přebírají jiné funkce jako argumenty, používaly lokální
proměnné. Je to způsob, jak zabránit, aby předávaná funkce neviděla implementační podrobnosti a nemátlo ji
to.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch07s03.html">Předcházející</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch07.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07s05.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Vracení funkcí </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%" align="right"
valign="top"> Spouštěcí procedura GEL</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch07s05.html b/help/cs/html/ch07s05.html
new file mode 100644
index 0000000..fb68093
--- /dev/null
+++ b/help/cs/html/ch07s05.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Spouštěcí procedura
GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch07.html" title="Kapitola 7.
Pokročilé programování v jazyce GEL"><link rel="prev" href="ch07s04.html" title="Skutečně lokální
proměnné"><link rel="next" href="ch07s06.html" title="Načítání programů"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Spouštěcí procedura GEL</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch07s04.html">Předcházející</a> </td><th width="60%"
align="center">Kapitola 7. Pokročilé programování v jazyce GEL</th><td width="20%" align="right"> <a
accesskey="n" href="ch07s06.html">Další</
a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-startup-procedure"></a>Spouštěcí procedura
GEL</h2></div></div></div><p>Nejdříve program hledá soubor nainstalovaných knihoven (přeložená verze <code
class="filename">lib.cgel</code>) v instalační složce, pak se dívá do aktuální složky a po té zkouší načíst
nepřeložený soubor nazvaný <code class="filename">~/.geniusinit</code>.</p><p>Pokaždé, když změníte knihovnu
v místě její instalace, musíte ji nejprve přeložit pomocí <span class="command"><strong>genius --compile
loader.gel > lib.cgel</strong></span></p></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch07s04.html">Předcházející</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch07.html">Nahoru</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch07s06.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Skutečně
lokální proměnné </td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td
width="40%" align="right" valign="top"> Načítání programů</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch07s06.html b/help/cs/html/ch07s06.html
new file mode 100644
index 0000000..fd42505
--- /dev/null
+++ b/help/cs/html/ch07s06.html
@@ -0,0 +1,5 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Načítání
programů</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch07.html" title="Kapitola 7.
Pokročilé programování v jazyce GEL"><link rel="prev" href="ch07s05.html" title="Spouštěcí procedura
GEL"><link rel="next" href="ch08.html" title="Kapitola 8. Matice v jazyce GEL"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Načítání programů</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07s05.html">Předcházející</a> </td><th width="60%"
align="center">Kapitola 7. Pokročilé programování v jazyce GEL</th><td width="20%" align="right"> <a
accesskey="n" href="ch08.html">Další</a></td></t
r></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-loading-programs"></a>Načítání programů</h2></div></div></div><p>Někdy můžete mít
delší program, který jste zapsali do souboru a chcete jej z tohoto souboru načíst do <span
class="application">matematického nástroje Genius</span>. V takové situaci máte dvě možnosti. Můžete mít
funkce, které používáte nejčastěji, v souboru <code class="filename">~/.geniusinit</code>. Nebo, pokud chcete
načíst soubor v průběhu sezení (nebo z jiného souboru), můžete napsat na příkazovém řádku <span
class="command"><strong>load <seznam názvů souborů></strong></span>. To musí být provedeno v nejvyšší
úrovni a ne uvnitř nějaké funkce nebo něčeho a nesmí to být součástí výrazu. Má to také mírně odlišnou
syntaxi než zbytek příkazů v kalkulátoru Genius, více se to podobá syntaxi shellu. Soubor
můžete zadat v uvozovkách. Když použijete uvozovky '', dostanete řetězec přesně tak, jak jste jej zapsali,
když uvozovky "", budou zpracovány escape sekvence pro speciální znaky. Například: </p><pre
class="programlisting">load program1.gel program2.gel
+load "Nezvyklý název souboru s MEZERAMI.gel"
+</pre><p> K dispozici jsou také vestavěné příkazy <span class="command"><strong>cd</strong></span>, <span
class="command"><strong>pwd</strong></span> a <span class="command"><strong>ls</strong></span>. Příkaz <span
class="command"><strong>cd</strong></span> přijímá jeden argument, <span
class="command"><strong>ls</strong></span> přijímá argument, který je podobný jako u glob v UNIXovém shellu
(např. můžete používat divoké znaky). <span class="command"><strong>pwd</strong></span> nepřijímá žádné
argumenty. Například: </p><pre class="programlisting">cd složka_s_programemy_v_jazyce_gel
+ls *.gel
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch07s05.html">Předcházející</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch07.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch08.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Spouštěcí procedura GEL
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Kapitola 8. Matice v jazyce GEL</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch08.html b/help/cs/html/ch08.html
new file mode 100644
index 0000000..0930952
--- /dev/null
+++ b/help/cs/html/ch08.html
@@ -0,0 +1,21 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitola 8. Matice v
jazyce GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="index.html" title="Příručka k
aplikaci Genius"><link rel="prev" href="ch07s06.html" title="Načítání programů"><link rel="next"
href="ch08s02.html" title="Operátor konjugované transpozice a transpozice"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Kapitola 8. Matice v jazyce
GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch07s06.html">Předcházející</a> </td><th
width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch08s02.html">Další</a></td></tr></table><hr></div><div class="c
hapter"><div class="titlepage"><div><div><h1 class="title"><a name="genius-gel-matrices"></a>Kapitola 8.
Matice v jazyce GEL</h1></div></div></div><div class="toc"><p><b>Obsah</b></p><dl class="toc"><dt><span
class="sect1"><a href="ch08.html#genius-gel-matrix-support">Zadávání matic</a></span></dt><dt><span
class="sect1"><a href="ch08s02.html">Operátor konjugované transpozice a transpozice</a></span></dt><dt><span
class="sect1"><a href="ch08s03.html">Lineární algebra</a></span></dt></dl></div><p>Genius podporuje vektory a
matice a jeho součástí je rozsáhlá knihovna pro práci s maticemi a s funkcemi lineární algebry.</p><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-matrix-support"></a>Zadávání matic</h2></div></div></div><p>K zadávání matic můžete použít
jednu z následujících dvou syntaxí. Buď můžete zadat matici na jednom řádku, kdy hodnoty oddělujete čárkami a
řádky střed
níky. Nebo můžete zadávat každý řádek na jednom řádku, kdy hodnoty oddělujete čárkami. Můžete také jednoduše
kombinovat obě metody. Takže zadání matice 3×3 z čísel 1 – 9 byste mohli zadat </p><pre
class="programlisting">[1,2,3;4,5,6;7,8,9]
+</pre><p> nebo </p><pre class="programlisting">[1, 2, 3
+ 4, 5, 6
+ 7, 8, 9]
+</pre><p> Přesto nepoužívejte naráz „;“ a enter na stejném řádku.</p><p>Při vkládání matic můžete také
použít funkci rozšíření matice. Například můžete udělat následující: </p><pre class="programlisting">a = [ 1,
2, 3
+ 4, 5, 6
+ 7, 8, 9]
+b = [ a, 10
+ 11, 12]
+</pre><p> a měli byste získat </p><pre class="programlisting">[1, 2, 3, 10
+ 4, 5, 6, 10
+ 7, 8, 9, 10
+ 11, 11, 11, 12]
+</pre><p> Podobně můžete sestavit matice z vektorů a dalších podobných věcí.</p><p>Další věcí je, že
nezadaná místa se inicializují na 0, takže </p><pre class="programlisting">[1, 2, 3
+ 4, 5
+ 6]
+</pre><p> bude ve výsledku </p><pre class="programlisting">
+[1, 2, 3
+ 4, 5, 0
+ 6, 0, 0]
+</pre><p>Když jsou matice vyhodnocovány, jsou vyhodnocovány a procházeny po řádcích. Je to úplně stejné jako
operátor <code class="literal">M@(j)</code>, který prochází matice po řádcích.</p><div class="note"
style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Poznámka</h3><p>Věnujte pozornost při
vracení z výrazů uvnitř závorek <code class="literal">[ ]</code>, protože tam mají lehce odlišný význam.
Začnete tím nový řádek.</p></div></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch07s06.html">Předcházející</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> <a accesskey="n" href="ch08s02.html">Další</a></td></tr><tr><td width="40%" align="left"
valign="top">Načítání programů </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Domů</a></td><td width="40%" align="right" vali
gn="top"> Operátor konjugované transpozice a transpozice</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch08s02.html b/help/cs/html/ch08s02.html
new file mode 100644
index 0000000..0765f86
--- /dev/null
+++ b/help/cs/html/ch08s02.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Operátor konjugované
transpozice a transpozice</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch08.html"
title="Kapitola 8. Matice v jazyce GEL"><link rel="prev" href="ch08.html" title="Kapitola 8. Matice v jazyce
GEL"><link rel="next" href="ch08s03.html" title="Lineární algebra"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Operátor konjugované transpozice a transpozice</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch08.html">Předcházející</a> </td><th width="60%"
align="center">Kapitola 8. Matice v jazyce GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch08s03.html">Další</a></td
</tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-matrix-transpose"></a>Operátor konjugované transpozice a
transpozice</h2></div></div></div><p>Konjugovanou transpozici matice můžete provádět pomocí operátoru <code
class="literal">'</code>. Tj. prvek v <code class="varname">i</code>-tém sloupci a <code
class="varname">j</code>-tém řádku bude komplexním konjugátem prvku v <code class="varname">j</code>-tém
sloupci a <code class="varname">i</code>-tém řádku původní matice. Například: </p><pre
class="programlisting">[1,2,3]*[4,5,6]'
+</pre><p> Transponujeme druhý vektor, aby bylo možné matici násobit. Pokud chcete matici jen transponovat
bez konjugace, použijte operátor <code class="literal">.'</code>. Například: </p><pre
class="programlisting">[1,2,3]*[4,5,6i].'
+</pre><p>Poznamenejme, že normální transpozice, tj. operátor <code class="literal">.'</code>, je mnohem
rychlejší a nevytváří novou kopii matice v paměti. Konjugovaná transpozice bohužel novou kopii vytváří. Při
práci se skutečnými maticemi a vektory je doporučováno vždy používat operátor <code
class="literal">.'</code>.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch08.html">Předcházející</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch08.html">Nahoru</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch08s03.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitola
8. Matice v jazyce GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Domů</a></td><td width="40%" align="right" valign="top"> Lineární
algebra</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch08s03.html b/help/cs/html/ch08s03.html
new file mode 100644
index 0000000..84cc1f0
--- /dev/null
+++ b/help/cs/html/ch08s03.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Lineární
algebra</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch08.html" title="Kapitola 8.
Matice v jazyce GEL"><link rel="prev" href="ch08s02.html" title="Operátor konjugované transpozice a
transpozice"><link rel="next" href="ch09.html" title="Kapitola 9. Polynomy v jazyce GEL"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Lineární algebra</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch08s02.html">Předcházející</a> </td><th width="60%"
align="center">Kapitola 8. Matice v jazyce GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch09.html">Další</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-matrix-linalg"></a>Lineární algebra</h2></div></div></div><p>Genius implementuje velmi
užitečné rutiny pro lineární algebru a práci s maticemi. Viz <a class="link" href="ch11s09.html"
title="Lineární algebra">Lineární algebra</a> a <a class="link" href="ch11s08.html" title="Práce s
maticemi">Práce s maticemi</a> v kapitole se seznamem funkcí GEL.</p><p>Rutiny lineární algebry
implementované v jazyce GEL v současnosti nepochází s příliš testovaného balíku pro numeriku a proto by
neměly být používány pro kritické numerické výpočty. Na druhou stranu Genius implementuje opravdu hodně
operací lineární algebry s racionálními a celočíselnými koeficienty. Ty jsou přirozeně přesné a v praxi vám
poskytnou mnohem lepší výsledky, než běžné rutiny pro lineární algebru s dvojitou přesností.</p><p>Například
je pro praktické
účely zbytečné počítat hodnost nebo nulový prostor matice desetinných čísel, musíme vzít v úvahu, že matice
mají určité malé chyby. To může vést k tomu, že získáte jiné výsledky, než očekáváte. Problém je, že za malou
odchylkou každé matice je plná hodnost a invertovatelnost. Avšak pokud je matice z racionálních čísel, pak
hodnost a nulový prostor jsou vždy přesné.</p><p>Vzato obecně, když Genius počítá podle určitého prostoru
vektorů (například s funkcí <a class="link" href="ch11s09.html#gel-function-NullSpace"><code
class="function">NullSpace</code></a>), získá báze jako matici, ve které jsou sloupce vektory báze. Když
Genius mluví o lineárním podprostoru, míní tím matici, jejíž prostor sloupců je daný lineární
podprostor.</p><p>Měli byste vzít na vědomí, že Genius si umí zapamatovat určité vlastnosti matice. Například
si bude pamatovat, že je v řádkově redukované podobě. Když je pro
váděno hodně volání funkcí, které interně používají řádkově redukovanou matici, můžeme matici řádkově
redukovat dopředu. Postupná volání <a class="link" href="ch11s09.html#gel-function-rref"><code
class="function">rref</code></a> budou velmi rychlá.</p></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch08s02.html">Předcházející</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch08.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch09.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Operátor konjugované
transpozice a transpozice </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Domů</a></td><td width="40%" align="right" valign="top"> Kapitola 9. Polynomy v jazyce
GEL</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch09.html b/help/cs/html/ch09.html
new file mode 100644
index 0000000..9c31d0c
--- /dev/null
+++ b/help/cs/html/ch09.html
@@ -0,0 +1,7 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitola 9. Polynomy v
jazyce GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="index.html" title="Příručka k
aplikaci Genius"><link rel="prev" href="ch08s03.html" title="Lineární algebra"><link rel="next"
href="ch10.html" title="Kapitola 10. Teorie množin v jazyce GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitola 9. Polynomy v jazyce GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch08s03.html">Předcházející</a> </td><th width="60%" align="center">
</th><td width="20%" align="right"> <a accesskey="n"
href="ch10.html">Další</a></td></tr></table><hr></div><div class="chapter"><div c
lass="titlepage"><div><div><h1 class="title"><a name="genius-gel-polynomials"></a>Kapitola 9. Polynomy v
jazyce GEL</h1></div></div></div><div class="toc"><p><b>Obsah</b></p><dl class="toc"><dt><span
class="sect1"><a href="ch09.html#genius-gel-polynomials-using">Používání
polynomů</a></span></dt></dl></div><p>V současnosti Genius umí pracovat s polynomy jedné proměnné zapsanými
jako vektory a umí s nimi některé základní operace. Do budoucna se počítá s rozšířením této
funkcionality.</p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-polynomials-using"></a>Používání polynomů</h2></div></div></div><p>V současnosti
jsou polynomy jedné proměnné prostě jen vodorovné vektory s hodnotami jednotlivých koeficientů. Podstatná je
pozice ve vektoru, kdy první pozice je 0. Takže </p><pre class="programlisting">[1,2,3]
+</pre><p> se převede na polynom </p><pre class="programlisting">1 + 2*x + 3*x^2
+</pre><p>Polynomy můžete sčítat, odčítat a násobit pomocí funkcí <a class="link"
href="ch11s15.html#gel-function-AddPoly"><code class="function">AddPoly</code></a>, <a class="link"
href="ch11s15.html#gel-function-SubtractPoly"><code class="function">SubtractPoly</code></a> a <a
class="link" href="ch11s15.html#gel-function-MultiplyPoly"><code class="function">MultiplyPoly</code></a>.
Vypisovat je můžete pomocí funkce <a class="link" href="ch11s15.html#gel-function-PolyToString"><code
class="function">PolyToString</code></a>. Například </p><pre class="programlisting">PolyToString([1,2,3],"y")
+</pre><p> vrátí </p><pre class="programlisting">3*y^2 + 2*y + 1
+</pre><p> Můžete také získat funkci představující polynom, takže jej můžete vyhodnotit. Udělá se to pomocí
funkce <a class="link" href="ch11s15.html#gel-function-PolyToFunction"><code
class="function">PolyToFunction</code></a>, ktrá vrací anonymní funkce. </p><pre class="programlisting">f =
PolyToFunction([0,1,1])
+f(2)
+</pre><p>Rovněž je možné hledat kořeny polynomů 1. až 4. stupně pomocí funkce <a class="link"
href="ch11s13.html#gel-function-PolynomialRoots"><code class="function">PolynomialRoots</code></a>, která
volá funkce s příslušnými vzorci. Vyšší stupně polynomů musí být převedeny na funkce a řešeny numericky
pomocí funkcí, jako je <a class="link" href="ch11s13.html#gel-function-FindRootBisection"><code
class="function">FindRootBisection</code></a>, <a class="link"
href="ch11s13.html#gel-function-FindRootFalsePosition"><code
class="function">FindRootFalsePosition</code></a>, <a class="link"
href="ch11s13.html#gel-function-FindRootMullersMethod"><code
class="function">FindRootMullersMethod</code></a> nebo <a class="link"
href="ch11s13.html#gel-function-FindRootSecant"><code
class="function">FindRootSecant</code></a>.</p><p>Ohledně ostatních funkcí týkajících se polynomů se
podívejte se na <a class="xref" href="ch11s15.html" title="Polynomy">„Poly
nomy“</a> v seznamu funkcí.</p></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch08s03.html">Předcházející</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> <a accesskey="n" href="ch10.html">Další</a></td></tr><tr><td width="40%" align="left"
valign="top">Lineární algebra </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Domů</a></td><td width="40%" align="right" valign="top"> Kapitola 10. Teorie množin v
jazyce GEL</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch10.html b/help/cs/html/ch10.html
new file mode 100644
index 0000000..180665f
--- /dev/null
+++ b/help/cs/html/ch10.html
@@ -0,0 +1,7 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitola 10. Teorie
množin v jazyce GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="index.html" title="Příručka k
aplikaci Genius"><link rel="prev" href="ch09.html" title="Kapitola 9. Polynomy v jazyce GEL"><link rel="next"
href="ch11.html" title="Kapitola 11. Seznam funkcí GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitola 10. Teorie množin v jazyce GEL</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch09.html">Předcházející</a> </td><th width="60%"
align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch11.html">Další</a></td></tr></table><hr></div><div class="c
hapter"><div class="titlepage"><div><div><h1 class="title"><a name="genius-gel-settheory"></a>Kapitola 10.
Teorie množin v jazyce GEL</h1></div></div></div><div class="toc"><p><b>Obsah</b></p><dl
class="toc"><dt><span class="sect1"><a href="ch10.html#genius-gel-sets-using">Používání
množin</a></span></dt></dl></div><p>Genius má vestavěnou základní funkcionalitu pro teorii množin. V
současnosti je množina prostě jen vektor (nebo matice). S každým jednotlivým objektem je zacházeno jako s
odlišným prvkem.</p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-sets-using"></a>Používání množin</h2></div></div></div><p>Podobně jako u vektorů, i
v množinách mohou být objekty čísla, řetězce, <code class="constant">null</code>, matice a vektory. Do
budoucna je pro množiny plánován samostatný typ namísto vektorů. Upozorňujeme, že desetinná čísla (float) se
odlišují od celých čís
el (integer), i když vypadají stejně. Takže Genius bude s <code class="constant">0</code> a <code
class="constant">0.0</code> zacházet jako s různými prvky. <code class="constant">null</code> je považováno
za prázdnou množinu.</p><p>K sestavení množiny vektorů použijte funkci <a class="link"
href="ch11s16.html#gel-function-MakeSet"><code class="function">MakeSet</code></a>. V současnosti vrátí
akorát nový vektor, ve kterém je každý prvek jedinečný. </p><pre class="screen"><code
class="prompt">genius> </code><strong class="userinput"><code>MakeSet([1,2,2,3])</code></strong>
+= [1, 2, 3]
+</pre><p>Podobně jsou k dispozici funkce <a class="link" href="ch11s16.html#gel-function-Union"><code
class="function">Union</code></a>, <a class="link" href="ch11s16.html#gel-function-Intersection"><code
class="function">Intersection</code></a>, <a class="link" href="ch11s16.html#gel-function-SetMinus"><code
class="function">SetMinus</code></a>, které vrací sjednocení, průnik a rozdíl množin. Například: </p><pre
class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>Union([1,2,3],
[1,2,4])</code></strong>
+= [1, 2, 4, 3]
+</pre><p> Upozorňujeme, že u vracených hodnot není zaručeno žádné pořadí. Pokud chcete vektor seřadit, měli
byste použít funkci <a class="link" href="ch11s08.html#gel-function-SortVector"><code
class="function">SortVector</code></a>.</p><p>Pro test, zda je prvkem množiny, slouží funkce <a class="link"
href="ch11s16.html#gel-function-IsIn"><code class="function">IsIn</code></a> a <a class="link"
href="ch11s16.html#gel-function-IsSubset"><code class="function">IsSubset</code></a>, které vrací
pravdivostní hodnotu. Například: </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>IsIn (1, [0,1,2])</code></strong>
+= true
+</pre><p> Vstup <strong class="userinput"><code>IsIn(x,X)</code></strong> je samozřejmě shodný s <strong
class="userinput"><code>IsSubset([x],X)</code></strong>. Uvědomte si, že vzhledem k tomu, že prázdná množina
je podmnožinou kterékoliv množiny, volání <strong class="userinput"><code>IsSubset(null,X)</code></strong>
vrátí vždy true (pravda).</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch09.html">Předcházející</a> </td><td
width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch11.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitola 9. Polynomy v
jazyce GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td
width="40%" align="right" valign="top"> Kapitola 11. Seznam funkcí GEL</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch11.html b/help/cs/html/ch11.html
new file mode 100644
index 0000000..4472fa0
--- /dev/null
+++ b/help/cs/html/ch11.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitola 11. Seznam
funkcí GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="index.html" title="Příručka k
aplikaci Genius"><link rel="prev" href="ch10.html" title="Kapitola 10. Teorie množin v jazyce GEL"><link
rel="next" href="ch11s02.html" title="Základy"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitola 11. Seznam funkcí GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch10.html">Předcházející</a> </td><th width="60%" align="center">
</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s02.html">Další</a></td></tr></table><hr></div><div class="chapter"><div class="titlepag
e"><div><div><h1 class="title"><a name="genius-gel-function-list"></a>Kapitola 11. Seznam funkcí
GEL</h1></div></div></div><div class="toc"><p><b>Obsah</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch11.html#genius-gel-function-list-commands">Příkazy</a></span></dt><dt><span class="sect1"><a
href="ch11s02.html">Základy</a></span></dt><dt><span class="sect1"><a
href="ch11s03.html">Parametry</a></span></dt><dt><span class="sect1"><a
href="ch11s04.html">Konstanty</a></span></dt><dt><span class="sect1"><a href="ch11s05.html">Práce s
čísly</a></span></dt><dt><span class="sect1"><a href="ch11s06.html">Trigonometrie</a></span></dt><dt><span
class="sect1"><a href="ch11s07.html">Teorie čísel</a></span></dt><dt><span class="sect1"><a
href="ch11s08.html">Práce s maticemi</a></span></dt><dt><span class="sect1"><a href="ch11s09.html">Lineární
algebra</a></span></dt><dt><span class="sect1"><a href="ch11s10.html">Kombinatorika</a></span></dt><dt><span
class="sect1"><a
href="ch11s11.html">Diferenciální/integrální počet </a></span></dt><dt><span class="sect1"><a
href="ch11s12.html">Funkce</a></span></dt><dt><span class="sect1"><a href="ch11s13.html">Řešení
rovnic</a></span></dt><dt><span class="sect1"><a href="ch11s14.html">Statistika</a></span></dt><dt><span
class="sect1"><a href="ch11s15.html">Polynomy</a></span></dt><dt><span class="sect1"><a
href="ch11s16.html">Teorie množin</a></span></dt><dt><span class="sect1"><a href="ch11s17.html">Komutativní
algebra</a></span></dt><dt><span class="sect1"><a href="ch11s18.html">Různé</a></span></dt><dt><span
class="sect1"><a href="ch11s19.html">Symbolické operace</a></span></dt><dt><span class="sect1"><a
href="ch11s20.html">Vykreslování</a></span></dt></dl></div><p>Pro získání nápovědy ke konkrétní funkci
napište v konzole: </p><pre class="programlisting">help NazevFunkce
+</pre><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-commands"></a>Příkazy</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a name="gel-command-help"></a>help</span></dt><dd><pre
class="synopsis">help</pre><pre class="synopsis">help NázevFunkce</pre><p>Vypsat nápovědu (nebo nápovědu k
funkci/příkazu).</p></dd><dt><span class="term"><a name="gel-command-load"></a>load</span></dt><dd><pre
class="synopsis">load "soubor.gel"</pre><p>Načíst soubor do interpretru. Obsah souboru bude proveden stejně,
jako by byl napsán do příkazového řádku.</p></dd><dt><span class="term"><a
name="gel-command-cd"></a>cd</span></dt><dd><pre class="synopsis">cd /název/složky</pre><p>Změnit pracovní
složku na <code class="filename">/název/složky</code>.</p></dd><dt><span class="term"><a
name="gel-command-pwd"></a>pwd</span></dt><dd><pre class="synopsis">p
wd</pre><p>Vypsat název aktuální pracovní složky.</p></dd><dt><span class="term"><a
name="gel-command-ls"></a>ls</span></dt><dd><pre class="synopsis">ls</pre><p>Vypsat soubory v aktuální
složce.</p></dd><dt><span class="term"><a name="gel-command-plugin"></a>plugin</span></dt><dd><pre
class="synopsis">plugin název_zásuvného_modulu</pre><p>Načíst zásuvný modul. Zásuvný modul se zadaným názvem
musí být v systému nainstalován ve správné složce.</p></dd></dl></div></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch10.html">Předcházející</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> <a accesskey="n" href="ch11s02.html">Další</a></td></tr><tr><td width="40%" align="left"
valign="top">Kapitola 10. Teorie množin v jazyce GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Základy</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch11s02.html b/help/cs/html/ch11s02.html
new file mode 100644
index 0000000..686e698
--- /dev/null
+++ b/help/cs/html/ch11s02.html
@@ -0,0 +1,12 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Základy</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Příručka
k aplikaci Genius"><link rel="up" href="ch11.html" title="Kapitola 11. Seznam funkcí GEL"><link rel="prev"
href="ch11.html" title="Kapitola 11. Seznam funkcí GEL"><link rel="next" href="ch11s03.html"
title="Parametry"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Základy</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 11. Seznam funkcí GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch11s03.html">Další</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="ti
tle" style="clear: both"><a name="genius-gel-function-list-basic"></a>Základy</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AskButtons"></a>AskButtons</span></dt><dd><pre class="synopsis">AskButtons
(otazka)</pre><pre class="synopsis">AskButtons (otazka, tlacitko1, ...)</pre><p>Položit uživateli otázku a
poskytnout mu seznam tlačítek (nebo nabídku voleb v textovém režimu). Vrací index zmáčknutého tlačítka. Index
začíná od jedné, tj. vrací 1, když je zmáčknuto první tlačítko, 2, když je zmáčknuto druhé tlačítko atd.
Pokud uživatel zavře okno (nebo prostě zmáčkne Enter v textovém režimu), je vráceno <code
class="constant">null</code>. Dokud uživatel nezareaguje, je další provádění programu blokováno.</p><p>Verze
1.0.10 a novější.</p></dd><dt><span class="term"><a
name="gel-function-AskString"></a>AskString</span></dt><dd><pre class="synopsis">AskString (ota
zka)</pre><pre class="synopsis">AskString (otazka, vychozi)</pre><p>Položit uživateli otázku a umožnit mu
zadat řetězec, který pak bude vrácen. Pokud uživatel dotaz zruší nebo okno zavře, bude vráceno <code
class="constant">null</code>. Provádění programu je blokováno, dokud uživatel neodpoví. Pokud je zadán
argument <code class="varname">vychozi</code>, bude uživateli předvyplněn, takže mu bude stačit zmáčknout
Enter (od verze 1.0.6).</p></dd><dt><span class="term"><a
name="gel-function-Compose"></a>Compose</span></dt><dd><pre class="synopsis">Compose (f,g)</pre><p>Složit dvě
funkce a vrátit funkci, která je spojením <code class="function">f</code> a <code
class="function">g</code>.</p></dd><dt><span class="term"><a
name="gel-function-ComposePower"></a>ComposePower</span></dt><dd><pre class="synopsis">ComposePower
(f,n,x)</pre><p>Složit a provést funkci samu se sebou <code class="varname">n</code> krát, přičemž jí předat
argument <cod
e class="varname">x</code>. Pokud se <code class="varname">n</code> rovná 0, vrací <code
class="varname">x</code>. Příklad: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>function f(x) = x^2 ;</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>ComposePower (f,3,7)</code></strong>
+= 5764801
+<code class="prompt">genius></code> <strong class="userinput"><code>f(f(f(7)))</code></strong>
+= 5764801
+</pre></dd><dt><span class="term"><a name="gel-function-Evaluate"></a>Evaluate</span></dt><dd><pre
class="synopsis">Evaluate (retezec)</pre><p>Analyzovat a vyhodnotit řetězec.</p></dd><dt><span
class="term"><a name="gel-function-GetCurrentModulo"></a>GetCurrentModulo</span></dt><dd><pre
class="synopsis">GetCurrentModulo</pre><p>Získat aktuální modulo z kontextu mimo funkci. To jest, pokud jste
mimo funkci spuštěnou v modulární aritmetice (pomocí <code class="literal">mod</code>), bude vráceno to, co
bylo tímto zbytkem. Normálně není tělo volané funkce prováděno v modulární aritmetice a díky této vestavěné
funkci je možné, aby funkce GEL probíhaly v modulární aritmetice.</p></dd><dt><span class="term"><a
name="gel-function-Identity"></a>Identity</span></dt><dd><pre class="synopsis">Identity (x)</pre><p>Funkce
identity, která vrací svůj argument. Odpovídá to <strong class="userinput"><code>function
Identity(x)=x</code></strong>.</p></dd><dt><
span class="term"><a name="gel-function-IntegerFromBoolean"></a>IntegerFromBoolean</span></dt><dd><pre
class="synopsis">IntegerFromBoolean (pravdhodnota)</pre><p>Udělat z pravdivostní hodnoty celé číslo (0 pro
<code class="constant">false</code> nebo 1 pro <code class="constant">true</code>). <code
class="varname">pravdhodnota</code> může být i číslo, v kterém tož případě bude nenulová hodnota brána jako
<code class="constant">true</code> a nulová jako <code class="constant">false</code>.</p></dd><dt><span
class="term"><a name="gel-function-IsBoolean"></a>IsBoolean</span></dt><dd><pre class="synopsis">IsBoolean
(argument)</pre><p>Zkontrolovat, zda je argument pravdivostní hodnota (a ne číslo).</p></dd><dt><span
class="term"><a name="gel-function-IsDefined"></a>IsDefined</span></dt><dd><pre class="synopsis">IsDefined
(id)</pre><p>Zkontrolovat, zda je id definováno. Měli byste předat řetězec nebo identifikátor. Pokud předáte
matici, bude každá po
ložka vyhodnocena samostatně a matice by měla obsahovat řetězce nebo identifikátory.</p></dd><dt><span
class="term"><a name="gel-function-IsFunction"></a>IsFunction</span></dt><dd><pre class="synopsis">IsFunction
(argument)</pre><p>Zkontrolovat, zda je argument funkcí.</p></dd><dt><span class="term"><a
name="gel-function-IsFunctionOrIdentifier"></a>IsFunctionOrIdentifier</span></dt><dd><pre
class="synopsis">IsFunctionOrIdentifier (argument)</pre><p>Zkontrolovat, zda je argument funkcí nebo
identifikátorem.</p></dd><dt><span class="term"><a
name="gel-function-IsFunctionRef"></a>IsFunctionRef</span></dt><dd><pre class="synopsis">IsFunctionRef
(argument)</pre><p>Zkontrolovat, zda je argument odkazem na funkci. Zahrnuje to i odkazy na
proměnné.</p></dd><dt><span class="term"><a name="gel-function-IsMatrix"></a>IsMatrix</span></dt><dd><pre
class="synopsis">IsMatrix (argument)</pre><p>Zkontrolovat, zda je argument maticí. Ačkoliv je <code
class="constant">null</code>
občas považováno za prázdnou matici, funkce <code class="function">IsMatrix</code> hodnotu <code
class="constant">null</code> za matici nepovažuje.</p></dd><dt><span class="term"><a
name="gel-function-IsNull"></a>IsNull</span></dt><dd><pre class="synopsis">IsNull
(argument)</pre><p>Zkontrolovat, zda je argument <code class="constant">null</code>.</p></dd><dt><span
class="term"><a name="gel-function-IsString"></a>IsString</span></dt><dd><pre class="synopsis">IsString
(argument)</pre><p>Zkontrolovat, zda je argument textovým řetězcem.</p></dd><dt><span class="term"><a
name="gel-function-IsValue"></a>IsValue</span></dt><dd><pre class="synopsis">IsValue
(argument)</pre><p>Zkontrolovat, zda je argument číslem.</p></dd><dt><span class="term"><a
name="gel-function-Parse"></a>Parse</span></dt><dd><pre class="synopsis">Parse (retezec)</pre><p>Analyzovat,
ale nevyhodnocovat řetězec. Berte ale na vědomí, že během fáze analýzy se provádí určité předvýpočty.</p><
/dd><dt><span class="term"><a name="gel-function-SetFunctionFlags"></a>SetFunctionFlags</span></dt><dd><pre
class="synopsis">SetFunctionFlags (id,priznaky...)</pre><p>Nastavit příznaky pro funkci, v současnosti jsou k
dispozici <code class="literal">"PropagateMod"</code> a <code class="literal">"NoModuloArguments"</code>.
Pokud je nastaveno <code class="literal">"PropagateMod"</code>, je vyhodnocování těla funkce prováděno v
modulární aritmetice v situaci, kdy je funkce volána uvnitř bloku, který je vyhodnocován v modulární
aritmetice (pomocí <code class="literal">mod</code>). Pokud je nastaveno <code
class="literal">"NoModuloArguments"</code>, nejsou argumenty funkce nikdy vyhodnocovány pomocí modulární
aritmetiky.</p></dd><dt><span class="term"><a name="gel-function-SetHelp"></a>SetHelp</span></dt><dd><pre
class="synopsis">SetHelp (id,kategorie,popis)</pre><p>Nastavit kategorii funkce a řádek jejího popisu v
nápovědě.</p></dd><dt><span class="ter
m"><a name="gel-function-SetHelpAlias"></a>SetHelpAlias</span></dt><dd><pre class="synopsis">SetHelpAlias
(id,altnazev)</pre><p>Nastavit alternativní název do nápovědy.</p></dd><dt><span class="term"><a
name="gel-function-chdir"></a>chdir</span></dt><dd><pre class="synopsis">chdir (složka)</pre><p>Změnit
aktuální složku, stejné jako <span class="command"><strong>cd</strong></span>.</p></dd><dt><span
class="term"><a name="gel-function-CurrentTime"></a>CurrentTime</span></dt><dd><pre
class="synopsis">CurrentTime</pre><p>Vrátit aktuální UNIXový čas s přesností na mikrovteřiny v podobě
desetinného čísla. Prakticky se jedná o počet vteřin uplynulých od 1. ledna 1970.</p><p>Verze 1.0.15 a
novější.</p></dd><dt><span class="term"><a name="gel-function-display"></a>display</span></dt><dd><pre
class="synopsis">display (retezec,vyraz)</pre><p>Zobrazit retezec a vyraz navzájem oddělené
dvojtečkou.</p></dd><dt><span class="term"><a name="gel-function-Disp
layVariables"></a>DisplayVariables</span></dt><dd><pre class="synopsis">DisplayVariables
(prom1,prom2,...)</pre><p>Zobrazit sadu proměnných. Proměnné mohou být předány jako řetězce nebo jako
identifikátory. Například: </p><pre class="programlisting">DisplayVariables (`x,`y,`z)
+ </pre><p>Pokud je zavoláno bez argumentů (musí být předán prázdný seznam argumentů) jako </p><pre
class="programlisting">DisplayVariables ()
+ </pre><p>, budou vypsány všechny proměnné včetně stavu zásobníku, podobně jako u <span
class="guilabel">Zobrazit uživatelské proměnné</span> v grafické verzi.</p><p>Verze 1.0.18 a
novější.</p></dd><dt><span class="term"><a name="gel-function-error"></a>error</span></dt><dd><pre
class="synopsis">error (retezec)</pre><p>Vypsat retezec do chybového proudu (na konzole).</p></dd><dt><span
class="term"><a name="gel-function-exit"></a>exit</span></dt><dd><pre
class="synopsis">exit</pre><p>Alternativní názvy: <code class="function">quit</code></p><p>Ukončit
program.</p></dd><dt><span class="term"><a name="gel-function-false"></a>false</span></dt><dd><pre
class="synopsis">false</pre><p>Alternativní názvy: <code class="function">False</code> <code
class="function">FALSE</code></p><p>Pravdivostní hodnota <code class="constant">false</code>
(nepravda).</p></dd><dt><span class="term"><a name="gel-function-manual"></a>manual</span></dt><dd><pre
class="synopsis
">manual</pre><p>Zobrazit uživatelskou příručku.</p></dd><dt><span class="term"><a
name="gel-function-print"></a>print</span></dt><dd><pre class="synopsis">print (retezec)</pre><p>Vypsat výraz
a poté odřádkovat. Argument <code class="varname">retezec</code> může být libovolný výraz. Před vypsáním je
převeden na řetězec.</p></dd><dt><span class="term"><a
name="gel-function-printn"></a>printn</span></dt><dd><pre class="synopsis">printn (retezec)</pre><p>Vypsat
výraz bez odřádkování. Argument <code class="varname">retezec</code> může být libovolný výraz. Před vypsáním
je převeden na řetězec.</p></dd><dt><span class="term"><a
name="gel-function-PrintTable"></a>PrintTable</span></dt><dd><pre class="synopsis">PrintTable
(f,v)</pre><p>Vypsat tabulku hodnot pro funkci. Hodnoty jsou ve vektoru <code class="varname">v</code>.
Můžete použít vestavěnou notaci vektoru takto: </p><pre class="programlisting">PrintTable (f,[0:10])
+ </pre><p> Pokud je <code class="varname">v</code> celé kladné číslo, použije se tabulka celých
čísel od 1 do v včetně.</p><p>Verze 1.0.18 a novější.</p></dd><dt><span class="term"><a
name="gel-function-protect"></a>protect</span></dt><dd><pre class="synopsis">protect (id)</pre><p>Ochránit
proměnnou proti změnám. Stejný postup je použit u interních funkcí GEL, aby se zabránilo nechtěnému
přepsání.</p></dd><dt><span class="term"><a name="gel-function-ProtectAll"></a>ProtectAll</span></dt><dd><pre
class="synopsis">ProtectAll ()</pre><p>Ochránit všechny aktuálně definované proměnné, parametry a funkce
proti změnám. Stejný postup je použit u interních funkcí GEL, aby se zabránilo nechtěnému přepsání. Normálně
<span class="application">matematický nástroj Genius</span> považuje nechráněné proměnné za definované
uživatelem.</p><p>Verze 1.0.7 a novější.</p></dd><dt><span class="term"><a name="gel-function-set"></a>set
</span></dt><dd><pre class="synopsis">set (id,hodnota)</pre><p>Nastavit globální proměnnou. Argument <code
class="varname">id</code> může být buď řetězec nebo identifikátor s uvozovkou. Například: </p><pre
class="programlisting">set(`x,1)
+ </pre><p> nastaví globální proměnnou <code class="varname">x</code> na hodnotu 1.</p><p>Funkce
vrací <code class="varname">hodnotu</code>, což je užitečné pro řetězení.</p></dd><dt><span class="term"><a
name="gel-function-SetElement"></a>SetElement</span></dt><dd><pre class="synopsis">SetElement
(id,radek,sloupec,hodnota)</pre><p>Nastavit prvek globální proměnné, která je maticí. Argument <code
class="varname">id</code> může být buď řetězec nebo identifikátor s uvozovkou. Příklad: </p><pre
class="programlisting">SetElement(`x,2,3,1)
+ </pre><p> nastaví prvek ve druhém řádku třetím sloupci globální proměnné <code
class="varname">x</code> na hodnotu 1. V případě, že neexistuje globální proměnná s daným názvem nebo je
nastavena na něco jiného než matici, vytvoří se nová nulová matice příslušné velikosti.</p><p>Argumenty <code
class="varname">row</code> a <code class="varname">col</code> mohou být i rozsahy a sémanticky je to stejné,
jako běžné nastavení prvků pomocí znaménka rovnosti.</p><p>Funkce vrací <code class="varname">hodnotu</code>,
což je užitečné pro řetězení.</p><p>Dostupné ve verzi 1.0.18 a novějších.</p></dd><dt><span class="term"><a
name="gel-function-SetVElement"></a>SetVElement</span></dt><dd><pre class="synopsis">SetElement
(id,prvek,hodnota)</pre><p>Nastavit prvek globální proměnné, která je vektorem. Argument <code
class="varname">id</code> může být buď řetězec nebo identifikátor s uvozovkou. Příklad: </p><pre class="p
rogramlisting">SetElement(`x,2,1)
+ </pre><p> nastaví druhý prvek globálního vektoru <code class="varname">x</code> na hodnotu 1. V
případě, že neexistuje globální proměnná s daným názvem nebo je nastavena na něco jiného než vektor (matici),
vytvoří se nový nulový vektor příslušné velikosti.</p><p>Argument <code class="varname">prvek</code> může být
i rozsah a sémanticky je to stejné, jako běžné nastavení prvků pomocí znaménka rovnosti.</p><p>Funkce vrací
<code class="varname">hodnotu</code>, což je užitečné pro řetězení.</p><p>Dostupné ve verzi 1.0.18 a
novějších.</p></dd><dt><span class="term"><a name="gel-function-string"></a>string</span></dt><dd><pre
class="synopsis">string (s)</pre><p>Vytvořit řetězec. Vytvoří řetězec podle libovolného
argumentu.</p></dd><dt><span class="term"><a name="gel-function-true"></a>true</span></dt><dd><pre
class="synopsis">true</pre><p>Alternativní názvy: <code class="function">True</code> <code class="function">TR
UE</code></p><p>Pravdivostní hodnota <code class="constant">true</code> (pravda).</p></dd><dt><span
class="term"><a name="gel-function-undefine"></a>undefine</span></dt><dd><pre class="synopsis">undefine
(id)</pre><p>Alternativní názvy: <code class="function">Undefine</code></p><p>Zrušit definici proměnné. Což
zahrnuje lokální a globální, všechny hodnoty ve všech úrovních kontextu jsou vymazány. Tato funkce by opravdu
neměla být používána na lokální proměnné. Je možné předat i vektor identifikátorů a v takovém případě bude
zrušena definice několika proměnných.</p></dd><dt><span class="term"><a
name="gel-function-UndefineAll"></a>UndefineAll</span></dt><dd><pre class="synopsis">UndefineAll
()</pre><p>Zrušit definice všech nechráněných globálních proměnných (včetně funkcí a parametrů). Normálně
<span class="application">matematický nástroj Genius</span> považuje chráněné proměnné za funkce a proměnné
definované sy
stémem. Upozorňujeme, že funkce <code class="function">UndefineAll</code> odstraní pouze globální definice
symbolů, lokální ne, takže může být bezpečně spouštěna i z těla jiných funkcí.</p><p>Verze 1.0.7 a
novější.</p></dd><dt><span class="term"><a name="gel-function-unprotect"></a>unprotect</span></dt><dd><pre
class="synopsis">unprotect (id)</pre><p>Zrušit ochranu proměnné proti změnám.</p></dd><dt><span
class="term"><a name="gel-function-UserVariables"></a>UserVariables</span></dt><dd><pre
class="synopsis">UserVariables ()</pre><p>Vrátit vektor všech uživatelem definovaných (nechráněných)
globálních proměnných.</p><p>Verze 1.0.7 a novější.</p></dd><dt><span class="term"><a
name="gel-function-wait"></a>wait</span></dt><dd><pre class="synopsis">wait (vteřiny)</pre><p>Čekat zadaný
počet vteřin. Počet <code class="varname">vteřiny</code> musí být nezáporný. Nula se akceptuje a v takovém
případě se nic neprovede, vyjma mo
žnosti, že jsou zpracovány události uživatelského rozhraní.</p><p>Protože od verze 1.0.18 může být argument
<code class="varname">vteřiny</code> neceločíselný, bude například <strong
class="userinput"><code>wait(0.1)</code></strong> čekat jednu desetinu vteřiny.</p></dd><dt><span
class="term"><a name="gel-function-version"></a>version</span></dt><dd><pre
class="synopsis">version</pre><p>Vrátit verzi kalkulátoru Genius jako svislý 3prvkový vektor s hlavním číslem
jako prvním, následuje vedlejší číslo a nakonec úroveň záplat.</p></dd><dt><span class="term"><a
name="gel-function-warranty"></a>warranty</span></dt><dd><pre class="synopsis">warranty</pre><p>Poskytnout
informace o licenci.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11.html">Předcházející</a> </td><td width="20%" align="center"><a accesskey="u" href="ch11.html">Na
horu</a></td><td width="40%" align="right"> <a accesskey="n" href="ch11s03.html">Další</a></td></tr><tr><td
width="40%" align="left" valign="top">Kapitola 11. Seznam funkcí GEL </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Domů</a></td><td width="40%" align="right" valign="top">
Parametry</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch11s03.html b/help/cs/html/ch11s03.html
new file mode 100644
index 0000000..fd3f1c1
--- /dev/null
+++ b/help/cs/html/ch11s03.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Parametry</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Příručka
k aplikaci Genius"><link rel="up" href="ch11.html" title="Kapitola 11. Seznam funkcí GEL"><link rel="prev"
href="ch11s02.html" title="Základy"><link rel="next" href="ch11s04.html" title="Konstanty"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Parametry</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch11s02.html">Předcházející</a> </td><th width="60%"
align="center">Kapitola 11. Seznam funkcí GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s04.html">Další</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="cle
ar: both"><a name="genius-gel-function-parameters"></a>Parametry</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ChopTolerance"></a>ChopTolerance</span></dt><dd><pre class="synopsis">ChopTolerance =
číslo</pre><p>Tolerance funkce <code class="function">Chop</code>.</p></dd><dt><span class="term"><a
name="gel-function-ContinuousNumberOfTries"></a>ContinuousNumberOfTries</span></dt><dd><pre
class="synopsis">ContinuousNumberOfTries = číslo</pre><p>Kolik iterací zkusit pro nalezení limity pro
spojitost a limit.</p></dd><dt><span class="term"><a
name="gel-function-ContinuousSFS"></a>ContinuousSFS</span></dt><dd><pre class="synopsis">ContinuousSFS =
číslo</pre><p>Kolik postupných kroků, aby to bylo v rámci tolerance pro výpočet spojitosti.</p></dd><dt><span
class="term"><a name="gel-function-ContinuousTolerance"></a>ContinuousTolerance</span></dt><dd><pre
class="synopsis">ContinuousTolerance = čís
lo</pre><p>Tolerance pro spojitost funkcí a výpočet limity.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeNumberOfTries"></a>DerivativeNumberOfTries</span></dt><dd><pre
class="synopsis">DerivativeNumberOfTries = číslo</pre><p>Kolik iterací zkusit pro nalezení limity pro
derivaci.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeSFS"></a>DerivativeSFS</span></dt><dd><pre class="synopsis">DerivativeSFS =
číslo</pre><p>Kolik postupných kroků, aby to bylo v rámci tolerance pro výpočet derivace.</p></dd><dt><span
class="term"><a name="gel-function-DerivativeTolerance"></a>DerivativeTolerance</span></dt><dd><pre
class="synopsis">DerivativeTolerance = číslo</pre><p>Tolerance pro výpočet derivací funkcí.</p></dd><dt><span
class="term"><a name="gel-function-ErrorFunctionTolerance"></a>ErrorFunctionTolerance</span></dt><dd><pre
class="synopsis">ErrorFunctionTolerance = číslo</pre><p>Tolerance chybové funkce <a class="link" href="ch
11s12.html#gel-function-ErrorFunction"><code class="function">ErrorFunction</code></a>.</p></dd><dt><span
class="term"><a name="gel-function-FloatPrecision"></a>FloatPrecision</span></dt><dd><pre
class="synopsis">FloatPrecision = číslo</pre><p>Přesnost desetinných čísel.</p></dd><dt><span class="term"><a
name="gel-function-FullExpressions"></a>FullExpressions</span></dt><dd><pre class="synopsis">FullExpressions
= pravdivostní hodnota</pre><p>Vypisovat úplné výrazy, i když mají více než jeden řádek.</p></dd><dt><span
class="term"><a
name="gel-function-GaussDistributionTolerance"></a>GaussDistributionTolerance</span></dt><dd><pre
class="synopsis">GaussDistributionTolerance = číslo</pre><p>Tolerance funkce <a class="link"
href="ch11s14.html#gel-function-GaussDistribution"><code
class="function">GaussDistribution</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-IntegerOutputBase"></a>IntegerOutputBase</span></dt><dd><pre class="synopsis">Integer
OutputBase = číslo</pre><p>Číselná soustava vypisovaných celých čísel.</p></dd><dt><span class="term"><a
name="gel-function-IsPrimeMillerRabinReps"></a>IsPrimeMillerRabinReps</span></dt><dd><pre
class="synopsis">IsPrimeMillerRabinReps = číslo</pre><p>Počet Miller-Rabinových testů, které se mají spustit
na číslo před prohlášením, že je to prvočíslo, ve funkci <a class="link"
href="ch11s07.html#gel-function-IsPrime"><code class="function">IsPrime</code></a>.</p></dd><dt><span
class="term"><a name="gel-function-LinePlotDrawLegends"></a>LinePlotDrawLegends</span></dt><dd><pre
class="synopsis">LinePlotDrawLegends = true</pre><p>Říká kalkulátoru genius, aby vykresloval legendy pro <a
class="link" href="ch11s20.html" title="Vykreslování">funkce čárových grafů</a>, jako třeba <a class="link"
href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a>.</p></dd><dt><span
class="term"><a name="gel-function-LinePlotDrawAxisLab
els"></a>LinePlotDrawAxisLabels</span></dt><dd><pre class="synopsis">LinePlotDrawAxisLabels =
true</pre><p>Říká kalkulátoru genius, aby vykresloval popisky os pro <a class="link" href="ch11s20.html"
title="Vykreslování">funkce čárových grafů</a>, jako třeba <a class="link"
href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a>.</p><p>Verze 1.0.16 a
novější.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotVariableNames"></a>LinePlotVariableNames</span></dt><dd><pre
class="synopsis">LinePlotVariableNames = ["x","y","z","t"]</pre><p>Říká kalkulátoru genius, které názvy
proměnných jsou použity jako výchozí názvy pro <a class="link" href="ch11s20.html"
title="Vykreslování">funkce čárových grafů</a>, jako třeba <a class="link"
href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a> a spol.</p><p>Verze
1.0.10 a novější.</p></dd><dt><span class="term"><a name="gel-function-Lin
ePlotWindow"></a>LinePlotWindow</span></dt><dd><pre class="synopsis">LinePlotWindow =
[x1,x2,y1,y2]</pre><p>Nastavuje meze pro <a class="link" href="ch11s20.html" title="Vykreslování">funkce
čárových grafů</a>, jako třeba <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-MaxDigits"></a>MaxDigits</span></dt><dd><pre class="synopsis">MaxDigits =
číslo</pre><p>Maximální počet číslic, který se má zobrazovat.</p></dd><dt><span class="term"><a
name="gel-function-MaxErrors"></a>MaxErrors</span></dt><dd><pre class="synopsis">MaxErrors =
číslo</pre><p>Maximální počet chyb, které se mají zobrazovat.</p></dd><dt><span class="term"><a
name="gel-function-MixedFractions"></a>MixedFractions</span></dt><dd><pre class="synopsis">MixedFractions =
pravdivostní hodnota</pre><p>Pokud je nastaveno na true, budou vypisovány složené zlomky.</p></dd><dt><span
class="ter
m"><a name="gel-function-NumericalIntegralFunction"></a>NumericalIntegralFunction</span></dt><dd><pre
class="synopsis">NumericalIntegralFunction = funkce</pre><p>Funkce používaná pro numerické integrování v <a
class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegralSteps"></a>NumericalIntegralSteps</span></dt><dd><pre
class="synopsis">NumericalIntegralSteps = číslo</pre><p>Počet kroků, které se mají provést ve funkci <a
class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a></p></dd><dt><span class="term"><a
name="gel-function-OutputChopExponent"></a>OutputChopExponent</span></dt><dd><pre
class="synopsis">OutputChopExponent = číslo</pre><p>Když je jiné číslo ve vypisovaném objektu (matici nebo
hodnotě) větší než 10<sup>-OutputChopWhenExponent</sup> a vypisované
číslo je menší než 10<sup>-OutputChopExponent</sup>, pak se místo tohoto čísla zobrazí <code
class="computeroutput">0.0</code>.</p><p>Výstup není nikdy osekán, pokud je <code
class="function">OutputChopExponent</code> nula. Vždy musí být nezáporné celé číslo.</p><p>Jestliže chcete,
aby byl výstup vždy osekáván podle <code class="function">OutputChopExponent</code>, tak nastavte <code
class="function">OutputChopWhenExponent</code> na cokoliv většího nebo rovného <code
class="function">OutputChopExponent</code>.</p></dd><dt><span class="term"><a
name="gel-function-OutputChopWhenExponent"></a>OutputChopWhenExponent</span></dt><dd><pre
class="synopsis">OutputChopWhenExponent = číslo</pre><p>Kdy osekávat výstup. Viz <a class="link"
href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-OutputStyle"></a>OutputStyle</span></dt><dd><pre class="syno
psis">OutputStyle = řetězec</pre><p>Styl výstupu, může jít o jeden z <code class="literal">normal</code>,
<code class="literal">latex</code>, <code class="literal">mathml</code> nebo <code
class="literal">troff</code>.</p><p>Z větší části to ovlivňuje, jak se vypisují matice a zlomky a je to
užitečné pro vkládání do dokumentů. Například to můžete nastavit na latex pomocí: </p><pre
class="programlisting">OutputStyle = "latex"
+</pre></dd><dt><span class="term"><a
name="gel-function-ResultsAsFloats"></a>ResultsAsFloats</span></dt><dd><pre class="synopsis">ResultsAsFloats
= pravdivostní hodnota</pre><p>Před vypsáním převést všechny výsledky na desetinná čísla.</p></dd><dt><span
class="term"><a name="gel-function-ScientificNotation"></a>ScientificNotation</span></dt><dd><pre
class="synopsis">ScientificNotation = pravdivostní hodnota</pre><p>Používat vědeckou
notaci.</p></dd><dt><span class="term"><a
name="gel-function-SlopefieldTicks"></a>SlopefieldTicks</span></dt><dd><pre class="synopsis">SlopefieldTicks
= [svisle,vodorovne]</pre><p>Nastavuje počet svislých a vodorovných měřítkových značek v grafu směrového
pole. (Viz <a class="link" href="ch11s20.html#gel-function-SlopefieldPlot"><code
class="function">SlopefieldPlot</code></a>).</p><p>Verze 1.0.10 a novější.</p></dd><dt><span class="term"><a
name="gel-function-SumProductNumberOfTries"></a>SumProductNumberOfTries</span>
</dt><dd><pre class="synopsis">SumProductNumberOfTries = číslo</pre><p>Kolik iterací se má zkusit pro <a
class="link" href="ch11s11.html#gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a> a <a
class="link" href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SumProductSFS"></a>SumProductSFS</span></dt><dd><pre class="synopsis">SumProductSFS =
číslo</pre><p>Kolik postupných kroků, aby to bylo v rámci tolerance pro <a class="link"
href="ch11s11.html#gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a> a <a class="link"
href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SumProductTolerance"></a>SumProductTolerance</span></dt><dd><pre
class="synopsis">SumProductTolerance = číslo</pre><p>Tolerance pro funkce <a class="link" href="c
h11s11.html#gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a> a <a class="link"
href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawLegends"></a>SurfacePlotDrawLegends</span></dt><dd><pre
class="synopsis">SurfacePlotDrawLegends = true</pre><p>Říká kalkulátoru genius, aby vykresloval legendy pro
<a class="link" href="ch11s20.html" title="Vykreslování">funkce grafů ploch</a>, jako třeba <a class="link"
href="ch11s20.html#gel-function-SurfacePlot"><code class="function">SurfacePlot</code></a>.</p><p>Verze
1.0.16 a novější.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotVariableNames"></a>SurfacePlotVariableNames</span></dt><dd><pre
class="synopsis">SurfacePlotVariableNames = ["x","y","z"]</pre><p>Říká kalkulátoru genius, které názvy
proměnných jsou použity jako výchozí názvy pro <a class="link" href="ch
11s20.html" title="Vykreslování">funkce plošných grafů</a>, tj. <a class="link"
href="ch11s20.html#gel-function-SurfacePlot"><code class="function">SurfacePlot</code></a>. Uvědomte si, že
<code class="varname">z</code> neodkazuje na závislou (svislou) osu, ale na nezávislou komplexní proměnnou
<strong class="userinput"><code>z=x+iy</code></strong>.</p><p>Verze 1.0.10 a novější.</p></dd><dt><span
class="term"><a name="gel-function-SurfacePlotWindow"></a>SurfacePlotWindow</span></dt><dd><pre
class="synopsis">SurfacePlotWindow = [x1,x2,y1,y2,z1,z2]</pre><p>Nastavuje meze pro vykreslování ploch. (Viz
<a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>)</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldNormalized"></a>VectorfieldNormalized</span></dt><dd><pre
class="synopsis">VectorfieldNormalized = true</pre><p>Zda by měl mít graf vektorového pole normalizovanou
délku šipek. Pokud je nastav
eno na true, bude vektorové pole ukazovat pouze směr a ne velikost. (Viz <a class="link"
href="ch11s20.html#gel-function-VectorfieldPlot"><code
class="function">VectorfieldPlot</code></a>).</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldTicks"></a>VectorfieldTicks</span></dt><dd><pre
class="synopsis">VectorfieldTicks = [svisle,vodorovne]</pre><p>Nastavuje počet svislých a vodorovných
měřítkových značek v grafu vektorového pole. (Viz <a class="link"
href="ch11s20.html#gel-function-VectorfieldPlot"><code
class="function">VectorfieldPlot</code></a>).</p><p>Verze 1.0.10 a novější.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s02.html">Předcházející</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s04.html">Další</a></td></tr><tr><t
d width="40%" align="left" valign="top">Základy </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Domů</a></td><td width="40%" align="right" valign="top">
Konstanty</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch11s04.html b/help/cs/html/ch11s04.html
new file mode 100644
index 0000000..c4689a2
--- /dev/null
+++ b/help/cs/html/ch11s04.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Konstanty</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Příručka
k aplikaci Genius"><link rel="up" href="ch11.html" title="Kapitola 11. Seznam funkcí GEL"><link rel="prev"
href="ch11s03.html" title="Parametry"><link rel="next" href="ch11s05.html" title="Práce s čísly"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Konstanty</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch11s03.html">Předcházející</a> </td><th width="60%"
align="center">Kapitola 11. Seznam funkcí GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s05.html">Další</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" st
yle="clear: both"><a name="genius-gel-function-list-constants"></a>Konstanty</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-CatalanConstant"></a>CatalanConstant</span></dt><dd><pre
class="synopsis">CatalanConstant</pre><p>Catalanova konstanta, přibližně 0,915… Je definována jako řada se
členy <strong class="userinput"><code>(-1^k)/((2*k+1)^2)</code></strong>, kde <code class="varname">k</code>
je z intervalu 0 až nekonečno.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://mathworld.wolfram.com/CatalansConstant.html" target="_top">Mathworld</a> (text je v angličtině)
a <a class="ulink" href="http://en.wikipedia.org/wiki/Catalan%27s_constant" target="_top">Wikipedia</a> (text
je v angličtině).</p></dd><dt><span class="term"><a
name="gel-function-EulerConstant"></a>EulerConstant</span></dt><dd><pre
class="synopsis">EulerConstant</pre><p>Alternativní názvy: <code
class="function">gamma</code></p><p>Eulerova konstanta gama. Někdy nazývaná také Eulerova-Mascheroniho
konstanta.</p><p>Více informací najdete v encyklopediíc <a class="ulink"
href="http://planetmath.org/MascheroniConstant" target="_top">Planetmath</a> (text je v angličtině), <a
class="ulink" href="http://mathworld.wolfram.com/Euler-MascheroniConstant.html" target="_top">Mathworld</a>
(text je v angličtině) a <a class="ulink" href="http://cs.wikipedia.org/wiki/Eulerova_konstanta"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-GoldenRatio"></a>GoldenRatio</span></dt><dd><pre
class="synopsis">GoldenRatio</pre><p>Zlatý řez.</p><p>Více informací najdete v encyklopediích <a
class="ulink" href="http://planetmath.org/GoldenRatio" target="_top">Planetmath</a> (text je v angličtině),
<a class="ulink" href="http://mathworld.wolfram.com/GoldenRatio.html" target="_top">Mathworld</a> (text je v
angličtině) a <a class="ulink" href="ht
tp://cs.wikipedia.org/wiki/Zlat%C3%BD_%C5%99ez" target="_top">Wikipedia</a>.</p></dd><dt><span
class="term"><a name="gel-function-Gravity"></a>Gravity</span></dt><dd><pre
class="synopsis">Gravity</pre><p>Tíhové zrychlení na úrovni moře v metrech za sekundu na druhou. Jedná se o
standardní gravitační konstantu 9,80665. Gravitace v končinách vašeho lesa se může lišit, kvůli jiné
nadmořské výšce a kvůli tomu, že Země není ideálně kulatá a jednolitá.</p><p>Více informací najdete v
encyklopedii <a class="ulink" href="http://cs.wikipedia.org/wiki/Gravita%C4%8Dn%C3%AD_konstanta"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-e"></a>e</span></dt><dd><pre class="synopsis">e</pre><p>Základ přirozeného logaritmu.
<strong class="userinput"><code>e^x</code></strong> je exponenciální funkce <a class="link"
href="ch11s05.html#gel-function-exp"><code class="function">exp</code></a>. Hodnota konstanty je přibližně
2,71
828182846… Toto číslo bývá někdy nazýváno Eulerovo, ačkoliv existuje několik čísel rovněž nazývaných
Eulerovo. Například konstanta gamma: <a class="link" href="ch11s04.html#gel-function-EulerConstant"><code
class="function">EulerConstant</code></a>.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/E" target="_top">Planetmath</a> (text je v angličtině), <a class="ulink"
href="http://mathworld.wolfram.com/e.html" target="_top">Mathworld</a> (text je v angličtině) a <a
class="ulink" href="http://cs.wikipedia.org/wiki/Eulerovo_%C4%8D%C3%ADslo"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-pi"></a>pi</span></dt><dd><pre class="synopsis">pi</pre><p>Číslo pí, což je poměr obvodu
kružnice vůči jejímu průměru. Přibližně to je 3,14159265359…</p><p>Více informací najdete v encyklopediích <a
class="ulink" href="http://planetmath.org/Pi" target="_top">Planetmath</a>
(text je v angličtině), <a class="ulink" href="http://mathworld.wolfram.com/Pi.html"
target="_top">Mathworld</a> (text je v angličtině) a <a class="ulink"
href="http://cs.wikipedia.org/wiki/P%C3%AD_%28%C4%8D%C3%ADslo%29"
target="_top">Wikipedia</a>.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s03.html">Předcházející</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s05.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Parametry </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%" align="right"
valign="top"> Práce s čísly</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch11s05.html b/help/cs/html/ch11s05.html
new file mode 100644
index 0000000..183285b
--- /dev/null
+++ b/help/cs/html/ch11s05.html
@@ -0,0 +1,25 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Práce s
čísly</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch11.html" title="Kapitola 11.
Seznam funkcí GEL"><link rel="prev" href="ch11s04.html" title="Konstanty"><link rel="next"
href="ch11s06.html" title="Trigonometrie"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Práce s čísly</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s04.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 11. Seznam
funkcí GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s06.html">Další</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class
="title" style="clear: both"><a name="genius-gel-function-list-numeric"></a>Práce s
čísly</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AbsoluteValue"></a>AbsoluteValue</span></dt><dd><pre class="synopsis">AbsoluteValue
(x)</pre><p>Alternativní názvy: <code class="function">abs</code></p><p>Absolutní hodnota čísla <code
class="varname">x</code>, případně modul v případě komplexního čísla <code class="varname">x</code>. U
komplexního čísla to je vlastně vzdálenost <code class="varname">x</code> od počátku. Je to to stejné, jako
<strong class="userinput"><code>|x|</code></strong>.</p><p>Více informací najdete v encyklopedii <a
class="ulink" href="http://cs.wikipedia.org/wiki/Absolutn%C3%AD_hodnota" target="_top">Wikipedia</a>, <a
class="ulink" href="http://planetmath.org/AbsoluteValue" target="_top">Planetmath (absolutní hodnota; text je
v angličtině)</a>, <a class="ulink" hre
f="http://planetmath.org/ModulusOfComplexNumber" target="_top">Planetmath (absolutní hodnota komplexního
čísla; text je v angličtině)</a>, <a class="ulink" href="http://mathworld.wolfram.com/AbsoluteValue.html"
target="_top">Mathworld (absolutní hodnota; text je v angličtině)</a> a <a class="ulink"
href="http://mathworld.wolfram.com/ComplexModulus.html" target="_top">Mathworld (absolutní hodnota
komplexního čísla; text je v angličtině)</a>.</p></dd><dt><span class="term"><a
name="gel-function-Chop"></a>Chop</span></dt><dd><pre class="synopsis">Chop (x)</pre><p>Nahrazovat velmi malá
čísla nulou.</p></dd><dt><span class="term"><a
name="gel-function-ComplexConjugate"></a>ComplexConjugate</span></dt><dd><pre
class="synopsis">ComplexConjugate (z)</pre><p>Alternativní názvy: <code class="function">conj</code> <code
class="function">Conj</code></p><p>Vypočítá komplexně sdružené číslo ke komplexnímu číslu <code
class="varname">z</code>. Pokud je <code
class="varname">z</code> vektor nebo matice, vypočítají se komplexně sdružená čísla pro všechny
prvky.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://cs.wikipedia.org/wiki/Komplexn%C4%9B_sdru%C5%BEen%C3%A9_%C4%8D%C3%ADslo"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-Denominator"></a>Denominator</span></dt><dd><pre class="synopsis">Denominator
(x)</pre><p>Získat jmenovatel racionálního čísla.</p><p>Více informací najdete v encyklopedii <a
class="ulink" href="http://cs.wikipedia.org/wiki/Jmenovatel" target="_top">Wikipedia</a>.</p></dd><dt><span
class="term"><a name="gel-function-FractionalPart"></a>FractionalPart</span></dt><dd><pre
class="synopsis">FractionalPart (x)</pre><p>Vrátit část čísla za desetinnou čárkou.</p><p>Více informací
najdete v encyklopedii <a class="ulink" href="http://en.wikipedia.org/wiki/Fractional_part"
target="_top">Wikipedia</a> (text je v angličtině).</p></d
d><dt><span class="term"><a name="gel-function-Im"></a>Im</span></dt><dd><pre class="synopsis">Im
(z)</pre><p>Alternativní názvy: <code class="function">ImaginaryPart</code></p><p>Vrátit imaginární část
komplexního čísla. Například <strong class="userinput"><code>Re(3+4i)</code></strong> vyplodí 4.</p><p>Více
informací najdete v encyklopedii <a class="ulink"
href="http://cs.wikipedia.org/wiki/Imagin%C3%A1rn%C3%AD_%C4%8D%C3%A1st#Z.C3.A1pis_a_souvisej.C3.ADc.C3.AD_pojmy"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-IntegerQuotient"></a>IntegerQuotient</span></dt><dd><pre class="synopsis">IntegerQuotient
(m,n)</pre><p>Dělit beze zbytku.</p></dd><dt><span class="term"><a
name="gel-function-IsComplex"></a>IsComplex</span></dt><dd><pre class="synopsis">IsComplex
(num)</pre><p>Zkontrolovat, jestli je argument komplexní (ne reálné) číslo. Tím se míní opravdu číslo, které
není reálné. Takže <strong class="userinput">
<code>IsComplex(3)</code></strong> vrátí <code class="constant">false</code>, zatímco <strong
class="userinput"><code>IsComplex(3-1i)</code></strong> vrátí <code
class="constant">true</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsComplexRational"></a>IsComplexRational</span></dt><dd><pre
class="synopsis">IsComplexRational (num)</pre><p>Zkontrolovat, zda je argument komplexní racionální číslo.
Tzn., že jak reální, tak imaginární část jsou zadány jako racionální čísla. Racionálním se samozřejmě myslí,
že „není uloženo jako desetinné číslo s plovoucí čárkou“.</p></dd><dt><span class="term"><a
name="gel-function-IsFloat"></a>IsFloat</span></dt><dd><pre class="synopsis">IsFloat
(num)</pre><p>Zkontrolovat, zda je argument reálné desetinné číslo (ne komplexní).</p></dd><dt><span
class="term"><a name="gel-function-IsGaussInteger"></a>IsGaussInteger</span></dt><dd><pre
class="synopsis">IsGaussInteger (num)</pre><p>Alterna
tivní názvy: <code class="function">IsComplexInteger</code></p><p>Zkontrolovat, jestli je argument celé
komplexní číslo. Celé komplexní číslo je číslo ve tvaru <strong
class="userinput"><code>n+1i*m</code></strong>, kde <code class="varname">n</code> a <code
class="varname">m</code> jsou celá čísla.</p></dd><dt><span class="term"><a
name="gel-function-IsInteger"></a>IsInteger</span></dt><dd><pre class="synopsis">IsInteger
(num)</pre><p>Zkontrolovat, zda je argument celé číslo (ne komplexní).</p></dd><dt><span class="term"><a
name="gel-function-IsNonNegativeInteger"></a>IsNonNegativeInteger</span></dt><dd><pre
class="synopsis">IsNonNegativeInteger (num)</pre><p>Zkontrolovat, zda je argument nezáporné reálné celé
číslo. Tj. buď kladné celé číslo nebo nula.</p></dd><dt><span class="term"><a
name="gel-function-IsPositiveInteger"></a>IsPositiveInteger</span></dt><dd><pre
class="synopsis">IsPositiveInteger (num)</pre><p>Alternativní názvy: <code cl
ass="function">IsNaturalNumber</code></p><p>Zkontrolovat, zda je argument kladné reálné celé číslo.
Upozorňujeme, že se řídíme konvencí, že 0 není přirozené číslo.</p></dd><dt><span class="term"><a
name="gel-function-IsRational"></a>IsRational</span></dt><dd><pre class="synopsis">IsRational
(num)</pre><p>Zkontrolovat, zda je argument racionální (ne komplexní) číslo. Racionální samozřejmě prostě
znamená „není uloženo jako desetinné číslo s plovoucí čárkou“.</p></dd><dt><span class="term"><a
name="gel-function-IsReal"></a>IsReal</span></dt><dd><pre class="synopsis">IsReal (num)</pre><p>Zkontrolovat,
zda je argument reálné číslo.</p></dd><dt><span class="term"><a
name="gel-function-Numerator"></a>Numerator</span></dt><dd><pre class="synopsis">Numerator (x)</pre><p>Získat
čitatel racionálního čísla.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://cs.wikipedia.org/wiki/%C4%8Citatel" target="_top">Wikip
edia</a>.</p></dd><dt><span class="term"><a name="gel-function-Re"></a>Re</span></dt><dd><pre
class="synopsis">Re (z)</pre><p>Alternativní názvy: <code class="function">RealPart</code></p><p>Vrátit
reálnou část komplexního čísla. Například <strong class="userinput"><code>Re(3+4i)</code></strong> vyplodí
3.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://cs.wikipedia.org/wiki/Re%C3%A1ln%C3%A1_%C4%8D%C3%A1st#Z.C3.A1pis_a_souvisej.C3.ADc.C3.AD_pojmy"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-Sign"></a>Sign</span></dt><dd><pre class="synopsis">Sign (x)</pre><p>Alternativní názvy:
<code class="function">sign</code></p><p>Vrátit znaménko čísla. Konkrétně vrací <code
class="literal">-1</code> u záporných čísel, <code class="literal">0</code> pro nulu a <code
class="literal">1</code> u kladných čísel. Pokud je <code class="varname">x</code> komplexní hodnota, pak
<code class="function">
Sign</code> vrací směr nebo 0.</p></dd><dt><span class="term"><a
name="gel-function-ceil"></a>ceil</span></dt><dd><pre class="synopsis">ceil (x)</pre><p>Alternativní názvy:
<code class="function">Ceiling</code></p><p>Získat nejnižší celé číslo, které je větší nebo rovno <code
class="varname">n</code>. Například: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>ceil(1.1)</code></strong>
+= 2
+<code class="prompt">genius></code> <strong class="userinput"><code>ceil(-1.1)</code></strong>
+= -1
+</pre><p>Měli byste být obezřetní a uvědomit si, že desetinná čísla jsou uchovávána v binární podobě, takže
nemusí mít naprosto přesně tu hodnotu, kterou očekáváte. Například <strong
class="userinput"><code>ceil(420/4.2)</code></strong> vrací 101 a ne 100, jak byste asi očekávali. To je tím,
že 4,2 je ve skutečnosti uloženo jako nepatrně méně než 4,2. Pokud chcete přesné výsledky, použijte
racionální vyjádření <strong class="userinput"><code>42/10</code></strong>.</p></dd><dt><span class="term"><a
name="gel-function-exp"></a>exp</span></dt><dd><pre class="synopsis">exp (x)</pre><p>Exponenciální funkce.
Jedná se o funkci <strong class="userinput"><code>e^x</code></strong>, kde <code class="varname">e</code> je
<a class="link" href="ch11s04.html#gel-function-e">základ přirozeného logaritmu</a>.</p><p>Více informací
najdete v encyklopediích <a class="ulink" href="http://planetmath.org/LogarithmFunction"
target="_top">Planetma
th</a> (text je v angličtině), <a class="ulink" href="http://mathworld.wolfram.com/ExponentialFunction.html"
target="_top">Mathworld</a> (text je v angličtině) a <a class="ulink"
href="http://cs.wikipedia.org/wiki/Exponenci%C3%A1ln%C3%AD_funkce#Exponenci.C3.A1la_o_z.C3.A1kladu_e"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-float"></a>float</span></dt><dd><pre class="synopsis">float (x)</pre><p>Udělá z čísla
desetinné číslo. Tzn., že vrací hodnotu čísla <code class="varname">x</code> v podobě čísla s plovoucí
desetinnou čárkou.</p></dd><dt><span class="term"><a name="gel-function-floor"></a>floor</span></dt><dd><pre
class="synopsis">floor (x)</pre><p>Alternativní názvy: <code class="function">Floor</code></p><p>Vrátit
nejvyšší celé číslo, které je menší nebo rovno <code class="varname">n</code>.</p></dd><dt><span
class="term"><a name="gel-function-ln"></a>ln</span></dt><dd><pre class="synopsis">ln (x)</pre
<p>Přirozený logaritmus, logaritmus o základu <code class="varname">e</code>.</p><p>Více informací najdete
v encyklopediích <a class="ulink" href="http://planetmath.org/LogarithmFunction"
target="_top">Planetmath</a> (text je v angličtině), <a class="ulink"
href="http://mathworld.wolfram.com/NaturalLogarithm.html" target="_top">Mathworld</a> (text je v
angličtině) a <a class="ulink"
href="http://cs.wikipedia.org/wiki/Logaritmus#P.C5.99irozen.C3.BD_logaritmus"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-log"></a>log</span></dt><dd><pre class="synopsis">log (x)</pre><pre class="synopsis">log
(x,b)</pre><p>Logaritmus <code class="varname">x</code> o základu <code class="varname">b</code> (v režimu
modulární aritmetiky nazýván <a class="link" href="ch11s07.html#gel-function-DiscreteLog"><code
class="function">DiscreteLog</code></a>), pokud není základ uveden, použije se <a class="link"
href="ch11s04.html#gel-function-e"><
code class="varname">e</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-log10"></a>log10</span></dt><dd><pre class="synopsis">log10 (x)</pre><p>Logaritmus čísla
<code class="varname">x</code> o základu 10.</p></dd><dt><span class="term"><a
name="gel-function-log2"></a>log2</span></dt><dd><pre class="synopsis">log2 (x)</pre><p>Alternativní názvy:
<code class="function">lg</code></p><p>Logaritmus čísla <code class="varname">x</code> o základu
2.</p></dd><dt><span class="term"><a name="gel-function-max"></a>max</span></dt><dd><pre class="synopsis">max
(a,argumenty...)</pre><p>Alternativní názvy: <code class="function">Max</code> <code
class="function">Maximum</code></p><p>Vrací maximum z argumentů nebo matice.</p></dd><dt><span
class="term"><a name="gel-function-min"></a>min</span></dt><dd><pre class="synopsis">min
(a,argumenty...)</pre><p>Alternativní názvy: <code class="function">Min</code> <code
class="function">Minimum</code></p><p>Vrátit mini
mum z argumentů nebo matice.</p></dd><dt><span class="term"><a
name="gel-function-rand"></a>rand</span></dt><dd><pre class="synopsis">rand (velikost...)</pre><p>Generovat
náhodné desetinné číslo z intervalu <code class="literal">[0,1)</code>. Pokud je zadána velikost, pak se
vygeneruje matice (zadána dvě čísla) nebo vektor (zadáno jedno číslo) této velikosti.</p></dd><dt><span
class="term"><a name="gel-function-randint"></a>randint</span></dt><dd><pre class="synopsis">randint
(max,velikost...)</pre><p>Generovat náhodné číslo z intervalu <code class="literal">[0,max)</code>. Pokud je
zadána velikost, pak se vygeneruje matice (zadána dvě čísla) nebo vektor (zadáno jedno číslo) této velikosti.
Například </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>randint(4)</code></strong>
+= 3
+<code class="prompt">genius></code> <strong class="userinput"><code>randint(4,2)</code></strong>
+=
+[0 1]
+<code class="prompt">genius></code> <strong class="userinput"><code>randint(4,2,3)</code></strong>
+=
+[2 2 1
+ 0 0 3]
+</pre></dd><dt><span class="term"><a name="gel-function-round"></a>round</span></dt><dd><pre
class="synopsis">round (x)</pre><p>Alternativní názvy: <code class="function">Round</code></p><p>Zaokrouhlit
číslo.</p></dd><dt><span class="term"><a name="gel-function-sqrt"></a>sqrt</span></dt><dd><pre
class="synopsis">sqrt (x)</pre><p>Alternativní názvy: <code class="function">SquareRoot</code></p><p>Druhá
odmocnina. Při práci v režimu modulární aritmetiky s celými čísly vrací buď <code
class="constant">null</code> nebo vektor druhých odmocnin. Příklady: </p><pre class="screen"><code
class="prompt">genius></code> <strong class="userinput"><code>sqrt(2)</code></strong>
+= 1.41421356237
+<code class="prompt">genius></code> <strong class="userinput"><code>sqrt(-1)</code></strong>
+= 1i
+<code class="prompt">genius></code> <strong class="userinput"><code>sqrt(4) mod 7</code></strong>
+=
+[2 5]
+<code class="prompt">genius></code> <strong class="userinput"><code>2*2 mod 7</code></strong>
+= 4
+<code class="prompt">genius></code> <strong class="userinput"><code>5*5 mod 7</code></strong>
+= 4
+</pre><p>Více informací najdete v encyklopediích <a class="ulink"
href="https://cs.wikipedia.org/wiki/Druh%C3%A1_odmocnina" target="_top">Wikipedia</a> a <a class="ulink"
href="http://planetmath.org/SquareRoot" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a name="gel-function-trunc"></a>trunc</span></dt><dd><pre
class="synopsis">trunc (x)</pre><p>Alternativní názvy: <code class="function">Truncate</code><code
class="function">IntegerPart</code></p><p>Oříznout číslo na celé číslo (vrátí celou
část).</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s04.html">Předcházející</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Nahoru</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s06.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Konstanty
</
td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Trigonometrie</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch11s06.html b/help/cs/html/ch11s06.html
new file mode 100644
index 0000000..49719b3
--- /dev/null
+++ b/help/cs/html/ch11s06.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Trigonometrie</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Příručka k aplikaci Genius"><link rel="up"
href="ch11.html" title="Kapitola 11. Seznam funkcí GEL"><link rel="prev" href="ch11s05.html" title="Práce s
čísly"><link rel="next" href="ch11s07.html" title="Teorie čísel"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Trigonometrie</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s05.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 11. Seznam
funkcí GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s07.html">Další</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 cla
ss="title" style="clear: both"><a
name="genius-gel-function-list-trigonometry"></a>Trigonometrie</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-acos"></a>acos</span></dt><dd><pre class="synopsis">acos (x)</pre><p>Alternativní názvy:
<code class="function">arccos</code></p><p>Funkce arkus kosinus (inverzní kosinus).</p></dd><dt><span
class="term"><a name="gel-function-acosh"></a>acosh</span></dt><dd><pre class="synopsis">acosh
(x)</pre><p>Alternativní názvy: <code class="function">arccosh</code></p><p>Funkce arkus hyperbolický kosinus
(inverzní cosh).</p></dd><dt><span class="term"><a name="gel-function-acot"></a>acot</span></dt><dd><pre
class="synopsis">acot (x)</pre><p>Alternativní názvy: <code class="function">arccot</code></p><p>Funkce arkus
kotangens (inverzní kotangens).</p></dd><dt><span class="term"><a
name="gel-function-acoth"></a>acoth</span></dt><dd><pre class="synopsis">acoth (x)</pre
<p>Alternativní názvy: <code class="function">arccoth</code></p><p>Funkce arkus hyperbolický kotangens
(inverzní coth).</p></dd><dt><span class="term"><a name="gel-function-acsc"></a>acsc</span></dt><dd><pre
class="synopsis">acsc (x)</pre><p>Alternativní názvy: <code class="function">arccsc</code></p><p>Funkce
inverzní kosekans.</p></dd><dt><span class="term"><a
name="gel-function-acsch"></a>acsch</span></dt><dd><pre class="synopsis">acsch (x)</pre><p>Alternativní
názvy: <code class="function">arccsch</code></p><p>Funkce inverzní hyperbolický kosekans.</p></dd><dt><span
class="term"><a name="gel-function-asec"></a>asec</span></dt><dd><pre class="synopsis">asec
(x)</pre><p>Alternativní názvy: <code class="function">arcsec</code></p><p>Funkce inverzní
sekans.</p></dd><dt><span class="term"><a name="gel-function-asech"></a>asech</span></dt><dd><pre
class="synopsis">asech (x)</pre><p>Alternativní názvy: <code class="function">arcsech</code></p><p>Funkce
inverzn�
� hyperbolický sekans.</p></dd><dt><span class="term"><a
name="gel-function-asin"></a>asin</span></dt><dd><pre class="synopsis">asin (x)</pre><p>Alternativní názvy:
<code class="function">arcsin</code></p><p>Funkce arkus sinus (inverzní sinus).</p></dd><dt><span
class="term"><a name="gel-function-asinh"></a>asinh</span></dt><dd><pre class="synopsis">asinh
(x)</pre><p>Alternativní názvy: <code class="function">arcsinh</code></p><p>Funkce arkus hyperbolický sinus
(inverzní sinh).</p></dd><dt><span class="term"><a name="gel-function-atan"></a>atan</span></dt><dd><pre
class="synopsis">atan (x)</pre><p>Alternativní názvy: <code class="function">arctan</code></p><p>Vypočítat
funkce arkus tangens (inverzní tangens).</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://mathworld.wolfram.com/InverseTangent.html" target="_top">Mathworld</a> (text je v angličtině) a
<a class="ulink" href="http://cs.wikipedia.org/wiki/Arkus_tangens" target="_top"
Wikipedia</a>.</p></dd><dt><span class="term"><a name="gel-function-atanh"></a>atanh</span></dt><dd><pre
class="synopsis">atanh (x)</pre><p>Alternativní názvy: <code class="function">arctanh</code></p><p>Funkce
arkus hyperbolický tangens (inverzní tanh).</p></dd><dt><span class="term"><a
name="gel-function-atan2"></a>atan2</span></dt><dd><pre class="synopsis">atan2 (y, x)</pre><p>Alternativní
názvy: <code class="function">arctan2</code></p><p>Vypočítat funkci arctan2. Jestliže je <strong
class="userinput"><code>x>0</code></strong>, pak vrací <strong
class="userinput"><code>atan(y/x)</code></strong>. Jestliže je <strong
class="userinput"><code>x<0</code></strong>, vrací <strong class="userinput"><code>sign(y) * (pi -
atan(|y/x|)</code></strong>. A při <strong class="userinput"><code>x=0</code></strong> vrací <strong
class="userinput"><code>sign(y) *
+ pi/2</code></strong>. Volání <strong class="userinput"><code>atan2(0,0)</code></strong> vrací 0
namísto selhání.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://mathworld.wolfram.com/InverseTangent.html" target="_top">Mathworld</a> (text je v angličtině) a
<a class="ulink" href="http://cs.wikipedia.org/wiki/Arctg2" target="_top">Wikipedia</a>.</p></dd><dt><span
class="term"><a name="gel-function-cos"></a>cos</span></dt><dd><pre class="synopsis">cos
(x)</pre><p>Vypočítat funkci kosinus.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="https://cs.wikipedia.org/wiki/Goniometrick%C3%A1_funkce" target="_top">Wikipedia</a> a <a class="ulink"
href="http://planetmath.org/DefinitionsInTrigonometry" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a name="gel-function-cosh"></a>cosh</span></dt><dd><pre
class="synopsis">cosh (x)</pre><p>Vypočítat funkci hyperbolický kosinus.</p><
p>Více informací najdete v encyklopediích <a class="ulink"
href="https://cs.wikipedia.org/wiki/Hyperbolick%C3%A9_funkce" target="_top">Wikipedia</a> a <a class="ulink"
href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a name="gel-function-cot"></a>cot</span></dt><dd><pre
class="synopsis">cot (x)</pre><p>Funkce kotangens.</p><p>Více informací najdete v encyklopediích <a
class="ulink" href="https://cs.wikipedia.org/wiki/Goniometrick%C3%A1_funkce" target="_top">Wikipedia</a> a <a
class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a name="gel-function-coth"></a>coth</span></dt><dd><pre
class="synopsis">coth (x)</pre><p>Funkce hyperbolický kotangens.</p><p>Více informací najdete v
encyklopediích <a class="ulink" href="https://cs.wikipedia.org/wiki/Hyperbolick%C3%A9_funkce" target="_
top">Wikipedia</a> a <a class="ulink" href="http://planetmath.org/HyperbolicFunctions"
target="_top">Planetmath</a> (text je v angličtině).</p></dd><dt><span class="term"><a
name="gel-function-csc"></a>csc</span></dt><dd><pre class="synopsis">csc (x)</pre><p>Funkce
kosekans.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="https://cs.wikipedia.org/wiki/Goniometrick%C3%A1_funkce" target="_top">Wikipedia</a> a <a class="ulink"
href="http://planetmath.org/DefinitionsInTrigonometry" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a name="gel-function-csch"></a>csch</span></dt><dd><pre
class="synopsis">csch (x)</pre><p>Funkce hyperbolický kosekans.</p><p>Více informací najdete v encyklopediích
<a class="ulink" href="https://cs.wikipedia.org/wiki/Hyperbolick%C3%A9_funkce" target="_top">Wikipedia</a> a
<a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a> (text je v
angličt
ině).</p></dd><dt><span class="term"><a name="gel-function-sec"></a>sec</span></dt><dd><pre
class="synopsis">sec (x)</pre><p>Funkce sekans.</p><p>Více informací najdete v encyklopediích <a
class="ulink" href="https://cs.wikipedia.org/wiki/Goniometrick%C3%A1_funkce" target="_top">Wikipedia</a> a <a
class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a name="gel-function-sech"></a>sech</span></dt><dd><pre
class="synopsis">sech (x)</pre><p>Funkce hyperbolický sekans.</p><p>Více informací najdete v encyklopediích
<a class="ulink" href="https://cs.wikipedia.org/wiki/Hyperbolick%C3%A9_funkce" target="_top">Wikipedia</a> a
<a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a name="gel-function-sin"></a>sin</span></dt><dd><pre
class="synopsis">sin (x)</pre><p>Vypočítat f
unkci sinus.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="https://cs.wikipedia.org/wiki/Goniometrick%C3%A1_funkce" target="_top">Wikipedia</a> a <a class="ulink"
href="http://planetmath.org/DefinitionsInTrigonometry" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a name="gel-function-sinh"></a>sinh</span></dt><dd><pre
class="synopsis">sinh (x)</pre><p>Vypočítat funkci hyperbolický sinus.</p><p>Více informací najdete v
encyklopediích <a class="ulink" href="https://cs.wikipedia.org/wiki/Hyperbolick%C3%A9_funkce"
target="_top">Wikipedia</a> a <a class="ulink" href="http://planetmath.org/HyperbolicFunctions"
target="_top">Planetmath</a> (text je v angličtině).</p></dd><dt><span class="term"><a
name="gel-function-tan"></a>tan</span></dt><dd><pre class="synopsis">tan (x)</pre><p>Vypočítat funkci
tangens.</p><p>Více informací najdete v encyklopediích <a class="ulink" href="https://cs.wikipedia.org/wiki/
Goniometrick%C3%A1_funkce" target="_top">Wikipedia</a> a <a class="ulink"
href="http://planetmath.org/DefinitionsInTrigonometry" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a name="gel-function-tanh"></a>tanh</span></dt><dd><pre
class="synopsis">tanh (x)</pre><p>Funkce hyperbolický tangens.</p><p>Více informací najdete v encyklopediích
<a class="ulink" href="https://cs.wikipedia.org/wiki/Hyperbolick%C3%A9_funkce" target="_top">Wikipedia</a> a
<a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a> (text je v
angličtině).</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s05.html">Předcházející</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Nahoru</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s07.html">Další</a></td></tr><tr><t
d width="40%" align="left" valign="top">Práce s čísly </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Domů</a></td><td width="40%" align="right" valign="top"> Teorie
čísel</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch11s07.html b/help/cs/html/ch11s07.html
new file mode 100644
index 0000000..fa3bc24
--- /dev/null
+++ b/help/cs/html/ch11s07.html
@@ -0,0 +1,8 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Teorie
čísel</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch11.html" title="Kapitola 11.
Seznam funkcí GEL"><link rel="prev" href="ch11s06.html" title="Trigonometrie"><link rel="next"
href="ch11s08.html" title="Práce s maticemi"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Teorie čísel</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s06.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 11. Seznam
funkcí GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s08.html">Další</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 c
lass="title" style="clear: both"><a name="genius-gel-function-list-number-theory"></a>Teorie
čísel</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AreRelativelyPrime"></a>AreRelativelyPrime</span></dt><dd><pre
class="synopsis">AreRelativelyPrime (a,b)</pre><p>Jsou reálná celá čísla <code class="varname">a</code> a
<code class="varname">b</code> nesoudělná? Vrací <code class="constant">true</code> nebo <code
class="constant">false</code>.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/RelativelyPrime" target="_top">Planetmath</a> (text je v angličtině), <a
class="ulink" href="http://mathworld.wolfram.com/RelativelyPrime.html" target="_top">Mathworld</a> (text je v
angličtině) a <a class="ulink" href="https://cs.wikipedia.org/wiki/Nesoud%C4%9Bln%C3%A1_%C4%8D%C3%ADsla"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a name="gel-function
-BernoulliNumber"></a>BernoulliNumber</span></dt><dd><pre class="synopsis">BernoulliNumber
(n)</pre><p>Vrátit <code class="varname">n</code>-té Bernoulliho číslo.</p><p>Více informací najdete v
encyklopediích <a class="ulink" href="http://en.wikipedia.org/wiki/Bernoulli_number"
target="_top">Wikipedia</a> (text je v angličtině) a <a class="ulink"
href="http://mathworld.wolfram.com/BernoulliNumber.html" target="_top">Mathworld</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-ChineseRemainder"></a>ChineseRemainder</span></dt><dd><pre
class="synopsis">ChineseRemainder (a,m)</pre><p>Alternativní názvy: <code
class="function">CRT</code></p><p>Najít pomocí čínské věty o zbytcích <code class="varname">x</code>, které
řeší systém zadaný vektorem <code class="varname">a</code>, a zbytky prvků <code
class="varname">m</code>.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/ChineseRe
mainderTheorem" target="_top">Planetmath</a> (text je v angličtině), <a class="ulink"
href="http://mathworld.wolfram.com/ChineseRemainderTheorem.html" target="_top">Mathworld</a> (text je v
angličtině) a <a class="ulink"
href="http://cs.wikipedia.org/wiki/%C4%8C%C3%ADnsk%C3%A1_v%C4%9Bta_o_zbytc%C3%ADch"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-CombineFactorizations"></a>CombineFactorizations</span></dt><dd><pre
class="synopsis">CombineFactorizations (a,b)</pre><p>Jsou-li dány dva rozklady, vrátit rozklad (faktorizaci)
součinu.</p><p>Viz <a class="link"
href="ch11s07.html#gel-function-Factorize">Factorize</a>.</p></dd><dt><span class="term"><a
name="gel-function-ConvertFromBase"></a>ConvertFromBase</span></dt><dd><pre class="synopsis">ConvertFromBase
(v,b)</pre><p>Převést vektor hodnot udávajících mocniny <code class="varname">b</code> na
číslo.</p></dd><dt><span class="term"><a name="gel-function-ConvertToBase"></a>Conve
rtToBase</span></dt><dd><pre class="synopsis">ConvertToBase (n,b)</pre><p>Převést číslo na vektor mocnin
prvků o základu <code class="varname">b</code>.</p></dd><dt><span class="term"><a
name="gel-function-DiscreteLog"></a>DiscreteLog</span></dt><dd><pre class="synopsis">DiscreteLog
(n,b,q)</pre><p>Najít diskrétní logaritmus <code class="varname">n</code> o základu <code
class="varname">b</code> v F<sub>q</sub>, konečné grupě řádu <code class="varname">q</code>, kde <code
class="varname">q</code> je prvočíslo, pomocí Silverova-Pohligova-Hellmanova algoritmu.</p><p>Více informací
najdete v encyklopediích <a class="ulink" href="http://planetmath.org/DiscreteLogarithm"
target="_top">Planetmath</a> (text je v angličtině), <a class="ulink"
href="http://mathworld.wolfram.com/DiscreteLogarithm.html" target="_top">Mathworld</a> (text je v angličtině)
a <a class="ulink" href="http://cs.wikipedia.org/wiki/Diskr%C3%A9tn%C3%AD_logaritmus" target="_top">Wikipedia
</a>.</p></dd><dt><span class="term"><a name="gel-function-Divides"></a>Divides</span></dt><dd><pre
class="synopsis">Divides (m,n)</pre><p>Zkontrolovat dělitelnost (zda <code class="varname">m</code> dělí
<code class="varname">n</code>).</p></dd><dt><span class="term"><a
name="gel-function-EulerPhi"></a>EulerPhi</span></dt><dd><pre class="synopsis">EulerPhi (n)</pre><p>Spočítat
Eulerovu funkci fí pro <code class="varname">n</code>, to je počet celých čísel mezi 1 a <code
class="varname">n</code>, relativně prvočíselných vůči <code class="varname">n</code>.</p><p>Více informací
najdete v encyklopediích <a class="ulink" href="http://planetmath.org/EulerPhifunction"
target="_top">Planetmath</a> (text je v angličtině), <a class="ulink"
href="http://mathworld.wolfram.com/TotientFunction.html" target="_top">Mathworld</a> (text je v angličtině) a
<a class="ulink" href="http://cs.wikipedia.org/wiki/Eulerova_funkce"
target="_top">Wikipedia</a>.</p></dd><dt><spa
n class="term"><a name="gel-function-ExactDivision"></a>ExactDivision</span></dt><dd><pre
class="synopsis">ExactDivision (n,d)</pre><p>Vrátit <strong class="userinput"><code>n/d</code></strong>, ale
jen pokud <code class="varname">d</code> dělí <code class="varname">n</code>. Pokud <code
class="varname">d</code> nedělí <code class="varname">n</code>, vrací funkce nesmysly. Pro velmi velká čísla
je to rychlejší než operace <strong class="userinput"><code>n/d</code></strong>, ale je to samozřejmě
použitelné jen v případě, kdy přesně víte, co dělíte.</p></dd><dt><span class="term"><a
name="gel-function-Factorize"></a>Factorize</span></dt><dd><pre class="synopsis">Factorize (n)</pre><p>Vrátit
rozklad (faktorizaci) čísla jako matici. První řádek jsou prvočísla v rozkladu (včetně 1) a druhý řádek jsou
mocnitelé. Takže například </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>Factorize(11*11*13)
</code></strong>
+=
+[1 11 13
+ 1 2 1]</pre><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://cs.wikipedia.org/wiki/Faktorizace" target="_top">Wikipedia</a>.</p></dd><dt><span
class="term"><a name="gel-function-Factors"></a>Factors</span></dt><dd><pre class="synopsis">Factors
(n)</pre><p>Vrátit všechny činitele čísla <code class="varname">n</code> jako vektor. Součástí jsou i
neprvočíselní činitelé, což zahrnuje také 1 a přímo ono číslo. Takže například pro výpis všech dokonalých
čísel (to jsou taková, která jsou součtem všech svých činitelů) až do 1000 můžete udělat toto (je to však
značně neefektivní) </p><pre class="programlisting">for n=1 to 1000 do (
+ if MatrixSum (Factors(n)) == 2*n then
+ print(n)
+)
+</pre></dd><dt><span class="term"><a
name="gel-function-FermatFactorization"></a>FermatFactorization</span></dt><dd><pre
class="synopsis">FermatFactorization (n,pokusy)</pre><p>Zkusit Fermatův rozklad <code
class="varname">n</code> na <strong class="userinput"><code>(t-s)*(t+s)</code></strong>. Pokud to je možné,
vrací <code class="varname">t</code> a <code class="varname">s</code> jako vektor, jinak vrací <code
class="constant">null</code>. Argument <code class="varname">pokusy</code> určuje počet pokusu, než se
výpočet vzdá.</p><p>Jedná se o docela dobrý rozklad za předpokladu, že je vaše číslo součinem dvou přibližně
stejně velkých čísel.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://en.wikipedia.org/wiki/Fermat_factorization" target="_top">Wikipedia</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-FindPrimitiveElementMod"></a>FindPrimitiveElementMod</span></dt><dd><pre class="synops
is">FindPrimitiveElementMod (q)</pre><p>Najít první primitivní prvek v F<sub>q</sub>, konečné grupě řádu
<code class="varname">q</code>. Je samozřejmé, že <code class="varname">q</code> musí být
prvočíslo.</p></dd><dt><span class="term"><a
name="gel-function-FindRandomPrimitiveElementMod"></a>FindRandomPrimitiveElementMod</span></dt><dd><pre
class="synopsis">FindRandomPrimitiveElementMod (q)</pre><p>Najít náhodný primitivní prvek v F<sub>q</sub>,
konečné grupě řádu <code class="varname">q</code>. Je samozřejmé, že <code class="varname">q</code> musí být
prvočíslo.</p></dd><dt><span class="term"><a
name="gel-function-IndexCalculus"></a>IndexCalculus</span></dt><dd><pre class="synopsis">IndexCalculus
(n,b,q,S)</pre><p>Spočítat diskrétní logaritmus <code class="varname">n</code> o základu <code
class="varname">b</code> v F<sub>q</sub>, konečné grupě řádu <code class="varname">q</code> (<code
class="varname">q</code> prvočíslo) pomocí
faktorizační báze <code class="varname">S</code>. <code class="varname">S</code> by měl být sloupec
prvočísel, pokud možno s druhým sloupcem předpočítaným pomocí <a class="link"
href="ch11s07.html#gel-function-IndexCalculusPrecalculation"><code
class="function">IndexCalculusPrecalculation</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-IndexCalculusPrecalculation"></a>IndexCalculusPrecalculation</span></dt><dd><pre
class="synopsis">IndexCalculusPrecalculation (b,q,S)</pre><p>Provést přípravný krok výpočtu funkce <a
class="link" href="ch11s07.html#gel-function-IndexCalculus"><code class="function">IndexCalculus</code></a>
pro logaritmy o základu <code class="varname">b</code> v F<sub>q</sub>, konečné grupě řádu <code
class="varname">q</code> (<code class="varname">q</code> prvočíslo), pro faktorizační bázi <code
class="varname">S</code> (kde <code class="varname">S</code> je sloupcový vektor prvočísel). Logaritmy budou
předp
očítány a vráceny v druhém sloupci.</p></dd><dt><span class="term"><a
name="gel-function-IsEven"></a>IsEven</span></dt><dd><pre class="synopsis">IsEven (n)</pre><p>Otestovat, zda
je celé číslo sudé.</p></dd><dt><span class="term"><a
name="gel-function-IsMersennePrimeExponent"></a>IsMersennePrimeExponent</span></dt><dd><pre
class="synopsis">IsMersennePrimeExponent (p)</pre><p>Zjistit, jestli je kladné celé číslo <code
class="varname">p</code> Mersennovo prvočíslo. Tj. zda 2<sup>p</sup>-1 je prvočíslo. Provádí se to hledáním v
tabulce známých hodnot, která je relativně krátká. Viz také <a class="link"
href="ch11s07.html#gel-function-MersennePrimeExponents">MersennePrimeExponents</a> a <a class="link"
href="ch11s07.html#gel-function-LucasLehmer">LucasLehmer</a>.</p><p>Více informací najdete v encyklopediích
<a class="ulink" href="http://planetmath.org/MersenneNumbers" target="_top">Planetmath</a> (text je v
angličtině), <a class="ulink" href="ht
tp://mathworld.wolfram.com/MersennePrime.html" target="_top">Mathworld</a> (text je v angličtině), <a
class="ulink" href="http://www.mersenne.org/" target="_top">GIMPS</a> (text je v angličtině) a <a
class="ulink" href="http://cs.wikipedia.org/wiki/Mersennovo_prvo%C4%8D%C3%ADslo"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-IsNthPower"></a>IsNthPower</span></dt><dd><pre class="synopsis">IsNthPower
(m,n)</pre><p>Zjistit, jestli je racionální číslo <code class="varname">m</code> perfektní <code
class="varname">n</code>-tou mocninou . Viz také <a class="link"
href="ch11s07.html#gel-function-IsPerfectPower">IsPerfectPower</a> a <a class="link"
href="ch11s07.html#gel-function-IsPerfectSquare">IsPerfectSquare</a>.</p></dd><dt><span class="term"><a
name="gel-function-IsOdd"></a>IsOdd</span></dt><dd><pre class="synopsis">IsOdd (n)</pre><p>Otestovat, zda je
celé číslo liché.</p></dd><dt><span class="term"><a name="gel-function-IsPerf
ectPower"></a>IsPerfectPower</span></dt><dd><pre class="synopsis">IsPerfectPower (n)</pre><p>Zkontrolovat,
zda je celé číslo perfekntí mocninou a<sup>b</sup>.</p></dd><dt><span class="term"><a
name="gel-function-IsPerfectSquare"></a>IsPerfectSquare</span></dt><dd><pre class="synopsis">IsPerfectSquare
(n)</pre><p>Zkontrolovat, zda je celé číslo perfektní druhou mocninou celého čísla. Číslo musí být přirozené
číslo. Záporná celá čísla samozřejmě perfektními druhými mocninami přirozených čísel být
nemohou.</p></dd><dt><span class="term"><a name="gel-function-IsPrime"></a>IsPrime</span></dt><dd><pre
class="synopsis">IsPrime (n)</pre><p>Testuje prvočíselnost celých čísel, pro čísla menší než 2.5e10 je
odpověď deterministická (tedy pokud je Riemannova hypotéza platná). Pro větší čísla závisí falešné kladné
odpovědi na <a class="link" href="ch11s03.html#gel-function-IsPrimeMillerRabinReps"><code
class="function">IsPrimeMill
erRabinReps</code></a>. Což znamená, že pravděpodobnost nesprávné kladné odpovědi je ¼ umocněná na <code
class="function">IsPrimeMillerRabinReps</code>. Výchozí hodnota 22 dává pravděpodobnost zhruba
5.7e-14.</p><p>Když je vráceno <code class="constant">false</code>, můžete si být jisti, že se jedná o
složené číslo. Jestliže si potřebujete být absolutně jistí, že máte prvočíslo, můžete použít funkci <a
class="link" href="ch11s07.html#gel-function-MillerRabinTestSure"><code
class="function">MillerRabinTestSure</code></a>, ale může to trvat trochu déle.</p><p>Více informací najdete
v encyklopediích <a class="ulink" href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> (text
je v angličtině), <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html"
target="_top">Mathworld</a> (text je v angličtině) a <a class="ulink"
href="http://cs.wikipedia.org/wiki/Prvo%C4%8D%C3%ADslo" target="_top">Wikipedia</a>.
</p></dd><dt><span class="term"><a name="gel-function-IsPrimitiveMod"></a>IsPrimitiveMod</span></dt><dd><pre
class="synopsis">IsPrimitiveMod (g,q)</pre><p>Zkontrolovat, zda je <code class="varname">g</code> primitivní
v F<sub>q</sub>, konečné grupě řádu <code class="varname">q</code>, kde <code class="varname">q</code> je
prvočíslo. Pokud <code class="varname">q</code> není prvočíslo, jsou výsledky nesmyslné.</p></dd><dt><span
class="term"><a
name="gel-function-IsPrimitiveModWithPrimeFactors"></a>IsPrimitiveModWithPrimeFactors</span></dt><dd><pre
class="synopsis">IsPrimitiveModWithPrimeFactors (g,q,f)</pre><p>Zkontrolovat, zda je <code
class="varname">g</code> primitivní v F<sub>q</sub>, konečné grupě řádu <code class="varname">q</code>, kde
<code class="varname">q</code> je prvočíslo a <code class="varname">f</code> je vektor prvočíselných činitelů
<code class="varname">q</code>-1. Pokud <code class="varname">q</code> není prvočíslo, jsou výsle
dky nesmyslné.</p></dd><dt><span class="term"><a
name="gel-function-IsPseudoprime"></a>IsPseudoprime</span></dt><dd><pre class="synopsis">IsPseudoprime
(n,b)</pre><p>Zda je <code class="varname">n</code> pseudoprvočíslo o základu <code class="varname">b</code>,
ale ne prvočíslo, tj. jestli <strong class="userinput"><code>b^(n-1) == 1 mod n</code></strong>. Volá se
funkce <a class="link" href="ch11s07.html#gel-function-PseudoprimeTest"><code
class="function">PseudoprimeTest</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-IsStrongPseudoprime"></a>IsStrongPseudoprime</span></dt><dd><pre
class="synopsis">IsStrongPseudoprime (n,b)</pre><p>Zjistit, zda je <code class="varname">n</code> silné
pseudoprvočíslo o základu <code class="varname">b</code>, ale ne prvočíslo.</p></dd><dt><span class="term"><a
name="gel-function-Jacobi"></a>Jacobi</span></dt><dd><pre class="synopsis">Jacobi (a,b)</pre><p>Alternativní
názvy: <code class="function">JacobiSymbol<
/code></p><p>Spočítat Jacobiho symbol (a/b) (b by mělo být liché).</p></dd><dt><span class="term"><a
name="gel-function-JacobiKronecker"></a>JacobiKronecker</span></dt><dd><pre class="synopsis">JacobiKronecker
(a,b)</pre><p>Alternativní názvy: <code class="function">JacobiKroneckerSymbol</code></p><p>Spočítat Jacobiho
symbol (a/b) s Kroneckerovým rozšířením (a/2)=(2/a), když <code class="varname">a</code> je liché, nebo
(a/2)=0, když <code class="varname">a</code> je sudé.</p></dd><dt><span class="term"><a
name="gel-function-LeastAbsoluteResidue"></a>LeastAbsoluteResidue</span></dt><dd><pre
class="synopsis">LeastAbsoluteResidue (a,n)</pre><p>Vrátit zbytek <code class="varname">a</code> mod <code
class="varname">n</code> s nejmenší absolutní hodnotou (v intervalu -n/2 až n/2).</p></dd><dt><span
class="term"><a name="gel-function-Legendre"></a>Legendre</span></dt><dd><pre class="synopsis">Legendre
(a,p)</pre><p>Alternativní názvy: <code class="function
">LegendreSymbol</code></p><p>Spočítat Legendrův symbol (a/p).</p><p>Více informací najdete v encyklopediích
<a class="ulink" href="http://planetmath.org/LegendreSymbol" target="_top">Planetmath</a> (text je v
angličtině), <a class="ulink" href="http://mathworld.wolfram.com/LegendreSymbol.html"
target="_top">Mathworld</a> (text je v angličtině) a <a class="ulink"
href="https://cs.wikipedia.org/wiki/Legendre%C5%AFv_symbol" target="_top">Wikipedia</a>.</p></dd><dt><span
class="term"><a name="gel-function-LucasLehmer"></a>LucasLehmer</span></dt><dd><pre
class="synopsis">LucasLehmer (p)</pre><p>Zjistit pomocí Lucasova-Lehmerova testu, zda je 2<sup>p</sup>-1
Mersennovo prvočíslo. Viz také <a class="link"
href="ch11s07.html#gel-function-MersennePrimeExponents">MersennePrimeExponents</a> a <a class="link"
href="ch11s07.html#gel-function-IsMersennePrimeExponent">IsMersennePrimeExponent</a>.</p><p>Více informací
najdete v encyklopediích <a class="ulink" href="http://
en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test" target="_top">Wikipedia</a> (text je v
angličtině), <a class="ulink" href="http://planetmath.org/LucasLhemer" target="_top">Planetmath</a> (text je
v angličtině) a <a class="ulink" href="http://mathworld.wolfram.com/Lucas-LehmerTest.html"
target="_top">Mathworld</a> (text je v agličtině).</p></dd><dt><span class="term"><a
name="gel-function-LucasNumber"></a>LucasNumber</span></dt><dd><pre class="synopsis">LucasNumber
(n)</pre><p>Vrátit <code class="varname">n</code>-té Lucasovo číslo.</p><p>Více informací najdete v
encyklopediích <a class="ulink" href="http://en.wikipedia.org/wiki/Lucas_number" target="_top">Wikipedia</a>
(text je v angličtině), <a class="ulink" href="http://planetmath.org/LucasNumbers"
target="_top">Planetmath</a> (text je v angličtině) a <a class="ulink"
href="http://mathworld.wolfram.com/LucasNumber.html" target="_top">Mathworld</a> (text je v
angličtině).</p></dd><dt><span clas
s="term"><a name="gel-function-MaximalPrimePowerFactors"></a>MaximalPrimePowerFactors</span></dt><dd><pre
class="synopsis">MaximalPrimePowerFactors (n)</pre><p>Vrátit všechny maximální mocniny prvočísel v rozkladu
čísla.</p></dd><dt><span class="term"><a
name="gel-function-MersennePrimeExponents"></a>MersennePrimeExponents</span></dt><dd><pre
class="synopsis">MersennePrimeExponents</pre><p>Vektor se známými exponenty Mersennových prvočísel, což je
seznam kladných celých čísel <code class="varname">p</code> takových, že 2<sup>p</sup>-1 je prvočíslo. Viz
také <a class="link" href="ch11s07.html#gel-function-IsMersennePrimeExponent">IsMersennePrimeExponent</a> a
<a class="link" href="ch11s07.html#gel-function-LucasLehmer">LucasLehmer</a>.</p><p>Více informací najdete v
encyklopediích <a class="ulink" href="http://planetmath.org/MersenneNumbers" target="_top">Planetmath</a>
(text je v angličtině), <a class="ulink" href="http://mathworld.wolfram.com/Mer
sennePrime.html" target="_top">Mathworld</a> (text je v angličtině), <a class="ulink"
href="http://www.mersenne.org/" target="_top">GIMPS</a> (text je v angličtině) a <a class="ulink"
href="http://cs.wikipedia.org/wiki/Mersennovo_prvo%C4%8D%C3%ADslo"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-MillerRabinTest"></a>MillerRabinTest</span></dt><dd><pre class="synopsis">MillerRabinTest
(n,opak)</pre><p>Použít Millerův-Rabinův test prvočíselnosti na <code class="varname">n</code>, <code
class="varname">opak</code> udává kolikrát. Pravděpodobnost falešné kladné odpovědi je <strong
class="userinput"><code>(1/4)^opak</code></strong>. Pravděpodobně je obvykle lepší použít funkci <a
class="link" href="ch11s07.html#gel-function-IsPrime"><code class="function">IsPrime</code></a>, protože je
rychlejší a lepší u menších celých čísel.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planet
math.org/MillerRabinPrimeTest" target="_top">Planetmath</a> (text je v angličtině), <a class="ulink"
href="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html" target="_top">Mathworld</a> (text
je v angličtině) a <a class="ulink"
href="http://cs.wikipedia.org/wiki/Miller%C5%AFv-Rabin%C5%AFv_test_prvo%C4%8D%C3%ADselnosti"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-MillerRabinTestSure"></a>MillerRabinTestSure</span></dt><dd><pre
class="synopsis">MillerRabinTestSure (n)</pre><p>Použít Millerův-Rabinův test prvočíselnosti na <code
class="varname">n</code> s tolika bázemi, že za předpokladu zobecněné Riemannovy hypotézy je výsledek
deterministický.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/MillerRabinPrimeTest" target="_top">Planetmath</a> (text je v angličtině), <a
class="ulink" href="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html" t
arget="_top">Mathworld</a> (text je v angličtině) a <a class="ulink"
href="http://cs.wikipedia.org/wiki/Miller%C5%AFv-Rabin%C5%AFv_test_prvo%C4%8D%C3%ADselnosti"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-ModInvert"></a>ModInvert</span></dt><dd><pre class="synopsis">ModInvert
(n,m)</pre><p>Vrátit převrácenou hodnotu n mod m.</p><p>Více informací najdete v encyklopedii <a
class="ulink" href="http://mathworld.wolfram.com/ModularInverse.html" target="_top">Mathworld</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-MoebiusMu"></a>MoebiusMu</span></dt><dd><pre class="synopsis">MoebiusMu (n)</pre><p>Vrátit
Möbiovu funkci μ vyhodnocenu na <code class="varname">n</code>. Což znamená, že vrátí 0 v případě, že <code
class="varname">n</code> není součin různých prvočísel, a <strong
class="userinput"><code>(-1)^k</code></strong> v případě, že je součin <code class="varname">k</code> r�
�zných prvočísel.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/MoebiusFunction" target="_top">Planetmath</a> (text je v angličtině), <a
class="ulink" href="http://mathworld.wolfram.com/MoebiusFunction.html" target="_top">Mathworld</a> (text je v
angličtině) a <a class="ulink" href="http://cs.wikipedia.org/wiki/M%C3%B6biova_funkce"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-NextPrime"></a>NextPrime</span></dt><dd><pre class="synopsis">NextPrime (n)</pre><p>Vrátit
nejmenší prvočíslo větší než <code class="varname">n</code>. Záporná prvočísla jsou považována za prvočísla,
takže předchozí prvočíslo můžete získat jako <strong
class="userinput"><code>-NextPrime(-n)</code></strong>.</p><p>Tato funkce používá funkci <code
class="function">mpz_nextprime</code> z knihovny GMP, která zase používá pravděpodobnostní Millerův-Rabinův
test (viz také <a class="
link" href="ch11s07.html#gel-function-MillerRabinTest"><code class="function">MillerRabinTest</code></a>).
Pravděpodobnost falešné kladné odpovědi není nastavitelná, ale je dostatečně malá pro praktické
účely.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> (text je v angličtině), <a
class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworld</a> (text je v
angličtině) a <a class="ulink" href="http://cs.wikipedia.org/wiki/Prvo%C4%8D%C3%ADslo"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-PadicValuation"></a>PadicValuation</span></dt><dd><pre class="synopsis">PadicValuation
(n,p)</pre><p>Vrátit p-adické ohodnocení (počet koncových nul v základu <code
class="varname">p</code>).</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="https://en.wikipedia.org/wiki/P-adic_order" target="_t
op">Wikipedia</a> (text je v angličtině) a <a class="ulink" href="http://planetmath.org/PAdicValuation"
target="_top">Planetmath</a> (text je v angličtině).</p></dd><dt><span class="term"><a
name="gel-function-PowerMod"></a>PowerMod</span></dt><dd><pre class="synopsis">PowerMod
(a,b,m)</pre><p>Spočítat <strong class="userinput"><code>a^b mod m</code></strong>. <code
class="varname">b</code>-tá mocnina čísla <code class="varname">a</code> modulo <code
class="varname">m</code>. Tuto funkci není nutné používat, protože se automaticky použije v režimu modulární
aritmetiky. Z tohoto důvodu je <strong class="userinput"><code>a^b mod m</code></strong> stejně
rychlé.</p></dd><dt><span class="term"><a name="gel-function-Prime"></a>Prime</span></dt><dd><pre
class="synopsis">Prime (n)</pre><p>Alternativní názvy: <code class="function">prime</code></p><p>Vrátit <code
class="varname">n</code>-té prvočíslo (až do limitu).</p><p>Více informací najdete v encykl
opediích <a class="ulink" href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> (text je v
angličtině), <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html"
target="_top">Mathworld</a> (text je v angličtině) a <a class="ulink"
href="http://cs.wikipedia.org/wiki/Prvo%C4%8D%C3%ADslo" target="_top">Wikipedia</a>.</p></dd><dt><span
class="term"><a name="gel-function-PrimeFactors"></a>PrimeFactors</span></dt><dd><pre
class="synopsis">PrimeFactors (n)</pre><p>Vrátit v podobě vektoru všechny prvočinitele čísla.</p><p>Více
informací najdete v encyklopediích <a class="ulink" href="http://mathworld.wolfram.com/PrimeFactor.html"
target="_top">Mathworld</a> (text je v angličtině) a <a class="ulink"
href="http://mathworld.wolfram.com/PrimeFactor.html" target="_top">Wikipedia</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-PseudoprimeTest"></a>PseudoprimeTest</span></dt><dd><pre class="synopsis">Pseudoprim
eTest (n,b)</pre><p>Test pseudoprvočíselnosti, vrací <code class="constant">true</code> když a jen když
<strong class="userinput"><code>b^(n-1) == 1 mod n</code></strong>.</p><p>Více informací najdete v
encyklopediích <a class="ulink" href="http://planetmath.org/Pseudoprime" target="_top">Planetmath</a> (text
je v angličtině), <a class="ulink" href="http://mathworld.wolfram.com/Pseudoprime.html"
target="_top">Mathworld</a> (text je v angličtině) a <a class="ulink"
href="http://cs.wikipedia.org/wiki/Pseudoprvo%C4%8D%C3%ADslo" target="_top">Wikipedia</a>.</p></dd><dt><span
class="term"><a name="gel-function-RemoveFactor"></a>RemoveFactor</span></dt><dd><pre
class="synopsis">RemoveFactor (n,m)</pre><p>Odstranit všechny instance činitele <code
class="varname">m</code> z čísla <code class="varname">n</code>. Prakticky to znamená, že je poděleno
nejvyšší mocninou čísla <code class="varname">m</code>, která je dělitelem <code class="varname">n</code>.</p>
<p>Více informací najdete v encyklopediích <a class="ulink" href="http://planetmath.org/Divisibility"
target="_top">Planetmath</a> (text je v angličtině), <a class="ulink"
href="http://mathworld.wolfram.com/Factor.html" target="_top">Mathworld</a> (text je v angličtině) a <a
class="ulink" href="http://cs.wikipedia.org/wiki/D%C4%9Blitelnost"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-SilverPohligHellmanWithFactorization"></a>SilverPohligHellmanWithFactorization</span></dt><dd><pre
class="synopsis">SilverPohligHellmanWithFactorization (n,b,q,f)</pre><p>Najít diskrétní logaritmus <code
class="varname">n</code> o základu <code class="varname">b</code> v F<sub>q</sub>, konečné grupě řádu <code
class="varname">q</code>, kde <code class="varname">q</code> je prvočíslo, pomocí
Silverova-Pohligova-Hellmanova algoritmu, dané <code class="varname">f</code> je rozkladem <code
class="varname">q</code>-1.</p></dd><dt><span class="
term"><a name="gel-function-SqrtModPrime"></a>SqrtModPrime</span></dt><dd><pre class="synopsis">SqrtModPrime
(n,p)</pre><p>Najít druhou odmocninu z <code class="varname">n</code> modulo <code class="varname">p</code>
(kde <code class="varname">p</code> je prvočíslo). Pokud není kvadratickým zbytkem, je vráceno
null.</p><p>Více informací najdete v encyklopedicíh <a class="ulink"
href="http://planetmath.org/QuadraticResidue" target="_top">Planetmath</a> (text je v angličtině) a <a
class="ulink" href="http://mathworld.wolfram.com/QuadraticResidue.html" target="_top">Mathworld</a> (text je
v angličtině).</p></dd><dt><span class="term"><a
name="gel-function-StrongPseudoprimeTest"></a>StrongPseudoprimeTest</span></dt><dd><pre
class="synopsis">StrongPseudoprimeTest (n,b)</pre><p>Spustit silný test pseudoprvočíselnosti o základu <code
class="varname">b</code> na <code class="varname">n</code>.</p><p>Více informací najdete v encyklopediích <a
class="ulink" href="h
ttp://planetmath.org/StrongPseudoprime" target="_top">Planetmath</a> (text je v angličtině), <a
class="ulink" href="http://mathworld.wolfram.com/StrongPseudoprime.html" target="_top">Mathworld</a> (text je
v angličtině) a <a class="ulink" href="https://en.wikipedia.org/wiki/Strong_pseudoprime"
target="_top">Wikipedia</a> (text je v angličtině).</p></dd><dt><span class="term"><a
name="gel-function-gcd"></a>gcd</span></dt><dd><pre class="synopsis">gcd
(a,argumenty...)</pre><p>Alternativní názvy: <code class="function">GCD</code></p><p>Největší společný
dělitel celých čísel. V seznamu argumentů můžete uvést libovolný počet celých čísel, nebo je můžete zadat
jako vektor nebo matici celých čísel. Pokud zadáte více než jednu matici stejné velikosti, bude největší
společný dělitel určen prvek po prvku.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/GreatestCommonDivisor" target="_top">Planetmat
h</a> (text je v angličtině), <a class="ulink"
href="http://mathworld.wolfram.com/GreatestCommonDivisor.html" target="_top">Mathworld</a> (text je v
angličtině) a <a class="ulink"
href="https://cs.wikipedia.org/wiki/Nejv%C4%9Bt%C5%A1%C3%AD_spole%C4%8Dn%C3%BD_d%C4%9Blitel"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-lcm"></a>lcm</span></dt><dd><pre class="synopsis">lcm
(a,argumenty...)</pre><p>Alternativní názvy: <code class="function">LCM</code></p><p>Nejmenší společný
násobek celých čísel. V seznamu argumentů můžete uvést libovolný počet celých čísel, nebo je můžete zadat
jako vektor nebo matici celých čísel. Pokud zadáte více než jednu matici stejné velikosti, bude nejmenší
společný násobek určen prvek po prvku.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/LeastCommonMultiple" target="_top">Planetmath</a> (text je v angličtině), <a
class="ulink" hr
ef="http://mathworld.wolfram.com/LeastCommonMultiple.html" target="_top">Mathworld</a> (text je v
angličtině) a <a class="ulink"
href="https://cs.wikipedia.org/wiki/Nejmen%C5%A1%C3%AD_spole%C4%8Dn%C3%BD_n%C3%A1sobek"
target="_top">Wikipedia</a>.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s06.html">Předcházející</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s08.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Trigonometrie </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%" align="right"
valign="top"> Práce s maticemi</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch11s08.html b/help/cs/html/ch11s08.html
new file mode 100644
index 0000000..5d3c6c8
--- /dev/null
+++ b/help/cs/html/ch11s08.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Práce s
maticemi</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch11.html" title="Kapitola 11.
Seznam funkcí GEL"><link rel="prev" href="ch11s07.html" title="Teorie čísel"><link rel="next"
href="ch11s09.html" title="Lineární algebra"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Práce s maticemi</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s07.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 11. Seznam
funkcí GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s09.html">Další</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><d
iv><h2 class="title" style="clear: both"><a name="genius-gel-function-list-matrix"></a>Práce s
maticemi</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ApplyOverMatrix"></a>ApplyOverMatrix</span></dt><dd><pre class="synopsis">ApplyOverMatrix
(a,fce)</pre><p>Použít funkci na všechny prvky matice a vrátit matici výsledků.</p></dd><dt><span
class="term"><a name="gel-function-ApplyOverMatrix2"></a>ApplyOverMatrix2</span></dt><dd><pre
class="synopsis">ApplyOverMatrix2 (a,b,fce)</pre><p>Použít funkci na všechny prvky 2 matic (nebo 1 hodnoty a
1 matice) a vrátit matici výsledků.</p></dd><dt><span class="term"><a
name="gel-function-ColumnsOf"></a>ColumnsOf</span></dt><dd><pre class="synopsis">ColumnsOf (M)</pre><p>Vrátit
sloupce matice jako vodorovný vektor.</p></dd><dt><span class="term"><a
name="gel-function-ComplementSubmatrix"></a>ComplementSubmatrix</span></dt><dd><pre class="synopsis">Compleme
ntSubmatrix (m,r,c)</pre><p>Odstranit sloupec (či slupce) a řádek (či řádky) z matice.</p></dd><dt><span
class="term"><a name="gel-function-CompoundMatrix"></a>CompoundMatrix</span></dt><dd><pre
class="synopsis">CompoundMatrix (k,A)</pre><p>Spočítat <code class="varname">k</code>-tou složenou matici
matice A.</p></dd><dt><span class="term"><a
name="gel-function-CountZeroColumns"></a>CountZeroColumns</span></dt><dd><pre
class="synopsis">CountZeroColumns (M)</pre><p>Spočítat počet nulových sloupců v matici. Například jakmile
zredukujete sloupce matice, můžete to využít k nalezení nulovosti. Viz <a class="link"
href="ch11s09.html#gel-function-cref"><code class="function">cref</code></a> a <a class="link"
href="ch11s09.html#gel-function-Nullity"><code class="function">Nullity</code></a>.</p></dd><dt><span
class="term"><a name="gel-function-DeleteColumn"></a>DeleteColumn</span></dt><dd><pre
class="synopsis">DeleteColumn (M,sloupec)</pre><p>Smazat sloupec mati
ce.</p></dd><dt><span class="term"><a name="gel-function-DeleteRow"></a>DeleteRow</span></dt><dd><pre
class="synopsis">DeleteRow (M,radek)</pre><p>Smazat řádek matice.</p></dd><dt><span class="term"><a
name="gel-function-DiagonalOf"></a>DiagonalOf</span></dt><dd><pre class="synopsis">DiagonalOf
(M)</pre><p>Získat diagonální prvky matice jako sloupcový vektor.</p><p>Více informací najdete v encyklopedii
<a class="ulink" href="http://cs.wikipedia.org/wiki/Diagon%C3%A1ln%C3%AD_matice"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-DotProduct"></a>DotProduct</span></dt><dd><pre class="synopsis">DotProduct
(u,v)</pre><p>Získat skalární součin dvou vektorů. Vektory musí mít stejnou velikost. Nepřijímají se
konjugované vektory, protože jde o bilineární formu, i když pracuje i s komplexními čísly. Jedná se o
bilineární skalární součin, ne půldruhý lineární (seskvilineární). Pro ten slouží funkce <a class="lin
k" href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a></p><p>Více informací najdete v
encyklopediích <a class="ulink" href="http://planetmath.org/DotProduct" target="_top">Planetmath</a> (text je
v angličtině) a <a class="ulink" href="https://cs.wikipedia.org/wiki/Skal%C3%A1rn%C3%AD_sou%C4%8Din"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-ExpandMatrix"></a>ExpandMatrix</span></dt><dd><pre class="synopsis">ExpandMatrix
(M)</pre><p>Rozšířit matici, stejně když zadáte matici bez uvozovky. Takto se rozbalí do bloku libovolná
interní matice. Je to způsob, jak sestrojit matice z jiných menších a normálně je to prováděno na vstupu
automaticky, s výjimkou kdy je matice zadána s uvozovkou.</p></dd><dt><span class="term"><a
name="gel-function-HermitianProduct"></a>HermitianProduct</span></dt><dd><pre
class="synopsis">HermitianProduct (u,v)</pre><p>Alternativní názvy: <code class="function">InnerProduct<
/code></p><p>Získat hermitovský součin dvou vektorů. Vektory musí mít stejnou velikost. Jedná se o
polybilineární formu používající jednotkovou matici.</p><p>Více informací najdete v encyklopediích <a
class="ulink" href="http://mathworld.wolfram.com/HermitianInnerProduct.html" target="_top">Mathworld</a>
(text je v angličtině) a <a class="ulink" href="https://en.wikipedia.org/wiki/Sesquilinear_form"
target="_top">Wikipedia</a> (text je v angličtině).</p></dd><dt><span class="term"><a
name="gel-function-I"></a>I</span></dt><dd><pre class="synopsis">I (n)</pre><p>Alternativní názvy: <code
class="function">eye</code></p><p>Vrátit jednotkovou matici zadané velikosti, tj. <code
class="varname">n</code> krát <code class="varname">n</code>. Pokud je <code class="varname">n</code> rovno
0, vrátí <code class="constant">null</code>.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/IdentityMatrix" target="_top">Pla
netmath</a> (text je v angličtině) a <a class="ulink"
href="https://cs.wikipedia.org/wiki/Jednotkov%C3%A1_matice" target="_top">Wikipedia</a>.</p></dd><dt><span
class="term"><a name="gel-function-IndexComplement"></a>IndexComplement</span></dt><dd><pre
class="synopsis">IndexComplement (vektor,mvelikost)</pre><p>Vrátit doplňkový index vektoru indexů. Vše je s
jednou bází. Například pro vektor <strong class="userinput"><code>[2,3]</code></strong> a velikost <strong
class="userinput"><code>5</code></strong> dostaneme <strong class="userinput"><code>[1,4,5]</code></strong>.
Pokud je <code class="varname">mvelikost</code> rovna 0, vrací vždy <code
class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsDiagonal"></a>IsDiagonal</span></dt><dd><pre class="synopsis">IsDiagonal (M)</pre><p>Je
matice diagonální?</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/DiagonalMatrix" target="_top">Planetm
ath</a> (text je v angličtině) nebo <a class="ulink"
href="http://cs.wikipedia.org/wiki/Diagon%C3%A1ln%C3%AD_matice"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-IsIdentity"></a>IsIdentity</span></dt><dd><pre class="synopsis">IsIdentity
(x)</pre><p>Zkontrolovat, zda je matice jednotková. Pokud matice není čtvercová, tak automaticky vrátí <code
class="varname">false</code>. Funguje i pro čísla, v kterémžto případě je to stejné jako <strong
class="userinput"><code>x==1</code></strong>. Pokud je argument <code class="varname">x</code> roven <code
class="constant">null</code> (což můžeme považovat za matici 0 krát 0), nezpůsobí to chybu a vrátí <code
class="constant">false</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsLowerTriangular"></a>IsLowerTriangular</span></dt><dd><pre
class="synopsis">IsLowerTriangular (M)</pre><p>Jde o dolní trojúhelníkovou matici? To je taková, která má
všechny prvky
nad diagonálou nulové.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixInteger"></a>IsMatrixInteger</span></dt><dd><pre class="synopsis">IsMatrixInteger
(M)</pre><p>Zkontrolovat, zda je matice maticí celých (nekomplexních) čísel.</p></dd><dt><span
class="term"><a name="gel-function-IsMatrixNonnegative"></a>IsMatrixNonnegative</span></dt><dd><pre
class="synopsis">IsMatrixNonnegative (M)</pre><p>Zkontrolovat, zda je matice nezáporná, tj. zda je každý z
prvků nezáporný. Nepleťte si pozitivní matice s pozitivně definitními maticemi.</p><p>Více informací najdete
v encyklopedii <a class="ulink" href="http://en.wikipedia.org/wiki/Positive_matrix"
target="_top">Wikipedia</a> (text je v angličtině).</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixPositive"></a>IsMatrixPositive</span></dt><dd><pre
class="synopsis">IsMatrixPositive (M)</pre><p>Zkontrolovat, zda je matice pozitivní, tj. zda je každý z prvků
kladný (a tudíž reálný)
. Především není žádný prvek 0. Nepleťte si positivní matice s pozitivně definitními maticemi.</p><p>Více
informací najdete v encyklopedii <a class="ulink" href="http://en.wikipedia.org/wiki/Positive_matrix"
target="_top">Wikipedia</a> (text je v angličtině).</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixRational"></a>IsMatrixRational</span></dt><dd><pre
class="synopsis">IsMatrixRational (M)</pre><p>Zkontrolovat, zda je matice maticí z racionálních
(nekomplexních) čísel.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixReal"></a>IsMatrixReal</span></dt><dd><pre class="synopsis">IsMatrixReal
(M)</pre><p>Zkontrolovat, zda je matice složená z reálných (na komplexních) čísel.</p></dd><dt><span
class="term"><a name="gel-function-IsMatrixSquare"></a>IsMatrixSquare</span></dt><dd><pre
class="synopsis">IsMatrixSquare (M)</pre><p>Zkontrolovat, zda je matice čtvercová, tj. šířka je stejná jako
výška.</p></dd><dt><span clas
s="term"><a name="gel-function-IsUpperTriangular"></a>IsUpperTriangular</span></dt><dd><pre
class="synopsis">IsUpperTriangular (M)</pre><p>Jde o horní trojúhelníkovou matici? To je taková, která má
všechny prvky pod diagonálou nulové.</p></dd><dt><span class="term"><a
name="gel-function-IsValueOnly"></a>IsValueOnly</span></dt><dd><pre class="synopsis">IsValueOnly
(M)</pre><p>Zkontrolovat, zda se matice skládá pouze z čísel. Mnoho interních funkcí provádí tuto kontrolu.
Hodnoty mohou být libovolná čísla včetně komplexních.</p></dd><dt><span class="term"><a
name="gel-function-IsVector"></a>IsVector</span></dt><dd><pre class="synopsis">IsVector (v)</pre><p>Je
argument vodorovný nebo svislý vektor? Genius nerozlišuje mezi maticí a vektorem, vektor je prostě jen matice
1 krát <code class="varname">n</code> nebo <code class="varname">n</code> krát 1.</p></dd><dt><span
class="term"><a name="gel-function-IsZero"></a>IsZero</span></dt><dd><pre class="sy
nopsis">IsZero (x)</pre><p>Zkontrolovat, zda se matice skládá jen z nul. Funguje to i pro čísla, kdy je to
ekvivalentní výrazu <strong class="userinput"><code>x==0</code></strong>. Když je <code
class="varname">x</code> rovno <code class="constant">null</code> (můžeme to považovat za matici 0 krát 0),
nezpůsobí to žádnou chybu, ale vrátí se <code class="constant">true</code>, protože podmínka je
prázdná.</p></dd><dt><span class="term"><a
name="gel-function-LowerTriangular"></a>LowerTriangular</span></dt><dd><pre class="synopsis">LowerTriangular
(M)</pre><p>Vrátit kopii matice <code class="varname">M</code> se všemi prvky nad diagonálou nastavenými na
nulu.</p></dd><dt><span class="term"><a name="gel-function-MakeDiagonal"></a>MakeDiagonal</span></dt><dd><pre
class="synopsis">MakeDiagonal (v,argument...)</pre><p>Alternativní názvy: <code
class="function">diag</code></p><p>Vytvořit diagonální matici z vektoru. Případně můžete hodnoty, které
se mají umístit na diagonálu, zadat jako jednotlivé parametry. Takže <strong
class="userinput"><code>MakeDiagonal([1,2,3])</code></strong> je to stejné jako <strong
class="userinput"><code>MakeDiagonal(1,2,3)</code></strong>.</p><p>Více informací najdete v encyklopediích <a
class="ulink" href="http://planetmath.org/DiagonalMatrix" target="_top">Planetmath</a> (text je v angličtině)
nebo <a class="ulink" href="http://cs.wikipedia.org/wiki/Diagon%C3%A1ln%C3%AD_matice"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-MakeVector"></a>MakeVector</span></dt><dd><pre class="synopsis">MakeVector
(A)</pre><p>Vytvořit sloupcový vektor z matice poskládáním sloupců na sebe. Pokud je předáno <code
class="constant">null</code>, vrátí <code class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-MatrixProduct"></a>MatrixProduct</span></dt><dd><pre class="synopsis">MatrixProduct
(A)</pre><p>Spočítat součin v
šech prvků matice nebo vektoru. To znamená, že se vynásobí všechny prvky a vrátí se číslo, které je násobkem
všech těchto prvků.</p></dd><dt><span class="term"><a
name="gel-function-MatrixSum"></a>MatrixSum</span></dt><dd><pre class="synopsis">MatrixSum
(A)</pre><p>Spočítat součet všech prvků matice nebo vektoru. To znamená, že se sečtou všechny prvky a vrátí
se číslo, které je součtem všech těchto prvků.</p></dd><dt><span class="term"><a
name="gel-function-MatrixSumSquares"></a>MatrixSumSquares</span></dt><dd><pre
class="synopsis">MatrixSumSquares (A)</pre><p>Spočítat součet druhých mocnin všech prvků matice nebo
vektoru.</p></dd><dt><span class="term"><a
name="gel-function-NonzeroColumns"></a>NonzeroColumns</span></dt><dd><pre class="synopsis">NonzeroColumns
(M)</pre><p>Vrátit řádkový vektor s indexy nenulových sloupců v matici <code
class="varname">M</code>.</p><p>Verze 1.0.18 a novější.</p></dd><dt><span class="term"><a na
me="gel-function-NonzeroElements"></a>NonzeroElements</span></dt><dd><pre class="synopsis">NonzeroElements
(v)</pre><p>Vrátit řádkový vektor s indexy nenulových prvků ve vektoru <code
class="varname">v</code>.</p><p>Verze 1.0.18 a novější.</p></dd><dt><span class="term"><a
name="gel-function-OuterProduct"></a>OuterProduct</span></dt><dd><pre class="synopsis">OuterProduct
(u,v)</pre><p>Získat vnější součin dvou vektorů. Takže, když dejme tomu jsou <code class="varname">u</code> a
<code class="varname">v</code> svislé vektory, pak vnější součin je <strong class="userinput"><code>v *
u.'</code></strong>.</p></dd><dt><span class="term"><a
name="gel-function-ReverseVector"></a>ReverseVector</span></dt><dd><pre class="synopsis">ReverseVector
(v)</pre><p>Převrátit pořadí prvků ve vektoru. Pokud je předáno <code class="constant">null</code>, tak vrací
<code class="constant">null</code>.</p></dd><dt><span class="term"><a name="gel-function-RowSum"></a>Ro
wSum</span></dt><dd><pre class="synopsis">RowSum (m)</pre><p>Vypočítat součet každého řádku v matici a
vrátit svislý vektor s výsledkem.</p></dd><dt><span class="term"><a
name="gel-function-RowSumSquares"></a>RowSumSquares</span></dt><dd><pre class="synopsis">RowSumSquares
(m)</pre><p>Vypočítat součet druhých mocnin každého řádku v matici a vrátit svislý vektor s
výsledkem.</p></dd><dt><span class="term"><a name="gel-function-RowsOf"></a>RowsOf</span></dt><dd><pre
class="synopsis">RowsOf (M)</pre><p>Získat řádky matice jako svislý vektor. Každý z prvků vektoru je
vodorovný vektor, který odpovídá řádku matice <code class="varname">M</code>. Tato funkce je užitečná, když
chcete ve smyčce procházet řádky matice. Například takto: <strong class="userinput"><code>for r in RowsOf(M)
do
+neco(r)</code></strong>.</p></dd><dt><span class="term"><a
name="gel-function-SetMatrixSize"></a>SetMatrixSize</span></dt><dd><pre class="synopsis">SetMatrixSize
(M,radku,sloupcu)</pre><p>Vytvořit novou matici zadané velikosti z jiné staré. To znamená, že nová matice
bude vrácena jako kopie té staré. Prvky, které přebývají, jsou odříznuty a volné místo je vyplněno nulami.
Pokud je argument <code class="varname">radku</code> nebo <code class="varname">sloupcu</code> roven nule, je
vráceno <code class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-ShuffleVector"></a>ShuffleVector</span></dt><dd><pre class="synopsis">ShuffleVector
(v)</pre><p>Zamíchat pořadí prvků ve vektoru. Pokud je předáno <code class="constant">null</code>, tak vrací
<code class="constant">null</code>.</p><p>Verze 1.0.13 a novější.</p></dd><dt><span class="term"><a
name="gel-function-SortVector"></a>SortVector</span></dt><dd><pre class="synopsis">S
ortVector (v)</pre><p>Seřadit prvky vektoru ve vzestupném pořadí.</p></dd><dt><span class="term"><a
name="gel-function-StripZeroColumns"></a>StripZeroColumns</span></dt><dd><pre
class="synopsis">StripZeroColumns (M)</pre><p>Odstranit všechny čistě nulové sloupce matice <code
class="varname">M</code>.</p></dd><dt><span class="term"><a
name="gel-function-StripZeroRows"></a>StripZeroRows</span></dt><dd><pre class="synopsis">StripZeroRows
(M)</pre><p>Odstranit všechny čistě nulové řádky matice <code class="varname">M</code>.</p></dd><dt><span
class="term"><a name="gel-function-Submatrix"></a>Submatrix</span></dt><dd><pre class="synopsis">Submatrix
(m,r,s)</pre><p>Vrátit sloupec (či sloupce) a řádek (či řádky) z matice. Je to stejné jako <strong
class="userinput"><code>m@(r,s)</code></strong>. Argumenty <code class="varname">r</code> a <code
class="varname">s</code> by měly být vektory se seznamy řádků a sloupců (nebo samostatná čísla, pokud požadu
jete jen jeden řádek nebo sloupec).</p></dd><dt><span class="term"><a
name="gel-function-SwapRows"></a>SwapRows</span></dt><dd><pre class="synopsis">SwapRows
(m,radek1,radek2)</pre><p>Prohodit dva řádky v matici.</p></dd><dt><span class="term"><a
name="gel-function-UpperTriangular"></a>UpperTriangular</span></dt><dd><pre class="synopsis">UpperTriangular
(M)</pre><p>Vrátit kopii matice <code class="varname">M</code> se všemi prvky pod diagonálou nastavenými na
nulu.</p></dd><dt><span class="term"><a name="gel-function-columns"></a>columns</span></dt><dd><pre
class="synopsis">columns (M)</pre><p>Vrátit počet sloupců matice.</p></dd><dt><span class="term"><a
name="gel-function-elements"></a>elements</span></dt><dd><pre class="synopsis">elements (M)</pre><p>Vrátit
celkový počet prvků matice. Tj. počet sloupců krát počet řádků.</p></dd><dt><span class="term"><a
name="gel-function-ones"></a>ones</span></dt><dd><pre class="synopsis">ones (radku,sloupcu...)</pr
e><p>Vytvořit matici ze samých jedniček (nebo řádkový vektor, pokud je zadán jen jeden argument). Když je
<code class="varname">radku</code> nebo <code class="varname">sloupcu</code> rovno nule, vrátí <code
class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-rows"></a>rows</span></dt><dd><pre class="synopsis">rows (M)</pre><p>Vrátit počet řádků
matice.</p></dd><dt><span class="term"><a name="gel-function-zeros"></a>zeros</span></dt><dd><pre
class="synopsis">zeros (radku,sloupcu...)</pre><p>Vytvořit matici celou z nul (nebo řádkový vektor, pokud je
zadán jen jeden argument). Pokud je argument <code class="varname">radku</code> nebo <code
class="varname">sloupcu</code> roven nule, je vráceno <code
class="constant">null</code>.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s07.html">Předcházející</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Nahoru</a></td><td width="40%" align="right">
<a accesskey="n" href="ch11s09.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Teorie
čísel </td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Lineární algebra</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch11s09.html b/help/cs/html/ch11s09.html
new file mode 100644
index 0000000..8ef6093
--- /dev/null
+++ b/help/cs/html/ch11s09.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Lineární
algebra</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch11.html" title="Kapitola 11.
Seznam funkcí GEL"><link rel="prev" href="ch11s08.html" title="Práce s maticemi"><link rel="next"
href="ch11s10.html" title="Kombinatorika"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Lineární algebra</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s08.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 11. Seznam
funkcí GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s10.html">Další</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><d
iv><h2 class="title" style="clear: both"><a name="genius-gel-function-list-linear-algebra"></a>Lineární
algebra</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AuxiliaryUnitMatrix"></a>AuxiliaryUnitMatrix</span></dt><dd><pre
class="synopsis">AuxiliaryUnitMatrix (n)</pre><p>Získat pomocnou jednotkovou matici velikosti <code
class="varname">n</code>. Jde o čtvercovou matici ze samých nul vyjma diagonály, na které jsou jedničky. Je
to Jordanův blok s jedním vlastním číslem nula.</p><p>Více informací o Jordanově kanonické formě najdete v
encyklopediích <a class="ulink" href="http://planetmath.org/JordanCanonicalFormTheorem"
target="_top">Planetmath</a> (text je v angličtině), <a class="ulink"
href="http://mathworld.wolfram.com/JordanBlock.html" target="_top">Mathworld</a> (text je v angličtině) nebo
<a class="ulink" href="http://cs.wikipedia.org/wiki/Jordanova_norm%C3%A1ln%C3%AD_forma" t
arget="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-BilinearForm"></a>BilinearForm</span></dt><dd><pre class="synopsis">BilinearForm
(v,A,w)</pre><p>Spočítat (v,w) vzhledem k bilineární formě dané maticí A.</p></dd><dt><span class="term"><a
name="gel-function-BilinearFormFunction"></a>BilinearFormFunction</span></dt><dd><pre
class="synopsis">BilinearFormFunction (A)</pre><p>Vrátit funkci takovou, že vyhodnocuje dva vektory vzhledem
k bilineární formě dané maticí A.</p></dd><dt><span class="term"><a
name="gel-function-CharacteristicPolynomial"></a>CharacteristicPolynomial</span></dt><dd><pre
class="synopsis">CharacteristicPolynomial (M)</pre><p>Alternativní názvy: <code
class="function">CharPoly</code></p><p>Získat charakteristický polynom v podobě vektoru. Konkrétně vrací
koeficienty polynomu počínaje konstantním členem. Jedná se o polynom definovaný pomocí <strong
class="userinput"><code>det(M-xI)</code></strong>. Ko
řeny tohoto polynomu jsou vlastní čísla matice <code class="varname">M</code>. Viz <a class="link"
href="ch11s09.html#gel-function-CharacteristicPolynomialFunction">CharacteristicPolynomialFunction</a>.</p><p>Více
informací najdete v encyklopediích <a class="ulink"
href="https://en.wikipedia.org/wiki/Characteristic_polynomial" target="_top">Wikipedia</a> (text je v
anličtině) a <a class="ulink" href="http://planetmath.org/CharacteristicEquation"
target="_top">Planetmath</a> (text je v angličtině).</p></dd><dt><span class="term"><a
name="gel-function-CharacteristicPolynomialFunction"></a>CharacteristicPolynomialFunction</span></dt><dd><pre
class="synopsis">CharacteristicPolynomialFunction (M)</pre><p>Získat charakteristický polynom v podobě
funkce. Jedná se o polynom definovaný pomocí <strong class="userinput"><code>det(M-xI)</code></strong>.
Kořeny tohoto polynomu jsou vlastní čísla matice <code class="varname">M</code>. Viz <a class="link"
href="ch11s09
.html#gel-function-CharacteristicPolynomial">CharacteristicPolynomial</a>.</p><p>Více informací najdete v
encyklopediích <a class="ulink" href="https://en.wikipedia.org/wiki/Characteristic_polynomial"
target="_top">Wikipedia</a> (text je v anličtině) a <a class="ulink"
href="http://planetmath.org/CharacteristicEquation" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-ColumnSpace"></a>ColumnSpace</span></dt><dd><pre class="synopsis">ColumnSpace
(M)</pre><p>Získat bázi matice pro prostor sloupců matice. Prakticky se vrátí matice, jejíž sloupce jsou
bázemi pro prostor sloupců matice <code class="varname">M</code>. To je prostor rozložený podle sloupců
matice <code class="varname">M</code>.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="https://en.wikipedia.org/wiki/Row_and_column_spaces" target="_top">Wikipedia</a> (text je v
angličtině).</p></dd><dt><span class="term"><a name="
gel-function-CommutationMatrix"></a>CommutationMatrix</span></dt><dd><pre class="synopsis">CommutationMatrix
(m, n)</pre><p>Vrátit komutační matici <strong class="userinput"><code>K(m,n)</code></strong>, což je
jedinečná matice velikosti <strong class="userinput"><code>m*n</code></strong> krát <strong
class="userinput"><code>m*n</code></strong>, která splňuje <strong class="userinput"><code>K(m,n) *
MakeVector(A) = MakeVector(A.')</code></strong> pro všechny matice <code class="varname">A</code> velikosti
<code class="varname">m</code> krát <code class="varname">n</code>.</p></dd><dt><span class="term"><a
name="gel-function-CompanionMatrix"></a>CompanionMatrix</span></dt><dd><pre class="synopsis">CompanionMatrix
(p)</pre><p>Doplňková matice polynomu (jako vektor).</p></dd><dt><span class="term"><a
name="gel-function-ConjugateTranspose"></a>ConjugateTranspose</span></dt><dd><pre
class="synopsis">ConjugateTranspose (M)</pre><p>Konjugovaná transpozice matice (adju
ngovaná). Je to stejné jako operátor <strong class="userinput"><code>'</code></strong>.</p><p>Více informací
najdete v encyklopediích <a class="ulink" href="https://en.wikipedia.org/wiki/Conjugate_transpose"
target="_top">Wikipedia</a> (text je v angličtině) a <a class="ulink"
href="http://planetmath.org/ConjugateTranspose" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-Convolution"></a>Convolution</span></dt><dd><pre class="synopsis">Convolution
(a,b)</pre><p>Alternativní názvy: <code class="function">convol</code></p><p>Spočítat konvoluci dvou
vodorovných vektorů.</p></dd><dt><span class="term"><a
name="gel-function-ConvolutionVector"></a>ConvolutionVector</span></dt><dd><pre
class="synopsis">ConvolutionVector (a,b)</pre><p>Spočítat konvoluci dvou vodorovných vektorů. Výsledek vrátí
jako vektor a ne sečtené dohromady.</p></dd><dt><span class="term"><a name="gel-function-CrossProduct"></a>Cr
ossProduct</span></dt><dd><pre class="synopsis">CrossProduct (v,w)</pre><p>Vektorový součin dvou vektorů v
R<sup>3</sup> jako sloupcový vektor.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="https://cs.wikipedia.org/wiki/Vektorov%C3%BD_sou%C4%8Din"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-DeterminantalDivisorsInteger"></a>DeterminantalDivisorsInteger</span></dt><dd><pre
class="synopsis">DeterminantalDivisorsInteger (M)</pre><p>Získat determinantové dělitele celočíselné
matice.</p></dd><dt><span class="term"><a name="gel-function-DirectSum"></a>DirectSum</span></dt><dd><pre
class="synopsis">DirectSum (M,N...)</pre><p>Přímý součet matic.</p><p>Více informací najdete v encyklopedii
<a class="ulink"
href="https://cs.wikipedia.org/wiki/S%C4%8D%C3%ADt%C3%A1n%C3%AD_matic#Direktn.C3.AD_sou.C4.8Det"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a name="gel-function-DirectSumMatrixVector"></a
DirectSumMatrixVector</span></dt><dd><pre class="synopsis">DirectSumMatrixVector (v)</pre><p>Přímý součet
vektoru matic.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="https://cs.wikipedia.org/wiki/S%C4%8D%C3%ADt%C3%A1n%C3%AD_matic#Direktn.C3.AD_sou.C4.8Det"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-Eigenvalues"></a>Eigenvalues</span></dt><dd><pre class="synopsis">Eigenvalues
(M)</pre><p>Alternativní názvy: <code class="function">eig</code></p><p>Získat vlastní čísla čtvercové
matice. V současnosti pracuje pouze pro matice do velikosti 4 krát 4 nebo pro trojúhelníkové matice (pro
které jsou vlastní čísla na diagonále).</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/Eigenvalue" target="_top">Planetmath</a> (text je v angličtině), <a
class="ulink" href="http://mathworld.wolfram.com/Eigenvalue.html" target="_top">Mathworld</a> (text je v
angličt
ině) a <a class="ulink" href="http://cs.wikipedia.org/wiki/Vlastn%C3%AD_%C4%8D%C3%ADslo"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-Eigenvectors"></a>Eigenvectors</span></dt><dd><pre class="synopsis">Eigenvectors
(M)</pre><pre class="synopsis">Eigenvectors (M,&vlastni_cisla)</pre><pre class="synopsis">Eigenvectors
(M, &vlastni_cisla, &nasobnosti)</pre><p>Získat vlastní vektory čtvercové matice. Volitelně získat
také vlastní čísla a jejich algebraické násobnosti. V současnosti pracuje pouze s maticemi do velikosti 2
krát 2.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/Eigenvector" target="_top">Planetmath</a> (text je v angličtině), <a
class="ulink" href="http://mathworld.wolfram.com/Eigenvector.html" target="_top">Mathworld</a> (text je v
angličtině) a <a class="ulink" href="http://cs.wikipedia.org/wiki/Vlastn%C3%AD_%C4%8D%C3%ADslo"
target="_top">Wikipedia</
a>.</p></dd><dt><span class="term"><a name="gel-function-GramSchmidt"></a>GramSchmidt</span></dt><dd><pre
class="synopsis">GramSchmidt (v,B...)</pre><p>Použít Gramův-Schmidtův proces (na sloupce) vzhledem k
unitárnímu prostoru danému <code class="varname">B</code>. Pokud <code class="varname">B</code> není zadáno,
je použit standardní hermitovský součin. <code class="varname">B</code> může být buď polybilineární funkce
dvou argumentů nebo to může být matice v polybilineární formě. Vektory budou vytvořeny ortogonální vzhledem k
<code class="varname">B</code>.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/GramSchmidtOrthogonalization" target="_top">Planetmath</a> (text je v angličtině)
a <a class="ulink" href="https://cs.wikipedia.org/wiki/Gramova-Schmidtova_ortogonalizace"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-HankelMatrix"></a>HankelMatrix</span></dt><dd
<pre class="synopsis">HankelMatrix (c,r)</pre><p>Henkelova matice, což je matice se stejnými vedlejšími
diagonálami. <code class="varname">c</code> je první řádek a <code class="varname">r</code> je poslední
sloupec. Předpokládá se, že oba argumenty budou vektory a poslední prvek <code class="varname">c</code>
bude stejný jako první prvek <code class="varname">r</code>.</p><p>Více informací najdete v encyklopedii <a
class="ulink" href="https://en.wikipedia.org/wiki/Hankel_matrix" target="_top">Wikipedia</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-HilbertMatrix"></a>HilbertMatrix</span></dt><dd><pre class="synopsis">HilbertMatrix
(n)</pre><p>Hilbertova matice řádu <code class="varname">n</code>.</p><p>Více informací najdete v
encyklopediích <a class="ulink" href="https://en.wikipedia.org/wiki/Hilbert_matrix"
target="_top">Wikipedia</a> (text je v angličtině) a <a class="ulink" href="http://planetmath.org/Hilbert
Matrix" target="_top">Planetmath</a> (text je v angličtině).</p></dd><dt><span class="term"><a
name="gel-function-Image"></a>Image</span></dt><dd><pre class="synopsis">Image (T)</pre><p>Získat obraz
(sloupcový prostor) lineární transformace.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="https://en.wikipedia.org/wiki/Row_and_column_spaces" target="_top">Wikipedia</a> (text je v
angličtině).</p></dd><dt><span class="term"><a name="gel-function-InfNorm"></a>InfNorm</span></dt><dd><pre
class="synopsis">InfNorm (v)</pre><p>Získat k vektoru normu typu nekonečno, někdy také nazývanou maximální
norma.</p></dd><dt><span class="term"><a
name="gel-function-InvariantFactorsInteger"></a>InvariantFactorsInteger</span></dt><dd><pre
class="synopsis">InvariantFactorsInteger (M)</pre><p>Získat invariantní činitele čtvercové celočíselné
matice.</p></dd><dt><span class="term"><a
name="gel-function-InverseHilbertMatrix"></a>InverseHilbertMatrix</span
</dt><dd><pre class="synopsis">InverseHilbertMatrix (n)</pre><p>Inverzní Hilbertova matice řádu <code
class="varname">n</code>.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="https://en.wikipedia.org/wiki/Hilbert_matrix" target="_top">Wikipedia</a> (text je v angličtině) a <a
class="ulink" href="http://planetmath.org/HilbertMatrix" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-IsHermitian"></a>IsHermitian</span></dt><dd><pre class="synopsis">IsHermitian
(M)</pre><p>Je matice hermitovská? Tj. zda je rovna své konjugované transpozici.</p><p>Více informací
najdete v encyklopediích <a class="ulink" href="http://planetmath.org/HermitianMatrix"
target="_top">Planetmath</a> (text je v angličtině) a <a class="ulink"
href="https://en.wikipedia.org/wiki/Hermitian_matrix" target="_top">Wikipedia</a> (text je v
angličtině).</p></dd><dt><span class="term"><a name="gel-function-IsInSubsp
ace"></a>IsInSubspace</span></dt><dd><pre class="synopsis">IsInSubspace (v,W)</pre><p>Zjistit, zda je vektor
v podprostoru.</p></dd><dt><span class="term"><a
name="gel-function-IsInvertible"></a>IsInvertible</span></dt><dd><pre class="synopsis">IsInvertible
(n)</pre><p>Je matice (nebo číslo) invertovatelná (matice celých čísel je invertovatelná, když je
invertovatelná nad celými čísly)?</p></dd><dt><span class="term"><a
name="gel-function-IsInvertibleField"></a>IsInvertibleField</span></dt><dd><pre
class="synopsis">IsInvertibleField (n)</pre><p>Je matice (nebo číslo) invertovatelná nad
tělesem.</p></dd><dt><span class="term"><a name="gel-function-IsNormal"></a>IsNormal</span></dt><dd><pre
class="synopsis">IsNormal (M)</pre><p>Je <code class="varname">M</code> normální matice. To jest, zda <strong
class="userinput"><code>M*M' == M'*M</code></strong>.</p><p>Více informací najdete v encyklopediích <a
class="ulink" href="http://planetmath.org/NormalMatrix" t
arget="_top">Planetmath</a> (text je v angličtině) nebo <a class="ulink"
href="http://mathworld.wolfram.com/NormalMatrix.html" target="_top">Mathworld</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-IsPositiveDefinite"></a>IsPositiveDefinite</span></dt><dd><pre
class="synopsis">IsPositiveDefinite (M)</pre><p>Je matice <code class="varname">M</code> hermitovská
pozitivně definitní matice? To znamená, zda je <strong
class="userinput"><code>HermitianProduct(M*v,v)</code></strong> vždy striktně pozitivní pro libovolný vektor
<code class="varname">v</code>. <code class="varname">M</code> musí být čtvercová a hermitovská, aby byla
pozitivně definitní. Kontrola, zda tomu tak je, spočívá v tom, zda každá hlavní podmatice má nezáporný
determinant. (Viz <a class="link"
href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a>)</p><p>Poznamenejme, že někteří autoři
(např. Mathworld) nevyžadují, aby matice
<code class="varname">M</code> byla hermitovská a tak podmínka není skutečnu částí unitárního prostoru, ale
neberte to za dogma. Pokud chcete takovou kontrolu provést, jednoduše zkontrolujte hermitovskou část matice
<code class="varname">M</code> takto: <strong
class="userinput"><code>IsPositiveDefinite(M+M')</code></strong>.</p><p>Více informací najdete v
encyklopediích <a class="ulink" href="http://planetmath.org/PositiveDefinite" target="_top">Planetmath</a>
(text je v angličtině), <a class="ulink" href="http://mathworld.wolfram.com/PositiveDefiniteMatrix.html"
target="_top">Mathworld</a> (text je v angličtině) a <a class="ulink"
href="https://cs.wikipedia.org/wiki/Pozitivn%C4%9B_definitn%C3%AD_matice"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-IsPositiveSemidefinite"></a>IsPositiveSemidefinite</span></dt><dd><pre
class="synopsis">IsPositiveSemidefinite (M)</pre><p>Je matice <code class="varname">M</code> hermito
vská pozitivně semidefinitní matice? To znamená, zda je <strong
class="userinput"><code>HermitianProduct(M*v,v)</code></strong> vždy nezáporná pro libovolný vektor <code
class="varname">v</code>. <code class="varname">M</code> musí být čtvercová a hermitovská, aby byla pozitivně
semidefinitní. Kontrola, zda tomu tak je, spočívá v tom, zda každá hlavní podmatice má nezáporný determinant.
(Viz <a class="link"
href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a>)</p><p>Poznamenejme, že někteří autoři
(např. Mathworld) nevyžadují, aby matice <code class="varname">M</code> byla hermitovská a tak podmínka není
skutečnu částí unitárního prostoru, ale neberte to za dogma. Pokud chcete takovou kontrolu provést, jednoduše
zkontrolujte hermitovskou část matice <code class="varname">M</code> takto: <strong
class="userinput"><code>IsPositiveSemidefinite(M+M')</code></strong>.</p><p>Více informací najdete v
encyklopediích <
a class="ulink" href="http://planetmath.org/PositiveSemidefinite" target="_top">Planetmath</a> (text je v
angličtině) nebo <a class="ulink" href="http://mathworld.wolfram.com/PositiveSemidefiniteMatrix.html"
target="_top">Mathworld</a> (text je v angličtině).</p></dd><dt><span class="term"><a
name="gel-function-IsSkewHermitian"></a>IsSkewHermitian</span></dt><dd><pre class="synopsis">IsSkewHermitian
(M)</pre><p>Je matice antihermitovská? To znamená, zda je konjugovaná transpozice rovna negativní
matici.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://planetmath.org/SkewHermitianMatrix" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-IsUnitary"></a>IsUnitary</span></dt><dd><pre class="synopsis">IsUnitary (M)</pre><p>Je
matice unitární? To je, zda <strong class="userinput"><code>M'*M</code></strong> a <strong
class="userinput"><code>M*M'</code></strong> dají stejnou jednotkovou m
atici.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/UnitaryTransformation" target="_top">Planetmath</a> (text je v angličtině), <a
class="ulink" href="http://mathworld.wolfram.com/UnitaryMatrix.html" target="_top">Mathworld</a> (text je v
angličtině) nebo <a class="ulink" href="http://cs.wikipedia.org/wiki/Unit%C3%A1rn%C3%AD_matice"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-JordanBlock"></a>JordanBlock</span></dt><dd><pre class="synopsis">JordanBlock
(n,lambda)</pre><p>Alternativní názvy: <code class="function">J</code></p><p>Získat Jordanův blok
odpovídající vlastnímu číslu <code class="varname">lambda</code> s násobností <code
class="varname">n</code>.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/JordanCanonicalFormTheorem" target="_top">Planetmath</a> (text je v angličtině),
<a class="ulink" href="http://mathworld.wolf
ram.com/JordanBlock.html" target="_top">Mathworld</a> (text je v angličtině) a <a class="ulink"
href="http://cs.wikipedia.org/wiki/Jordanova_norm%C3%A1ln%C3%AD_forma"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-Kernel"></a>Kernel</span></dt><dd><pre class="synopsis">Kernel (T)</pre><p>Získat jádro
(nulový prostor) lineární transformace.</p><p>(Viz <a class="link"
href="ch11s09.html#gel-function-NullSpace">NullSpace</a>)</p></dd><dt><span class="term"><a
name="gel-function-KroneckerProduct"></a>KroneckerProduct</span></dt><dd><pre
class="synopsis">KroneckerProduct (M, N)</pre><p>Alternativní názvy: <code
class="function">TensorProduct</code></p><p>Spočítat Kroneckerův součin (tenzorový součin ve standardní bázi)
dvou matic.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://en.wikipedia.org/wiki/Kronecker_product" target="_top">Wikipedia</a> (text je v angličtině), <a
class="ulink" href="http
://planetmath.org/KroneckerProduct" target="_top">Planetmath</a> (text je v angličtině) a <a class="ulink"
href="http://mathworld.wolfram.com/KroneckerProduct.html" target="_top">Mathworld</a> (text je v
angličtině).</p><p>Verze 1.0.18 a novější.</p></dd><dt><span class="term"><a
name="gel-function-LUDecomposition"></a>LUDecomposition</span></dt><dd><pre class="synopsis">LUDecomposition
(A, L, U)</pre><p>Získat LU rozklad matice <code class="varname">A</code> tak, že se najde dolní a horní
trojúhelníková matice, jejichž součinem je <code class="varname">A</code>. Výsledek se uloží v <code
class="varname">L</code> a <code class="varname">U</code>, což by měly být odkazy na proměnné. V případě
úspěchu vrací <code class="constant">true</code>. Například předpokládejme, že A je čtvercová matice, pak po
spuštění: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LUDecomposition(A,&L,&U)</
code></strong>
+</pre><p> budete mít dolní matici uloženou v proměnné s názvem <code class="varname">L</code> a horní matici
v proměnné s názvem <code class="varname">U</code>.</p><p>Jedná se o LU rozklad matice známý také jako
Croutův a/nebo Choleského rozklad. (ISBN 0-201-11577-8 pp.99-103) Horní trojúhelníková matice zahrnuje
diagonálu hodnot 1. Nejedná se o Doolittlovu metodu, která zahrnuje diagonálu jedniček do dolní
matice.</p><p>Ne všechny matice mají LU rozklad, například <strong
class="userinput"><code>[0,1;1,0]</code></strong> jej nemá a tato funkce v takovém případě vrátí <code
class="constant">false</code> a nastaví <code class="varname">L</code> a <code class="varname">U</code> na
<code class="constant">null</code>.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/LUDecomposition" target="_top">Planetmath</a> (text je v angličtině), <a
class="ulink" href="http://mathworld.wolfram.com/LUDecompo
sition.html" target="_top">Mathworld</a> (text je v angličtině) a <a class="ulink"
href="https://cs.wikipedia.org/wiki/LU_rozklad" target="_top">Wikipedia</a>.</p></dd><dt><span
class="term"><a name="gel-function-Minor"></a>Minor</span></dt><dd><pre class="synopsis">Minor
(M,i,j)</pre><p>Získat subdeterminant (též minor) <code class="varname">i</code>-<code
class="varname">j</code> matice.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://planetmath.org/Minor" target="_top">Planetmath</a>.</p></dd><dt><span class="term"><a
name="gel-function-NonPivotColumns"></a>NonPivotColumns</span></dt><dd><pre class="synopsis">NonPivotColumns
(M)</pre><p>Vrátit sloupce matice, které nemají pivot.</p></dd><dt><span class="term"><a
name="gel-function-Norm"></a>Norm</span></dt><dd><pre class="synopsis">Norm (v,p...)</pre><p>Alternativní
názvy: <code class="function">norm</code></p><p>Získat normu typu p (nebo typu 2, pokud není zadáno p)
vektoru.</p></
dd><dt><span class="term"><a name="gel-function-NullSpace"></a>NullSpace</span></dt><dd><pre
class="synopsis">NullSpace (T)</pre><p>Získat nulový prostor matice. Tj. jádro lineární transformace, která
matici představuje. Výsledek se vrací v podobě matice, jejíž sloupcový prostor je nulovým prostorem z <code
class="varname">T</code>.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://planetmath.org/Nullspace" target="_top">Planetmath</a> (text je v angličtině).</p></dd><dt><span
class="term"><a name="gel-function-Nullity"></a>Nullity</span></dt><dd><pre class="synopsis">Nullity
(M)</pre><p>Alternativní názvy: <code class="function">nullity</code></p><p>Získat nulovost matice. Tzn.
vrátit rozměry nulového prostoru; rozměry jádra matice <code class="varname">M</code>.</p><p>Více informací
najdete v encyklopedii <a class="ulink" href="http://planetmath.org/Nullity" target="_top">Planetmath</a>
(text je v angličtině).</p></dd><
dt><span class="term"><a
name="gel-function-OrthogonalComplement"></a>OrthogonalComplement</span></dt><dd><pre
class="synopsis">OrthogonalComplement (M)</pre><p>Získat ortogonální doplněk sloupcového
prostoru.</p></dd><dt><span class="term"><a
name="gel-function-PivotColumns"></a>PivotColumns</span></dt><dd><pre class="synopsis">PivotColumns
(M)</pre><p>Vrátit sloupce matice s pivoty, tzn. sloupce, které mají 1 v řádkově redukované podobě. Rovněž
vrací řádek, ve kterém se vyskytly.</p></dd><dt><span class="term"><a
name="gel-function-Projection"></a>Projection</span></dt><dd><pre class="synopsis">Projection
(v,W,B...)</pre><p>Projekce vektoru <code class="varname">v</code> do podprostoru <code
class="varname">W</code> vzhledem k unitárnímu prostoru danému <code class="varname">B</code>. Pokud <code
class="varname">B</code> není zadáno, je použit standardní hermitovský součin. <code class="varname">B</code>
může být buď polybilineární funkce
dvou argumentů nebo to může být matice v polybilineární formě.</p></dd><dt><span class="term"><a
name="gel-function-QRDecomposition"></a>QRDecomposition</span></dt><dd><pre class="synopsis">QRDecomposition
(A, Q)</pre><p>Získat QR rozklad čtvercové matice <code class="varname">A</code>, vrací horní trojúhelníkovou
matici <code class="varname">R</code> a nastavuje <code class="varname">Q</code> na ortogonální (unitární)
matici. <code class="varname">Q</code> by měl být odkaz na proměnnou nebo <code class="constant">null</code>,
pokud nic vrátit nechcete. Například pro </p><pre class="screen"><code class="prompt">genius></code>
<strong class="userinput"><code>R = QRDecomposition(A,&Q)</code></strong>
+</pre><p> budete mít horní trojúhelníkovou matici uloženou v proměnné s názvem <code
class="varname">R</code> a ortogonální (unitární) matici v <code class="varname">Q</code>.</p><p>Více
informací najdete v encyklopediích <a class="ulink" href="http://planetmath.org/QRDecomposition"
target="_top">Planetmath</a> (text je v angličtině), <a class="ulink"
href="http://mathworld.wolfram.com/QRDecomposition.html" target="_top">Mathworld</a> (text je v angličtině) a
<a class="ulink" href="https://cs.wikipedia.org/wiki/QR_rozklad"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-RayleighQuotient"></a>RayleighQuotient</span></dt><dd><pre
class="synopsis">RayleighQuotient (A,x)</pre><p>Vrátit Rayleighův podíl (nazývaný také Rayleighův-Ritzův
koeficient nebo podíl) matice a vektoru.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://planetmath.org/RayleighQuotient" target="_top">Planetmath</a> (text j
e v angličtině).</p></dd><dt><span class="term"><a
name="gel-function-RayleighQuotientIteration"></a>RayleighQuotientIteration</span></dt><dd><pre
class="synopsis">RayleighQuotientIteration (A,x,epsilon,maxiter,vecref)</pre><p>Najít vlastní čísla matice
<code class="varname">A</code> pomocí iterační metody Rayleighova podílu. <code class="varname">x</code> je
odhadovaný vlastní vektor a mohl by být náhodný. Měl by mít nenulovou imaginární část, pokud existuje nějaká
možnost, že budou nalezena komplexní vlastní čísla. Kód bude nanejvýše v <code class="varname">maxiter</code>
iteracích a vracet <code class="constant">null</code>, pokud není možné získat výsledek v rámci chyby <code
class="varname">epsilon</code>. <code class="varname">vecref</code> by měl být buď <code
class="constant">null</code> nebo odkaz na proměnnou, do které by se měl uložit vlastní vektor.</p><p>Více
informací o Rayleighově podíle najdete v encyklopedii
<a class="ulink" href="http://planetmath.org/RayleighQuotient" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a name="gel-function-Rank"></a>Rank</span></dt><dd><pre
class="synopsis">Rank (M)</pre><p>Alternativní názvy: <code class="function">rank</code></p><p>Získat hodnost
matice.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://planetmath.org/SylvestersLaw" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-RosserMatrix"></a>RosserMatrix</span></dt><dd><pre class="synopsis">RosserMatrix
()</pre><p>Vrátit Rosserovu matici, která je klasickým symetrickým problémem testu vlastního
čísla.</p></dd><dt><span class="term"><a name="gel-function-Rotation2D"></a>Rotation2D</span></dt><dd><pre
class="synopsis">Rotation2D (úhel)</pre><p>Alternativní názvy: <code
class="function">RotationMatrix</code></p><p>Vrátit matici odpovídající otočení
okolo počátku v R<sup>2</sup>.</p></dd><dt><span class="term"><a
name="gel-function-Rotation3DX"></a>Rotation3DX</span></dt><dd><pre class="synopsis">Rotation3DX
(úhel)</pre><p>Vrátit matici odpovídající otočení okolo počátku v R<sup>3</sup> kolem osy
x.</p></dd><dt><span class="term"><a name="gel-function-Rotation3DY"></a>Rotation3DY</span></dt><dd><pre
class="synopsis">Rotation3DY (úhel)</pre><p>Vrátit matici odpovídající otočení okolo počátku v R<sup>3</sup>
kolem osy y.</p></dd><dt><span class="term"><a
name="gel-function-Rotation3DZ"></a>Rotation3DZ</span></dt><dd><pre class="synopsis">Rotation3DZ
(úhel)</pre><p>Vrátit matici odpovídající otočení okolo počátku v R<sup>3</sup> kolem osy
z.</p></dd><dt><span class="term"><a name="gel-function-RowSpace"></a>RowSpace</span></dt><dd><pre
class="synopsis">RowSpace (M)</pre><p>Získat bázi matice pro prostor řádků matice.</p></dd><dt><span
class="term"><a name="gel-function-SesquilinearForm"></
a>SesquilinearForm</span></dt><dd><pre class="synopsis">SesquilinearForm (v,A,w)</pre><p>Vyhodnotit (v,w)
vzhledem k polybilineární formě dané maticí <code class="varname">A</code>.</p></dd><dt><span class="term"><a
name="gel-function-SesquilinearFormFunction"></a>SesquilinearFormFunction</span></dt><dd><pre
class="synopsis">SesquilinearFormFunction (A)</pre><p>Vrátit funkci vyhodnocující dva vektory vzhledem k
polybilineární formě dané maticí <code class="varname">A</code>.</p></dd><dt><span class="term"><a
name="gel-function-SmithNormalFormField"></a>SmithNormalFormField</span></dt><dd><pre
class="synopsis">SmithNormalFormField (A)</pre><p>Vrátit Smithův kanonický tvar (normální forma) matice nad
poli (bude končit s jedničkami na diagonále).</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://en.wikipedia.org/wiki/Smith_normal_form" target="_top">Wikipedia</a> (článek je v
angličtině).</p></dd><dt><span class="term"><a name=
"gel-function-SmithNormalFormInteger"></a>SmithNormalFormInteger</span></dt><dd><pre
class="synopsis">SmithNormalFormInteger (M)</pre><p>Vrátit Smithův kanonický tvar (normální formu) pro
čtvercové celočíselné matice nad celými čísly.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://en.wikipedia.org/wiki/Smith_normal_form" target="_top">Wikipedia</a> (článek je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-SolveLinearSystem"></a>SolveLinearSystem</span></dt><dd><pre
class="synopsis">SolveLinearSystem (M,V,argumenty...)</pre><p>Vyřešit lineární systém Mx=V, vrátit řešení V,
pokud existuje jedinečné řešení, jinak vrátit <code class="constant">null</code>. Je možné použít dva
dodatečné parametry předávané odkazem, ve kterých získáte redukované M a V.</p></dd><dt><span class="term"><a
name="gel-function-ToeplitzMatrix"></a>ToeplitzMatrix</span></dt><dd><pre class="synopsis">ToeplitzMatr
ix (s, r...)</pre><p>Vrátit Teplitzovu matici sestavenou podle zadaného prvního sloupce <code
class="varname">c</code> a (volitelně) prvního řádku <code class="varname">r</code>. Pokud je zadán pouze
sloupec <code class="varname">c</code>, je pro první řádek použita konjugovaná a nekonjugovaná verze, aby se
získala hermitovská matice (samozřejmě za předpokladu, že je první prvek reálný).</p><p>Více informací
najdete v encyklopediích <a class="ulink" href="http://en.wikipedia.org/wiki/Toeplitz_matrix"
target="_top">Wikipedia</a> (text je v angličtině) a <a class="ulink"
href="http://planetmath.org/ToeplitzMatrix" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a name="gel-function-Trace"></a>Trace</span></dt><dd><pre
class="synopsis">Trace (M)</pre><p>Alternativní názvy: <code class="function">trace</code></p><p>Spočítat
stopu matice. Jedná se o součet prvků na hlavní diagonále čtvercové matice.</p>
<p>Více informací najdete v encyklopediích <a class="ulink"
href="http://cs.wikipedia.org/wiki/Stopa_%28algebra%29" target="_top">Wikipedia</a> a <a class="ulink"
href="http://planetmath.org/Trace" target="_top">Planetmath</a> (text je v angličtině).</p></dd><dt><span
class="term"><a name="gel-function-Transpose"></a>Transpose</span></dt><dd><pre class="synopsis">Transpose
(M)</pre><p>Transponovat matici. Funkčně je to stejné, jako operátor <strong
class="userinput"><code>.'</code></strong>.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://cs.wikipedia.org/wiki/Transpozice_matice" target="_top">Wikipedia</a> a <a class="ulink"
href="http://planetmath.org/Transpose" target="_top">Planetmath</a> (text je v angličtině).</p></dd><dt><span
class="term"><a name="gel-function-VandermondeMatrix"></a>VandermondeMatrix</span></dt><dd><pre
class="synopsis">VandermondeMatrix (v)</pre><p>Alternativní názvy: <code class="function">vander</code></
p><p>Vrátit Vandermondovu matici.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://cs.wikipedia.org/wiki/Vandermondova_matice" target="_top">Wikipedia</a>.</p></dd><dt><span
class="term"><a name="gel-function-VectorAngle"></a>VectorAngle</span></dt><dd><pre
class="synopsis">VectorAngle (v,w,B...)</pre><p>Úhel dvou vektorů vzhledem k unitárnímu prostoru daného <code
class="varname">B</code>. Pokud <code class="varname">B</code> není zadáno, je použit standardní hermitovský
součin. <code class="varname">B</code> může být buď polybilineární funkce dvou argumentů nebo to může být
matice v polybilineární formě.</p></dd><dt><span class="term"><a
name="gel-function-VectorSpaceDirectSum"></a>VectorSpaceDirectSum</span></dt><dd><pre
class="synopsis">VectorSpaceDirectSum (M,N)</pre><p>Přímý součet vektorových prostorů M a
N.</p></dd><dt><span class="term"><a name="gel-function-VectorSubspaceIntersection"></a>VectorSubspaceInter
section</span></dt><dd><pre class="synopsis">VectorSubspaceIntersection (M,N)</pre><p>Průnik podprostorů
daných pomocí M a N</p></dd><dt><span class="term"><a
name="gel-function-VectorSubspaceSum"></a>VectorSubspaceSum</span></dt><dd><pre
class="synopsis">VectorSubspaceSum (M,N)</pre><p>Součet vektorových prostorů M a N, tj. {w | w=m+n, m in M, n
in N}.</p></dd><dt><span class="term"><a name="gel-function-adj"></a>adj</span></dt><dd><pre
class="synopsis">adj (m)</pre><p>Alternativní názvy: <code class="function">Adjugate</code></p><p>Získat
adjungovanou (reciproku) matici.</p></dd><dt><span class="term"><a
name="gel-function-cref"></a>cref</span></dt><dd><pre class="synopsis">cref (M)</pre><p>Alternativní názvy:
<code class="function">CREF</code> <code class="function">ColumnReducedEchelonForm</code></p><p>Spočítat
sloupcově odstupňovaný tvar matice.</p></dd><dt><span class="term"><a
name="gel-function-det"></a>det</span></dt><dd><pre class="synopsis">det (M
)</pre><p>Alternativní názvy: <code class="function">Determinant</code></p><p>Získat determinant
matice.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/Determinant2" target="_top">Planetmath</a> (text je v angličtině) a <a
class="ulink" href="http://cs.wikipedia.org/wiki/Determinant" target="_top">Wikipedia</a>.</p></dd><dt><span
class="term"><a name="gel-function-ref"></a>ref</span></dt><dd><pre class="synopsis">ref
(M)</pre><p>Alternativní názvy: <code class="function">REF</code> <code
class="function">RowEchelonForm</code></p><p>Získat řádkově odstupňovaný tvar matice. To jest, použít
Gaussovu eliminaci, ale bez zpětného dosazování do <code class="varname">M</code>. Nenulové řádky jsou
poděleny, aby všechny pivoty byly 1.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://en.wikipedia.org/wiki/Row_echelon_form" target="_top">Wikipedia</a> (text je v angličtině) a <a
class=
"ulink" href="http://planetmath.org/RowEchelonForm" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a name="gel-function-rref"></a>rref</span></dt><dd><pre
class="synopsis">rref (M)</pre><p>Alternativní názvy: <code class="function">RREF</code> <code
class="function">ReducedRowEchelonForm</code></p><p>Získat redukovaný řádkově odstupňovaný tvar matice. To
jest, použít Gaussovu eliminaci se zpětným dosazováním do <code class="varname">M</code>.</p><p>Více
informací najdete v encyklopediích <a class="ulink"
href="http://en.wikipedia.org/wiki/Reduced_row_echelon_form" target="_top">Wikipedia</a> (text je v
angličtině) a <a class="ulink" href="http://planetmath.org/ReducedRowEchelonForm"
target="_top">Planetmath</a> (text je v angličtině).</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s08.html">Předcházej
ící</a> </td><td width="20%" align="center"><a accesskey="u" href="ch11.html">Nahoru</a></td><td width="40%"
align="right"> <a accesskey="n" href="ch11s10.html">Další</a></td></tr><tr><td width="40%" align="left"
valign="top">Práce s maticemi </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Domů</a></td><td width="40%" align="right" valign="top">
Kombinatorika</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch11s10.html b/help/cs/html/ch11s10.html
new file mode 100644
index 0000000..3bab537
--- /dev/null
+++ b/help/cs/html/ch11s10.html
@@ -0,0 +1,9 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Kombinatorika</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Příručka k aplikaci Genius"><link rel="up"
href="ch11.html" title="Kapitola 11. Seznam funkcí GEL"><link rel="prev" href="ch11s09.html" title="Lineární
algebra"><link rel="next" href="ch11s11.html" title="Diferenciální/integrální počet"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Kombinatorika</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch11s09.html">Předcházející</a> </td><th width="60%"
align="center">Kapitola 11. Seznam funkcí GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s11.html">Další</a></td></tr></table><hr></div><div class="sect1"><div class="title
page"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-combinatorics"></a>Kombinatorika</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Catalan"></a>Catalan</span></dt><dd><pre class="synopsis">Catalan (n)</pre><p>Získat <code
class="varname">n</code>-té Catalanovo číslo.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/CatalanNumbers" target="_top">Planetmath</a> (text je v angličtině) a <a
class="ulink" href="http://cs.wikipedia.org/wiki/Catalanova_%C4%8D%C3%ADsla"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-Combinations"></a>Combinations</span></dt><dd><pre class="synopsis">Combinations
(k,n)</pre><p>Získat jako vektor vektorů všechny kombinace k-té třídy z prvků 1 až n. (Viz také <a
class="link" href="ch11s10.html#gel-function-NextCombination">NextCombination</a>)</p></dd><
dt><span class="term"><a name="gel-function-DoubleFactorial"></a>DoubleFactorial</span></dt><dd><pre
class="synopsis">DoubleFactorial (n)</pre><p>Dvojitý faktoriál: <strong
class="userinput"><code>n(n-2)(n-4)…</code></strong></p><p>Více informací najdete v encyklopedii <a
class="ulink" href="http://planetmath.org/DoubleFactorial" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-Factorial"></a>Factorial</span></dt><dd><pre class="synopsis">Factorial
(n)</pre><p>Faktoriál: <strong class="userinput"><code>n(n-1)(n-2)…</code></strong></p><p>Více informací
najdete v encyklopediích <a class="ulink" href="http://planetmath.org/Factorial" target="_top">Planetmath</a>
(text je v angličtině) a <a class="ulink" href="http://cs.wikipedia.org/wiki/Faktori%C3%A1l"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-FallingFactorial"></a>FallingFactorial</span></dt><dd><pre class="synopsi
s">FallingFactorial (n,k)</pre><p>Klesající faktoriál: <strong class="userinput"><code>(n)_k =
n(n-1)…(n-(k-1))</code></strong></p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://planetmath.org/FallingFactorial" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-Fibonacci"></a>Fibonacci</span></dt><dd><pre class="synopsis">Fibonacci
(x)</pre><p>Alternativní názvy: <code class="function">fib</code></p><p>Vypočítat <code
class="varname">n</code>-té Fibonacciho číslo. Tj. číslo definované rekurzivně jako <strong
class="userinput"><code>Fibonacci(n) = Fibonacci(n-1) + Fibonacci(n-2)</code></strong> a <strong
class="userinput"><code>Fibonacci(1) = Fibonacci(2) = 1</code></strong>.</p><p>Více informací najdete v
encyklopediích <a class="ulink" href="http://planetmath.org/FibonacciSequence" target="_top">Planetmath</a>
(text je v angličtině), <a class="ulink" href="http://mathworl
d.wolfram.com/FibonacciNumber.html" target="_top">Mathworld</a> (text je v angličtině) a <a class="ulink"
href="http://cs.wikipedia.org/wiki/Fibonacciho_posloupnost" target="_top">Wikipedia</a>.</p></dd><dt><span
class="term"><a name="gel-function-FrobeniusNumber"></a>FrobeniusNumber</span></dt><dd><pre
class="synopsis">FrobeniusNumber (v,arg...)</pre><p>Spočítat Frobeniusovo číslo. Tzn. spočítat nejmenší
číslo, které nemůže být dáno jako lineární kombinace celých nezáporných čísel zadaných jako vektor
nezáporných celých čísel. Vektor může být zadán jako samostatná čísla nebo jeden vektor. Všechna zadaná čísla
by měla mít největšího společného dělitele 1.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://mathworld.wolfram.com/FrobeniusNumber.html" target="_top">Mathworld</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-GaloisMatrix"></a>GaloisMatrix</span></dt><dd><pr
e class="synopsis">GaloisMatrix (kombinacni_pravidlo)</pre><p>Galoisova matice daná lineárním kombinačním
pravidlem (a_1*x_1+…+a_n*x_n=x_(n+1)).</p></dd><dt><span class="term"><a
name="gel-function-GreedyAlgorithm"></a>GreedyAlgorithm</span></dt><dd><pre class="synopsis">GreedyAlgorithm
(n,v)</pre><p>Najít takový vektor <code class="varname">c</code> nezáporných celých čísel, že skalární součin
s <code class="varname">v</code> je roven <code class="varname">n</code>. Když to není možné, vrátí <code
class="constant">null</code>. Vektor <code class="varname">v</code> by měl být předán seřazený ve vzestupném
pořadí a měl by se skládat z nezáporných celých čísel.</p><p>Více informací najdete v encyklopediích <a
class="ulink" href="http://mathworld.wolfram.com/GreedyAlgorithm.html" target="_top">Mathworld</a> (text je v
angličtině) nebo <a class="ulink" href="http://cs.wikipedia.org/wiki/Hladov%C3%BD_algoritmus"
target="_top">Wikipedia
</a>.</p></dd><dt><span class="term"><a
name="gel-function-HarmonicNumber"></a>HarmonicNumber</span></dt><dd><pre class="synopsis">HarmonicNumber
(n,r)</pre><p>Alternativní názvy: <code class="function">HarmonicH</code></p><p>Harmonické číslo, <code
class="varname">n</code>-té harmonické číslo řádu <code class="varname">r</code>.</p></dd><dt><span
class="term"><a name="gel-function-Hofstadter"></a>Hofstadter</span></dt><dd><pre class="synopsis">Hofstadter
(n)</pre><p>Hofstadterova funkce q(n) definovaná jako q(1)=1, q(2)=1,
q(n)=q(n-q(n-1))+q(n-q(n-2))</p></dd><dt><span class="term"><a
name="gel-function-LinearRecursiveSequence"></a>LinearRecursiveSequence</span></dt><dd><pre
class="synopsis">LinearRecursiveSequence (pocatecni_hodnoty,kombinacni_pravidlo,n)</pre><p>Spočítat lineární
rekurzivní posloupnost pomocí Galoisova krokování.</p></dd><dt><span class="term"><a
name="gel-function-Multinomial"></a>Multinomial</span></dt><dd><pre class="synopsis">Multi
nomial (v,arg...)</pre><p>Spočítat multinomické koeficienty. Přebírá vektor <code class="varname">k</code>
nezáporných celých čísel a spočítá multinomický koeficient. To odpovídá koeficientu v homogenním polynomu v
<code class="varname">k</code> proměnných s odpovídajícími mocninami.</p><p>Vzorec pro <strong
class="userinput"><code>Multinomial(a,b,c)</code></strong> se dá napsat jako: </p><pre
class="programlisting">(a+b+c)! / (a!b!c!)
+</pre><p> Jinými slovy, pokud máme jen dva prvky, pak <strong
class="userinput"><code>Multinomial(a,b)</code></strong> je to stejné, jako <strong
class="userinput"><code>Binomial(a+b,a)</code></strong> nebo <strong
class="userinput"><code>Binomial(a+b,b)</code></strong>.</p><p>Více informací najdete v encyklopediích <a
class="ulink" href="http://planetmath.org/MultinomialTheorem" target="_top">Planetmath</a> (text je v
angličtině), <a class="ulink" href="http://mathworld.wolfram.com/MultinomialCoefficient.html"
target="_top">Mathworld</a> (text je v angličtině) a <a class="ulink"
href="https://cs.wikipedia.org/wiki/Multinomick%C3%A1_v%C4%9Bta"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-NextCombination"></a>NextCombination</span></dt><dd><pre class="synopsis">NextCombination
(v,n)</pre><p>Získat kombinaci, která by následovala po kombinaci <code class="varname">v</code> v pořadí
kombinací, první kombinací by měla být
<strong class="userinput"><code>[1:k]</code></strong>. To je užitečné, pokud máte hodně kombinací, které
chcete projít a nechcete plýtvat pamětí na uložení všech.</p><p>S funkcí Combinations byste normálně napsali
smyčku jako: </p><pre class="screen"><strong class="userinput"><code>for n in Combinations (4,6) do (
+ NejakaFunkce (n)
+);</code></strong>
+</pre><p> Ale s funkcí NextCombination byste napsali něco takového: </p><pre class="screen"><strong
class="userinput"><code>n:=[1:4];
+do (
+ NejakaFunkce (n)
+) while not IsNull(n:=NextCombination(n,6));</code></strong>
+</pre><p> Viz <a class="link"
href="ch11s10.html#gel-function-Combinations">Combinations</a>.</p></dd><dt><span class="term"><a
name="gel-function-Pascal"></a>Pascal</span></dt><dd><pre class="synopsis">Pascal (i)</pre><p>Získat Pascalův
trojúhelník v podobě matice. Vrátí dolní trojúhelníkovou matici <code class="varname">i</code>+1 krát <code
class="varname">i</code>+1, která je Pascalovým trojúhelníkem po <code class="varname">i</code>
iteracích.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/PascalsTriangle" target="_top">Planetmath</a> (text je v angličtině) a <a
class="ulink" href="http://cs.wikipedia.org/wiki/Pascal%C5%AFv_troj%C3%BAheln%C3%ADk"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-Permutations"></a>Permutations</span></dt><dd><pre class="synopsis">Permutations
(k,n)</pre><p>Získat jako vektor vektorů všechny variace <code class="varname">k</code>-té tříd
y z prvků 1 až <code class="varname">n</code> prvků, případně permutace pro <code
class="varname">k</code>=<code class="varname">n</code>.</p><p>Více informací najdete v encyklopediích <a
class="ulink" href="http://mathworld.wolfram.com/Permutation.html" target="_top">Mathworld</a> (text je v
angličtině) nebo <a class="ulink" href="http://cs.wikipedia.org/wiki/Permutace" target="_top">Wikipedia</a>
(permutace) a <a class="ulink" href="http://cs.wikipedia.org/wiki/Variace_%28kombinatorika%29"
target="_top">Wikipedia</a> (variace).</p></dd><dt><span class="term"><a
name="gel-function-RisingFactorial"></a>RisingFactorial</span></dt><dd><pre class="synopsis">RisingFactorial
(n,k)</pre><p>Alternativní názvy: <code class="function">Pochhammer</code></p><p>(Pochhammerův) stoupacící
faktoriál: (n)_k = n(n+1)…(n+(k-1))</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://planetmath.org/RisingFactorial" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-StirlingNumberFirst"></a>StirlingNumberFirst</span></dt><dd><pre
class="synopsis">StirlingNumberFirst (n,m)</pre><p>Alternativní názvy: <code
class="function">StirlingS1</code></p><p>Stirlingovo číslo prvního druhu.</p><p>Více informací najdete v
encyklopediích <a class="ulink" href="http://planetmath.org/StirlingNumbersOfTheFirstKind"
target="_top">Planetmath</a> (text je v angličtině) nebo <a class="ulink"
href="http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html" target="_top">Mathworld</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-StirlingNumberSecond"></a>StirlingNumberSecond</span></dt><dd><pre
class="synopsis">StirlingNumberSecond (n,m)</pre><p>Alternativní názvy: <code
class="function">StirlingS2</code></p><p>Stirlingovo číslo druhého druhu.</p><p>Více informací najdete v
encyklopediích <a class="ulink" href="http://planetmath.org/Stir
lingNumbersSecondKind" target="_top">Planetmath</a> (text je v angličtině) nebo <a class="ulink"
href="http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html" target="_top">Mathworld</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-Subfactorial"></a>Subfactorial</span></dt><dd><pre class="synopsis">Subfactorial
(n)</pre><p>Subfaktoriál: n! krát suma_{k=0}^n (-1)^k/k!</p></dd><dt><span class="term"><a
name="gel-function-Triangular"></a>Triangular</span></dt><dd><pre class="synopsis">Triangular
(n)</pre><p>Spočítat <code class="varname">n</code>-té trojúhelníkové číslo.</p><p>Více informací najdete v
encyklopediích <a class="ulink" href="http://planetmath.org/TriangularNumbers" target="_top">Planetmath</a>
(text je v angličtině) a <a class="ulink"
href="http://cs.wikipedia.org/wiki/Troj%C3%BAheln%C3%ADkov%C3%A9_%C4%8D%C3%ADslo"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a name="gel-function-nCr"></a>
nCr</span></dt><dd><pre class="synopsis">nCr (n,r)</pre><p>Alternativní názvy: <code
class="function">Binomial</code></p><p>Spočítat kombinace, tj. kombinační číslo. <code
class="varname">n</code> může být libovolné reálné číslo.</p><p>Více informací najdete v encyklopediích <a
class="ulink" href="http://planetmath.org/Choose" target="_top">Planetmath</a> (text je v angličtině) a <a
class="ulink" href="http://cs.wikipedia.org/wiki/Kombina%C4%8Dn%C3%AD_%C4%8D%C3%ADslo"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-nPr"></a>nPr</span></dt><dd><pre class="synopsis">nPr (n,k)</pre><p>Spočítat počet variací
<code class="varname">k</code>-té třídy z prvků 1 až <code class="varname">n</code>, respektive počet
permutací při <code class="varname">k</code> rovno <code class="varname">n</code>.</p><p>Více informací
najdete v encyklopediích <a class="ulink" href="http://mathworld.wolfram.com/Permutation.html" target
="_top">Mathworld</a> (text je v angličtině) nebo <a class="ulink"
href="http://cs.wikipedia.org/wiki/Permutace" target="_top">Wikipedia</a> (permutace) a <a class="ulink"
href="http://cs.wikipedia.org/wiki/Variace_%28kombinatorika%29" target="_top">Wikipedia</a>
(variace).</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s09.html">Předcházející</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Nahoru</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s11.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Lineární
algebra </td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Diferenciální/integrální počet </td></tr></table></div></body></html>
diff --git a/help/cs/html/ch11s11.html b/help/cs/html/ch11s11.html
new file mode 100644
index 0000000..955b1ec
--- /dev/null
+++ b/help/cs/html/ch11s11.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Diferenciální/integrální počet</title><meta name="generator" content="DocBook XSL
Stylesheets V1.79.1"><link rel="home" href="index.html" title="Příručka k aplikaci Genius"><link rel="up"
href="ch11.html" title="Kapitola 11. Seznam funkcí GEL"><link rel="prev" href="ch11s10.html"
title="Kombinatorika"><link rel="next" href="ch11s12.html" title="Funkce"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Diferenciální/integrální počet
</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch11s10.html">Předcházející</a> </td><th
width="60%" align="center">Kapitola 11. Seznam funkcí GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s12.html">Další</a></td></tr></table><hr></div><div class="sect1"><div c
lass="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-calculus"></a>Diferenciální/integrální počet </h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-CompositeSimpsonsRule"></a>CompositeSimpsonsRule</span></dt><dd><pre
class="synopsis">CompositeSimpsonsRule (f,a,b,n)</pre><p>Integrovat f složeným Simpsonovým pravidlem na
intervalu [a,b] s n podintervaly s chybou podle max(f'''')*h^4*(b-a)/180. Upozorňujeme, že n by mělo být
sudé.</p><p>Více informací najdete v encyklopedii <a class="ulink" href="http://planetmath.org/SimpsonsRule"
target="_top">Planetmath</a> (text je v angličtině).</p></dd><dt><span class="term"><a
name="gel-function-CompositeSimpsonsRuleTolerance"></a>CompositeSimpsonsRuleTolerance</span></dt><dd><pre
class="synopsis">CompositeSimpsonsRuleTolerance (f,a,b,omezeni_ctvrte_derivace,tolerance)</pre><p>Integrovat
f složeným Simpson
ovým pravidlem na intervalu [a,b] s počtem kroků počítaným podle omezení čtvrté derivace a podle požadované
tolerance.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://planetmath.org/SimpsonsRule" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-Derivative"></a>Derivative</span></dt><dd><pre class="synopsis">Derivative
(f,x0)</pre><p>Zkusit spočítat derivaci, nejprve symbolicky a pak numericky.</p><p>Více informací najdete v
encyklopedii <a class="ulink" href="https://cs.wikipedia.org/wiki/Derivace"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-EvenPeriodicExtension"></a>EvenPeriodicExtension</span></dt><dd><pre
class="synopsis">EvenPeriodicExtension (f,L)</pre><p>Vrátit funkci, která je sudým periodickým rozšířením
<code class="function">f</code> s poloviční periodou <code class="varname">L</code>. Tj. funkce definovaná na
inter
valu <strong class="userinput"><code>[0,L]</code></strong> rozšířená, aby byla sudá na <strong
class="userinput"><code>[-L,L]</code></strong> a pak rozšířená, aby byla periodická s periodou <strong
class="userinput"><code>2*L</code></strong>.</p><p>Viz také <a class="link"
href="ch11s11.html#gel-function-OddPeriodicExtension">OddPeriodicExtension</a> a <a class="link"
href="ch11s11.html#gel-function-PeriodicExtension">PeriodicExtension</a>.</p><p>Verze 1.0.7 a
novější.</p></dd><dt><span class="term"><a
name="gel-function-FourierSeriesFunction"></a>FourierSeriesFunction</span></dt><dd><pre
class="synopsis">FourierSeriesFunction (a,b,L)</pre><p>Vrátit funkci, která je Fourierovu řadou s koeficienty
danými vektory <code class="varname">a</code> (sinové) a <code class="varname">b</code> (kosinové). Vezměte
na vědomí, že <strong class="userinput"><code>a@(1)</code></strong> je konstantní koeficient! To znamená, že
<strong class="userinput"><code>a@(n)</
code></strong> odkazuje na člen <strong class="userinput"><code>cos(x*(n-1)*pi/L)</code></strong>, zatímco
<strong class="userinput"><code>b@(n)</code></strong> odkazuje na člen <strong
class="userinput"><code>sin(x*n*pi/L)</code></strong>. Buďto <code class="varname">a</code> nebo <code
class="varname">b</code> může být <code class="constant">null</code>.</p><p>Více informací najdete v
encyklopediích <a class="ulink" href="http://mathworld.wolfram.com/FourierSeries.html"
target="_top">Mathworld</a> (text je v angličtině) nebo <a class="ulink"
href="http://cs.wikipedia.org/wiki/Fourierova_%C5%99ada" target="_top">Wikipedia</a>.</p></dd><dt><span
class="term"><a name="gel-function-InfiniteProduct"></a>InfiniteProduct</span></dt><dd><pre
class="synopsis">InfiniteProduct (fce,start,prirustek)</pre><p>Zkusit spočítat nekonečný součin funkce s
jedním parametrem.</p></dd><dt><span class="term"><a
name="gel-function-InfiniteProduct2"></a>InfiniteProduct2</span></d
t><dd><pre class="synopsis">InfiniteProduct2 (fce,arg,start,prirustek)</pre><p>Zkusit spočítat nekonečný
součin funkce se dvěma parametry s fce (arg,n).</p></dd><dt><span class="term"><a
name="gel-function-InfiniteSum"></a>InfiniteSum</span></dt><dd><pre class="synopsis">InfiniteSum
(fce,start,prirustek)</pre><p>Zkusit spočítat nekonečný součet funkce s jedním parametrem.</p></dd><dt><span
class="term"><a name="gel-function-InfiniteSum2"></a>InfiniteSum2</span></dt><dd><pre
class="synopsis">InfiniteSum2 (fce,arg,start,prirustek)</pre><p>Zkusit spočítat nekonečný součet funkce se
dvěma parametry s fce (arg,n).</p></dd><dt><span class="term"><a
name="gel-function-IsContinuous"></a>IsContinuous</span></dt><dd><pre class="synopsis">IsContinuous
(f,x0)</pre><p>Zkusit zjistit pomocí výpočtu limity v x0, jestli je funkce reálné proměnné v tomto bodě
spojitá.</p></dd><dt><span class="term"><a name="gel-function-IsDifferentiable"></a>IsDifferentiable</span>
</dt><dd><pre class="synopsis">IsDifferentiable (f,x0)</pre><p>Otestovat na diferencovatelnost aproximací
limit zleva a zprava a porovnáním.</p></dd><dt><span class="term"><a
name="gel-function-LeftLimit"></a>LeftLimit</span></dt><dd><pre class="synopsis">LeftLimit
(f,x0)</pre><p>Spočítat limitu zleva funkce reálné proměnné v x0.</p></dd><dt><span class="term"><a
name="gel-function-Limit"></a>Limit</span></dt><dd><pre class="synopsis">Limit (f,x0)</pre><p>Spočítat limitu
funkce reálné proměnné v x0. Zkusí vypočítat limitu zleva i zprava.</p></dd><dt><span class="term"><a
name="gel-function-MidpointRule"></a>MidpointRule</span></dt><dd><pre class="synopsis">MidpointRule
(f,a,b,n)</pre><p>Integrovat trojúhelníkovou metodou (pravidlem prostředního bodu).</p></dd><dt><span
class="term"><a name="gel-function-NumericalDerivative"></a>NumericalDerivative</span></dt><dd><pre
class="synopsis">NumericalDerivative (f,x0)</pre><p>Alternativní názvy: <code class="
function">NDerivative</code></p><p>Zkusit vypočítat numerickou derivaci.</p><p>Více informací najdete v
encyklopedii <a class="ulink" href="https://cs.wikipedia.org/wiki/Derivace"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSeriesCoefficients"></a>NumericalFourierSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierSeriesCoefficients (f,L,N)</pre><p>Vrátit vektor vektorů <strong
class="userinput"><code>[a,b]</code></strong>, kde <code class="varname">a</code> jsou kosinové koeficienty a
<code class="varname">b</code> sinové koeficienty Fourierovy řady funkce <code class="function">f</code> s
poloviční periodou <code class="varname">L</code> (tj. definovanou na <strong
class="userinput"><code>[-L,L]</code></strong> a periodicky rozšířenou) s numericky spočítanými koeficienty
do <code class="varname">N</code>-té harmonické. Koeficienty jsou spočítány numerickou integrací pomocí <a
class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://mathworld.wolfram.com/FourierSeries.html" target="_top">Mathworld</a> (text je v angličtině)
nebo <a class="ulink" href="http://cs.wikipedia.org/wiki/Fourierova_%C5%99ada"
target="_top">Wikipedia</a>.</p><p>Verze 1.0.7 a novější.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSeriesFunction"></a>NumericalFourierSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierSeriesFunction (f,L,N)</pre><p>Vrátit funkci, která je Fourierovou řadou
funkce <code class="function">f</code> s poloviční periodou <code class="varname">L</code> (tj. definovanou
na <strong class="userinput"><code>[-L,L]</code></strong> a periodicky rozšířenou) s numericky spočítanými
koeficienty do <code class="varname">N</code>-té harmonické. Jde o čistě trigonom
etrickou řadu složenou ze sinů a kosinů. Koeficienty jsou spočítány numerickou integrací pomocí <a
class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://mathworld.wolfram.com/FourierSeries.html" target="_top">Mathworld</a> (text je v angličtině)
nebo <a class="ulink" href="http://cs.wikipedia.org/wiki/Fourierova_%C5%99ada"
target="_top">Wikipedia</a>.</p><p>Verze 1.0.7 a novější.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierCosineSeriesCoefficients"></a>NumericalFourierCosineSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierCosineSeriesCoefficients (f,L,N)</pre><p>Vrátit vektor koeficientů kosinové
Fourierovy řady funkce <code class="function">f</code> s poloviční periodou <code class="varname">L</code>.
To jest, vezmeme funkci <code class="function">f</code> definovano
u na <strong class="userinput"><code>[0,L]</code></strong>, provedeme sudé periodické rozšíření a spočteme
Fourierovu řadu, která má pouze kosinové členy. Řada je spočítána do <code class="varname">N</code>-té
harmonické. Koeficienty jsou spočítány numerickou integrací pomocí <a class="link"
href="ch11s11.html#gel-function-NumericalIntegral"><code class="function">NumericalIntegral</code></a>.
Poznamenejme, že <strong class="userinput"><code>a@(1)</code></strong> je konstantní koeficient! To znamená,
že <strong class="userinput"><code>a@(n)</code></strong> odkazuje na člen <strong
class="userinput"><code>cos(x*(n-1)*pi/L)</code></strong>.</p><p>Více informací najdete v encyklopediích <a
class="ulink" href="http://mathworld.wolfram.com/FourierCosineSeries.html" target="_top">Mathworld</a> (text
je v angličtině) nebo <a class="ulink" href="http://cs.wikipedia.org/wiki/Fourierova_%C5%99ada"
target="_top">Wikipedia</a>.</p><p>Verze 1.0.7 a nověj
ší.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierCosineSeriesFunction"></a>NumericalFourierCosineSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierCosineSeriesFunction (f,L,N)</pre><p>Vrátit funkci, která je kosinovou
Fourierovu řadou funkce <code class="function">f</code> s poloviční periodou <code class="varname">L</code>.
To jest, vezmeme funkci <code class="function">f</code> definovanou na <strong
class="userinput"><code>[0,L]</code></strong>, provedeme sudé periodické rozšíření a spočteme Fourierovu
řadu, která má pouze kosinové členy. Řada je spočítána do <code class="varname">N</code>-té harmonické.
Koeficienty jsou spočítány numerickou integrací pomocí <a class="link"
href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://mathworld.wolfram.com/FourierCosineSeries.html"
target="_top">Mathworld</a> (text je v angličtině) nebo <a class="ulink"
href="http://cs.wikipedia.org/wiki/Fourierova_%C5%99ada" target="_top">Wikipedia</a>.</p><p>Verze 1.0.7 a
novější.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSineSeriesCoefficients"></a>NumericalFourierSineSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierSineSeriesCoefficients (f,L,N)</pre><p>Vrátit vektor koeficientů sinové
Fourierovy řady funkce <code class="function">f</code> s poloviční periodou <code class="varname">L</code>.
To jest, vezmeme funkci <code class="function">f</code> definovanou na <strong
class="userinput"><code>[0,L]</code></strong>, provedeme liché periodické rozšíření a spočteme Fourierovu
řadu, která má pouze sinové členy. Řada je spočítána do <code class="varname">N</code>-té harmonické.
Koeficienty jsou spočítány numerickou integrací pomocí <a class="link" href="ch11s11.html#gel-function-Numeric
alIntegral"><code class="function">NumericalIntegral</code></a>.</p><p>Více informací najdete v
encyklopediích <a class="ulink" href="http://mathworld.wolfram.com/FourierSineSeries.html"
target="_top">Mathworld</a> (text je v angličtině) nebo <a class="ulink"
href="http://cs.wikipedia.org/wiki/Fourierova_%C5%99ada" target="_top">Wikipedia</a>.</p><p>Verze 1.0.7 a
novější.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSineSeriesFunction"></a>NumericalFourierSineSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierSineSeriesFunction (f,L,N)</pre><p>Vrátit funkci, která je sinovou
Fourierovu řadou funkce <code class="function">f</code> s poloviční periodou <code class="varname">L</code>.
To jest, vezmeme funkci <code class="function">f</code> definovanou na <strong
class="userinput"><code>[0,L]</code></strong>, provedeme liché periodické rozšíření a spočteme Fourierovu
řadu, která má pouze sinové členy. Řada je spo
čítána do <code class="varname">N</code>-té harmonické. Koeficienty jsou spočítány numerickou integrací
pomocí <a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://mathworld.wolfram.com/FourierSineSeries.html" target="_top">Mathworld</a> (text je v angličtině)
nebo <a class="ulink" href="http://cs.wikipedia.org/wiki/Fourierova_%C5%99ada"
target="_top">Wikipedia</a>.</p><p>Verze 1.0.7 a novější.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegral"></a>NumericalIntegral</span></dt><dd><pre
class="synopsis">NumericalIntegral (f,a,b)</pre><p>Integrovat pravidlem nastaveným v
NumericalIntegralFunction jako funkcí f od a do b pomocí kroků NumericalIntegralSteps.</p></dd><dt><span
class="term"><a name="gel-function-NumericalLeftDerivative"></a>NumericalLeftDerivative</span></dt><dd><pre
class="synopsi
s">NumericalLeftDerivative (f,x0)</pre><p>Zkusit vypočítat numerickou levou derivaci.</p></dd><dt><span
class="term"><a name="gel-function-NumericalLimitAtInfinity"></a>NumericalLimitAtInfinity</span></dt><dd><pre
class="synopsis">NumericalLimitAtInfinity (_f,step_fun,tolerance,serie_pro_uspech,N)</pre><p>Pokusit se
spočítat limitu f(step_fun(i)) pro i od 1 do N.</p></dd><dt><span class="term"><a
name="gel-function-NumericalRightDerivative"></a>NumericalRightDerivative</span></dt><dd><pre
class="synopsis">NumericalRightDerivative (f,x0)</pre><p>Zkusit vypočítat numerickou pravou
derivaci.</p></dd><dt><span class="term"><a
name="gel-function-OddPeriodicExtension"></a>OddPeriodicExtension</span></dt><dd><pre
class="synopsis">OddPeriodicExtension (f,L)</pre><p>Vrátit funkci, která je lichým periodickým rozšířením
<code class="function">f</code> s poloviční periodou <code class="varname">L</code>. Tj. funkce definovaná na
intervalu <strong class="userinput"><cod
e>[0,L]</code></strong> rozšířená, aby byla lichá na <strong class="userinput"><code>[-L,L]</code></strong>
a pak rozšířená, aby byla periodická s periodou <strong
class="userinput"><code>2*L</code></strong>.</p><p>Viz také <a class="link"
href="ch11s11.html#gel-function-EvenPeriodicExtension">EvenPeriodicExtension</a> a <a class="link"
href="ch11s11.html#gel-function-PeriodicExtension">PeriodicExtension</a>.</p><p>Verze 1.0.7 a
novější.</p></dd><dt><span class="term"><a
name="gel-function-OneSidedFivePointFormula"></a>OneSidedFivePointFormula</span></dt><dd><pre
class="synopsis">OneSidedFivePointFormula (f,x0,h)</pre><p>Spočítat jednostrannou derivaci pomocí
pětibodového vzorce.</p></dd><dt><span class="term"><a
name="gel-function-OneSidedThreePointFormula"></a>OneSidedThreePointFormula</span></dt><dd><pre
class="synopsis">OneSidedThreePointFormula (f,x0,h)</pre><p>Spočítat jednostrannou derivaci pomocí
tříbodového vzorce.</p></dd><dt><span class="t
erm"><a name="gel-function-PeriodicExtension"></a>PeriodicExtension</span></dt><dd><pre
class="synopsis">PeriodicExtension (f,a,b)</pre><p>Vrátit funkci, která je periodickým rozšířením <code
class="function">f</code> definované na intervalu <strong class="userinput"><code>[a,b]</code></strong> a s
periodou <strong class="userinput"><code>b-a</code></strong>.</p><p>Viz také <a class="link"
href="ch11s11.html#gel-function-OddPeriodicExtension">OddPeriodicExtension</a> a <a class="link"
href="ch11s11.html#gel-function-EvenPeriodicExtension">EvenPeriodicExtension</a>.</p><p>Verze 1.0.7 a
novější.</p></dd><dt><span class="term"><a name="gel-function-RightLimit"></a>RightLimit</span></dt><dd><pre
class="synopsis">RightLimit (f,x0)</pre><p>Spočítat limitu zprava funkce reálné proměnné v
x0.</p></dd><dt><span class="term"><a
name="gel-function-TwoSidedFivePointFormula"></a>TwoSidedFivePointFormula</span></dt><dd><pre
class="synopsis">TwoSidedFivePointFormula (f,x0
,h)</pre><p>Spočítat oboustrannou derivaci pomocí pětibodového vzorce.</p></dd><dt><span class="term"><a
name="gel-function-TwoSidedThreePointFormula"></a>TwoSidedThreePointFormula</span></dt><dd><pre
class="synopsis">TwoSidedThreePointFormula (f,x0,h)</pre><p>Spočítat oboustrannou derivaci pomocí tříbodového
vzorce.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s10.html">Předcházející</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Nahoru</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s12.html">Další</a></td></tr><tr><td width="40%" align="left"
valign="top">Kombinatorika </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Domů</a></td><td width="40%" align="right" valign="top">
Funkce</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch11s12.html b/help/cs/html/ch11s12.html
new file mode 100644
index 0000000..dbe49ff
--- /dev/null
+++ b/help/cs/html/ch11s12.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Funkce</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Příručka
k aplikaci Genius"><link rel="up" href="ch11.html" title="Kapitola 11. Seznam funkcí GEL"><link rel="prev"
href="ch11s11.html" title="Diferenciální/integrální počet"><link rel="next" href="ch11s13.html" title="Řešení
rovnic"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Funkce</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s11.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 11. Seznam funkcí
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s13.html">Další</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div>
<h2 class="title" style="clear: both"><a
name="genius-gel-function-list-functions"></a>Funkce</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a name="gel-function-Argument"></a>Argument</span></dt><dd><pre
class="synopsis">Argument (z)</pre><p>Alternativní názvy: <code class="function">Arg</code><code
class="function">arg</code></p><p>Argument (orientovaný úhel) komplexního čísla.</p></dd><dt><span
class="term"><a name="gel-function-BesselJ0"></a>BesselJ0</span></dt><dd><pre class="synopsis">BesselJ0
(x)</pre><p>Besselova funkce prvního druhu řádu 0. Je implementována pouze pro reálná čísla.</p><p>Více
informací najdete v encyklopedii <a class="ulink" href="http://cs.wikipedia.org/wiki/Besselova_funkce"
target="_top">Wikipedia</a>.</p><p>Verze 1.0.16 a novější.</p></dd><dt><span class="term"><a
name="gel-function-BesselJ1"></a>BesselJ1</span></dt><dd><pre class="synopsis">BesselJ1 (x)</pre><p>Besselova
funk
ce prvního druhu řádu 1. Je implementována pouze pro reálná čísla.</p><p>Více informací najdete v
encyklopedii <a class="ulink" href="http://cs.wikipedia.org/wiki/Besselova_funkce"
target="_top">Wikipedia</a>.</p><p>Verze 1.0.16 a novější.</p></dd><dt><span class="term"><a
name="gel-function-BesselJn"></a>BesselJn</span></dt><dd><pre class="synopsis">BesselJn
(n,x)</pre><p>Besselova funkce prvního druhu řádu <code class="varname">n</code>. Je implementována pouze pro
reálná čísla.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://cs.wikipedia.org/wiki/Besselova_funkce" target="_top">Wikipedia</a>.</p><p>Verze 1.0.16 a
novější.</p></dd><dt><span class="term"><a name="gel-function-BesselY0"></a>BesselY0</span></dt><dd><pre
class="synopsis">BesselY0 (x)</pre><p>Besselova funkce druhého druhu řádu 0. Je implementována pouze pro
reálná čísla.</p><p>Více informací najdete v encyklopedii <a class="ulink" href="http://cs.wi
kipedia.org/wiki/Besselova_funkce" target="_top">Wikipedia</a>.</p><p>Verze 1.0.16 a
novější.</p></dd><dt><span class="term"><a name="gel-function-BesselY1"></a>BesselY1</span></dt><dd><pre
class="synopsis">BesselY1 (x)</pre><p>Besselova funkce druhého druhu řádu 1. Je implementována pouze pro
reálná čísla.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://cs.wikipedia.org/wiki/Besselova_funkce" target="_top">Wikipedia</a>.</p><p>Verze 1.0.16 a
novější.</p></dd><dt><span class="term"><a name="gel-function-BesselYn"></a>BesselYn</span></dt><dd><pre
class="synopsis">BesselYn (n,x)</pre><p>Besselova funkce druhého druhu řádu <code class="varname">n</code>.
Je implementována pouze pro reálná čísla.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://cs.wikipedia.org/wiki/Besselova_funkce" target="_top">Wikipedia</a>.</p><p>Verze 1.0.16 a
novější.</p></dd><dt><span class="term"><a name="gel-function-Dirich
letKernel"></a>DirichletKernel</span></dt><dd><pre class="synopsis">DirichletKernel
(n,t)</pre><p>Dirichletovo jádro řádu <code class="varname">n</code>.</p></dd><dt><span class="term"><a
name="gel-function-DiscreteDelta"></a>DiscreteDelta</span></dt><dd><pre class="synopsis">DiscreteDelta
(v)</pre><p>Vrátit 1, když a jen když jsou všechny prvky nulové.</p></dd><dt><span class="term"><a
name="gel-function-ErrorFunction"></a>ErrorFunction</span></dt><dd><pre class="synopsis">ErrorFunction
(x)</pre><p>Alternativní názvy: <code class="function">erf</code></p><p>Chybová funkce, 2/sqrt(pi) * int_0^x
e^(-t^2) dt.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/ErrorFunction" target="_top">Planetmath</a> (text je v angličtině) a <a
class="ulink" href="https://cs.wikipedia.org/wiki/Chybov%C3%A1_funkce"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-FejerKernel"></a>FejerKernel</span></dt><d
d><pre class="synopsis">FejerKernel (n,t)</pre><p>Fejerovo jádro řádu <code class="varname">n</code>
vyhodnocené v <code class="varname">t</code>.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://planetmath.org/FejerKernel" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-GammaFunction"></a>GammaFunction</span></dt><dd><pre class="synopsis">GammaFunction
(x)</pre><p>Alternativní názvy: <code class="function">Gamma</code></p><p>Funkce Gama. V současnosti je
implementována pouze pro reálná čísla.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/GammaFunction" target="_top">Planetmath</a> (text je v angličtině) a <a
class="ulink" href="http://cs.wikipedia.org/wiki/Gama_funkce" target="_top">Wikipedia</a>.</p></dd><dt><span
class="term"><a name="gel-function-KroneckerDelta"></a>KroneckerDelta</span></dt><dd><pre
class="synopsis">Kroneck
erDelta (v)</pre><p>Vrátit 1, když a jen když se všechny prvky rovnají.</p></dd><dt><span class="term"><a
name="gel-function-LambertW"></a>LambertW</span></dt><dd><pre class="synopsis">LambertW (x)</pre><p>Hlavní
větev Lambertovy funkce W vypočítaná pro čistě reálná čísla větší nebo rovna <strong
class="userinput"><code>-1/e</code></strong>. Funkce <code class="function">LambertW</code> je inverzní k
výrazu <strong class="userinput"><code>x*e^x</code></strong>. Dokonce i pro reálná <code
class="varname">x</code> tento výraz není jedna k jedné a proto má dvě větve pro <strong
class="userinput"><code>[-1/e,0)</code></strong>. Viz <a class="link"
href="ch11s12.html#gel-function-LambertWm1"><code class="function">LambertWm1</code></a> ohledně další reálné
větve.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://en.wikipedia.org/wiki/Lambert_W_function" target="_top">Wikipedia</a> (text je v
angličtině).</p><p>Verze 1
.0.18 a novější.</p></dd><dt><span class="term"><a
name="gel-function-LambertWm1"></a>LambertWm1</span></dt><dd><pre class="synopsis">LambertWm1
(x)</pre><p>Vedlejší (mínus první) větev Lambertovy funkce W vypočítaná pro čistě reálná čísla větší nebo
rovna <strong class="userinput"><code>-1/e</code></strong>. Funkce <code class="function">LambertWm1</code>
je druhou větví k inverzi výrazu <strong class="userinput"><code>x*e^x</code></strong>. Viz <a class="link"
href="ch11s12.html#gel-function-LambertW"><code class="function">LambertW</code></a> ohledně hlavní
větve.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://en.wikipedia.org/wiki/Lambert_W_function" target="_top">Wikipedia</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-MinimizeFunction"></a>MinimizeFunction</span></dt><dd><pre
class="synopsis">MinimizeFunction (fce,x,prirust)</pre><p>Najít první hodnotu, kdy f(x)=0.</p></dd><dt>
<span class="term"><a name="gel-function-MoebiusDiskMapping"></a>MoebiusDiskMapping</span></dt><dd><pre
class="synopsis">MoebiusDiskMapping (a,z)</pre><p>Möbiova transformace (lineární lomené zobrazení) kruhu na
sebe sama ku 0.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-MoebiusMapping"></a>MoebiusMapping</span></dt><dd><pre class="synopsis">MoebiusMapping
(z,z2,z3,z4)</pre><p>Möbiova transformace (lineární lomené zobrazení) pomocí dvojpoměrů z2,z3,z4 ku 1,0 a
nekonečnu.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToInfty"></a>MoebiusMappingInftyToInfty</span></dt><dd><pre
class="synopsis">Moebi
usMappingInftyToInfty (z,z2,z3)</pre><p>Möbiova transformace (lineární lomené zobrazení) pomocí dvojpoměrů
nekonečna ku nekonečnu a z2,z3 ku 1 a 0.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToOne"></a>MoebiusMappingInftyToOne</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToOne (z,z3,z4)</pre><p>Möbiova transformace (lineární lomené zobrazení)
pomocí dvojpoměrů nekonečna ku 1 a z3,z4 ku 0 a nekonečnu.</p><p>Více informací najdete v encyklopedii <a
class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToZero"></a>MoebiusMappingInftyToZero</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToZero (z,z2,z4)</pre><
p>Möbiova transformace (lineární lomené zobrazení) pomocí dvojpoměrů nekonečna ku 0 a z2,z4 ku 1 a
nekonečnu.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a
name="gel-function-PoissonKernel"></a>PoissonKernel</span></dt><dd><pre class="synopsis">PoissonKernel
(r,sigma)</pre><p>Poissonovo jádro na D(0,1) (nenormalizované na 1, tj. integrál je 2pi).</p></dd><dt><span
class="term"><a name="gel-function-PoissonKernelRadius"></a>PoissonKernelRadius</span></dt><dd><pre
class="synopsis">PoissonKernelRadius (r,sigma)</pre><p>Poissonovo jádro na D(0,R) (nenormalizované na
1).</p></dd><dt><span class="term"><a name="gel-function-RiemannZeta"></a>RiemannZeta</span></dt><dd><pre
class="synopsis">RiemannZeta (x)</pre><p>Alternativní názvy: <code
class="function">zeta</code></p><p>Riemannova funkce zeta. V současnosti
je implementována jen pro reálná čísla.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/RiemannZetaFunction" target="_top">Planetmath</a> (text je v angličtině) a <a
class="ulink" href="http://cs.wikipedia.org/wiki/Riemannova_funkce_zeta"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-UnitStep"></a>UnitStep</span></dt><dd><pre class="synopsis">UnitStep (x)</pre><p>Funkce
jednotkového skoku je rovna 0 pro x<0 a jedné v ostatních případech. Jedná se o integrál Diracovy funkce
delta. Bývá také nazývána Heavisideova funkce.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://cs.wikipedia.org/wiki/Heavisideova_funkce" target="_top">Wikipedia</a>.</p></dd><dt><span
class="term"><a name="gel-function-cis"></a>cis</span></dt><dd><pre class="synopsis">cis (x)</pre><p>Funkce
<code class="function">cis</code>, což je to stejné jako <strong class="userinput"><
code>cos(x)+1i*sin(x)</code></strong></p></dd><dt><span class="term"><a
name="gel-function-deg2rad"></a>deg2rad</span></dt><dd><pre class="synopsis">deg2rad (x)</pre><p>Převést
stupně na radiány.</p></dd><dt><span class="term"><a
name="gel-function-rad2deg"></a>rad2deg</span></dt><dd><pre class="synopsis">rad2deg (x)</pre><p>Převést
radiány na stupně.</p></dd><dt><span class="term"><a name="gel-function-sinc"></a>sinc</span></dt><dd><pre
class="synopsis">sinc (x)</pre><p>Vypočítat nenormalizovanou funkci sinc, což je <strong
class="userinput"><code>sin(x)/x</code></strong>. Jestli chcete normalizovanou funkci, volejte <strong
class="userinput"><code>sinc(pi*x)</code></strong>.</p><p>Více informací najdete v encyklopedii <a
class="ulink" href="http://en.wikipedia.org/wiki/Sinc" target="_top">Wikipedia</a> (článek je v
angličtině).</p><p>Verze 1.0.16 a novější.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation foote
r"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s11.html">Předcházející</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Nahoru</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s13.html">Další</a></td></tr><tr><td width="40%" align="left"
valign="top">Diferenciální/integrální počet </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Domů</a></td><td width="40%" align="right" valign="top"> Řešení
rovnic</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch11s13.html b/help/cs/html/ch11s13.html
new file mode 100644
index 0000000..83027cc
--- /dev/null
+++ b/help/cs/html/ch11s13.html
@@ -0,0 +1,25 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Řešení
rovnic</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch11.html" title="Kapitola 11.
Seznam funkcí GEL"><link rel="prev" href="ch11s12.html" title="Funkce"><link rel="next" href="ch11s14.html"
title="Statistika"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Řešení rovnic</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s12.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 11. Seznam funkcí
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s14.html">Další</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="titl
e" style="clear: both"><a name="genius-gel-function-list-equation-solving"></a>Řešení
rovnic</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-CubicFormula"></a>CubicFormula</span></dt><dd><pre class="synopsis">CubicFormula
(p)</pre><p>Vypočítat kořeny kubického (3. stupně) polynomu pomocí kubické rovnice. Polynom by měl být zadán
jako vektor koeficientů. Tj. <strong class="userinput"><code>4*x^3 + 2*x + 1</code></strong> odpovídá vektoru
<strong class="userinput"><code>[1,2,0,4]</code></strong>. Vrací sloupcový vektor tří řešení. První řešení je
vždy reálné, protože kubická rovnice má vždy jedno reálné řešení.</p><p>Více informací najdete v
encyklopediích <a class="ulink" href="http://planetmath.org/CubicFormula" target="_top">Planetmath</a> (text
je v angličtině), <a class="ulink" href="http://mathworld.wolfram.com/CubicFormula.html"
target="_top">Mathworld</a> (
text je v angličtině) a <a class="ulink" href="http://cs.wikipedia.org/wiki/Kubick%C3%A1_rovnice"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-EulersMethod"></a>EulersMethod</span></dt><dd><pre class="synopsis">EulersMethod
(f,x0,y0,x1,n)</pre><p>Použít klasickou Eulerovu metodu k numerickému řešení y'=f(x,y) pro počáteční <code
class="varname">x0</code>, <code class="varname">y0</code> měnící se do <code class="varname">x1</code> s
přírůstky <code class="varname">n</code> a vrátit <code class="varname">y</code> v <code
class="varname">x1</code>. Pokud nechcete výslovně použít Eulerovu metodu, měli byste vážně popřemýšlet o
použití <a class="link" href="ch11s13.html#gel-function-RungeKutta">RungeKutta</a> k řešení obyčejných
diferenciálních rovnic.</p><p>Systémy je možné vyřešit jednoduše tak, že <code class="varname">y</code> musí
být všude (sloupcový) vektor. To znamená, že <code class
="varname">y0</code> může být vektor v případech, kdy by <code class="varname">f</code> mělo přebírat <code
class="varname">x</code> a vektor stejné velikosti pro druhý argument a mělo by vracet vektor stejné
velikosti.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://mathworld.wolfram.com/EulerForwardMethod.html" target="_top">Mathworld</a> (text je v
angličtině) a <a class="ulink" href="http://cs.wikipedia.org/wiki/Eulerova_metoda"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-EulersMethodFull"></a>EulersMethodFull</span></dt><dd><pre
class="synopsis">EulersMethodFull (f,x0,y0,x1,n)</pre><p>Použít klasickou Eulerovu metodu k numerickému
řešení y'=f(x,y) pro počáteční <code class="varname">x0</code>, <code class="varname">y0</code> měnící se do
<code class="varname">x1</code> s přírůstky <code class="varname">n</code> a vrátit matici 2 krát <strong
class="userinput"><code>n+1</
code></strong> s hodnotami <code class="varname">x</code> a <code class="varname">y</code>. Pokud nechcete
výslovně použít Eulerovu metodu, měli byste vážně popřemýšlet o použití <a class="link"
href="ch11s13.html#gel-function-RungeKuttaFull">RungeKuttaFull</a> k řešení obyčejných diferenciálních
rovnic. Vhodné pro zapojení do <a class="link"
href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a> nebo <a class="link"
href="ch11s20.html#gel-function-LinePlotDrawPoints">LinePlotDrawPoints</a>.</p><p>Příklad: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>line =
EulersMethodFull(`(x,y)=y,0,1.0,3.0,50);</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(line,"window","fit","color","blue","legend","Exponenciální
vývoj");</code></strong>
+</pre><p>Systémy je možné vyřešit jednoduše tak, že <code class="varname">y</code> musí být všude
(sloupcový) vektor. To znamená, že <code class="varname">y0</code> může být vektor v případech, kdy by <code
class="varname">f</code> mělo přebírat <code class="varname">x</code> a vektor stejné velikosti pro druhý
argument a mělo by vracet vektor stejné velikosti.</p><p>Výstup pro systém je nicméně matice n krát 2 s
druhou položkou v podobě vektoru. Když si přejete vykreslit čáru, ujistěte se, že používáte řádkové vektory a
pak převeďte matici na vektor pomocí <a class="link"
href="ch11s08.html#gel-function-ExpandMatrix">ExpandMatrix</a> a vyberte si pravý sloupec. Například:
</p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
EulersMethodFull(`(x,y)=[y@(2),-y@(1)],0,[1.0,1.0],10.0,500);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
ExpandMatrix(lines);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>firstline =
lines@(,[1,2]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>secondline =
lines@(,[1,3]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>LinePlotWindow =
[0,10,-2,2];</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(firstline,"color","blue","legend","První");</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(secondline,"color","red","thickness",3,"legend","Druhý");</code></strong>
+</pre><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://mathworld.wolfram.com/EulerForwardMethod.html" target="_top">Mathworld</a> (text je v
angličtině) a <a class="ulink" href="http://cs.wikipedia.org/wiki/Eulerova_metoda"
target="_top">Wikipedia</a>.</p><p>Verze 1.0.10 a novější.</p></dd><dt><span class="term"><a
name="gel-function-FindRootBisection"></a>FindRootBisection</span></dt><dd><pre
class="synopsis">FindRootBisection (f,a,b,TOL,N)</pre><p>Najít kořen funkce pomocí metody bisekce. <code
class="varname">a</code> a <code class="varname">b</code> je počáteční odhad intervalu, <strong
class="userinput"><code>f(a)</code></strong> a <strong class="userinput"><code>f(b)</code></strong> by měly
mít opačná znaménka. <code class="varname">TOL</code> je požadovaná tolerance a <code
class="varname">N</code> je omezení počtu iterací, které mají proběhnout, 0 značí bez omezení. Funkce vrací
vektor <strong class="userinput">
<code>[uspech,hodnota,iteratce]</code></strong>, kde <code class="varname">uspech</code> je pravdivostní
hodnota signalizující úspěch, <code class="varname">hodnota</code> je poslední spočtená hodnota a <code
class="varname">iterace</code> je počet dokončených iterací.</p></dd><dt><span class="term"><a
name="gel-function-FindRootFalsePosition"></a>FindRootFalsePosition</span></dt><dd><pre
class="synopsis">FindRootFalsePosition (f,a,b,TOL,N)</pre><p>Najít kořen funkce pomocí metody tětiv. <code
class="varname">a</code> a <code class="varname">b</code> je počáteční odhad intervalu, <strong
class="userinput"><code>f(a)</code></strong> a <strong class="userinput"><code>f(b)</code></strong> by měly
mít opačná znaménka. <code class="varname">TOL</code> je požadovaná tolerance a <code
class="varname">N</code> je omezení počtu iterací, které mají proběhnout, 0 značí bez omezení. Funkce vrací
vektor <strong class="userinput"><code>[uspech,hodnota,
iteratce]</code></strong>, kde <code class="varname">uspech</code> je pravdivostní hodnota signalizující
úspěch, <code class="varname">hodnota</code> je poslední spočtená hodnota a <code
class="varname">iterace</code> je počet dokončených iterací.</p></dd><dt><span class="term"><a
name="gel-function-FindRootMullersMethod"></a>FindRootMullersMethod</span></dt><dd><pre
class="synopsis">FindRootMullersMethod (f,x0,x1,x2,TOL,N)</pre><p>Najít kořen funkce pomocí Mullerovy metody.
<code class="varname">TOL</code> je požadovaná tolerance a <code class="varname">N</code> je omezení počtu
iterací, které mají proběhnout, 0 značí bez omezení. Funkce vrací vektor <strong
class="userinput"><code>[uspech,hodnota,iteratce]</code></strong>, kde <code class="varname">uspech</code> je
pravdivostní hodnota signalizující úspěch, <code class="varname">hodnota</code> je poslední spočtená hodnota
a <code class="varname">iterace</code> je počet dokončených iter
ací.</p></dd><dt><span class="term"><a
name="gel-function-FindRootSecant"></a>FindRootSecant</span></dt><dd><pre class="synopsis">FindRootSecant
(f,a,b,TOL,N)</pre><p>Najít kořen funkce pomocí metody sečen. <code class="varname">a</code> a <code
class="varname">b</code> je počáteční odhad intervalu, <strong class="userinput"><code>f(a)</code></strong> a
<strong class="userinput"><code>f(b)</code></strong> by měly mít opačná znaménka. <code
class="varname">TOL</code> je požadovaná tolerance a <code class="varname">N</code> je omezení počtu iterací,
které mají proběhnout, 0 značí bez omezení. Funkce vrací vektor <strong
class="userinput"><code>[uspech,hodnota,iteratce]</code></strong>, kde <code class="varname">uspech</code> je
pravdivostní hodnota signalizující úspěch, <code class="varname">hodnota</code> je poslední spočtená hodnota
a <code class="varname">iterace</code> je počet dokončených iterací.</p></dd><dt><span class="term"><a nam
e="gel-function-HalleysMethod"></a>HalleysMethod</span></dt><dd><pre class="synopsis">HalleysMethod
(f,df,ddf,odhad,epsilon,maxn)</pre><p>Najde nuly pomocí Halleyovy metody. <code class="varname">f</code> je
funkce, <code class="varname">df</code> je její derivace a <code class="varname">ddf</code> její druhá
derivace. <code class="varname">odhad</code> je počáteční odhad. Funkce vrací výsledek po dvou úspěšných
hodnotách, které každá spadají do <code class="varname">epsilon</code> nebo po <code
class="varname">maxn</code> pokusech, v kterémžto případě vrací <code class="constant">null</code>, což značí
selhání.</p><p>Viz také <a class="link" href="ch11s13.html#gel-function-NewtonsMethod"><code
class="function">NewtonsMethod</code></a> a <a class="link"
href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>.</p><p>Příklad vyhledání druhé odmocniny z 10: </p><pre
class="screen"><code class="
prompt">genius></code> <strong
class="userinput"><code>HalleysMethod(`(x)=x^2-10,`(x)=2*x,`(x)=2,3,10^-10,100)</code></strong>
+</pre><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://en.wikipedia.org/wiki/Halley%27s_method" target="_top">Wikipedia</a> (text je v
angličtině).</p><p>Verze 1.0.18 a novější.</p></dd><dt><span class="term"><a
name="gel-function-NewtonsMethod"></a>NewtonsMethod</span></dt><dd><pre class="synopsis">NewtonsMethod
(f,df,odhad,epsilon,maxn)</pre><p>Najde nuly pomocí metody tečen (Newtonovy metody). <code
class="varname">f</code> je funkce a <code class="varname">df</code> je její derivace. <code
class="varname">odhad</code> je počáteční odhad. Funkce vrací výsledek po dvou úspěšných hodnotách, které
každá spadají do <code class="varname">epsilon</code> nebo po <code class="varname">maxn</code> pokusech, v
kterémžto případě vrací <code class="constant">null</code>, což značí selhání.</p><p>Viz také <a class="link"
href="ch11s15.html#gel-function-NewtonsMethodPoly"><code class="function">NewtonsMethodPoly</code></a> a <a
class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>.</p><p>Příklad vyhledání druhé odmocniny z 10: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>NewtonsMethod(`(x)=x^2-10,`(x)=2*x,3,10^-10,100)</code></strong>
+</pre><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://cs.wikipedia.org/wiki/Metoda_te%C4%8Den" target="_top">Wikipedia</a>.</p><p>Verze 1.0.18 a
novější.</p></dd><dt><span class="term"><a
name="gel-function-PolynomialRoots"></a>PolynomialRoots</span></dt><dd><pre class="synopsis">PolynomialRoots
(p)</pre><p>Vypočítat kořeny polynomu (1. až 4. stupně) pomocí jedné z rovnic pro takovéto polynomy. Polynom
by měl být zadán jako vektor koeficientů. Tj. <strong class="userinput"><code>4*x^3 + 2*x + 1</code></strong>
odpovídá vektoru <strong class="userinput"><code>[1,2,0,4]</code></strong>. Vrací sloupcový vektor
řešení.</p><p>Funkce volá <a class="link"
href="ch11s13.html#gel-function-QuadraticFormula">QuadraticFormula</a>, <a class="link"
href="ch11s13.html#gel-function-CubicFormula">CubicFormula</a> a <a class="link"
href="ch11s13.html#gel-function-QuarticFormula">QuarticFormula</a>.</p></dd><dt><span class="term"><a
name="gel-fun
ction-QuadraticFormula"></a>QuadraticFormula</span></dt><dd><pre class="synopsis">QuadraticFormula
(p)</pre><p>Vypočítat kořeny kvadratického (2. stupně) polynomu pomocí kvadratické rovnice. Polynom by měl
být zadán jako vektor koeficientů. Tj. <strong class="userinput"><code>3*x^2 + 2*x + 1</code></strong>
odpovídá vektoru <strong class="userinput"><code>[1,2,3]</code></strong>. Vrací sloupcový vektor dvou
řešení.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/QuadraticFormula" target="_top">Planetmath</a> (text je v angličtině) a <a
class="ulink" href="http://mathworld.wolfram.com/QuadraticFormula.html" target="_top">Mathworld</a> (text je
v angličtině).</p></dd><dt><span class="term"><a
name="gel-function-QuarticFormula"></a>QuarticFormula</span></dt><dd><pre class="synopsis">QuarticFormula
(p)</pre><p>Vypočítat kořeny kvartického (4. stupně) polynomu pomocí kvartické rovnice. Polynom by měl být
zadán jako vektor koeficientů. Tj. <strong class="userinput"><code>5*x^4 + 2*x + 1</code></strong> odpovídá
vektoru <strong class="userinput"><code>[1,2,0,0,5]</code></strong>. Vrací sloupcový vektor čtyř
řešení.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://planetmath.org/QuarticFormula" target="_top">Planetmath</a> (text je v angličtině), <a
class="ulink" href="http://mathworld.wolfram.com/QuarticEquation.html" target="_top">Mathworld</a> (text je v
angličtině) a <a class="ulink" href="http://en.wikipedia.org/wiki/Quartic_equation"
target="_top">Wikipedia</a> (text je v angličtině).</p></dd><dt><span class="term"><a
name="gel-function-RungeKutta"></a>RungeKutta</span></dt><dd><pre class="synopsis">RungeKutta
(f,x0,y0,x1,n)</pre><p>Použít klasickou neadaptivní Rungeho-Kuttovu metodu čtvrtého řádu k numerickému řešení
y'=f(x,y) pro počáteční <code class="varname">x0</code>, <code class="varname">y0</code> měn
ící se do <code class="varname">x1</code> s přírůstky <code class="varname">n</code>, vrací <code
class="varname">y</code> v <code class="varname">x1</code>.</p><p>Systémy je možné vyřešit jednoduše tak, že
<code class="varname">y</code> musí být všude (sloupcový) vektor. To znamená, že <code
class="varname">y0</code> může být vektor v případech, kdy by <code class="varname">f</code> mělo přebírat
<code class="varname">x</code> a vektor stejné velikosti pro druhý argument a mělo by vracet vektor stejné
velikosti.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://mathworld.wolfram.com/Runge-KuttaMethod.html" target="_top">Mathworld</a> (text je v angličtině)
a <a class="ulink"
href="http://cs.wikipedia.org/wiki/Numerick%C3%A9_%C5%99e%C5%A1en%C3%AD_oby%C4%8Dejn%C3%BDch_diferenci%C3%A1ln%C3%ADch_rovnic#Metody_Runge-Kutta"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a name="gel-function-RungeKuttaFull
"></a>RungeKuttaFull</span></dt><dd><pre class="synopsis">RungeKuttaFull (f,x0,y0,x1,n)</pre><p>Použít
klasickou neadaptivní metodu Runge-Kutta čtvrtého řádu k numerickému řešení y'=f(x,y) pro počáteční <code
class="varname">x0</code>, <code class="varname">y0</code> měnící se do <code class="varname">x1</code> s
přírůstky <code class="varname">n</code> a vrátit matici 2 krát <strong
class="userinput"><code>n+1</code></strong> s hodnotami <code class="varname">x</code> a <code
class="varname">y</code>. Vhodné pro zapojení do <a class="link"
href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a> nebo <a class="link"
href="ch11s20.html#gel-function-LinePlotDrawPoints">LinePlotDrawPoints</a>.</p><p>Příklad: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>line =
RungeKuttaFull(`(x,y)=y,0,1.0,3.0,50);</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(line,"window","fit","color","blue","legend","Exponenciální
vývoj");</code></strong>
+</pre><p>Systémy je možné vyřešit jednoduše tak, že <code class="varname">y</code> musí být všude
(sloupcový) vektor. To znamená, že <code class="varname">y0</code> může být vektor v případech, kdy by <code
class="varname">f</code> mělo přebírat <code class="varname">x</code> a vektor stejné velikosti pro druhý
argument a mělo by vracet vektor stejné velikosti.</p><p>Výstup pro systém je nicméně matice n krát 2 s
druhou položkou v podobě vektoru. Když si přejete vykreslit čáru, ujistěte se, že používáte řádkové vektory a
pak převeďte matici na vektor pomocí <a class="link"
href="ch11s08.html#gel-function-ExpandMatrix">ExpandMatrix</a> a vyberte si pravý sloupec. Například:
</p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
RungeKuttaFull(`(x,y)=[y@(2),-y@(1)],0,[1.0,1.0],10.0,100);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
ExpandMatrix(lines);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>firstline =
lines@(,[1,2]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>secondline =
lines@(,[1,3]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>LinePlotWindow =
[0,10,-2,2];</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(firstline,"color","blue","legend","První");</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(secondline,"color","red","thickness",3,"legend","Druhý");</code></strong>
+</pre><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://mathworld.wolfram.com/Runge-KuttaMethod.html" target="_top">Mathworld</a> (text je v angličtině)
a <a class="ulink"
href="http://cs.wikipedia.org/wiki/Numerick%C3%A9_%C5%99e%C5%A1en%C3%AD_oby%C4%8Dejn%C3%BDch_diferenci%C3%A1ln%C3%ADch_rovnic#Metody_Runge-Kutta"
target="_top">Wikipedia</a>.</p><p>Verze 1.0.10 a novější.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s12.html">Předcházející</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s14.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Funkce </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%" align="right"
valign="top"> Statistika</td></tr></table><
/div></body></html>
diff --git a/help/cs/html/ch11s14.html b/help/cs/html/ch11s14.html
new file mode 100644
index 0000000..833ae6f
--- /dev/null
+++ b/help/cs/html/ch11s14.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Statistika</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Příručka k aplikaci Genius"><link rel="up"
href="ch11.html" title="Kapitola 11. Seznam funkcí GEL"><link rel="prev" href="ch11s13.html" title="Řešení
rovnic"><link rel="next" href="ch11s15.html" title="Polynomy"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Statistika</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s13.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 11. Seznam
funkcí GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s15.html">Další</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" s
tyle="clear: both"><a name="genius-gel-function-list-statistics"></a>Statistika</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Average"></a>Average</span></dt><dd><pre class="synopsis">Average (m)</pre><p>Alternativní
názvy: <code class="function">average</code><code class="function">Mean</code><code
class="function">mean</code></p><p>Vypočítat průměr z celé matice.</p><p>Více informací najdete v
encyklopediích <a class="ulink" href="http://mathworld.wolfram.com/ArithmeticMean.html"
target="_top">Mathworld</a> (text je v angličtině) nebo <a class="ulink"
href="http://cs.wikipedia.org/wiki/Aritmetick%C3%BD_pr%C5%AFm%C4%9Br"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-GaussDistribution"></a>GaussDistribution</span></dt><dd><pre
class="synopsis">GaussDistribution (x,sigma)</pre><p>Integrál Gaussovy funkce od 0 do <code
class="varname">x</code> (oblast pod no
rmální křivkou).</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://mathworld.wolfram.com/NormalDistribution.html" target="_top">Mathworld</a> (text je v
angličtině) nebo <a class="ulink" href="http://cs.wikipedia.org/wiki/Norm%C3%A1ln%C3%AD_rozd%C4%9Blen%C3%AD"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-GaussFunction"></a>GaussFunction</span></dt><dd><pre class="synopsis">GaussFunction
(x,sigma)</pre><p>Normalizovaného Gaussova funkce rozdělení (normální křivka).</p><p>Více informací najdete v
encyklopediích <a class="ulink" href="http://mathworld.wolfram.com/NormalDistribution.html"
target="_top">Mathworld</a> (text je v angličtině) nebo <a class="ulink"
href="http://cs.wikipedia.org/wiki/Norm%C3%A1ln%C3%AD_rozd%C4%9Blen%C3%AD"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-Median"></a>Median</span></dt><dd><pre class="synopsis">Median (m)</pre><p>Alternati
vní názvy: <code class="function">median</code></p><p>Vypočítat medián z celé matice.</p><p>Více informací
najdete v encyklopedii <a class="ulink" href="http://mathworld.wolfram.com/StatisticalMedian.html"
target="_top">Mathworld</a> (text je v angličtině).</p></dd><dt><span class="term"><a
name="gel-function-PopulationStandardDeviation"></a>PopulationStandardDeviation</span></dt><dd><pre
class="synopsis">PopulationStandardDeviation (m)</pre><p>Alternativní názvy: <code
class="function">stdevp</code></p><p>Spočítat standardní odchylku souboru celé matice.</p></dd><dt><span
class="term"><a name="gel-function-RowAverage"></a>RowAverage</span></dt><dd><pre class="synopsis">RowAverage
(m)</pre><p>Alternativní názvy: <code class="function">RowMean</code></p><p>Vypočítat průměr každého řádku v
matici.</p><p>Více informací najdete v encyklopediích <a class="ulink"
href="http://mathworld.wolfram.com/ArithmeticMean.html" target="_top">Mathworld</a> (text
je v angličtině) nebo <a class="ulink" href="http://cs.wikipedia.org/wiki/Aritmetick%C3%BD_pr%C5%AFm%C4%9Br"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-RowMedian"></a>RowMedian</span></dt><dd><pre class="synopsis">RowMedian
(m)</pre><p>Vypočítat medián každého řádku v matici a vrátit sloupcový vektor mediánů.</p><p>Více informací
najdete v encyklopedii <a class="ulink" href="http://mathworld.wolfram.com/StatisticalMedian.html"
target="_top">Mathworld</a> (text je v angličtině).</p></dd><dt><span class="term"><a
name="gel-function-RowPopulationStandardDeviation"></a>RowPopulationStandardDeviation</span></dt><dd><pre
class="synopsis">RowPopulationStandardDeviation (m)</pre><p>Alternativní názvy: <code
class="function">rowstdevp</code></p><p>Spočítat standardní odchylku souboru řádků matice a vrátit svislý
vektor.</p></dd><dt><span class="term"><a name="gel-function-RowStandardDeviation"></a>RowStandardDeviation<
/span></dt><dd><pre class="synopsis">RowStandardDeviation (m)</pre><p>Alternativní názvy: <code
class="function">rowstdev</code></p><p>Spočítat standardní odchylku řádků matice a vrátit svislý
vektor.</p></dd><dt><span class="term"><a
name="gel-function-StandardDeviation"></a>StandardDeviation</span></dt><dd><pre
class="synopsis">StandardDeviation (m)</pre><p>Alternativní názvy: <code
class="function">stdev</code></p><p>Spočítat standardní odchylku celé matice.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s13.html">Předcházející</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s15.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Řešení rovnic </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Dom�
�</a></td><td width="40%" align="right" valign="top"> Polynomy</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch11s15.html b/help/cs/html/ch11s15.html
new file mode 100644
index 0000000..8a6f316
--- /dev/null
+++ b/help/cs/html/ch11s15.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Polynomy</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Příručka
k aplikaci Genius"><link rel="up" href="ch11.html" title="Kapitola 11. Seznam funkcí GEL"><link rel="prev"
href="ch11s14.html" title="Statistika"><link rel="next" href="ch11s16.html" title="Teorie
množin"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Polynomy</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s14.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 11. Seznam funkcí
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s16.html">Další</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style
="clear: both"><a name="genius-gel-function-list-polynomials"></a>Polynomy</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AddPoly"></a>AddPoly</span></dt><dd><pre class="synopsis">AddPoly (p1,p2)</pre><p>Sečíst
dva polynomy (vektory).</p></dd><dt><span class="term"><a
name="gel-function-DividePoly"></a>DividePoly</span></dt><dd><pre class="synopsis">DividePoly
(p,q,&r)</pre><p>Podělit dva polynomy (jako vektory) pomocí dlouhého dělení. Vrátit rozdíl dvou polynomů.
Volitelný argument <code class="varname">r</code> se použije k vrácení zbytku. Zbytek bude mít nižší řád, než
polynom <code class="varname">q</code>.</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://planetmath.org/PolynomialLongDivision" target="_top">Planetmath</a> (text je v
angličtině).</p></dd><dt><span class="term"><a name="gel-function-IsPoly"></a>IsPoly</span></dt><dd><pre
class="synop
sis">IsPoly (p)</pre><p>Zkontrolovat, zda je vektor použitelný jako polynom.</p></dd><dt><span
class="term"><a name="gel-function-MultiplyPoly"></a>MultiplyPoly</span></dt><dd><pre
class="synopsis">MultiplyPoly (p1,p2)</pre><p>Vynásobit dva polynomy (jako vektory).</p></dd><dt><span
class="term"><a name="gel-function-NewtonsMethodPoly"></a>NewtonsMethodPoly</span></dt><dd><pre
class="synopsis">NewtonsMethodPoly (poly,odhad,epsilon,maxn)</pre><p>Najde kořeny polynomu pomocí metody
tečen (Newtonovy metody). <code class="varname">poly</code> je polynom v podobě vektoru a <code
class="varname">odhad</code> je počáteční odhad. Funkce vrací výsledek po dvou úspěšných hodnotách, které
každá spadají do <code class="varname">epsilon</code> nebo po <code class="varname">maxn</code> pokusech, v
kterémžto případě vrací <code class="constant">null</code>, což značí selhání.</p><p>Viz také <a class="link"
href="ch11s13.html#gel-function-NewtonsMethod"><co
de class="function">NewtonsMethod</code></a>.</p><p>Příklad vyhledání druhé odmocniny z 10: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>NewtonsMethodPoly([-10,0,1],3,10^-10,100)</code></strong>
+</pre><p>Více informací najdete v encyklopedii <a class="ulink"
href="http://cs.wikipedia.org/wiki/Metoda_te%C4%8Den" target="_top">Wikipedia</a>.</p></dd><dt><span
class="term"><a name="gel-function-Poly2ndDerivative"></a>Poly2ndDerivative</span></dt><dd><pre
class="synopsis">Poly2ndDerivative (p)</pre><p>Vypočítat druhou derivaci polynomu (jako
vektoru).</p></dd><dt><span class="term"><a
name="gel-function-PolyDerivative"></a>PolyDerivative</span></dt><dd><pre class="synopsis">PolyDerivative
(p)</pre><p>Derivovat polynom (jako vektor).</p></dd><dt><span class="term"><a
name="gel-function-PolyToFunction"></a>PolyToFunction</span></dt><dd><pre class="synopsis">PolyToFunction
(p)</pre><p>Vytvořit funkci z polynomu (jako vektoru).</p></dd><dt><span class="term"><a
name="gel-function-PolyToString"></a>PolyToString</span></dt><dd><pre class="synopsis">PolyToString
(p,prom...)</pre><p>Vytvořit řetězec z polynomu (jako vektoru).</p></dd><dt><span class="term"><a name="gel-
function-SubtractPoly"></a>SubtractPoly</span></dt><dd><pre class="synopsis">SubtractPoly
(p1,p2)</pre><p>Odečíst dva polynomy (jako vektory).</p></dd><dt><span class="term"><a
name="gel-function-TrimPoly"></a>TrimPoly</span></dt><dd><pre class="synopsis">TrimPoly (p)</pre><p>Odstranit
nuly z polynomu (jako vektoru).</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s14.html">Předcházející</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s16.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Statistika </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%" align="right"
valign="top"> Teorie množin</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch11s16.html b/help/cs/html/ch11s16.html
new file mode 100644
index 0000000..568cebe
--- /dev/null
+++ b/help/cs/html/ch11s16.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Teorie
množin</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch11.html" title="Kapitola 11.
Seznam funkcí GEL"><link rel="prev" href="ch11s15.html" title="Polynomy"><link rel="next" href="ch11s17.html"
title="Komutativní algebra"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Teorie množin</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s15.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 11. Seznam funkcí
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s17.html">Další</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 cla
ss="title" style="clear: both"><a name="genius-gel-function-list-set-theory"></a>Teorie
množin</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Intersection"></a>Intersection</span></dt><dd><pre class="synopsis">Intersection
(X,Y)</pre><p>Vrátit průnik množin X a Y (X a Y jsou vektory považované za množiny).</p></dd><dt><span
class="term"><a name="gel-function-IsIn"></a>IsIn</span></dt><dd><pre class="synopsis">IsIn
(x,X)</pre><p>Vrátit <code class="constant">true</code> (pravda), pokud je x prvkem množiny X (kde X je
vektor považovaný za množinu).</p></dd><dt><span class="term"><a
name="gel-function-IsSubset"></a>IsSubset</span></dt><dd><pre class="synopsis">IsSubset (X, Y)</pre><p>Vrátit
<code class="constant">true</code> (pravda), pokud X je podmnožinu Y (X a Y jsou vektory považované za
množiny).</p></dd><dt><span class="term"><a name="gel-function-MakeSet"></a>MakeSet</span></dt><dd><p
re class="synopsis">MakeSet (X)</pre><p>Vrátit vektor, ve kterém se každý prvek X vyskytuje jen
jednou.</p></dd><dt><span class="term"><a name="gel-function-SetMinus"></a>SetMinus</span></dt><dd><pre
class="synopsis">SetMinus (X,Y)</pre><p>Vrátit rozdíl množin X-Y (X a Y jsou vektory považované za
množiny).</p></dd><dt><span class="term"><a name="gel-function-Union"></a>Union</span></dt><dd><pre
class="synopsis">Union (X,Y)</pre><p>Vrátit sjednocení množin X a Y (X a Y jsou vektory považované za
množiny).</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s15.html">Předcházející</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Nahoru</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s17.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Polynomy
</td><td width="20%" align="center"><a
accesskey="h" href="index.html">Domů</a></td><td width="40%" align="right" valign="top"> Komutativní
algebra</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch11s17.html b/help/cs/html/ch11s17.html
new file mode 100644
index 0000000..f37fb8e
--- /dev/null
+++ b/help/cs/html/ch11s17.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Komutativní
algebra</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch11.html" title="Kapitola 11.
Seznam funkcí GEL"><link rel="prev" href="ch11s16.html" title="Teorie množin"><link rel="next"
href="ch11s18.html" title="Různé"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Komutativní algebra</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s16.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 11. Seznam funkcí
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s18.html">Další</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h
2 class="title" style="clear: both"><a name="genius-gel-function-list-commutative-algebra"></a>Komutativní
algebra</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-MacaulayBound"></a>MacaulayBound</span></dt><dd><pre class="synopsis">MacaulayBound
(c,d)</pre><p>Pro Hilbertovu funkci jde o c pro stupeň d, daný Macaulayho ohraničením pro Hilbertovu funkci
stupně d+1 (operátor c^<d> z Greenova důkazu)</p><p>Verze 1.0.15 a novější.</p></dd><dt><span
class="term"><a name="gel-function-MacaulayLowerOperator"></a>MacaulayLowerOperator</span></dt><dd><pre
class="synopsis">MacaulayLowerOperator (c,d)</pre><p>Operátor c_<d> z Greenova důkazu Macaulayova
teorému</p><p>Verze 1.0.15 a novější.</p></dd><dt><span class="term"><a
name="gel-function-MacaulayRep"></a>MacaulayRep</span></dt><dd><pre class="synopsis">MacaulayRep
(c,d)</pre><p>Vrátit d-tou Macaulayho reprezentaci celého kladného
čísla c.</p><p>Verze 1.0.15 a novější.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s16.html">Předcházející</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s18.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Teorie množin </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%" align="right"
valign="top"> Různé</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch11s18.html b/help/cs/html/ch11s18.html
new file mode 100644
index 0000000..354d509
--- /dev/null
+++ b/help/cs/html/ch11s18.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Různé</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Příručka
k aplikaci Genius"><link rel="up" href="ch11.html" title="Kapitola 11. Seznam funkcí GEL"><link rel="prev"
href="ch11s17.html" title="Komutativní algebra"><link rel="next" href="ch11s19.html" title="Symbolické
operace"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Různé</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s17.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 11. Seznam funkcí
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s19.html">Další</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class=
"title" style="clear: both"><a
name="genius-gel-function-list-miscellaneous"></a>Různé</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-ASCIIToString"></a>ASCIIToString</span></dt><dd><pre class="synopsis">ASCIIToString
(vektor)</pre><p>Převést vektor hodnost ASCII na řetězec.</p></dd><dt><span class="term"><a
name="gel-function-AlphabetToString"></a>AlphabetToString</span></dt><dd><pre
class="synopsis">AlphabetToString (vektor,abeceda)</pre><p>Převést vektor hodnot abecedy (pozic v řetězci
abecedy) počítaných od 0 na řetězec.</p></dd><dt><span class="term"><a
name="gel-function-StringToASCII"></a>StringToASCII</span></dt><dd><pre class="synopsis">StringToASCII
(retezec)</pre><p>Převést retezec na vektor hodnot ASCII.</p></dd><dt><span class="term"><a
name="gel-function-StringToAlphabet"></a>StringToAlphabet</span></dt><dd><pre
class="synopsis">StringToAlphabet (retezec,abeceda)</pre><p>Př
evést řetězec na vektor hodnot abecedy (pozic v řetězci) počítaných od 0, za neznámé znaky se dosadí
-1.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s17.html">Předcházející</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Nahoru</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s19.html">Další</a></td></tr><tr><td width="40%" align="left"
valign="top">Komutativní algebra </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Domů</a></td><td width="40%" align="right" valign="top"> Symbolické
operace</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch11s19.html b/help/cs/html/ch11s19.html
new file mode 100644
index 0000000..0e8da4e
--- /dev/null
+++ b/help/cs/html/ch11s19.html
@@ -0,0 +1,5 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Symbolické
operace</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="ch11.html" title="Kapitola 11.
Seznam funkcí GEL"><link rel="prev" href="ch11s18.html" title="Různé"><link rel="next" href="ch11s20.html"
title="Vykreslování"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Symbolické operace</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s18.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 11. Seznam funkcí
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s20.html">Další</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-function-list-symbolic"></a>Symbolické
operace</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-SymbolicDerivative"></a>SymbolicDerivative</span></dt><dd><pre
class="synopsis">SymbolicDerivative (f)</pre><p>Zkusit symbolicky derivovat funkci f, kde f je funkce jedné
proměnné.</p><p>Příklady: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SymbolicDerivative(sin)</code></strong>
+= (`(x)=cos(x))
+<code class="prompt">genius></code> <strong
class="userinput"><code>SymbolicDerivative(`(x)=7*x^2)</code></strong>
+= (`(x)=(7*(2*x)))
+</pre><p>Více informací najdete v encyklopedii <a class="ulink"
href="https://cs.wikipedia.org/wiki/Derivace" target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-SymbolicDerivativeTry"></a>SymbolicDerivativeTry</span></dt><dd><pre
class="synopsis">SymbolicDerivativeTry (f)</pre><p>Zkusit symbolicky derivovat funkci f, kde f je funkce
jedné proměnné, při neúspěchu vrátit potichu <code class="constant">null</code>. (Viz <a class="link"
href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)</p><p>Více informací najdete v encyklopedii <a class="ulink"
href="https://cs.wikipedia.org/wiki/Derivace" target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-SymbolicNthDerivative"></a>SymbolicNthDerivative</span></dt><dd><pre
class="synopsis">SymbolicNthDerivative (f,n)</pre><p>Zkusit symbolicky n-krát derivovat funkci. (Viz <a
class="link" href="ch11s19.html#gel-funct
ion-SymbolicDerivative"><code class="function">SymbolicDerivative</code></a>)</p><p>Více informací najdete v
encyklopedii <a class="ulink" href="https://cs.wikipedia.org/wiki/Derivace"
target="_top">Wikipedia</a>.</p></dd><dt><span class="term"><a
name="gel-function-SymbolicNthDerivativeTry"></a>SymbolicNthDerivativeTry</span></dt><dd><pre
class="synopsis">SymbolicNthDerivativeTry (f,n)</pre><p>Zkusit symbolicky n-krát derivovat funkci, při
neúspěchu vrátit potichu <code class="constant">null</code>. (Viz <a class="link"
href="ch11s19.html#gel-function-SymbolicNthDerivative"><code
class="function">SymbolicNthDerivative</code></a>)</p><p>Více informací najdete v encyklopedii <a
class="ulink" href="https://cs.wikipedia.org/wiki/Derivace" target="_top">Wikipedia</a>.</p></dd><dt><span
class="term"><a
name="gel-function-SymbolicTaylorApproximationFunction"></a>SymbolicTaylorApproximationFunction</span></dt><dd><pre
class="synopsis">SymbolicTaylorApproximationFunction (f
,x0,n)</pre><p>Zkusit sestavit Taylorův polynom do n-tého řádku se středem x0, který aproximuje zadanou
funkci. (Viz <a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s18.html">Předcházející</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Nahoru</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s20.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Různé </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%" align="right"
valign="top"> Vykreslování</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch11s20.html b/help/cs/html/ch11s20.html
new file mode 100644
index 0000000..c3cff9b
--- /dev/null
+++ b/help/cs/html/ch11s20.html
@@ -0,0 +1,35 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Vykreslování</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Příručka k aplikaci Genius"><link rel="up"
href="ch11.html" title="Kapitola 11. Seznam funkcí GEL"><link rel="prev" href="ch11s19.html"
title="Symbolické operace"><link rel="next" href="ch12.html" title="Kapitola 12. Příklad programů v jazyce
GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Vykreslování</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s19.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 11. Seznam funkcí
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch12.html">Další</a></td></tr></table><hr></div><div class="sect1"><div class
="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-plotting"></a>Vykreslování</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-ExportPlot"></a>ExportPlot</span></dt><dd><pre class="synopsis">ExportPlot
(soubor,typ)</pre><pre class="synopsis">ExportPlot (soubor)</pre><p>Exportovat obsah okna s grafem do
souboru. Typ je řetězec, který určuje typ souboru, který se má použít – „png“, „eps“ nebo „ps“. Když typ
souboru není zadán, určí se podle přípony, která by v takovém případě mela být „.png“, „.eps“ nebo
„.ps“.</p><p>Upozorňujeme, že soubory se přepisují bez dotazu.</p><p>Při úspěšném exportu je vrácena hodnota
pravda. Jinak je vypsána chyba a vyvolána výjimka.</p><p>Příklady: </p><pre class="screen"><code
class="prompt">genius></code> <strong class="userinput"><code>ExportPlot("soubor.png")</code></
strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>ExportPlot("/složka/soubor","eps")</code></strong>
+</pre><p>Verze 1.0.16 a novější.</p></dd><dt><span class="term"><a
name="gel-function-LinePlot"></a>LinePlot</span></dt><dd><pre class="synopsis">LinePlot
(fce1,fce2,fce3,...)</pre><pre class="synopsis">LinePlot (fce1,fce2,fce3,x1,x2)</pre><pre
class="synopsis">LinePlot (fce1,fce2,fce3,x1,x2,y1,y2)</pre><pre class="synopsis">LinePlot
(fce1,fce2,fce3,[x1,x2])</pre><pre class="synopsis">LinePlot (fce1,fce2,fce3,[x1,x2,y1,y2])</pre><p>Vykreslí
funkci (nebo několik funkcí) v podobě čárového grafu. Prvních (až 10) argumentů jsou funkce, volitelně můžete
zadat meze vykreslovaného okna jako souřadnice <code class="varname">x1</code>, <code
class="varname">x2</code>, <code class="varname">y1</code>, <code class="varname">y2</code>. Pokud žádné meze
nejsou zadány, použijí se aktuálně nastavené meze (viz <a class="link"
href="ch11s03.html#gel-function-LinePlotWindow"><code class="function">LinePlotWindow</code></a>). Pokud
nejsou zadány jen meze v ose y, fu
nkce se propočítají a vezme se jejich minimum a maximu.</p><p>Parametr <a class="link"
href="ch11s03.html#gel-function-LinePlotDrawLegends"><code class="function">LinePlotDrawLegends</code></a>
ovládá vykreslování legendy.</p><p>Příklady: </p><pre class="screen"><code class="prompt">genius></code>
<strong class="userinput"><code>LinePlot(sin,cos)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlot(`(x)=x^2,-1,1,0,1)</code></strong>
+</pre></dd><dt><span class="term"><a name="gel-function-LinePlotClear"></a>LinePlotClear</span></dt><dd><pre
class="synopsis">LinePlotClear ()</pre><p>Zobrazí okno pro vykreslování čar a vymaže funkce a ostatní čáry,
které jsou v něm vykresleny.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotCParametric"></a>LinePlotCParametric</span></dt><dd><pre
class="synopsis">LinePlotCParametric (fce,...)</pre><pre class="synopsis">LinePlotCParametric
(fce,t1,t2,tprirust)</pre><pre class="synopsis">LinePlotCParametric
(fce,t1,t2,tprirust,x1,x2,y1,y2)</pre><p>Vykreslit parametrickou funkci komplexní hodnoty v podobě čárového
grafu. Jako první se předává funkce, která vrací <code class="computeroutput">x+iy</code>, následovaná
volitelnými omezeními <strong class="userinput"><code>t1,t2,tprirust</code></strong> pro <code
class="varname">t</code> a pak mezemi v podobě <strong
class="userinput"><code>x1,x2,y1,y2</code></strong>.</p><p>Pokud žádné me
ze nejsou zadány, použijí se aktuálně nastavené meze (viz <a class="link"
href="ch11s03.html#gel-function-LinePlotWindow"><code class="function">LinePlotWindow</code></a>). Místo mezí
x a y je možné zadat řetězec "fit" a meze se pak zvolí podle maximálního rozsahu grafu.</p><p>Parametr <a
class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a> ovládá vykreslování legendy.</p></dd><dt><span
class="term"><a name="gel-function-LinePlotDrawLine"></a>LinePlotDrawLine</span></dt><dd><pre
class="synopsis">LinePlotDrawLine (x1,y1,x2,y2,...)</pre><pre class="synopsis">LinePlotDrawLine
(v,...)</pre><p>Vykreslit čáru z <code class="varname">x1</code>,<code class="varname">y1</code> do <code
class="varname">x2</code>,<code class="varname">y2</code>. <code class="varname">x1</code>,<code
class="varname">y1</code>, <code class="varname">x2</code>,<code class="varname">y2</code> může být pro delší
lom
ené čáry nahrazeno maticí <code class="varname">n</code> krát 2. Připadně vektor <code
class="varname">v</code> může být sloupcový vektor komplexních čísel, což je matice <code
class="varname">n</code> krát 1 a jednotlivá komplexní čísla jsou pak považována za body v
rovině.</p><p>Mohou být přidány dodatečné parametry, které určují barvu, tloušťku a šipky čáry a vykreslení
okna nebo legendy. Stačí přidat argument v podobě řetězce <strong
class="userinput"><code>"color"</code></strong>, <strong class="userinput"><code>"thickness"</code></strong>,
<strong class="userinput"><code>"window"</code></strong>, <strong
class="userinput"><code>"arrow"</code></strong> nebo <strong class="userinput"><code>"legend"</code></strong>
a za ním určit barvu, tloušťku, okno jako 4prvkový vektor, typ šipky nebo legendu. (Šipka a okno jsou
podporovány od verze 1.0.6.)</p><p>Pokud je čára považovaná za vyplněný mnohoúhelník, vyplněný dan
ou barvou, můžete zadat argument <strong class="userinput"><code>"filled"</code></strong>. K dispozici od
verze 1.0.22.</p><p>Barva by měla být buď řetězec symbolizující běžným anglickým slovem barvu, kterou
rozpozná GTK, jako <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
apod. Nebo druhou možností je zadat barvu ve formátu RGB jako <strong
class="userinput"><code>"#rgb"</code></strong>, <strong class="userinput"><code>"#rrggbb"</code></strong>
nebo <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, kde r, g a b jsou číslice šestnáctkové
soustavy červené, zelené a modré složky barvy. A nakonec třetí možností, od verze 1.0.18, je také určení
barvy vektorem reálných čísel, která představují červenou, zelenou a modrou složku v rozmezí 0 až 1, např.
<strong class="userinput"><code>[1.0,0.5,0.1]</cod
e></strong>.</p><p>Okno by mělo být zadáno buď obvyklým způsobem jako <strong
class="userinput"><code>[x1,x2,y1,y2]</code></strong> nebo alternativně může být použit řetězec <strong
class="userinput"><code>"fit"</code></strong>, v kterémž to případě bude rozsah x určen přesně a rozsah y
bude nastaven s pětiprocentním přesahem křivky.</p><p>Specifikace šipky by měla být <strong
class="userinput"><code>"origin"</code></strong> (počátek), <strong
class="userinput"><code>"end"</code></strong> (konec), <strong class="userinput"><code>"both"</code></strong>
(obojí) nebo <strong class="userinput"><code>"none"</code></strong> (nic).</p><p>A nakonec legenda, která by
měla být zadána jako řetězec, který se použije k osvětlení grafu. Samozřejmě jen v případě, že se legenda
tiskne.</p><p>Příklady: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(0,0,1,1,"color","blue","thickne
ss",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;1,-1;-1,-1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;1,1],"arrow","end")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(RungeKuttaFull(`(x,y)=y,0,3,100),"color","blue","legend","Řešení")</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>for r=0.0 to 1.0 by 0.1 do
LinePlotDrawLine([0,0;1,r],"color",[r,(1-r),0.5],"window",[0,1,0,1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;10,0;10,10;0,10],"filled","color","green")</code></strong>
+</pre><p>Na rozdíl od většiny ostatních funkcí, u kterých je jedno, jestli je předán sloupcový nebo řádkový
vektor, při zadávání bodů v podobě vektoru komplexních čísel je kvůli možným nejednoznačnostem nutné vždy
zadat sloupcový vektor.</p><p>Zadávání <code class="varname">v</code> jako sloupcového vektoru komplexních
čísel je implementováno od verze 1.0.22.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawPoints"></a>LinePlotDrawPoints</span></dt><dd><pre
class="synopsis">LinePlotDrawPoints (x,y,...)</pre><pre class="synopsis">LinePlotDrawPoints
(v,...)</pre><p>Vykreslit bod v <code class="varname">x</code>, <code class="varname">y</code>. Vstupem může
být matice <code class="varname">n</code> krát 2 pro <code class="varname">n</code> různých bodů. Tato funkce
má v podstatě stejné vstupní údaje jako <a class="link"
href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a>. Případně vektor <code
class="varname">v</code> může být sloupcový vektor komplexních čísel, což je matice <code
class="varname">n</code> krát 1 a jednotlivá komplexní čísla jsou považována za body v rovině.</p><p>Mohou
být přidány dodatečné parametry, které určují barvu a tloušťku čáry a vykreslení okna nebo legendy. Stačí
přidat argument v podobě řetězce <strong class="userinput"><code>"color"</code></strong>, <strong
class="userinput"><code>"thickness"</code></strong>, <strong class="userinput"><code>"window"</code></strong>
nebo <strong class="userinput"><code>"legend"</code></strong> a za ním určit barvu, tloušťku, okno jako
4prvkový vektor nebo legendu.</p><p>Barva by měla být buď řetězec symbolizující běžným anglickým slovem
barvu, kterou rozpozná GTK, jako <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
apod. Nebo druh
ou možností je zadat barvu ve formátu RGB jako <strong class="userinput"><code>"#rgb"</code></strong>,
<strong class="userinput"><code>"#rrggbb"</code></strong> nebo <strong
class="userinput"><code>"#rrrrggggbbbb"</code></strong>, kde r, g a b jsou číslice šestnáctkové soustavy
červené, zelené a modré složky barvy. A nakonec třetí možností je také určení barvy vektorem reálných čísel,
která představují červenou, zelenou a modrou složku v rozmezí 0 až 1.</p><p>Okno by mělo být zadáno buď
obvyklým způsobem jako <strong class="userinput"><code>[x1,x2,y1,y2]</code></strong> nebo alternativně může
být použit řetězec <strong class="userinput"><code>"fit"</code></strong>, v kterémž to případě bude rozsah x
určen přesně a rozsah y bude nastaven s pětiprocentním přesahem křivky.</p><p>A nakonec legenda, která by
měla být zadána jako řetězec, který se použije k osvětlení grafu. Samozřejmě jen v případě, že se lege
nda tiskne.</p><p>Examples: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(0,0,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints([0,0;1,-1;-1,-1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(RungeKuttaFull(`(x,y)=y,0,3,100),"color","blue","legend","Řešení")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints([1;1+1i;1i;0],"thickness",5)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(ApplyOverMatrix((0:6)',`(k)=exp(k*2*pi*1i/7)),"thickness",3,"legend","Sedmá
odmocnina z jednotky")</code></strong>
+</pre><p>Na rozdíl od většiny ostatních funkcí, u kterých je jedno, jestli jim předáte sloupcový nebo
řádkový vektor, může u předávání bodu v podobě vektoru komplexních čísel docházet k nejednoznačnostem. Proto
musíte vždy předat sloupcový vektor. Všimněte si v posledním příkladu transpozice vektoru <strong
class="userinput"><code>0:6</code></strong>, aby se z něj stal sloupcový vektor.</p><p>Dostupné od verze
1.0.18. Zadávání <code class="varname">v</code> v podobě sloupcového vektoru komplexních čísel je
implementováno od verze 1.0.22.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotMouseLocation"></a>LinePlotMouseLocation</span></dt><dd><pre
class="synopsis">LinePlotMouseLocation ()</pre><p>Vrátit řádkový vektor v kreslení odpovídající aktuální
pozici myši. Pokud kreslení není viditelné, vypíše se chyba a vrátí <code class="constant">null</code>. V
takovém případě byste měli spustit <a class=
"link" href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a> nebo <a
class="link" href="ch11s20.html#gel-function-LinePlotClear"><code class="function">LinePlotClear</code></a>,
abyste přepnuli okno s grafem do režimu kreslení. Viz také <a class="link"
href="ch11s20.html#gel-function-LinePlotWaitForClick"><code
class="function">LinePlotWaitForClick</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotParametric"></a>LinePlotParametric</span></dt><dd><pre
class="synopsis">LinePlotParametric (xfce,yfce,...)</pre><pre class="synopsis">LinePlotParametric
(xfce,yfce,t1,t2,tprirust)</pre><pre class="synopsis">LinePlotParametric
(xfce,yfce,t1,t2,tprirust,x1,x2,y1,y2)</pre><pre class="synopsis">LinePlotParametric
(xfce,yfce,t1,t2,tprirust,[x1,x2,y1,y2])</pre><pre class="synopsis">LinePlotParametric
(xfce,yfce,t1,t2,tprirust, "fit")</pre><p>Vykreslit parametrickou funkci v podobě čárového grafu. Jako první
se zadávají funk
ce pro <code class="varname">x</code> a <code class="varname">y</code>, následované volitelnými omezeními
<strong class="userinput"><code>t1,t2,tprirust</code></strong> pro <code class="varname">t</code> a pak
mezemi v podobě <strong class="userinput"><code>x1,x2,y1,y2</code></strong>.</p><p>Pokud žádné meze nejsou
zadány, použijí se aktuálně nastavené meze (viz <a class="link"
href="ch11s03.html#gel-function-LinePlotWindow"><code class="function">LinePlotWindow</code></a>). Místo mezí
x a y je možné zadat řetězec "fit" a meze se pak zvolí podle maximálního rozsahu grafu.</p><p>Parametr <a
class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a> ovládá vykreslování legendy.</p></dd><dt><span
class="term"><a name="gel-function-LinePlotWaitForClick"></a>LinePlotWaitForClick</span></dt><dd><pre
class="synopsis">LinePlotWaitForClick ()</pre><p>Pokud je v režimu kreslení, čeká na kliknut
í v kreslícím okně a následně vrátí pozici kliknutí v podobě řádkového vektoru. Pokud je okno zavřené, vrátí
se funkce okamžitě s hodnotou <code class="constant">null</code>. Pokud okno není v režimu kreslení, přepne
jej do něj a, pokud není zobrazené, zobrazí jej. Viz také <a class="link"
href="ch11s20.html#gel-function-LinePlotMouseLocation"><code
class="function">LinePlotMouseLocation</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-PlotCanvasFreeze"></a>PlotCanvasFreeze</span></dt><dd><pre
class="synopsis">PlotCanvasFreeze ()</pre><p>Dočasně zmrazí vykreslování grafu na plátno. To se hodí, když
kreslíte spoustu prvků a chcete to pozdržet, aby se fyzicky vykreslilo až všechno naráz a předešlo se tím
blikání. Až máte veškeré kreslení hotovo, měli byste zavolat funkci <a class="link"
href="ch11s20.html#gel-function-PlotCanvasThaw"><code class="function">PlotCanvasThaw</code></a>.</p><p>Na
konci jakéhokoli
v provádění je plátno automaticky rozmrazeno, takže by se nemělo stát, že zůstane zmrazené. Kupříkladu ve
chvíli, kdy se zobrazí nový příkazový řádek, dojde k automatickému rozmrazení. Také si všimněte, že volání
zmrazení a rozmrazení mohou být zanořená.</p><p>Verze 1.0.18 a novější.</p></dd><dt><span class="term"><a
name="gel-function-PlotCanvasThaw"></a>PlotCanvasThaw</span></dt><dd><pre class="synopsis">PlotCanvasThaw
()</pre><p>Rozmrazí plátno pro vykreslování grafu zmrazené pomocí <a class="link"
href="ch11s20.html#gel-function-PlotCanvasFreeze"><code class="function">PlotCanvasFreeze</code></a> a ihned
jej překreslí. Platno je také rozmrazeno vždy po skončení provádění libovolného programu.</p><p>Verze 1.0.18
a novější.</p></dd><dt><span class="term"><a
name="gel-function-PlotWindowPresent"></a>PlotWindowPresent</span></dt><dd><pre
class="synopsis">PlotWindowPresent ()</pre><p>Zobrazí a přenese do popředí vykre
slovací okno, případně jej vytvoří, pokud je třeba. Normálně je okno vytvořeno, když je zavolána některá z
kreslících funkcí, ale nemusí být vždy přeneseno do popředí, když je schováno za jinými okny. Proto je dobré
volat tento kript, když bylo vykreslovací okno vytvořeno již dříve a nyní je schováno za konzolí nebo jinými
okny.</p><p>Verze 1.0.19 a novější.</p></dd><dt><span class="term"><a
name="gel-function-SlopefieldClearSolutions"></a>SlopefieldClearSolutions</span></dt><dd><pre
class="synopsis">SlopefieldClearSolutions ()</pre><p>Vymazat řešení vykreslená funkcí <a class="link"
href="ch11s20.html#gel-function-SlopefieldDrawSolution"><code
class="function">SlopefieldDrawSolution</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SlopefieldDrawSolution"></a>SlopefieldDrawSolution</span></dt><dd><pre
class="synopsis">SlopefieldDrawSolution (x, y, dx)</pre><p>Když je aktivní vykreslování směrového pole, vykre
slí řešení se zadanou počáteční podmínkou. Použita je standardní Rungeho-Kuttova metoda s přírůstkem <code
class="varname">dx</code>. Řešení v grafu zůstanou, dokud není zobrazen jiný graf nebo není zavolána funkce
<a class="link" href="ch11s20.html#gel-function-SlopefieldClearSolutions"><code
class="function">SlopefieldClearSolutions</code></a>. Pro vykreslení řešení můžete použít i grafické rozhraní
a počáteční podmínky zadat pomocí myši.</p></dd><dt><span class="term"><a
name="gel-function-SlopefieldPlot"></a>SlopefieldPlot</span></dt><dd><pre class="synopsis">SlopefieldPlot
(fce)</pre><pre class="synopsis">SlopefieldPlot (fce,x1,x2,y1,y2)</pre><p>Vykreslit směrové pole. Funkce
<code class="varname">fce</code> by měla přebírat dvě reálná čísla <code class="varname">x</code> a <code
class="varname">y</code> nebo jedno komplexní číslo. Volitelně můžete zadat meze vykreslovacího okna jako
souřadnice <code class="varnam
e">x1</code>, <code class="varname">x2</code>, <code class="varname">y1</code>, <code
class="varname">y2</code>. Pokud žádné meze nejsou zadány, použijí se aktuálně nastavení mezí (viz <a
class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).</p><p>Parametr <a class="link"
href="ch11s03.html#gel-function-LinePlotDrawLegends"><code class="function">LinePlotDrawLegends</code></a>
ovládá vykreslování legendy.</p><p>Příklady: </p><pre class="screen"><code class="prompt">genius></code>
<strong class="userinput"><code>SlopefieldPlot(`(x,y)=sin(x-y),-5,5,-5,5)</code></strong>
+</pre></dd><dt><span class="term"><a name="gel-function-SurfacePlot"></a>SurfacePlot</span></dt><dd><pre
class="synopsis">SurfacePlot (fce)</pre><pre class="synopsis">SurfacePlot (fce,x1,x2,y1,y2,z1,z2)</pre><pre
class="synopsis">SurfacePlot (fce,x1,x2,y1,y2)</pre><pre class="synopsis">SurfacePlot
(fce,[x1,x2,y1,y2,z1,z2])</pre><pre class="synopsis">SurfacePlot (fce,[x1,x2,y1,y2])</pre><p>Vykreslit funkci
plochy, která přebírá buď dva argumenty nebo komplexní číslo. Jako první se předává funkce, pak následují
meze <code class="varname">x1</code>, <code class="varname">x2</code>, <code class="varname">y1</code>, <code
class="varname">y2</code>, <code class="varname">z1</code>, <code class="varname">z2</code>. Pokud žádné meze
nejsou zadány, použijí se aktuálně nastavené meze (viz <a class="link"
href="ch11s03.html#gel-function-LinePlotWindow"><code class="function">SurfacePlotWindow</code></a>). V
současnosti umí Genius vykreslovat jen funkci jedné p
lochy.</p><p>Když nejsou meze zadány, použije se pro ně minimum a maximum funkce.</p><p>Příklady: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(|sin|,-1,1,-1,1,0,1.5)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(`(x,y)=x^2+y,-1,1,-1,1,-2,2)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(`(z)=|z|^2,-1,1,-1,1,0,2)</code></strong>
+</pre></dd><dt><span class="term"><a
name="gel-function-SurfacePlotClear"></a>SurfacePlotClear</span></dt><dd><pre
class="synopsis">SurfacePlotClear ()</pre><p>Zobrazí okno pro vykreslování povrchů a vymaže funkce a ostatní
čáry, které jsou v něm vykresleny.</p><p>Dostupné ve verzi 1.0.19 a novějších.</p></dd><dt><span
class="term"><a name="gel-function-SurfacePlotData"></a>SurfacePlotData</span></dt><dd><pre
class="synopsis">SurfacePlotData (data)</pre><pre class="synopsis">SurfacePlotData (data,popisek)</pre><pre
class="synopsis">SurfacePlotData (data,x1,x2,y1,y2,z1,z2)</pre><pre class="synopsis">SurfacePlotData
(data,popisek,x1,x2,y1,y2,z1,z2)</pre><pre class="synopsis">SurfacePlotData
(data,[x1,x2,y1,y2,z1,z2])</pre><pre class="synopsis">SurfacePlotData
(data,popisek,[x1,x2,y1,y2,z1,z2])</pre><p>Vykreslit povrch podle dat. Data jsou matice n × 3, jejíž řádky
jsou souřadnice x, y a z. Případně data mohou být vektor, jehož délka je dělitelná 3 a
který obsahuje trojice x, y, z. Data by měla obsahovat nejméně 3 body.</p><p>Volitelně je možné předat
popisek a také volitelné meze. Když meze nejsou uvedeny, vypočtou se z dat, ale nepoužívá se funkce <a
class="link" href="ch11s03.html#gel-function-SurfacePlotWindow"><code
class="function">SurfacePlotWindow</code></a>, pokud ji chcete použít, musíte to provést explicitně. Když
není předán popisek, použije se prázdný.</p><p>Příklady: </p><pre class="screen"><code
class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData([0,0,0;1,0,1;0,1,1;1,1,3])</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>SurfacePlotData(data,"Moje
data")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData(data,-1,1,-1,1,0,10)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData(data,SurfacePlotWindow)</code></strong>
+</pre><p>Zde je příklad, jak vykreslit graf v polárních souřadnicích a především jak vykreslit funkci
<strong class="userinput"><code>-r^2 * θ</code></strong>: </p><pre class="screen"><code
class="prompt">genius></code> <strong class="userinput"><code>d:=null; for r=0 to 1 by 0.1 do for theta=0
to 2*pi by pi/5 do d=[d;[r*cos(theta),r*sin(theta),-r^2*theta]];</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>SurfacePlotData(d)</code></strong>
+</pre><p>Verze 1.0.16 a novější.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDataGrid"></a>SurfacePlotDataGrid</span></dt><dd><pre
class="synopsis">SurfacePlotDataGrid (data,[x1,x2,y1,y2])</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2,z1,z2])</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2],popisek)</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2,z1,z2],popisek)</pre><p>Vykreslit plochu podle pravidelných obdélníkových dat. Data jsou
dána v matici n krát m, kde řádky jsou souřadnice x a sloupce souřadnice y. Souřadnice x je rozdělena do
stejnoměrných n-1 intervalů a souřadnice y do stejnoměrných m-1 intervalů. Meze <code
class="varname">x1</code> a <code class="varname">x2</code> udávájí rozsah na ose x, který se má použit a
obdobně meze <code class="varname">y1</code> a <code class="varname">y2</code> udávají rozsah na ose y. Pokud
nejsou uvedeny meze <code class="varn
ame">z1</code> a <code class="varname">z2</code>, jsou vypočteny z dat (budou to extrémní hodnoty v
datech).</p><p>Volitelně se může zadat popisek, pokud zadán není, použije se prázdný.</p><p>Příklady:
</p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid([1,2;3,4],[0,1,0,1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid(data,[-1,1,-1,1],"Moje data")</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>d:=null; for i=1 to 20 do for j=1 to
10 do d@(i,j) = (0.1*i-1)^2-(0.1*j)^2;</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid(d,[-1,1,0,1],"poloviční sedlo")</code></strong>
+</pre><p>Verze 1.0.16 a novější.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawLine"></a>SurfacePlotDrawLine</span></dt><dd><pre
class="synopsis">SurfacePlotDrawLine (x1,y1,z1,x2,y2,z2,...)</pre><pre class="synopsis">SurfacePlotDrawLine
(v,...)</pre><p>Vykreslit čáru z <code class="varname">x1</code>,<code class="varname">y1</code>,<code
class="varname">z1</code> do <code class="varname">x2</code>,<code class="varname">y2</code>,<code
class="varname">z2</code>. <code class="varname">x1</code>, <code class="varname">y1</code>, <code
class="varname">z1</code>, <code class="varname">x2</code>, <code class="varname">y2</code>, <code
class="varname">z2</code> může být pro delší lomené čáry nahrazeno maticí <code class="varname">n</code> krát
3.</p><p>Mohou být přidány dodatečné parametry, které určují barvu a tloušťku čáry, šipky a vykreslení okna
nebo legendy. Stačí přidat argument v podobě řetězce <strong class="userinput
"><code>"color"</code></strong>, <strong class="userinput"><code>"thickness"</code></strong>, <strong
class="userinput"><code>"window"</code></strong> nebo <strong
class="userinput"><code>"legend"</code></strong> a za ním určit barvu, tloušťku, okno jako 6prvkový vektor
nebo legendu.</p><p>Barva by měla být buď řetězec symbolizující běžným anglickým slovem barvu, kterou
rozpozná GTK, jako <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
apod. Nebo druhou možností je zadat barvu ve formátu RGB jako <strong
class="userinput"><code>"#rgb"</code></strong>, <strong class="userinput"><code>"#rrggbb"</code></strong>
nebo <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, kde r, g a b jsou číslice šestnáctkové
soustavy červené, zelené a modré složky barvy. A nakonec třetí možností, od verze 1.0.18, je také určení b
arvy vektorem reálných čísel, která představují červenou, zelenou a modrou složku v rozmezí 0 až 1, např.
<strong class="userinput"><code>[1.0,0.5,0.1]</code></strong>.</p><p>Okno by mělo být zadáno buď obvyklým
způsobem jako <strong class="userinput"><code>[x1,x2,y1,y2,z1,z2]</code></strong> nebo alternativně může být
použit řetězec <strong class="userinput"><code>"fit"</code></strong>, v kterémž to případě bude rozsah x
určen přesně a rozsah y bude nastaven s pětiprocentním přesahem křivky.</p><p>A nakonec legenda, která by
měla být zadána jako řetězec, který se použije k osvětlení grafu. Samozřejmě jen v případě, že se legenda
tiskne.</p><p>Příklady: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawLine(0,0,0,1,1,1,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawLine([0,0,0;1,-1,2;-1,-1,-3])</code></strong>
+</pre><p>Dostupné ve verzi 1.0.19 a novějších.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawPoints"></a>SurfacePlotDrawPoints</span></dt><dd><pre
class="synopsis">SurfacePlotDrawPoints (x,y,z,...)</pre><pre class="synopsis">SurfacePlotDrawPoints
(v,...)</pre><p>Vykreslit bod v <code class="varname">x</code>,<code class="varname">y</code>,<code
class="varname">z</code>. Vstupem může být matice <code class="varname">n</code> krát 3 pro <code
class="varname">n</code> různých bodů. Tato funkce má v podstatě stejné vstupní údaje jako <a class="link"
href="ch11s20.html#gel-function-SurfacePlotDrawLine">SurfacePlotDrawLine</a>.</p><p>Mohou být přidány
dodatečné parametry, které určují barvu a tloušťku čáry a vykreslení okna nebo legendy. Stačí přidat argument
v podobě řetězce <strong class="userinput"><code>"color"</code></strong>, <strong
class="userinput"><code>"thickness"</code></strong>, <strong class="userinput"><code>"
window"</code></strong> nebo <strong class="userinput"><code>"legend"</code></strong> a za ním určit barvu,
tloušťku, okno jako 6prvkový vektor nebo legendu.</p><p>Barva by měla být buď řetězec symbolizující běžným
anglickým slovem barvu, kterou rozpozná GTK, jako <strong class="userinput"><code>"red"</code></strong>,
<strong class="userinput"><code>"blue"</code></strong>, <strong
class="userinput"><code>"yellow"</code></strong>, apod. Nebo druhou možností je zadat barvu ve formátu RGB
jako <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong> nebo <strong
class="userinput"><code>"#rrrrggggbbbb"</code></strong>, kde r, g a b jsou číslice šestnáctkové soustavy
červené, zelené a modré složky barvy. A nakonec třetí možností je také určení barvy vektorem reálných čísel,
která představují červenou, zelenou a modrou složku v rozmezí 0 až 1.</p><p>Okno by mělo být zadáno b
uď obvyklým způsobem jako <strong class="userinput"><code>[x1,x2,y1,y2,z1,z2]</code></strong> nebo
alternativně může být použit řetězec <strong class="userinput"><code>"fit"</code></strong>, v kterémž to
případě bude rozsah x určen přesně a rozsah y bude nastaven s pětiprocentním přesahem křivky.</p><p>A nakonec
legenda, která by měla být zadána jako řetězec, který se použije k osvětlení grafu. Samozřejmě jen v případě,
že se legenda tiskne.</p><p>Příklady: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawPoints(0,0,0,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawPoints([0,0,0;1,-1,2;-1,-1,1])</code></strong>
+</pre><p>Dostupné ve verzi 1.0.19 a novějších.</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldClearSolutions"></a>VectorfieldClearSolutions</span></dt><dd><pre
class="synopsis">VectorfieldClearSolutions ()</pre><p>Vymazat řešení vykreslené funkcí <a class="link"
href="ch11s20.html#gel-function-VectorfieldDrawSolution"><code
class="function">VectorfieldDrawSolution</code></a>.</p><p>Verze 1.0.6 a novější.</p></dd><dt><span
class="term"><a name="gel-function-VectorfieldDrawSolution"></a>VectorfieldDrawSolution</span></dt><dd><pre
class="synopsis">VectorfieldDrawSolution (x, y, dt, tdelka)</pre><p>Když je aktivní vykreslování vektorového
pole, vykreslí řešení se zadanou počáteční podmínkou. Použita je standardní Rungeho-Kuttova metoda s
přírůstkem <code class="varname">dt</code> pro interval délky <code class="varname">tdelka</code>. Řešení v
grafu zůstanou, dokud není zobrazen jiný graf nebo není zavolána funkce <a class
="link" href="ch11s20.html#gel-function-VectorfieldClearSolutions"><code
class="function">VectorfieldClearSolutions</code></a>. Pro vykreslení řešení můžete použít i grafické
rozhraní a počáteční podmínky zadat pomocí myši.</p><p>Verze 1.0.6 a novější.</p></dd><dt><span
class="term"><a name="gel-function-VectorfieldPlot"></a>VectorfieldPlot</span></dt><dd><pre
class="synopsis">VectorfieldPlot (fcex, fcey)</pre><pre class="synopsis">VectorfieldPlot (fcex, fcey, x1, x2,
y1, y2)</pre><p>Vykreslit dvourozměrné vektorové pole. Funkce <code class="varname">fcex</code> by měla být
dx/dt vektorového pole a funkce <code class="varname">fcey</code> by měla být dy/dt vektorového pole. Funkce
by měly přebírat dvě reálná čísla <code class="varname">x</code> a <code class="varname">y</code> nebo jedno
komplexní číslo. Pokud je parametr <a class="link"
href="ch11s03.html#gel-function-VectorfieldNormalized"><code class="function">VectorfieldNormalized
</code></a> nastaven na <code class="constant">true</code>, pak je velikost vektorů normalizována. To
znamená, že je zobrazen jen směr a velikost ne.</p><p>Volitelně můžete zadat meze vykreslovaného okna jako
souřadnice <code class="varname">x1</code>, <code class="varname">x2</code>, <code class="varname">y1</code>,
<code class="varname">y2</code>. Pokud žádné meze nejsou zadány, použijí se aktuálně nastavené meze (viz <a
class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).</p><p>Parametr <a class="link"
href="ch11s03.html#gel-function-LinePlotDrawLegends"><code class="function">LinePlotDrawLegends</code></a>
ovládá vykreslování legendy.</p><p>Příklady: </p><pre class="screen"><code class="prompt">genius></code>
<strong class="userinput"><code>VectorfieldPlot(`(x,y)=x^2-y, `(x,y)=y^2-x, -1, 1, -1, 1)</code></strong>
+</pre></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s19.html">Předcházející</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Nahoru</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch12.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Symbolické
operace </td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Kapitola 12. Příklad programů v jazyce GEL</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch12.html b/help/cs/html/ch12.html
new file mode 100644
index 0000000..dd00b95
--- /dev/null
+++ b/help/cs/html/ch12.html
@@ -0,0 +1,54 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitola 12. Příklad
programů v jazyce GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="index.html"
title="Příručka k aplikaci Genius"><link rel="prev" href="ch11s20.html" title="Vykreslování"><link rel="next"
href="ch13.html" title="Kapitola 13. Nastavení"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitola 12. Příklad programů v jazyce GEL</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch11s20.html">Předcházející</a> </td><th width="60%"
align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch13.html">Další</a></td></tr></table><hr></div><div class="chapter"><di
v class="titlepage"><div><div><h1 class="title"><a name="genius-gel-example-programs"></a>Kapitola 12.
Příklad programů v jazyce GEL</h1></div></div></div><p>Zde je funkce, která vypočítává faktoriály: </p><pre
class="programlisting">function f(x) = if x <= 1 then 1 else (f(x-1)*x)
+</pre><p>Naformátovaná odsazováním vypadá takto: </p><pre class="programlisting">function f(x) = (
+ if x <= 1 then
+ 1
+ else
+ (f(x-1)*x)
+)
+</pre><p>Tady je přímá portace funkce pro výpočet faktoriálu z manuálové stránky <span
class="application">bc</span>. Syntaxe vypadá podobně jako u <span class="application">bc</span>, s tím
rozdílem v jazyce GEL, že poslední výraz je to, co je vráceno. Pokud by se místo toho použila funkce <code
class="literal">return</code>, vypadalo by to takto: </p><pre class="programlisting">function f(x) = (
+ if (x <= 1) then return (1);
+ return (f(x-1) * x)
+)
+</pre><p>Nejjednodušším způsobem, jak definovat funkci pro výpočet faktoriálu by bylo použití násobení ve
smyčce, jak je ukázáno níže. Nejde pravděpodobně o nejkratší a nejrychlejší řešení, ale je to nejlépe čitelná
verze. </p><pre class="programlisting">function f(x) = prod k=1 to x do k
+</pre><p>Následuje větší příklad, který v podstatě předefinovává interní funkci <a class="link"
href="ch11s09.html#gel-function-ref"><code class="function">ref</code></a>, aby vypočítávala odstupňovaný
kanonický tvar matice. Funkce <code class="function">ref</code> je vestavěná a mnohem rychlejší, ale tento
příklad má ilustrovat některé komplexnější vlastnosti jazyka GEL. </p><pre class="programlisting"># Calculate
the row-echelon form of a matrix
+function MyOwnREF(m) = (
+ if not IsMatrix(m) or not IsValueOnly(m) then
+ (error("MyOwnREF: argument not a value only matrix");bailout);
+ s := min(rows(m), columns(m));
+ i := 1;
+ d := 1;
+ while d <= s and i <= columns(m) do (
+
+ # This just makes the anchor element non-zero if at
+ # all possible
+ if m@(d,i) == 0 then (
+ j := d+1;
+ while j <= rows(m) do (
+ if m@(j,i) == 0 then
+ (j=j+1;continue);
+ a := m@(j,);
+ m@(j,) := m@(d,);
+ m@(d,) := a;
+ j := j+1;
+ break
+ )
+ );
+ if m@(d,i) == 0 then
+ (i:=i+1;continue);
+
+ # Here comes the actual zeroing of all but the anchor
+ # element rows
+ j := d+1;
+ while j <= rows(m)) do (
+ if m@(j,i) != 0 then (
+ m@(j,) := m@(j,)-(m@(j,i)/m@(d,i))*m@(d,)
+ );
+ j := j+1
+ );
+ m@(d,) := m@(d,) * (1/m@(d,i));
+ d := d+1;
+ i := i+1
+ );
+ m
+)
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch11s20.html">Předcházející</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch13.html">Další</a></td></tr><tr><td width="40%"
align="left" valign="top">Vykreslování </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Domů</a></td><td width="40%" align="right" valign="top"> Kapitola 13.
Nastavení</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch13.html b/help/cs/html/ch13.html
new file mode 100644
index 0000000..cc1c342
--- /dev/null
+++ b/help/cs/html/ch13.html
@@ -0,0 +1,28 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitola 13.
Nastavení</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="index.html" title="Příručka k
aplikaci Genius"><link rel="prev" href="ch12.html" title="Kapitola 12. Příklad programů v jazyce GEL"><link
rel="next" href="ch13s02.html" title="Přesnost"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitola 13. Nastavení</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch12.html">Předcházející</a> </td><th width="60%" align="center">
</th><td width="20%" align="right"> <a accesskey="n"
href="ch13s02.html">Další</a></td></tr></table><hr></div><div class="chapter"><div class="titlepage"><div><d
iv><h1 class="title"><a name="genius-prefs"></a>Kapitola 13. Nastavení</h1></div></div></div><div
class="toc"><p><b>Obsah</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch13.html#genius-prefs-output">Výstup</a></span></dt><dt><span class="sect1"><a
href="ch13s02.html">Přesnost</a></span></dt><dt><span class="sect1"><a
href="ch13s03.html">Terminál</a></span></dt><dt><span class="sect1"><a
href="ch13s04.html">Paměť</a></span></dt></dl></div><p>Pokud chcete upravit nastavení <span
class="application">matematického nástroje Genius</span>, zvolte <span class="guimenu">Nastavení</span> →
<span class="guimenuitem">Předvolby</span>. Oproti parametrům, které poskytuje standardní knihovna je zde
navíc pár základních parametrů poskytovaných kalkulátorem. Ty určují, jak se kalkulátor má chovat.</p><div
class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Změna nastavení pomocí
GEL</h3><p>Většina nastavení v aplikaci Ge
nius jsou ve skutečnosti globální proměnné, u kterých můžete zjistit hodnotu a hodnotu jim přiřadit, stejně
jako u normálních proměnných. Viz <a class="xref" href="ch05s02.html" title="Používání proměnných">„Používání
proměnných“</a> o vyhodnocování a přiřazování proměnných a <a class="xref" href="ch11s03.html"
title="Parametry">„Parametry“</a> pro seznam nastavení, která lze tímto způsobem měnit.</p><p>Jako příklad
uveďme, jak můžete nastavit maximální počet číslic ve výsledcích na 12 tím, že napíšete: </p><pre
class="programlisting">MaxDigits = 12
+</pre></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-prefs-output"></a>Výstup</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Maximum číslic na výstupu</span>
+ </span></dt><dd><p>Maximum číslic ve výsledcích (<a class="link"
href="ch11s03.html#gel-function-MaxDigits"><code class="function">MaxDigits</code></a>)</p></dd><dt><span
class="term">
+ <span class="guilabel">Výsledky jako čísla s plovoucí desetinnou čárkou</span>
+ </span></dt><dd><p>Zda by se výsledky měly vždy vypisovat v podobě desetinných čísel (<a class="link"
href="ch11s03.html#gel-function-ResultsAsFloats"><code
class="function">ResultsAsFloats</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Čísla s plovoucí desetinnou čárkou ve vědecké notaci</span>
+ </span></dt><dd><p>Zda by desetinná čísla měla být ve vědecké notaci (<a class="link"
href="ch11s03.html#gel-function-ScientificNotation"><code
class="function">ScientificNotation</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Vždy vypisovat celé výrazy</span>
+ </span></dt><dd><p>Zda by se měly vypisovat úplné výrazy pro vrácené nečíselné hodnoty (delší než
řádek) (<a class="link" href="ch11s03.html#gel-function-FullExpressions"><code
class="function">FullExpressions</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Vypisovat smíšené zlomky</span>
+ </span></dt><dd><p>Zda by zlomky měly být vypisovány jako smíšené, například „1 1/3“ místo „4/3“. (<a
class="link" href="ch11s03.html#gel-function-MixedFractions"><code
class="function">MixedFractions</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Zobrazovat 0.0, když je desetinné číslo menší než 10^-x (0=nikdy
neosekávat)</span>
+ </span></dt><dd><p>Jak osekávat výstup. Ale jen když jsou ostatní sousedící čísla velká. Podívejte se
na dokumentaci k parametru <a class="link" href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>.</p></dd><dt><span class="term">
+ <span class="guilabel">Osekávat čísla jen když je jiné číslo větší než 10^-x</span>
+ </span></dt><dd><p>Kdy osekávat výstup. Nastavení je dáno parametrem <a class="link"
href="ch11s03.html#gel-function-OutputChopWhenExponent"><code
class="function">OutputChopWhenExponent</code></a>. Viz dokumentace k parametru <a class="link"
href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>.</p></dd><dt><span class="term">
+ <span class="guilabel">Pamatovat si nastavení výstupu pro další sezení</span>
+ </span></dt><dd><p>Zda by se měla nastavení zadaná ve skupině <span class="guilabel">Volby výstup
čísel/výrazů</span> zapamatovat pro příští sezení. Neplatí pro nastavení ve skupině <span
class="guilabel">Volby výstupu chyb/informací</span>.</p><p>Když není zaškrtnuto, požívají se při každém
spuštění kalkulátoru Genisu výchozí nebo dříve uložená nastavení. Uvědomte si, že nastavení jsou ukládána na
konci sezení, takže pokud si chcete uložit výchozí nastavení postupujte následovně: zaškrtněte políčko, <span
class="application">matematický nástroj Genius</span> restartujte a u políčka zaškrtnutí zase
zrušte.</p></dd><dt><span class="term">
+ <span class="guilabel">Zobrazovat chyby v dialogovém okně</span>
+ </span></dt><dd><p>Když je nataveno, budou chyby zobrazovány v samostatném dialogovém okně, když není
nastaveno, budou vypisovány v konzole.</p></dd><dt><span class="term">
+ <span class="guilabel">Zobrazovat informativní zprávy v dialogovém okně</span>
+ </span></dt><dd><p>Když je nastaveno, budou informativní zprávy zobrazovány v samostatném dialogovém
okně, když není nataveno, budou vypisovány v konzole.</p></dd><dt><span class="term">
+ <span class="guilabel">Maximum zobrazovaných chyb</span>
+ </span></dt><dd><p>Maximální počet chyb, který je vrácen během jednoho vyhodnocení (<a class="link"
href="ch11s03.html#gel-function-MaxErrors"><code class="function">MaxErrors</code></a>). Pokud nastavíte na
0, budou vždy vráceny všechny chyby. Obvykle když smyčka způsobí hodně chyb, je nepravděpodobné, že jich bude
mít význam více než pár, takže prohlížení dlouhého seznam nemá žádný přínos.</p></dd></dl></div><p>Mimo tyto
předvolby existují ještě další předvolby, které mohou být změněny pouze přes prostředí konzoly. Tyto další
volby, které se týkají výstupu najdete v kapitole <a class="xref" href="ch11s03.html"
title="Parametry">„Parametry“</a>.</p><div class="variablelist"><dl class="variablelist"><dt><span
class="term">
+ <code class="function">IntegerOutputBase</code>
+ </span></dt><dd><p>Číselná soustava, která se bude používat pro vypisování celých
čísel</p></dd><dt><span class="term">
+ <code class="function">OutputStyle</code>
+ </span></dt><dd><p>Řetězec, který může nabývat hodnot <code class="literal">„normal“</code>, <code
class="literal">„latex“</code>, <code class="literal">„mathml“</code> nebo <code
class="literal">„troff“</code> a bude ovlivňovat, jak se mají vypisovat matice (a samozřejmě i další věci),
což je důležité pro vkládání do dokumentů. Styl Normal je výchozí styl výpisu <span
class="application">matematického nástroje Genius</span> čitelný pro člověka. Ostatní styly jsou pro sazbu v
aplikacích LaTeX, MathML (XML) nebo Troff.</p></dd></dl></div></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch12.html">Předcházející</a> </td><td width="20%" align="center"> </td><td width="40%" align="right">
<a accesskey="n" href="ch13s02.html">Další</a></td></tr><tr><td width="40%" align="left"
valign="top">Kapitola 12. Příklad programů v j
azyce GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td
width="40%" align="right" valign="top"> Přesnost</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch13s02.html b/help/cs/html/ch13s02.html
new file mode 100644
index 0000000..60f2a50
--- /dev/null
+++ b/help/cs/html/ch13s02.html
@@ -0,0 +1,5 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Přesnost</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Příručka
k aplikaci Genius"><link rel="up" href="ch13.html" title="Kapitola 13. Nastavení"><link rel="prev"
href="ch13.html" title="Kapitola 13. Nastavení"><link rel="next" href="ch13s03.html"
title="Terminál"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Přesnost</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch13.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 13. Nastavení</th><td
width="20%" align="right"> <a accesskey="n" href="ch13s03.html">Další</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: bot
h"><a name="genius-prefs-precision"></a>Přesnost</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Přesnost desetinných čísel</span>
+ </span></dt><dd><p>Přesnost desetinných čísel v bitech (<a class="link"
href="ch11s03.html#gel-function-FloatPrecision"><code class="function">FloatPrecision</code></a>). Vemte na
vědomí, že změny se použijí až na nově vypočtené hodnoty. Staré hodnoty uložené v proměnných zůstanou
samozřejmě v původní přesnosti a pokud je budete chtít s nově nastavenou přesností, musíte je přepočítat.
Výjimkou jsou systémové konstanty, jako <a class="link" href="ch11s04.html#gel-function-pi"><code
class="function">pi</code></a> nebo <a class="link" href="ch11s04.html#gel-function-e"><code
class="function">e</code></a>.</p></dd><dt><span class="term">
+ <span class="guilabel">Pamatovat si nastavené přesnosti pro další sezení</span>
+ </span></dt><dd><p>Zda by se přesnost měla zapamatovat pro příští sezení. Když není zaškrtnuto,
požívají se při každém spuštění kalkulátoru Genisu výchozí nebo dříve uložená nastavení. Uvědomte si, že
nastavení jsou ukládána na konci sezení, takže pokud si chcete uložit výchozí nastavení postupujte
následovně: zaškrtněte políčko, Genius restartujte a u políčka zaškrtnutí zase
zrušte.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13.html">Předcházející</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch13.html">Nahoru</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch13s03.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitola
13. Nastavení </td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td
width="40%" align="rig
ht" valign="top"> Terminál</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch13s03.html b/help/cs/html/ch13s03.html
new file mode 100644
index 0000000..7bb5676
--- /dev/null
+++ b/help/cs/html/ch13s03.html
@@ -0,0 +1,9 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Terminál</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Příručka
k aplikaci Genius"><link rel="up" href="ch13.html" title="Kapitola 13. Nastavení"><link rel="prev"
href="ch13s02.html" title="Přesnost"><link rel="next" href="ch13s04.html" title="Paměť"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Terminál</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch13s02.html">Předcházející</a> </td><th width="60%"
align="center">Kapitola 13. Nastavení</th><td width="20%" align="right"> <a accesskey="n"
href="ch13s04.html">Další</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name
="genius-prefs-terminal"></a>Terminál</h2></div></div></div><p>Terminál představuje konzolu v pracovní
oblasti.</p><div class="variablelist"><dl class="variablelist"><dt><span class="term">
+ <span class="guilabel">Paměť řádků</span>
+ </span></dt><dd><p>Počet řádků, o které se dá v terminálu vracet zpět.</p></dd><dt><span class="term">
+ <span class="guilabel">Písmo</span>
+ </span></dt><dd><p>Písmo, které se má používat v terminálu.</p></dd><dt><span class="term">
+ <span class="guilabel">Černé na bílém</span>
+ </span></dt><dd><p>Zda se má terminálu používat černá na bílé.</p></dd><dt><span class="term">
+ <span class="guilabel">Blikající kurzor</span>
+ </span></dt><dd><p>Zda by měl kurzor v terminálu blikat, když je terminál zaměřen. To může být někdy
nepříjemné a vytvářet provoz při nečinnosti v případě, že používáte aplikaci Genius
vzdáleně.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13s02.html">Předcházející</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch13.html">Nahoru</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch13s04.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Přesnost
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Paměť</td></tr></table></div></body></html>
diff --git a/help/cs/html/ch13s04.html b/help/cs/html/ch13s04.html
new file mode 100644
index 0000000..1aa87a8
--- /dev/null
+++ b/help/cs/html/ch13s04.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Paměť</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Příručka
k aplikaci Genius"><link rel="up" href="ch13.html" title="Kapitola 13. Nastavení"><link rel="prev"
href="ch13s03.html" title="Terminál"><link rel="next" href="ch14.html" title="Kapitola 14. O Matematickém
nástroji Genius"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Paměť</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch13s03.html">Předcházející</a> </td><th width="60%" align="center">Kapitola 13. Nastavení</th><td
width="20%" align="right"> <a accesskey="n" href="ch14.html">Další</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-prefs-memory"></a>Paměť</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term">
+ <span class="guilabel">Maximum alokovaných uzlů</span>
+ </span></dt><dd><p>Interně se data ukládají do malých úseků paměti. Tato hodnota udává maximální počet
úseků, které se mohou pro výpočty přidělit. Tímto omezením se předejde problémům s vyčerpáním paměti při
chybách, které paměti spotřebují velké množství, například při nekonečné rekurzi. Při vyčerpání paměti by
došlo ke zpomalení počítače a bylo by obtížné program přerušit.</p><p>Pokud je limit dosažen, <span
class="application">matematický nástroj Genius</span> se dotáže, zda si výpočet přejete přerušit nebo se má
pokračovat. Jestliže budete pokračovat, žádný limit nebude uplatněn a může nastat, že program paměť vyčerpá.
Limit se použije znovu při dalším spuštění programu nebo vyhodnocení výrazu v konzole bez ohledu na to, co
jste na dotaz odpověděli.</p><p>Nastavení limitu na nulu znamená, že na množství paměti použité kalkulátorem
Genius nebude žádný limit uplat
ňován.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13s03.html">Předcházející</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch13.html">Nahoru</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch14.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top">Terminál
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Domů</a></td><td width="40%"
align="right" valign="top"> Kapitola 14. O <span class="application">Matematickém nástroji
Genius</span></td></tr></table></div></body></html>
diff --git a/help/cs/html/ch14.html b/help/cs/html/ch14.html
new file mode 100644
index 0000000..f965d2a
--- /dev/null
+++ b/help/cs/html/ch14.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitola 14. O
Matematickém nástroji Genius</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Příručka k aplikaci Genius"><link rel="up" href="index.html"
title="Příručka k aplikaci Genius"><link rel="prev" href="ch13s04.html" title="Paměť"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Kapitola 14. O <span
class="application">Matematickém nástroji Genius</span></th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch13s04.html">Předcházející</a> </td><th width="60%" align="center"> </th><td width="20%"
align="right"> </td></tr></table><hr></div><div class="chapter"><div class="titlepage"><div><div><h1
class="title"><a name="genius-about"></a>Kapitola 1
4. O <span class="application">Matematickém nástroji Genius</span></h1></div></div></div><p><span
class="application">Matematický nástroj Genius</span> napsal Jiří Lebl (<code class="email"><<a
class="email" href="mailto:jirka 5z com">jirka 5z com</a>></code>). Historie <span
class="application">matematického nástroje Genius</span> se datuje do roku 1997. Zprvu se jednalo o
kalkulačku pro GNOME, ale postupně přerostl v kalkulátor s pracovním rozhraním. Více informací o něm najdete
na <a class="ulink" href="http://www.jirka.org/genius.html" target="_top">webových stránkách
Genius</a>.</p><p>Pokud chcete oznámit chybu nebo navrhnout vylepšení vztahující se k této aplikaci nebo této
příručce, pošlete e-mail autorovi nebo do poštovní konference (viz webové stránky).</p><p>Tento program je
šířen podle ustanovení licence GNU General Public License, vydávané Free Software Foundation; a to buď verze
3 této licence anebo (podle vlastn�
�ho uvážení) kterékoliv pozdější verze. Kopii této licence naleznete <a class="ulink"
href="http://www.gnu.org/copyleft/gpl.html" target="_top">pod tímto odkazem</a> nebo v souboru COPYING
přiloženém ke zdrojovým kódům tohoto programu.</p><p>Jiří Lebl byl během různých částí vývoje částečně
podporován v práci od NSF granty DMS 0900885 a DMS 1362337 a univerzitou Illinois v Urbana-Champaign,
univerzitou California v San Diegu, univerzitou Wisconsin-Madison a státní univerzitou Oklahoma. Software byl
využíván jak k výuce, tak k výzkumu.</p></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch13s04.html">Předcházející</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> </td></tr><tr><td width="40%" align="left" valign="top">Paměť </td><td width="20%"
align="center"><a accesskey="h" href="index.html">Domů</a></td><td width
="40%" align="right" valign="top"> </td></tr></table></div></body></html>
diff --git a/help/cs/html/genius.proc b/help/cs/html/genius.proc
new file mode 100644
index 0000000..e69de29
diff --git a/help/cs/html/index.html b/help/cs/html/index.html
new file mode 100644
index 0000000..97827e1
--- /dev/null
+++ b/help/cs/html/index.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Příručka k aplikaci
Genius</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><meta name="description"
content="Příručka k matematickému nástroji Genius."><link rel="home" href="index.html" title="Příručka k
aplikaci Genius"><link rel="next" href="ch01.html" title="Kapitola 1. Úvod"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Příručka k aplikaci Genius</th></tr><tr><td
width="20%" align="left"> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch01.html">Další</a></td></tr></table><hr></div><div lang="cs" class="book"><div
class="titlepage"><div><div><h1 class="title"><a name="index"></a>Příručka k aplikaci
Genius</h1></div><div><div class="authorgroup">
<div class="author"><h3 class="author"><span class="firstname">Jiří</span> <span
class="surname">Lebl</span></h3><div class="affiliation"><span class="orgname">Státní oklahamská
univerzita<br></span><div class="address"><p> <code class="email"><<a class="email" href="mailto:jirka 5z
com">jirka 5z com</a>></code> </p></div></div></div><div class="author"><h3 class="author"><span
class="firstname">Kai</span> <span class="surname">Willadsen</span></h3><div class="affiliation"><span
class="orgname">Univerzita Queensland, Austrálie<br></span><div class="address"><p> <code
class="email"><<a class="email" href="mailto:kaiw itee uq edu au">kaiw itee uq edu au</a>></code>
</p></div></div></div></div></div><div><p class="releaseinfo">Tato příručka popisuje aplikaci Genius ve verzi
1.0.22.</p></div><div><p class="copyright">Copyright © 1997 – 2016 Jiří (George) Lebl</p></div><div><p
class="copyright">Copyright © 2004 Kai Willadsen</p></div><div><div c
lass="legalnotice"><a name="legalnotice"></a><p>Je povoleno kopírovat, šířit a/nebo upravovat tento dokument
za podmínek GNU Free Documentation License (GFDL) ve verzi 1.1 nebo v jakékoli další verzi vydané nadací Free
Software Foundation; bez neměnných oddílů, bez textů předních desek a bez textů zadních desek. Kopii licence
GFDL naleznete pod <a class="ulink" href="ghelp:fdl" target="_top">tímto odkazem</a> nebo v souboru
COPYING-DOCS dodávaném s touto příručkou.</p><p>Tato příručka je součástí sbírky příruček GNOME šířených za
podmínek licence GFDL. Pokud chcete tento dokument šířit odděleně od sbírky, musíte přiložit kopii licence
dle popisu v oddílu 6 dané licence.</p><p>Mnoho názvů použitých firmami k zviditelnění produktů nebo služeb
jsou ochranné známky. Na místech, kde jsou tyto názvy v dokumentaci použity a členové Dokumentačního projektu
GNOME jsou si vědomi skutečnosti, že se jedná o ochranno
u známku, je takovýto název psán velkými písmeny celý nebo s velkým písmenem na začátku.</p><p>DOKUMENT A
JEHO UPRAVENÉ VERZE JSOU ŠÍŘENY V SOULADU SE ZNĚNÍM LICENCE GNU FREE DOCUMENTATION LICENSE S NÁSLEDUJÍCÍM
USTANOVENÍM: </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>DOKUMENT
JE POSKYTOVÁN V PODOBĚ „JAK JE“, BEZ ZÁRUKY JAKÉHOKOLIV DRUHU, NEPOSKYTUJÍ SE ANI ODVOZENÉ ZÁRUKY, ZÁRUKY, ŽE
DOKUMENT, NEBO JEHO UPRAVENÁ VERZE, JE BEZCHYBNÝ, NEBO ZÁRUKY PRODEJNOSTI, VHODNOSTI PRO URČITÝ ÚČEL, NEBO
NEPORUŠENOSTI. RIZIKO NEKVALITY, NEPŘESNOSTI A ŠPATNÉHO PROVEDENÍ DOKUMENTU, NEBO JEHO UPRAVENÉ VERZE, NESETE
VY. POKUD JE TENTO DOKUMENT NEBO JEHO UPRAVENÁ VERZE VADNÁ V JAKÉMKOLIV SMYSLU, VY (NIKOLIV PŮVODCE, AUTOR
NEBO JAKÝKOLIV PŘISPĚVATEL) PŘEBÍRÁTE ODPOVĚDNOST ZA JAKÉKOLIV NÁKLADY NA NUTNÉ ÚPRAVY, OPRAVY ČI SLUŽBY.
TOTO PROHLÁŠENÍ O ZÁRUCE PŘEDSTAVUJE ZÁKLADNÍ SOUČÁST T�
�TO LICENCE. BEZ TOHOTO PROHLÁŠENÍ NENÍ PODLE TÉTO DOHODY POVOLENO UŽÍVÁNÍ ANI ÚPRAVY TOHOTO DOKUMENTU;
DÁLE</p></li><li class="listitem"><p>ZA ŽÁDNÝCH OKOLNOSTÍ A ŽÁDNÝCH PRÁVNÍCH PŘEDPOKLADŮ, AŤ SE JEDNÁ O
PŘEČIN (VČETNĚ NEDBALOSTNÍCH), SMLOUVU NEBO JINÉ, NENÍ AUTOR, PŮVODNÍ PISATEL, KTERÝKOLIV PŘISPĚVATEL NEBO
KTERÝKOLIV DISTRIBUTOR TOHOTO DOKUMENTU NEBO UPRAVENÉ VERZE DOKUMENTU NEBO KTERÝKOLIV DODAVATEL NĚKTERÉ Z
TĚCHTO STRAN ODPOVĚDNÝ NĚJAKÉ OSOBĚ ZA PŘÍMÉ, NEPŘÍMÉ, SPECIÁLNÍ, NAHODILÉ NEBO NÁSLEDNÉ ŠKODY JAKÉHOKOLIV
CHARAKTERU, VČETNĚ, ALE NEJEN, ZA POŠKOZENÍ ZE ZTRÁTY DOBRÉHO JMÉNA, PŘERUŠENÍ PRÁCE, PORUCHY NEBO NESPRÁVNÉ
FUNKCE POČÍTAČE NEBO JINÉHO A VŠECH DALŠÍCH ŠKOD NEBO ZTRÁT VYVSTÁVAJÍCÍCH Z NEBO VZTAHUJÍCÍCH SE K POUŽÍVÁNÍ
TOHOTO DOKUMENTU NEBO UPRAVENÝCH VERZÍ DOKUMENTU, I KDYŽ BY TAKOVÁTO STRANA BYLA INFORMOVANÁ O MOŽNOSTI
TAKOVÉHOTO POŠKOZENÍ.</p></li></ol></d
iv></div></div><div><div class="legalnotice"><a name="idm45682164828672"></a><p
class="legalnotice-title"><b>Ohlasy</b></p><p>Pokud chcete oznámit chybu nebo navrhnout vylepšení vztahující
se k aplikaci <span class="application">matematický nástroj Genius</span> nebo této příručce, navštivte
prosím <a class="ulink" href="http://www.jirka.org/genius.html" target="_top">webovou stránku aplikace
Genius</a> nebo napište autorovi na e-mail <code class="email"><<a class="email" href="mailto:jirka 5z
com">jirka 5z com</a>></code>.</p></div></div><div><div class="revhistory"><table
style="border-style:solid; width:100%;" summary="Přehled revizí"><tr><th align="left" valign="top"
colspan="2"><b>Přehled revizí</b></th></tr><tr><td align="left">Revize 0.2</td><td align="left">Září
2016</td></tr><tr><td align="left" colspan="2">
+ <p class="author">Jiri (George) Lebl <code class="email"><<a class="email"
href="mailto:jirka 5z com">jirka 5z com</a>></code></p>
+ </td></tr></table></div></div><div><div class="abstract"><p
class="title"><b>Abstrakt</b></p><p>Příručka k matematickému nástroji
Genius.</p></div></div></div><hr></div><div class="toc"><p><b>Obsah</b></p><dl class="toc"><dt><span
class="chapter"><a href="ch01.html">1. Úvod</a></span></dt><dt><span class="chapter"><a href="ch02.html">2.
Začínáme</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch02.html#genius-to-start">Jak spustit <span
class="application">matematický nástroj Genius</span></a></span></dt><dt><span class="sect1"><a
href="ch02s02.html">Když spustíte aplikaci Genius</a></span></dt></dl></dd><dt><span class="chapter"><a
href="ch03.html">3. Základy používání</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch03.html#genius-usage-workarea">Používání pracovní oblasti</a></span></dt><dt><span class="sect1"><a
href="ch03s02.html">Jak vytvořit nový program</a></span></dt><dt><span class="sect1"><a
href="ch03s03.html">Jak otev�
�ít a spustit program</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch04.html">4.
Vykreslování</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch04.html#genius-line-plots">Čárové
grafy</a></span></dt><dt><span class="sect1"><a href="ch04s02.html">Parametrické
grafy</a></span></dt><dt><span class="sect1"><a href="ch04s03.html">Grafy směrových
polí</a></span></dt><dt><span class="sect1"><a href="ch04s04.html">Grafy vektorových
polí</a></span></dt><dt><span class="sect1"><a href="ch04s05.html">Plošné
grafy</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch05.html">5. Základy jazyka
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch05.html#genius-gel-values">Hodnoty</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-numbers">Čísla</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-booleans">Pravdivostní hodnoty</a></span></dt><dt><span class="sect2"><a
href="
ch05.html#genius-gel-values-strings">Řetězce</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-null">Null</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s02.html">Používání proměnných</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-setting">Nastavování proměnných</a></span></dt><dt><span
class="sect2"><a href="ch05s02.html#genius-gel-variables-built-in">Vestavěné
proměnné</a></span></dt><dt><span class="sect2"><a href="ch05s02.html#genius-gel-previous-result">Proměnná s
posledním výsledkem</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch05s03.html">Používání
funkcí</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-defining">Definování funkcí</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-variable-argument-lists">Proměnný seznam
argumentů</a></span></dt><dt><span class="sect2"><
a href="ch05s03.html#genius-gel-functions-passing-functions">Předávání funkcí
funkcím</a></span></dt><dt><span class="sect2"><a href="ch05s03.html#genius-gel-functions-operations">Operace
s funkcemi</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s04.html">Oddělovač</a></span></dt><dt><span class="sect1"><a
href="ch05s05.html">Komentáře</a></span></dt><dt><span class="sect1"><a href="ch05s06.html">Modulární
aritmetika</a></span></dt><dt><span class="sect1"><a href="ch05s07.html">Seznam operátorů
GEL</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch06.html">6. Programování s jazykem
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch06.html#genius-gel-conditionals">Podmínky</a></span></dt><dt><span class="sect1"><a
href="ch06s02.html">Smyčky</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-while">Smyčky while</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loo
ps-for">Smyčky for</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-foreach">Smyčky foreach</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-break-continue">Break a continue</a></span></dt></dl></dd><dt><span
class="sect1"><a href="ch06s03.html">Součty a součiny</a></span></dt><dt><span class="sect1"><a
href="ch06s04.html">Porovnávací operátory</a></span></dt><dt><span class="sect1"><a
href="ch06s05.html">Globální proměnné a působnost proměnných</a></span></dt><dt><span class="sect1"><a
href="ch06s06.html">Proměnné parametrů</a></span></dt><dt><span class="sect1"><a href="ch06s07.html">Návrat
hodnot</a></span></dt><dt><span class="sect1"><a href="ch06s08.html">Reference</a></span></dt><dt><span
class="sect1"><a href="ch06s09.html">L-hodnoty</a></span></dt></dl></dd><dt><span class="chapter"><a
href="ch07.html">7. Pokročilé programování v jazyce GEL</a></span></dt><dd><dl><dt><span class="sect1"><
a href="ch07.html#genius-gel-error-handling">Obsluha chyb</a></span></dt><dt><span class="sect1"><a
href="ch07s02.html">Syntaxe v nejvyšší úrovni</a></span></dt><dt><span class="sect1"><a
href="ch07s03.html">Vracení funkcí</a></span></dt><dt><span class="sect1"><a href="ch07s04.html">Skutečně
lokální proměnné</a></span></dt><dt><span class="sect1"><a href="ch07s05.html">Spouštěcí procedura
GEL</a></span></dt><dt><span class="sect1"><a href="ch07s06.html">Načítání
programů</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch08.html">8. Matice v jazyce
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch08.html#genius-gel-matrix-support">Zadávání
matic</a></span></dt><dt><span class="sect1"><a href="ch08s02.html">Operátor konjugované transpozice a
transpozice</a></span></dt><dt><span class="sect1"><a href="ch08s03.html">Lineární
algebra</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch09.html">9. Polynomy v jazyce GEL
</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch09.html#genius-gel-polynomials-using">Používání
polynomů</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch10.html">10. Teorie množin v jazyce
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch10.html#genius-gel-sets-using">Používání
množin</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch11.html">11. Seznam funkcí
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch11.html#genius-gel-function-list-commands">Příkazy</a></span></dt><dt><span class="sect1"><a
href="ch11s02.html">Základy</a></span></dt><dt><span class="sect1"><a
href="ch11s03.html">Parametry</a></span></dt><dt><span class="sect1"><a
href="ch11s04.html">Konstanty</a></span></dt><dt><span class="sect1"><a href="ch11s05.html">Práce s
čísly</a></span></dt><dt><span class="sect1"><a href="ch11s06.html">Trigonometrie</a></span></dt><dt><span
class="sect1"><a href="ch11s07.html">Teorie čísel</a
</span></dt><dt><span class="sect1"><a href="ch11s08.html">Práce s maticemi</a></span></dt><dt><span
class="sect1"><a href="ch11s09.html">Lineární algebra</a></span></dt><dt><span class="sect1"><a
href="ch11s10.html">Kombinatorika</a></span></dt><dt><span class="sect1"><a
href="ch11s11.html">Diferenciální/integrální počet </a></span></dt><dt><span class="sect1"><a
href="ch11s12.html">Funkce</a></span></dt><dt><span class="sect1"><a href="ch11s13.html">Řešení
rovnic</a></span></dt><dt><span class="sect1"><a href="ch11s14.html">Statistika</a></span></dt><dt><span
class="sect1"><a href="ch11s15.html">Polynomy</a></span></dt><dt><span class="sect1"><a
href="ch11s16.html">Teorie množin</a></span></dt><dt><span class="sect1"><a href="ch11s17.html">Komutativní
algebra</a></span></dt><dt><span class="sect1"><a href="ch11s18.html">Různé</a></span></dt><dt><span
class="sect1"><a href="ch11s19.html">Symbolické operace</a></span></dt><dt><span class="sect1"><a href="ch1
1s20.html">Vykreslování</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch12.html">12. Příklad
programů v jazyce GEL</a></span></dt><dt><span class="chapter"><a href="ch13.html">13.
Nastavení</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch13.html#genius-prefs-output">Výstup</a></span></dt><dt><span class="sect1"><a
href="ch13s02.html">Přesnost</a></span></dt><dt><span class="sect1"><a
href="ch13s03.html">Terminál</a></span></dt><dt><span class="sect1"><a
href="ch13s04.html">Paměť</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch14.html">14. O <span
class="application">Matematickém nástroji Genius</span></a></span></dt></dl></div><div
class="list-of-figures"><p><b>Seznam obrázků</b></p><dl><dt>2.1. <a href="ch02s02.html#mainwindow-fig">Okno
<span class="application">Matematického nástroje Genius</span></a></dt><dt>4.1. <a
href="ch04.html#lineplot-fig">Okno Vytváření grafu</a></dt><dt>4.2. <a href="ch04.html#lineplot2-fig
">Okno s grafem</a></dt><dt>4.3. <a href="ch04s02.html#paramplot-fig">Karta parametrických
grafů</a></dt><dt>4.4. <a href="ch04s02.html#paramplot2-fig">Parametrické grafy</a></dt><dt>4.5. <a
href="ch04s05.html#surfaceplot-fig">Plošný graf</a></dt></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch01.html">Další</a></td></tr><tr><td width="40%" align="left" valign="top"> </td><td width="20%"
align="center"> </td><td width="40%" align="right" valign="top"> Kapitola 1.
Úvod</td></tr></table></div></body></html>
diff --git a/help/de/html/ch01.html b/help/de/html/ch01.html
new file mode 100644
index 0000000..4fb1121
--- /dev/null
+++ b/help/de/html/ch01.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 1.
Einführung</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="index.html" title="Genius-Handbuch"><link
rel="prev" href="index.html" title="Genius-Handbuch"><link rel="next" href="ch02.html" title="Kapitel 2.
Erste Schritte"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Kapitel
1. Einführung</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="index.html">Zurück</a>
</td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch02.html">Weiter</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-introduction"></a>Kapi
tel 1. Einführung</h1></div></div></div><p>Die Anwendung <span class="application">Genius
Mathematikwerkzeug</span> ist ein allgemeines Rechenprogramm, ein Hilfsmittel zur mathematischen Ausbildung
und sogar dienlich für Forschungszwecke. Die in <span class="application">Genius Mathematikwerkzeug</span>
verwendete Sprache ist »mathematisch« im Sinne von »man bekommt, was man meint«. Natürlich ist das ein nicht
vollständig erreichbares Ziel. <span class="application">Genius Mathematikwerkzeug</span> arbeitet mit
rationalen Zahlen, langen Ganzzahlen und Gleitkommazahlen unterschiedlicher Genauigkeit unter Verwendung der
GMP-Bibliothek. Es arbeitet mit komplexen Zahlen in kartesischer Form. Darüber hinaus stehen umfangreiche
Vektor- und Matrixoperationen, sowie grundlegende Lineare Algebra zur Verfügung. Die Programmiersprache
erlaubt benutzerdefinierte Funktionen, Variablen und Veränderungen von Parametern.</p><p>Es gibt zwei
Versionen von <span class="application">
Genius Mathematikwerkzeug</span>. Die eine Version ist die graphische GNOME-Version, welche eine
Schnittstelle im Stil einer integrierten Entwicklungsumgebung bietet und die Möglichkeit, Funktionen mit
einer oder zwei Variablen darzustellen. Die Befehlszeilenversion benötigt kein GNOME, allerdings beinhaltet
sie keine Funktionalitäten, welche eine graphische Schnittstelle erfordern.</p><p>Dieses Handbuch beschreibt
hauptsächlich die graphische Version des Rechners, wobei die Sprache natürlich für beide dieselbe ist. In der
Befehlszeilenversion fehlen die graphischen Möglichkeiten und andere Funktionalitäten, die eine graphische
Schnittstelle benötigen.</p><p>Generell werden neue Funktionsmerkmale der Sprache (Funktion, Operator usw.)
in Versionen ab 1.0.5 hier erwähnt. Für Versionen vor 1.0.5 finden Sie entsprechende Informationen in der
Datei NEWS.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"
<a accesskey="p" href="index.html">Zurück</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> <a accesskey="n" href="ch02.html">Weiter</a></td></tr><tr><td width="40%" align="left"
valign="top">Genius-Handbuch </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum
Anfang</a></td><td width="40%" align="right" valign="top"> Kapitel 2. Erste
Schritte</td></tr></table></div></body></html>
diff --git a/help/de/html/ch02.html b/help/de/html/ch02.html
new file mode 100644
index 0000000..b485b9a
--- /dev/null
+++ b/help/de/html/ch02.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 2. Erste
Schritte</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="index.html" title="Genius-Handbuch"><link
rel="prev" href="ch01.html" title="Kapitel 1. Einführung"><link rel="next" href="ch02s02.html" title="Beim
Start von Genius"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Kapitel 2. Erste Schritte</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch01.html">Zurück</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch02s02.html">Weiter</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-getting-s
tarted"></a>Kapitel 2. Erste Schritte</h1></div></div></div><div
class="toc"><p><b>Inhaltsverzeichnis</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch02.html#genius-to-start"><span class="application">Genius Mathematikwerkzeug
starten</span></a></span></dt><dt><span class="sect1"><a href="ch02s02.html">Beim Start von <span
class="application">Genius</span></a></span></dt></dl></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-to-start"></a><span
class="application">Genius Mathematikwerkzeug starten</span></h2></div></div></div><p>Sie können <span
class="application">Genius Mathematikwerkzeug</span> auf folgende Arten starten:</p><div
class="variablelist"><dl class="variablelist"><dt><span class="term">Menü <span
class="guimenu">Anwendungen</span></span></dt><dd><p>Abhängig von Ihrem Betriebssystem und dessen Version
kann sich der Menüeintrag für <span class="application">Genius Mathematikwerkzeug</sp
an> an verschiedenen Stellen befinden. Es kann sich unter <span class="guisubmenu">Bildung</span>, <span
class="guisubmenu">Zubehör</span>, <span class="guisubmenu">Büro</span>, <span
class="guisubmenu">Wissenschaft</span> oder einem ähnlichen Untermenü befinden, abhängig von den
Einstellungen Ihres Systems. Der Menüeintrag, nach dem Sie suchen sollten, lautet <span
class="guimenuitem">Genius Mathematikwerkzeug</span>. Sobald Sie diesen Menüeintrag gefunden haben, klicken
Sie darauf, um <span class="application">Genius Mathematikwerkzeug</span> zu starten.</p></dd><dt><span
class="term"><span class="guilabel">Ausführen</span>-Dialog</span></dt><dd><p>Es kann auch vorkommen, dass
der Menüeintrag bei Ihrem System nicht vorhanden ist. In diesem Fall können Sie das Dialogfeld zum Ausführen
von Programmen öffnen und den Befehl <span class="command"><strong>gnome-genius</strong></span>
eingeben.</p></dd><dt><span class="term">Befehlszeile</span></dt><dd><p>Um die GNOME
-Version des <span class="application">Genius Mathematikwerkzeug</span> von der Befehlszeile aus zu starten,
geben Sie <span class="command"><strong>gnome-genius</strong></span> ein.</p><p>Zum Starten der
Befehlszeilen-Version führen Sie folgenden Befehl aus: <span class="command"><strong>genius</strong></span>.
Diese Version enthält keine graphische Umgebung und einige Funktionen wie zum Beispiel die Darstellung stehen
nicht zur Verfügung.</p></dd></dl></div></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch01.html">Zurück</a>
</td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch02s02.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel 1. Einführung
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td width="40%"
align="right" valign="top"> Beim Start von <sp
an class="application">Genius</span></td></tr></table></div></body></html>
diff --git a/help/de/html/ch02s02.html b/help/de/html/ch02s02.html
new file mode 100644
index 0000000..2059fb1
--- /dev/null
+++ b/help/de/html/ch02s02.html
@@ -0,0 +1,27 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Beim Start von
Genius</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="ch02.html" title="Kapitel 2. Erste
Schritte"><link rel="prev" href="ch02.html" title="Kapitel 2. Erste Schritte"><link rel="next"
href="ch03.html" title="Kapitel 3. Grundlagen der Benutzung"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Beim Start von <span
class="application">Genius</span></th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch02.html">Zurück</a> </td><th width="60%" align="center">Kapitel 2. Erste Schritte</th><td width="20%"
align="right"> <a accesskey="n" href="ch03.html">Weiter</a></td></tr></table><hr></div><div
class="sect1"><div class
="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-when-start"></a>Beim Start von
<span class="application">Genius</span></h2></div></div></div><p>Wenn Sie die GNOME-Ausgabe von <span
class="application">Genius Mathematikwerkzeug</span> starten, wird das in <a class="xref"
href="ch02s02.html#mainwindow-fig" title="Abbildung 2.1. Genius Mathematikwerkzeug-Fenster">Abbildung 2.1,
„<span class="application">Genius Mathematikwerkzeug</span>-Fenster“</a> dargestellte Fenster
geöffnet.</p><div class="figure"><a name="mainwindow-fig"></a><p class="title"><b>Abbildung 2.1. <span
class="application">Genius Mathematikwerkzeug</span>-Fenster</b></p><div class="figure-contents"><div
class="screenshot"><div class="mediaobject"><img src="figures/genius_window.png" alt="Zeigt das Hauptfenster
von Genius Mathematikwerkzeug. Enthält Titelleiste, Menüleiste, Werkzeugleiste und Arbeitsplatz. Die
Menüleiste enthält die Menüs Datei, Bearbeiten, Taschenrechner
, Beispiele, Programme, Einstellungen und Hilfe menus."></div></div></div></div><br
class="figure-break"><p>Das Fenster von <span class="application">Genius Mathematikwerkzeug</span> enthält
die folgenden Elemente:</p><div class="variablelist"><dl class="variablelist"><dt><span
class="term">Menüleiste.</span></dt><dd><p>Die Menüleiste beinhaltet alle Befehle, die Sie benötigen, um mit
dem <span class="application">Genius Mathematikwerkzeug</span> zu arbeiten. Das <span
class="guilabel">Datei</span>-Menü enthält Einträge zum Öffnen und Speichern von Dateien sowie zum Erstellen
neuer Programme. Der Befehl <span class="guilabel">Laden und ausführen …</span> öffnet kein neues Fenster für
das Programm, sondern führt das Programm direkt aus. Dies entspricht dem Befehl <span
class="command"><strong>load</strong></span>.</p><p>
+ The <span class="guilabel">Calculator</span> menu controls the
+calculator engine. It allows you to run the currently selected program or to
+interrupt the current calculation. You can also look at the full expression of
+the last answer (useful if the last answer was too large to fit onto the
+console), or you can view a listing of the values of all user defined
+variables. You can also monitor user variables, which is especially useful
+while a long calculation is running, or to debug a certain program.
+ Finally the <span class="guilabel">Calculator</span> allows plotting functions using a
user friendly dialog box.
+ </p><p>
+ The <span class="guilabel">Examples</span> menu is a list of example
+ programs or demos. If you open the menu, it will load the
+ example into a new program, which you can run, edit, modify,
+ and save. These programs should be well documented
+ and generally demonstrate either some feature of <span class="application">Genius
Mathematics Tool</span>
+ or some mathematical concept.
+ </p><p>
+ The <span class="guilabel">Programs</span> menu lists
+ the currently open programs and allows you to switch
+ between them.
+ </p><p>Die anderen Menüs beinhalten ähnliche Funktionen wie in anderen
Anwendungen.</p></dd><dt><span class="term">Werkzeugleiste.</span></dt><dd><p>Die Werkzeugleiste enthält eine
Auswahl der Befehle, die Sie über die Menüleiste erreichen.</p></dd><dt><span
class="term">Arbeitsplatz</span></dt><dd><p>Der Arbeitsplatz stellt die vorrangige Methode zur Interaktion
mit der Anwendung dar.</p><p>Der Arbeitsplatz beinhaltet zu Beginn nur den Reiter <span
class="guilabel">Konsole</span>, welcher hauptsächlich für Interaktionen mit dem Rechner verwendet wird. Hier
können Sie Ausdrücke eingeben und die Ergebnisse werden sofort nach Betätigung der Eingabetaste
angezeigt.</p><p>
+ Alternatively you can write longer programs and those can
+ appear in separate tabs. The programs are a set of commands or
+ functions that can be run all at once rather than entering them
+ at the command line. The programs can be saved in files for later
+ retrieval.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch02.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch02.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch03.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel 2.
Erste Schritte </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td
width="40%" align="right" valign="top"> Kapitel 3. Grundlagen der
Benutzung</td></tr></table></div></body></html>
diff --git a/help/de/html/ch03.html b/help/de/html/ch03.html
new file mode 100644
index 0000000..3fd01be
--- /dev/null
+++ b/help/de/html/ch03.html
@@ -0,0 +1,31 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 3. Grundlagen
der Benutzung</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="index.html" title="Genius-Handbuch"><link
rel="prev" href="ch02s02.html" title="Beim Start von Genius"><link rel="next" href="ch03s02.html"
title="Erstellen eines neuen Programms"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitel 3. Grundlagen der Benutzung</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch02s02.html">Zurück</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch03s02.html">Weiter</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 clas
s="title"><a name="genius-usage"></a>Kapitel 3. Grundlagen der Benutzung</h1></div></div></div><div
class="toc"><p><b>Inhaltsverzeichnis</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch03.html#genius-usage-workarea">Benutzung des Arbeitsplatzes</a></span></dt><dt><span class="sect1"><a
href="ch03s02.html">Erstellen eines neuen Programms</a></span></dt><dt><span class="sect1"><a
href="ch03s03.html">Öffnen und Ausführen eines Programms</a></span></dt></dl></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-usage-workarea"></a>Benutzung des Arbeitsplatzes</h2></div></div></div><p>Normalerweise
interagieren Sie mit dem Rechenprogramm im Reiter <span class="guilabel">Konsole</span> des Arbeitsplatzes.
Falls Sie die textbasierte Version verwenden, wird Ihnen nur diese Konsole zur Verfügung stehen. Wenn Sie das
<span class="application">Genius Mathematikwerkzeug</span> als reines Rechenprogramm verwenden wolle
n, geben Sie einfach Ihren Ausdruck hier ein, und das Ergebnis wird berechnet.</p><p>
+ To evaluate an expression, type it into the <span class="guilabel">Console</span> work area and
press enter.
+ Expressions are written in a
+language called GEL. The most simple GEL expressions just looks like
+mathematics. For example
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>30*70 +
67^3.0 + ln(7) * (88.8/100)</code></strong>
+</pre><p>
+or
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>62734 +
812634 + 77^4 mod 5</code></strong>
+</pre><p>
+or
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>| sin(37) -
e^7 |</code></strong>
+</pre><p>
+or
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>sum n=1 to 70
do 1/n</code></strong>
+</pre><p>
+(Last is the harmonic sum from 1 to 70)
+</p><p>So erhalten Sie eine Liste mit Funktionen und Befehlen: </p><pre class="screen"><code
class="prompt">genius> </code><strong class="userinput"><code>help</code></strong>
+</pre><p> Wenn Sie zusätzliche Hilfe zu einer bestimmten Funktion wünschen, geben Sie Folgendes ein:
</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>help
FunktionsName</code></strong>
+</pre><p> Dieses Handbuch zeigen Sie folgendermaßen an: </p><pre class="screen"><code
class="prompt">genius> </code><strong class="userinput"><code>manual</code></strong>
+</pre><p>
+Suppose you have previously saved some GEL commands as a program to a file and
+you now want to execute them.
+To load this program from the file <code class="filename">path/to/program.gel</code>,
+type
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>load
path/to/program.gel</code></strong>
+</pre><p>
+<span class="application">Genius Mathematics Tool</span> keeps track of the current directory.
+To list files in the current directory type <span class="command"><strong>ls</strong></span>, to change
directory
+do <strong class="userinput"><code>cd directory</code></strong> as in the UNIX command shell.
+</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch02s02.html">Zurück</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch03s02.html">Weiter</a></td></tr><tr><td
width="40%" align="left" valign="top">Beim Start von <span class="application">Genius</span> </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td width="40%"
align="right" valign="top"> Erstellen eines neuen Programms</td></tr></table></div></body></html>
diff --git a/help/de/html/ch03s02.html b/help/de/html/ch03s02.html
new file mode 100644
index 0000000..bb88957
--- /dev/null
+++ b/help/de/html/ch03s02.html
@@ -0,0 +1,31 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Erstellen eines neuen
Programms</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="ch03.html" title="Kapitel 3. Grundlagen der
Benutzung"><link rel="prev" href="ch03.html" title="Kapitel 3. Grundlagen der Benutzung"><link rel="next"
href="ch03s03.html" title="Öffnen und Ausführen eines Programms"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Erstellen eines neuen Programms</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch03.html">Zurück</a> </td><th width="60%" align="center">Kapitel 3.
Grundlagen der Benutzung</th><td width="20%" align="right"> <a accesskey="n"
href="ch03s03.html">Weiter</a></td></tr></table><hr></div><di
v class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-usage-create-program"></a>Erstellen eines neuen Programms</h2></div></div></div><p>
+ If you wish to enter several more complicated commands, or perhaps write a complicated
+ function using the <a class="link" href="ch05.html" title="Kapitel 5. GEL-Grundlagen">GEL</a>
language, you can create a new
+ program.
+ </p><p>
+To start writing a new program, choose
+<span class="guimenu">File</span> → <span class="guimenuitem">New
+Program</span>. A new tab will appear in the work area. You
+can write a <a class="link" href="ch05.html" title="Kapitel 5. GEL-Grundlagen">GEL</a> program in this work
area.
+Once you have written your program you can run it by
+<span class="guimenu">Calculator</span> → <span class="guimenuitem">Run</span> (or
+the <span class="guilabel">Run</span> toolbar button).
+This will execute your program and will display any output on the <span class="guilabel">Console</span> tab.
+Executing a program is equivalent of taking the text of the program and
+typing it into the console. The only difference is that this input is done
+independent of the console and just the output goes onto the console.
+<span class="guimenu">Calculator</span> → <span class="guimenuitem">Run</span>
+will always run the currently selected program even if you are on the <span class="guilabel">Console</span>
+tab. The currently selected program has its tab in bold type. To select a
+program, just click on its tab.
+ </p><p>
+To save the program you've just written, choose <span class="guimenu">File</span> → <span
class="guimenuitem">Save As...</span>.
+Similarly as in other programs you can choose
+<span class="guimenu">File</span> → <span class="guimenuitem">Save</span> to save a program that already has
+a filename attached to it. If you have many opened programs you have edited and wish to save you can also
choose
+<span class="guimenu">File</span> → <span class="guimenuitem">Save All Unsaved</span>.
+ </p><p>
+ Programs that have unsaved changes will have a "[+]" next to their filename. This way you can
see if the file
+ on disk and the currently opened tab differ in content. Programs which have not yet had a
filename associated
+ with them are always considered unsaved and no "[+]" is printed.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch03.html">Zurück</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch03.html">Nach oben</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch03s03.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel 3. Grundlagen
der Benutzung </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td
width="40%" align="right" valign="top"> Öffnen und Ausführen eines
Programms</td></tr></table></div></body></html>
diff --git a/help/de/html/ch03s03.html b/help/de/html/ch03s03.html
new file mode 100644
index 0000000..f1efd84
--- /dev/null
+++ b/help/de/html/ch03s03.html
@@ -0,0 +1,6 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Öffnen und Ausführen
eines Programms</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="ch03.html" title="Kapitel 3. Grundlagen der
Benutzung"><link rel="prev" href="ch03s02.html" title="Erstellen eines neuen Programms"><link rel="next"
href="ch04.html" title="Kapitel 4. Darstellung"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Öffnen und Ausführen eines Programms</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch03s02.html">Zurück</a> </td><th width="60%" align="center">Kapitel 3.
Grundlagen der Benutzung</th><td width="20%" align="right"> <a accesskey="n"
href="ch04.html">Weiter</a></td></tr></table><hr></div><div clas
s="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-usage-open-program"></a>Öffnen und Ausführen eines Programms</h2></div></div></div><p>Um eine
Datei zu öffnen, wählen Sie <span class="guimenu">Datei</span> → <span class="guimenuitem">Öffnen</span>. Ein
neuer Reiter erscheint im Arbeitsplatz, der diese Datei enthält. Hier können Sie die Datei
bearbeiten.</p><p>Wählen Sie <span class="guimenu">Datei</span> → <span class="guimenuitem">Laden und
ausführen …</span>, um ein Programm aus einer Datei zu starten. Auf diese Weise wird das Programm ausgeführt,
ohne dabei einen eigenen Reiter zu öffnen. Dies entspricht dem <span
class="command"><strong>load</strong></span>-Befehl.</p><p>
+ If you have made edits to a file you wish to throw away and want to reload to the version
that's on disk,
+ you can choose the
+ <span class="guimenu">File</span> → <span class="guimenuitem">Reload from Disk</span> menuitem.
This is useful for experimenting
+ with a program and making temporary edits, to run a program, but that you do not intend to keep.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch03s02.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch03.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch04.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Erstellen
eines neuen Programms </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum
Anfang</a></td><td width="40%" align="right" valign="top"> Kapitel 4.
Darstellung</td></tr></table></div></body></html>
diff --git a/help/de/html/ch04.html b/help/de/html/ch04.html
new file mode 100644
index 0000000..77fdfee
--- /dev/null
+++ b/help/de/html/ch04.html
@@ -0,0 +1,19 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 4.
Darstellung</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="index.html" title="Genius-Handbuch"><link
rel="prev" href="ch03s03.html" title="Öffnen und Ausführen eines Programms"><link rel="next"
href="ch04s02.html" title="Parametrische Darstellungen"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitel 4. Darstellung</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch03s03.html">Zurück</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch04s02.html">Weiter</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 class="title"><a
name="genius-gel-plotting"></a>Kapitel 4. Darstellung</h1></div></div></div><div
class="toc"><p><b>Inhaltsverzeichnis</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch04.html#genius-line-plots">Kurvendarstellungen</a></span></dt><dt><span class="sect1"><a
href="ch04s02.html">Parametrische Darstellungen</a></span></dt><dt><span class="sect1"><a
href="ch04s03.html">Richtungsfeld-Darstellungen</a></span></dt><dt><span class="sect1"><a
href="ch04s04.html">Vektorfeld-Darstellungen</a></span></dt><dt><span class="sect1"><a
href="ch04s05.html">2D-Darstellungen</a></span></dt></dl></div><p>Die Darstellung von Funktionen steht nur in
der graphischen GNOME-Version zur Verfügung. Alle Darstellungen mittels graphischer Schnittstelle können über
das Fenster <span class="guilabel">Darstellung erstellen</span> erreicht werden. In dieses Fenster gelangen
Sie entweder durch Klick auf den Knopf <span class="guilabel">Darstellen</span> in der Werkzeugleiste oder
durch Auswahl von <
span class="guilabel">Darstellen …</span> im Menü <span class="guilabel">Rechner</span>. Sie können die
Darstellungsmöglichkeiten auch unter Verwendung der GEL-<a class="link" href="ch11s20.html"
title="Darstellung">Darstellungsfunktionen</a> einsetzen. Sehen Sie auch unter <a class="xref"
href="ch05.html" title="Kapitel 5. GEL-Grundlagen">Kapitel 5, <i>GEL-Grundlagen</i></a> nach, um
herauszufinden, wie Sie Ausdrücke eingeben können, die von Genius verstanden werden.</p><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-line-plots"></a>Kurvendarstellungen</h2></div></div></div><p>Um Funktionen einer Variablen mit
reellen Zahlen darzustellen, öffnen Sie das Fenster <span class="guilabel">Darstellung erstellen</span>. Sie
können auch die Funktion <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a> auf der Befehlszeile verwenden (siehe Dokumentation dazu).</p><p>So
bald Sie auf den <span class="guilabel">Darstellen</span>-Knopf im Hauptfenster klicken, öffnet sich ein
Fenster mit einigen Reitern darin. Sie befinden sich nun im Reiter <span class="guilabel">Funktionsgraphen
darstellen</span> und darin im Reiter <span class="guilabel">Funktionen / Ausdrücke</span>. Siehe auch <a
class="xref" href="ch04.html#lineplot-fig" title="Abbildung 4.1. Fenster »Darstellung erstellen«">Abbildung
4.1, „Fenster »Darstellung erstellen«“</a>.</p><div class="figure"><a name="lineplot-fig"></a><p
class="title"><b>Abbildung 4.1. Fenster »Darstellung erstellen«</b></p><div class="figure-contents"><div
class="screenshot"><div class="mediaobject"><img src="figures/line_plot.png" alt="Anzeige des
Kurven-Darstellungsfensters."></div></div></div></div><br class="figure-break"><p>
+ Type expressions with <strong class="userinput"><code>x</code></strong> as
+ the independent variable into the textboxes. Alternatively you can give names of functions such as
+ <strong class="userinput"><code>cos</code></strong> rather then having to type <strong
class="userinput"><code>cos(x)</code></strong>.
+ You can graph up to ten functions. If you make a mistake and Genius cannot
+ parse the input it will signify this with a warning icon on the right of the text
+ input box where the error occurred, as well as giving you an error dialog.
+ You can change the ranges of the dependent and independent variables in the bottom
+ part of the dialog.
+ The <code class="varname">y</code> (dependent) range can be set automatically by turning on the <span
class="guilabel">Fit dependent axis</span>
+ checkbox.
+ The names of the variables can also be changed.
+ Pressing the <span class="guilabel">Plot</span> button produces the graph shown in <a class="xref"
href="ch04.html#lineplot2-fig" title="Abbildung 4.2. Fenster »Darstellen«">Abbildung 4.2, „Fenster
»Darstellen«“</a>.
+ </p><p>
+ The variables can be renamed by clicking the <span class="guilabel">Change variable
names...</span> button, which is useful if you wish to print or save the figure and don't want to use the
standard
+ names. Finally you can also avoid printing the legend and the axis labels completely,
+ which is also useful if printing or
+ saving, when the legend might simply be clutter.
+ </p><div class="figure"><a name="lineplot2-fig"></a><p class="title"><b>Abbildung 4.2. Fenster
»Darstellen«</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/line_plot_graph.png" alt="Erstellter Graph."></div></div></div></div><br
class="figure-break"><p>Von hier aus können Sie die Darstellung ausdrucken, PostScript-, EPS- oder
PNG-Versionen davon erstellen und die Vergrößerungsstufe verändern.</p><p>Um Darstellungen von der
Befehlszeile aus zu erstellen, lesen Sie bitte die Dokumentation der <a class="link"
href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>-Funktion.</p></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch03s03.html">Zurück</a>
</td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch04s02.html">Weiter</a></td></tr><tr><td wi
dth="40%" align="left" valign="top">Öffnen und Ausführen eines Programms </td><td width="20%"
align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td width="40%" align="right"
valign="top"> Parametrische Darstellungen</td></tr></table></div></body></html>
diff --git a/help/de/html/ch04s02.html b/help/de/html/ch04s02.html
new file mode 100644
index 0000000..82bb09d
--- /dev/null
+++ b/help/de/html/ch04s02.html
@@ -0,0 +1,21 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Parametrische
Darstellungen</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="ch04.html" title="Kapitel 4.
Darstellung"><link rel="prev" href="ch04.html" title="Kapitel 4. Darstellung"><link rel="next"
href="ch04s03.html" title="Richtungsfeld-Darstellungen"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Parametrische Darstellungen</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch04.html">Zurück</a> </td><th width="60%" align="center">Kapitel 4.
Darstellung</th><td width="20%" align="right"> <a accesskey="n"
href="ch04s03.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class
="title" style="clear: both"><a name="genius-parametric-plots"></a>Parametrische
Darstellungen</h2></div></div></div><p>
+ In the create plot window, you can also choose the <span class="guilabel">Parametric</span> notebook
+ tab to create two dimensional parametric plots. This way you can
+ plot a single parametric function. You can either specify the
+ points as <code class="varname">x</code> and <code class="varname">y</code>, or giving a single
complex number
+ as a function of the variable <code class="varname">t</code>.
+ The range of the variable <code class="varname">t</code> is given explicitly, and the function is
sampled
+ according to the given increment.
+ The <code class="varname">x</code> and <code class="varname">y</code> range can be set
+ automatically by turning on the <span class="guilabel">Fit dependent axis</span>
+ checkbox, or it can be specified explicitly.
+ See <a class="xref" href="ch04s02.html#paramplot-fig" title="Abbildung 4.3. Reiter »Parametrische
Darstellung«">Abbildung 4.3, „Reiter »Parametrische Darstellung«“</a>.
+ </p><div class="figure"><a name="paramplot-fig"></a><p class="title"><b>Abbildung 4.3. Reiter
»Parametrische Darstellung«</b></p><div class="figure-contents"><div class="screenshot"><div
class="mediaobject"><img src="figures/parametric.png" alt="Reiter »Parametrische Darstellung« im Darstellung
erstellen-Fenster."></div></div></div></div><br class="figure-break"><p>
+ An example of a parametric plot is given in
+ <a class="xref" href="ch04s02.html#paramplot2-fig" title="Abbildung 4.4. Parametrische
Darstellung">Abbildung 4.4, „Parametrische Darstellung“</a>.
+ Similar operations can be
+ done on such graphs as can be done on the other line plots.
+ For plotting using the command line see the documentation of the
+ <a class="link" href="ch11s20.html#gel-function-LinePlotParametric"><code
class="function">LinePlotParametric</code></a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotCParametric"><code
class="function">LinePlotCParametric</code></a> function.
+ </p><div class="figure"><a name="paramplot2-fig"></a><p class="title"><b>Abbildung 4.4. Parametrische
Darstellung</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/parametric_graph.png" alt="Erstellte parametrische Darstellung"></div></div></div></div><br
class="figure-break"></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04.html">Zurück</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch04.html">Nach oben</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch04s03.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel 4. Darstellung
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td width="40%"
align="right" valign="top"> Richtungsfeld-Darstellungen</td></tr></table></div></body></html>
diff --git a/help/de/html/ch04s03.html b/help/de/html/ch04s03.html
new file mode 100644
index 0000000..2e357ca
--- /dev/null
+++ b/help/de/html/ch04s03.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Richtungsfeld-Darstellungen</title><meta name="generator" content="DocBook XSL
Stylesheets V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up"
href="ch04.html" title="Kapitel 4. Darstellung"><link rel="prev" href="ch04s02.html" title="Parametrische
Darstellungen"><link rel="next" href="ch04s04.html" title="Vektorfeld-Darstellungen"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Richtungsfeld-Darstellungen</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch04s02.html">Zurück</a> </td><th width="60%" align="center">Kapitel 4. Darstellung</th><td width="20%"
align="right"> <a accesskey="n" href="ch04s04.html">Weiter</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><
h2 class="title" style="clear: both"><a
name="genius-slopefield-plots"></a>Richtungsfeld-Darstellungen</h2></div></div></div><p>Im Fenster
»Darstellung erstellen« können Sie den Reiter <span class="guilabel">Richtungsfeld</span> wählen, um eine
zweidimensionale Richtungsfeld-Darstellung zu erstellen. Auf derartige Graphen können ähnliche Operationen
angewendet werden wie bei anderen Kurvendarstellungen. Wie Sie Darstellungen von der Befehlszeile aus
erzeugen, können Sie in der Dokumentation der Funktion <a class="link"
href="ch11s20.html#gel-function-SlopefieldPlot"><code class="function">SlopefieldPlot</code></a>
nachlesen.</p><p>Wenn ein Richtungsfeld dargestellt wird, so steht ein zusätzlicher Menüeintrag <span
class="guilabel">Löser</span> zur Verfügung. Damit gelangen Sie zum Löser-Dialogfeld und Sie können Genius
bestimmte Lösungen zu den gegebenen Anfangsbedingungen darstellen lassen. Sie können die Anfangsbedingungen
entweder im Dialogfeld angeben oder
Sie klicken direkt auf die Darstellung, um den Anfangspunkt festzulegen. Während das Löser-Dialogfeld aktiv
ist, funktionieren Größenänderungen durch Klicken und Ziehen nicht. Wenn Sie die Vergrößerungsstufe mit der
Maus verändern möchten, müssen Sie zuerst das Dialogfenster schließen.</p><p>Der Löser verwendet das
klassische Runge-Kutta-Verfahren. Die Darstellungen bleiben so lange am Bildschirm erhalten, bis sie gelöscht
werden. Der Löser stoppt, sobald er die Grenzen des Darstellungsfensters erreicht hat. Durch Ändern der
Vergrößerungsstufe werden die Grenzen der Parameter der Lösungen nicht verändert, dazu müssen Sie die
Lösungen löschen und mit den gewünschten Parametern neu darstellen. Sie können auch die Funktion <a
class="link" href="ch11s20.html#gel-function-SlopefieldDrawSolution"><code
class="function">SlopefieldDrawSolution</code></a> verwenden, um Lösungen von der Befehlszeile oder von
Programmen aus darzustellen.</p></div><div class="n
avfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch04s02.html">Zurück</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch04.html">Nach oben</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch04s04.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Parametrische
Darstellungen </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td
width="40%" align="right" valign="top"> Vektorfeld-Darstellungen</td></tr></table></div></body></html>
diff --git a/help/de/html/ch04s04.html b/help/de/html/ch04s04.html
new file mode 100644
index 0000000..590ce91
--- /dev/null
+++ b/help/de/html/ch04s04.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Vektorfeld-Darstellungen</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="ch04.html"
title="Kapitel 4. Darstellung"><link rel="prev" href="ch04s03.html" title="Richtungsfeld-Darstellungen"><link
rel="next" href="ch04s05.html" title="2D-Darstellungen"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Vektorfeld-Darstellungen</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch04s03.html">Zurück</a> </td><th width="60%" align="center">Kapitel 4.
Darstellung</th><td width="20%" align="right"> <a accesskey="n"
href="ch04s05.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="titl
e" style="clear: both"><a
name="genius-vectorfield-plots"></a>Vektorfeld-Darstellungen</h2></div></div></div><p>Im Fenster »Darstellung
erstellen« können Sie den Reiter <span class="guilabel">Vektorfeld</span> wählen, um eine zweidimensionale
Vektorfeld-Darstellung zu erstellen. Auf derartige Graphen können ähnliche Operationen angewendet werden wie
bei anderen Kurvendarstellungen. Wie Sie Darstellungen von der Befehlszeile aus erzeugen, können Sie in der
Dokumentation der Funktion <a class="link" href="ch11s20.html#gel-function-SlopefieldPlot"><code
class="function">VectorfieldPlot</code></a> nachlesen.</p><p>Standardmäßig werden Richtung und Größe des
Vektorfelds angezeigt. Sie können das Ankreuzfeld <span class="guilabel">Pfeillänge normalisieren</span>
aktivieren, um nur die Richtung und nicht die Größe anzuzeigen.</p><p>Wenn ein Vektorfeld dargestellt wird,
so steht ein zusätzlicher Menüeintrag <span class="guilabel">Löser</span> zur Verfügung. Damit
gelangen Sie zum Löser-Dialogfeld und Sie können Genius bestimmte Lösungen zu den gegebenen
Anfangsbedingungen darstellen lassen. Sie können die Anfangsbedingungen entweder im Dialogfeld angeben oder
Sie klicken direkt auf die Darstellung, um den Anfangspunkt festzulegen. Während das Löser-Dialogfeld aktiv
ist, funktioniert das Ändern der Vergrößerungsstufe durch Klicken und Ziehen nicht. Wenn Sie mit der Maus die
Vergrößerungsstufe ändern möchten, müssen Sie zuerst das Dialogfenster schließen.</p><p>Der Löser verwendet
das klassische Runge-Kutta-Verfahren. Die Darstellungen bleiben so lange am Bildschirm erhalten, bis sie
gelöscht werden. Durch Ändern der Vergrößerungsstufe werden die Grenzen der Parameter der Lösungen nicht
verändert, dazu müssen Sie die Lösungen löschen und mit den gewünschten Parametern neu darstellen. Sie können
auch die Funktion <a class="link" href="ch11s20.html#gel-function-VectorfieldDrawSolution"><code
class="function">Ve
ctorfieldDrawSolution</code></a> verwenden, um Lösungen von der Befehlszeile oder von Programmen aus
darzustellen.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s03.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch04.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch04s05.html">Weiter</a></td></tr><tr><td width="40%" align="left"
valign="top">Richtungsfeld-Darstellungen </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Zum Anfang</a></td><td width="40%" align="right" valign="top">
2D-Darstellungen</td></tr></table></div></body></html>
diff --git a/help/de/html/ch04s05.html b/help/de/html/ch04s05.html
new file mode 100644
index 0000000..2636e40
--- /dev/null
+++ b/help/de/html/ch04s05.html
@@ -0,0 +1,28 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>2D-Darstellungen</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="ch04.html"
title="Kapitel 4. Darstellung"><link rel="prev" href="ch04s04.html" title="Vektorfeld-Darstellungen"><link
rel="next" href="ch05.html" title="Kapitel 5. GEL-Grundlagen"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">2D-Darstellungen</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch04s04.html">Zurück</a> </td><th width="60%" align="center">Kapitel 4.
Darstellung</th><td width="20%" align="right"> <a accesskey="n"
href="ch05.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-surface-plots"></a>2D-Darstellungen</h2></div></div></div><p>
+ Genius can also plot surfaces. Select the <span class="guilabel">Surface plot</span> tab in the
+ main notebook of the <span class="guilabel">Create Plot</span> window. Here you can specify a single
+ expression that should use either <code class="varname">x</code> and <code class="varname">y</code>
as real independent variables
+ or <code class="varname">z</code> as a complex variable (where <code class="varname">x</code> is the
real part of <code class="varname">z</code> and <code class="varname">y</code> is the
+ imaginary part). For example to plot the modulus of the cosine
+ function for complex parameters,
+ you could enter <strong class="userinput"><code>|cos(z)|</code></strong>. This would be
+ equivalent to <strong class="userinput"><code>|cos(x+1i*y)|</code></strong>.
+ See <a class="xref" href="ch04s05.html#surfaceplot-fig" title="Abbildung 4.5.
2D-Darstellung">Abbildung 4.5, „2D-Darstellung“</a>.
+ For plotting using the command line see the documentation of the
+ <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a> function.
+ </p><p>
+ The <code class="varname">z</code> range can be set automatically by turning on the <span
class="guilabel">Fit dependent axis</span>
+ checkbox. The variables can be renamed by clicking the <span class="guilabel">Change variable
names...</span> button, which is useful if you wish to print or save the figure and don't want to use the
standard
+ names. Finally you can also avoid printing the legend, which is also useful if printing or
+ saving, when the legend might simply be clutter.
+ </p><div class="figure"><a name="surfaceplot-fig"></a><p class="title"><b>Abbildung 4.5.
2D-Darstellung</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/surface_graph.png" alt="Modulus der komplexen Kosinus-Funktion."></div></div></div></div><br
class="figure-break"><p>
+ In surface mode, left and right arrow keys on your keyboard will rotate the
+ view along the z axis. Alternatively you can rotate along any axis by
+ selecting <span class="guilabel">Rotate axis...</span> in the <span
class="guilabel">View</span>
+ menu. The <span class="guilabel">View</span> menu also has a top view mode which rotates the
+ graph so that the z axis is facing straight out, that is, we view the graph from the top
+ and get essentially just the colors that define the values of the function getting a
+ temperature plot of the function. Finally you should
+ try <span class="guilabel">Start rotate animation</span>, to start a continuous slow rotation.
+ This is especially good if using <span class="application">Genius Mathematics Tool</span> to
present to an audience.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s04.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch04.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05.html">Weiter</a></td></tr><tr><td width="40%" align="left"
valign="top">Vektorfeld-Darstellungen </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Zum Anfang</a></td><td width="40%" align="right" valign="top"> Kapitel 5.
GEL-Grundlagen</td></tr></table></div></body></html>
diff --git a/help/de/html/ch05.html b/help/de/html/ch05.html
new file mode 100644
index 0000000..cbf6d29
--- /dev/null
+++ b/help/de/html/ch05.html
@@ -0,0 +1,123 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 5.
GEL-Grundlagen</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="index.html" title="Genius-Handbuch"><link
rel="prev" href="ch04s05.html" title="2D-Darstellungen"><link rel="next" href="ch05s02.html"
title="Verwendung von Variablen"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Kapitel 5. GEL-Grundlagen</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch04s05.html">Zurück</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch05s02.html">Weiter</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-gel"><
/a>Kapitel 5. GEL-Grundlagen</h1></div></div></div><div class="toc"><p><b>Inhaltsverzeichnis</b></p><dl
class="toc"><dt><span class="sect1"><a
href="ch05.html#genius-gel-values">Werte</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-numbers">Zahlen</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-booleans">Wahrheitswerte</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-strings">Strings</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-null">Null</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s02.html">Verwendung von Variablen</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-setting">Setzen von Variablen</a></span></dt><dt><span
class="sect2"><a href="ch05s02.html#genius-gel-variables-built-in">Eingebaute
Variablen</a></span></dt><dt><span class="sect2"><a href="ch05s02.html#genius-gel-previous-result">Vorhe
rige Ergebnisvariable</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch05s03.html">Verwendung von
Funktionen</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-defining">Definieren von Funktionen</a></span></dt><dt><span
class="sect2"><a href="ch05s03.html#genius-gel-functions-variable-argument-lists">Variable Argument
Lists</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-passing-functions">Übergabe von Funktionen an
Funktionen</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-operations">Operationen mit
Funktionen</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s04.html">Trenner</a></span></dt><dt><span class="sect1"><a
href="ch05s05.html">Kommentare</a></span></dt><dt><span class="sect1"><a href="ch05s06.html">Modulare
Auswertung</a></span></dt><dt><span class="sect1"><a href="ch05s07.html">Liste der
GEL-Operatoren</a></span></dt></dl></div><p>
+ GEL stands for Genius Extension Language. It is the language you use
+ to write programs in Genius. A program in GEL is simply an
+ expression that evaluates to a number, a matrix, or another object
+ in GEL.
+ <span class="application">Genius Mathematics Tool</span> can be used as a simple calculator, or as a
+ powerful theoretical research tool. The syntax is meant to
+ have as shallow of a learning curve as possible, especially for use
+ as a calculator.
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-values"></a>Werte</h2></div></div></div><p>
+ Values in GEL can be <a class="link" href="ch05.html#genius-gel-values-numbers"
title="Zahlen">numbers</a>, <a class="link" href="ch05.html#genius-gel-values-booleans"
title="Wahrheitswerte">Booleans</a>, or <a class="link" href="ch05.html#genius-gel-values-strings"
title="Strings">strings</a>. GEL also treats
+<a class="link" href="ch08.html" title="Kapitel 8. Matrizen in GEL">matrices</a> as values.
+ Values can be used in calculations, assigned to variables and returned from functions, among
other uses.
+ </p><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-numbers"></a>Zahlen</h3></div></div></div><p>
+Integers are the first type of number in GEL. Integers are written in the normal way.
+</p><pre class="programlisting">1234
+</pre><p>
+Hexadecimal and octal numbers can be written using C notation. For example:
+</p><pre class="programlisting">0x123ABC
+01234
+</pre><p>
+Or you can type numbers in an arbitrary base using <code class="literal"><base>\<number></code>.
Digits higher than 10 use letters in a similar way to hexadecimal. For example, a number in base 23 could be
written:
+</p><pre class="programlisting">23\1234ABCD
+</pre><p>
+ </p><p>
+The second type of GEL number is rationals. Rationals are simply achieved by dividing two integers. So one
could write:
+</p><pre class="programlisting">3/4
+</pre><p>
+to get three quarters. Rationals also accept mixed fraction notation. So in order to get one and three
tenths you could write:
+</p><pre class="programlisting">1 3/10
+</pre><p>
+ </p><p>
+The next type of number is floating point. These are entered in a similar fashion to C notation. You can use
<code class="literal">E</code>, <code class="literal">e</code> or <code class="literal">@</code> as the
exponent delimiter. Note that using the exponent delimiter gives a float even if there is no decimal point in
the number. Examples:
+</p><pre class="programlisting">1.315
+7.887e77
+7.887e-77
+.3
+0.3
+77e5
+</pre><p>
+ When Genius prints a floating point number it will always append a
+ <code class="computeroutput">.0</code> even if the number is whole. This is to indicate that
+ floating point numbers are taken as imprecise quantities. When a number is written in the
+ scientific notation, it is always a floating point number and thus Genius does not
+ print the <code class="computeroutput">.0</code>.
+ </p><p>
+The final type of number in GEL is the complex numbers. You can enter a complex number as a sum of real and
imaginary parts. To add an imaginary part, append an <code class="literal">i</code>. Here are examples of
entering complex numbers:
+</p><pre class="programlisting">1+2i
+8.01i
+77*e^(1.3i)
+</pre><p>
+ </p><div class="important" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Wichtig</h3><p>
+When entering imaginary numbers, a number must be in front of the <code class="literal">i</code>. If you use
<code class="literal">i</code> by itself, Genius will interpret this as referring to the variable <code
class="varname">i</code>. If you need to refer to <code class="literal">i</code> by itself, use <code
class="literal">1i</code> instead.
+ </p><p>
+In order to use mixed fraction notation with imaginary numbers you must have the mixed fraction in
parentheses. (i.e., <strong class="userinput"><code>(1 2/5)i</code></strong>)
+ </p></div></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-booleans"></a>Wahrheitswerte</h3></div></div></div><p>
+Genius also supports native Boolean values. The two Boolean constants are
+defined as <code class="constant">true</code> and <code class="constant">false</code>; these
+identifiers can be used like any other variable. You can also use the
+identifiers <code class="constant">True</code>, <code class="constant">TRUE</code>,
+<code class="constant">False</code> and <code class="constant">FALSE</code> as aliases for the
+above.
+ </p><p>
+At any place where a Boolean expression is expected, you can use a Boolean
+value or any expression that produces either a number or a Boolean. If
+Genius needs to evaluate a number as a Boolean it will interpret
+0 as <code class="constant">false</code> and any other number as
+<code class="constant">true</code>.
+ </p><p>
+In addition, you can do arithmetic with Boolean values. For example:
+</p><pre class="programlisting">( (1 + true) - false ) * true
+</pre><p>
+is the same as:
+</p><pre class="programlisting">( (true or true) or not false ) and true
+</pre><p>
+Only addition, subtraction and multiplication are supported. If you mix numbers with Booleans in an
expression then the numbers are converted to Booleans as described above. This means that, for example:
+</p><pre class="programlisting">1 == true
+</pre><p>
+always evaluates to <code class="constant">true</code> since 1 will be converted to <code
class="constant">true</code> before being compared to <code class="constant">true</code>.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-strings"></a>Strings</h3></div></div></div><p>
+Like numbers and Booleans, strings in GEL can be stored as values inside variables and passed to functions.
You can also concatenate a string with another value using the plus operator. For example:
+</p><pre class="programlisting">a=2+3;"Das Ergebnis ist: "+a
+</pre><p>
+will create the string:
+</p><pre class="programlisting">Das Ergebnis ist: 5
+</pre><p>
+You can also use C-like escape sequences such as <code class="literal">\n</code>,<code
class="literal">\t</code>,<code class="literal">\b</code>,<code class="literal">\a</code> and <code
class="literal">\r</code>. To get a <code class="literal">\</code> or <code class="literal">"</code> into the
string you can quote it with a <code class="literal">\</code>. For example:
+</p><pre class="programlisting">"Slash: \\ Quotes: \" Tabs: \t1\t2\t3"
+</pre><p>
+will make a string:
+</p><pre class="programlisting">Slash: \ Quotes: " Tabs: 1 2 3
+</pre><p>
+Do note however that when a string is returned from a function, escapes are
+quoted, so that the output can be used as input. If you wish to print the
+string as it is (without escapes), use the
+<a class="link" href="ch11s02.html#gel-function-print"><code class="function">print</code></a>
+or
+<a class="link" href="ch11s02.html#gel-function-printn"><code class="function">printn</code></a> functions.
+ </p><p>
+ In addition, you can use the library function <a class="link"
href="ch11s02.html#gel-function-string"><code class="function">string</code></a> to convert anything to a
string. For example:
+</p><pre class="programlisting">string(22)
+</pre><p>
+will return
+</p><pre class="programlisting">"22"
+</pre><p>
+Strings can also be compared with <code class="literal">==</code> (equal), <code class="literal">!=</code>
(not equal) and <code class="literal"><=></code> (comparison) operators
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-null"></a>Null</h3></div></div></div><p>
+There is a special value called
+<code class="constant">null</code>. No operations can be performed on
+it, and nothing is printed when it is returned. Therefore,
+<code class="constant">null</code> is useful when you do not want output from an
+expression. The value <code class="constant">null</code> can be obtained as an expression when you
+type <code class="literal">.</code>, the constant <code class="constant">null</code> or nothing.
+By nothing we mean that if you end an expression with
+a separator <code class="literal">;</code>, it is equivalent to ending it with a
+separator followed by a <code class="constant">null</code>.
+ </p><p>Beispiel: </p><pre class="programlisting">x=5;.
+x=5;
+</pre><p>
+Some functions return <code class="constant">null</code> when no value can be returned
+or an error happened. Also <code class="constant">null</code> is used as an empty vector
+or matrix, or an empty reference.
+</p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s05.html">Zurück</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch05s02.html">Weiter</a></td></tr><tr><td
width="40%" align="left" valign="top">2D-Darstellungen </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Zum Anfang</a></td><td width="40%" align="right" valign="top"> Verwendung von
Variablen</td></tr></table></div></body></html>
diff --git a/help/de/html/ch05s02.html b/help/de/html/ch05s02.html
new file mode 100644
index 0000000..95c9bbf
--- /dev/null
+++ b/help/de/html/ch05s02.html
@@ -0,0 +1,33 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Verwendung von
Variablen</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="ch05.html" title="Kapitel 5.
GEL-Grundlagen"><link rel="prev" href="ch05.html" title="Kapitel 5. GEL-Grundlagen"><link rel="next"
href="ch05s03.html" title="Verwendung von Funktionen"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Verwendung von Variablen</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch05.html">Zurück</a> </td><th width="60%" align="center">Kapitel 5.
GEL-Grundlagen</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s03.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 clas
s="title" style="clear: both"><a name="genius-gel-variables"></a>Verwendung von
Variablen</h2></div></div></div><p>Syntax: </p><pre class="programlisting">VariableName
+</pre><p> Beispiel: </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>e</code></strong>
+= 2.71828182846
+</pre><p>
+To evaluate a variable by itself, just enter the name of the variable. This will return the value of the
variable. You can use a variable anywhere you would normally use a number or string. In addition, variables
are necessary when defining functions that take arguments (see <a class="xref"
href="ch05s03.html#genius-gel-functions-defining" title="Definieren von Funktionen">„Definieren von
Funktionen“</a>).
+ </p><div class="tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Vervollständigung mit der Tabulatortaste</h3><p>
+You can use Tab completion to get Genius to complete variable names for you. Try typing the first few
letters of the name and pressing <strong class="userinput"><code>Tab</code></strong>.
+ </p></div><div class="important" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Groß-/Kleinschreibung für Variablennamen</h3><p>Bei Variablennamen wird zwischen Groß- und
Kleinschreibung unterschieden. Das bedeutet, dass die Variablennamen <code class="varname">hello</code>,
<code class="varname">HELLO</code> und <code class="varname">Hello</code> als unterschiedliche Variablen
erkannt werden.</p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-variables-setting"></a>Setzen von Variablen</h3></div></div></div><p>Syntax: </p><pre
class="programlisting"><identifier> = <value>
+<identifier> := <value>
+</pre><p> Beispiel: </p><pre class="programlisting">x = 3
+x := 3
+</pre><p>
+To assign a value to a variable, use the <code class="literal">=</code> or <code class="literal">:=</code>
operators. These operators set the value of the variable and return the value you set, so you can do things
like
+</p><pre class="programlisting">a = b = 5
+</pre><p>
+This will set <code class="varname">b</code> to 5 and then also set <code class="varname">a</code> to 5.
+ </p><p>
+The <code class="literal">=</code> and <code class="literal">:=</code> operators can both be used to set
variables. The difference between them is that the <code class="literal">:=</code> operator always acts as an
assignment operator, whereas the <code class="literal">=</code> operator may be interpreted as testing for
equality when used in a context where a Boolean expression is expected.
+ </p><p>
+ For more information about the scope of variables, that is when are what variables visible, see <a
class="xref" href="ch06s05.html" title="Globale Variablen und Variablenbereiche">„Globale Variablen und
Variablenbereiche“</a>.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-variables-built-in"></a>Eingebaute Variablen</h3></div></div></div><p>
+GEL has a number of built-in ‘variables’, such as
+<code class="varname">e</code>, <code class="varname">pi</code> or <code class="varname">GoldenRatio</code>.
These are widely used constants with a preset value, and
+they cannot be assigned new values.
+There are a number of other built-in variables.
+See <a class="xref" href="ch11s04.html" title="Konstanten">„Konstanten“</a> for a full list. Note that
<code class="varname">i</code> is not by default
+the square root of negative one (the imaginary number), and is undefined to allow its use as a counter. If
you wish to write the imaginary number you need to
+use <strong class="userinput"><code>1i</code></strong>.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-previous-result"></a>Vorherige Ergebnisvariable</h3></div></div></div><p>
+The <code class="varname">Ans</code> and <code class="varname">ans</code> variables can be used to get the
result of the last expression. For example, if you had performed some calculation, to add 389 to the result
you could do:
+</p><pre class="programlisting">Ans+389
+</pre><p>
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05.html">Zurück</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch05.html">Nach oben</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05s03.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel 5.
GEL-Grundlagen </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td
width="40%" align="right" valign="top"> Verwendung von Funktionen</td></tr></table></div></body></html>
diff --git a/help/de/html/ch05s03.html b/help/de/html/ch05s03.html
new file mode 100644
index 0000000..8d20d8a
--- /dev/null
+++ b/help/de/html/ch05s03.html
@@ -0,0 +1,74 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Verwendung von
Funktionen</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="ch05.html" title="Kapitel 5.
GEL-Grundlagen"><link rel="prev" href="ch05s02.html" title="Verwendung von Variablen"><link rel="next"
href="ch05s04.html" title="Trenner"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Verwendung von Funktionen</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s02.html">Zurück</a> </td><th width="60%" align="center">Kapitel 5. GEL-Grundlagen</th><td
width="20%" align="right"> <a accesskey="n" href="ch05s04.html">Weiter</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" s
tyle="clear: both"><a name="genius-gel-functions"></a>Verwendung von Funktionen</h2></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">FunctionName(argument1, argument2, ...)
+</pre><p>
+Example:
+</p><pre class="programlisting">Factorial(5)
+cos(2*pi)
+gcd(921,317)
+</pre><p>
+
+To evaluate a function, enter the name of the function, followed by the arguments (if any) to the function
in parentheses. This will return the result of applying the function to its arguments. The number of
arguments to the function is, of course, different for each function.
+ </p><p>
+ There are many built-in functions, such as <a class="link"
href="ch11s06.html#gel-function-sin"><code class="function">sin</code></a>, <a class="link"
href="ch11s06.html#gel-function-cos"><code class="function">cos</code></a> and <a class="link"
href="ch11s06.html#gel-function-tan"><code class="function">tan</code></a>. You can use the <a class="link"
href="ch11.html#gel-command-help"><code class="function">help</code></a> built-in command to get a list of
available functions, or see <a class="xref" href="ch11.html" title="Kapitel 11. Liste der
GEL-Funktionen">Kapitel 11, <i>Liste der GEL-Funktionen</i></a> for a full listing.
+ </p><div class="tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Vervollständigung mit der Tabulatortaste</h3><p>
+You can use Tab completion to get Genius to complete function names for you. Try typing the first few
letters of the name and pressing <strong class="userinput"><code>Tab</code></strong>.
+ </p></div><div class="important" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Groß-/Kleinschreibung für Funktionsnamen</h3><p>
+The names of functions are case sensitive. That means that functions named <code
class="function">dosomething</code>, <code class="function">DOSOMETHING</code> and <code
class="function">DoSomething</code> are all different functions.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-defining"></a>Definieren von Funktionen</h3></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">function <identifier>(<comma separated arguments>) =
<function body>
+<identifier> = (`() = <function body>)
+</pre><p>
+The <code class="literal">`</code> is the backquote character, and signifies an anonymous function. By
setting it to a variable name you effectively define a function.
+ </p><p>
+A function takes zero or more comma separated arguments, and returns the result of the function body.
Defining your own functions is primarily a matter of convenience; one possible use is to have sets of
functions defined in GEL files that Genius can load in order to make them available.
+Example:
+</p><pre class="programlisting">function addup(a,b,c) = a+b+c
+</pre><p>
+then <strong class="userinput"><code>addup(1,4,9)</code></strong> yields 14
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-variable-argument-lists"></a>Variable Argument Lists</h3></div></div></div><p>
+If you include <code class="literal">...</code> after the last argument name in the function declaration,
then Genius will allow any number of arguments to be passed in place of that argument. If no arguments were
passed then that argument will be set to <code class="constant">null</code>. Otherwise, it will be a
horizontal vector containing all the arguments. For example:
+</p><pre class="programlisting">function f(a,b...) = b
+</pre><p>
+Then <strong class="userinput"><code>f(1,2,3)</code></strong> yields <code
class="computeroutput">[2,3]</code>, while <strong class="userinput"><code>f(1)</code></strong> yields a
<code class="constant">null</code>.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-passing-functions"></a>Übergabe von Funktionen an
Funktionen</h3></div></div></div><p>
+In Genius, it is possible to pass a function as an argument to another function. This can be done using
either ‘function nodes’ or anonymous functions.
+ </p><p>
+If you do not enter the parentheses after a function name, instead of being evaluated, the function will
instead be returned as a ‘function node’. The function node can then be passed to another function.
+Example:
+</p><pre class="programlisting">function f(a,b) = a(b)+1;
+function b(x) = x*x;
+f(b,2)
+</pre><p>
+ </p><p>
+To pass functions that are not defined,
+you can use an anonymous function (see <a class="xref" href="ch05s03.html#genius-gel-functions-defining"
title="Definieren von Funktionen">„Definieren von Funktionen“</a>). That is, you want to pass a function
without giving it a name.
+Syntax:
+</p><pre class="programlisting">function(<comma separated arguments>) = <function body>
+`(<comma separated arguments>) = <function body>
+</pre><p>
+Example:
+</p><pre class="programlisting">function f(a,b) = a(b)+1;
+f(`(x) = x*x,2)
+</pre><p>
+This will return 5.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-operations"></a>Operationen mit Funktionen</h3></div></div></div><p>
+ Some functions allow arithmetic operations, and some single argument functions such as <a
class="link" href="ch11s05.html#gel-function-exp"><code class="function">exp</code></a> or <a class="link"
href="ch11s05.html#gel-function-ln"><code class="function">ln</code></a>, to operate on the function. For
example,
+</p><pre class="programlisting">exp(sin*cos+4)
+</pre><p>
+will return a function that takes <code class="varname">x</code> and returns <strong
class="userinput"><code>exp(sin(x)*cos(x)+4)</code></strong>. It is functionally equivalent
+to typing
+</p><pre class="programlisting">`(x) = exp(sin(x)*cos(x)+4)
+</pre><p>
+
+This operation can be useful when quickly defining functions. For example to create a function called <code
class="varname">f</code>
+to perform the above operation, you can just type:
+</p><pre class="programlisting">f = exp(sin*cos+4)
+</pre><p>
+It can also be used in plotting. For example, to plot sin squared you can enter:
+</p><pre class="programlisting">LinePlot(sin^2)
+</pre><p>
+ </p><div class="warning" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Warnung</h3><p>
+Not all functions can be used in this way. For example, when you use a binary operation the functions must
take the same number of arguments.
+ </p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch05s02.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05s04.html">Weiter</a></td></tr><tr><td width="40%" align="left"
valign="top">Verwendung von Variablen </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Zum Anfang</a></td><td width="40%" align="right" valign="top">
Trenner</td></tr></table></div></body></html>
diff --git a/help/de/html/ch05s04.html b/help/de/html/ch05s04.html
new file mode 100644
index 0000000..ee18213
--- /dev/null
+++ b/help/de/html/ch05s04.html
@@ -0,0 +1,28 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Trenner</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Genius-Handbuch"><link rel="up" href="ch05.html" title="Kapitel 5. GEL-Grundlagen"><link rel="prev"
href="ch05s03.html" title="Verwendung von Funktionen"><link rel="next" href="ch05s05.html"
title="Kommentare"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Trenner</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s03.html">Zurück</a> </td><th width="60%" align="center">Kapitel 5. GEL-Grundlagen</th><td
width="20%" align="right"> <a accesskey="n" href="ch05s05.html">Weiter</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="geni
us-gel-separator"></a>Trenner</h2></div></div></div><p>
+ GEL is somewhat different from other languages in how it deals with multiple commands and
functions.
+ In GEL you must chain commands together with a separator operator.
+That is, if you want to type more than one expression you have to use
+the <code class="literal">;</code> operator in between the expressions. This is
+a way in which both expressions are evaluated and the result of the second one (or the last one
+if there is more than two expressions) is returned.
+Suppose you type the following:
+</p><pre class="programlisting">3 ; 5
+</pre><p>
+This expression will yield 5.
+ </p><p>
+This will require some parenthesizing to make it unambiguous sometimes,
+especially if the <code class="literal">;</code> is not the top most primitive. This slightly differs from
+other programming languages where the <code class="literal">;</code> is a terminator of statements, whereas
+in GEL it’s actually a binary operator. If you are familiar with pascal
+this should be second nature. However genius can let you pretend it is a
+terminator to some degree. If a <code class="literal">;</code> is found at the end of a parenthesis or a
block,
+genius will append a null to it as if you would have written
+<strong class="userinput"><code>;null</code></strong>.
+This is useful in case you do not want to return a value from say a loop,
+or if you handle the return differently. Note that it will slightly slow down
+the code if it is executed too often as there is one more operator involved.
+ </p><p>
+ If you are typing expressions in a program you do not have to add a semicolon. In this case
+ genius will simply print the return value whenever it executes the expression. However, do
note that if you are defining a
+ function, the body of the function is a single expression.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s03.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05s05.html">Weiter</a></td></tr><tr><td width="40%" align="left"
valign="top">Verwendung von Funktionen </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Zum Anfang</a></td><td width="40%" align="right" valign="top">
Kommentare</td></tr></table></div></body></html>
diff --git a/help/de/html/ch05s05.html b/help/de/html/ch05s05.html
new file mode 100644
index 0000000..d4725dd
--- /dev/null
+++ b/help/de/html/ch05s05.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Kommentare</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="ch05.html"
title="Kapitel 5. GEL-Grundlagen"><link rel="prev" href="ch05s04.html" title="Trenner"><link rel="next"
href="ch05s06.html" title="Modulare Auswertung"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kommentare</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch05s04.html">Zurück</a> </td><th width="60%" align="center">Kapitel 5.
GEL-Grundlagen</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s06.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-
gel-comments"></a>Kommentare</h2></div></div></div><p>
+ GEL is similar to other scripting languages in that <code class="literal">#</code> denotes
+ a comment, that is text that is not meant to be evaluated. Everything beyond the
+ pound sign till the end of line will just be ignored. For example,
+</p><pre class="programlisting"># This is just a comment
+# every line in a comment must have its own pound sign
+# in the next line we set x to the value 123
+x=123;
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s04.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05s06.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Trenner
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td width="40%"
align="right" valign="top"> Modulare Auswertung</td></tr></table></div></body></html>
diff --git a/help/de/html/ch05s06.html b/help/de/html/ch05s06.html
new file mode 100644
index 0000000..3fe07cb
--- /dev/null
+++ b/help/de/html/ch05s06.html
@@ -0,0 +1,50 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Modulare
Auswertung</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="ch05.html" title="Kapitel 5.
GEL-Grundlagen"><link rel="prev" href="ch05s05.html" title="Kommentare"><link rel="next" href="ch05s07.html"
title="Liste der GEL-Operatoren"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Modulare Auswertung</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s05.html">Zurück</a> </td><th width="60%" align="center">Kapitel 5. GEL-Grundlagen</th><td
width="20%" align="right"> <a accesskey="n" href="ch05s07.html">Weiter</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="cle
ar: both"><a name="genius-gel-modular-evaluation"></a>Modulare Auswertung</h2></div></div></div><p>
+ Genius implements modular arithmetic.
+To use it you just add "mod <integer>" after
+the expression. Example:
+<strong class="userinput"><code>2^(5!) * 3^(6!) mod 5</code></strong>
+It could be possible to do modular arithmetic by computing with integers and then modding in the end with
+the <code class="literal">%</code> operator, which simply gives the remainder, but
+that may be time consuming if not impossible when working with larger numbers.
+For example, <strong class="userinput"><code>10^(10^10) % 6</code></strong> will simply not work (the
exponent
+will be too large), while
+<strong class="userinput"><code>10^(10^10) mod 6</code></strong> is instantaneous. The first expression
first tries to compute the integer
+<strong class="userinput"><code>10^(10^10)</code></strong> and then find remainder after division by 6,
while the second expression evaluates
+everything modulo 6 to begin with.
+ </p><p>
+You can calculate the inverses of numbers mod some integer by just using
+rational numbers (of course the inverse has to exist).
+Examples:
+</p><pre class="programlisting">10^-1 mod 101
+1/10 mod 101</pre><p>
+You can also do modular evaluation with matrices including taking inverses,
+powers and dividing.
+Example:
+</p><pre class="programlisting">A = [1,2;3,4]
+B = A^-1 mod 5
+A*B mod 5</pre><p>
+This should yield the identity matrix as B will be the inverse of A mod 5.
+ </p><p>
+Some functions such as
+<a class="link" href="ch11s05.html#gel-function-sqrt"><code class="function">sqrt</code></a> or
+<a class="link" href="ch11s05.html#gel-function-log"><code class="function">log</code></a>
+work in a different way when in modulo mode. These will then work like their
+discrete versions working within the ring of integers you selected. For
+example:
+</p><pre class="programlisting">genius> sqrt(4) mod 7
+=
+[2, 5]
+genius> 2*2 mod 7
+= 4</pre><p>
+ <code class="function">sqrt</code> will actually return all the possible square
+ roots.
+ </p><p>
+ Do not chain mod operators, simply place it at the end of the computation, all computations in
the expression on the left
+ will be carried out in mod arithmetic. If you place a mod inside
+ a mod, you will get unexpected results. If you simply want to
+ mod a single number and control exactly when remainders are
+ taken, best to use the <code class="literal">%</code> operator. When you
+ need to chain several expressions in modular arithmetic with
+ different divisors, it may be best to just split up the expression into several and use
+ temporary variables to avoid a mod inside a mod.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s05.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05s07.html">Weiter</a></td></tr><tr><td width="40%" align="left"
valign="top">Kommentare </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum
Anfang</a></td><td width="40%" align="right" valign="top"> Liste der
GEL-Operatoren</td></tr></table></div></body></html>
diff --git a/help/de/html/ch05s07.html b/help/de/html/ch05s07.html
new file mode 100644
index 0000000..6507ff9
--- /dev/null
+++ b/help/de/html/ch05s07.html
@@ -0,0 +1,243 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Liste der
GEL-Operatoren</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="ch05.html" title="Kapitel 5.
GEL-Grundlagen"><link rel="prev" href="ch05s06.html" title="Modulare Auswertung"><link rel="next"
href="ch06.html" title="Kapitel 6. Programmierung mit GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Liste der GEL-Operatoren</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch05s06.html">Zurück</a> </td><th width="60%" align="center">Kapitel 5.
GEL-Grundlagen</th><td width="20%" align="right"> <a accesskey="n"
href="ch06.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 cl
ass="title" style="clear: both"><a name="genius-gel-operator-list"></a>Liste der
GEL-Operatoren</h2></div></div></div><p>
+ Everything in GEL is really just an expression. Expressions are stringed together with
+ different operators. As we have seen, even the separator is simply a binary operator
+ in GEL. Here is a list of the operators in GEL.
+ </p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><strong
class="userinput"><code>a;b</code></strong></span></dt><dd><p>
+ The separator, just evaluates both
+ <code class="varname">a</code> and
+ <code class="varname">b</code>,
+ but returns only the result of
+ <code class="varname">b</code>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a=b</code></strong></span></dt><dd><p>
+ The assignment operator. This assigns <code class="varname">b</code> to
+<code class="varname">a</code> (<code class="varname">a</code> must be a valid <a class="link"
href="ch06s09.html" title="Lvalues (linke Werte)">lvalue</a>) (note however that this operator
+may be translated to <code class="literal">==</code> if used in a place where boolean
+expression is expected)
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a:=b</code></strong></span></dt><dd><p>
+ The assignment operator. Assigns <code class="varname">b</code> to
+<code class="varname">a</code> (<code class="varname">a</code> must be a valid <a class="link"
href="ch06s09.html" title="Lvalues (linke Werte)">lvalue</a>). This is
+different from <code class="literal">=</code> because it never gets translated to a
+<code class="literal">==</code>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>|a|</code></strong></span></dt><dd><p>
+ Absolute value.
+ In case the expression is a complex number the result will be the modulus
+(distance from the origin). For example:
+<strong class="userinput"><code>|3 * e^(1i*pi)|</code></strong>
+returns 3.
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/AbsoluteValue.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a^b</code></strong></span></dt><dd><p>
+ Exponentiation, raises <code class="varname">a</code> to the <code class="varname">b</code>th
power.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a.^b</code></strong></span></dt><dd><p>
+ Element by element exponentiation. Raise each element of a matrix
+ <code class="varname">a</code> to the <code class="varname">b</code>th power. Or if
+ <code class="varname">b</code> is a matrix of the same size as
+ <code class="varname">a</code>, then do the operation element by element.
+ If <code class="varname">a</code> is a number and <code class="varname">b</code> is a
+ matrix then it creates matrix of the same size as
+ <code class="varname">b</code> with <code class="varname">a</code> raised to all the
+ different powers in <code class="varname">b</code>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a+b</code></strong></span></dt><dd><p>
+ Addition. Adds two numbers, matrices, functions or strings. If
+ you add a string to anything the result will just be a string. If one is
+ a square matrix and the other a number, then the number is multiplied by
+ the identity matrix.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a-b</code></strong></span></dt><dd><p>
+ Subtraction. Subtract two numbers, matrices or functions.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a*b</code></strong></span></dt><dd><p>
+ Multiplication. This is the normal matrix multiplication.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a.*b</code></strong></span></dt><dd><p>
+ Element by element multiplication if <code class="varname">a</code> and
+ <code class="varname">b</code> are matrices.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a/b</code></strong></span></dt><dd><p>
+ Division. When <code class="varname">a</code> and <code class="varname">b</code> are just
numbers
+ this is the normal division. When they are matrices, then this is
+ equivalent to <strong class="userinput"><code>a*b^-1</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a./b</code></strong></span></dt><dd><p>
+ Element by element division. Same as <strong class="userinput"><code>a/b</code></strong>
for
+ numbers, but operates element by element on matrices.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a\b</code></strong></span></dt><dd><p>
+ Back division. That is this is the same as <strong class="userinput"><code>b/a</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a.\b</code></strong></span></dt><dd><p>
+ Element by element back division.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a%b</code></strong></span></dt><dd><p>
+ The mod operator. This does not turn on the <a class="link" href="ch05s06.html" title="Modulare
Auswertung">modular mode</a>, but
+ just returns the remainder of <strong class="userinput"><code>a/b</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a.%b</code></strong></span></dt><dd><p>
+ Element by element the mod operator. Returns the remainder
+ after element by element integer <strong class="userinput"><code>a./b</code></strong>.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a mod
b</code></strong></span></dt><dd><p>
+ Modular evaluation operator. The expression <code class="varname">a</code>
+ is evaluated modulo <code class="varname">b</code>. See <a class="xref" href="ch05s06.html"
title="Modulare Auswertung">„Modulare Auswertung“</a>.
+ Some functions and operators behave differently modulo an integer.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a!</code></strong></span></dt><dd><p>
+ Factorial operator. This is like
+ <strong class="userinput"><code>1*...*(n-2)*(n-1)*n</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a!!</code></strong></span></dt><dd><p>
+ Double factorial operator. This is like
+ <strong class="userinput"><code>1*...*(n-4)*(n-2)*n</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a==b</code></strong></span></dt><dd><p>
+ Equality operator.
+ Returns <code class="constant">true</code> or <code class="constant">false</code>
+ depending on <code class="varname">a</code> and <code class="varname">b</code> being equal or
not.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a!=b</code></strong></span></dt><dd><p>
+ Inequality operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> does not
+ equal <code class="varname">b</code> else returns <code class="constant">false</code>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a<>b</code></strong></span></dt><dd><p>
+ Alternative inequality operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> does not
+ equal <code class="varname">b</code> else returns <code class="constant">false</code>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a<=b</code></strong></span></dt><dd><p>
+ Less than or equal operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> is
+ less than or equal to
+ <code class="varname">b</code> else returns <code class="constant">false</code>.
+ These can be chained as in <strong class="userinput"><code>a <= b <= c</code></strong> (can
+ also be combined with the less than operator).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a>=b</code></strong></span></dt><dd><p>
+ Greater than or equal operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> is
+ greater than or equal to
+ <code class="varname">b</code> else returns <code class="constant">false</code>.
+ These can be chained as in <strong class="userinput"><code>a >= b >= c</code></strong>
+ (can also be combine with the greater than operator).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a<b</code></strong></span></dt><dd><p>
+ Less than operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> is
+ less than
+ <code class="varname">b</code> else returns <code class="constant">false</code>.
+ These can be chained as in <strong class="userinput"><code>a < b < c</code></strong>
+ (can also be combine with the less than or equal to operator).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a>b</code></strong></span></dt><dd><p>
+ Greater than operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> is
+ greater than
+ <code class="varname">b</code> else returns <code class="constant">false</code>.
+ These can be chained as in <strong class="userinput"><code>a > b > c</code></strong>
+ (can also be combine with the greater than or equal to operator).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a<=>b</code></strong></span></dt><dd><p>
+ Comparison operator. If <code class="varname">a</code> is equal to
+ <code class="varname">b</code> it returns 0, if <code class="varname">a</code> is less
+ than <code class="varname">b</code> it returns -1 and if
+ <code class="varname">a</code> is greater than <code class="varname">b</code> it
+ returns 1.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a and
b</code></strong></span></dt><dd><p>
+ Logical and. Returns true if both
+ <code class="varname">a</code> and <code class="varname">b</code> are true,
+ else returns false. If given numbers, nonzero numbers
+ are treated as true.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a or
b</code></strong></span></dt><dd><p>
+ Logical or.
+ Returns true if either
+ <code class="varname">a</code> or <code class="varname">b</code> is true,
+ else returns false. If given numbers, nonzero numbers
+ are treated as true.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a xor
b</code></strong></span></dt><dd><p>
+ Logical xor.
+ Returns true exactly one of
+ <code class="varname">a</code> or <code class="varname">b</code> is true,
+ else returns false. If given numbers, nonzero numbers
+ are treated as true.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>not
a</code></strong></span></dt><dd><p>
+ Logical not. Returns the logical negation of <code class="varname">a</code>
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>-a</code></strong></span></dt><dd><p>
+ Negation operator. Returns the negative of a number or a matrix (works element-wise on a
matrix).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>&a</code></strong></span></dt><dd><p>
+ Variable referencing (to pass a reference to a variable).
+ See <a class="xref" href="ch06s08.html" title="Referenzen">„Referenzen“</a>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>*a</code></strong></span></dt><dd><p>
+ Variable dereferencing (to access a referenced variable).
+ See <a class="xref" href="ch06s08.html" title="Referenzen">„Referenzen“</a>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a'</code></strong></span></dt><dd><p>
+ Matrix conjugate transpose. That is, rows and columns get swapped and we take complex
conjugate of all entries. That is
+ if the i,j element of <code class="varname">a</code> is x+iy, then the j,i element of
<strong class="userinput"><code>a'</code></strong> is x-iy.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a.'</code></strong></span></dt><dd><p>
+ Matrix transpose, does not conjugate the entries. That is,
+ the i,j element of <code class="varname">a</code> becomes the j,i element of <strong
class="userinput"><code>a.'</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,c)</code></strong></span></dt><dd><p>
+ Get element of a matrix in row <code class="varname">b</code> and column
+ <code class="varname">c</code>. If <code class="varname">b</code>,
+ <code class="varname">c</code> are vectors, then this gets the corresponding
+ rows columns or submatrices.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,)</code></strong></span></dt><dd><p>
+ Get row of a matrix (or multiple rows if <code class="varname">b</code> is a vector).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,:)</code></strong></span></dt><dd><p>Gleiches wie oben.</p></dd><dt><span
class="term"><strong class="userinput"><code>a@(,c)</code></strong></span></dt><dd><p>
+ Get column of a matrix (or columns if <code class="varname">c</code> is a
+ vector).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(:,c)</code></strong></span></dt><dd><p>Gleiches wie oben.</p></dd><dt><span
class="term"><strong class="userinput"><code>a@(b)</code></strong></span></dt><dd><p>
+ Get an element from a matrix treating it as a vector. This will
+ traverse the matrix row-wise.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a:b</code></strong></span></dt><dd><p>
+ Build a vector from <code class="varname">a</code> to <code class="varname">b</code> (or
specify a row, column region for the <code class="literal">@</code> operator). For example to get rows 2 to
4 of matrix <code class="varname">A</code> we could do
+ </p><pre class="programlisting">A@(2:4,)
+ </pre><p>
+ as <strong class="userinput"><code>2:4</code></strong> will return a vector
+ <strong class="userinput"><code>[2,3,4]</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a:b:c</code></strong></span></dt><dd><p>
+ Build a vector from <code class="varname">a</code> to <code class="varname">c</code>
+ with <code class="varname">b</code> as a step. That is for example
+ </p><pre class="programlisting">genius> 1:2:9
+=
+`[1, 3, 5, 7, 9]
+</pre><p>
+ </p><p>
+ When the numbers involved are floating point numbers, for example
+ <strong class="userinput"><code>1.0:0.4:3.0</code></strong>, the output is what is expected
+ even though adding 0.4 to 1.0 five times is actually just slightly
+ more than 3.0 due to the way that floating point numbers are
+ stored in base 2 (there is no 0.4, the actual number stored is
+ just ever so slightly bigger). The way this is handled is the
+ same as in the for, sum, and prod loops. If the end is within
+ <strong class="userinput"><code>2^-20</code></strong> times the step size of the endpoint,
+ the endpoint is used and we assume there were roundoff errors.
+ This is not perfect, but it handles the majority of the cases.
+ This check is done only from version 1.0.18 onwards, so execution
+ of your code may differ on older versions. If you want to avoid
+ dealing with this issue, use actual rational numbers, possibly
+ using the <code class="function">float</code> if you wish to get floating
+ point numbers in the end. For example
+ <strong class="userinput"><code>1:2/5:3</code></strong> does the right thing and
+ <strong class="userinput"><code>float(1:2/5:3)</code></strong> even gives you floating
+ point numbers and is ever so slightly more precise than
+ <strong class="userinput"><code>1.0:0.4:3.0</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>(a)i</code></strong></span></dt><dd><p>
+ Make a imaginary number (multiply <code class="varname">a</code> by the
+ imaginary). Note that normally the number <code class="varname">i</code> is
+ written as <strong class="userinput"><code>1i</code></strong>. So the above is equal to
+ </p><pre class="programlisting">(a)*1i
+ </pre><p>
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>`a</code></strong></span></dt><dd><p>
+ Quote an identifier so that it doesn't get evaluated. Or
+ quote a matrix so that it doesn't get expanded.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a swapwith
b</code></strong></span></dt><dd><p>
+ Swap value of <code class="varname">a</code> with the value
+ of <code class="varname">b</code>. Currently does not operate
+ on ranges of matrix elements.
+ It returns <code class="constant">null</code>.
+ Available from version 1.0.13.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>increment
a</code></strong></span></dt><dd><p>
+ Increment the variable <code class="varname">a</code> by 1. If
+ <code class="varname">a</code> is a matrix, then increment each element.
+ This is equivalent to <strong class="userinput"><code>a=a+1</code></strong>, but
+ it is somewhat faster. It returns <code class="constant">null</code>.
+ Available from version 1.0.13.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>increment a by
b</code></strong></span></dt><dd><p>
+ Increment the variable <code class="varname">a</code> by <code class="varname">b</code>.
If
+ <code class="varname">a</code> is a matrix, then increment each element.
+ This is equivalent to <strong class="userinput"><code>a=a+b</code></strong>, but
+ it is somewhat faster. It returns <code class="constant">null</code>.
+ Available from version 1.0.13.
+ </p></dd></dl></div><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Anmerkung</h3><p>
+The @() operator makes the : operator most useful. With this you can specify regions of a matrix. So that
a@(2:4,6) is the rows 2,3,4 of the column 6. Or a@(,1:2) will get you the first two columns of a matrix. You
can also assign to the @() operator, as long as the right value is a matrix that matches the region in size,
or if it is any other type of value.
+</p></div><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Anmerkung</h3><p>
+The comparison operators (except for the <=> operator, which behaves normally), are not strictly
binary operators, they can in fact be grouped in the normal mathematical way, e.g.: (1<x<=y<5) is a
legal boolean expression and means just what it should, that is (1<x and x≤y and y<5)
+</p></div><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Anmerkung</h3><p>
+The unitary minus operates in a different fashion depending on where it
+appears. If it appears before a number it binds very closely, if it appears in
+front of an expression it binds less than the power and factorial operators.
+So for example <strong class="userinput"><code>-1^k</code></strong> is really <strong
class="userinput"><code>(-1)^k</code></strong>,
+but <strong class="userinput"><code>-foo(1)^k</code></strong> is really <strong
class="userinput"><code>-(foo(1)^k)</code></strong>. So
+be careful how you use it and if in doubt, add parentheses.
+</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s06.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Modulare
Auswertung </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td
width="40%" align="right" valign="top"> Kapitel 6. Programmierung mit
GEL</td></tr></table></div></body></html>
diff --git a/help/de/html/ch06.html b/help/de/html/ch06.html
new file mode 100644
index 0000000..6d9756f
--- /dev/null
+++ b/help/de/html/ch06.html
@@ -0,0 +1,19 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 6.
Programmierung mit GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="index.html"
title="Genius-Handbuch"><link rel="prev" href="ch05s07.html" title="Liste der GEL-Operatoren"><link
rel="next" href="ch06s02.html" title="Schleifen"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitel 6. Programmierung mit GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch05s07.html">Zurück</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch06s02.html">Weiter</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="geni
us-gel-programming"></a>Kapitel 6. Programmierung mit GEL</h1></div></div></div><div
class="toc"><p><b>Inhaltsverzeichnis</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch06.html#genius-gel-conditionals">Bedingungen</a></span></dt><dt><span class="sect1"><a
href="ch06s02.html">Schleifen</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-while">While-Schleifen</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-for">For-Schleifen</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-foreach">Foreach-Schleifen</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-break-continue">Break and Continue</a></span></dt></dl></dd><dt><span
class="sect1"><a href="ch06s03.html">Summen und Produkte</a></span></dt><dt><span class="sect1"><a
href="ch06s04.html">Vergleichsoperatoren</a></span></dt><dt><span class="sect1"><a
href="ch06s05.html">Globale Variablen und Variablen
bereiche</a></span></dt><dt><span class="sect1"><a
href="ch06s06.html">Parametervariablen</a></span></dt><dt><span class="sect1"><a
href="ch06s07.html">Rückgabewerte</a></span></dt><dt><span class="sect1"><a
href="ch06s08.html">Referenzen</a></span></dt><dt><span class="sect1"><a href="ch06s09.html">Lvalues (linke
Werte)</a></span></dt></dl></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-conditionals"></a>Bedingungen</h2></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">if <expression1> then <expression2> [else <expression3>]
+</pre><p>
+If <code class="literal">else</code> is omitted, then if the <code class="literal">expression1</code> yields
<code class="constant">false</code> or 0, <code class="literal">NULL</code> is returned.
+ </p><p>
+Examples:
+</p><pre class="programlisting">if(a==5)then(a=a-1)
+if b<a then b=a
+if c>0 then c=c-1 else c=0
+a = ( if b>0 then b else 1 )
+</pre><p>
+Note that <code class="literal">=</code> will be translated to <code class="literal">==</code> if used
inside the expression for <code class="literal">if</code>, so
+</p><pre class="programlisting">if a=5 then a=a-1
+</pre><p>
+will be interpreted as:
+</p><pre class="programlisting">if a==5 then a:=a-1
+</pre><p>
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s07.html">Zurück</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch06s02.html">Weiter</a></td></tr><tr><td
width="40%" align="left" valign="top">Liste der GEL-Operatoren </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Zum Anfang</a></td><td width="40%" align="right" valign="top">
Schleifen</td></tr></table></div></body></html>
diff --git a/help/de/html/ch06s02.html b/help/de/html/ch06s02.html
new file mode 100644
index 0000000..c76714d
--- /dev/null
+++ b/help/de/html/ch06s02.html
@@ -0,0 +1,54 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Schleifen</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Genius-Handbuch"><link rel="up" href="ch06.html" title="Kapitel 6. Programmierung mit GEL"><link
rel="prev" href="ch06.html" title="Kapitel 6. Programmierung mit GEL"><link rel="next" href="ch06s03.html"
title="Summen und Produkte"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Schleifen</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06.html">Zurück</a> </td><th width="60%" align="center">Kapitel 6. Programmierung mit GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch06s03.html">Weiter</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" st
yle="clear: both"><a name="genius-gel-loops"></a>Schleifen</h2></div></div></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-while"></a>While-Schleifen</h3></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">while <expression1> do <expression2>
+until <expression1> do <expression2>
+do <expression2> while <expression1>
+do <expression2> until <expression1></pre><p>
+
+ These are similar to other languages. However, as in GEL it is simply an expression that must have
some return value, these
+ constructs will simply return the result of the last iteration or <code class="literal">NULL</code>
if no iteration was done. In the boolean expression, <code class="literal">=</code> is translated into <code
class="literal">==</code> just as for the <code class="literal">if</code> statement.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-for"></a>For-Schleifen</h3></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">for <identifier> = <from> to <to> do <body>
+for <identifier> = <from> to <to> by <increment> do <body></pre><p>
+
+Loop with identifier being set to all values from <code class="literal"><from></code> to <code
class="literal"><to></code>, optionally using an increment other than 1. These are faster, nicer and
more compact than the normal loops such as above, but less flexible. The identifier must be an identifier and
can't be a dereference. The value of identifier is the last value of identifier, or <code
class="literal"><from></code> if body was never evaluated. The variable is guaranteed to be initialized
after a loop, so you can safely use it. Also the <code class="literal"><from></code>, <code
class="literal"><to></code> and <code class="literal"><increment></code> must be non complex
values. The <code class="literal"><to></code> is not guaranteed to be hit, but will never be overshot,
for example the following prints out odd numbers from 1 to 19:
+</p><pre class="programlisting">for i = 1 to 20 by 2 do print(i)
+</pre><p>
+ </p><p>
+ When one of the values is a floating point number, then the
+ final check is done to within 2^-20 of the step size. That is,
+ even if we overshoot by 2^-20 times the "by" above, we still execute the last
+ iteration. This way
+</p><pre class="programlisting">for x = 0 to 1 by 0.1 do print(x)
+</pre><p>
+does the expected even though adding 0.1 ten times becomes just slightly more than 1.0 due to the way that
floating point numbers
+are stored in base 2 (there is no 0.1, the actual number stored is just ever so slightly bigger). This is
not perfect but it handles
+the majority of the cases. If you want to avoid dealing with this issue, use actual rational numbers for
example:
+</p><pre class="programlisting">for x = 0 to 1 by 1/10 do print(x)
+</pre><p>
+ This check is done only from version 1.0.16 onwards, so execution of your code may differ on
older versions.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-foreach"></a>Foreach-Schleifen</h3></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">for <identifier> in <matrix> do <body></pre><p>
+
+ For each element in the matrix, going row by row from left to right we execute the
body
+ with the identifier set to the current element. To
+print numbers 1,2,3 and 4 in this order you could do:
+</p><pre class="programlisting">for n in [1,2:3,4] do print(n)
+</pre><p>
+If you wish to run through the rows and columns of a matrix, you can use
+the RowsOf and ColumnsOf functions, which return a vector of the rows or
+columns of the matrix. So,
+</p><pre class="programlisting">for n in RowsOf ([1,2:3,4]) do print(n)
+</pre><p>
+will print out [1,2] and then [3,4].
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-break-continue"></a>Break and Continue</h3></div></div></div><p>
+You can also use the <code class="literal">break</code> and <code class="literal">continue</code> commands
in loops. The continue <code class="literal">continue</code> command will restart the current loop at its
next iteration, while the <code class="literal">break</code> command exits the current loop.
+</p><pre class="programlisting">while(<expression1>) do (
+ if(<expression2>) break
+ else if(<expression3>) continue;
+ <expression4>
+)
+</pre><p>
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06.html">Zurück</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch06.html">Nach oben</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s03.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel 6.
Programmierung mit GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum
Anfang</a></td><td width="40%" align="right" valign="top"> Summen und
Produkte</td></tr></table></div></body></html>
diff --git a/help/de/html/ch06s03.html b/help/de/html/ch06s03.html
new file mode 100644
index 0000000..51e6467
--- /dev/null
+++ b/help/de/html/ch06s03.html
@@ -0,0 +1,16 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Summen und
Produkte</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="ch06.html" title="Kapitel 6. Programmierung
mit GEL"><link rel="prev" href="ch06s02.html" title="Schleifen"><link rel="next" href="ch06s04.html"
title="Vergleichsoperatoren"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Summen und Produkte</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s02.html">Zurück</a> </td><th width="60%" align="center">Kapitel 6. Programmierung mit GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch06s04.html">Weiter</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-sums-products"></a>Summen und Produkte</h2></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">sum <identifier> = <from> to <to> do <body>
+sum <identifier> = <from> to <to> by <increment> do <body>
+sum <identifier> in <matrix> do <body>
+prod <identifier> = <from> to <to> do <body>
+prod <identifier> = <from> to <to> by <increment> do <body>
+prod <identifier> in <matrix> do <body></pre><p>
+
+If you substitute <code class="literal">for</code> with <code class="literal">sum</code> or <code
class="literal">prod</code>, then you will get a sum or a product instead of a <code
class="literal">for</code> loop. Instead of returning the last value, these will return the sum or the
product of the values respectively.
+ </p><p>
+If no body is executed (for example <strong class="userinput"><code>sum i=1 to 0 do ...</code></strong>)
then <code class="literal">sum</code> returns 0 and <code class="literal">prod</code> returns 1 as is the
standard convention.
+ </p><p>
+ For floating point numbers the same roundoff error protection is done as in the for loop.
+ See <a class="xref" href="ch06s02.html#genius-gel-loops-for"
title="For-Schleifen">„For-Schleifen“</a>.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s02.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s04.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Schleifen
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td width="40%"
align="right" valign="top"> Vergleichsoperatoren</td></tr></table></div></body></html>
diff --git a/help/de/html/ch06s04.html b/help/de/html/ch06s04.html
new file mode 100644
index 0000000..e3fd1b9
--- /dev/null
+++ b/help/de/html/ch06s04.html
@@ -0,0 +1,40 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Vergleichsoperatoren</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="ch06.html"
title="Kapitel 6. Programmierung mit GEL"><link rel="prev" href="ch06s03.html" title="Summen und
Produkte"><link rel="next" href="ch06s05.html" title="Globale Variablen und Variablenbereiche"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Vergleichsoperatoren</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s03.html">Zurück</a> </td><th width="60%" align="center">Kapitel 6. Programmierung mit GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch06s05.html">Weiter</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepa
ge"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-comparison-operators"></a>Vergleichsoperatoren</h2></div></div></div><p>
+ The following standard comparison operators are supported in GEL and have the obvious meaning:
+ <code class="literal">==</code>, <code class="literal">>=</code>,
+ <code class="literal"><=</code>, <code class="literal">!=</code>,
+ <code class="literal"><></code>, <code class="literal"><</code>,
+ <code class="literal">></code>. They return <code class="constant">true</code> or
+ <code class="constant">false</code>.
+ The operators
+ <code class="literal">!=</code> and <code class="literal"><></code> are the same
+ thing and mean "is not equal to".
+ GEL also supports the operator
+ <code class="literal"><=></code>, which returns -1 if left side is
+ smaller, 0 if both sides are equal, 1 if left side is larger.
+ </p><p>
+ Normally <code class="literal">=</code> is translated to <code class="literal">==</code> if
+ it happens to be somewhere where GEL is expecting a condition such as
+ in the if condition. For example
+ </p><pre class="programlisting">if a=b then c
+if a==b then c
+</pre><p>
+ are the same thing in GEL. However you should really use
+ <code class="literal">==</code> or <code class="literal">:=</code> when you want to compare
+ or assign respectively if you want your code to be easy to read and
+ to avoid mistakes.
+ </p><p>
+ All the comparison operators (except for the
+ <code class="literal"><=></code> operator, which
+ behaves normally), are not strictly binary operators, they can in fact
+ be grouped in the normal mathematical way, e.g.:
+ (<code class="literal">1<x<=y<5</code>) is
+ a legal boolean expression and means just what it should, that is
+ (1<x and x≤y and y<5)
+ </p><p>
+ To build up logical expressions use the words <code class="literal">not</code>,
+ <code class="literal">and</code>, <code class="literal">or</code>, <code class="literal">xor</code>.
+ The operators <code class="literal">or</code> and <code class="literal">and</code> are
+special beasts as they evaluate their arguments one by one, so the usual trick
+for conditional evaluation works here as well. For example, <code class="literal">1 or a=1</code> will not
set
+<code class="literal">a=1</code> since the first argument was true.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s03.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s05.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Summen
und Produkte </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td
width="40%" align="right" valign="top"> Globale Variablen und
Variablenbereiche</td></tr></table></div></body></html>
diff --git a/help/de/html/ch06s05.html b/help/de/html/ch06s05.html
new file mode 100644
index 0000000..473d293
--- /dev/null
+++ b/help/de/html/ch06s05.html
@@ -0,0 +1,113 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Globale Variablen und
Variablenbereiche</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="ch06.html" title="Kapitel 6. Programmierung
mit GEL"><link rel="prev" href="ch06s04.html" title="Vergleichsoperatoren"><link rel="next"
href="ch06s06.html" title="Parametervariablen"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Globale Variablen und Variablenbereiche</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch06s04.html">Zurück</a> </td><th width="60%"
align="center">Kapitel 6. Programmierung mit GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s06.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><
div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-variables-global"></a>Globale Variablen und Variablenbereiche</h2></div></div></div><p>
+ GEL is a
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Scope_%28programming%29" target="_top">
+ dynamically scoped language</a>. We will explain what this
+ means below. That is, normal variables and functions are dynamically
+ scoped. The exception are
+ <a class="link" href="ch06s06.html" title="Parametervariablen">parameter variables</a>,
+ which are always global.
+ </p><p>
+ Like most programming languages, GEL has different types
+ of variables. Normally when a variable is defined in a function,
+ it is visible from that function and from all functions that are
+ called (all higher contexts). For example, suppose a function
+ <code class="function">f</code> defines a variable <code class="varname">a</code>
+ and then calls function <code class="function">g</code>. Then
+ function <code class="function">g</code> can reference
+ <code class="varname">a</code>. But once <code class="function">f</code> returns,
+ the variable <code class="varname">a</code> goes out of scope.
+ For example, the following code will print out 5.
+ The function <code class="function">g</code> cannot be called on the
+ top level (outside <code class="function">f</code> as <code class="varname">a</code>
+ will not be defined).
+</p><pre class="programlisting">function f() = (a:=5; g());
+function g() = print(a);
+f();
+</pre><p>
+ </p><p>
+ If you define a variable inside a function it will override
+ any variables defined in calling functions. For example,
+ we modify the above code and write:
+</p><pre class="programlisting">function f() = (a:=5; g());
+function g() = print(a);
+a:=10;
+f();
+</pre><p>
+ This code will still print out 5. But if you call
+ <code class="function">g</code> outside of <code class="function">f</code> then
+ you will get a printout of 10. Note that
+ setting <code class="varname">a</code>
+ to 5 inside <code class="function">f</code> does not change
+ the value of <code class="varname">a</code> at the top (global) level,
+ so if you now check the value of <code class="varname">a</code> it will
+ still be 10.
+ </p><p>
+ Function arguments are exactly like variables defined inside
+ the function, except that they are initialized with the value
+ that was passed to the function. Other than this point, they are
+ treated just like all other variables defined inside the
+ function.
+ </p><p>
+ Functions are treated exactly like variables. Hence you can
+ locally redefine functions. Normally (on the top level) you
+ cannot redefine protected variables and functions. But locally
+ you can do this. Consider the following session:
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>function f(x)
= sin(x)^2</code></strong>
+= (`(x)=(sin(x)^2))
+<code class="prompt">genius> </code><strong class="userinput"><code>function f(x) =
sin(x)^2</code></strong>
+= (`(x)=(sin(x)^2))
+<code class="prompt">genius> </code><strong class="userinput"><code>function g(x) = ((function
sin(x)=x^10);f(x))</code></strong>
+= (`(x)=((sin:=(`(x)=(x^10)));f(x)))
+<code class="prompt">genius> </code><strong class="userinput"><code>g(10)</code></strong>
+= 1e20
+</pre><p>
+ </p><p>
+ Functions and variables defined at the top level are
+ considered global. They are visible from anywhere. As we
+ said the following function <code class="function">f</code>
+ will not change the value of <code class="varname">a</code> to 5.
+</p><pre class="programlisting">a=6;
+function f() = (a:=5);
+f();
+</pre><p>
+ Sometimes, however, it is necessary to set
+a global variable from inside a function. When this behavior is needed,
+use the
+<a class="link" href="ch11s02.html#gel-function-set"><code class="function">set</code></a> function. Passing
a string or a quoted identifier to
+this function sets the variable globally (on the top level).
+For example, to set
+<code class="varname">a</code> to the value 3 you could call:
+</p><pre class="programlisting">set(`a,3)
+</pre><p>
+or:
+</p><pre class="programlisting">set("a",3)
+</pre><p>
+ </p><p>
+ The <code class="function">set</code> function always sets the toplevel
+ global. There is no way to set a local variable in some function
+ from a subroutine. If this is required, must use passing by
+ reference.
+ </p><p>
+ See also the
+ <a class="link" href="ch11s02.html#gel-function-SetElement"><code
class="function">SetElement</code></a> and
+ <a class="link" href="ch11s02.html#gel-function-SetVElement"><code
class="function">SetVElement</code></a> functions.
+ </p><p>
+ So to recap in a more technical language: Genius operates with
+ different numbered contexts. The top level is the context 0
+ (zero). Whenever a function is entered, the context is raised,
+ and when the function returns the context is lowered. A function
+ or a variable is always visible from all higher numbered contexts.
+ When a variable was defined in a lower numbered context, then
+ setting this variable has the effect of creating a new local
+ variable in the current context number and this variable
+ will now be visible from all higher numbered contexts.
+ </p><p>
+ There are also true local variables that are not seen from
+ anywhere but the current context. Also when returning functions
+ by value it may reference variables not visible from higher context
+ and this may be a problem. See the sections
+ <a class="link" href="ch07s04.html" title="Echte lokale Variablen">True
+ Local Variables</a> and
+ <a class="link" href="ch07s03.html" title="Funktionen als Rückgabe">Returning
+ Functions</a>.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s04.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s06.html">Weiter</a></td></tr><tr><td width="40%" align="left"
valign="top">Vergleichsoperatoren </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum
Anfang</a></td><td width="40%" align="right" valign="top">
Parametervariablen</td></tr></table></div></body></html>
diff --git a/help/de/html/ch06s06.html b/help/de/html/ch06s06.html
new file mode 100644
index 0000000..a06416b
--- /dev/null
+++ b/help/de/html/ch06s06.html
@@ -0,0 +1,18 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Parametervariablen</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="ch06.html"
title="Kapitel 6. Programmierung mit GEL"><link rel="prev" href="ch06s05.html" title="Globale Variablen und
Variablenbereiche"><link rel="next" href="ch06s07.html" title="Rückgabewerte"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Parametervariablen</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch06s05.html">Zurück</a> </td><th width="60%"
align="center">Kapitel 6. Programmierung mit GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s07.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div>
<div><h2 class="title" style="clear: both"><a
name="genius-gel-parameters"></a>Parametervariablen</h2></div></div></div><p>
+ As we said before, there exist special variables called parameters
+ that exist in all scopes. To declare a parameter called
+ <code class="varname">foo</code> with the initial value 1, we write
+</p><pre class="programlisting">parameter foo = 1
+</pre><p>
+ From then on, <code class="varname">foo</code> is a strictly global variable.
+ Setting <code class="varname">foo</code> inside any function will modify the
+ variable in all contexts, that is, functions do not have a private
+ copy of parameters.
+ </p><p>
+ When you undefine a parameter using the
+ <a class="link" href="ch11s02.html#gel-function-undefine">
+ <code class="function">undefine</code></a> function, it stops being
+ a parameter.
+ </p><p>
+ Some parameters are built-in and modify the behavior of genius.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s05.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s07.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Globale
Variablen und Variablenbereiche </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum
Anfang</a></td><td width="40%" align="right" valign="top"> Rückgabewerte</td></tr></table></div></body></html>
diff --git a/help/de/html/ch06s07.html b/help/de/html/ch06s07.html
new file mode 100644
index 0000000..71e75b1
--- /dev/null
+++ b/help/de/html/ch06s07.html
@@ -0,0 +1,14 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Rückgabewerte</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="ch06.html"
title="Kapitel 6. Programmierung mit GEL"><link rel="prev" href="ch06s06.html"
title="Parametervariablen"><link rel="next" href="ch06s08.html" title="Referenzen"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Rückgabewerte</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch06s06.html">Zurück</a> </td><th width="60%"
align="center">Kapitel 6. Programmierung mit GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s08.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="cle
ar: both"><a name="genius-gel-returning"></a>Rückgabewerte</h2></div></div></div><p>
+ Normally a function is one or several expressions separated by a
+semicolon, and the value of the last expression is returned. This is fine for
+simple functions, but
+sometimes you do not want a function to return the last thing calculated. You may, for example, want to
return from a middle of a function. In this case, you can use the <code class="literal">return</code>
keyword. <code class="literal">return</code> takes one argument, which is the value to be returned.
+ </p><p>Beispiel: </p><pre class="programlisting">function f(x) = (
+ y=1;
+ while true do (
+ if x>50 then return y;
+ y=y+1;
+ x=x+1
+ )
+)
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch06s06.html">Zurück</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch06.html">Nach oben</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s08.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Parametervariablen
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td width="40%"
align="right" valign="top"> Referenzen</td></tr></table></div></body></html>
diff --git a/help/de/html/ch06s08.html b/help/de/html/ch06s08.html
new file mode 100644
index 0000000..be80488
--- /dev/null
+++ b/help/de/html/ch06s08.html
@@ -0,0 +1,35 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Referenzen</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="ch06.html"
title="Kapitel 6. Programmierung mit GEL"><link rel="prev" href="ch06s07.html" title="Rückgabewerte"><link
rel="next" href="ch06s09.html" title="Lvalues (linke Werte)"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Referenzen</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch06s07.html">Zurück</a> </td><th width="60%" align="center">Kapitel 6. Programmierung
mit GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s09.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clea
r: both"><a name="genius-gel-references"></a>Referenzen</h2></div></div></div><p>
+ It may be necessary for some functions to return more than one value.
+ This may be accomplished by returning a vector of values, but many
+ times it is convenient to use passing a reference to a variable.
+ You pass a reference to a variable to a function, and the function
+ will set the variable for you using a dereference. You do not have
+ to use references only for this purpose, but this is their main use.
+ </p><p>
+ When using functions that return values through references
+ in the argument list, just pass the variable name with an ampersand.
+ For example the following code will compute an eigenvalue of a matrix
+ <code class="varname">A</code> with initial eigenvector guess
+ <code class="varname">x</code>, and store the computed eigenvector
+ into the variable named <code class="varname">v</code>:
+</p><pre class="programlisting">RayleighQuotientIteration (A,x,0.001,100,&v)
+</pre><p>
+ </p><p>
+The details of how references work and the syntax is similar to the C language.
+The operator
+<code class="literal">&</code> references a variable
+and <code class="literal">*</code> dereferences a variable. Both can only be applied to an identifier,
+so <code class="literal">**a</code> is not a legal expression in GEL.
+ </p><p>
+References are best explained by an example:
+</p><pre class="programlisting">a=1;
+b=&a;
+*b=2;
+</pre><p>
+now <code class="varname">a</code> contains 2. You can also reference functions:
+</p><pre class="programlisting">function f(x) = x+1;
+t=&f;
+*t(3)
+</pre><p>
+gives us 4.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s07.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s09.html">Weiter</a></td></tr><tr><td width="40%" align="left"
valign="top">Rückgabewerte </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum
Anfang</a></td><td width="40%" align="right" valign="top"> Lvalues (linke
Werte)</td></tr></table></div></body></html>
diff --git a/help/de/html/ch06s09.html b/help/de/html/ch06s09.html
new file mode 100644
index 0000000..2c4241d
--- /dev/null
+++ b/help/de/html/ch06s09.html
@@ -0,0 +1,27 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Lvalues (linke
Werte)</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="ch06.html" title="Kapitel 6. Programmierung
mit GEL"><link rel="prev" href="ch06s08.html" title="Referenzen"><link rel="next" href="ch07.html"
title="Kapitel 7. Fortgeschrittene Programmierung mit GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Lvalues (linke Werte)</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch06s08.html">Zurück</a> </td><th width="60%" align="center">Kapitel 6. Programmierung
mit GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage
"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-lvalues"></a>Lvalues (linke
Werte)</h2></div></div></div><p>
+ An lvalue is the left hand side of an assignment. In other words, an
+ lvalue is what you assign something to. Valid lvalues are:
+</p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><strong
class="userinput"><code>a</code></strong></span></dt><dd><p>
+ Identifier. Here we would be setting the variable of name
+ <code class="varname">a</code>.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>*a</code></strong></span></dt><dd><p>
+ Dereference of an identifier. This will set whatever variable
+ <code class="varname">a</code> points to.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(<region>)</code></strong></span></dt><dd><p>
+ A region of a matrix. Here the region is specified normally as with
+ the regular @() operator, and can be a single entry, or an entire
+ region of the matrix.
+ </p></dd></dl></div><p>
+ </p><p>
+Examples:
+</p><pre class="programlisting">a:=4
+*tmp := 89
+a@(1,1) := 5
+a@(4:8,3) := [1,2,3,4,5]'
+</pre><p>
+Note that both <code class="literal">:=</code> and <code class="literal">=</code> can be used
+interchangeably. Except if the assignment appears in a condition.
+It is thus always safer to just use
+<code class="literal">:=</code> when you mean assignment, and <code class="literal">==</code>
+when you mean comparison.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s08.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch07.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Referenzen
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td width="40%"
align="right" valign="top"> Kapitel 7. Fortgeschrittene Programmierung mit
GEL</td></tr></table></div></body></html>
diff --git a/help/de/html/ch07.html b/help/de/html/ch07.html
new file mode 100644
index 0000000..af5db4f
--- /dev/null
+++ b/help/de/html/ch07.html
@@ -0,0 +1,18 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 7.
Fortgeschrittene Programmierung mit GEL</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="index.html"
title="Genius-Handbuch"><link rel="prev" href="ch06s09.html" title="Lvalues (linke Werte)"><link rel="next"
href="ch07s02.html" title="Übergeordnete Syntax"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitel 7. Fortgeschrittene Programmierung mit
GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch06s09.html">Zurück</a> </td><th
width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch07s02.html">Weiter</a></td></tr></table><hr></div><div class="chapter"><div class="titlepage
"><div><div><h1 class="title"><a name="genius-gel-programming-advanced"></a>Kapitel 7. Fortgeschrittene
Programmierung mit GEL</h1></div></div></div><div class="toc"><p><b>Inhaltsverzeichnis</b></p><dl
class="toc"><dt><span class="sect1"><a
href="ch07.html#genius-gel-error-handling">Fehlerbehandlung</a></span></dt><dt><span class="sect1"><a
href="ch07s02.html">Übergeordnete Syntax</a></span></dt><dt><span class="sect1"><a
href="ch07s03.html">Funktionen als Rückgabe</a></span></dt><dt><span class="sect1"><a
href="ch07s04.html">Echte lokale Variablen</a></span></dt><dt><span class="sect1"><a href="ch07s05.html">GEL
Startprozedur</a></span></dt><dt><span class="sect1"><a href="ch07s06.html">Laden von
Programmen</a></span></dt></dl></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-error-handling"></a>Fehlerbehandlung</h2></div></div></div><p>
+If you detect an error in your function, you can bail out of it. For normal
+errors, such as wrong types of arguments, you can fail to compute the function
+by adding the statement <code class="literal">bailout</code>. If something went
+really wrong and you want to completely kill the current computation, you can
+use <code class="literal">exception</code>.
+ </p><p>
+ For example if you want to check for arguments in your function. You
+could use the following code.
+</p><pre class="programlisting">function f(M) = (
+ if not IsMatrix (M) then (
+ error ("M not a matrix!");
+ bailout
+ );
+ ...
+)
+</pre><p>
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s09.html">Zurück</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch07s02.html">Weiter</a></td></tr><tr><td
width="40%" align="left" valign="top">Lvalues (linke Werte) </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Zum Anfang</a></td><td width="40%" align="right" valign="top"> Übergeordnete
Syntax</td></tr></table></div></body></html>
diff --git a/help/de/html/ch07s02.html b/help/de/html/ch07s02.html
new file mode 100644
index 0000000..81d8632
--- /dev/null
+++ b/help/de/html/ch07s02.html
@@ -0,0 +1,32 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Übergeordnete
Syntax</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="ch07.html" title="Kapitel 7. Fortgeschrittene
Programmierung mit GEL"><link rel="prev" href="ch07.html" title="Kapitel 7. Fortgeschrittene Programmierung
mit GEL"><link rel="next" href="ch07s03.html" title="Funktionen als Rückgabe"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Übergeordnete Syntax</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch07.html">Zurück</a> </td><th width="60%"
align="center">Kapitel 7. Fortgeschrittene Programmierung mit GEL</th><td width="20%" align="right"> <a
accesskey="n" href="ch07s03.html">Weiter</a></td></tr></table><h
r></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-toplevel-syntax"></a>Übergeordnete Syntax</h2></div></div></div><p>
+ The syntax is slightly different if you enter statements on
+ the top level versus when they are inside parentheses or
+ inside functions. On the top level, enter acts the same as if
+ you press return on the command line. Therefore think of programs
+ as just sequence of lines as if were entered on the command line.
+ In particular, you do not need to enter the separator at the end of the
+ line (unless it is of course part of several statements inside
+ parentheses).
+ </p><p>
+ The following code will produce an error when entered on the top
+ level of a program, while it will work just fine in a function.
+</p><pre class="programlisting">if Something() then
+ DoSomething()
+else
+ DoSomethingElse()
+</pre><p>
+ </p><p>
+ The problem is that after <span class="application">Genius Mathematics Tool</span> sees the end of
line after the
+ second line, it will decide that we have whole statement and
+ it will execute it. After the execution is done, <span class="application">Genius Mathematics
Tool</span> will
+ go on to the next
+ line, it will see <code class="literal">else</code>, and it will produce
+ a parsing error. To fix this, use parentheses. <span class="application">Genius Mathematics
Tool</span> will not
+ be satisfied until it has found that all parentheses are closed.
+</p><pre class="programlisting">if Something() then (
+ DoSomething()
+) else (
+ DoSomethingElse()
+)
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07.html">Zurück</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch07.html">Nach oben</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07s03.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel 7.
Fortgeschrittene Programmierung mit GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Zum Anfang</a></td><td width="40%" align="right" valign="top"> Funktionen als
Rückgabe</td></tr></table></div></body></html>
diff --git a/help/de/html/ch07s03.html b/help/de/html/ch07s03.html
new file mode 100644
index 0000000..e47a9ef
--- /dev/null
+++ b/help/de/html/ch07s03.html
@@ -0,0 +1,102 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Funktionen als
Rückgabe</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="ch07.html" title="Kapitel 7. Fortgeschrittene
Programmierung mit GEL"><link rel="prev" href="ch07s02.html" title="Übergeordnete Syntax"><link rel="next"
href="ch07s04.html" title="Echte lokale Variablen"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Funktionen als Rückgabe</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07s02.html">Zurück</a> </td><th width="60%" align="center">Kapitel 7.
Fortgeschrittene Programmierung mit GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s04.html">Weiter</a></td></tr></table><hr></div><div class=
"sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-returning-functions"></a>Funktionen als Rückgabe</h2></div></div></div><p>
+ It is possible to return functions as value. This way you can
+ build functions that construct special purpose functions according
+ to some parameters. The tricky bit is what variables does the
+ function see. The way this works in GEL is that when a function
+ returns another function, all identifiers referenced in the
+ function body that went out of scope
+ are prepended a private dictionary of the returned
+ function. So the function will see all variables that were in
+ scope
+ when it was defined. For example, we define a function that
+ returns a function that adds 5 to its argument.
+</p><pre class="programlisting">function f() = (
+ k = 5;
+ `(x) = (x+k)
+)
+</pre><p>
+ Notice that the function adds <code class="varname">k</code> to
+ <code class="varname">x</code>. You could use this as follows.
+</p><pre class="programlisting">g = f();
+g(5)
+</pre><p>
+ And <strong class="userinput"><code>g(5)</code></strong> should return 10.
+ </p><p>
+ One thing to note is that the value of <code class="varname">k</code>
+ that is used is the one that's in effect when the
+ <code class="function">f</code> returns. For example:
+</p><pre class="programlisting">function f() = (
+ k := 5;
+ function r(x) = (x+k);
+ k := 10;
+ r
+)
+</pre><p>
+ will return a function that adds 10 to its argument rather than
+ 5. This is because the extra dictionary is created only when
+ the context
+ in which the function was defined ends, which is when the function
+ <code class="function">f</code> returns. This is consistent with how you
+ would expect the function <code class="function">r</code> to work inside
+ the function <code class="function">f</code> according to the rules of
+ scope of variables in GEL. Only those variables are added to the
+ extra dictionary that are in the context that just ended and
+ no longer exists. Variables
+ used in the function that are in still valid contexts will work
+ as usual, using the current value of the variable.
+ The only difference is with global variables and functions.
+ All identifiers that referenced global variables at time of
+ the function definition are not added to the private dictionary.
+ This is to avoid much unnecessary work when returning functions
+ and would rarely be a problem. For example, suppose that you
+ delete the "k=5" from the function <code class="function">f</code>,
+ and at the top level you define <code class="varname">k</code> to be
+ say 5. Then when you run <code class="function">f</code>, the function
+ <code class="function">r</code> will not put <code class="varname">k</code> into
+ the private dictionary because it was global (toplevel)
+ at the time of definition of <code class="function">r</code>.
+ </p><p>
+ Sometimes it is better to have more control over how variables
+ are copied into the private dictionary. Since version 1.0.7,
+ you can specify which
+ variables are copied into the private dictionary by putting
+ extra square brackets after the arguments with the list of
+ variables to be copied separated by commas.
+ If you do this, then variables are
+ copied into the private dictionary at time of the function
+ definition, and the private dictionary is not touched afterwards.
+ For example
+</p><pre class="programlisting">function f() = (
+ k := 5;
+ function r(x) [k] = (x+k);
+ k := 10;
+ r
+)
+</pre><p>
+ will return a function that when called will add 5 to its
+ argument. The local copy of <code class="varname">k</code> was created
+ when the function was defined.
+ </p><p>
+ When you want the function to not have any private dictionary
+ then put empty square brackets after the argument list. Then
+ no private dictionary will be created at all. Doing this is
+ good to increase efficiency when a private dictionary is not
+ needed or when you want the function to lookup all variables
+ as it sees them when called. For example suppose you want
+ the function returned from <code class="function">f</code> to see
+ the value of <code class="varname">k</code> from the toplevel despite
+ there being a local variable of the same name during definition.
+ So the code
+</p><pre class="programlisting">function f() = (
+ k := 5;
+ function r(x) [] = (x+k);
+ r
+);
+k := 10;
+g = f();
+g(10)
+</pre><p>
+ will return 20 and not 15, which would happen if
+ <code class="varname">k</code> with a value of 5 was added to the private
+ dictionary.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07s02.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch07.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch07s04.html">Weiter</a></td></tr><tr><td width="40%" align="left"
valign="top">Übergeordnete Syntax </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum
Anfang</a></td><td width="40%" align="right" valign="top"> Echte lokale
Variablen</td></tr></table></div></body></html>
diff --git a/help/de/html/ch07s04.html b/help/de/html/ch07s04.html
new file mode 100644
index 0000000..53721eb
--- /dev/null
+++ b/help/de/html/ch07s04.html
@@ -0,0 +1,58 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Echte lokale
Variablen</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="ch07.html" title="Kapitel 7. Fortgeschrittene
Programmierung mit GEL"><link rel="prev" href="ch07s03.html" title="Funktionen als Rückgabe"><link rel="next"
href="ch07s05.html" title="GEL Startprozedur"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Echte lokale Variablen</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07s03.html">Zurück</a> </td><th width="60%" align="center">Kapitel 7.
Fortgeschrittene Programmierung mit GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s05.html">Weiter</a></td></tr></table><hr></div><div class="sect1
"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-true-local-variables"></a>Echte lokale Variablen</h2></div></div></div><p>
+ When passing functions into other functions, the normal scoping of
+ variables might be undesired. For example:
+</p><pre class="programlisting">k := 10;
+function r(x) = (x+k);
+function f(g,x) = (
+ k := 5;
+ g(x)
+);
+f(r,1)
+</pre><p>
+ you probably want the function <code class="function">r</code>
+ when passed as <code class="function">g</code> into <code class="function">f</code>
+ to see <code class="varname">k</code> as 10 rather than 5, so that
+ the code returns 11 and not 6. However, as written, the function
+ when executed will see the <code class="varname">k</code> that is
+ equal to 5. There are two ways to solve this. One would be
+ to have <code class="function">r</code> get <code class="varname">k</code> in a
+ private dictionary using the square bracket notation section
+ <a class="link" href="ch07s03.html" title="Funktionen als Rückgabe">Returning
+ Functions</a>.
+ </p><p>
+ But there is another solution. Since version 1.0.7 there are
+ true local variables. These are variables that are visible only
+ from the current context and not from any called functions.
+ We could define <code class="varname">k</code> as a local variable in the
+ function <code class="function">f</code>. To do this add a
+ <span class="command"><strong>local</strong></span> statement as the first statement in the
+ function (it must always be the first statement in the function).
+ You can also make any arguments be local variables as well.
+ That is,
+</p><pre class="programlisting">function f(g,x) = (
+ local g,x,k;
+ k := 5;
+ g(x)
+);
+</pre><p>
+ Then the code will work as expected and prints out 11.
+ Note that the <span class="command"><strong>local</strong></span> statement initializes
+ all the referenced variables (except for function arguments) to
+ a <code class="constant">null</code>.
+ </p><p>
+ If all variables are to be created as locals you can just pass an
+ asterisk instead of a list of variables. In this case the variables
+ will not be initialized until they are actually set of course.
+ So the following definition of <code class="function">f</code>
+ will also work:
+</p><pre class="programlisting">function f(g,x) = (
+ local *;
+ k := 5;
+ g(x)
+);
+</pre><p>
+ </p><p>
+ It is good practice that all functions that take other functions
+ as arguments use local variables. This way the passed function
+ does not see implementation details and get confused.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07s03.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch07.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch07s05.html">Weiter</a></td></tr><tr><td width="40%" align="left"
valign="top">Funktionen als Rückgabe </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Zum Anfang</a></td><td width="40%" align="right" valign="top"> GEL
Startprozedur</td></tr></table></div></body></html>
diff --git a/help/de/html/ch07s05.html b/help/de/html/ch07s05.html
new file mode 100644
index 0000000..f2f43bb
--- /dev/null
+++ b/help/de/html/ch07s05.html
@@ -0,0 +1,7 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>GEL
Startprozedur</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="ch07.html" title="Kapitel 7. Fortgeschrittene
Programmierung mit GEL"><link rel="prev" href="ch07s04.html" title="Echte lokale Variablen"><link rel="next"
href="ch07s06.html" title="Laden von Programmen"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">GEL Startprozedur</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch07s04.html">Zurück</a> </td><th width="60%" align="center">Kapitel 7. Fortgeschrittene
Programmierung mit GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s06.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div cl
ass="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-startup-procedure"></a>GEL Startprozedur</h2></div></div></div><p>
+First the program looks for the installed library file (the compiled version <code
class="filename">lib.cgel</code>) in the installed directory, then it looks into the current directory, and
then it tries to load an uncompiled file called
+<code class="filename">~/.geniusinit</code>.
+ </p><p>
+If you ever change the library in its installed place, you’ll have to
+first compile it with <span class="command"><strong>genius --compile loader.gel > lib.cgel</strong></span>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07s04.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch07.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch07s06.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Echte
lokale Variablen </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum
Anfang</a></td><td width="40%" align="right" valign="top"> Laden von
Programmen</td></tr></table></div></body></html>
diff --git a/help/de/html/ch07s06.html b/help/de/html/ch07s06.html
new file mode 100644
index 0000000..1968654
--- /dev/null
+++ b/help/de/html/ch07s06.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Laden von
Programmen</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="ch07.html" title="Kapitel 7. Fortgeschrittene
Programmierung mit GEL"><link rel="prev" href="ch07s05.html" title="GEL Startprozedur"><link rel="next"
href="ch08.html" title="Kapitel 8. Matrizen in GEL"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Laden von Programmen</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch07s05.html">Zurück</a> </td><th width="60%" align="center">Kapitel 7. Fortgeschrittene
Programmierung mit GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch08.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div c
lass="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-loading-programs"></a>Laden von Programmen</h2></div></div></div><p>
+Sometimes you have a larger program you wrote into a file and want to read that file into <span
class="application">Genius Mathematics Tool</span>. In these situations, you have two options. You can keep
the functions you use most inside the <code class="filename">~/.geniusinit</code> file. Or if you want to
load up a file in a middle of a session (or from within another file), you can type <span
class="command"><strong>load <list of filenames></strong></span> at the prompt. This has to be done on
the top level and not inside any function or whatnot, and it cannot be part of any expression. It also has a
slightly different syntax than the rest of genius, more similar to a shell. You can enter the file in quotes.
If you use the '' quotes, you will get exactly the string that you typed, if you use the "" quotes, special
characters will be unescaped as they are for strings. Example:
+</p><pre class="programlisting">load program1.gel program2.gel
+load "Weird File Name With SPACES.gel"
+</pre><p>
+There are also <span class="command"><strong>cd</strong></span>, <span
class="command"><strong>pwd</strong></span> and <span class="command"><strong>ls</strong></span> commands
built in. <span class="command"><strong>cd</strong></span> will take one argument, <span
class="command"><strong>ls</strong></span> will take an argument that is like the glob in the UNIX shell
(i.e., you can use wildcards). <span class="command"><strong>pwd</strong></span> takes no arguments. For
example:
+</p><pre class="programlisting">cd directory_with_gel_programs
+ls *.gel
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07s05.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch07.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch08.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">GEL
Startprozedur </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td
width="40%" align="right" valign="top"> Kapitel 8. Matrizen in GEL</td></tr></table></div></body></html>
diff --git a/help/de/html/ch08.html b/help/de/html/ch08.html
new file mode 100644
index 0000000..52e178e
--- /dev/null
+++ b/help/de/html/ch08.html
@@ -0,0 +1,55 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 8. Matrizen in
GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="index.html" title="Genius-Handbuch"><link
rel="prev" href="ch07s06.html" title="Laden von Programmen"><link rel="next" href="ch08s02.html"
title="Operatoren für konjugierte Transposition und Transposition"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitel 8. Matrizen in GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07s06.html">Zurück</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch08s02.html">Weiter</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div
<h1 class="title"><a name="genius-gel-matrices"></a>Kapitel 8. Matrizen in GEL</h1></div></div></div><div
class="toc"><p><b>Inhaltsverzeichnis</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch08.html#genius-gel-matrix-support">Matrizen eingeben</a></span></dt><dt><span class="sect1"><a
href="ch08s02.html">Operatoren für konjugierte Transposition und Transposition</a></span></dt><dt><span
class="sect1"><a href="ch08s03.html">Lineare Algebra</a></span></dt></dl></div><p>
+ Genius has support for vectors and matrices and possesses a sizable library of
+ matrix manipulation and linear algebra functions.
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-matrix-support"></a>Matrizen eingeben</h2></div></div></div><p>
+To enter matrices, you can use one of the following two syntaxes. You can either enter
+the matrix on one line, separating values by commas and rows by semicolons. Or you
+can enter each row on one line, separating
+values by commas.
+You can also just combine the two methods.
+So to enter a 3x3 matrix
+of numbers 1-9 you could do
+</p><pre class="programlisting">[1,2,3;4,5,6;7,8,9]
+</pre><p>
+or
+</p><pre class="programlisting">[1, 2, 3
+ 4, 5, 6
+ 7, 8, 9]
+</pre><p>
+Do not use both ';' and return at once on the same line though.
+ </p><p>
+You can also use the matrix expansion functionality to enter matrices.
+For example you can do:
+</p><pre class="programlisting">a = [ 1, 2, 3
+ 4, 5, 6
+ 7, 8, 9]
+b = [ a, 10
+ 11, 12]
+</pre><p>
+and you should get
+</p><pre class="programlisting">[1, 2, 3, 10
+ 4, 5, 6, 10
+ 7, 8, 9, 10
+ 11, 11, 11, 12]
+</pre><p>
+similarly you can build matrices out of vectors and other stuff like that.
+ </p><p>
+Another thing is that non-specified spots are initialized to 0, so
+</p><pre class="programlisting">[1, 2, 3
+ 4, 5
+ 6]
+</pre><p>
+will end up being
+</p><pre class="programlisting">
+[1, 2, 3
+ 4, 5, 0
+ 6, 0, 0]
+</pre><p>
+ </p><p>
+ When matrices are evaluated, they are evaluated and traversed row-wise. This is just
+ like the <code class="literal">M@(j)</code> operator, which traverses the matrix row-wise.
+ </p><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Anmerkung</h3><p>
+Be careful about using returns for expressions inside the
+<code class="literal">[ ]</code> brackets, as they have a slightly different meaning
+there. You will start a new row.
+ </p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch07s06.html">Zurück</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch08s02.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Laden von Programmen
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td width="40%"
align="right" valign="top"> Operatoren für konjugierte Transposition und
Transposition</td></tr></table></div></body></html>
diff --git a/help/de/html/ch08s02.html b/help/de/html/ch08s02.html
new file mode 100644
index 0000000..4d2068c
--- /dev/null
+++ b/help/de/html/ch08s02.html
@@ -0,0 +1,21 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Operatoren für
konjugierte Transposition und Transposition</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="ch08.html"
title="Kapitel 8. Matrizen in GEL"><link rel="prev" href="ch08.html" title="Kapitel 8. Matrizen in GEL"><link
rel="next" href="ch08s03.html" title="Lineare Algebra"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Operatoren für konjugierte Transposition und
Transposition</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch08.html">Zurück</a> </td><th
width="60%" align="center">Kapitel 8. Matrizen in GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch08s03.html">Weiter</a></td></tr></table><hr></d
iv><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-matrix-transpose"></a>Operatoren für konjugierte Transposition und
Transposition</h2></div></div></div><p>
+You can conjugate transpose a matrix by using the <code class="literal">'</code> operator. That is
+the entry in the
+<code class="varname">i</code>th column and the <code class="varname">j</code>th row will be
+the complex conjugate of the entry in the
+<code class="varname">j</code>th column and the <code class="varname">i</code>th row of the original matrix.
+ For example:
+</p><pre class="programlisting">[1,2,3]*[4,5,6]'
+</pre><p>
+We transpose the second vector to make matrix multiplication possible.
+If you just want to transpose a matrix without conjugating it, you would
+use the <code class="literal">.'</code> operator. For example:
+</p><pre class="programlisting">[1,2,3]*[4,5,6i].'
+</pre><p>
+ </p><p>
+ Note that normal transpose, that is the <code class="literal">.'</code> operator, is much faster
+ and will not create a new copy of the matrix in memory. The conjugate transpose does
+ create a new copy unfortunately.
+ It is recommended to always use the <code class="literal">.'</code> operator when working with real
+ matrices and vectors.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch08.html">Zurück</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch08.html">Nach oben</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch08s03.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel 8. Matrizen in
GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td width="40%"
align="right" valign="top"> Lineare Algebra</td></tr></table></div></body></html>
diff --git a/help/de/html/ch08s03.html b/help/de/html/ch08s03.html
new file mode 100644
index 0000000..ccf31f3
--- /dev/null
+++ b/help/de/html/ch08s03.html
@@ -0,0 +1,32 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Lineare
Algebra</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="ch08.html" title="Kapitel 8. Matrizen in
GEL"><link rel="prev" href="ch08s02.html" title="Operatoren für konjugierte Transposition und
Transposition"><link rel="next" href="ch09.html" title="Kapitel 9. Polynome in GEL"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Lineare Algebra</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch08s02.html">Zurück</a> </td><th width="60%"
align="center">Kapitel 8. Matrizen in GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch09.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"
<div><div><h2 class="title" style="clear: both"><a name="genius-gel-matrix-linalg"></a>Lineare
Algebra</h2></div></div></div><p>
+ Genius implements many useful linear algebra and matrix manipulation
+routines. See the <a class="link" href="ch11s09.html" title="Lineare Algebra">Linear Algebra</a> and
+<a class="link" href="ch11s08.html" title="Matrixoperationen">Matrix Manipulation</a>
+sections of the GEL function listing.
+ </p><p>
+ The linear algebra routines implemented in GEL do not currently come
+from a well tested numerical package, and thus should not be used for critical
+numerical computation. On the other hand, Genius implements very well many
+linear algebra operations with rational and integer coefficients. These are
+inherently exact and in fact will give you much better results than common
+double precision routines for linear algebra.
+ </p><p>
+ For example, it is pointless to compute the rank and nullspace of a
+floating point matrix since for all practical purposes, we need to consider the
+matrix as having some slight errors. You are likely to get a different result
+than you expect. The problem is that under a small perturbation every matrix
+is of full rank and invertible. If the matrix however is of rational numbers,
+then the rank and nullspace are always exact.
+ </p><p>
+ In general when Genius computes the basis of a certain vectorspace
+ (for example with the <a class="link" href="ch11s09.html#gel-function-NullSpace"><code
class="function">NullSpace</code></a>) it will give the basis as
+a matrix, in which the columns are the vectors of the basis. That is, when
+Genius talks of a linear subspace it means a matrix whose column space is
+the given linear subspace.
+ </p><p>
+ It should be noted that Genius can remember certain properties of a
+matrix. For example, it will remember that a matrix is in row reduced form.
+If many calls are made to functions that internally use row reduced form of
+the matrix, we can just row reduce the matrix beforehand once. Successive
+calls to <a class="link" href="ch11s09.html#gel-function-rref"><code class="function">rref</code></a> will
be very fast.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch08s02.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch08.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch09.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Operatoren
für konjugierte Transposition und Transposition </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Zum Anfang</a></td><td width="40%" align="right" valign="top"> Kapitel 9. Polynome in
GEL</td></tr></table></div></body></html>
diff --git a/help/de/html/ch09.html b/help/de/html/ch09.html
new file mode 100644
index 0000000..dc0487f
--- /dev/null
+++ b/help/de/html/ch09.html
@@ -0,0 +1,51 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 9. Polynome in
GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="index.html" title="Genius-Handbuch"><link
rel="prev" href="ch08s03.html" title="Lineare Algebra"><link rel="next" href="ch10.html" title="Kapitel 10.
Mengenlehre in GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Kapitel 9. Polynome in GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch08s03.html">Zurück</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch10.html">Weiter</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-gel-p
olynomials"></a>Kapitel 9. Polynome in GEL</h1></div></div></div><div
class="toc"><p><b>Inhaltsverzeichnis</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch09.html#genius-gel-polynomials-using">Verwendung von Polynomen</a></span></dt></dl></div><p>
+ Currently Genius can handle polynomials of one variable written out
+ as vectors, and do some basic operations with these. It is planned to
+ expand this support further.
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-polynomials-using"></a>Verwendung von Polynomen</h2></div></div></div><p>
+Currently
+polynomials in one variable are just horizontal vectors with value only nodes.
+The power of the term is the position in the vector, with the first position
+being 0. So,
+</p><pre class="programlisting">[1,2,3]
+</pre><p>
+translates to a polynomial of
+</p><pre class="programlisting">1 + 2*x + 3*x^2
+</pre><p>
+ </p><p>
+You can add, subtract and multiply polynomials using the
+<a class="link" href="ch11s15.html#gel-function-AddPoly"><code class="function">AddPoly</code></a>,
+<a class="link" href="ch11s15.html#gel-function-SubtractPoly"><code
class="function">SubtractPoly</code></a>, and
+<a class="link" href="ch11s15.html#gel-function-MultiplyPoly"><code class="function">MultiplyPoly</code></a>
functions respectively.
+You can print a polynomial using the
+<a class="link" href="ch11s15.html#gel-function-PolyToString"><code class="function">PolyToString</code></a>
+function.
+For example,
+</p><pre class="programlisting">PolyToString([1,2,3],"y")
+</pre><p>
+gives
+</p><pre class="programlisting">3*y^2 + 2*y + 1
+</pre><p>
+You can also get a function representation of the polynomial so that you can
+evaluate it. This is done by using
+<a class="link" href="ch11s15.html#gel-function-PolyToFunction"><code
class="function">PolyToFunction</code></a>,
+which
+returns an anonymous function.
+</p><pre class="programlisting">f = PolyToFunction([0,1,1])
+f(2)
+</pre><p>
+ </p><p>
+ It is also possible to find roots of polynomials of degrees 1 through 4 by using the
+function
+<a class="link" href="ch11s13.html#gel-function-PolynomialRoots"><code
class="function">PolynomialRoots</code></a>,
+which calls the appropriate formula function. Higher degree polynomials must be converted to
+functions and solved
+numerically using a function such as
+<a class="link" href="ch11s13.html#gel-function-FindRootBisection"><code
class="function">FindRootBisection</code></a>,
+<a class="link" href="ch11s13.html#gel-function-FindRootFalsePosition"><code
class="function">FindRootFalsePosition</code></a>,
+<a class="link" href="ch11s13.html#gel-function-FindRootMullersMethod"><code
class="function">FindRootMullersMethod</code></a>, or
+<a class="link" href="ch11s13.html#gel-function-FindRootSecant"><code
class="function">FindRootSecant</code></a>.
+ </p><p>
+See <a class="xref" href="ch11s15.html" title="Polynomials">„Polynomials“</a> in the function list
+for the rest of functions acting on polynomials.
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch08s03.html">Zurück</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch10.html">Weiter</a></td></tr><tr><td width="40%"
align="left" valign="top">Lineare Algebra </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Zum Anfang</a></td><td width="40%" align="right" valign="top"> Kapitel 10. Mengenlehre in
GEL</td></tr></table></div></body></html>
diff --git a/help/de/html/ch10.html b/help/de/html/ch10.html
new file mode 100644
index 0000000..866fbe0
--- /dev/null
+++ b/help/de/html/ch10.html
@@ -0,0 +1,41 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 10.
Mengenlehre in GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="index.html" title="Genius-Handbuch"><link
rel="prev" href="ch09.html" title="Kapitel 9. Polynome in GEL"><link rel="next" href="ch11.html"
title="Kapitel 11. Liste der GEL-Funktionen"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitel 10. Mengenlehre in GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch09.html">Zurück</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch11.html">Weiter</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 class="title"><a
name="genius-gel-settheory"></a>Kapitel 10. Mengenlehre in GEL</h1></div></div></div><div
class="toc"><p><b>Inhaltsverzeichnis</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch10.html#genius-gel-sets-using">Mengen verwenden</a></span></dt></dl></div><p>
+ Genius has some basic set theoretic functionality built in. Currently a set is
+ just a vector (or a matrix). Every distinct object is treated as a different element.
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-sets-using"></a>Mengen verwenden</h2></div></div></div><p>
+ Just like vectors, objects
+ in sets can include numbers, strings, <code class="constant">null</code>, matrices and vectors. It is
+ planned in the future to have a dedicated type for sets, rather than using vectors.
+ Note that floating point numbers are distinct from integers, even if they appear the same.
+ That is, Genius will treat <code class="constant">0</code> and <code class="constant">0.0</code>
+ as two distinct elements. The <code class="constant">null</code> is treated as an empty set.
+ </p><p>
+ To build a set out of a vector, use the
+ <a class="link" href="ch11s16.html#gel-function-MakeSet"><code class="function">MakeSet</code></a>
function.
+ Currently, it will just return a new vector where every element is unique.
+</p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>MakeSet([1,2,2,3])</code></strong>
+= [1, 2, 3]
+</pre><p>
+</p><p>
+ Similarly there are functions
+ <a class="link" href="ch11s16.html#gel-function-Union"><code class="function">Union</code></a>,
+ <a class="link" href="ch11s16.html#gel-function-Intersection"><code
class="function">Intersection</code></a>,
+ <a class="link" href="ch11s16.html#gel-function-SetMinus"><code class="function">SetMinus</code></a>,
which
+ are rather self explanatory. For example:
+</p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>Union([1,2,3], [1,2,4])</code></strong>
+= [1, 2, 4, 3]
+</pre><p>
+ Note that no order is guaranteed for the return values. If you wish to sort the vector you
+should use the
+ <a class="link" href="ch11s08.html#gel-function-SortVector"><code
class="function">SortVector</code></a> function.
+ </p><p>
+ For testing membership, there are functions
+ <a class="link" href="ch11s16.html#gel-function-IsIn"><code class="function">IsIn</code></a> and
+ <a class="link" href="ch11s16.html#gel-function-IsSubset"><code class="function">IsSubset</code></a>,
+ which return a boolean value. For example:
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>IsIn (1,
[0,1,2])</code></strong>
+= true
+</pre><p>
+ The input <strong class="userinput"><code>IsIn(x,X)</code></strong> is of course equivalent to
+ <strong class="userinput"><code>IsSubset([x],X)</code></strong>. Note that since the empty set is a
subset
+ of every set, <strong class="userinput"><code>IsSubset(null,X)</code></strong> is always true.
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch09.html">Zurück</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch11.html">Weiter</a></td></tr><tr><td width="40%"
align="left" valign="top">Kapitel 9. Polynome in GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Zum Anfang</a></td><td width="40%" align="right" valign="top"> Kapitel 11. Liste der
GEL-Funktionen</td></tr></table></div></body></html>
diff --git a/help/de/html/ch11.html b/help/de/html/ch11.html
new file mode 100644
index 0000000..ad6762d
--- /dev/null
+++ b/help/de/html/ch11.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 11. Liste der
GEL-Funktionen</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="index.html" title="Genius-Handbuch"><link
rel="prev" href="ch10.html" title="Kapitel 10. Mengenlehre in GEL"><link rel="next" href="ch11s02.html"
title="Grundlegendes"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Kapitel 11. Liste der GEL-Funktionen</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch10.html">Zurück</a> </td><th width="60%" align="center"> </th><td width="20%"
align="right"> <a accesskey="n" href="ch11s02.html">Weiter</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 class="title"><a
name="genius-gel-function-list"></a>Kapitel 11. Liste der GEL-Funktionen</h1></div></div></div><div
class="toc"><p><b>Inhaltsverzeichnis</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch11.html#genius-gel-function-list-commands">Befehle</a></span></dt><dt><span class="sect1"><a
href="ch11s02.html">Grundlegendes</a></span></dt><dt><span class="sect1"><a
href="ch11s03.html">Parameter</a></span></dt><dt><span class="sect1"><a
href="ch11s04.html">Konstanten</a></span></dt><dt><span class="sect1"><a
href="ch11s05.html">Numerik</a></span></dt><dt><span class="sect1"><a
href="ch11s06.html">Trigonometrie</a></span></dt><dt><span class="sect1"><a
href="ch11s07.html">Zahlentheorie</a></span></dt><dt><span class="sect1"><a
href="ch11s08.html">Matrixoperationen</a></span></dt><dt><span class="sect1"><a href="ch11s09.html">Lineare
Algebra</a></span></dt><dt><span class="sect1"><a href="ch11s10.html">Kombinatorik</a></span></dt><dt><span
class="sect1"><a href="ch11s11.html">Analy
sis</a></span></dt><dt><span class="sect1"><a href="ch11s12.html">Funktionen</a></span></dt><dt><span
class="sect1"><a href="ch11s13.html">Gleichungen lösen</a></span></dt><dt><span class="sect1"><a
href="ch11s14.html">Statistik</a></span></dt><dt><span class="sect1"><a
href="ch11s15.html">Polynomials</a></span></dt><dt><span class="sect1"><a
href="ch11s16.html">Mengenlehre</a></span></dt><dt><span class="sect1"><a href="ch11s17.html">Commutative
Algebra</a></span></dt><dt><span class="sect1"><a href="ch11s18.html">Verschiedenes</a></span></dt><dt><span
class="sect1"><a href="ch11s19.html">Symbolische Operationen</a></span></dt><dt><span class="sect1"><a
href="ch11s20.html">Darstellung</a></span></dt></dl></div><p>So erhalten Sie Hilfe zu einer bestimmten
Konsolenfunktion: </p><pre class="programlisting">help FunctionName
+</pre><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-commands"></a>Befehle</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a name="gel-command-help"></a>help</span></dt><dd><pre
class="synopsis">help</pre><pre class="synopsis">help FunctionName</pre><p>Print help (or help on a
function/command).</p></dd><dt><span class="term"><a name="gel-command-load"></a>load</span></dt><dd><pre
class="synopsis">load "file.gel"</pre><p>Load a file into the interpreter. The file will execute
+as if it were typed onto the command line.</p></dd><dt><span class="term"><a
name="gel-command-cd"></a>cd</span></dt><dd><pre class="synopsis">cd /Ordner/Name</pre><p>Wechselt den
Arbeitsordner zu <code class="filename">/Ordner/Name</code>.</p></dd><dt><span class="term"><a
name="gel-command-pwd"></a>pwd</span></dt><dd><pre class="synopsis">pwd</pre><p>Print the current working
directory.</p></dd><dt><span class="term"><a name="gel-command-ls"></a>ls</span></dt><dd><pre
class="synopsis">ls</pre><p>Listet die Dateien im aktuellen Ordner auf.</p></dd><dt><span class="term"><a
name="gel-command-plugin"></a>plugin</span></dt><dd><pre class="synopsis">plugin plugin_name</pre><p>Lädt ein
Plugin. Ein Plugin dieses Namens muss auf Ihrem System vorhanden und im richtigen Ordner installiert
sein.</p></dd></dl></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch10.html">Zurück</a> </td
<td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch11s02.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel 10.
Mengenlehre in GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum
Anfang</a></td><td width="40%" align="right" valign="top">
Grundlegendes</td></tr></table></div></body></html>
diff --git a/help/de/html/ch11s02.html b/help/de/html/ch11s02.html
new file mode 100644
index 0000000..d086eb2
--- /dev/null
+++ b/help/de/html/ch11s02.html
@@ -0,0 +1,101 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Grundlegendes</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="ch11.html"
title="Kapitel 11. Liste der GEL-Funktionen"><link rel="prev" href="ch11.html" title="Kapitel 11. Liste der
GEL-Funktionen"><link rel="next" href="ch11s03.html" title="Parameter"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Grundlegendes</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch11.html">Zurück</a> </td><th width="60%" align="center">Kapitel 11.
Liste der GEL-Funktionen</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s03.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="ti
tle" style="clear: both"><a
name="genius-gel-function-list-basic"></a>Grundlegendes</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-AskButtons"></a>AskButtons</span></dt><dd><pre class="synopsis">AskButtons
(query)</pre><pre class="synopsis">AskButtons (query, button1, ...)</pre><p>Asks a question and presents a
list of buttons to the user (or
+a menu of options in text mode). Returns the 1-based index of the button
+pressed. That is, returns 1 if the first button was pressed, 2 if the second
+button was pressed, and so on. If the user closes the window (or simply hits
+enter in text mode), then <code class="constant">null</code> is returned. The execution
+of the program is blocked until the user responds.</p><p>Version 1.0.10 onwards.</p></dd><dt><span
class="term"><a name="gel-function-AskString"></a>AskString</span></dt><dd><pre class="synopsis">AskString
(query)</pre><pre class="synopsis">AskString (query, default)</pre><p>Asks a question and lets the user enter
a string, which
+it then returns. If the user cancels or closes the window, then
+<code class="constant">null</code> is returned. The execution of the program
+is blocked until the user responds. If <code class="varname">default</code> is given, then it is pre-typed
in for the user to just press enter on (version 1.0.6 onwards).</p></dd><dt><span class="term"><a
name="gel-function-Compose"></a>Compose</span></dt><dd><pre class="synopsis">Compose (f,g)</pre><p>Compose
two functions and return a function that is the composition of <code class="function">f</code> and <code
class="function">g</code>.</p></dd><dt><span class="term"><a
name="gel-function-ComposePower"></a>ComposePower</span></dt><dd><pre class="synopsis">ComposePower
(f,n,x)</pre><p>Compose and execute a function with itself <code class="varname">n</code> times, passing
<code class="varname">x</code> as argument. Returning <code class="varname">x</code> if
+<code class="varname">n</code> equals 0.
+ Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>function f(x) = x^2 ;</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>ComposePower (f,3,7)</code></strong>
+= 5764801
+<code class="prompt">genius></code> <strong class="userinput"><code>f(f(f(7)))</code></strong>
+= 5764801
+</pre><p>
+ </p></dd><dt><span class="term"><a name="gel-function-Evaluate"></a>Evaluate</span></dt><dd><pre
class="synopsis">Evaluate (str)</pre><p>Parses and evaluates a string.</p></dd><dt><span class="term"><a
name="gel-function-GetCurrentModulo"></a>GetCurrentModulo</span></dt><dd><pre
class="synopsis">GetCurrentModulo</pre><p>Get current modulo from the context outside the function. That is,
if outside of
+the function was executed in modulo (using <code class="literal">mod</code>) then this returns what
+this modulo was. Normally the body of the function called is not executed in modular arithmetic,
+and this builtin function makes it possible to make GEL functions aware of modular
arithmetic.</p></dd><dt><span class="term"><a name="gel-function-Identity"></a>Identity</span></dt><dd><pre
class="synopsis">Identity (x)</pre><p>Identity function, returns its argument. It is equivalent to <strong
class="userinput"><code>function Identity(x)=x</code></strong>.</p></dd><dt><span class="term"><a
name="gel-function-IntegerFromBoolean"></a>IntegerFromBoolean</span></dt><dd><pre
class="synopsis">IntegerFromBoolean (bval)</pre><p>
+ Make integer (0 for <code class="constant">false</code> or 1 for
+ <code class="constant">true</code>) from a boolean value.
+ <code class="varname">bval</code> can also be a number in which case a
+ non-zero value will be interpreted as <code class="constant">true</code> and
+ zero will be interpreted as <code class="constant">false</code>.
+ </p></dd><dt><span class="term"><a name="gel-function-IsBoolean"></a>IsBoolean</span></dt><dd><pre
class="synopsis">IsBoolean (arg)</pre><p>Check if argument is a boolean (and not a number).</p></dd><dt><span
class="term"><a name="gel-function-IsDefined"></a>IsDefined</span></dt><dd><pre class="synopsis">IsDefined
(id)</pre><p>Check if an id is defined. You should pass a string or
+ and identifier. If you pass a matrix, each entry will be
+ evaluated separately and the matrix should contain strings
+ or identifiers.</p></dd><dt><span class="term"><a
name="gel-function-IsFunction"></a>IsFunction</span></dt><dd><pre class="synopsis">IsFunction
(arg)</pre><p>Check if argument is a function.</p></dd><dt><span class="term"><a
name="gel-function-IsFunctionOrIdentifier"></a>IsFunctionOrIdentifier</span></dt><dd><pre
class="synopsis">IsFunctionOrIdentifier (arg)</pre><p>Check if argument is a function or an
identifier.</p></dd><dt><span class="term"><a
name="gel-function-IsFunctionRef"></a>IsFunctionRef</span></dt><dd><pre class="synopsis">IsFunctionRef
(arg)</pre><p>Check if argument is a function reference. This includes variable
+references.</p></dd><dt><span class="term"><a name="gel-function-IsMatrix"></a>IsMatrix</span></dt><dd><pre
class="synopsis">IsMatrix (arg)</pre><p>Check if argument is a matrix. Even though <code
class="constant">null</code> is
+sometimes considered an empty matrix, the function <code class="function">IsMatrix</code> does
+not consider <code class="constant">null</code> a matrix.</p></dd><dt><span class="term"><a
name="gel-function-IsNull"></a>IsNull</span></dt><dd><pre class="synopsis">IsNull (arg)</pre><p>Check if
argument is a <code class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsString"></a>IsString</span></dt><dd><pre class="synopsis">IsString (arg)</pre><p>Check
if argument is a text string.</p></dd><dt><span class="term"><a
name="gel-function-IsValue"></a>IsValue</span></dt><dd><pre class="synopsis">IsValue (arg)</pre><p>Check if
argument is a number.</p></dd><dt><span class="term"><a
name="gel-function-Parse"></a>Parse</span></dt><dd><pre class="synopsis">Parse (str)</pre><p>Parses but does
not evaluate a string. Note that certain
+ pre-computation is done during the parsing stage.</p></dd><dt><span class="term"><a
name="gel-function-SetFunctionFlags"></a>SetFunctionFlags</span></dt><dd><pre
class="synopsis">SetFunctionFlags (id,flags...)</pre><p>Set flags for a function, currently <code
class="literal">"PropagateMod"</code> and <code class="literal">"NoModuloArguments"</code>.
+If <code class="literal">"PropagateMod"</code> is set, then the body of the function is evaluated in modular
arithmetic when the function
+is called inside a block that was evaluated using modular arithmetic (using <code
class="literal">mod</code>). If
+<code class="literal">"NoModuloArguments"</code>, then the arguments of the function are never evaluated
using modular arithmetic.
+ </p></dd><dt><span class="term"><a name="gel-function-SetHelp"></a>SetHelp</span></dt><dd><pre
class="synopsis">SetHelp (id,category,desc)</pre><p>Set the category and help description line for a
function.</p></dd><dt><span class="term"><a
name="gel-function-SetHelpAlias"></a>SetHelpAlias</span></dt><dd><pre class="synopsis">SetHelpAlias
(id,alias)</pre><p>Sets up a help alias.</p></dd><dt><span class="term"><a
name="gel-function-chdir"></a>chdir</span></dt><dd><pre class="synopsis">chdir (dir)</pre><p>Changes current
directory, same as the <span class="command"><strong>cd</strong></span>.</p></dd><dt><span class="term"><a
name="gel-function-CurrentTime"></a>CurrentTime</span></dt><dd><pre
class="synopsis">CurrentTime</pre><p>Returns the current UNIX time with microsecond precision as a floating
point number. That is, returns the number of seconds since January 1st 1970.</p><p>Version 1.0.15
onwards.</p></dd><dt><span class="term"><a name="gel-function-display"></a>display
</span></dt><dd><pre class="synopsis">display (str,expr)</pre><p>Display a string and an expression with a
colon to separate them.</p></dd><dt><span class="term"><a
name="gel-function-DisplayVariables"></a>DisplayVariables</span></dt><dd><pre
class="synopsis">DisplayVariables (var1,var2,...)</pre><p>Display set of variables. The variables can be
given as
+ strings or identifiers. For example:
+ </p><pre class="programlisting">DisplayVariables(`x,`y,`z)
+ </pre><p>
+ </p><p>
+ If called without arguments (must supply empty argument list) as
+ </p><pre class="programlisting">DisplayVariables()
+ </pre><p>
+ then all variables are printed including a stacktrace similar to
+ <span class="guilabel">Show user variables</span> in the graphical version.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-error"></a>error</span></dt><dd><pre class="synopsis">error (str)</pre><p>Prints a string
to the error stream (onto the console).</p></dd><dt><span class="term"><a
name="gel-function-exit"></a>exit</span></dt><dd><pre class="synopsis">exit</pre><p>Aliase: <code
class="function">quit</code></p><p>Beendet das Programm.</p></dd><dt><span class="term"><a
name="gel-function-false"></a>false</span></dt><dd><pre class="synopsis">false</pre><p>Aliases: <code
class="function">False</code> <code class="function">FALSE</code></p><p>The <code
class="constant">false</code> boolean value.</p></dd><dt><span class="term"><a
name="gel-function-manual"></a>manual</span></dt><dd><pre class="synopsis">manual</pre><p>Zeigt das
Benutzerhandbuch an.</p></dd><dt><span class="term"><a
name="gel-function-print"></a>print</span></dt><dd><pre class="synopsis">print (str)</pre><p>Prints an
expression and then print a
newline. The argument <code class="varname">str</code> can be any expression. It is
+made into a string before being printed.</p></dd><dt><span class="term"><a
name="gel-function-printn"></a>printn</span></dt><dd><pre class="synopsis">printn (str)</pre><p>Prints an
expression without a trailing newline. The argument <code class="varname">str</code> can be any expression.
It is
+made into a string before being printed.</p></dd><dt><span class="term"><a
name="gel-function-PrintTable"></a>PrintTable</span></dt><dd><pre class="synopsis">PrintTable
(f,v)</pre><p>Print a table of values for a function. The values are in the
+ vector <code class="varname">v</code>. You can use the vector
+ building notation as follows:
+ </p><pre class="programlisting">PrintTable (f,[0:10])
+ </pre><p>
+ If <code class="varname">v</code> is a positive integer, then the table of
+ integers from 1 up to and including v will be used.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-protect"></a>protect</span></dt><dd><pre class="synopsis">protect (id)</pre><p>Protect a
variable from being modified. This is used on the internal GEL functions to
+avoid them being accidentally overridden.</p></dd><dt><span class="term"><a
name="gel-function-ProtectAll"></a>ProtectAll</span></dt><dd><pre class="synopsis">ProtectAll
()</pre><p>Protect all currently defined variables, parameters and
+functions from being modified. This is used on the internal GEL functions to
+avoid them being accidentally overridden. Normally <span class="application">Genius Mathematics Tool</span>
considers
+unprotected variables as user defined.</p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-set"></a>set</span></dt><dd><pre class="synopsis">set (id,val)</pre><p>Set a global
variable. The <code class="varname">id</code>
+ can be either a string or a quoted identifier.
+ For example:
+ </p><pre class="programlisting">set(`x,1)
+ </pre><p>
+ will set the global variable <code class="varname">x</code> to the value 1.
+ </p><p>The function returns the <code class="varname">val</code>, to be
+ usable in chaining.</p></dd><dt><span class="term"><a
name="gel-function-SetElement"></a>SetElement</span></dt><dd><pre class="synopsis">SetElement
(id,row,col,val)</pre><p>Set an element of a global variable which is a matrix.
+ The <code class="varname">id</code>
+ can be either a string or a quoted identifier.
+ For example:
+ </p><pre class="programlisting">SetElement(`x,2,3,1)
+ </pre><p>
+ will set the second row third column element of the global variable <code
class="varname">x</code> to the value 1. If no global variable of the name exists, or if it is set to
something that's not a matrix, a new zero matrix of appropriate size will be created.
+ </p><p>The <code class="varname">row</code> and <code class="varname">col</code> can also be
ranges, and the semantics are the same as for regular setting of the elements with an equals sign.
+ </p><p>The function returns the <code class="varname">val</code>, to be
+ usable in chaining.</p><p>Available from 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SetVElement"></a>SetVElement</span></dt><dd><pre class="synopsis">SetElement
(id,elt,val)</pre><p>Set an element of a global variable which is a vector.
+ The <code class="varname">id</code>
+ can be either a string or a quoted identifier.
+ For example:
+ </p><pre class="programlisting">SetElement(`x,2,1)
+ </pre><p>
+ will set the second element of the global vector variable <code class="varname">x</code> to the
value 1. If no global variable of the name exists, or if it is set to something that's not a vector
(matrix), a new zero row vector of appropriate size will be created.
+ </p><p>The <code class="varname">elt</code> can also be a range, and the semantics are the same as
for regular setting of the elements with an equals sign.
+ </p><p>The function returns the <code class="varname">val</code>, to be
+ usable in chaining.</p><p>Available from 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-string"></a>string</span></dt><dd><pre class="synopsis">string (s)</pre><p>Make a string.
This will make a string out of any argument.</p></dd><dt><span class="term"><a
name="gel-function-true"></a>true</span></dt><dd><pre class="synopsis">true</pre><p>Aliases: <code
class="function">True</code> <code class="function">TRUE</code></p><p>The <code class="constant">true</code>
boolean value.</p></dd><dt><span class="term"><a
name="gel-function-undefine"></a>undefine</span></dt><dd><pre class="synopsis">undefine (id)</pre><p>Aliase:
<code class="function">Undefine</code></p><p>Undefine a variable. This includes locals and globals,
+ every value on all context levels is wiped. This function
+ should really not be used on local variables. A vector of
+ identifiers can also be passed to undefine several variables.
+ </p></dd><dt><span class="term"><a
name="gel-function-UndefineAll"></a>UndefineAll</span></dt><dd><pre class="synopsis">UndefineAll
()</pre><p>Undefine all unprotected global variables
+ (including functions and parameters). Normally <span class="application">Genius Mathematics
Tool</span>
+ considers protected variables as system defined functions
+ and variables. Note that <code class="function">UndefineAll</code>
+ only removes the global definition of symbols not local ones,
+ so that it may be run from inside other functions safely.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-unprotect"></a>unprotect</span></dt><dd><pre class="synopsis">unprotect
(id)</pre><p>Unprotect a variable from being modified.</p></dd><dt><span class="term"><a
name="gel-function-UserVariables"></a>UserVariables</span></dt><dd><pre class="synopsis">UserVariables
()</pre><p>Return a vector of identifiers of
+ user defined (unprotected) global variables.</p><p>Version 1.0.7 onwards.</p></dd><dt><span
class="term"><a name="gel-function-wait"></a>wait</span></dt><dd><pre class="synopsis">wait
(secs)</pre><p>Waits a specified number of seconds. <code class="varname">secs</code>
+must be non-negative. Zero is accepted and nothing happens in this case,
+except possibly user interface events are processed.</p><p>Since version 1.0.18, <code
class="varname">secs</code> can be a noninteger number, so
+ <strong class="userinput"><code>wait(0.1)</code></strong> will wait for one tenth of a
second.</p></dd><dt><span class="term"><a name="gel-function-version"></a>version</span></dt><dd><pre
class="synopsis">version</pre><p>Returns the version of Genius as a horizontal 3-vector with
+ major version first, then minor version and finally the patch level.</p></dd><dt><span
class="term"><a name="gel-function-warranty"></a>warranty</span></dt><dd><pre
class="synopsis">warranty</pre><p>Gives the warranty information.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11.html">Zurück</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Nach oben</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s03.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel 11. Liste der
GEL-Funktionen </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td
width="40%" align="right" valign="top"> Parameter</td></tr></table></div></body></html>
diff --git a/help/de/html/ch11s03.html b/help/de/html/ch11s03.html
new file mode 100644
index 0000000..d83a017
--- /dev/null
+++ b/help/de/html/ch11s03.html
@@ -0,0 +1,46 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Parameter</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Genius-Handbuch"><link rel="up" href="ch11.html" title="Kapitel 11. Liste der GEL-Funktionen"><link
rel="prev" href="ch11s02.html" title="Grundlegendes"><link rel="next" href="ch11s04.html"
title="Konstanten"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Parameter</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s02.html">Zurück</a> </td><th width="60%" align="center">Kapitel 11. Liste der
GEL-Funktionen</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s04.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"
<a name="genius-gel-function-parameters"></a>Parameter</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-ChopTolerance"></a>ChopTolerance</span></dt><dd><pre class="synopsis">ChopTolerance =
Zahl</pre><p>Tolerance of the <code class="function">Chop</code> function.</p></dd><dt><span
class="term"><a name="gel-function-ContinuousNumberOfTries"></a>ContinuousNumberOfTries</span></dt><dd><pre
class="synopsis">ContinuousNumberOfTries = Zahl</pre><p>How many iterations to try to find the limit for
continuity and limits.</p></dd><dt><span class="term"><a
name="gel-function-ContinuousSFS"></a>ContinuousSFS</span></dt><dd><pre class="synopsis">ContinuousSFS =
Zahl</pre><p>How many successive steps to be within tolerance for calculation of
continuity.</p></dd><dt><span class="term"><a
name="gel-function-ContinuousTolerance"></a>ContinuousTolerance</span></dt><dd><pre
class="synopsis">ContinuousTolerance = Zahl</pre><
p>Tolerance for continuity of functions and for calculating the limit.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeNumberOfTries"></a>DerivativeNumberOfTries</span></dt><dd><pre
class="synopsis">DerivativeNumberOfTries = Zahl</pre><p>How many iterations to try to find the limit for
derivative.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeSFS"></a>DerivativeSFS</span></dt><dd><pre class="synopsis">DerivativeSFS =
Zahl</pre><p>How many successive steps to be within tolerance for calculation of
derivative.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeTolerance"></a>DerivativeTolerance</span></dt><dd><pre
class="synopsis">DerivativeTolerance = Zahl</pre><p>Tolerance for calculating the derivatives of
functions.</p></dd><dt><span class="term"><a
name="gel-function-ErrorFunctionTolerance"></a>ErrorFunctionTolerance</span></dt><dd><pre
class="synopsis">ErrorFunctionTolerance = Zahl</pre><p>Tolerance of the <a class="link" href=
"ch11s12.html#gel-function-ErrorFunction"><code class="function">ErrorFunction</code></a>.</p></dd><dt><span
class="term"><a name="gel-function-FloatPrecision"></a>FloatPrecision</span></dt><dd><pre
class="synopsis">FloatPrecision = Zahl</pre><p>Gleitkommagenauigkeit</p></dd><dt><span class="term"><a
name="gel-function-FullExpressions"></a>FullExpressions</span></dt><dd><pre class="synopsis">FullExpressions
= boolean</pre><p>Print full expressions, even if more than a line.</p></dd><dt><span class="term"><a
name="gel-function-GaussDistributionTolerance"></a>GaussDistributionTolerance</span></dt><dd><pre
class="synopsis">GaussDistributionTolerance = Zahl</pre><p>Tolerance of the <a class="link"
href="ch11s14.html#gel-function-GaussDistribution"><code class="function">GaussDistribution</code></a>
function.</p></dd><dt><span class="term"><a
name="gel-function-IntegerOutputBase"></a>IntegerOutputBase</span></dt><dd><pre
class="synopsis">IntegerOutputBase = Zahl</pre><p>Integer o
utput base.</p></dd><dt><span class="term"><a
name="gel-function-IsPrimeMillerRabinReps"></a>IsPrimeMillerRabinReps</span></dt><dd><pre
class="synopsis">IsPrimeMillerRabinReps = Zahl</pre><p>Number of extra Miller-Rabin tests to run on a number
before declaring it a prime in <a class="link" href="ch11s07.html#gel-function-IsPrime"><code
class="function">IsPrime</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawLegends"></a>LinePlotDrawLegends</span></dt><dd><pre
class="synopsis">LinePlotDrawLegends = true</pre><p>Tells genius to draw the legends for <a class="link"
href="ch11s20.html" title="Darstellung">line plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawAxisLabels"></a>LinePlotDrawAxisLabels</span></dt><dd><pre
class="synopsis">LinePlotDrawAxisLabels = true</pre><p>Tells genius to draw the axis labels for <a
class="link" href="ch11s20.html" title="Darstellung">line plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotVariableNames"></a>LinePlotVariableNames</span></dt><dd><pre
class="synopsis">LinePlotVariableNames = ["x","y","z","t"]</pre><p>Tells genius which variable names are used
as default names for <a class="link" href="ch11s20.html" title="Darstellung">line plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a> and friends.
+ </p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotWindow"></a>LinePlotWindow</span></dt><dd><pre class="synopsis">LinePlotWindow =
[x1,x2,y1,y2]</pre><p>Sets the limits for <a class="link" href="ch11s20.html" title="Darstellung">line
plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>.
+ </p></dd><dt><span class="term"><a name="gel-function-MaxDigits"></a>MaxDigits</span></dt><dd><pre
class="synopsis">MaxDigits = Zahl</pre><p>Maximal anzuzeigende Stellen.</p></dd><dt><span class="term"><a
name="gel-function-MaxErrors"></a>MaxErrors</span></dt><dd><pre class="synopsis">MaxErrors =
Zahl</pre><p>Maximal anzuzeigende Fehler.</p></dd><dt><span class="term"><a
name="gel-function-MixedFractions"></a>MixedFractions</span></dt><dd><pre class="synopsis">MixedFractions =
boolean</pre><p>If true, mixed fractions are printed.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegralFunction"></a>NumericalIntegralFunction</span></dt><dd><pre
class="synopsis">NumericalIntegralFunction = Funktion</pre><p>The function used for numerical integration in
<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegralSteps"></a>Num
ericalIntegralSteps</span></dt><dd><pre class="synopsis">NumericalIntegralSteps = Zahl</pre><p>Steps to
perform in <a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-OutputChopExponent"></a>OutputChopExponent</span></dt><dd><pre
class="synopsis">OutputChopExponent = Zahl</pre><p>When another number in the object being printed (a matrix
or a
+value) is greater than
+10<sup>-OutputChopWhenExponent</sup>, and
+the number being printed is less than
+10<sup>-OutputChopExponent</sup>, then
+display <code class="computeroutput">0.0</code> instead of the number.
+</p><p>
+Output is never chopped if <code class="function">OutputChopExponent</code> is zero.
+It must be a non-negative integer.
+</p><p>
+If you want output always chopped according to
+<code class="function">OutputChopExponent</code>, then set
+<code class="function">OutputChopWhenExponent</code>, to something
+greater than or equal to
+<code class="function">OutputChopExponent</code>.
+</p></dd><dt><span class="term"><a
name="gel-function-OutputChopWhenExponent"></a>OutputChopWhenExponent</span></dt><dd><pre
class="synopsis">OutputChopWhenExponent = Zahl</pre><p>When to chop output. See
+ <a class="link" href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>.
+</p></dd><dt><span class="term"><a name="gel-function-OutputStyle"></a>OutputStyle</span></dt><dd><pre
class="synopsis">OutputStyle = String</pre><p>
+ Output style, this can be <code class="literal">normal</code>, <code
class="literal">latex</code>, <code class="literal">mathml</code> or <code class="literal">troff</code>.
+ </p><p>
+ This affects mostly how matrices and fractions are printed out and
+ is useful for pasting into documents. For example you can set this
+ to the latex by:
+ </p><pre class="programlisting">OutputStyle = "latex"
+</pre><p>
+ </p></dd><dt><span class="term"><a
name="gel-function-ResultsAsFloats"></a>ResultsAsFloats</span></dt><dd><pre class="synopsis">ResultsAsFloats
= boolean</pre><p>Wandelt alle Ergebnisse vor der Ausgabe in Gleitkommazahlen um.</p></dd><dt><span
class="term"><a name="gel-function-ScientificNotation"></a>ScientificNotation</span></dt><dd><pre
class="synopsis">ScientificNotation = boolean</pre><p>Wissenschaftliche Notation verwenden.</p></dd><dt><span
class="term"><a name="gel-function-SlopefieldTicks"></a>SlopefieldTicks</span></dt><dd><pre
class="synopsis">SlopefieldTicks = [vertical,horizontal]</pre><p>Sets the number of vertical and horizontal
ticks in a
+slopefield plot. (See <a class="link" href="ch11s20.html#gel-function-SlopefieldPlot"><code
class="function">SlopefieldPlot</code></a>).
+ </p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SumProductNumberOfTries"></a>SumProductNumberOfTries</span></dt><dd><pre
class="synopsis">SumProductNumberOfTries = Zahl</pre><p>How many iterations to try for <a class="link"
href="ch11s11.html#gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a> and <a
class="link" href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SumProductSFS"></a>SumProductSFS</span></dt><dd><pre class="synopsis">SumProductSFS =
Zahl</pre><p>How many successive steps to be within tolerance for <a class="link"
href="ch11s11.html#gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a> and <a
class="link" href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SumProductTolerance"></
a>SumProductTolerance</span></dt><dd><pre class="synopsis">SumProductTolerance = Zahl</pre><p>Tolerance for
<a class="link" href="ch11s11.html#gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a>
and <a class="link" href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawLegends"></a>SurfacePlotDrawLegends</span></dt><dd><pre
class="synopsis">SurfacePlotDrawLegends = true</pre><p>Tells genius to draw the legends for <a class="link"
href="ch11s20.html" title="Darstellung">surface plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotVariableNames"></a>SurfacePlotVariableNames</span></dt><dd><pre
class="synopsis">SurfacePlotVariableNames = ["x","y","z"]</pre><p>Tells genius which variable names are used
as default names for <a class="link" href="ch11s20.html" title="Darstellung">surface plotting
+ functions</a> using <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>.
+ Note that the <code class="varname">z</code> does not refer to the dependent (vertical) axis, but
to the independent complex variable
+ <strong class="userinput"><code>z=x+iy</code></strong>.
+ </p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotWindow"></a>SurfacePlotWindow</span></dt><dd><pre
class="synopsis">SurfacePlotWindow = [x1,x2,y1,y2,z1,z2]</pre><p>Sets the limits for surface plotting (See <a
class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>).</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldNormalized"></a>VectorfieldNormalized</span></dt><dd><pre
class="synopsis">VectorfieldNormalized = true</pre><p>Should the vectorfield plotting have normalized arrow
length. If true, vector fields will only show direction
+ and not magnitude. (See <a class="link" href="ch11s20.html#gel-function-VectorfieldPlot"><code
class="function">VectorfieldPlot</code></a>).
+ </p></dd><dt><span class="term"><a
name="gel-function-VectorfieldTicks"></a>VectorfieldTicks</span></dt><dd><pre
class="synopsis">VectorfieldTicks = [vertical,horizontal]</pre><p>Sets the number of vertical and horizontal
ticks in a
+vectorfield plot. (See <a class="link" href="ch11s20.html#gel-function-VectorfieldPlot"><code
class="function">VectorfieldPlot</code></a>).
+ </p><p>Version 1.0.10 onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s02.html">Zurück</a> </td><td width="20%" align="center"><a accesskey="u" href="ch11.html">Nach
oben</a></td><td width="40%" align="right"> <a accesskey="n" href="ch11s04.html">Weiter</a></td></tr><tr><td
width="40%" align="left" valign="top">Grundlegendes </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Zum Anfang</a></td><td width="40%" align="right" valign="top">
Konstanten</td></tr></table></div></body></html>
diff --git a/help/de/html/ch11s04.html b/help/de/html/ch11s04.html
new file mode 100644
index 0000000..3f11173
--- /dev/null
+++ b/help/de/html/ch11s04.html
@@ -0,0 +1,44 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Konstanten</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="ch11.html"
title="Kapitel 11. Liste der GEL-Funktionen"><link rel="prev" href="ch11s03.html" title="Parameter"><link
rel="next" href="ch11s05.html" title="Numerik"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Konstanten</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s03.html">Zurück</a> </td><th width="60%" align="center">Kapitel 11. Liste der
GEL-Funktionen</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s05.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a n
ame="genius-gel-function-list-constants"></a>Konstanten</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-CatalanConstant"></a>CatalanConstant</span></dt><dd><pre
class="synopsis">CatalanConstant</pre><p>
+ Catalan's Constant, approximately 0.915... It is defined to be the series where terms are
<strong class="userinput"><code>(-1^k)/((2*k+1)^2)</code></strong>, where <code class="varname">k</code>
ranges from 0 to infinity.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Catalan%27s_constant"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/CatalansConstant.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EulerConstant"></a>EulerConstant</span></dt><dd><pre
class="synopsis">EulerConstant</pre><p>Aliase: <code class="function">gamma</code></p><p>
+ Euler's constant gamma. Sometimes called the
+ Euler-Mascheroni constant.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Euler-Mascheroni_constant"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/MascheroniConstant" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Euler-MascheroniConstant.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GoldenRatio"></a>GoldenRatio</span></dt><dd><pre class="synopsis">GoldenRatio</pre><p>Der
»Goldene Schnitt«.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Golden_ratio" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/GoldenRatio" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/GoldenRatio.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Gravity"></a>Gravity</span></dt><dd><pre
class="synopsis">Gravity</pre><p>Free fall acceleration at sea level in meters per second squared. This is
the standard gravity constant 9.80665. The gravity
+ in your particular neck of the woods might be different due to different altitude and the
fact that the earth is not perfectly
+ round and uniform.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Standard_gravity" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-e"></a>e</span></dt><dd><pre
class="synopsis">e</pre><p>
+ The base of the natural logarithm. <strong class="userinput"><code>e^x</code></strong>
+ is the exponential function
+ <a class="link" href="ch11s05.html#gel-function-exp"><code class="function">exp</code></a>. It
is approximately
+ 2.71828182846... This number is sometimes called Euler's number, although there are
+ several numbers that are also called Euler's. An example is the gamma constant: <a class="link"
href="ch11s04.html#gel-function-EulerConstant"><code class="function">EulerConstant</code></a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/E_(mathematical_constant)"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/E" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/e.html" target="_top">Mathworld</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-pi"></a>pi</span></dt><dd><pre
class="synopsis">pi</pre><p>
+ The number pi, that is the ratio of a circle's circumference
+ to its diameter. This is approximately 3.14159265359...
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Pi" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Pi" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Pi.html" target="_top">Mathworld</a> for more
information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s03.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s05.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Parameter
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td width="40%"
align="right" valign="top"> Numerik</td></tr></table></div></body></html>
diff --git a/help/de/html/ch11s05.html b/help/de/html/ch11s05.html
new file mode 100644
index 0000000..2351192
--- /dev/null
+++ b/help/de/html/ch11s05.html
@@ -0,0 +1,103 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Numerik</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Genius-Handbuch"><link rel="up" href="ch11.html" title="Kapitel 11. Liste der GEL-Funktionen"><link
rel="prev" href="ch11s04.html" title="Konstanten"><link rel="next" href="ch11s06.html"
title="Trigonometrie"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Numerik</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s04.html">Zurück</a> </td><th width="60%" align="center">Kapitel 11. Liste der
GEL-Funktionen</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s06.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-numeric"></a>Numerik</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-AbsoluteValue"></a>AbsoluteValue</span></dt><dd><pre class="synopsis">AbsoluteValue
(x)</pre><p>Aliases: <code class="function">abs</code></p><p>
+ Absolute value of a number and if <code class="varname">x</code> is
+ a complex value the modulus of <code class="varname">x</code>. I.e. this
+ the distance of <code class="varname">x</code> to the origin. This is equivalent
+ to <strong class="userinput"><code>|x|</code></strong>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Absolute_value" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/AbsoluteValue" target="_top">Planetmath (absolute
value)</a>,
+ <a class="ulink" href="http://planetmath.org/ModulusOfComplexNumber" target="_top">Planetmath
(modulus)</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/AbsoluteValue.html" target="_top">Mathworld
(absolute value)</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/ComplexModulus.html" target="_top">Mathworld
(complex modulus)</a>
+for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Chop"></a>Chop</span></dt><dd><pre
class="synopsis">Chop (x)</pre><p>Ersetzung sehr kleiner Zahlen durch Null.</p></dd><dt><span class="term"><a
name="gel-function-ComplexConjugate"></a>ComplexConjugate</span></dt><dd><pre
class="synopsis">ComplexConjugate (z)</pre><p>Aliases: <code class="function">conj</code> <code
class="function">Conj</code></p><p>Calculates the complex conjugate of the complex number <code
class="varname">z</code>. If <code class="varname">z</code> is a vector or matrix,
+all its elements are conjugated.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Complex_conjugate"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Denominator"></a>Denominator</span></dt><dd><pre class="synopsis">Denominator
(x)</pre><p>Get the denominator of a rational number.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Denominator" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FractionalPart"></a>FractionalPart</span></dt><dd><pre class="synopsis">FractionalPart
(x)</pre><p>Return the fractional part of a number.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fractional_part" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Im"></a>Im</span></dt><dd><pre
class="synopsis">Im (z)</pre><p>Aliases: <code class="function">ImaginaryPart</code></p><p>Get the imaginary
part of a complex number. For example <strong class="userinput"><code>Re(3+4i)</code></strong> yields
4.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Imaginary_part" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IntegerQuotient"></a>IntegerQuotient</span></dt><dd><pre class="synopsis">IntegerQuotient
(m,n)</pre><p>Division ohne Rest.</p></dd><dt><span class="term"><a
name="gel-function-IsComplex"></a>IsComplex</span></dt><dd><pre class="synopsis">IsComplex
(num)</pre><p>Check if argument is a complex (non-real) number. Do note that we really mean nonreal number.
That is,
+ <strong class="userinput"><code>IsComplex(3)</code></strong> yields false, while
+ <strong class="userinput"><code>IsComplex(3-1i)</code></strong> yields true.</p></dd><dt><span
class="term"><a name="gel-function-IsComplexRational"></a>IsComplexRational</span></dt><dd><pre
class="synopsis">IsComplexRational (num)</pre><p>Check if argument is a possibly complex rational number.
That is, if both real and imaginary parts are
+ given as rational numbers. Of course rational simply means "not stored as a floating point
number."</p></dd><dt><span class="term"><a name="gel-function-IsFloat"></a>IsFloat</span></dt><dd><pre
class="synopsis">IsFloat (num)</pre><p>Check if argument is a real floating point number
(non-complex).</p></dd><dt><span class="term"><a
name="gel-function-IsGaussInteger"></a>IsGaussInteger</span></dt><dd><pre class="synopsis">IsGaussInteger
(num)</pre><p>Aliases: <code class="function">IsComplexInteger</code></p><p>Check if argument is a possibly
complex integer. That is a complex integer is a number of
+ the form <strong class="userinput"><code>n+1i*m</code></strong> where <code
class="varname">n</code> and <code class="varname">m</code>
+ are integers.</p></dd><dt><span class="term"><a
name="gel-function-IsInteger"></a>IsInteger</span></dt><dd><pre class="synopsis">IsInteger
(num)</pre><p>Check if argument is an integer (non-complex).</p></dd><dt><span class="term"><a
name="gel-function-IsNonNegativeInteger"></a>IsNonNegativeInteger</span></dt><dd><pre
class="synopsis">IsNonNegativeInteger (num)</pre><p>Check if argument is a non-negative real integer. That
is, either a positive integer or zero.</p></dd><dt><span class="term"><a
name="gel-function-IsPositiveInteger"></a>IsPositiveInteger</span></dt><dd><pre
class="synopsis">IsPositiveInteger (num)</pre><p>Aliases: <code
class="function">IsNaturalNumber</code></p><p>Check if argument is a positive real integer. Note that
+we accept the convention that 0 is not a natural number.</p></dd><dt><span class="term"><a
name="gel-function-IsRational"></a>IsRational</span></dt><dd><pre class="synopsis">IsRational
(num)</pre><p>Check if argument is a rational number (non-complex). Of course rational simply means "not
stored as a floating point number."</p></dd><dt><span class="term"><a
name="gel-function-IsReal"></a>IsReal</span></dt><dd><pre class="synopsis">IsReal (num)</pre><p>Check if
argument is a real number.</p></dd><dt><span class="term"><a
name="gel-function-Numerator"></a>Numerator</span></dt><dd><pre class="synopsis">Numerator (x)</pre><p>Get
the numerator of a rational number.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Numerator" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Re"></a>Re</span></dt><dd><pre
class="synopsis">Re (z)</pre><p>Aliases: <code class="function">RealPart</code></p><p>Get the real part of a
complex number. For example <strong class="userinput"><code>Re(3+4i)</code></strong> yields 3.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Real_part" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Sign"></a>Sign</span></dt><dd><pre
class="synopsis">Sign (x)</pre><p>Aliases: <code class="function">sign</code></p><p>Return the sign of a
number. That is returns
+<code class="literal">-1</code> if value is negative,
+<code class="literal">0</code> if value is zero and
+<code class="literal">1</code> if value is positive. If <code class="varname">x</code> is a complex
+value then <code class="function">Sign</code> returns the direction or 0.
+ </p></dd><dt><span class="term"><a name="gel-function-ceil"></a>ceil</span></dt><dd><pre
class="synopsis">ceil (x)</pre><p>Aliases: <code class="function">Ceiling</code></p><p>Get the lowest integer
more than or equal to <code class="varname">n</code>. Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>ceil(1.1)</code></strong>
+= 2
+<code class="prompt">genius></code> <strong class="userinput"><code>ceil(-1.1)</code></strong>
+= -1
+</pre><p>
+ </p><p>Note that you should be careful and notice that floating point
+ numbers are stored in binary and so may not be what you
+ expect. For example <strong class="userinput"><code>ceil(420/4.2)</code></strong>
+ returns 101 instead of the expected 100. This is because
+ 4.2 is actually very slightly less than 4.2. Use rational
+ representation <strong class="userinput"><code>42/10</code></strong> if you want
+ exact arithmetic.
+ </p></dd><dt><span class="term"><a name="gel-function-exp"></a>exp</span></dt><dd><pre
class="synopsis">exp (x)</pre><p>
+ The exponential function. This is the function
+ <strong class="userinput"><code>e^x</code></strong> where <code class="varname">e</code>
+ is the <a class="link" href="ch11s04.html#gel-function-e">base of the natural
+ logarithm</a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Exponential_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/LogarithmFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/ExponentialFunction.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-float"></a>float</span></dt><dd><pre
class="synopsis">float (x)</pre><p>Make number a floating point value. That is returns the floating point
representation of the number <code class="varname">x</code>.</p></dd><dt><span class="term"><a
name="gel-function-floor"></a>floor</span></dt><dd><pre class="synopsis">floor (x)</pre><p>Aliases: <code
class="function">Floor</code></p><p>Get the highest integer less than or equal to <code
class="varname">n</code>.</p></dd><dt><span class="term"><a name="gel-function-ln"></a>ln</span></dt><dd><pre
class="synopsis">ln (x)</pre><p>The natural logarithm, the logarithm to base <code
class="varname">e</code>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Natural_logarithm"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/LogarithmFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/NaturalLogarithm.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-log"></a>log</span></dt><dd><pre
class="synopsis">log (x)</pre><pre class="synopsis">log (x,b)</pre><p>Logarithm of <code
class="varname">x</code> base <code class="varname">b</code> (calls <a class="link"
href="ch11s07.html#gel-function-DiscreteLog"><code class="function">DiscreteLog</code></a> if in modulo
mode), if base is not given, <a class="link" href="ch11s04.html#gel-function-e"><code
class="varname">e</code></a> is used.</p></dd><dt><span class="term"><a
name="gel-function-log10"></a>log10</span></dt><dd><pre class="synopsis">log10 (x)</pre><p>Logarithm of <code
class="varname">x</code> base 10.</p></dd><dt><span class="term"><a
name="gel-function-log2"></a>log2</span></dt><dd><pre class="synopsis">log2 (x)</pre><p>Aliases: <code
class="function">lg</code></p><p>Logarithm of <code class="varname">x</code> base 2.</p></dd><dt><span
class="term"><a name="gel-function-max"></a>max</span></dt><dd><pre class="synop
sis">max (a,args...)</pre><p>Aliases: <code class="function">Max</code> <code
class="function">Maximum</code></p><p>Returns the maximum of arguments or matrix.</p></dd><dt><span
class="term"><a name="gel-function-min"></a>min</span></dt><dd><pre class="synopsis">min
(a,args...)</pre><p>Aliases: <code class="function">Min</code> <code
class="function">Minimum</code></p><p>Returns the minimum of arguments or matrix.</p></dd><dt><span
class="term"><a name="gel-function-rand"></a>rand</span></dt><dd><pre class="synopsis">rand
(size...)</pre><p>Generate random float in the range <code class="literal">[0,1)</code>.
+If size is given then a matrix (if two numbers are specified) or vector (if one
+number is specified) of the given size returned.</p></dd><dt><span class="term"><a
name="gel-function-randint"></a>randint</span></dt><dd><pre class="synopsis">randint
(max,size...)</pre><p>Generate random integer in the range
+<code class="literal">[0,max)</code>.
+If size is given then a matrix (if two numbers are specified) or vector (if one
+number is specified) of the given size returned. For example,
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>randint(4)</code></strong>
+= 3
+<code class="prompt">genius></code> <strong class="userinput"><code>randint(4,2)</code></strong>
+=
+[0 1]
+<code class="prompt">genius></code> <strong class="userinput"><code>randint(4,2,3)</code></strong>
+=
+[2 2 1
+ 0 0 3]
+</pre><p>
+ </p></dd><dt><span class="term"><a name="gel-function-round"></a>round</span></dt><dd><pre
class="synopsis">round (x)</pre><p>Aliases: <code class="function">Round</code></p><p>Round a
number.</p></dd><dt><span class="term"><a name="gel-function-sqrt"></a>sqrt</span></dt><dd><pre
class="synopsis">sqrt (x)</pre><p>Aliases: <code class="function">SquareRoot</code></p><p>The square root.
When operating modulo some integer will return either a <code class="constant">null</code> or a vector of the
square roots. Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>sqrt(2)</code></strong>
+= 1.41421356237
+<code class="prompt">genius></code> <strong class="userinput"><code>sqrt(-1)</code></strong>
+= 1i
+<code class="prompt">genius></code> <strong class="userinput"><code>sqrt(4) mod 7</code></strong>
+=
+[2 5]
+<code class="prompt">genius></code> <strong class="userinput"><code>2*2 mod 7</code></strong>
+= 4
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Square_root" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/SquareRoot" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-trunc"></a>trunc</span></dt><dd><pre
class="synopsis">trunc (x)</pre><p>Aliases: <code class="function">Truncate</code> <code
class="function">IntegerPart</code></p><p>Truncate number to an integer (return the integer
part).</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s04.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s06.html">Weiter</a></td></tr><tr><td width="40%" align="left"
valign="top">Konstanten </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum
Anfang</a></td><td width="40%" align="right" valign="top"> Trigonometrie</td></tr></table></div></body></html>
diff --git a/help/de/html/ch11s06.html b/help/de/html/ch11s06.html
new file mode 100644
index 0000000..2422b86
--- /dev/null
+++ b/help/de/html/ch11s06.html
@@ -0,0 +1,64 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Trigonometrie</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="ch11.html"
title="Kapitel 11. Liste der GEL-Funktionen"><link rel="prev" href="ch11s05.html" title="Numerik"><link
rel="next" href="ch11s07.html" title="Zahlentheorie"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Trigonometrie</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s05.html">Zurück</a> </td><th width="60%" align="center">Kapitel 11. Liste der
GEL-Funktionen</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s07.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-function-list-trigonometry"></a>Trigonometrie</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-acos"></a>acos</span></dt><dd><pre class="synopsis">acos (x)</pre><p>Aliases: <code
class="function">arccos</code></p><p>The arccos (inverse cos) function.</p></dd><dt><span class="term"><a
name="gel-function-acosh"></a>acosh</span></dt><dd><pre class="synopsis">acosh (x)</pre><p>Aliases: <code
class="function">arccosh</code></p><p>The arccosh (inverse cosh) function.</p></dd><dt><span class="term"><a
name="gel-function-acot"></a>acot</span></dt><dd><pre class="synopsis">acot (x)</pre><p>Aliases: <code
class="function">arccot</code></p><p>The arccot (inverse cot) function.</p></dd><dt><span class="term"><a
name="gel-function-acoth"></a>acoth</span></dt><dd><pre class="synopsis">acoth (x)</pre><p>Aliases: <code
class="function">arccoth</code></p><p>The arccoth (inverse coth) function.</p><
/dd><dt><span class="term"><a name="gel-function-acsc"></a>acsc</span></dt><dd><pre class="synopsis">acsc
(x)</pre><p>Aliases: <code class="function">arccsc</code></p><p>The inverse cosecant
function.</p></dd><dt><span class="term"><a name="gel-function-acsch"></a>acsch</span></dt><dd><pre
class="synopsis">acsch (x)</pre><p>Aliases: <code class="function">arccsch</code></p><p>The inverse
hyperbolic cosecant function.</p></dd><dt><span class="term"><a
name="gel-function-asec"></a>asec</span></dt><dd><pre class="synopsis">asec (x)</pre><p>Aliases: <code
class="function">arcsec</code></p><p>The inverse secant function.</p></dd><dt><span class="term"><a
name="gel-function-asech"></a>asech</span></dt><dd><pre class="synopsis">asech (x)</pre><p>Aliases: <code
class="function">arcsech</code></p><p>The inverse hyperbolic secant function.</p></dd><dt><span
class="term"><a name="gel-function-asin"></a>asin</span></dt><dd><pre class="synopsis">asin
(x)</pre><p>Aliases: <code class="fun
ction">arcsin</code></p><p>The arcsin (inverse sin) function.</p></dd><dt><span class="term"><a
name="gel-function-asinh"></a>asinh</span></dt><dd><pre class="synopsis">asinh (x)</pre><p>Aliases: <code
class="function">arcsinh</code></p><p>The arcsinh (inverse sinh) function.</p></dd><dt><span class="term"><a
name="gel-function-atan"></a>atan</span></dt><dd><pre class="synopsis">atan (x)</pre><p>Aliases: <code
class="function">arctan</code></p><p>Calculates the arctan (inverse tan) function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Arctangent" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/InverseTangent.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-atanh"></a>atanh</span></dt><dd><pre
class="synopsis">atanh (x)</pre><p>Aliases: <code class="function">arctanh</code></p><p>The arctanh (inverse
tanh) function.</p></dd><dt><span class="term"><a name="gel-function-atan2"></a>atan2</span></dt><dd><pre
class="synopsis">atan2 (y, x)</pre><p>Aliases: <code class="function">arctan2</code></p><p>Calculates the
arctan2 function. If
+ <strong class="userinput"><code>x>0</code></strong> then it returns
+ <strong class="userinput"><code>atan(y/x)</code></strong>. If <strong
class="userinput"><code>x<0</code></strong>
+ then it returns <strong class="userinput"><code>sign(y) * (pi - atan(|y/x|)</code></strong>.
+ When <strong class="userinput"><code>x=0</code></strong> it returns <strong
class="userinput"><code>sign(y) *
+ pi/2</code></strong>. <strong class="userinput"><code>atan2(0,0)</code></strong> returns 0
+ rather than failing.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Atan2" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/InverseTangent.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-cos"></a>cos</span></dt><dd><pre
class="synopsis">cos (x)</pre><p>Calculates the cosine function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-cosh"></a>cosh</span></dt><dd><pre
class="synopsis">cosh (x)</pre><p>Calculates the hyperbolic cosine function.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-cot"></a>cot</span></dt><dd><pre
class="synopsis">cot (x)</pre><p>The cotangent function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-coth"></a>coth</span></dt><dd><pre
class="synopsis">coth (x)</pre><p>The hyperbolic cotangent function.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-csc"></a>csc</span></dt><dd><pre
class="synopsis">csc (x)</pre><p>The cosecant function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-csch"></a>csch</span></dt><dd><pre
class="synopsis">csch (x)</pre><p>The hyperbolic cosecant function.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sec"></a>sec</span></dt><dd><pre
class="synopsis">sec (x)</pre><p>The secant function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sech"></a>sech</span></dt><dd><pre
class="synopsis">sech (x)</pre><p>The hyperbolic secant function.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sin"></a>sin</span></dt><dd><pre
class="synopsis">sin (x)</pre><p>Calculates the sine function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sinh"></a>sinh</span></dt><dd><pre
class="synopsis">sinh (x)</pre><p>Calculates the hyperbolic sine function.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-tan"></a>tan</span></dt><dd><pre
class="synopsis">tan (x)</pre><p>Calculates the tan function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-tanh"></a>tanh</span></dt><dd><pre
class="synopsis">tanh (x)</pre><p>The hyperbolic tangent function.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s05.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s07.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Numerik
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td width="40%"
align="right" valign="top"> Zahlentheorie</td></tr></table></div></body></html>
diff --git a/help/de/html/ch11s07.html b/help/de/html/ch11s07.html
new file mode 100644
index 0000000..7c0b57a
--- /dev/null
+++ b/help/de/html/ch11s07.html
@@ -0,0 +1,284 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Zahlentheorie</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="ch11.html"
title="Kapitel 11. Liste der GEL-Funktionen"><link rel="prev" href="ch11s06.html" title="Trigonometrie"><link
rel="next" href="ch11s08.html" title="Matrixoperationen"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Zahlentheorie</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s06.html">Zurück</a> </td><th width="60%" align="center">Kapitel 11. Liste der
GEL-Funktionen</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s08.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" styl
e="clear: both"><a
name="genius-gel-function-list-number-theory"></a>Zahlentheorie</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AreRelativelyPrime"></a>AreRelativelyPrime</span></dt><dd><pre
class="synopsis">AreRelativelyPrime (a,b)</pre><p>
+ Are the real integers <code class="varname">a</code> and <code class="varname">b</code>
relatively prime?
+ Returns <code class="constant">true</code> or <code class="constant">false</code>.
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Coprime_integers"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/RelativelyPrime" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/RelativelyPrime.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-BernoulliNumber"></a>BernoulliNumber</span></dt><dd><pre class="synopsis">BernoulliNumber
(n)</pre><p>Return the <code class="varname">n</code>th Bernoulli number.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bernoulli_number" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://mathworld.wolfram.com/BernoulliNumber.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ChineseRemainder"></a>ChineseRemainder</span></dt><dd><pre
class="synopsis">ChineseRemainder (a,m)</pre><p>Aliases: <code class="function">CRT</code></p><p>Find the
<code class="varname">x</code> that solves the system given by
+ the vector <code class="varname">a</code> and modulo the elements of
+ <code class="varname">m</code>, using the Chinese Remainder Theorem.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Chinese_remainder_theorem"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/ChineseRemainderTheorem"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/ChineseRemainderTheorem.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CombineFactorizations"></a>CombineFactorizations</span></dt><dd><pre
class="synopsis">CombineFactorizations (a,b)</pre><p>Given two factorizations, give the factorization of the
+ product.</p><p>See <a class="link"
href="ch11s07.html#gel-function-Factorize">Factorize</a>.</p></dd><dt><span class="term"><a
name="gel-function-ConvertFromBase"></a>ConvertFromBase</span></dt><dd><pre class="synopsis">ConvertFromBase
(v,b)</pre><p>Convert a vector of values indicating powers of b to a number.</p></dd><dt><span
class="term"><a name="gel-function-ConvertToBase"></a>ConvertToBase</span></dt><dd><pre
class="synopsis">ConvertToBase (n,b)</pre><p>Convert a number to a vector of powers for elements in base
<code class="varname">b</code>.</p></dd><dt><span class="term"><a
name="gel-function-DiscreteLog"></a>DiscreteLog</span></dt><dd><pre class="synopsis">DiscreteLog
(n,b,q)</pre><p>Find discrete log of <code class="varname">n</code> base <code class="varname">b</code> in
+ F<sub>q</sub>, the finite field of order <code class="varname">q</code>, where <code
class="varname">q</code>
+ is a prime, using the Silver-Pohlig-Hellman algorithm.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Discrete_logarithm"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/DiscreteLogarithm" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/DiscreteLogarithm.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Divides"></a>Divides</span></dt><dd><pre
class="synopsis">Divides (m,n)</pre><p>Checks divisibility (if <code class="varname">m</code> divides <code
class="varname">n</code>).</p></dd><dt><span class="term"><a
name="gel-function-EulerPhi"></a>EulerPhi</span></dt><dd><pre class="synopsis">EulerPhi (n)</pre><p>
+ Compute the Euler phi function for <code class="varname">n</code>, that is
+ the number of integers between 1 and <code class="varname">n</code>
+ relatively prime to <code class="varname">n</code>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Euler_phi" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/EulerPhifunction" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/TotientFunction.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ExactDivision"></a>ExactDivision</span></dt><dd><pre class="synopsis">ExactDivision
(n,d)</pre><p>
+ Return <strong class="userinput"><code>n/d</code></strong> but only if <code
class="varname">d</code>
+ divides <code class="varname">n</code>. If <code class="varname">d</code>
+ does not divide <code class="varname">n</code> then this function returns
+ garbage. This is a lot faster for very large numbers
+ than the operation <strong class="userinput"><code>n/d</code></strong>, but of course only
+ useful if you know that the division is exact.
+ </p></dd><dt><span class="term"><a name="gel-function-Factorize"></a>Factorize</span></dt><dd><pre
class="synopsis">Factorize (n)</pre><p>
+ Return factorization of a number as a matrix. The first
+ row is the primes in the factorization (including 1) and the
+ second row are the powers. So for example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>Factorize(11*11*13)</code></strong>
+=
+[1 11 13
+ 1 2 1]</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Factorization" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Factors"></a>Factors</span></dt><dd><pre
class="synopsis">Factors (n)</pre><p>
+ Return all factors of <code class="varname">n</code> in a vector. This
+ includes all the non-prime factors as well. It includes 1 and the
+ number itself. So for example to print all the perfect numbers
+ (those that are sums of their factors) up to the number 1000 you
+ could do (this is of course very inefficient)
+ </p><pre class="programlisting">for n=1 to 1000 do (
+ if MatrixSum (Factors(n)) == 2*n then
+ print(n)
+)
+</pre><p>
+ </p></dd><dt><span class="term"><a
name="gel-function-FermatFactorization"></a>FermatFactorization</span></dt><dd><pre
class="synopsis">FermatFactorization (n,tries)</pre><p>
+ Attempt Fermat factorization of <code class="varname">n</code> into
+ <strong class="userinput"><code>(t-s)*(t+s)</code></strong>, returns <code
class="varname">t</code>
+ and <code class="varname">s</code> as a vector if possible, <code class="constant">null</code>
otherwise.
+ <code class="varname">tries</code> specifies the number of tries before
+ giving up.
+ </p><p>
+ This is a fairly good factorization if your number is the product
+ of two factors that are very close to each other.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fermat_factorization"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FindPrimitiveElementMod"></a>FindPrimitiveElementMod</span></dt><dd><pre
class="synopsis">FindPrimitiveElementMod (q)</pre><p>Find the first primitive element in F<sub>q</sub>, the
finite
+group of order <code class="varname">q</code>. Of course <code class="varname">q</code> must be a
prime.</p></dd><dt><span class="term"><a
name="gel-function-FindRandomPrimitiveElementMod"></a>FindRandomPrimitiveElementMod</span></dt><dd><pre
class="synopsis">FindRandomPrimitiveElementMod (q)</pre><p>Find a random primitive element in F<sub>q</sub>,
the finite
+group of order <code class="varname">q</code> (q must be a prime).</p></dd><dt><span class="term"><a
name="gel-function-IndexCalculus"></a>IndexCalculus</span></dt><dd><pre class="synopsis">IndexCalculus
(n,b,q,S)</pre><p>Compute discrete log base <code class="varname">b</code> of n in F<sub>q</sub>, the finite
+group of order <code class="varname">q</code> (<code class="varname">q</code> a prime), using the
+factor base <code class="varname">S</code>. <code class="varname">S</code> should be a column of
+primes possibly with second column precalculated by
+<a class="link" href="ch11s07.html#gel-function-IndexCalculusPrecalculation"><code
class="function">IndexCalculusPrecalculation</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-IndexCalculusPrecalculation"></a>IndexCalculusPrecalculation</span></dt><dd><pre
class="synopsis">IndexCalculusPrecalculation (b,q,S)</pre><p>Run the precalculation step of
+ <a class="link" href="ch11s07.html#gel-function-IndexCalculus"><code
class="function">IndexCalculus</code></a> for logarithms base <code class="varname">b</code> in
+F<sub>q</sub>, the finite group of order <code class="varname">q</code>
+(<code class="varname">q</code> a prime), for the factor base <code class="varname">S</code> (where
+<code class="varname">S</code> is a column vector of primes). The logs will be
+precalculated and returned in the second column.</p></dd><dt><span class="term"><a
name="gel-function-IsEven"></a>IsEven</span></dt><dd><pre class="synopsis">IsEven (n)</pre><p>Überprüft, ob
eine Ganzzahl gerade ist.</p></dd><dt><span class="term"><a
name="gel-function-IsMersennePrimeExponent"></a>IsMersennePrimeExponent</span></dt><dd><pre
class="synopsis">IsMersennePrimeExponent (p)</pre><p>
+ Tests if a positive integer <code class="varname">p</code> is a
+ Mersenne prime exponent. That is if
+ 2<sup>p</sup>-1 is a prime. It does this
+ by looking it up in a table of known values, which is relatively
+ short.
+ See also
+ <a class="link" href="ch11s07.html#gel-function-MersennePrimeExponents">MersennePrimeExponents</a>
+ and
+ <a class="link" href="ch11s07.html#gel-function-LucasLehmer">LucasLehmer</a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Mersenne_prime" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MersenneNumbers" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/MersennePrime.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://www.mersenne.org/" target="_top">GIMPS</a>
+ for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsNthPower"></a>IsNthPower</span></dt><dd><pre class="synopsis">IsNthPower (m,n)</pre><p>
+ Tests if a rational number <code class="varname">m</code> is a perfect
+ <code class="varname">n</code>th power. See also
+ <a class="link" href="ch11s07.html#gel-function-IsPerfectPower">IsPerfectPower</a>
+ and
+ <a class="link" href="ch11s07.html#gel-function-IsPerfectSquare">IsPerfectSquare</a>.
+ </p></dd><dt><span class="term"><a name="gel-function-IsOdd"></a>IsOdd</span></dt><dd><pre
class="synopsis">IsOdd (n)</pre><p>Überprüft, ob eine Ganzzahl ungerade ist.</p></dd><dt><span
class="term"><a name="gel-function-IsPerfectPower"></a>IsPerfectPower</span></dt><dd><pre
class="synopsis">IsPerfectPower (n)</pre><p>Check an integer for being any perfect power,
a<sup>b</sup>.</p></dd><dt><span class="term"><a
name="gel-function-IsPerfectSquare"></a>IsPerfectSquare</span></dt><dd><pre class="synopsis">IsPerfectSquare
(n)</pre><p>
+ Check an integer for being a perfect square of an integer. The number must
+ be a real integer. Negative integers are of course never perfect
+ squares of real integers.
+ </p></dd><dt><span class="term"><a name="gel-function-IsPrime"></a>IsPrime</span></dt><dd><pre
class="synopsis">IsPrime (n)</pre><p>
+ Tests primality of integers, for numbers less than 2.5e10 the
+ answer is deterministic (if Riemann hypothesis is true). For
+ numbers larger, the probability of a false positive
+ depends on
+ <a class="link" href="ch11s03.html#gel-function-IsPrimeMillerRabinReps">
+ <code class="function">IsPrimeMillerRabinReps</code></a>. That
+ is the probability of false positive is 1/4 to the power
+ <code class="function">IsPrimeMillerRabinReps</code>. The default
+ value of 22 yields a probability of about 5.7e-14.
+ </p><p>
+ If <code class="constant">false</code> is returned, you can be sure that
+ the number is a composite. If you want to be absolutely sure
+ that you have a prime you can use
+ <a class="link" href="ch11s07.html#gel-function-MillerRabinTestSure">
+ <code class="function">MillerRabinTestSure</code></a> but it may take
+ a lot longer.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsPrimitiveMod"></a>IsPrimitiveMod</span></dt><dd><pre class="synopsis">IsPrimitiveMod
(g,q)</pre><p>Check if <code class="varname">g</code> is primitive in F<sub>q</sub>, the finite
+group of order <code class="varname">q</code>, where <code class="varname">q</code> is a prime. If <code
class="varname">q</code> is not prime results are bogus.</p></dd><dt><span class="term"><a
name="gel-function-IsPrimitiveModWithPrimeFactors"></a>IsPrimitiveModWithPrimeFactors</span></dt><dd><pre
class="synopsis">IsPrimitiveModWithPrimeFactors (g,q,f)</pre><p>Check if <code class="varname">g</code> is
primitive in F<sub>q</sub>, the finite
+group of order <code class="varname">q</code>, where <code class="varname">q</code> is a prime and
+<code class="varname">f</code> is a vector of prime factors of <code class="varname">q</code>-1.
+If <code class="varname">q</code> is not prime results are bogus.</p></dd><dt><span class="term"><a
name="gel-function-IsPseudoprime"></a>IsPseudoprime</span></dt><dd><pre class="synopsis">IsPseudoprime
(n,b)</pre><p>If <code class="varname">n</code> is a pseudoprime base <code class="varname">b</code> but not
a prime,
+ that is if <strong class="userinput"><code>b^(n-1) == 1 mod n</code></strong>. This calls
the <a class="link" href="ch11s07.html#gel-function-PseudoprimeTest"><code
class="function">PseudoprimeTest</code></a></p></dd><dt><span class="term"><a
name="gel-function-IsStrongPseudoprime"></a>IsStrongPseudoprime</span></dt><dd><pre
class="synopsis">IsStrongPseudoprime (n,b)</pre><p>Test if <code class="varname">n</code> is a strong
pseudoprime to base <code class="varname">b</code> but not a prime.</p></dd><dt><span class="term"><a
name="gel-function-Jacobi"></a>Jacobi</span></dt><dd><pre class="synopsis">Jacobi (a,b)</pre><p>Aliases:
<code class="function">JacobiSymbol</code></p><p>Calculate the Jacobi symbol (a/b) (b should be
odd).</p></dd><dt><span class="term"><a
name="gel-function-JacobiKronecker"></a>JacobiKronecker</span></dt><dd><pre class="synopsis">JacobiKronecker
(a,b)</pre><p>Aliases: <code class="function">JacobiKroneckerSymbol</code></p><p>Calculate the Jacobi s
ymbol (a/b) with the Kronecker extension (a/2)=(2/a) when a odd, or (a/2)=0 when a even.</p></dd><dt><span
class="term"><a name="gel-function-LeastAbsoluteResidue"></a>LeastAbsoluteResidue</span></dt><dd><pre
class="synopsis">LeastAbsoluteResidue (a,n)</pre><p>Return the residue of <code class="varname">a</code> mod
<code class="varname">n</code> with the least absolute value (in the interval -n/2 to n/2).</p></dd><dt><span
class="term"><a name="gel-function-Legendre"></a>Legendre</span></dt><dd><pre class="synopsis">Legendre
(a,p)</pre><p>Aliases: <code class="function">LegendreSymbol</code></p><p>Calculate the Legendre symbol
(a/p).</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/LegendreSymbol" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/LegendreSymbol.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-LucasLehmer"></a>LucasLehmer</span></dt><dd><pre class="synopsis">LucasLehmer
(p)</pre><p>Test if 2<sup>p</sup>-1 is a Mersenne prime using the Lucas-Lehmer test.
+ See also
+ <a class="link" href="ch11s07.html#gel-function-MersennePrimeExponents">MersennePrimeExponents</a>
+ and
+ <a class="link"
href="ch11s07.html#gel-function-IsMersennePrimeExponent">IsMersennePrimeExponent</a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LucasLhemer" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/Lucas-LehmerTest.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-LucasNumber"></a>LucasNumber</span></dt><dd><pre class="synopsis">LucasNumber
(n)</pre><p>Returns the <code class="varname">n</code>th Lucas number.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lucas_number" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LucasNumbers" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/LucasNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MaximalPrimePowerFactors"></a>MaximalPrimePowerFactors</span></dt><dd><pre
class="synopsis">MaximalPrimePowerFactors (n)</pre><p>Return all maximal prime power factors of a
number.</p></dd><dt><span class="term"><a
name="gel-function-MersennePrimeExponents"></a>MersennePrimeExponents</span></dt><dd><pre
class="synopsis">MersennePrimeExponents</pre><p>
+ A vector of known Mersenne prime exponents, that is
+ a list of positive integers
+ <code class="varname">p</code> such that
+ 2<sup>p</sup>-1 is a prime.
+ See also
+ <a class="link"
href="ch11s07.html#gel-function-IsMersennePrimeExponent">IsMersennePrimeExponent</a>
+ and
+ <a class="link" href="ch11s07.html#gel-function-LucasLehmer">LucasLehmer</a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Mersenne_prime" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MersenneNumbers" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/MersennePrime.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://www.mersenne.org/" target="_top">GIMPS</a>
+ for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MillerRabinTest"></a>MillerRabinTest</span></dt><dd><pre class="synopsis">MillerRabinTest
(n,reps)</pre><p>
+ Use the Miller-Rabin primality test on <code class="varname">n</code>,
+ <code class="varname">reps</code> number of times. The probability of false
+ positive is <strong class="userinput"><code>(1/4)^reps</code></strong>. It is probably
+ usually better to use
+ <a class="link" href="ch11s07.html#gel-function-IsPrime">
+ <code class="function">IsPrime</code></a> since that is faster and
+ better on smaller integers.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/MillerRabinPrimeTest" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MillerRabinTestSure"></a>MillerRabinTestSure</span></dt><dd><pre
class="synopsis">MillerRabinTestSure (n)</pre><p>
+ Use the Miller-Rabin primality test on <code class="varname">n</code> with
+ enough bases that assuming the Generalized Riemann Hypothesis the
+ result is deterministic.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MillerRabinPrimeTest" target="_top">Planetmath</a>,
or
+ <a class="ulink" href="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-ModInvert"></a>ModInvert</span></dt><dd><pre
class="synopsis">ModInvert (n,m)</pre><p>Returns inverse of n mod m.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/ModularInverse.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-MoebiusMu"></a>MoebiusMu</span></dt><dd><pre
class="synopsis">MoebiusMu (n)</pre><p>
+ Return the Moebius mu function evaluated in <code class="varname">n</code>.
+ That is, it returns 0 if <code class="varname">n</code> is not a product
+ of distinct primes and <strong class="userinput"><code>(-1)^k</code></strong> if it is
+ a product of <code class="varname">k</code> distinct primes.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MoebiusFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/MoebiusFunction.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-NextPrime"></a>NextPrime</span></dt><dd><pre
class="synopsis">NextPrime (n)</pre><p>
+ Returns the least prime greater than <code class="varname">n</code>.
+ Negatives of primes are considered prime and so to get the
+ previous prime you can use <strong class="userinput"><code>-NextPrime(-n)</code></strong>.
+ </p><p>
+ This function uses the GMPs <code class="function">mpz_nextprime</code>,
+ which in turn uses the probabilistic Miller-Rabin test
+ (See also <a class="link" href="ch11s07.html#gel-function-MillerRabinTest"><code
class="function">MillerRabinTest</code></a>).
+ The probability
+ of false positive is not tunable, but is low enough
+ for all practical purposes.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PadicValuation"></a>PadicValuation</span></dt><dd><pre class="synopsis">PadicValuation
(n,p)</pre><p>Returns the p-adic valuation (number of trailing zeros in base <code
class="varname">p</code>).</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/P-adic_order" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/PAdicValuation" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-PowerMod"></a>PowerMod</span></dt><dd><pre
class="synopsis">PowerMod (a,b,m)</pre><p>
+ Compute <strong class="userinput"><code>a^b mod m</code></strong>. The
+ <code class="varname">b</code>'s power of <code class="varname">a</code> modulo
+ <code class="varname">m</code>. It is not necessary to use this function
+ as it is automatically used in modulo mode. Hence
+ <strong class="userinput"><code>a^b mod m</code></strong> is just as fast.
+ </p></dd><dt><span class="term"><a name="gel-function-Prime"></a>Prime</span></dt><dd><pre
class="synopsis">Prime (n)</pre><p>Aliases: <code class="function">prime</code></p><p>Return the <code
class="varname">n</code>th prime (up to a limit).</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PrimeFactors"></a>PrimeFactors</span></dt><dd><pre class="synopsis">PrimeFactors
(n)</pre><p>Return all prime factors of a number as a vector.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Prime_factor" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeFactor.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PseudoprimeTest"></a>PseudoprimeTest</span></dt><dd><pre class="synopsis">PseudoprimeTest
(n,b)</pre><p>Pseudoprime test, returns <code class="constant">true</code> if and only if
+ <strong class="userinput"><code>b^(n-1) == 1 mod n</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Pseudoprime" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Pseudoprime.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RemoveFactor"></a>RemoveFactor</span></dt><dd><pre class="synopsis">RemoveFactor
(n,m)</pre><p>Removes all instances of the factor <code class="varname">m</code> from the number <code
class="varname">n</code>. That is divides by the largest power of <code class="varname">m</code>, that
divides <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Divisibility" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Factor.html" target="_top">Mathworld</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SilverPohligHellmanWithFactorization"></a>SilverPohligHellmanWithFactorization</span></dt><dd><pre
class="synopsis">SilverPohligHellmanWithFactorization (n,b,q,f)</pre><p>Find discrete log of <code
class="varname">n</code> base <code class="varname">b</code> in F<sub>q</sub>, the finite group of order
<code class="varname">q</code>, where <code class="varname">q</code> is a prime using the
Silver-Pohlig-Hellman algorithm, given <code class="varname">f</code> being the factorization of <code
class="varname">q</code>-1.</p></dd><dt><span class="term"><a
name="gel-function-SqrtModPrime"></a>SqrtModPrime</span></dt><dd><pre class="synopsis">SqrtModPrime
(n,p)</pre><p>Find square root of <code class="varname">n</code> modulo <code class="varname">p</code> (where
<code class="varname">p</code> is a prime). Null is returned if not a quadratic residue.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/QuadraticResidue" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/QuadraticResidue.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-StrongPseudoprimeTest"></a>StrongPseudoprimeTest</span></dt><dd><pre
class="synopsis">StrongPseudoprimeTest (n,b)</pre><p>Run the strong pseudoprime test base <code
class="varname">b</code> on <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Strong_pseudoprime"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/StrongPseudoprime" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/StrongPseudoprime.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-gcd"></a>gcd</span></dt><dd><pre
class="synopsis">gcd (a,args...)</pre><p>Aliases: <code class="function">GCD</code></p><p>
+ Greatest common divisor of integers. You can enter as many
+ integers as you want in the argument list, or you can give
+ a vector or a matrix of integers. If you give more than
+ one matrix of the same size then GCD is done element by
+ element.
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Greatest_common_divisor"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/GreatestCommonDivisor" target="_top">Planetmath</a>,
or
+ <a class="ulink" href="http://mathworld.wolfram.com/GreatestCommonDivisor.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-lcm"></a>lcm</span></dt><dd><pre
class="synopsis">lcm (a,args...)</pre><p>Aliases: <code class="function">LCM</code></p><p>
+ Least common multiplier of integers. You can enter as many
+ integers as you want in the argument list, or you can give a
+ vector or a matrix of integers. If you give more than one
+ matrix of the same size then LCM is done element by element.
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Least_common_multiple"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LeastCommonMultiple" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/LeastCommonMultiple.html"
target="_top">Mathworld</a> for more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s06.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s08.html">Weiter</a></td></tr><tr><td width="40%" align="left"
valign="top">Trigonometrie </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum
Anfang</a></td><td width="40%" align="right" valign="top">
Matrixoperationen</td></tr></table></div></body></html>
diff --git a/help/de/html/ch11s08.html b/help/de/html/ch11s08.html
new file mode 100644
index 0000000..5a18e93
--- /dev/null
+++ b/help/de/html/ch11s08.html
@@ -0,0 +1,92 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Matrixoperationen</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="ch11.html"
title="Kapitel 11. Liste der GEL-Funktionen"><link rel="prev" href="ch11s07.html" title="Zahlentheorie"><link
rel="next" href="ch11s09.html" title="Lineare Algebra"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Matrixoperationen</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s07.html">Zurück</a> </td><th width="60%" align="center">Kapitel 11. Liste der
GEL-Funktionen</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s09.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title
" style="clear: both"><a
name="genius-gel-function-list-matrix"></a>Matrixoperationen</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ApplyOverMatrix"></a>ApplyOverMatrix</span></dt><dd><pre class="synopsis">ApplyOverMatrix
(a,func)</pre><p>Apply a function over all entries of a matrix and return a matrix of the
results.</p></dd><dt><span class="term"><a
name="gel-function-ApplyOverMatrix2"></a>ApplyOverMatrix2</span></dt><dd><pre
class="synopsis">ApplyOverMatrix2 (a,b,func)</pre><p>Apply a function over all entries of 2 matrices (or 1
value and 1 matrix) and return a matrix of the results.</p></dd><dt><span class="term"><a
name="gel-function-ColumnsOf"></a>ColumnsOf</span></dt><dd><pre class="synopsis">ColumnsOf (M)</pre><p>Gets
the columns of a matrix as a horizontal vector.</p></dd><dt><span class="term"><a
name="gel-function-ComplementSubmatrix"></a>ComplementSubmatrix</span></dt><dd><pre class="synops
is">ComplementSubmatrix (m,r,c)</pre><p>Remove column(s) and row(s) from a matrix.</p></dd><dt><span
class="term"><a name="gel-function-CompoundMatrix"></a>CompoundMatrix</span></dt><dd><pre
class="synopsis">CompoundMatrix (k,A)</pre><p>Calculate the kth compound matrix of A.</p></dd><dt><span
class="term"><a name="gel-function-CountZeroColumns"></a>CountZeroColumns</span></dt><dd><pre
class="synopsis">CountZeroColumns (M)</pre><p>
+ Count the number of zero columns in a matrix. For example
+ once your column reduce a matrix you can use this to find
+ the nullity. See <a class="link" href="ch11s09.html#gel-function-cref"><code
class="function">cref</code></a>
+ and <a class="link" href="ch11s09.html#gel-function-Nullity"><code
class="function">Nullity</code></a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-DeleteColumn"></a>DeleteColumn</span></dt><dd><pre class="synopsis">DeleteColumn
(M,col)</pre><p>Löscht eine Spalte einer Matrix.</p></dd><dt><span class="term"><a
name="gel-function-DeleteRow"></a>DeleteRow</span></dt><dd><pre class="synopsis">DeleteRow
(M,row)</pre><p>Löscht eine Zeile einer Matrix.</p></dd><dt><span class="term"><a
name="gel-function-DiagonalOf"></a>DiagonalOf</span></dt><dd><pre class="synopsis">DiagonalOf
(M)</pre><p>Gets the diagonal entries of a matrix as a column vector.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Diagonal_of_a_matrix#Matrices"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-DotProduct"></a>DotProduct</span></dt><dd><pre class="synopsis">DotProduct
(u,v)</pre><p>Get the dot product of two vectors. The vectors must be of the
+ same size. No conjugates are taken so this is a bilinear form even if working over the
complex numbers; This is the bilinear scalar product not the sesquilinear scalar product. See <a
class="link" href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a> for the standard
sesquilinear inner product.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Dot_product" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DotProduct" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ExpandMatrix"></a>ExpandMatrix</span></dt><dd><pre class="synopsis">ExpandMatrix
(M)</pre><p>
+ Expands a matrix just like we do on unquoted matrix input.
+ That is we expand any internal matrices as blocks. This is
+ a way to construct matrices out of smaller ones and this is
+ normally done automatically on input unless the matrix is quoted.
+ </p></dd><dt><span class="term"><a
name="gel-function-HermitianProduct"></a>HermitianProduct</span></dt><dd><pre
class="synopsis">HermitianProduct (u,v)</pre><p>Aliases: <code class="function">InnerProduct</code></p><p>Get
the Hermitian product of two vectors. The vectors must be of the same size. This is a sesquilinear form
using the identity matrix.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Sesquilinear_form"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/HermitianInnerProduct.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-I"></a>I</span></dt><dd><pre
class="synopsis">I (n)</pre><p>Aliases: <code class="function">eye</code></p><p>Return an identity matrix of
a given size, that is <code class="varname">n</code> by <code class="varname">n</code>. If <code
class="varname">n</code> is zero, returns <code class="constant">null</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Identity_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/IdentityMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IndexComplement"></a>IndexComplement</span></dt><dd><pre class="synopsis">IndexComplement
(vec,msize)</pre><p>Return the index complement of a vector of indexes. Everything is one based. For
example for vector <strong class="userinput"><code>[2,3]</code></strong> and size
+<strong class="userinput"><code>5</code></strong>, we return <strong
class="userinput"><code>[1,4,5]</code></strong>. If
+<code class="varname">msize</code> is 0, we always return <code
class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsDiagonal"></a>IsDiagonal</span></dt><dd><pre class="synopsis">IsDiagonal (M)</pre><p>Is
a matrix diagonal.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Diagonal_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/DiagonalMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsIdentity"></a>IsIdentity</span></dt><dd><pre class="synopsis">IsIdentity
(x)</pre><p>Check if a matrix is the identity matrix. Automatically returns <code
class="constant">false</code>
+ if the matrix is not square. Also works on numbers, in which
+ case it is equivalent to <strong class="userinput"><code>x==1</code></strong>. When <code
class="varname">x</code> is
+ <code class="constant">null</code> (we could think of that as a 0 by 0 matrix),
+ no error is generated and <code class="constant">false</code> is returned.</p></dd><dt><span
class="term"><a name="gel-function-IsLowerTriangular"></a>IsLowerTriangular</span></dt><dd><pre
class="synopsis">IsLowerTriangular (M)</pre><p>Is a matrix lower triangular. That is, are all the entries
above the diagonal zero.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixInteger"></a>IsMatrixInteger</span></dt><dd><pre class="synopsis">IsMatrixInteger
(M)</pre><p>Check if a matrix is a matrix of integers (non-complex).</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixNonnegative"></a>IsMatrixNonnegative</span></dt><dd><pre
class="synopsis">IsMatrixNonnegative (M)</pre><p>Check if a matrix is non-negative, that is if each element
is non-negative.
+ Do not confuse positive matrices with positive semi-definite matrices.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Positive_matrix" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsMatrixPositive"></a>IsMatrixPositive</span></dt><dd><pre
class="synopsis">IsMatrixPositive (M)</pre><p>Check if a matrix is positive, that is if each element is
+positive (and hence real). In particular, no element is 0. Do not confuse
+positive matrices with positive definite matrices.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Positive_matrix" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsMatrixRational"></a>IsMatrixRational</span></dt><dd><pre
class="synopsis">IsMatrixRational (M)</pre><p>Check if a matrix is a matrix of rational (non-complex)
+numbers.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixReal"></a>IsMatrixReal</span></dt><dd><pre class="synopsis">IsMatrixReal
(M)</pre><p>Check if a matrix is a matrix of real (non-complex) numbers.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixSquare"></a>IsMatrixSquare</span></dt><dd><pre class="synopsis">IsMatrixSquare
(M)</pre><p>
+ Check if a matrix is square, that is its width is equal to
+ its height.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsUpperTriangular"></a>IsUpperTriangular</span></dt><dd><pre
class="synopsis">IsUpperTriangular (M)</pre><p>Is a matrix upper triangular? That is, a matrix is upper
triangular if all the entries below the diagonal are zero.</p></dd><dt><span class="term"><a
name="gel-function-IsValueOnly"></a>IsValueOnly</span></dt><dd><pre class="synopsis">IsValueOnly
(M)</pre><p>Check if a matrix is a matrix of numbers only. Many internal
+functions make this check. Values can be any number including complex numbers.</p></dd><dt><span
class="term"><a name="gel-function-IsVector"></a>IsVector</span></dt><dd><pre class="synopsis">IsVector
(v)</pre><p>
+ Is argument a horizontal or a vertical vector. Genius does
+ not distinguish between a matrix and a vector and a vector
+ is just a 1 by <code class="varname">n</code> or <code class="varname">n</code> by 1 matrix.
+ </p></dd><dt><span class="term"><a name="gel-function-IsZero"></a>IsZero</span></dt><dd><pre
class="synopsis">IsZero (x)</pre><p>Check if a matrix is composed of all zeros. Also works on numbers, in
which
+ case it is equivalent to <strong class="userinput"><code>x==0</code></strong>. When <code
class="varname">x</code> is
+ <code class="constant">null</code> (we could think of that as a 0 by 0 matrix),
+ no error is generated and <code class="constant">true</code> is returned as the condition is
+ vacuous.
+ </p></dd><dt><span class="term"><a
name="gel-function-LowerTriangular"></a>LowerTriangular</span></dt><dd><pre class="synopsis">LowerTriangular
(M)</pre><p>Returns a copy of the matrix <code class="varname">M</code> with all the entries above the
diagonal set to zero.</p></dd><dt><span class="term"><a
name="gel-function-MakeDiagonal"></a>MakeDiagonal</span></dt><dd><pre class="synopsis">MakeDiagonal
(v,arg...)</pre><p>Aliases: <code class="function">diag</code></p><p>Make diagonal matrix from a vector.
Alternatively you can pass
+ in the values to put on the diagonal as arguments. So
+ <strong class="userinput"><code>MakeDiagonal([1,2,3])</code></strong> is the same as
+ <strong class="userinput"><code>MakeDiagonal(1,2,3)</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Diagonal_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/DiagonalMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MakeVector"></a>MakeVector</span></dt><dd><pre class="synopsis">MakeVector
(A)</pre><p>Make column vector out of matrix by putting columns above
+ each other. Returns <code class="constant">null</code> when given <code
class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-MatrixProduct"></a>MatrixProduct</span></dt><dd><pre class="synopsis">MatrixProduct
(A)</pre><p>
+ Calculate the product of all elements in a matrix or vector.
+ That is we multiply all the elements and return a number that
+ is the product of all the elements.
+ </p></dd><dt><span class="term"><a name="gel-function-MatrixSum"></a>MatrixSum</span></dt><dd><pre
class="synopsis">MatrixSum (A)</pre><p>
+ Calculate the sum of all elements in a matrix or vector. That is
+ we add all the elements and return a number that is the
+ sum of all the elements.
+ </p></dd><dt><span class="term"><a
name="gel-function-MatrixSumSquares"></a>MatrixSumSquares</span></dt><dd><pre
class="synopsis">MatrixSumSquares (A)</pre><p>Calculate the sum of squares of all elements in a matrix
+ or vector.</p></dd><dt><span class="term"><a
name="gel-function-NonzeroColumns"></a>NonzeroColumns</span></dt><dd><pre class="synopsis">NonzeroColumns
(M)</pre><p>Returns a row vector of the indices of nonzero columns in the matrix <code
class="varname">M</code>.</p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NonzeroElements"></a>NonzeroElements</span></dt><dd><pre class="synopsis">NonzeroElements
(v)</pre><p>Returns a row vector of the indices of nonzero elements in the vector <code
class="varname">v</code>.</p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-OuterProduct"></a>OuterProduct</span></dt><dd><pre class="synopsis">OuterProduct
(u,v)</pre><p>Get the outer product of two vectors. That is, suppose that
+<code class="varname">u</code> and <code class="varname">v</code> are vertical vectors, then
+the outer product is <strong class="userinput"><code>v * u.'</code></strong>.</p></dd><dt><span
class="term"><a name="gel-function-ReverseVector"></a>ReverseVector</span></dt><dd><pre
class="synopsis">ReverseVector (v)</pre><p>Reverse elements in a vector. Return <code
class="constant">null</code> if given <code class="constant">null</code></p></dd><dt><span class="term"><a
name="gel-function-RowSum"></a>RowSum</span></dt><dd><pre class="synopsis">RowSum (m)</pre><p>Calculate sum
of each row in a matrix and return a vertical
+vector with the result.</p></dd><dt><span class="term"><a
name="gel-function-RowSumSquares"></a>RowSumSquares</span></dt><dd><pre class="synopsis">RowSumSquares
(m)</pre><p>Calculate sum of squares of each row in a matrix and return a vertical vector with the
results.</p></dd><dt><span class="term"><a name="gel-function-RowsOf"></a>RowsOf</span></dt><dd><pre
class="synopsis">RowsOf (M)</pre><p>Gets the rows of a matrix as a vertical vector. Each element
+of the vector is a horizontal vector that is the corresponding row of
+<code class="varname">M</code>. This function is useful if you wish to loop over the
+rows of a matrix. For example, as <strong class="userinput"><code>for r in RowsOf(M) do
+something(r)</code></strong>.</p></dd><dt><span class="term"><a
name="gel-function-SetMatrixSize"></a>SetMatrixSize</span></dt><dd><pre class="synopsis">SetMatrixSize
(M,rows,columns)</pre><p>Make new matrix of given size from old one. That is, a new
+ matrix will be returned to which the old one is copied. Entries that
+ don't fit are clipped and extra space is filled with zeros.
+ If <code class="varname">rows</code> or <code class="varname">columns</code> are zero
+ then <code class="constant">null</code> is returned.
+ </p></dd><dt><span class="term"><a
name="gel-function-ShuffleVector"></a>ShuffleVector</span></dt><dd><pre class="synopsis">ShuffleVector
(v)</pre><p>Shuffle elements in a vector. Return <code class="constant">null</code> if given <code
class="constant">null</code>.</p><p>Version 1.0.13 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SortVector"></a>SortVector</span></dt><dd><pre class="synopsis">SortVector
(v)</pre><p>Sort vector elements in an increasing order.</p></dd><dt><span class="term"><a
name="gel-function-StripZeroColumns"></a>StripZeroColumns</span></dt><dd><pre
class="synopsis">StripZeroColumns (M)</pre><p>Removes any all-zero columns of <code
class="varname">M</code>.</p></dd><dt><span class="term"><a
name="gel-function-StripZeroRows"></a>StripZeroRows</span></dt><dd><pre class="synopsis">StripZeroRows
(M)</pre><p>Removes any all-zero rows of <code class="varname">M</code>.</p></dd><dt><span class="term"><a
name="gel-function-Submatrix"></a>Sub
matrix</span></dt><dd><pre class="synopsis">Submatrix (m,r,c)</pre><p>Return column(s) and row(s) from a
matrix. This is
+just equivalent to <strong class="userinput"><code>m@(r,c)</code></strong>. <code class="varname">r</code>
+and <code class="varname">c</code> should be vectors of rows and columns (or single numbers if only one row
or column is needed).</p></dd><dt><span class="term"><a
name="gel-function-SwapRows"></a>SwapRows</span></dt><dd><pre class="synopsis">SwapRows
(m,row1,row2)</pre><p>Swap two rows in a matrix.</p></dd><dt><span class="term"><a
name="gel-function-UpperTriangular"></a>UpperTriangular</span></dt><dd><pre class="synopsis">UpperTriangular
(M)</pre><p>Returns a copy of the matrix <code class="varname">M</code> with all the entries below the
diagonal set to zero.</p></dd><dt><span class="term"><a
name="gel-function-columns"></a>columns</span></dt><dd><pre class="synopsis">columns (M)</pre><p>Get the
number of columns of a matrix.</p></dd><dt><span class="term"><a
name="gel-function-elements"></a>elements</span></dt><dd><pre class="synopsis">elements (M)</pre><p>Get the
total number of elements of a matrix. This is the
+number of columns times the number of rows.</p></dd><dt><span class="term"><a
name="gel-function-ones"></a>ones</span></dt><dd><pre class="synopsis">ones (rows,columns...)</pre><p>Make an
matrix of all ones (or a row vector if only one argument is given). Returns <code
class="constant">null</code> if either rows or columns are zero.</p></dd><dt><span class="term"><a
name="gel-function-rows"></a>rows</span></dt><dd><pre class="synopsis">rows (M)</pre><p>Get the number of
rows of a matrix.</p></dd><dt><span class="term"><a name="gel-function-zeros"></a>zeros</span></dt><dd><pre
class="synopsis">zeros (rows,columns...)</pre><p>Make a matrix of all zeros (or a row vector if only one
argument is given). Returns <code class="constant">null</code> if either rows or columns are
zero.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s07.html">Zurück</a> </td><td width="2
0%" align="center"><a accesskey="u" href="ch11.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s09.html">Weiter</a></td></tr><tr><td width="40%" align="left"
valign="top">Zahlentheorie </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum
Anfang</a></td><td width="40%" align="right" valign="top"> Lineare
Algebra</td></tr></table></div></body></html>
diff --git a/help/de/html/ch11s09.html b/help/de/html/ch11s09.html
new file mode 100644
index 0000000..f046e0d
--- /dev/null
+++ b/help/de/html/ch11s09.html
@@ -0,0 +1,285 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Lineare
Algebra</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="ch11.html" title="Kapitel 11. Liste der
GEL-Funktionen"><link rel="prev" href="ch11s08.html" title="Matrixoperationen"><link rel="next"
href="ch11s10.html" title="Kombinatorik"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Lineare Algebra</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s08.html">Zurück</a> </td><th width="60%" align="center">Kapitel 11. Liste der
GEL-Funktionen</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s10.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" s
tyle="clear: both"><a name="genius-gel-function-list-linear-algebra"></a>Lineare
Algebra</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AuxiliaryUnitMatrix"></a>AuxiliaryUnitMatrix</span></dt><dd><pre
class="synopsis">AuxiliaryUnitMatrix (n)</pre><p>Get the auxiliary unit matrix of size <code
class="varname">n</code>. This is a square matrix with that is all zero except the
+superdiagonal being all ones. It is the Jordan block matrix of one zero eigenvalue.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/JordanCanonicalFormTheorem"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/JordanBlock.html" target="_top">Mathworld</a>
for more information on Jordan Canonical Form.
+ </p></dd><dt><span class="term"><a
name="gel-function-BilinearForm"></a>BilinearForm</span></dt><dd><pre class="synopsis">BilinearForm
(v,A,w)</pre><p>Evaluate (v,w) with respect to the bilinear form given by the matrix A.</p></dd><dt><span
class="term"><a name="gel-function-BilinearFormFunction"></a>BilinearFormFunction</span></dt><dd><pre
class="synopsis">BilinearFormFunction (A)</pre><p>Return a function that evaluates two vectors with respect
to the bilinear form given by A.</p></dd><dt><span class="term"><a
name="gel-function-CharacteristicPolynomial"></a>CharacteristicPolynomial</span></dt><dd><pre
class="synopsis">CharacteristicPolynomial (M)</pre><p>Aliases: <code
class="function">CharPoly</code></p><p>Get the characteristic polynomial as a vector. That is, return
+the coefficients of the polynomial starting with the constant term. This is
+the polynomial defined by <strong class="userinput"><code>det(M-xI)</code></strong>. The roots of this
+polynomial are the eigenvalues of <code class="varname">M</code>.
+See also <a class="link"
href="ch11s09.html#gel-function-CharacteristicPolynomialFunction">CharacteristicPolynomialFunction</a>.
+</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Characteristic_polynomial"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/CharacteristicEquation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CharacteristicPolynomialFunction"></a>CharacteristicPolynomialFunction</span></dt><dd><pre
class="synopsis">CharacteristicPolynomialFunction (M)</pre><p>Get the characteristic polynomial as a
function. This is
+the polynomial defined by <strong class="userinput"><code>det(M-xI)</code></strong>. The roots of this
+polynomial are the eigenvalues of <code class="varname">M</code>.
+See also <a class="link"
href="ch11s09.html#gel-function-CharacteristicPolynomial">CharacteristicPolynomial</a>.
+</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Characteristic_polynomial"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/CharacteristicEquation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ColumnSpace"></a>ColumnSpace</span></dt><dd><pre class="synopsis">ColumnSpace
(M)</pre><p>Get a basis matrix for the columnspace of a matrix. That is,
+return a matrix whose columns are the basis for the column space of
+<code class="varname">M</code>. That is the space spanned by the columns of
+<code class="varname">M</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Row_and_column_spaces"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CommutationMatrix"></a>CommutationMatrix</span></dt><dd><pre
class="synopsis">CommutationMatrix (m, n)</pre><p>Return the commutation matrix <strong
class="userinput"><code>K(m,n)</code></strong>, which is the unique <strong
class="userinput"><code>m*n</code></strong> by
+ <strong class="userinput"><code>m*n</code></strong> matrix such that <strong
class="userinput"><code>K(m,n) * MakeVector(A) = MakeVector(A.')</code></strong> for all <code
class="varname">m</code> by <code class="varname">n</code>
+ matrices <code class="varname">A</code>.</p></dd><dt><span class="term"><a
name="gel-function-CompanionMatrix"></a>CompanionMatrix</span></dt><dd><pre class="synopsis">CompanionMatrix
(p)</pre><p>Companion matrix of a polynomial (as vector).</p></dd><dt><span class="term"><a
name="gel-function-ConjugateTranspose"></a>ConjugateTranspose</span></dt><dd><pre
class="synopsis">ConjugateTranspose (M)</pre><p>Conjugate transpose of a matrix (adjoint). This is the
+ same as the <strong class="userinput"><code>'</code></strong> operator.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Conjugate_transpose"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/ConjugateTranspose" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Convolution"></a>Convolution</span></dt><dd><pre class="synopsis">Convolution
(a,b)</pre><p>Aliases: <code class="function">convol</code></p><p>Calculate convolution of two horizontal
vectors.</p></dd><dt><span class="term"><a
name="gel-function-ConvolutionVector"></a>ConvolutionVector</span></dt><dd><pre
class="synopsis">ConvolutionVector (a,b)</pre><p>Calculate convolution of two horizontal vectors. Return
+result as a vector and not added together.</p></dd><dt><span class="term"><a
name="gel-function-CrossProduct"></a>CrossProduct</span></dt><dd><pre class="synopsis">CrossProduct
(v,w)</pre><p>CrossProduct of two vectors in R<sup>3</sup> as
+ a column vector.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Cross_product" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-DeterminantalDivisorsInteger"></a>DeterminantalDivisorsInteger</span></dt><dd><pre
class="synopsis">DeterminantalDivisorsInteger (M)</pre><p>Get the determinantal divisors of an integer
matrix.</p></dd><dt><span class="term"><a name="gel-function-DirectSum"></a>DirectSum</span></dt><dd><pre
class="synopsis">DirectSum (M,N...)</pre><p>Direct sum of matrices.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Matrix_addition#directsum"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-DirectSumMatrixVector"></a>DirectSumMatrixVector</span></dt><dd><pre
class="synopsis">DirectSumMatrixVector (v)</pre><p>Direct sum of a vector of matrices.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Matrix_addition#directsum"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Eigenvalues"></a>Eigenvalues</span></dt><dd><pre class="synopsis">Eigenvalues
(M)</pre><p>Aliases: <code class="function">eig</code></p><p>Get the eigenvalues of a square matrix.
+ Currently only works for matrices of size up to 4 by 4, or for
+ triangular matrices (for which the eigenvalues are on the
+ diagonal).
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eigenvalue" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/Eigenvalue" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/Eigenvalue.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Eigenvectors"></a>Eigenvectors</span></dt><dd><pre class="synopsis">Eigenvectors
(M)</pre><pre class="synopsis">Eigenvectors (M, &eigenvalues)</pre><pre class="synopsis">Eigenvectors (M,
&eigenvalues, &multiplicities)</pre><p>Get the eigenvectors of a square matrix. Optionally get also
+the eigenvalues and their algebraic multiplicities.
+ Currently only works for matrices of size up to 2 by 2.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eigenvector" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/Eigenvector" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/Eigenvector.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GramSchmidt"></a>GramSchmidt</span></dt><dd><pre class="synopsis">GramSchmidt
(v,B...)</pre><p>Apply the Gram-Schmidt process (to the columns) with respect to
+inner product given by <code class="varname">B</code>. If <code class="varname">B</code> is not
+given then the standard Hermitian product is used. <code class="varname">B</code> can
+either be a sesquilinear function of two arguments or it can be a matrix giving
+a sesquilinear form. The vectors will be made orthonormal with respect to
+<code class="varname">B</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/GramSchmidtOrthogonalization"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-HankelMatrix"></a>HankelMatrix</span></dt><dd><pre class="synopsis">HankelMatrix
(c,r)</pre><p>Hankel matrix, a matrix whose skew-diagonals are constant. <code class="varname">c</code> is
the first row and <code class="varname">r</code> is the
+ last column. It is assumed that both arguments are vectors and the last element of <code
class="varname">c</code> is the same
+ as the first element of <code class="varname">r</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hankel_matrix" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-HilbertMatrix"></a>HilbertMatrix</span></dt><dd><pre class="synopsis">HilbertMatrix
(n)</pre><p>Hilbert matrix of order <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hilbert_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/HilbertMatrix" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-Image"></a>Image</span></dt><dd><pre
class="synopsis">Image (T)</pre><p>Get the image (columnspace) of a linear transform.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Row_and_column_spaces"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-InfNorm"></a>InfNorm</span></dt><dd><pre
class="synopsis">InfNorm (v)</pre><p>Get the Inf Norm of a vector, sometimes called the sup norm or the max
norm.</p></dd><dt><span class="term"><a
name="gel-function-InvariantFactorsInteger"></a>InvariantFactorsInteger</span></dt><dd><pre
class="synopsis">InvariantFactorsInteger (M)</pre><p>Get the invariant factors of a square integer
matrix.</p></dd><dt><span class="term"><a
name="gel-function-InverseHilbertMatrix"></a>InverseHilbertMatrix</span></dt><dd><pre
class="synopsis">InverseHilbertMatrix (n)</pre><p>Inverse Hilbert matrix of order <code
class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hilbert_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/HilbertMatrix" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsHermitian"></a>IsHermitian</span></dt><dd><pre class="synopsis">IsHermitian
(M)</pre><p>Is a matrix Hermitian. That is, is it equal to its conjugate transpose.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hermitian_matrix"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HermitianMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsInSubspace"></a>IsInSubspace</span></dt><dd><pre class="synopsis">IsInSubspace
(v,W)</pre><p>Test if a vector is in a subspace.</p></dd><dt><span class="term"><a
name="gel-function-IsInvertible"></a>IsInvertible</span></dt><dd><pre class="synopsis">IsInvertible
(n)</pre><p>Is a matrix (or number) invertible (Integer matrix is invertible if and only if it is invertible
over the integers).</p></dd><dt><span class="term"><a
name="gel-function-IsInvertibleField"></a>IsInvertibleField</span></dt><dd><pre
class="synopsis">IsInvertibleField (n)</pre><p>Is a matrix (or number) invertible over a
field.</p></dd><dt><span class="term"><a name="gel-function-IsNormal"></a>IsNormal</span></dt><dd><pre
class="synopsis">IsNormal (M)</pre><p>Is <code class="varname">M</code> a normal matrix. That is,
+ does <strong class="userinput"><code>M*M' == M'*M</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/NormalMatrix" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/NormalMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsPositiveDefinite"></a>IsPositiveDefinite</span></dt><dd><pre
class="synopsis">IsPositiveDefinite (M)</pre><p>Is <code class="varname">M</code> a Hermitian positive
definite matrix. That is if
+<strong class="userinput"><code>HermitianProduct(M*v,v)</code></strong> is always strictly positive for
+any vector <code class="varname">v</code>.
+<code class="varname">M</code> must be square and Hermitian to be positive definite.
+The check that is performed is that every principal submatrix has a non-negative
+determinant.
+(See <a class="link" href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a>)</p><p>
+ Note that some authors (for example Mathworld) do not require that
+ <code class="varname">M</code> be Hermitian, and then the condition is
+ on the real part of the inner product, but we do not take this
+ view. If you wish to perform this check, just check the
+ Hermitian part of the matrix <code class="varname">M</code> as follows:
+ <strong class="userinput"><code>IsPositiveDefinite(M+M')</code></strong>.
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Positive-definite_matrix"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/PositiveDefinite" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/PositiveDefiniteMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsPositiveSemidefinite"></a>IsPositiveSemidefinite</span></dt><dd><pre
class="synopsis">IsPositiveSemidefinite (M)</pre><p>Is <code class="varname">M</code> a Hermitian positive
semidefinite matrix. That is if
+<strong class="userinput"><code>HermitianProduct(M*v,v)</code></strong> is always non-negative for
+any vector <code class="varname">v</code>.
+<code class="varname">M</code> must be square and Hermitian to be positive semidefinite.
+The check that is performed is that every principal submatrix has a non-negative
+determinant.
+(See <a class="link" href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a>)</p><p>
+ Note that some authors do not require that
+ <code class="varname">M</code> be Hermitian, and then the condition is
+ on the real part of the inner product, but we do not take this
+ view. If you wish to perform this check, just check the
+ Hermitian part of the matrix <code class="varname">M</code> as follows:
+ <strong class="userinput"><code>IsPositiveSemidefinite(M+M')</code></strong>.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PositiveSemidefinite" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PositiveSemidefiniteMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsSkewHermitian"></a>IsSkewHermitian</span></dt><dd><pre class="synopsis">IsSkewHermitian
(M)</pre><p>Is a matrix skew-Hermitian. That is, is the conjugate transpose equal to negative of the
matrix.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SkewHermitianMatrix" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-IsUnitary"></a>IsUnitary</span></dt><dd><pre
class="synopsis">IsUnitary (M)</pre><p>Is a matrix unitary? That is, does
+ <strong class="userinput"><code>M'*M</code></strong> and <strong
class="userinput"><code>M*M'</code></strong>
+ equal the identity.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/UnitaryTransformation" target="_top">Planetmath</a>
or
+ <a class="ulink" href="http://mathworld.wolfram.com/UnitaryMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-JordanBlock"></a>JordanBlock</span></dt><dd><pre class="synopsis">JordanBlock
(n,lambda)</pre><p>Aliases: <code class="function">J</code></p><p>Get the Jordan block corresponding to the
eigenvalue
+ <code class="varname">lambda</code> with multiplicity <code class="varname">n</code>.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/JordanCanonicalFormTheorem"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/JordanBlock.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Kernel"></a>Kernel</span></dt><dd><pre
class="synopsis">Kernel (T)</pre><p>Get the kernel (nullspace) of a linear transform.</p><p>
+ (See <a class="link" href="ch11s09.html#gel-function-NullSpace">NullSpace</a>)
+ </p></dd><dt><span class="term"><a
name="gel-function-KroneckerProduct"></a>KroneckerProduct</span></dt><dd><pre
class="synopsis">KroneckerProduct (M, N)</pre><p>Aliases: <code class="function">TensorProduct</code></p><p>
+ Compute the Kronecker product (tensor product in standard basis)
+ of two matrices.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Kronecker_product"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/KroneckerProduct" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/KroneckerProduct.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LUDecomposition"></a>LUDecomposition</span></dt><dd><pre class="synopsis">LUDecomposition
(A, L, U)</pre><p>
+ Get the LU decomposition of <code class="varname">A</code>, that is
+ find a lower triangular matrix and upper triangular
+ matrix whose product is <code class="varname">A</code>.
+ Store the result in the <code class="varname">L</code> and
+ <code class="varname">U</code>, which should be references. It returns <code
class="constant">true</code>
+ if successful.
+ For example suppose that A is a square matrix, then after running:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LUDecomposition(A,&L,&U)</code></strong>
+</pre><p>
+ You will have the lower matrix stored in a variable called
+ <code class="varname">L</code> and the upper matrix in a variable called
+ <code class="varname">U</code>.
+ </p><p>
+ This is the LU decomposition of a matrix aka Crout and/or Cholesky
+ reduction.
+ (ISBN 0-201-11577-8 pp.99-103)
+ The upper triangular matrix features a diagonal
+ of values 1 (one). This is not Doolittle's Method, which features
+ the 1's diagonal on the lower matrix.
+ </p><p>
+ Not all matrices have LU decompositions, for example
+ <strong class="userinput"><code>[0,1;1,0]</code></strong> does not and this function returns
+ <code class="constant">false</code> in this case and sets <code class="varname">L</code>
+ and <code class="varname">U</code> to <code class="constant">null</code>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/LU_decomposition" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LUDecomposition" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/LUDecomposition.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Minor"></a>Minor</span></dt><dd><pre
class="synopsis">Minor (M,i,j)</pre><p>Get the <code class="varname">i</code>-<code class="varname">j</code>
minor of a matrix.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Minor" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-NonPivotColumns"></a>NonPivotColumns</span></dt><dd><pre class="synopsis">NonPivotColumns
(M)</pre><p>Return the columns that are not the pivot columns of a matrix.</p></dd><dt><span class="term"><a
name="gel-function-Norm"></a>Norm</span></dt><dd><pre class="synopsis">Norm (v,p...)</pre><p>Aliases: <code
class="function">norm</code></p><p>Get the p Norm (or 2 Norm if no p is supplied) of a
vector.</p></dd><dt><span class="term"><a name="gel-function-NullSpace"></a>NullSpace</span></dt><dd><pre
class="synopsis">NullSpace (T)</pre><p>Get the nullspace of a matrix. That is the kernel of the
+ linear mapping that the matrix represents. This is returned
+ as a matrix whose column space is the nullspace of
+ <code class="varname">T</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Nullspace" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-Nullity"></a>Nullity</span></dt><dd><pre
class="synopsis">Nullity (M)</pre><p>Aliases: <code class="function">nullity</code></p><p>Get the nullity of
a matrix. That is, return the dimension of
+the nullspace; the dimension of the kernel of <code class="varname">M</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Nullity" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-OrthogonalComplement"></a>OrthogonalComplement</span></dt><dd><pre
class="synopsis">OrthogonalComplement (M)</pre><p>Get the orthogonal complement of the
columnspace.</p></dd><dt><span class="term"><a
name="gel-function-PivotColumns"></a>PivotColumns</span></dt><dd><pre class="synopsis">PivotColumns
(M)</pre><p>Return pivot columns of a matrix, that is columns that have a leading 1 in row reduced form.
Also returns the row where they occur.</p></dd><dt><span class="term"><a
name="gel-function-Projection"></a>Projection</span></dt><dd><pre class="synopsis">Projection
(v,W,B...)</pre><p>Projection of vector <code class="varname">v</code> onto subspace
+<code class="varname">W</code> with respect to inner product given by
+<code class="varname">B</code>. If <code class="varname">B</code> is not given then the standard
+Hermitian product is used. <code class="varname">B</code> can either be a sesquilinear
+function of two arguments or it can be a matrix giving a sesquilinear form.
+ </p></dd><dt><span class="term"><a
name="gel-function-QRDecomposition"></a>QRDecomposition</span></dt><dd><pre class="synopsis">QRDecomposition
(A, Q)</pre><p>
+ Get the QR decomposition of a square matrix <code class="varname">A</code>,
+ returns the upper triangular matrix <code class="varname">R</code>
+ and sets <code class="varname">Q</code> to the orthogonal (unitary) matrix.
+ <code class="varname">Q</code> should be a reference or <code class="constant">null</code> if you
don't
+ want any return.
+ For example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong class="userinput"><code>R
= QRDecomposition(A,&Q)</code></strong>
+</pre><p>
+ You will have the upper triangular matrix stored in
+ a variable called
+ <code class="varname">R</code> and the orthogonal (unitary) matrix stored in
+ <code class="varname">Q</code>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/QR_decomposition" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/QRDecomposition" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/QRDecomposition.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RayleighQuotient"></a>RayleighQuotient</span></dt><dd><pre
class="synopsis">RayleighQuotient (A,x)</pre><p>Return the Rayleigh quotient (also called the Rayleigh-Ritz
quotient or ratio) of a matrix and a vector.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RayleighQuotient" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RayleighQuotientIteration"></a>RayleighQuotientIteration</span></dt><dd><pre
class="synopsis">RayleighQuotientIteration (A,x,epsilon,maxiter,vecref)</pre><p>Find eigenvalues of <code
class="varname">A</code> using the Rayleigh
+ quotient iteration method. <code class="varname">x</code> is a guess
+ at a eigenvector and could be random. It should have
+ nonzero imaginary part if it will have any chance at finding
+ complex eigenvalues. The code will run at most
+ <code class="varname">maxiter</code> iterations and return <code class="constant">null</code>
+ if we cannot get within an error of <code class="varname">epsilon</code>.
+ <code class="varname">vecref</code> should either be <code class="constant">null</code> or a
reference
+ to a variable where the eigenvector should be stored.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RayleighQuotient" target="_top">Planetmath</a> for
more information on Rayleigh quotient.
+ </p></dd><dt><span class="term"><a name="gel-function-Rank"></a>Rank</span></dt><dd><pre
class="synopsis">Rank (M)</pre><p>Aliases: <code class="function">rank</code></p><p>Get the rank of a
matrix.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SylvestersLaw" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RosserMatrix"></a>RosserMatrix</span></dt><dd><pre class="synopsis">RosserMatrix
()</pre><p>Returns the Rosser matrix, which is a classic symmetric eigenvalue test problem.</p></dd><dt><span
class="term"><a name="gel-function-Rotation2D"></a>Rotation2D</span></dt><dd><pre class="synopsis">Rotation2D
(angle)</pre><p>Aliases: <code class="function">RotationMatrix</code></p><p>Return the matrix corresponding
to rotation around origin in R<sup>2</sup>.</p></dd><dt><span class="term"><a
name="gel-function-Rotation3DX"></a>Rotation3DX</span></dt><dd><pre class="synopsis">Rotation3DX
(angle)</pre><p>Return the matrix corresponding to rotation around origin in R<sup>3</sup> about the
x-axis.</p></dd><dt><span class="term"><a name="gel-function-Rotation3DY"></a>Rotation3DY</span></dt><dd><pre
class="synopsis">Rotation3DY (angle)</pre><p>Return the matrix corresponding to rotation around origin in
R<sup>3</sup> about the
y-axis.</p></dd><dt><span class="term"><a
name="gel-function-Rotation3DZ"></a>Rotation3DZ</span></dt><dd><pre class="synopsis">Rotation3DZ
(angle)</pre><p>Return the matrix corresponding to rotation around origin in R<sup>3</sup> about the
z-axis.</p></dd><dt><span class="term"><a name="gel-function-RowSpace"></a>RowSpace</span></dt><dd><pre
class="synopsis">RowSpace (M)</pre><p>Get a basis matrix for the rowspace of a matrix.</p></dd><dt><span
class="term"><a name="gel-function-SesquilinearForm"></a>SesquilinearForm</span></dt><dd><pre
class="synopsis">SesquilinearForm (v,A,w)</pre><p>Evaluate (v,w) with respect to the sesquilinear form given
by the matrix A.</p></dd><dt><span class="term"><a
name="gel-function-SesquilinearFormFunction"></a>SesquilinearFormFunction</span></dt><dd><pre
class="synopsis">SesquilinearFormFunction (A)</pre><p>Return a function that evaluates two vectors with
respect to the sesquilinear form given by A.</p></dd><dt><span class="term"><a name="gel
-function-SmithNormalFormField"></a>SmithNormalFormField</span></dt><dd><pre
class="synopsis">SmithNormalFormField (A)</pre><p>Returns the Smith normal form of a matrix over fields (will
end up with 1's on the diagonal).</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Smith_normal_form"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SmithNormalFormInteger"></a>SmithNormalFormInteger</span></dt><dd><pre
class="synopsis">SmithNormalFormInteger (M)</pre><p>Return the Smith normal form for square integer matrices
over integers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Smith_normal_form"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SolveLinearSystem"></a>SolveLinearSystem</span></dt><dd><pre
class="synopsis">SolveLinearSystem (M,V,args...)</pre><p>Solve linear system Mx=V, return solution V if there
is a unique solution, <code class="constant">null</code> otherwise. Extra two reference parameters can
optionally be used to get the reduced M and V.</p></dd><dt><span class="term"><a
name="gel-function-ToeplitzMatrix"></a>ToeplitzMatrix</span></dt><dd><pre class="synopsis">ToeplitzMatrix (c,
r...)</pre><p>Return the Toeplitz matrix constructed given the first column c
+and (optionally) the first row r. If only the column c is given then it is
+conjugated and the nonconjugated version is used for the first row to give a
+Hermitian matrix (if the first element is real of course).</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Toeplitz_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/ToeplitzMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Trace"></a>Trace</span></dt><dd><pre
class="synopsis">Trace (M)</pre><p>Aliases: <code class="function">trace</code></p><p>Calculate the trace of
a matrix. That is the sum of the diagonal elements.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trace_(linear_algebra)"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Trace" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-Transpose"></a>Transpose</span></dt><dd><pre
class="synopsis">Transpose (M)</pre><p>Transpose of a matrix. This is the same as the
+ <strong class="userinput"><code>.'</code></strong> operator.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Transpose" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Transpose" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-VandermondeMatrix"></a>VandermondeMatrix</span></dt><dd><pre
class="synopsis">VandermondeMatrix (v)</pre><p>Aliases: <code class="function">vander</code></p><p>Return the
Vandermonde matrix.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Vandermonde_matrix"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-VectorAngle"></a>VectorAngle</span></dt><dd><pre class="synopsis">VectorAngle
(v,w,B...)</pre><p>The angle of two vectors with respect to inner product given by
+<code class="varname">B</code>. If <code class="varname">B</code> is not given then the standard
+Hermitian product is used. <code class="varname">B</code> can either be a sesquilinear
+function of two arguments or it can be a matrix giving a sesquilinear form.
+</p></dd><dt><span class="term"><a
name="gel-function-VectorSpaceDirectSum"></a>VectorSpaceDirectSum</span></dt><dd><pre
class="synopsis">VectorSpaceDirectSum (M,N)</pre><p>The direct sum of the vector spaces M and
N.</p></dd><dt><span class="term"><a
name="gel-function-VectorSubspaceIntersection"></a>VectorSubspaceIntersection</span></dt><dd><pre
class="synopsis">VectorSubspaceIntersection (M,N)</pre><p>Intersection of the subspaces given by M and
N.</p></dd><dt><span class="term"><a
name="gel-function-VectorSubspaceSum"></a>VectorSubspaceSum</span></dt><dd><pre
class="synopsis">VectorSubspaceSum (M,N)</pre><p>The sum of the vector spaces M and N, that is {w | w=m+n, m
in M, n in N}.</p></dd><dt><span class="term"><a name="gel-function-adj"></a>adj</span></dt><dd><pre
class="synopsis">adj (m)</pre><p>Aliases: <code class="function">Adjugate</code></p><p>Get the classical
adjoint (adjugate) of a matrix.</p></dd><dt><span class="term"><a name="gel-function-cref"></a>cref</spa
n></dt><dd><pre class="synopsis">cref (M)</pre><p>Aliases: <code class="function">CREF</code> <code
class="function">ColumnReducedEchelonForm</code></p><p>Compute the Column Reduced Echelon
Form.</p></dd><dt><span class="term"><a name="gel-function-det"></a>det</span></dt><dd><pre
class="synopsis">det (M)</pre><p>Aliases: <code class="function">Determinant</code></p><p>Get the determinant
of a matrix.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Determinant" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Determinant2" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-ref"></a>ref</span></dt><dd><pre
class="synopsis">ref (M)</pre><p>Aliases: <code class="function">REF</code> <code
class="function">RowEchelonForm</code></p><p>Get the row echelon form of a matrix. That is, apply gaussian
+elimination but not backaddition to <code class="varname">M</code>. The pivot rows are
+divided to make all pivots 1.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Row_echelon_form" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/RowEchelonForm" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-rref"></a>rref</span></dt><dd><pre
class="synopsis">rref (M)</pre><p>Aliases: <code class="function">RREF</code> <code
class="function">ReducedRowEchelonForm</code></p><p>Get the reduced row echelon form of a matrix. That is,
apply gaussian elimination together with backaddition to <code class="varname">M</code>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Reduced_row_echelon_form"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/ReducedRowEchelonForm" target="_top">Planetmath</a>
for more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s08.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s10.html">Weiter</a></td></tr><tr><td width="40%" align="left"
valign="top">Matrixoperationen </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum
Anfang</a></td><td width="40%" align="right" valign="top"> Kombinatorik</td></tr></table></div></body></html>
diff --git a/help/de/html/ch11s10.html b/help/de/html/ch11s10.html
new file mode 100644
index 0000000..bff4ffe
--- /dev/null
+++ b/help/de/html/ch11s10.html
@@ -0,0 +1,113 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Kombinatorik</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="ch11.html"
title="Kapitel 11. Liste der GEL-Funktionen"><link rel="prev" href="ch11s09.html" title="Lineare
Algebra"><link rel="next" href="ch11s11.html" title="Analysis"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kombinatorik</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s09.html">Zurück</a> </td><th width="60%" align="center">Kapitel 11. Liste der
GEL-Funktionen</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s11.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-function-list-combinatorics"></a>Kombinatorik</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Catalan"></a>Catalan</span></dt><dd><pre class="synopsis">Catalan (n)</pre><p>Get <code
class="varname">n</code>th Catalan number.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/CatalanNumbers" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Combinations"></a>Combinations</span></dt><dd><pre class="synopsis">Combinations
(k,n)</pre><p>Get all combinations of k numbers from 1 to n as a vector of vectors.
+ (See also <a class="link" href="ch11s10.html#gel-function-NextCombination">NextCombination</a>)
+</p></dd><dt><span class="term"><a
name="gel-function-DoubleFactorial"></a>DoubleFactorial</span></dt><dd><pre class="synopsis">DoubleFactorial
(n)</pre><p>Double factorial: <strong class="userinput"><code>n(n-2)(n-4)...</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/DoubleFactorial" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Factorial"></a>Factorial</span></dt><dd><pre
class="synopsis">Factorial (n)</pre><p>Factorial: <strong
class="userinput"><code>n(n-1)(n-2)...</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Factorial" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FallingFactorial"></a>FallingFactorial</span></dt><dd><pre
class="synopsis">FallingFactorial (n,k)</pre><p>Falling factorial: <strong class="userinput"><code>(n)_k =
n(n-1)...(n-(k-1))</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/FallingFactorial" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Fibonacci"></a>Fibonacci</span></dt><dd><pre
class="synopsis">Fibonacci (x)</pre><p>Aliases: <code class="function">fib</code></p><p>
+ Calculate <code class="varname">n</code>th Fibonacci number. That
+ is the number defined recursively by
+ <strong class="userinput"><code>Fibonacci(n) = Fibonacci(n-1) + Fibonacci(n-2)</code></strong>
+ and
+ <strong class="userinput"><code>Fibonacci(1) = Fibonacci(2) = 1</code></strong>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fibonacci_number" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/FibonacciSequence" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FibonacciNumber.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FrobeniusNumber"></a>FrobeniusNumber</span></dt><dd><pre class="synopsis">FrobeniusNumber
(v,arg...)</pre><p>
+ Calculate the Frobenius number. That is calculate smallest
+ number that cannot be given as a non-negative integer linear
+ combination of a given vector of non-negative integers.
+ The vector can be given as separate numbers or a single vector.
+ All the numbers given should have GCD of 1.
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/FrobeniusNumber.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GaloisMatrix"></a>GaloisMatrix</span></dt><dd><pre class="synopsis">GaloisMatrix
(combining_rule)</pre><p>Galois matrix given a linear combining rule
(a_1*x_1+...+a_n*x_n=x_(n+1)).</p></dd><dt><span class="term"><a
name="gel-function-GreedyAlgorithm"></a>GreedyAlgorithm</span></dt><dd><pre class="synopsis">GreedyAlgorithm
(n,v)</pre><p>
+ Find the vector <code class="varname">c</code> of non-negative integers
+ such that taking the dot product with <code class="varname">v</code> is
+ equal to n. If not possible returns <code class="constant">null</code>. <code
class="varname">v</code>
+ should be given sorted in increasing order and should consist
+ of non-negative integers.
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/GreedyAlgorithm.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-HarmonicNumber"></a>HarmonicNumber</span></dt><dd><pre class="synopsis">HarmonicNumber
(n,r)</pre><p>Aliases: <code class="function">HarmonicH</code></p><p>Harmonic Number, the <code
class="varname">n</code>th harmonic number of order <code class="varname">r</code>.</p></dd><dt><span
class="term"><a name="gel-function-Hofstadter"></a>Hofstadter</span></dt><dd><pre class="synopsis">Hofstadter
(n)</pre><p>Hofstadter's function q(n) defined by q(1)=1, q(2)=1,
q(n)=q(n-q(n-1))+q(n-q(n-2)).</p></dd><dt><span class="term"><a
name="gel-function-LinearRecursiveSequence"></a>LinearRecursiveSequence</span></dt><dd><pre
class="synopsis">LinearRecursiveSequence (seed_values,combining_rule,n)</pre><p>Compute linear recursive
sequence using Galois stepping.</p></dd><dt><span class="term"><a
name="gel-function-Multinomial"></a>Multinomial</span></dt><dd><pre class="synopsis">Multinomial
(v,arg...)</pre><p>Calculate multinomial coeffi
cients. Takes a vector of
+ <code class="varname">k</code>
+ non-negative integers and computes the multinomial coefficient.
+ This corresponds to the coefficient in the homogeneous polynomial
+ in <code class="varname">k</code> variables with the corresponding powers.
+ </p><p>
+ The formula for <strong class="userinput"><code>Multinomial(a,b,c)</code></strong>
+ can be written as:
+</p><pre class="programlisting">(a+b+c)! / (a!b!c!)
+</pre><p>
+ In other words, if we would have only two elements, then
+<strong class="userinput"><code>Multinomial(a,b)</code></strong> is the same thing as
+<strong class="userinput"><code>Binomial(a+b,a)</code></strong> or
+<strong class="userinput"><code>Binomial(a+b,b)</code></strong>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Multinomial_theorem"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MultinomialTheorem" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/MultinomialCoefficient.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-NextCombination"></a>NextCombination</span></dt><dd><pre class="synopsis">NextCombination
(v,n)</pre><p>Get combination that would come after v in call to
+combinations, first combination should be <strong class="userinput"><code>[1:k]</code></strong>. This
+function is useful if you have many combinations to go through and you don't
+want to waste memory to store them all.
+ </p><p>
+ For example with Combinations you would normally write a loop like:
+ </p><pre class="screen"><strong class="userinput"><code>for n in Combinations (4,6) do (
+ SomeFunction (n)
+);</code></strong>
+</pre><p>
+ But with NextCombination you would write something like:
+ </p><pre class="screen"><strong class="userinput"><code>n:=[1:4];
+do (
+ SomeFunction (n)
+) while not IsNull(n:=NextCombination(n,6));</code></strong>
+</pre><p>
+ See also <a class="link" href="ch11s10.html#gel-function-Combinations">Combinations</a>.
+ </p></dd><dt><span class="term"><a name="gel-function-Pascal"></a>Pascal</span></dt><dd><pre
class="synopsis">Pascal (i)</pre><p>Get the Pascal's triangle as a matrix. This will return
+ an <code class="varname">i</code>+1 by <code class="varname">i</code>+1 lower diagonal
+ matrix that is the Pascal's triangle after <code class="varname">i</code>
+ iterations.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PascalsTriangle" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Permutations"></a>Permutations</span></dt><dd><pre class="synopsis">Permutations
(k,n)</pre><p>Get all permutations of <code class="varname">k</code> numbers from 1 to <code
class="varname">n</code> as a vector of vectors.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/Permutation.html" target="_top">Mathworld</a>
or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Permutation" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RisingFactorial"></a>RisingFactorial</span></dt><dd><pre class="synopsis">RisingFactorial
(n,k)</pre><p>Aliases: <code class="function">Pochhammer</code></p><p>(Pochhammer) Rising factorial: (n)_k =
n(n+1)...(n+(k-1)).</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RisingFactorial" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-StirlingNumberFirst"></a>StirlingNumberFirst</span></dt><dd><pre
class="synopsis">StirlingNumberFirst (n,m)</pre><p>Aliases: <code
class="function">StirlingS1</code></p><p>Stirling number of the first kind.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/StirlingNumbersOfTheFirstKind"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-StirlingNumberSecond"></a>StirlingNumberSecond</span></dt><dd><pre
class="synopsis">StirlingNumberSecond (n,m)</pre><p>Aliases: <code
class="function">StirlingS2</code></p><p>Stirling number of the second kind.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/StirlingNumbersSecondKind"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Subfactorial"></a>Subfactorial</span></dt><dd><pre class="synopsis">Subfactorial
(n)</pre><p>Subfactorial: n! times sum_{k=0}^n (-1)^k/k!.</p></dd><dt><span class="term"><a
name="gel-function-Triangular"></a>Triangular</span></dt><dd><pre class="synopsis">Triangular
(nth)</pre><p>Calculate the <code class="varname">n</code>th triangular number.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/TriangularNumbers" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-nCr"></a>nCr</span></dt><dd><pre
class="synopsis">nCr (n,r)</pre><p>Aliases: <code class="function">Binomial</code></p><p>Calculate
combinations, that is, the binomial coefficient.
+ <code class="varname">n</code> can be any real number.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Choose" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-nPr"></a>nPr</span></dt><dd><pre
class="synopsis">nPr (n,r)</pre><p>Calculate the number of permutations of size
+ <code class="varname">r</code> of numbers from 1 to <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/Permutation.html" target="_top">Mathworld</a>
or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Permutation" target="_top">Wikipedia</a> for
more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s09.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s11.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Lineare
Algebra </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td
width="40%" align="right" valign="top"> Analysis</td></tr></table></div></body></html>
diff --git a/help/de/html/ch11s11.html b/help/de/html/ch11s11.html
new file mode 100644
index 0000000..6fad0ca
--- /dev/null
+++ b/help/de/html/ch11s11.html
@@ -0,0 +1,120 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Analysis</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Genius-Handbuch"><link rel="up" href="ch11.html" title="Kapitel 11. Liste der GEL-Funktionen"><link
rel="prev" href="ch11s10.html" title="Kombinatorik"><link rel="next" href="ch11s12.html"
title="Funktionen"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Analysis</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s10.html">Zurück</a> </td><th width="60%" align="center">Kapitel 11. Liste der
GEL-Funktionen</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s12.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-calculus"></a>Analysis</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-CompositeSimpsonsRule"></a>CompositeSimpsonsRule</span></dt><dd><pre
class="synopsis">CompositeSimpsonsRule (f,a,b,n)</pre><p>Integration of f by Composite Simpson's Rule on the
interval [a,b] with n subintervals with error of max(f'''')*h^4*(b-a)/180, note that n should be even.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SimpsonsRule" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CompositeSimpsonsRuleTolerance"></a>CompositeSimpsonsRuleTolerance</span></dt><dd><pre
class="synopsis">CompositeSimpsonsRuleTolerance (f,a,b,FourthDerivativeBound,Tolerance)</pre><p>Integration
of f by Composite Simpson's Rule on the interval [a,b] with the number of steps calculated by the fourth
derivative bound and the desired tolerance.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SimpsonsRule" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Derivative"></a>Derivative</span></dt><dd><pre class="synopsis">Derivative
(f,x0)</pre><p>Attempt to calculate derivative by trying first symbolically and then numerically.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EvenPeriodicExtension"></a>EvenPeriodicExtension</span></dt><dd><pre
class="synopsis">EvenPeriodicExtension (f,L)</pre><p>Return a function that is the even periodic extension of
+<code class="function">f</code> with half period <code class="varname">L</code>. That
+is a function defined on the interval <strong class="userinput"><code>[0,L]</code></strong>
+extended to be even on <strong class="userinput"><code>[-L,L]</code></strong> and then
+extended to be periodic with period <strong class="userinput"><code>2*L</code></strong>.</p><p>
+ See also
+ <a class="link" href="ch11s11.html#gel-function-OddPeriodicExtension">OddPeriodicExtension</a>
+ and
+ <a class="link" href="ch11s11.html#gel-function-PeriodicExtension">PeriodicExtension</a>.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-FourierSeriesFunction"></a>FourierSeriesFunction</span></dt><dd><pre
class="synopsis">FourierSeriesFunction (a,b,L)</pre><p>Return a function that is a Fourier series with the
+coefficients given by the vectors <code class="varname">a</code> (sines) and
+<code class="varname">b</code> (cosines). Note that <strong class="userinput"><code>a@(1)</code></strong> is
+the constant coefficient! That is, <strong class="userinput"><code>a@(n)</code></strong> refers to
+the term <strong class="userinput"><code>cos(x*(n-1)*pi/L)</code></strong>, while
+<strong class="userinput"><code>b@(n)</code></strong> refers to the term
+<strong class="userinput"><code>sin(x*n*pi/L)</code></strong>. Either <code class="varname">a</code>
+or <code class="varname">b</code> can be <code class="constant">null</code>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierSeries.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-InfiniteProduct"></a>InfiniteProduct</span></dt><dd><pre class="synopsis">InfiniteProduct
(func,start,inc)</pre><p>Try to calculate an infinite product for a single parameter
function.</p></dd><dt><span class="term"><a
name="gel-function-InfiniteProduct2"></a>InfiniteProduct2</span></dt><dd><pre
class="synopsis">InfiniteProduct2 (func,arg,start,inc)</pre><p>Try to calculate an infinite product for a
double parameter function with func(arg,n).</p></dd><dt><span class="term"><a
name="gel-function-InfiniteSum"></a>InfiniteSum</span></dt><dd><pre class="synopsis">InfiniteSum
(func,start,inc)</pre><p>Try to calculate an infinite sum for a single parameter function.</p></dd><dt><span
class="term"><a name="gel-function-InfiniteSum2"></a>InfiniteSum2</span></dt><dd><pre
class="synopsis">InfiniteSum2 (func,arg,start,inc)</pre><p>Try to calculate an infinite sum for a double
parameter function with func(arg,n).</p></dd><d
t><span class="term"><a name="gel-function-IsContinuous"></a>IsContinuous</span></dt><dd><pre
class="synopsis">IsContinuous (f,x0)</pre><p>Try and see if a real-valued function is continuous at x0 by
calculating the limit there.</p></dd><dt><span class="term"><a
name="gel-function-IsDifferentiable"></a>IsDifferentiable</span></dt><dd><pre
class="synopsis">IsDifferentiable (f,x0)</pre><p>Test for differentiability by approximating the left and
right limits and comparing.</p></dd><dt><span class="term"><a
name="gel-function-LeftLimit"></a>LeftLimit</span></dt><dd><pre class="synopsis">LeftLimit
(f,x0)</pre><p>Calculate the left limit of a real-valued function at x0.</p></dd><dt><span class="term"><a
name="gel-function-Limit"></a>Limit</span></dt><dd><pre class="synopsis">Limit (f,x0)</pre><p>Calculate the
limit of a real-valued function at x0. Tries to calculate both left and right limits.</p></dd><dt><span
class="term"><a name="gel-function-MidpointRule"></a>MidpointRule</sp
an></dt><dd><pre class="synopsis">MidpointRule (f,a,b,n)</pre><p>Integration by midpoint
rule.</p></dd><dt><span class="term"><a
name="gel-function-NumericalDerivative"></a>NumericalDerivative</span></dt><dd><pre
class="synopsis">NumericalDerivative (f,x0)</pre><p>Aliases: <code
class="function">NDerivative</code></p><p>Attempt to calculate numerical derivative.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSeriesCoefficients"></a>NumericalFourierSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierSeriesCoefficients (f,L,N)</pre><p>Return a vector of vectors <strong
class="userinput"><code>[a,b]</code></strong>
+where <code class="varname">a</code> are the cosine coefficients and
+<code class="varname">b</code> are the sine coefficients of
+the Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code> (that is defined
+on <strong class="userinput"><code>[-L,L]</code></strong> and extended periodically) with coefficients
+up to <code class="varname">N</code>th harmonic computed numerically. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSeriesFunction"></a>NumericalFourierSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierSeriesFunction (f,L,N)</pre><p>Return a function that is the Fourier series
of
+<code class="function">f</code> with half-period <code class="varname">L</code> (that is defined
+on <strong class="userinput"><code>[-L,L]</code></strong> and extended periodically) with coefficients
+up to <code class="varname">N</code>th harmonic computed numerically. This is the
+trigonometric real series composed of sines and cosines. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierCosineSeriesCoefficients"></a>NumericalFourierCosineSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierCosineSeriesCoefficients (f,L,N)</pre><p>Return a vector of coefficients of
+the cosine Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code>. That is,
+we take <code class="function">f</code> defined on <strong class="userinput"><code>[0,L]</code></strong>
+take the even periodic extension and compute the Fourier series, which
+only has cosine terms. The series is computed up to the
+<code class="varname">N</code>th harmonic. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.
+Note that <strong class="userinput"><code>a@(1)</code></strong> is
+the constant coefficient! That is, <strong class="userinput"><code>a@(n)</code></strong> refers to
+the term <strong class="userinput"><code>cos(x*(n-1)*pi/L)</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierCosineSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierCosineSeriesFunction"></a>NumericalFourierCosineSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierCosineSeriesFunction (f,L,N)</pre><p>Return a function that is the cosine
Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code>. That is,
+we take <code class="function">f</code> defined on <strong class="userinput"><code>[0,L]</code></strong>
+take the even periodic extension and compute the Fourier series, which
+only has cosine terms. The series is computed up to the
+<code class="varname">N</code>th harmonic. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierCosineSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSineSeriesCoefficients"></a>NumericalFourierSineSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierSineSeriesCoefficients (f,L,N)</pre><p>Return a vector of coefficients of
+the sine Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code>. That is,
+we take <code class="function">f</code> defined on <strong class="userinput"><code>[0,L]</code></strong>
+take the odd periodic extension and compute the Fourier series, which
+only has sine terms. The series is computed up to the
+<code class="varname">N</code>th harmonic. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierSineSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSineSeriesFunction"></a>NumericalFourierSineSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierSineSeriesFunction (f,L,N)</pre><p>Return a function that is the sine
Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code>. That is,
+we take <code class="function">f</code> defined on <strong class="userinput"><code>[0,L]</code></strong>
+take the odd periodic extension and compute the Fourier series, which
+only has sine terms. The series is computed up to the
+<code class="varname">N</code>th harmonic. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierSineSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegral"></a>NumericalIntegral</span></dt><dd><pre
class="synopsis">NumericalIntegral (f,a,b)</pre><p>Integration by rule set in NumericalIntegralFunction of f
from a to b using NumericalIntegralSteps steps.</p></dd><dt><span class="term"><a
name="gel-function-NumericalLeftDerivative"></a>NumericalLeftDerivative</span></dt><dd><pre
class="synopsis">NumericalLeftDerivative (f,x0)</pre><p>Attempt to calculate numerical left
derivative.</p></dd><dt><span class="term"><a
name="gel-function-NumericalLimitAtInfinity"></a>NumericalLimitAtInfinity</span></dt><dd><pre
class="synopsis">NumericalLimitAtInfinity (_f,step_fun,tolerance,successive_for_success,N)</pre><p>Attempt to
calculate the limit of f(step_fun(i)) as i goes from 1 to N.</p></dd><dt><span class="term"><a
name="gel-function-NumericalRightDerivative"></a>NumericalRightDerivative</span></dt><dd><pre
class="synopsis">Nume
ricalRightDerivative (f,x0)</pre><p>Attempt to calculate numerical right derivative.</p></dd><dt><span
class="term"><a name="gel-function-OddPeriodicExtension"></a>OddPeriodicExtension</span></dt><dd><pre
class="synopsis">OddPeriodicExtension (f,L)</pre><p>Return a function that is the odd periodic extension of
+<code class="function">f</code> with half period <code class="varname">L</code>. That
+is a function defined on the interval <strong class="userinput"><code>[0,L]</code></strong>
+extended to be odd on <strong class="userinput"><code>[-L,L]</code></strong> and then
+extended to be periodic with period <strong class="userinput"><code>2*L</code></strong>.</p><p>
+ See also
+ <a class="link" href="ch11s11.html#gel-function-EvenPeriodicExtension">EvenPeriodicExtension</a>
+ and
+ <a class="link" href="ch11s11.html#gel-function-PeriodicExtension">PeriodicExtension</a>.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-OneSidedFivePointFormula"></a>OneSidedFivePointFormula</span></dt><dd><pre
class="synopsis">OneSidedFivePointFormula (f,x0,h)</pre><p>Compute one-sided derivative using five point
formula.</p></dd><dt><span class="term"><a
name="gel-function-OneSidedThreePointFormula"></a>OneSidedThreePointFormula</span></dt><dd><pre
class="synopsis">OneSidedThreePointFormula (f,x0,h)</pre><p>Compute one-sided derivative using three-point
formula.</p></dd><dt><span class="term"><a
name="gel-function-PeriodicExtension"></a>PeriodicExtension</span></dt><dd><pre
class="synopsis">PeriodicExtension (f,a,b)</pre><p>Return a function that is the periodic extension of
+<code class="function">f</code> defined on the interval <strong class="userinput"><code>[a,b]</code></strong>
+and has period <strong class="userinput"><code>b-a</code></strong>.</p><p>
+ See also
+ <a class="link" href="ch11s11.html#gel-function-OddPeriodicExtension">OddPeriodicExtension</a>
+ and
+ <a class="link" href="ch11s11.html#gel-function-EvenPeriodicExtension">EvenPeriodicExtension</a>.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-RightLimit"></a>RightLimit</span></dt><dd><pre class="synopsis">RightLimit
(f,x0)</pre><p>Calculate the right limit of a real-valued function at x0.</p></dd><dt><span class="term"><a
name="gel-function-TwoSidedFivePointFormula"></a>TwoSidedFivePointFormula</span></dt><dd><pre
class="synopsis">TwoSidedFivePointFormula (f,x0,h)</pre><p>Compute two-sided derivative using five-point
formula.</p></dd><dt><span class="term"><a
name="gel-function-TwoSidedThreePointFormula"></a>TwoSidedThreePointFormula</span></dt><dd><pre
class="synopsis">TwoSidedThreePointFormula (f,x0,h)</pre><p>Compute two-sided derivative using three-point
formula.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s10.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Nach oben</a>
</td><td width="40%" align="right"> <a accesskey="n" href="ch11s12.html">Weiter</a></td></tr><tr><td
width="40%" align="left" valign="top">Kombinatorik </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Zum Anfang</a></td><td width="40%" align="right" valign="top">
Funktionen</td></tr></table></div></body></html>
diff --git a/help/de/html/ch11s12.html b/help/de/html/ch11s12.html
new file mode 100644
index 0000000..f4f05f4
--- /dev/null
+++ b/help/de/html/ch11s12.html
@@ -0,0 +1,82 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Funktionen</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="ch11.html"
title="Kapitel 11. Liste der GEL-Funktionen"><link rel="prev" href="ch11s11.html" title="Analysis"><link
rel="next" href="ch11s13.html" title="Gleichungen lösen"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Funktionen</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s11.html">Zurück</a> </td><th width="60%" align="center">Kapitel 11. Liste der
GEL-Funktionen</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s13.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-function-list-functions"></a>Funktionen</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Argument"></a>Argument</span></dt><dd><pre class="synopsis">Argument (z)</pre><p>Aliases:
<code class="function">Arg</code> <code class="function">arg</code></p><p>argument (angle) of complex
number.</p></dd><dt><span class="term"><a name="gel-function-BesselJ0"></a>BesselJ0</span></dt><dd><pre
class="synopsis">BesselJ0 (x)</pre><p>Bessel function of the first kind of order 0. Only implemented for
real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselJ1"></a>BesselJ1</span></dt><dd><pre class="synopsis">BesselJ1 (x)</pre><p>Bessel
function of the first kind of order 1. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselJn"></a>BesselJn</span></dt><dd><pre class="synopsis">BesselJn (n,x)</pre><p>Bessel
function of the first kind of order <code class="varname">n</code>. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselY0"></a>BesselY0</span></dt><dd><pre class="synopsis">BesselY0 (x)</pre><p>Bessel
function of the second kind of order 0. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselY1"></a>BesselY1</span></dt><dd><pre class="synopsis">BesselY1 (x)</pre><p>Bessel
function of the second kind of order 1. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselYn"></a>BesselYn</span></dt><dd><pre class="synopsis">BesselYn (n,x)</pre><p>Bessel
function of the second kind of order <code class="varname">n</code>. Only implemented for real
numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-DirichletKernel"></a>DirichletKernel</span></dt><dd><pre class="synopsis">DirichletKernel
(n,t)</pre><p>Dirichlet kernel of order <code class="varname">n</code>.</p></dd><dt><span class="term"><a
name="gel-function-DiscreteDelta"></a>DiscreteDelta</span></dt><dd><pre class="synopsis">DiscreteDelta
(v)</pre><p>Returns 1 if and only if all elements are zero.</p></dd><dt><span class="term"><a
name="gel-function-ErrorFunction"></a>ErrorFunction</span></dt><dd><pre class="synopsis">ErrorFunction
(x)</pre><p>Aliases: <code class="function">erf</code></p><p>The error function, 2/sqrt(pi) * int_0^x
e^(-t^2) dt.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Error_function" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/ErrorFunction" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FejerKernel"></a>FejerKernel</span></dt><dd><pre class="synopsis">FejerKernel
(n,t)</pre><p>Fejer kernel of order <code class="varname">n</code> evaluated at
+ <code class="varname">t</code></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/FejerKernel" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GammaFunction"></a>GammaFunction</span></dt><dd><pre class="synopsis">GammaFunction
(x)</pre><p>Aliases: <code class="function">Gamma</code></p><p>The Gamma function. Currently only
implemented for real values.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/GammaFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Gamma_function" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-KroneckerDelta"></a>KroneckerDelta</span></dt><dd><pre class="synopsis">KroneckerDelta
(v)</pre><p>Returns 1 if and only if all elements are equal.</p></dd><dt><span class="term"><a
name="gel-function-LambertW"></a>LambertW</span></dt><dd><pre class="synopsis">LambertW (x)</pre><p>
+ The principal branch of Lambert W function computed for only
+ real values greater than or equal to <strong class="userinput"><code>-1/e</code></strong>.
+ That is, <code class="function">LambertW</code> is the inverse of
+ the expression <strong class="userinput"><code>x*e^x</code></strong>. Even for
+ real <code class="varname">x</code> this expression is not one to one and
+ therefore has two branches over <strong class="userinput"><code>[-1/e,0)</code></strong>.
+ See <a class="link" href="ch11s12.html#gel-function-LambertWm1"><code
class="function">LambertWm1</code></a> for the other real branch.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lambert_W_function"
target="_top">Wikipedia</a> for more information.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LambertWm1"></a>LambertWm1</span></dt><dd><pre class="synopsis">LambertWm1 (x)</pre><p>
+ The minus-one branch of Lambert W function computed for only
+ real values greater than or equal to <strong class="userinput"><code>-1/e</code></strong>
+ and less than 0.
+ That is, <code class="function">LambertWm1</code> is the second
+ branch of the inverse of <strong class="userinput"><code>x*e^x</code></strong>.
+ See <a class="link" href="ch11s12.html#gel-function-LambertW"><code
class="function">LambertW</code></a> for the principal branch.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lambert_W_function"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MinimizeFunction"></a>MinimizeFunction</span></dt><dd><pre
class="synopsis">MinimizeFunction (func,x,incr)</pre><p>Find the first value where f(x)=0.</p></dd><dt><span
class="term"><a name="gel-function-MoebiusDiskMapping"></a>MoebiusDiskMapping</span></dt><dd><pre
class="synopsis">MoebiusDiskMapping (a,z)</pre><p>Moebius mapping of the disk to itself mapping a to 0.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMapping"></a>MoebiusMapping</span></dt><dd><pre class="synopsis">MoebiusMapping
(z,z2,z3,z4)</pre><p>Moebius mapping using the cross ratio taking z2,z3,z4 to 1,0, and infinity
respectively.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToInfty"></a>MoebiusMappingInftyToInfty</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToInfty (z,z2,z3)</pre><p>Moebius mapping using the cross ratio taking
infinity to infinity and z2,z3 to 1 and 0 respectively.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToOne"></a>MoebiusMappingInftyToOne</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToOne (z,z3,z4)</pre><p>Moebius mapping using the cross ratio taking
infinity to 1 and z3,z4 to 0 and infinity respectively.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToZero"></a>MoebiusMappingInftyToZero</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToZero (z,z2,z4)</pre><p>Moebius mapping using the cross ratio taking
infinity to 0 and z2,z4 to 1 and infinity respectively.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PoissonKernel"></a>PoissonKernel</span></dt><dd><pre class="synopsis">PoissonKernel
(r,sigma)</pre><p>Poisson kernel on D(0,1) (not normalized to 1, that is integral of this is
2pi).</p></dd><dt><span class="term"><a
name="gel-function-PoissonKernelRadius"></a>PoissonKernelRadius</span></dt><dd><pre
class="synopsis">PoissonKernelRadius (r,sigma)</pre><p>Poisson kernel on D(0,R) (not normalized to
1).</p></dd><dt><span class="term"><a name="gel-function-RiemannZeta"></a>RiemannZeta</span></dt><dd><pre
class="synopsis">RiemannZeta (x)</pre><p>Aliases: <code class="function">zeta</code></p><p>The Riemann zeta
function. Currently only implemented for real values.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RiemannZetaFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Riemann_zeta_function"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-UnitStep"></a>UnitStep</span></dt><dd><pre
class="synopsis">UnitStep (x)</pre><p>The unit step function is 0 for x<0, 1 otherwise. This is the
integral of the Dirac Delta function. Also called the Heaviside function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Unit_step" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-cis"></a>cis</span></dt><dd><pre
class="synopsis">cis (x)</pre><p>
+ The <code class="function">cis</code> function, that is the same as
+ <strong class="userinput"><code>cos(x)+1i*sin(x)</code></strong>
+ </p></dd><dt><span class="term"><a name="gel-function-deg2rad"></a>deg2rad</span></dt><dd><pre
class="synopsis">deg2rad (x)</pre><p>Wandelt Grad in Radiant um.</p></dd><dt><span class="term"><a
name="gel-function-rad2deg"></a>rad2deg</span></dt><dd><pre class="synopsis">rad2deg (x)</pre><p>Wandelt Grad
in Radiant um.</p></dd><dt><span class="term"><a name="gel-function-sinc"></a>sinc</span></dt><dd><pre
class="synopsis">sinc (x)</pre><p>Calculates the unnormalized sinc function, that is
+ <strong class="userinput"><code>sin(x)/x</code></strong>.
+ If you want the normalized function call <strong
class="userinput"><code>sinc(pi*x)</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Sinc" target="_top">Wikipedia</a> for more
information.
+ </p><p>Version 1.0.16 onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s11.html">Zurück</a> </td><td width="20%" align="center"><a accesskey="u" href="ch11.html">Nach
oben</a></td><td width="40%" align="right"> <a accesskey="n" href="ch11s13.html">Weiter</a></td></tr><tr><td
width="40%" align="left" valign="top">Analysis </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Zum Anfang</a></td><td width="40%" align="right" valign="top"> Gleichungen
lösen</td></tr></table></div></body></html>
diff --git a/help/de/html/ch11s13.html b/help/de/html/ch11s13.html
new file mode 100644
index 0000000..aef0113
--- /dev/null
+++ b/help/de/html/ch11s13.html
@@ -0,0 +1,213 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Gleichungen
lösen</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="ch11.html" title="Kapitel 11. Liste der
GEL-Funktionen"><link rel="prev" href="ch11s12.html" title="Funktionen"><link rel="next" href="ch11s14.html"
title="Statistik"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Gleichungen lösen</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s12.html">Zurück</a> </td><th width="60%" align="center">Kapitel 11. Liste der
GEL-Funktionen</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s14.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style
="clear: both"><a name="genius-gel-function-list-equation-solving"></a>Gleichungen
lösen</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-CubicFormula"></a>CubicFormula</span></dt><dd><pre class="synopsis">CubicFormula
(p)</pre><p>
+ Compute roots of a cubic (degree 3) polynomial using the
+ cubic formula. The polynomial should be given as a
+ vector of coefficients. That is
+ <strong class="userinput"><code>4*x^3 + 2*x + 1</code></strong> corresponds to the vector
+ <strong class="userinput"><code>[1,2,0,4]</code></strong>.
+ Returns a column vector of the three solutions. The first solution is always
+ the real one as a cubic always has one real solution.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/CubicFormula" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/CubicFormula.html"
target="_top">Mathworld</a>, or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Cubic_equation" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EulersMethod"></a>EulersMethod</span></dt><dd><pre class="synopsis">EulersMethod
(f,x0,y0,x1,n)</pre><p>
+ Use classical Euler's method to numerically solve y'=f(x,y) for
+ initial <code class="varname">x0</code>, <code class="varname">y0</code> going to
+ <code class="varname">x1</code> with <code class="varname">n</code> increments,
+ returns <code class="varname">y</code> at <code class="varname">x1</code>.
+ Unless you explicitly want to use Euler's method, you should really
+ think about using
+ <a class="link" href="ch11s13.html#gel-function-RungeKutta">RungeKutta</a>
+ for solving ODE.
+ </p><p>
+ Systems can be solved by just having <code class="varname">y</code> be a
+ (column) vector everywhere. That is, <code class="varname">y0</code> can
+ be a vector in which case <code class="varname">f</code> should take a number
+ <code class="varname">x</code> and a vector of the same size for the second
+ argument and should return a vector of the same size.
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/EulerForwardMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eulers_method" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EulersMethodFull"></a>EulersMethodFull</span></dt><dd><pre
class="synopsis">EulersMethodFull (f,x0,y0,x1,n)</pre><p>
+ Use classical Euler's method to numerically solve y'=f(x,y) for
+ initial <code class="varname">x0</code>, <code class="varname">y0</code> going to
+ <code class="varname">x1</code> with <code class="varname">n</code> increments,
+ returns a 2 by <strong class="userinput"><code>n+1</code></strong> matrix with the
+ <code class="varname">x</code> and <code class="varname">y</code> values.
+ Unless you explicitly want to use Euler's method, you should really
+ think about using
+ <a class="link" href="ch11s13.html#gel-function-RungeKuttaFull">RungeKuttaFull</a>
+ for solving ODE.
+ Suitable
+ for plugging into
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawPoints">LinePlotDrawPoints</a>.
+ </p><p>
+ Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>line =
EulersMethodFull(`(x,y)=y,0,1.0,3.0,50);</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(line,"window","fit","color","blue","legend","Exponential
growth");</code></strong>
+</pre><p>
+ </p><p>
+ Systems can be solved by just having <code class="varname">y</code> be a
+ (column) vector everywhere. That is, <code class="varname">y0</code> can
+ be a vector in which case <code class="varname">f</code> should take a number
+ <code class="varname">x</code> and a vector of the same size for the second
+ argument and should return a vector of the same size.
+ </p><p>
+ The output for a system is still a n by 2 matrix with the second
+ entry being a vector. If you wish to plot the line, make sure to use row vectors, and then
flatten the matrix with
+ <a class="link" href="ch11s08.html#gel-function-ExpandMatrix">ExpandMatrix</a>,
+ and pick out the right columns. Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
EulersMethodFull(`(x,y)=[y@(2),-y@(1)],0,[1.0,1.0],10.0,500);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
ExpandMatrix(lines);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>firstline =
lines@(,[1,2]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>secondline =
lines@(,[1,3]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>LinePlotWindow =
[0,10,-2,2];</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(firstline,"color","blue","legend","First");</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(secondline,"color","red","thickness",3,"legend","Second");</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/EulerForwardMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eulers_method" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-FindRootBisection"></a>FindRootBisection</span></dt><dd><pre
class="synopsis">FindRootBisection (f,a,b,TOL,N)</pre><p>Find root of a function using the bisection method.
+ <code class="varname">a</code> and <code class="varname">b</code> are the initial guess
interval,
+ <strong class="userinput"><code>f(a)</code></strong> and <strong
class="userinput"><code>f(b)</code></strong> should have opposite signs.
+ <code class="varname">TOL</code> is the desired tolerance and
+<code class="varname">N</code> is the limit on the number of iterations to run, 0 means no limit. The
function returns a vector <strong class="userinput"><code>[success,value,iteration]</code></strong>, where
<code class="varname">success</code> is a boolean indicating success, <code class="varname">value</code> is
the last value computed, and <code class="varname">iteration</code> is the number of iterations
done.</p></dd><dt><span class="term"><a
name="gel-function-FindRootFalsePosition"></a>FindRootFalsePosition</span></dt><dd><pre
class="synopsis">FindRootFalsePosition (f,a,b,TOL,N)</pre><p>Find root of a function using the method of
false position.
+ <code class="varname">a</code> and <code class="varname">b</code> are the initial guess
interval,
+ <strong class="userinput"><code>f(a)</code></strong> and <strong
class="userinput"><code>f(b)</code></strong> should have opposite signs.
+ <code class="varname">TOL</code> is the desired tolerance and
+<code class="varname">N</code> is the limit on the number of iterations to run, 0 means no limit. The
function returns a vector <strong class="userinput"><code>[success,value,iteration]</code></strong>, where
<code class="varname">success</code> is a boolean indicating success, <code class="varname">value</code> is
the last value computed, and <code class="varname">iteration</code> is the number of iterations
done.</p></dd><dt><span class="term"><a
name="gel-function-FindRootMullersMethod"></a>FindRootMullersMethod</span></dt><dd><pre
class="synopsis">FindRootMullersMethod (f,x0,x1,x2,TOL,N)</pre><p>Find root of a function using the Muller's
method.
+ <code class="varname">TOL</code> is the desired tolerance and
+<code class="varname">N</code> is the limit on the number of iterations to run, 0 means no limit. The
function returns a vector <strong class="userinput"><code>[success,value,iteration]</code></strong>, where
<code class="varname">success</code> is a boolean indicating success, <code class="varname">value</code> is
the last value computed, and <code class="varname">iteration</code> is the number of iterations
done.</p></dd><dt><span class="term"><a
name="gel-function-FindRootSecant"></a>FindRootSecant</span></dt><dd><pre class="synopsis">FindRootSecant
(f,a,b,TOL,N)</pre><p>Find root of a function using the secant method.
+ <code class="varname">a</code> and <code class="varname">b</code> are the initial guess
interval,
+ <strong class="userinput"><code>f(a)</code></strong> and <strong
class="userinput"><code>f(b)</code></strong> should have opposite signs.
+ <code class="varname">TOL</code> is the desired tolerance and
+<code class="varname">N</code> is the limit on the number of iterations to run, 0 means no limit. The
function returns a vector <strong class="userinput"><code>[success,value,iteration]</code></strong>, where
<code class="varname">success</code> is a boolean indicating success, <code class="varname">value</code> is
the last value computed, and <code class="varname">iteration</code> is the number of iterations
done.</p></dd><dt><span class="term"><a
name="gel-function-HalleysMethod"></a>HalleysMethod</span></dt><dd><pre class="synopsis">HalleysMethod
(f,df,ddf,guess,epsilon,maxn)</pre><p>Find zeros using Halley's method. <code class="varname">f</code> is
+ the function, <code class="varname">df</code> is the derivative of
+ <code class="varname">f</code>, and <code class="varname">ddf</code> is the second
derivative of
+ <code class="varname">f</code>. <code class="varname">guess</code> is the initial
+ guess. The function returns after two successive values are
+ within <code class="varname">epsilon</code> of each other, or after <code
class="varname">maxn</code> tries, in which case the function returns <code class="constant">null</code>
indicating failure.
+ </p><p>
+ See also <a class="link" href="ch11s13.html#gel-function-NewtonsMethod"><code
class="function">NewtonsMethod</code></a> and <a class="link"
href="ch11s19.html#gel-function-SymbolicDerivative"><code class="function">SymbolicDerivative</code></a>.
+ </p><p>
+ Example to find the square root of 10:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>HalleysMethod(`(x)=x^2-10,`(x)=2*x,`(x)=2,3,10^-10,100)</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Halley%27s_method"
target="_top">Wikipedia</a> for more information.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NewtonsMethod"></a>NewtonsMethod</span></dt><dd><pre class="synopsis">NewtonsMethod
(f,df,guess,epsilon,maxn)</pre><p>Find zeros using Newton's method. <code class="varname">f</code> is
+ the function and <code class="varname">df</code> is the derivative of
+ <code class="varname">f</code>. <code class="varname">guess</code> is the initial
+ guess. The function returns after two successive values are
+ within <code class="varname">epsilon</code> of each other, or after <code
class="varname">maxn</code> tries, in which case the function returns <code class="constant">null</code>
indicating failure.
+ </p><p>
+ See also <a class="link" href="ch11s15.html#gel-function-NewtonsMethodPoly"><code
class="function">NewtonsMethodPoly</code></a> and <a class="link"
href="ch11s19.html#gel-function-SymbolicDerivative"><code class="function">SymbolicDerivative</code></a>.
+ </p><p>
+ Example to find the square root of 10:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>NewtonsMethod(`(x)=x^2-10,`(x)=2*x,3,10^-10,100)</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Newtons_method" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-PolynomialRoots"></a>PolynomialRoots</span></dt><dd><pre class="synopsis">PolynomialRoots
(p)</pre><p>
+ Compute roots of a polynomial (degrees 1 through 4)
+ using one of the formulas for such polynomials.
+ The polynomial should be given as a
+ vector of coefficients. That is
+ <strong class="userinput"><code>4*x^3 + 2*x + 1</code></strong> corresponds to the vector
+ <strong class="userinput"><code>[1,2,0,4]</code></strong>.
+ Returns a column vector of the solutions.
+ </p><p>
+ The function calls
+ <a class="link" href="ch11s13.html#gel-function-QuadraticFormula">QuadraticFormula</a>,
+ <a class="link" href="ch11s13.html#gel-function-CubicFormula">CubicFormula</a>, and
+ <a class="link" href="ch11s13.html#gel-function-QuarticFormula">QuarticFormula</a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-QuadraticFormula"></a>QuadraticFormula</span></dt><dd><pre
class="synopsis">QuadraticFormula (p)</pre><p>
+ Compute roots of a quadratic (degree 2) polynomial using the
+ quadratic formula. The polynomial should be given as a
+ vector of coefficients. That is
+ <strong class="userinput"><code>3*x^2 + 2*x + 1</code></strong> corresponds to the vector
+ <strong class="userinput"><code>[1,2,3]</code></strong>.
+ Returns a column vector of the two solutions.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/QuadraticFormula" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/QuadraticFormula.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-QuarticFormula"></a>QuarticFormula</span></dt><dd><pre class="synopsis">QuarticFormula
(p)</pre><p>
+ Compute roots of a quartic (degree 4) polynomial using the
+ quartic formula. The polynomial should be given as a
+ vector of coefficients. That is
+ <strong class="userinput"><code>5*x^4 + 2*x + 1</code></strong> corresponds to the vector
+ <strong class="userinput"><code>[1,2,0,0,5]</code></strong>.
+ Returns a column vector of the four solutions.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/QuarticFormula" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/QuarticEquation.html"
target="_top">Mathworld</a>, or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Quartic_equation" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RungeKutta"></a>RungeKutta</span></dt><dd><pre class="synopsis">RungeKutta
(f,x0,y0,x1,n)</pre><p>
+ Use classical non-adaptive fourth order Runge-Kutta method to
+ numerically solve
+ y'=f(x,y) for initial <code class="varname">x0</code>, <code class="varname">y0</code>
+ going to <code class="varname">x1</code> with <code class="varname">n</code>
+ increments, returns <code class="varname">y</code> at <code class="varname">x1</code>.
+ </p><p>
+ Systems can be solved by just having <code class="varname">y</code> be a
+ (column) vector everywhere. That is, <code class="varname">y0</code> can
+ be a vector in which case <code class="varname">f</code> should take a number
+ <code class="varname">x</code> and a vector of the same size for the second
+ argument and should return a vector of the same size.
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/Runge-KuttaMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Runge-Kutta_methods"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RungeKuttaFull"></a>RungeKuttaFull</span></dt><dd><pre class="synopsis">RungeKuttaFull
(f,x0,y0,x1,n)</pre><p>
+ Use classical non-adaptive fourth order Runge-Kutta method to
+ numerically solve
+ y'=f(x,y) for initial <code class="varname">x0</code>, <code class="varname">y0</code>
+ going to <code class="varname">x1</code> with <code class="varname">n</code>
+ increments,
+ returns a 2 by <strong class="userinput"><code>n+1</code></strong> matrix with the
+ <code class="varname">x</code> and <code class="varname">y</code> values. Suitable
+ for plugging into
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawPoints">LinePlotDrawPoints</a>.
+ </p><p>
+ Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>line =
RungeKuttaFull(`(x,y)=y,0,1.0,3.0,50);</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(line,"window","fit","color","blue","legend","Exponential
growth");</code></strong>
+</pre><p>
+ </p><p>
+ Systems can be solved by just having <code class="varname">y</code> be a
+ (column) vector everywhere. That is, <code class="varname">y0</code> can
+ be a vector in which case <code class="varname">f</code> should take a number
+ <code class="varname">x</code> and a vector of the same size for the second
+ argument and should return a vector of the same size.
+ </p><p>
+ The output for a system is still a n by 2 matrix with the second
+ entry being a vector. If you wish to plot the line, make sure to use row vectors, and then
flatten the matrix with
+ <a class="link" href="ch11s08.html#gel-function-ExpandMatrix">ExpandMatrix</a>,
+ and pick out the right columns. Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
RungeKuttaFull(`(x,y)=[y@(2),-y@(1)],0,[1.0,1.0],10.0,100);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
ExpandMatrix(lines);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>firstline =
lines@(,[1,2]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>secondline =
lines@(,[1,3]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>LinePlotWindow =
[0,10,-2,2];</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(firstline,"color","blue","legend","First");</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(secondline,"color","red","thickness",3,"legend","Second");</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/Runge-KuttaMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Runge-Kutta_methods"
target="_top">Wikipedia</a> for more information.
+ </p><p>Version 1.0.10 onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s12.html">Zurück</a> </td><td width="20%" align="center"><a accesskey="u" href="ch11.html">Nach
oben</a></td><td width="40%" align="right"> <a accesskey="n" href="ch11s14.html">Weiter</a></td></tr><tr><td
width="40%" align="left" valign="top">Funktionen </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Zum Anfang</a></td><td width="40%" align="right" valign="top">
Statistik</td></tr></table></div></body></html>
diff --git a/help/de/html/ch11s14.html b/help/de/html/ch11s14.html
new file mode 100644
index 0000000..fd3dea1
--- /dev/null
+++ b/help/de/html/ch11s14.html
@@ -0,0 +1,20 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Statistik</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Genius-Handbuch"><link rel="up" href="ch11.html" title="Kapitel 11. Liste der GEL-Funktionen"><link
rel="prev" href="ch11s13.html" title="Gleichungen lösen"><link rel="next" href="ch11s15.html"
title="Polynomials"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Statistik</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s13.html">Zurück</a> </td><th width="60%" align="center">Kapitel 11. Liste der
GEL-Funktionen</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s15.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-function-list-statistics"></a>Statistik</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Average"></a>Average</span></dt><dd><pre class="synopsis">Average (m)</pre><p>Aliases:
<code class="function">average</code> <code class="function">Mean</code> <code
class="function">mean</code></p><p>Calculate average of an entire matrix.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/ArithmeticMean.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GaussDistribution"></a>GaussDistribution</span></dt><dd><pre
class="synopsis">GaussDistribution (x,sigma)</pre><p>Integral of the GaussFunction from 0 to <code
class="varname">x</code> (area under the normal curve).</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/NormalDistribution.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GaussFunction"></a>GaussFunction</span></dt><dd><pre class="synopsis">GaussFunction
(x,sigma)</pre><p>The normalized Gauss distribution function (the normal curve).</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/NormalDistribution.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Median"></a>Median</span></dt><dd><pre
class="synopsis">Median (m)</pre><p>Aliases: <code class="function">median</code></p><p>Calculate median of
an entire matrix.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/StatisticalMedian.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PopulationStandardDeviation"></a>PopulationStandardDeviation</span></dt><dd><pre
class="synopsis">PopulationStandardDeviation (m)</pre><p>Aliases: <code
class="function">stdevp</code></p><p>Calculate the population standard deviation of a whole
matrix.</p></dd><dt><span class="term"><a name="gel-function-RowAverage"></a>RowAverage</span></dt><dd><pre
class="synopsis">RowAverage (m)</pre><p>Aliases: <code class="function">RowMean</code></p><p>Calculate
average of each row in a matrix.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/ArithmeticMean.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-RowMedian"></a>RowMedian</span></dt><dd><pre
class="synopsis">RowMedian (m)</pre><p>Calculate median of each row in a matrix and return a column
+ vector of the medians.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/StatisticalMedian.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RowPopulationStandardDeviation"></a>RowPopulationStandardDeviation</span></dt><dd><pre
class="synopsis">RowPopulationStandardDeviation (m)</pre><p>Aliases: <code
class="function">rowstdevp</code></p><p>Calculate the population standard deviations of rows of a matrix and
return a vertical vector.</p></dd><dt><span class="term"><a
name="gel-function-RowStandardDeviation"></a>RowStandardDeviation</span></dt><dd><pre
class="synopsis">RowStandardDeviation (m)</pre><p>Aliases: <code
class="function">rowstdev</code></p><p>Calculate the standard deviations of rows of a matrix and return a
vertical vector.</p></dd><dt><span class="term"><a
name="gel-function-StandardDeviation"></a>StandardDeviation</span></dt><dd><pre
class="synopsis">StandardDeviation (m)</pre><p>Aliases: <code class="function">stdev</code></p><p>Calculate
the standard deviation of a whole matrix.</p></dd></dl></div></div><div class="navfooter"><hr><table widt
h="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s13.html">Zurück</a> </td><td width="20%" align="center"><a accesskey="u" href="ch11.html">Nach
oben</a></td><td width="40%" align="right"> <a accesskey="n" href="ch11s15.html">Weiter</a></td></tr><tr><td
width="40%" align="left" valign="top">Gleichungen lösen </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Zum Anfang</a></td><td width="40%" align="right" valign="top">
Polynomials</td></tr></table></div></body></html>
diff --git a/help/de/html/ch11s15.html b/help/de/html/ch11s15.html
new file mode 100644
index 0000000..73e917c
--- /dev/null
+++ b/help/de/html/ch11s15.html
@@ -0,0 +1,21 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Polynomials</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="ch11.html"
title="Kapitel 11. Liste der GEL-Funktionen"><link rel="prev" href="ch11s14.html" title="Statistik"><link
rel="next" href="ch11s16.html" title="Mengenlehre"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Polynomials</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s14.html">Zurück</a> </td><th width="60%" align="center">Kapitel 11. Liste der
GEL-Funktionen</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s16.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both
"><a name="genius-gel-function-list-polynomials"></a>Polynomials</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AddPoly"></a>AddPoly</span></dt><dd><pre class="synopsis">AddPoly (p1,p2)</pre><p>Add two
polynomials (vectors).</p></dd><dt><span class="term"><a
name="gel-function-DividePoly"></a>DividePoly</span></dt><dd><pre class="synopsis">DividePoly
(p,q,&r)</pre><p>Divide two polynomials (as vectors) using long division.
+ Returns the quotient
+ of the two polynomials. The optional argument <code class="varname">r</code>
+ is used to return the remainder. The remainder will have lower
+ degree than <code class="varname">q</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PolynomialLongDivision" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-IsPoly"></a>IsPoly</span></dt><dd><pre
class="synopsis">IsPoly (p)</pre><p>Check if a vector is usable as a polynomial.</p></dd><dt><span
class="term"><a name="gel-function-MultiplyPoly"></a>MultiplyPoly</span></dt><dd><pre
class="synopsis">MultiplyPoly (p1,p2)</pre><p>Multiply two polynomials (as vectors).</p></dd><dt><span
class="term"><a name="gel-function-NewtonsMethodPoly"></a>NewtonsMethodPoly</span></dt><dd><pre
class="synopsis">NewtonsMethodPoly (poly,guess,epsilon,maxn)</pre><p>Find a root of a polynomial using
Newton's method. <code class="varname">poly</code> is
+ the polynomial as a vector and <code class="varname">guess</code> is the initial
+ guess. The function returns after two successive values are
+ within <code class="varname">epsilon</code> of each other, or after <code
class="varname">maxn</code> tries, in which case the function returns <code class="constant">null</code>
indicating failure.
+ </p><p>
+ See also <a class="link" href="ch11s13.html#gel-function-NewtonsMethod"><code
class="function">NewtonsMethod</code></a>.
+ </p><p>
+ Example to find the square root of 10:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>NewtonsMethodPoly([-10,0,1],3,10^-10,100)</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Newtons_method" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Poly2ndDerivative"></a>Poly2ndDerivative</span></dt><dd><pre
class="synopsis">Poly2ndDerivative (p)</pre><p>Take second polynomial (as vector)
derivative.</p></dd><dt><span class="term"><a
name="gel-function-PolyDerivative"></a>PolyDerivative</span></dt><dd><pre class="synopsis">PolyDerivative
(p)</pre><p>Take polynomial (as vector) derivative.</p></dd><dt><span class="term"><a
name="gel-function-PolyToFunction"></a>PolyToFunction</span></dt><dd><pre class="synopsis">PolyToFunction
(p)</pre><p>Make function out of a polynomial (as vector).</p></dd><dt><span class="term"><a
name="gel-function-PolyToString"></a>PolyToString</span></dt><dd><pre class="synopsis">PolyToString
(p,var...)</pre><p>Make string out of a polynomial (as vector).</p></dd><dt><span class="term"><a
name="gel-function-SubtractPoly"></a>SubtractPoly</span></dt><dd><pre class="synopsis">SubtractPoly
(p1,p2)</pre><p>Subtract two polynomials (as vectors).
</p></dd><dt><span class="term"><a name="gel-function-TrimPoly"></a>TrimPoly</span></dt><dd><pre
class="synopsis">TrimPoly (p)</pre><p>Trim zeros from a polynomial (as vector).</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s14.html">Zurück</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Nach oben</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s16.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Statistik </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td width="40%"
align="right" valign="top"> Mengenlehre</td></tr></table></div></body></html>
diff --git a/help/de/html/ch11s16.html b/help/de/html/ch11s16.html
new file mode 100644
index 0000000..c2f33b5
--- /dev/null
+++ b/help/de/html/ch11s16.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Mengenlehre</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="ch11.html"
title="Kapitel 11. Liste der GEL-Funktionen"><link rel="prev" href="ch11s15.html" title="Polynomials"><link
rel="next" href="ch11s17.html" title="Commutative Algebra"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Mengenlehre</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s15.html">Zurück</a> </td><th width="60%" align="center">Kapitel 11. Liste der
GEL-Funktionen</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s17.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="c
lear: both"><a name="genius-gel-function-list-set-theory"></a>Mengenlehre</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Intersection"></a>Intersection</span></dt><dd><pre class="synopsis">Intersection
(X,Y)</pre><p>Returns a set theoretic intersection of X and Y (X and Y are vectors pretending to be
sets).</p></dd><dt><span class="term"><a name="gel-function-IsIn"></a>IsIn</span></dt><dd><pre
class="synopsis">IsIn (x,X)</pre><p>Returns <code class="constant">true</code> if the element x is in the set
X (where X is a vector pretending to be a set).</p></dd><dt><span class="term"><a
name="gel-function-IsSubset"></a>IsSubset</span></dt><dd><pre class="synopsis">IsSubset (X,
Y)</pre><p>Returns <code class="constant">true</code> if X is a subset of Y (X and Y are vectors pretending
to be sets).</p></dd><dt><span class="term"><a name="gel-function-MakeSet"></a>MakeSet</span></dt><dd><pre
class="synopsis">MakeS
et (X)</pre><p>Returns a vector where every element of X appears only once.</p></dd><dt><span
class="term"><a name="gel-function-SetMinus"></a>SetMinus</span></dt><dd><pre class="synopsis">SetMinus
(X,Y)</pre><p>Returns a set theoretic difference X-Y (X and Y are vectors pretending to be
sets).</p></dd><dt><span class="term"><a name="gel-function-Union"></a>Union</span></dt><dd><pre
class="synopsis">Union (X,Y)</pre><p>Returns a set theoretic union of X and Y (X and Y are vectors pretending
to be sets).</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s15.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s17.html">Weiter</a></td></tr><tr><td width="40%" align="left"
valign="top">Polynomials </td><td width="20%" align="center"><a accesskey="h" href="in
dex.html">Zum Anfang</a></td><td width="40%" align="right" valign="top"> Commutative
Algebra</td></tr></table></div></body></html>
diff --git a/help/de/html/ch11s17.html b/help/de/html/ch11s17.html
new file mode 100644
index 0000000..1d69630
--- /dev/null
+++ b/help/de/html/ch11s17.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Commutative
Algebra</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="ch11.html" title="Kapitel 11. Liste der
GEL-Funktionen"><link rel="prev" href="ch11s16.html" title="Mengenlehre"><link rel="next" href="ch11s18.html"
title="Verschiedenes"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Commutative Algebra</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s16.html">Zurück</a> </td><th width="60%" align="center">Kapitel 11. Liste der
GEL-Funktionen</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s18.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title
" style="clear: both"><a name="genius-gel-function-list-commutative-algebra"></a>Commutative
Algebra</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-MacaulayBound"></a>MacaulayBound</span></dt><dd><pre class="synopsis">MacaulayBound
(c,d)</pre><p>For a Hilbert function that is c for degree d, given the Macaulay bound for the Hilbert
function of degree d+1 (The c^<d> operator from Green's proof).</p><p>Version 1.0.15
onwards.</p></dd><dt><span class="term"><a
name="gel-function-MacaulayLowerOperator"></a>MacaulayLowerOperator</span></dt><dd><pre
class="synopsis">MacaulayLowerOperator (c,d)</pre><p>The c_<d> operator from Green's proof of
Macaulay's Theorem.</p><p>Version 1.0.15 onwards.</p></dd><dt><span class="term"><a
name="gel-function-MacaulayRep"></a>MacaulayRep</span></dt><dd><pre class="synopsis">MacaulayRep
(c,d)</pre><p>Return the dth Macaulay representation of a positive integer c.</p>
<p>Version 1.0.15 onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s16.html">Zurück</a>
</td><td width="20%" align="center"><a accesskey="u" href="ch11.html">Nach oben</a></td><td width="40%"
align="right"> <a accesskey="n" href="ch11s18.html">Weiter</a></td></tr><tr><td width="40%" align="left"
valign="top">Mengenlehre </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum
Anfang</a></td><td width="40%" align="right" valign="top"> Verschiedenes</td></tr></table></div></body></html>
diff --git a/help/de/html/ch11s18.html b/help/de/html/ch11s18.html
new file mode 100644
index 0000000..6c12478
--- /dev/null
+++ b/help/de/html/ch11s18.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Verschiedenes</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="ch11.html"
title="Kapitel 11. Liste der GEL-Funktionen"><link rel="prev" href="ch11s17.html" title="Commutative
Algebra"><link rel="next" href="ch11s19.html" title="Symbolische Operationen"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Verschiedenes</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch11s17.html">Zurück</a> </td><th width="60%" align="center">Kapitel 11.
Liste der GEL-Funktionen</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s19.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class=
"title" style="clear: both"><a
name="genius-gel-function-list-miscellaneous"></a>Verschiedenes</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ASCIIToString"></a>ASCIIToString</span></dt><dd><pre class="synopsis">ASCIIToString
(vec)</pre><p>Convert a vector of ASCII values to a string.</p></dd><dt><span class="term"><a
name="gel-function-AlphabetToString"></a>AlphabetToString</span></dt><dd><pre
class="synopsis">AlphabetToString (vec,alphabet)</pre><p>Convert a vector of 0-based alphabet values
(positions in the alphabet string) to a string.</p></dd><dt><span class="term"><a
name="gel-function-StringToASCII"></a>StringToASCII</span></dt><dd><pre class="synopsis">StringToASCII
(str)</pre><p>Convert a string to a vector of ASCII values.</p></dd><dt><span class="term"><a
name="gel-function-StringToAlphabet"></a>StringToAlphabet</span></dt><dd><pre
class="synopsis">StringToAlphabet (str,alphabet)</pre><p>Conve
rt a string to a vector of 0-based alphabet values (positions in the alphabet string), -1's for unknown
letters.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s17.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s19.html">Weiter</a></td></tr><tr><td width="40%" align="left"
valign="top">Commutative Algebra </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum
Anfang</a></td><td width="40%" align="right" valign="top"> Symbolische
Operationen</td></tr></table></div></body></html>
diff --git a/help/de/html/ch11s19.html b/help/de/html/ch11s19.html
new file mode 100644
index 0000000..4f34436
--- /dev/null
+++ b/help/de/html/ch11s19.html
@@ -0,0 +1,28 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Symbolische
Operationen</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="ch11.html" title="Kapitel 11. Liste der
GEL-Funktionen"><link rel="prev" href="ch11s18.html" title="Verschiedenes"><link rel="next"
href="ch11s20.html" title="Darstellung"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Symbolische Operationen</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch11s18.html">Zurück</a> </td><th width="60%" align="center">Kapitel 11.
Liste der GEL-Funktionen</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s20.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 clas
s="title" style="clear: both"><a name="genius-gel-function-list-symbolic"></a>Symbolische
Operationen</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span
class="term"><a name="gel-function-SymbolicDerivative"></a>SymbolicDerivative</span></dt><dd><pre
class="synopsis">SymbolicDerivative (f)</pre><p>Attempt to symbolically differentiate the function f, where f
is a function of one variable.</p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SymbolicDerivative(sin)</code></strong>
+= (`(x)=cos(x))
+<code class="prompt">genius></code> <strong
class="userinput"><code>SymbolicDerivative(`(x)=7*x^2)</code></strong>
+= (`(x)=(7*(2*x)))
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicDerivativeTry"></a>SymbolicDerivativeTry</span></dt><dd><pre
class="synopsis">SymbolicDerivativeTry (f)</pre><p>Attempt to symbolically differentiate the function f,
where f is a function of one variable, returns <code class="constant">null</code> if unsuccessful but is
silent.
+ (See <a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicNthDerivative"></a>SymbolicNthDerivative</span></dt><dd><pre
class="synopsis">SymbolicNthDerivative (f,n)</pre><p>Attempt to symbolically differentiate a function n times.
+ (See <a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicNthDerivativeTry"></a>SymbolicNthDerivativeTry</span></dt><dd><pre
class="synopsis">SymbolicNthDerivativeTry (f,n)</pre><p>Attempt to symbolically differentiate a function n
times quietly and return <code class="constant">null</code> on failure
+ (See <a class="link" href="ch11s19.html#gel-function-SymbolicNthDerivative"><code
class="function">SymbolicNthDerivative</code></a>)
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicTaylorApproximationFunction"></a>SymbolicTaylorApproximationFunction</span></dt><dd><pre
class="synopsis">SymbolicTaylorApproximationFunction (f,x0,n)</pre><p>Attempt to construct the Taylor
approximation function around x0 to the nth degree.
+ (See <a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s18.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s20.html">Weiter</a></td></tr><tr><td width="40%" align="left"
valign="top">Verschiedenes </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum
Anfang</a></td><td width="40%" align="right" valign="top"> Darstellung</td></tr></table></div></body></html>
diff --git a/help/de/html/ch11s20.html b/help/de/html/ch11s20.html
new file mode 100644
index 0000000..4bdc146
--- /dev/null
+++ b/help/de/html/ch11s20.html
@@ -0,0 +1,445 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Darstellung</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="ch11.html"
title="Kapitel 11. Liste der GEL-Funktionen"><link rel="prev" href="ch11s19.html" title="Symbolische
Operationen"><link rel="next" href="ch12.html" title="Kapitel 12. Beispielprogramme in GEL"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Darstellung</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch11s19.html">Zurück</a> </td><th width="60%"
align="center">Kapitel 11. Liste der GEL-Funktionen</th><td width="20%" align="right"> <a accesskey="n"
href="ch12.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a
name="genius-gel-function-list-plotting"></a>Darstellung</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-ExportPlot"></a>ExportPlot</span></dt><dd><pre class="synopsis">ExportPlot
(file,type)</pre><pre class="synopsis">ExportPlot (file)</pre><p>
+ Export the contents of the plotting window to a file.
+ The type is a string that specifies the file type to
+ use, "png", "eps", or "ps". If the type is not
+ specified, then it is taken to be the extension, in
+ which case the extension must be ".png", ".eps", or ".ps".
+ </p><p>
+ Note that files are overwritten without asking.
+ </p><p>
+ On successful export, true is returned. Otherwise
+ error is printed and exception is raised.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>ExportPlot("file.png")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>ExportPlot("/directory/file","eps")</code></strong>
+</pre><p>
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LinePlot"></a>LinePlot</span></dt><dd><pre class="synopsis">LinePlot
(func1,func2,func3,...)</pre><pre class="synopsis">LinePlot (func1,func2,func3,x1,x2)</pre><pre
class="synopsis">LinePlot (func1,func2,func3,x1,x2,y1,y2)</pre><pre class="synopsis">LinePlot
(func1,func2,func3,[x1,x2])</pre><pre class="synopsis">LinePlot (func1,func2,func3,[x1,x2,y1,y2])</pre><p>
+ Plot a function (or several functions) with a line.
+ First (up to 10) arguments are functions, then optionally
+ you can specify the limits of the plotting window as
+ <code class="varname">x1</code>, <code class="varname">x2</code>,
+ <code class="varname">y1</code>, <code class="varname">y2</code>. If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>)
+ If the y limits are not specified, then the functions are computed and then the maxima and minima
+ are used.
+ </p><p>
+ The parameter
+ <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a>
+ controls the drawing of the legend.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlot(sin,cos)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlot(`(x)=x^2,-1,1,0,1)</code></strong>
+</pre><p>
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotClear"></a>LinePlotClear</span></dt><dd><pre class="synopsis">LinePlotClear
()</pre><p>
+ Show the line plot window and clear out functions and any other
+ lines that were drawn.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotCParametric"></a>LinePlotCParametric</span></dt><dd><pre
class="synopsis">LinePlotCParametric (func,...)</pre><pre class="synopsis">LinePlotCParametric
(func,t1,t2,tinc)</pre><pre class="synopsis">LinePlotCParametric (func,t1,t2,tinc,x1,x2,y1,y2)</pre><p>
+ Plot a parametric complex valued function with a line. First comes
+the function that returns <code class="computeroutput">x+iy</code>,
+then optionally the <code class="varname">t</code> limits as <strong
class="userinput"><code>t1,t2,tinc</code></strong>, then
+optionally the limits as <strong class="userinput"><code>x1,x2,y1,y2</code></strong>.
+ </p><p>
+ If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).
+ If instead the string "fit" is given for the x and y limits, then the limits are the maximum
extent of
+ the graph
+ </p><p>
+ The parameter
+ <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a>
+ controls the drawing of the legend.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawLine"></a>LinePlotDrawLine</span></dt><dd><pre
class="synopsis">LinePlotDrawLine (x1,y1,x2,y2,...)</pre><pre class="synopsis">LinePlotDrawLine
(v,...)</pre><p>
+ Draw a line from <code class="varname">x1</code>,<code class="varname">y1</code> to
+ <code class="varname">x2</code>,<code class="varname">y2</code>.
+ <code class="varname">x1</code>,<code class="varname">y1</code>,
+ <code class="varname">x2</code>,<code class="varname">y2</code> can be replaced by an
+ <code class="varname">n</code> by 2 matrix for a longer polyline.
+ Alternatively the vector <code class="varname">v</code> may be a column vector of complex numbers,
+ that is an <code class="varname">n</code> by 1 matrix and each complex number is then
+ considered a point in the plane.
+ </p><p>
+ Extra parameters can be added to specify line color, thickness,
+ arrows, the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ <strong class="userinput"><code>"arrow"</code></strong>, or <strong
class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 4-vector, type of arrow, or the legend. (Arrow and window are from version 1.0.6 onwards.)
+ </p><p>
+ If the line is to be treated as a filled polygon, filled with the given color, you
+ can specify the argument <strong class="userinput"><code>"filled"</code></strong>. Since version
1.0.22 onwards.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally, since version 1.0.18, the color
+ can also be specified as a real vector specifying the red green and
+ blue components where the components are between 0 and 1, e.g. <strong
class="userinput"><code>[1.0,0.5,0.1]</code></strong>.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>
+ Arrow specification should be
+ <strong class="userinput"><code>"origin"</code></strong>,
+ <strong class="userinput"><code>"end"</code></strong>,
+ <strong class="userinput"><code>"both"</code></strong>, or
+ <strong class="userinput"><code>"none"</code></strong>.
+ </p><p>
+ Finally, legend should be a string that can be used as the legend in the
+ graph. That is, if legends are being printed.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(0,0,1,1,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;1,-1;-1,-1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;1,1],"arrow","end")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(RungeKuttaFull(`(x,y)=y,0,3,100),"color","blue","legend","The
Solution")</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>for r=0.0 to 1.0 by 0.1 do
LinePlotDrawLine([0,0;1,r],"color",[r,(1-r),0.5],"window",[0,1,0,1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;10,0;10,10;0,10],"filled","color","green")</code></strong>
+</pre><p>
+ </p><p>
+ Unlike many other functions that do not care if they take a
+ column or a row vector, if specifying points as a vector of
+ complex values, due to possible ambiguities, it must always
+ be given as a column vector.
+ </p><p>
+ Specifying <code class="varname">v</code> as a column vector of complex numbers is
+ implemented from version 1.0.22 and onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawPoints"></a>LinePlotDrawPoints</span></dt><dd><pre
class="synopsis">LinePlotDrawPoints (x,y,...)</pre><pre class="synopsis">LinePlotDrawPoints (v,...)</pre><p>
+ Draw a point at <code class="varname">x</code>,<code class="varname">y</code>.
+ The input can be an <code class="varname">n</code> by 2 matrix
+ for <code class="varname">n</code> different points. This function has essentially the same
+ input as <a class="link"
href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a>.
+ Alternatively the vector <code class="varname">v</code> may be a column vector of complex
numbers,
+ that is an <code class="varname">n</code> by 1 matrix and each complex number is then
+ considered a point in the plane.
+ </p><p>
+ Extra parameters can be added to specify color, thickness,
+ the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ or <strong class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 4-vector, or the legend.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally the color can also be specified as a real vector specifying the
red green
+ and blue components where the components are between 0 and 1.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>
+ Finally, legend should be a string that can be used as the legend in the
+ graph. That is, if legends are being printed.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(0,0,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints([0,0;1,-1;-1,-1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(RungeKuttaFull(`(x,y)=y,0,3,100),"color","blue","legend","The
Solution")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints([1;1+1i;1i;0],"thickness",5)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(ApplyOverMatrix((0:6)',`(k)=exp(k*2*pi*1i/7)),"thickness",3,"legend","The
7th roots of unity")</code></strong>
+</pre><p>
+ </p><p>
+ Unlike many other functions that do not care if they take a
+ column or a row vector, if specifying points as a vector of
+ complex values, due to possible ambiguities, it must always
+ be given as a column vector. Therefore, notice in the
+ last example the transpose of the vector <strong class="userinput"><code>0:6</code></strong>
+ to make it into a column vector.
+ </p><p>
+ Available from version 1.0.18 onwards. Specifying
+ <code class="varname">v</code> as a column vector of complex numbers is
+ implemented from version 1.0.22 and onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotMouseLocation"></a>LinePlotMouseLocation</span></dt><dd><pre
class="synopsis">LinePlotMouseLocation ()</pre><p>
+ Returns a row vector of a point on the line plot corresponding to
+ the current mouse location. If the line plot is not visible,
+ then prints an error and returns <code class="constant">null</code>.
+ In this case you should run
+ <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotClear"><code
class="function">LinePlotClear</code></a>
+ to put the graphing window into the line plot mode.
+ See also
+ <a class="link" href="ch11s20.html#gel-function-LinePlotWaitForClick"><code
class="function">LinePlotWaitForClick</code></a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotParametric"></a>LinePlotParametric</span></dt><dd><pre
class="synopsis">LinePlotParametric (xfunc,yfunc,...)</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc)</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc,x1,x2,y1,y2)</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc,[x1,x2,y1,y2])</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc,"fit")</pre><p>
+ Plot a parametric function with a line. First come the functions
+for <code class="varname">x</code> and <code class="varname">y</code> then optionally the <code
class="varname">t</code> limits as <strong class="userinput"><code>t1,t2,tinc</code></strong>, then
optionally the
+limits as <strong class="userinput"><code>x1,x2,y1,y2</code></strong>.
+ </p><p>
+ If x and y limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).
+ If instead the string "fit" is given for the x and y limits, then the limits are the maximum
extent of
+ the graph
+ </p><p>
+ The parameter
+ <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a>
+ controls the drawing of the legend.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotWaitForClick"></a>LinePlotWaitForClick</span></dt><dd><pre
class="synopsis">LinePlotWaitForClick ()</pre><p>
+ If in line plot mode, waits for a click on the line plot window
+ and returns the location of the click as a row vector.
+ If the window is closed
+ the function returns immediately with <code class="constant">null</code>.
+ If the window is not in line plot mode, it is put in it and shown
+ if not shown.
+ See also
+ <a class="link" href="ch11s20.html#gel-function-LinePlotMouseLocation"><code
class="function">LinePlotMouseLocation</code></a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-PlotCanvasFreeze"></a>PlotCanvasFreeze</span></dt><dd><pre
class="synopsis">PlotCanvasFreeze ()</pre><p>
+ Freeze drawing of the canvas plot temporarily. Useful if you need to draw a bunch of
elements
+ and want to delay drawing everything to avoid flicker in an animation. After everything
+ has been drawn you should call <a class="link"
href="ch11s20.html#gel-function-PlotCanvasThaw"><code class="function">PlotCanvasThaw</code></a>.
+ </p><p>
+ The canvas is always thawed after end of any execution, so it will never remain frozen.
The moment
+ a new command line is shown for example the plot canvas is thawed automatically. Also note
that
+ calls to freeze and thaw may be safely nested.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-PlotCanvasThaw"></a>PlotCanvasThaw</span></dt><dd><pre class="synopsis">PlotCanvasThaw
()</pre><p>
+ Thaw the plot canvas frozen by
+ <a class="link" href="ch11s20.html#gel-function-PlotCanvasFreeze"><code
class="function">PlotCanvasFreeze</code></a>
+ and redraw the canvas immediately. The canvas is also always thawed after end of execution
+ of any program.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-PlotWindowPresent"></a>PlotWindowPresent</span></dt><dd><pre
class="synopsis">PlotWindowPresent ()</pre><p>
+ Show and raise the plot window, creating it if necessary.
+ Normally the window is created when one of the plotting
+ functions is called, but it is not always raised if it
+ happens to be below other windows. So this function is
+ good to call in scripts where the plot window might have
+ been created before, and by now is hidden behind the
+ console or other windows.
+ </p><p>Version 1.0.19 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SlopefieldClearSolutions"></a>SlopefieldClearSolutions</span></dt><dd><pre
class="synopsis">SlopefieldClearSolutions ()</pre><p>
+ Clears the solutions drawn by the
+ <a class="link" href="ch11s20.html#gel-function-SlopefieldDrawSolution"><code
class="function">SlopefieldDrawSolution</code></a>
+ function.
+ </p></dd><dt><span class="term"><a
name="gel-function-SlopefieldDrawSolution"></a>SlopefieldDrawSolution</span></dt><dd><pre
class="synopsis">SlopefieldDrawSolution (x, y, dx)</pre><p>
+ When a slope field plot is active, draw a solution with
+ the specified initial condition. The standard
+ Runge-Kutta method is used with increment <code class="varname">dx</code>.
+ Solutions stay on the graph until a different plot is shown or until
+ you call
+ <a class="link" href="ch11s20.html#gel-function-SlopefieldClearSolutions"><code
class="function">SlopefieldClearSolutions</code></a>.
+ You can also use the graphical interface to draw solutions and specify
+ initial conditions with the mouse.
+ </p></dd><dt><span class="term"><a
name="gel-function-SlopefieldPlot"></a>SlopefieldPlot</span></dt><dd><pre class="synopsis">SlopefieldPlot
(func)</pre><pre class="synopsis">SlopefieldPlot (func,x1,x2,y1,y2)</pre><p>
+ Plot a slope field. The function <code class="varname">func</code>
+ should take two real numbers <code class="varname">x</code>
+ and <code class="varname">y</code>, or a single complex
+ number.
+ Optionally you can specify the limits of the plotting window as
+ <code class="varname">x1</code>, <code class="varname">x2</code>,
+ <code class="varname">y1</code>, <code class="varname">y2</code>. If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).
+ </p><p>
+ The parameter
+ <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a>
+ controls the drawing of the legend.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SlopefieldPlot(`(x,y)=sin(x-y),-5,5,-5,5)</code></strong>
+</pre><p>
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlot"></a>SurfacePlot</span></dt><dd><pre class="synopsis">SurfacePlot
(func)</pre><pre class="synopsis">SurfacePlot (func,x1,x2,y1,y2,z1,z2)</pre><pre class="synopsis">SurfacePlot
(func,x1,x2,y1,y2)</pre><pre class="synopsis">SurfacePlot (func,[x1,x2,y1,y2,z1,z2])</pre><pre
class="synopsis">SurfacePlot (func,[x1,x2,y1,y2])</pre><p>
+ Plot a surface function that takes either two arguments or a complex number. First comes the
function then optionally limits as <code class="varname">x1</code>, <code class="varname">x2</code>,
+ <code class="varname">y1</code>, <code class="varname">y2</code>,
+ <code class="varname">z1</code>, <code class="varname">z2</code>. If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-SurfacePlotWindow"><code
class="function">SurfacePlotWindow</code></a>).
+ Genius can only plot a single surface function at this time.
+ </p><p>
+ If the z limits are not specified then the maxima and minima of the function are used.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(|sin|,-1,1,-1,1,0,1.5)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(`(x,y)=x^2+y,-1,1,-1,1,-2,2)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(`(z)=|z|^2,-1,1,-1,1,0,2)</code></strong>
+</pre><p>
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotClear"></a>SurfacePlotClear</span></dt><dd><pre
class="synopsis">SurfacePlotClear ()</pre><p>
+ Show the surface plot window and clear out functions and any other
+ lines that were drawn.
+ </p><p>
+ Available in version 1.0.19 and onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotData"></a>SurfacePlotData</span></dt><dd><pre class="synopsis">SurfacePlotData
(data)</pre><pre class="synopsis">SurfacePlotData (data,label)</pre><pre class="synopsis">SurfacePlotData
(data,x1,x2,y1,y2,z1,z2)</pre><pre class="synopsis">SurfacePlotData (data,label,x1,x2,y1,y2,z1,z2)</pre><pre
class="synopsis">SurfacePlotData (data,[x1,x2,y1,y2,z1,z2])</pre><pre class="synopsis">SurfacePlotData
(data,label,[x1,x2,y1,y2,z1,z2])</pre><p>
+ Plot a surface from data. The data is an n by 3 matrix whose
+ rows are the x, y and z coordinates. The data can also be
+ simply a vector whose length is a multiple of 3 and so
+ contains the triples of x, y, z. The data should contain at
+ least 3 points.
+ </p><p>
+ Optionally we can give the label and also optionally the
+ limits. If limits are not given, they are computed from
+ the data, <a class="link" href="ch11s03.html#gel-function-SurfacePlotWindow"><code
class="function">SurfacePlotWindow</code></a>
+ is not used, if you want to use it, pass it in explicitly.
+ If label is not given then empty label is used.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData([0,0,0;1,0,1;0,1,1;1,1,3])</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>SurfacePlotData(data,"My
data")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData(data,-1,1,-1,1,0,10)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData(data,SurfacePlotWindow)</code></strong>
+</pre><p>
+ </p><p>
+ Here's an example of how to plot in polar coordinates,
+ in particular how to plot the function
+ <strong class="userinput"><code>-r^2 * theta</code></strong>:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>d:=null; for r=0 to 1 by 0.1 do for theta=0 to 2*pi by pi/5 do
d=[d;[r*cos(theta),r*sin(theta),-r^2*theta]];</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>SurfacePlotData(d)</code></strong>
+</pre><p>
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDataGrid"></a>SurfacePlotDataGrid</span></dt><dd><pre
class="synopsis">SurfacePlotDataGrid (data,[x1,x2,y1,y2])</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2,z1,z2])</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2],label)</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2,z1,z2],label)</pre><p>
+ Plot a surface from regular rectangular data.
+ The data is given in a n by m matrix where the rows are the
+ x coordinate and the columns are the y coordinate.
+ The x coordinate is divided into equal n-1 subintervals
+ and y coordinate is divided into equal m-1 subintervals.
+ The limits <code class="varname">x1</code> and <code class="varname">x2</code>
+ give the interval on the x-axis that we use, and
+ the limits <code class="varname">y1</code> and <code class="varname">y2</code>
+ give the interval on the y-axis that we use.
+ If the limits <code class="varname">z1</code> and <code class="varname">z2</code>
+ are not given they are computed from the data (to be
+ the extreme values from the data).
+ </p><p>
+ Optionally we can give the label, if label is not given then
+ empty label is used.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid([1,2;3,4],[0,1,0,1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid(data,[-1,1,-1,1],"My data")</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>d:=null; for i=1 to 20 do for j=1 to
10 do d@(i,j) = (0.1*i-1)^2-(0.1*j)^2;</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid(d,[-1,1,0,1],"half a saddle")</code></strong>
+</pre><p>
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawLine"></a>SurfacePlotDrawLine</span></dt><dd><pre
class="synopsis">SurfacePlotDrawLine (x1,y1,z1,x2,y2,z2,...)</pre><pre class="synopsis">SurfacePlotDrawLine
(v,...)</pre><p>
+ Draw a line from <code class="varname">x1</code>,<code class="varname">y1</code>,<code
class="varname">z1</code> to
+ <code class="varname">x2</code>,<code class="varname">y2</code>,<code class="varname">z2</code>.
+ <code class="varname">x1</code>,<code class="varname">y1</code>,<code class="varname">z1</code>,
+ <code class="varname">x2</code>,<code class="varname">y2</code>,<code class="varname">z2</code>
can be replaced by an
+ <code class="varname">n</code> by 3 matrix for a longer polyline.
+ </p><p>
+ Extra parameters can be added to specify line color, thickness,
+ arrows, the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ or <strong class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 6-vector, or the legend.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally, since version 1.0.18, the color
+ can also be specified as a real vector specifying the red green and
+ blue components where the components are between 0 and 1, e.g. <strong
class="userinput"><code>[1.0,0.5,0.1]</code></strong>.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2,z1,z2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>
+ Finally, legend should be a string that can be used as the legend in the
+ graph. That is, if legends are being printed.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawLine(0,0,0,1,1,1,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawLine([0,0,0;1,-1,2;-1,-1,-3])</code></strong>
+</pre><p>
+ </p><p>
+ Available from version 1.0.19 onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawPoints"></a>SurfacePlotDrawPoints</span></dt><dd><pre
class="synopsis">SurfacePlotDrawPoints (x,y,z,...)</pre><pre class="synopsis">SurfacePlotDrawPoints
(v,...)</pre><p>
+ Draw a point at <code class="varname">x</code>,<code class="varname">y</code>,<code
class="varname">z</code>.
+ The input can be an <code class="varname">n</code> by 3 matrix
+ for <code class="varname">n</code> different points. This function has essentially the same
+ input as <a class="link"
href="ch11s20.html#gel-function-SurfacePlotDrawLine">SurfacePlotDrawLine</a>.
+ </p><p>
+ Extra parameters can be added to specify line color, thickness,
+ the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ or <strong class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 6-vector, or the legend.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally the color can also be specified as a real vector specifying the
red green
+ and blue components where the components are between 0 and 1.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2,z1,z2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>
+ Finally, legend should be a string that can be used as the legend in the
+ graph. That is, if legends are being printed.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawPoints(0,0,0,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawPoints([0,0,0;1,-1,2;-1,-1,1])</code></strong>
+</pre><p>
+ </p><p>
+ Available from version 1.0.19 onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-VectorfieldClearSolutions"></a>VectorfieldClearSolutions</span></dt><dd><pre
class="synopsis">VectorfieldClearSolutions ()</pre><p>
+ Clears the solutions drawn by the
+ <a class="link" href="ch11s20.html#gel-function-VectorfieldDrawSolution"><code
class="function">VectorfieldDrawSolution</code></a>
+ function.
+ </p><p>Version 1.0.6 onwards.</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldDrawSolution"></a>VectorfieldDrawSolution</span></dt><dd><pre
class="synopsis">VectorfieldDrawSolution (x, y, dt, tlen)</pre><p>
+ When a vector field plot is active, draw a solution with
+ the specified initial condition. The standard
+ Runge-Kutta method is used with increment <code class="varname">dt</code>
+ for an interval of length <code class="varname">tlen</code>.
+ Solutions stay on the graph until a different plot is shown or until
+ you call
+ <a class="link" href="ch11s20.html#gel-function-VectorfieldClearSolutions"><code
class="function">VectorfieldClearSolutions</code></a>.
+ You can also use the graphical interface to draw solutions and specify
+ initial conditions with the mouse.
+ </p><p>Version 1.0.6 onwards.</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldPlot"></a>VectorfieldPlot</span></dt><dd><pre class="synopsis">VectorfieldPlot
(funcx, funcy)</pre><pre class="synopsis">VectorfieldPlot (funcx, funcy, x1, x2, y1, y2)</pre><p>
+ Plot a two dimensional vector field. The function
+ <code class="varname">funcx</code>
+ should be the dx/dt of the vectorfield and the function
+ <code class="varname">funcy</code> should be the dy/dt of the vectorfield.
+ The functions
+ should take two real numbers <code class="varname">x</code>
+ and <code class="varname">y</code>, or a single complex
+ number. When the parameter
+ <a class="link" href="ch11s03.html#gel-function-VectorfieldNormalized"><code
class="function">VectorfieldNormalized</code></a>
+ is <code class="constant">true</code>, then the magnitude of the vectors is normalized. That is,
only
+ the direction and not the magnitude is shown.
+ </p><p>
+ Optionally you can specify the limits of the plotting window as
+ <code class="varname">x1</code>, <code class="varname">x2</code>,
+ <code class="varname">y1</code>, <code class="varname">y2</code>. If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).
+ </p><p>
+ The parameter
+ <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a>
+ controls the drawing of the legend.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>VectorfieldPlot(`(x,y)=x^2-y, `(x,y)=y^2-x, -1, 1, -1, 1)</code></strong>
+</pre><p>
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s19.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch12.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Symbolische
Operationen </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td
width="40%" align="right" valign="top"> Kapitel 12. Beispielprogramme in
GEL</td></tr></table></div></body></html>
diff --git a/help/de/html/ch12.html b/help/de/html/ch12.html
new file mode 100644
index 0000000..d1272ca
--- /dev/null
+++ b/help/de/html/ch12.html
@@ -0,0 +1,74 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 12.
Beispielprogramme in GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="index.html"
title="Genius-Handbuch"><link rel="prev" href="ch11s20.html" title="Darstellung"><link rel="next"
href="ch13.html" title="Kapitel 13. Einstellungen"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitel 12. Beispielprogramme in GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch11s20.html">Zurück</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch13.html">Weiter</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="g
enius-gel-example-programs"></a>Kapitel 12. Beispielprogramme in GEL</h1></div></div></div><p>
+Here is a function that calculates factorials:
+</p><pre class="programlisting">function f(x) = if x <= 1 then 1 else (f(x-1)*x)
+</pre><p>
+ </p><p>
+With indentation it becomes:
+</p><pre class="programlisting">function f(x) = (
+ if x <= 1 then
+ 1
+ else
+ (f(x-1)*x)
+)
+</pre><p>
+ </p><p>
+This is a direct port of the factorial function from the <span class="application">bc</span> manpage. The
syntax seems similar to <span class="application">bc</span>, but different in that in GEL, the last
expression is the one that is returned. Using the <code class="literal">return</code> function instead, it
would be:
+</p><pre class="programlisting">function f(x) = (
+ if (x <= 1) then return (1);
+ return (f(x-1) * x)
+)
+</pre><p>
+ </p><p>
+By far the easiest way to define a factorial function would be using
+the product loop as follows. This is not only the shortest and fastest,
+but also probably the most readable version.
+</p><pre class="programlisting">function f(x) = prod k=1 to x do k
+</pre><p>
+ </p><p>
+Here is a larger example, this basically redefines the internal
+<a class="link" href="ch11s09.html#gel-function-ref"><code class="function">ref</code></a> function to
calculate the row echelon form of a
+matrix. The function <code class="function">ref</code> is built in and much faster,
+but this example demonstrates some of the more complex features of GEL.
+</p><pre class="programlisting"># Calculate the row-echelon form of a matrix
+function MyOwnREF(m) = (
+ if not IsMatrix(m) or not IsValueOnly(m) then
+ (error("MyOwnREF: argument not a value only matrix");bailout);
+ s := min(rows(m), columns(m));
+ i := 1;
+ d := 1;
+ while d <= s and i <= columns(m) do (
+
+ # This just makes the anchor element non-zero if at
+ # all possible
+ if m@(d,i) == 0 then (
+ j := d+1;
+ while j <= rows(m) do (
+ if m@(j,i) == 0 then
+ (j=j+1;continue);
+ a := m@(j,);
+ m@(j,) := m@(d,);
+ m@(d,) := a;
+ j := j+1;
+ break
+ )
+ );
+ if m@(d,i) == 0 then
+ (i:=i+1;continue);
+
+ # Here comes the actual zeroing of all but the anchor
+ # element rows
+ j := d+1;
+ while j <= rows(m)) do (
+ if m@(j,i) != 0 then (
+ m@(j,) := m@(j,)-(m@(j,i)/m@(d,i))*m@(d,)
+ );
+ j := j+1
+ );
+ m@(d,) := m@(d,) * (1/m@(d,i));
+ d := d+1;
+ i := i+1
+ );
+ m
+)
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch11s20.html">Zurück</a> </td><td width="20%" align="center"> </td><td
width="40%" align="right"> <a accesskey="n" href="ch13.html">Weiter</a></td></tr><tr><td width="40%"
align="left" valign="top">Darstellung </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Zum Anfang</a></td><td width="40%" align="right" valign="top"> Kapitel 13.
Einstellungen</td></tr></table></div></body></html>
diff --git a/help/de/html/ch13.html b/help/de/html/ch13.html
new file mode 100644
index 0000000..2a182b9
--- /dev/null
+++ b/help/de/html/ch13.html
@@ -0,0 +1,73 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 13.
Einstellungen</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="up" href="index.html" title="Genius-Handbuch"><link
rel="prev" href="ch12.html" title="Kapitel 12. Beispielprogramme in GEL"><link rel="next" href="ch13s02.html"
title="Genauigkeit"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Kapitel 13. Einstellungen</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch12.html">Zurück</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch13s02.html">Weiter</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-prefs
"></a>Kapitel 13. Einstellungen</h1></div></div></div><div class="toc"><p><b>Inhaltsverzeichnis</b></p><dl
class="toc"><dt><span class="sect1"><a href="ch13.html#genius-prefs-output">Ausgabe</a></span></dt><dt><span
class="sect1"><a href="ch13s02.html">Genauigkeit</a></span></dt><dt><span class="sect1"><a
href="ch13s03.html">Terminal</a></span></dt><dt><span class="sect1"><a
href="ch13s04.html">Speicher</a></span></dt></dl></div><p>
+ To configure <span class="application">Genius Mathematics Tool</span>, choose
+ <span class="guimenu">Settings</span> → <span class="guimenuitem">Preferences</span>.
+ There are several basic parameters provided by the calculator in addition
+ to the ones provided by the standard library. These control how the
+ calculator behaves.
+ </p><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Changing
Settings with GEL</h3><p>
+ Many of the settings in Genius are simply global variables, and can
+ be evaluated and assigned to in the same way as normal variables. See
+ <a class="xref" href="ch05s02.html" title="Verwendung von Variablen">„Verwendung von Variablen“</a>
about evaluating and assigning
+ to variables, and <a class="xref" href="ch11s03.html" title="Parameter">„Parameter“</a> for
+ a list of settings that can be modified in this way.
+ </p><p>
+As an example, you can set the maximum number of digits in a result to 12 by typing:
+</p><pre class="programlisting">MaxDigits = 12
+</pre><p>
+ </p></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-prefs-output"></a>Ausgabe</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Maximum digits to output</span>
+ </span></dt><dd><p>The maximum digits in a result (<a class="link"
href="ch11s03.html#gel-function-MaxDigits"><code class="function">MaxDigits</code></a>)</p></dd><dt><span
class="term">
+ <span class="guilabel">Results as floats</span>
+ </span></dt><dd><p>If the results should be always printed as floats (<a class="link"
href="ch11s03.html#gel-function-ResultsAsFloats"><code
class="function">ResultsAsFloats</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Floats in scientific notation</span>
+ </span></dt><dd><p>If floats should be in scientific notation (<a class="link"
href="ch11s03.html#gel-function-ScientificNotation"><code
class="function">ScientificNotation</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Always print full expressions</span>
+ </span></dt><dd><p>Should we print out full expressions for non-numeric return values (longer than a
line) (<a class="link" href="ch11s03.html#gel-function-FullExpressions"><code
class="function">FullExpressions</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Use mixed fractions</span>
+ </span></dt><dd><p>If fractions should be printed as mixed fractions such as "1 1/3" rather than
"4/3". (<a class="link" href="ch11s03.html#gel-function-MixedFractions"><code
class="function">MixedFractions</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Display 0.0 when floating point number is less than 10^-x (0=never
chop)</span>
+ </span></dt><dd><p>How to chop output. But only when other numbers nearby are large.
+ See the documentation of the parameter
+ <a class="link" href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>. </p></dd><dt><span class="term">
+ <span class="guilabel">Only chop numbers when another number is greater than 10^-x</span>
+ </span></dt><dd><p>When to chop output. This is set by the parameter <a class="link"
href="ch11s03.html#gel-function-OutputChopWhenExponent"><code
class="function">OutputChopWhenExponent</code></a>.
+ See the documentation of the parameter
+ <a class="link" href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>. </p></dd><dt><span class="term">
+ <span class="guilabel">Remember output settings across sessions</span>
+ </span></dt><dd><p>Should the output settings in the <span class="guilabel">Number/Expression output
options</span> frame
+ be remembered for next session. Does not apply to the <span class="guilabel">Error/Info output
options</span> frame.</p><p>
+ If unchecked,
+ either the default or any previously saved settings are used each time Genius starts
+ up. Note that
+ settings are saved at the end of the session, so if you wish to change the defaults
+ check this box, restart <span class="application">Genius Mathematics Tool</span> and then uncheck
it again.
+ </p></dd><dt><span class="term">
+ <span class="guilabel">Display errors in a dialog</span>
+ </span></dt><dd><p>If set the errors will be displayed in a separate dialog, if
+ unset the errors will be printed on the console.</p></dd><dt><span class="term">
+ <span class="guilabel">Display information messages in a dialog</span>
+ </span></dt><dd><p>If set the information messages will be displayed in a separate
+ dialog, if unset the information messages will be printed on the
+ console.</p></dd><dt><span class="term">
+ <span class="guilabel">Maximum errors to display</span>
+ </span></dt><dd><p>
+ The maximum number of errors to return on one evaluation
+ (<a class="link" href="ch11s03.html#gel-function-MaxErrors"><code
class="function">MaxErrors</code></a>). If you set this to 0 then
+ all errors are always returned. Usually if some loop causes
+ many errors, then it is unlikely that you will be able to make
+ sense out of more than a few of these, so seeing a long list
+ of errors is usually not helpful.
+ </p></dd></dl></div><p>
+ In addition to these preferences, there are some preferences that can
+ only be changed by setting them in the workspace console. For others
+ that may affect the output see <a class="xref" href="ch11s03.html" title="Parameter">„Parameter“</a>.
+ </p><div class="variablelist"><dl class="variablelist"><dt><span class="term">
+ <code class="function">IntegerOutputBase</code>
+ </span></dt><dd><p>The base that will be used to output integers</p></dd><dt><span class="term">
+ <code class="function">OutputStyle</code>
+ </span></dt><dd><p>A string, can be <code class="literal">"normal"</code>,
+<code class="literal">"latex"</code>, <code class="literal">"mathml"</code> or
+<code class="literal">"troff"</code> and it will affect how matrices (and perhaps other
+stuff) is printed, useful for pasting into documents. Normal style is the
+default human readable printing style of <span class="application">Genius Mathematics Tool</span>. The
other styles are for
+typesetting in LaTeX, MathML (XML), or in Troff.</p></dd></dl></div></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch12.html">Zurück</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> <a accesskey="n" href="ch13s02.html">Weiter</a></td></tr><tr><td width="40%" align="left"
valign="top">Kapitel 12. Beispielprogramme in GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Zum Anfang</a></td><td width="40%" align="right" valign="top">
Genauigkeit</td></tr></table></div></body></html>
diff --git a/help/de/html/ch13s02.html b/help/de/html/ch13s02.html
new file mode 100644
index 0000000..18bab5a
--- /dev/null
+++ b/help/de/html/ch13s02.html
@@ -0,0 +1,20 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Genauigkeit</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="ch13.html"
title="Kapitel 13. Einstellungen"><link rel="prev" href="ch13.html" title="Kapitel 13. Einstellungen"><link
rel="next" href="ch13s03.html" title="Terminal"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Genauigkeit</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch13.html">Zurück</a> </td><th width="60%" align="center">Kapitel 13.
Einstellungen</th><td width="20%" align="right"> <a accesskey="n"
href="ch13s03.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="geni
us-prefs-precision"></a>Genauigkeit</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Gleitkommagenauigkeit</span>
+ </span></dt><dd><p>
+ The floating point precision in bits
+ (<a class="link" href="ch11s03.html#gel-function-FloatPrecision"><code
class="function">FloatPrecision</code></a>).
+ Note that changing this only affects newly computed quantities.
+ Old values stored in variables are obviously still in the old
+ precision and if you want to have them more precise you will have
+ to recompute them. Exceptions to this are the system constants
+ such as <a class="link" href="ch11s04.html#gel-function-pi"><code class="function">pi</code></a> or
+ <a class="link" href="ch11s04.html#gel-function-e"><code class="function">e</code></a>.
+ </p></dd><dt><span class="term">
+ <span class="guilabel">Genauigkeitseinstellungen für folgende Sitzungen merken</span>
+ </span></dt><dd><p>
+ Should the precision setting be remembered for the next session. If unchecked,
+ either the default or any previously saved setting is used each time Genius starts
+ up. Note that
+ settings are saved at the end of the session, so if you wish to change the default
+ check this box, restart genius and then uncheck it again.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch13.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch13s03.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel
13. Einstellungen </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum
Anfang</a></td><td width="40%" align="right" valign="top"> Terminal</td></tr></table></div></body></html>
diff --git a/help/de/html/ch13s03.html b/help/de/html/ch13s03.html
new file mode 100644
index 0000000..bf243f8
--- /dev/null
+++ b/help/de/html/ch13s03.html
@@ -0,0 +1,9 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Terminal</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Genius-Handbuch"><link rel="up" href="ch13.html" title="Kapitel 13. Einstellungen"><link rel="prev"
href="ch13s02.html" title="Genauigkeit"><link rel="next" href="ch13s04.html" title="Speicher"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Terminal</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch13s02.html">Zurück</a> </td><th width="60%"
align="center">Kapitel 13. Einstellungen</th><td width="20%" align="right"> <a accesskey="n"
href="ch13s04.html">Weiter</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-prefs-termi
nal"></a>Terminal</h2></div></div></div><p>»Terminal« bezieht sich auf die Konsole im Arbeitsplatz.</p><div
class="variablelist"><dl class="variablelist"><dt><span class="term">
+ <span class="guilabel">Zeilen an Scrollback</span>
+ </span></dt><dd><p>Durch Zurückrollen sichtbare Zeilen im Terminal.</p></dd><dt><span class="term">
+ <span class="guilabel">Schrift</span>
+ </span></dt><dd><p>Die im Terminal zu verwendende Schrift.</p></dd><dt><span class="term">
+ <span class="guilabel">Schwarz auf Weiß</span>
+ </span></dt><dd><p>If to use black on white on the terminal.</p></dd><dt><span class="term">
+ <span class="guilabel">Blinkender Cursor</span>
+ </span></dt><dd><p>If the cursor in the terminal should blink when the terminal is in focus. This can
sometimes be annoying and it generates idle traffic if you are using Genius
remotely.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13s02.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch13.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch13s04.html">Weiter</a></td></tr><tr><td width="40%" align="left"
valign="top">Genauigkeit </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum
Anfang</a></td><td width="40%" align="right" valign="top"> Speicher</td></tr></table></div></body></html>
diff --git a/help/de/html/ch13s04.html b/help/de/html/ch13s04.html
new file mode 100644
index 0000000..aa64d94
--- /dev/null
+++ b/help/de/html/ch13s04.html
@@ -0,0 +1,20 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Speicher</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Genius-Handbuch"><link rel="up" href="ch13.html" title="Kapitel 13. Einstellungen"><link rel="prev"
href="ch13s03.html" title="Terminal"><link rel="next" href="ch14.html" title="Kapitel 14. Info zu Genius
Mathematikwerkzeug"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Speicher</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch13s03.html">Zurück</a> </td><th width="60%" align="center">Kapitel 13. Einstellungen</th><td
width="20%" align="right"> <a accesskey="n" href="ch14.html">Weiter</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"
<a name="genius-prefs-memory"></a>Speicher</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Maximale Anzahl zuzuweisender Knoten</span>
+ </span></dt><dd><p>
+ Internally all data is put onto small nodes in memory. This gives
+ a limit on the maximum number of nodes to allocate for
+ computations. This limit avoids the problem of running out of memory
+ if you do something by mistake that uses too much memory, such
+ as a recursion without end. This could slow your computer and make
+ it hard to even interrupt the program.
+ </p><p>
+ Once the limit is reached, <span class="application">Genius Mathematics Tool</span> asks if you
wish to interrupt
+ the computation or if you wish to continue. If you continue, no
+ limit is applied and it will be possible to run your computer
+ out of memory. The limit will be applied again next time you
+ execute a program or an expression on the Console regardless of how
+ you answered the question.
+ </p><p>
+ Setting the limit to zero means there is no limit to the amount of
+ memory that genius uses.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13s03.html">Zurück</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch13.html">Nach oben</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch14.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top">Terminal
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum Anfang</a></td><td width="40%"
align="right" valign="top"> Kapitel 14. Info zu <span class="application">Genius
Mathematikwerkzeug</span></td></tr></table></div></body></html>
diff --git a/help/de/html/ch14.html b/help/de/html/ch14.html
new file mode 100644
index 0000000..f1eeaba
--- /dev/null
+++ b/help/de/html/ch14.html
@@ -0,0 +1,22 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 14. Info zu
Genius Mathematikwerkzeug</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Genius-Handbuch"><link rel="up" href="index.html"
title="Genius-Handbuch"><link rel="prev" href="ch13s04.html" title="Speicher"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Kapitel 14. Info zu <span
class="application">Genius Mathematikwerkzeug</span></th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch13s04.html">Zurück</a> </td><th width="60%" align="center"> </th><td width="20%"
align="right"> </td></tr></table><hr></div><div class="chapter"><div class="titlepage"><div><div><h1
class="title"><a name="genius-about"></a>Kapitel 14. Info zu <span class="application">G
enius Mathematikwerkzeug</span></h1></div></div></div><p> <span class="application">Genius Mathematics
Tool</span> was written by Jiří (George) Lebl
+(<code class="email"><<a class="email" href="mailto:jirka 5z com">jirka 5z com</a>></code>). The
history of <span class="application">Genius Mathematics Tool</span> goes back to late
+1997. It was the first calculator program for GNOME, but it then grew
+beyond being just a desktop calculator. To find more information about
+<span class="application">Genius Mathematics Tool</span>, please visit the <a class="ulink"
href="http://www.jirka.org/genius.html" target="_top">Genius Web page</a>.
+ </p><p>
+ To report a bug or make a suggestion regarding this application or
+ this manual, send email to me (the author) or post to the mailing
+ list (see the web page).
+ </p><p> This program is distributed under the terms of the GNU
+ General Public license as published by the Free Software
+ Foundation; either version 3 of the License, or (at your option)
+ any later version. A copy of this license can be found at this
+ <a class="ulink" href="http://www.gnu.org/copyleft/gpl.html" target="_top">link</a>, or in the file
+ COPYING included with the source code of this program. </p><p>Jiří Lebl was during various parts of
the development
+ partially supported for the work by NSF grants DMS 0900885,
+ DMS 1362337,
+ the University of Illinois at Urbana-Champaign,
+ the University of California at San Diego,
+ the University of Wisconsin-Madison, and
+ Oklahoma State University. The software has
+ been used for both teaching and research.</p></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13s04.html">Zurück</a>
</td><td width="20%" align="center"> </td><td width="40%" align="right"> </td></tr><tr><td width="40%"
align="left" valign="top">Speicher </td><td width="20%" align="center"><a accesskey="h" href="index.html">Zum
Anfang</a></td><td width="40%" align="right" valign="top"> </td></tr></table></div></body></html>
diff --git a/help/de/html/genius.proc b/help/de/html/genius.proc
new file mode 100644
index 0000000..e69de29
diff --git a/help/de/html/index.html b/help/de/html/index.html
new file mode 100644
index 0000000..64f53cb
--- /dev/null
+++ b/help/de/html/index.html
@@ -0,0 +1,4 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Genius-Handbuch</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><meta name="description" content="Handbuch für das Genius Mathematikwerkzeug."><link rel="home"
href="index.html" title="Genius-Handbuch"><link rel="next" href="ch01.html" title="Kapitel 1.
Einführung"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Genius-Handbuch</th></tr><tr><td width="20%" align="left"> </td><th width="60%"
align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch01.html">Weiter</a></td></tr></table><hr></div><div lang="de" class="book"><div
class="titlepage"><div><div><h1 class="title"><a name="index"></a>Genius-Handbuch</h1></div><div><div
class="authorgroup"><div class="author"><h3 class="author"><span class="fi
rstname">Jiří</span> <span class="surname">Lebl</span></h3><div class="affiliation"><span
class="orgname">Oklahoma State University<br></span><div class="address"><p> <code class="email"><<a
class="email" href="mailto:jirka 5z com">jirka 5z com</a>></code> </p></div></div></div><div
class="author"><h3 class="author"><span class="firstname">Kai</span> <span
class="surname">Willadsen</span></h3><div class="affiliation"><span class="orgname">University of Queensland,
Australien<br></span><div class="address"><p> <code class="email"><<a class="email" href="mailto:kaiw itee
uq edu au">kaiw itee uq edu au</a>></code> </p></div></div></div></div></div><div><p
class="releaseinfo">This manual describes version 1.0.22 of Genius.
+ </p></div><div><p class="copyright">Copyright © 1997-2016 Jiří (George) Lebl</p></div><div><p
class="copyright">Copyright © 2004 Kai Willadsen</p></div><div><p class="copyright">Copyright © 2009, 2011
Mario Blättermann (mariobl freenet de)</p></div><div><div class="legalnotice"><a
name="legalnotice"></a><p>Das vorliegende Dokument kann gemäß den Bedingungen der GNU Free Documentation
License (GFDL), Version 1.1 oder jeder späteren, von der Free Software Foundation veröffentlichten Version
ohne unveränderbare Abschnitte sowie ohne Texte auf dem vorderen und hinteren Buchdeckel kopiert, verteilt
und/oder modifiziert werden. Eine Kopie der GFDL finden Sie unter diesem <a class="ulink" href="ghelp:fdl"
target="_top">Link</a> oder in der mit diesem Handbuch gelieferten Datei COPYING-DOCS.</p><p>Dieses Handbuch
ist Teil einer Sammlung von GNOME-Handbüchern, die unter der GFDL veröffentlicht werden. Wenn Sie dieses
Handbuch getrennt von der Sammlung weiterverbreite
n möchten, können Sie das tun, indem Sie eine Kopie der Lizenz zum Handbuch hinzufügen, wie es in Abschnitt
6 der Lizenz beschrieben ist.</p><p>Viele der Namen, die von Unternehmen verwendet werden, um ihre Produkte
und Dienstleistungen von anderen zu unterscheiden, sind eingetragene Warenzeichen. An den Stellen, an denen
diese Namen in einer GNOME-Dokumentation erscheinen, werden die Namen in Großbuchstaben oder mit einem großen
Anfangsbuchstaben geschrieben, wenn das GNOME-Dokumentationsprojekt auf diese Warenzeichen hingewiesen
wird.</p><p>DAS DOKUMENT UND VERÄNDERTE FASSUNGEN DES DOKUMENTS WERDEN UNTER DEN BEDINGUNGEN DER GNU FREE
DOCUMENTATION LICENSE ZUR VERFÜGUNG GESTELLT MIT DEM WEITERGEHENDEN VERSTÄNDNIS, DASS: </p><div
class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>DIESES DOKUMENT WIRD »WIE
VORLIEGEND« GELIEFERT, OHNE GARANTIEN IRGENDEINER ART, SOWOHL AUSDRÜCKLICH GENANNTE ALS AUCH ANGEDEUTETE.
DIES BEZIEHT SICH AUCH OHNE EI
NSCHRÄNKUNG AUF GARANTIEN, DASS DIESES DOKUMENT ODER VERÄNDERTE FASSUNGEN DIESES DOKUMENTS FREI VON
HANDELSDEFEKTEN, FÜR EINEN BESTIMMTEN ZWECK GEEIGNET IST ODER DASS ES KEINE RECHTE DRITTER VERLETZT. DAS
VOLLE RISIKO WAS QUALITÄT, GENAUIGKEIT UND LEISTUNG DES DOKUMENTS ODER VERÄNDERTE FASSUNGEN DES DOKUMENTS
LIEGT BEI IHNEN. SOLLTE EIN DOKUMENT ODER EINE VERÄNDERTE FASSUNG DAVON FEHLER IRGENDEINER ART BEINHALTEN,
TRAGEN SIE (NICHT DER URSPRUNGSAUTOR, DER AUTOR ODER EIN MITWIRKENDER) DIE KOSTEN FÜR NOTWENDIGE
DIENSTLEISTUNGEN, REPARATUREN ODER FEHLERKORREKTUREN. DIESER HAFTUNGSAUSSCHLUSS IST EIN ESSENZIELLER TEIL
DIESER LIZENZ. DIE VERWENDUNG EINES DOKUMENTS ODER EINER VERÄNDERTEN VERSION DES DOKUMENTS IST NICHT
GESTATTET AUßER UNTER BEACHTUNG DIESES HAFTUNGSAUSSCHLUSSES UND</p></li><li class="listitem"><p>UNTER KEINEN
UMSTÄNDEN UND AUF BASIS KEINER RECHTSGRUNDLAGE, EGAL OB DURCH UNERLAUBTEN HANDLUNGEN (EINSCHLIEßLICH
FAHRLÄSSIGKEIT), VERTRAG ODER ANDERWEITIG KAN
N DER AUTOR, URSPRUNGSAUTOR, EIN MITWIRKENDER ODER EIN VERTRIEBSPARTNER DIESES DOKUMENTS ODER EINER
VERÄNDERTEN FASSUNG DES DOKUMENTS ODER EIN ZULIEFERER EINER DIESER PARTEIEN, HAFTBAR GEMACHT WERDEN FÜR
DIREKTE, INDIREKTE, SPEZIELLE, VERSEHENTLICHE ODER FOLGESCHÄDEN JEGLICHER ART, EINSCHLIEßLICH UND OHNE
EINSCHRÄNKUNGEN SCHÄDEN DURCH VERLUST VON KULANZ, ARBEITSAUSFALL, COMPUTERVERSAGEN ODER
COMPUTERFEHLFUNKTIONEN ODER ALLE ANDEREN SCHÄDEN ODER VERLUSTE, DIE SICH AUS ODER IN VERBINDUNG MIT DER
VERWENDUNG DES DOKUMENTS UND VERÄNDERTER FASSUNGEN DES DOKUMENTS ERGEBEN, AUCH WENN DIE OBEN GENANNTEN
PARTEIEN ÜBER DIE MÖGLICHKEIT SOLCHER SCHÄDEN INFORMIERT WAREN.</p></li></ol></div></div></div><div><div
class="legalnotice"><a name="idm46132110458992"></a><p
class="legalnotice-title"><b>Rückmeldungen</b></p><p>Um einen Fehler zu melden oder einen Vorschlag zur
Anwendung <span class="application">Genius Mathematikwerkzeug</span> oder zu diesem Handbuch zu machen, folge
S
ie den Anweisungen auf der <a class="ulink" href="http://www.jirka.org/genius.html"
target="_top">Genius-Webseite</a> oder schreiben Sie eine E-Mail an <code class="email"><<a class="email"
href="mailto:jirka 5z com">jirka 5z com</a>></code>.</p></div></div><div><div class="revhistory"><table
style="border-style:solid; width:100%;" summary="Versionsgeschichte"><tr><th align="left" valign="top"
colspan="2"><b>Versionsgeschichte</b></th></tr><tr><td align="left">Version 0.2</td><td
align="left">September 2016</td></tr><tr><td align="left" colspan="2">
+ <p class="author">Jiri (George) Lebl <code class="email"><<a class="email"
href="mailto:jirka 5z com">jirka 5z com</a>></code></p>
+ </td></tr></table></div></div><div><div class="abstract"><p
class="title"><b>Zusammenfassung</b></p><p>Handbuch für das Genius
Mathematikwerkzeug.</p></div></div></div><hr></div><div class="toc"><p><b>Inhaltsverzeichnis</b></p><dl
class="toc"><dt><span class="chapter"><a href="ch01.html">1. Einführung</a></span></dt><dt><span
class="chapter"><a href="ch02.html">2. Erste Schritte</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch02.html#genius-to-start"><span class="application">Genius Mathematikwerkzeug
starten</span></a></span></dt><dt><span class="sect1"><a href="ch02s02.html">Beim Start von <span
class="application">Genius</span></a></span></dt></dl></dd><dt><span class="chapter"><a href="ch03.html">3.
Grundlagen der Benutzung</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch03.html#genius-usage-workarea">Benutzung des Arbeitsplatzes</a></span></dt><dt><span class="sect1"><a
href="ch03s02.html">Erstellen eines neuen Programms</a></span></dt><dt><span
class="sect1"><a href="ch03s03.html">Öffnen und Ausführen eines Programms</a></span></dt></dl></dd><dt><span
class="chapter"><a href="ch04.html">4. Darstellung</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch04.html#genius-line-plots">Kurvendarstellungen</a></span></dt><dt><span class="sect1"><a
href="ch04s02.html">Parametrische Darstellungen</a></span></dt><dt><span class="sect1"><a
href="ch04s03.html">Richtungsfeld-Darstellungen</a></span></dt><dt><span class="sect1"><a
href="ch04s04.html">Vektorfeld-Darstellungen</a></span></dt><dt><span class="sect1"><a
href="ch04s05.html">2D-Darstellungen</a></span></dt></dl></dd><dt><span class="chapter"><a
href="ch05.html">5. GEL-Grundlagen</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch05.html#genius-gel-values">Werte</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-numbers">Zahlen</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-booleans">Wahrheitsw
erte</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-strings">Strings</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-null">Null</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s02.html">Verwendung von Variablen</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-setting">Setzen von Variablen</a></span></dt><dt><span
class="sect2"><a href="ch05s02.html#genius-gel-variables-built-in">Eingebaute
Variablen</a></span></dt><dt><span class="sect2"><a href="ch05s02.html#genius-gel-previous-result">Vorherige
Ergebnisvariable</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch05s03.html">Verwendung von
Funktionen</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-defining">Definieren von Funktionen</a></span></dt><dt><span
class="sect2"><a href="ch05s03.html#genius-gel-functions-variable-argument-lists">Variable Argument Lists</a>
</span></dt><dt><span class="sect2"><a href="ch05s03.html#genius-gel-functions-passing-functions">Übergabe
von Funktionen an Funktionen</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-operations">Operationen mit
Funktionen</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s04.html">Trenner</a></span></dt><dt><span class="sect1"><a
href="ch05s05.html">Kommentare</a></span></dt><dt><span class="sect1"><a href="ch05s06.html">Modulare
Auswertung</a></span></dt><dt><span class="sect1"><a href="ch05s07.html">Liste der
GEL-Operatoren</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch06.html">6. Programmierung mit
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch06.html#genius-gel-conditionals">Bedingungen</a></span></dt><dt><span class="sect1"><a
href="ch06s02.html">Schleifen</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-while">While-Schleifen</a></span></dt><dt><span cla
ss="sect2"><a href="ch06s02.html#genius-gel-loops-for">For-Schleifen</a></span></dt><dt><span
class="sect2"><a href="ch06s02.html#genius-gel-loops-foreach">Foreach-Schleifen</a></span></dt><dt><span
class="sect2"><a href="ch06s02.html#genius-gel-loops-break-continue">Break and
Continue</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch06s03.html">Summen und
Produkte</a></span></dt><dt><span class="sect1"><a
href="ch06s04.html">Vergleichsoperatoren</a></span></dt><dt><span class="sect1"><a
href="ch06s05.html">Globale Variablen und Variablenbereiche</a></span></dt><dt><span class="sect1"><a
href="ch06s06.html">Parametervariablen</a></span></dt><dt><span class="sect1"><a
href="ch06s07.html">Rückgabewerte</a></span></dt><dt><span class="sect1"><a
href="ch06s08.html">Referenzen</a></span></dt><dt><span class="sect1"><a href="ch06s09.html">Lvalues (linke
Werte)</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch07.html">7. Fortgeschrittene
Programmierung mit
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch07.html#genius-gel-error-handling">Fehlerbehandlung</a></span></dt><dt><span class="sect1"><a
href="ch07s02.html">Übergeordnete Syntax</a></span></dt><dt><span class="sect1"><a
href="ch07s03.html">Funktionen als Rückgabe</a></span></dt><dt><span class="sect1"><a
href="ch07s04.html">Echte lokale Variablen</a></span></dt><dt><span class="sect1"><a href="ch07s05.html">GEL
Startprozedur</a></span></dt><dt><span class="sect1"><a href="ch07s06.html">Laden von
Programmen</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch08.html">8. Matrizen in
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch08.html#genius-gel-matrix-support">Matrizen
eingeben</a></span></dt><dt><span class="sect1"><a href="ch08s02.html">Operatoren für konjugierte
Transposition und Transposition</a></span></dt><dt><span class="sect1"><a href="ch08s03.html">Lineare
Algebra</a></span></dt></dl></dd><dt><span class="chapter"><a h
ref="ch09.html">9. Polynome in GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch09.html#genius-gel-polynomials-using">Verwendung von Polynomen</a></span></dt></dl></dd><dt><span
class="chapter"><a href="ch10.html">10. Mengenlehre in GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch10.html#genius-gel-sets-using">Mengen verwenden</a></span></dt></dl></dd><dt><span class="chapter"><a
href="ch11.html">11. Liste der GEL-Funktionen</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch11.html#genius-gel-function-list-commands">Befehle</a></span></dt><dt><span class="sect1"><a
href="ch11s02.html">Grundlegendes</a></span></dt><dt><span class="sect1"><a
href="ch11s03.html">Parameter</a></span></dt><dt><span class="sect1"><a
href="ch11s04.html">Konstanten</a></span></dt><dt><span class="sect1"><a
href="ch11s05.html">Numerik</a></span></dt><dt><span class="sect1"><a
href="ch11s06.html">Trigonometrie</a></span></dt><dt><span class="sect1"><a href="ch11s07.h
tml">Zahlentheorie</a></span></dt><dt><span class="sect1"><a
href="ch11s08.html">Matrixoperationen</a></span></dt><dt><span class="sect1"><a href="ch11s09.html">Lineare
Algebra</a></span></dt><dt><span class="sect1"><a href="ch11s10.html">Kombinatorik</a></span></dt><dt><span
class="sect1"><a href="ch11s11.html">Analysis</a></span></dt><dt><span class="sect1"><a
href="ch11s12.html">Funktionen</a></span></dt><dt><span class="sect1"><a href="ch11s13.html">Gleichungen
lösen</a></span></dt><dt><span class="sect1"><a href="ch11s14.html">Statistik</a></span></dt><dt><span
class="sect1"><a href="ch11s15.html">Polynomials</a></span></dt><dt><span class="sect1"><a
href="ch11s16.html">Mengenlehre</a></span></dt><dt><span class="sect1"><a href="ch11s17.html">Commutative
Algebra</a></span></dt><dt><span class="sect1"><a href="ch11s18.html">Verschiedenes</a></span></dt><dt><span
class="sect1"><a href="ch11s19.html">Symbolische Operationen</a></span></dt><dt><span class="sect1"><a href="
ch11s20.html">Darstellung</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch12.html">12.
Beispielprogramme in GEL</a></span></dt><dt><span class="chapter"><a href="ch13.html">13.
Einstellungen</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch13.html#genius-prefs-output">Ausgabe</a></span></dt><dt><span class="sect1"><a
href="ch13s02.html">Genauigkeit</a></span></dt><dt><span class="sect1"><a
href="ch13s03.html">Terminal</a></span></dt><dt><span class="sect1"><a
href="ch13s04.html">Speicher</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch14.html">14. Info
zu <span class="application">Genius Mathematikwerkzeug</span></a></span></dt></dl></div><div
class="list-of-figures"><p><b>Abbildungsverzeichnis</b></p><dl><dt>2.1. <a
href="ch02s02.html#mainwindow-fig"><span class="application">Genius
Mathematikwerkzeug</span>-Fenster</a></dt><dt>4.1. <a href="ch04.html#lineplot-fig">Fenster »Darstellung
erstellen«</a></dt><dt>4.2. <a href="ch04.html#lin
eplot2-fig">Fenster »Darstellen«</a></dt><dt>4.3. <a href="ch04s02.html#paramplot-fig">Reiter »Parametrische
Darstellung«</a></dt><dt>4.4. <a href="ch04s02.html#paramplot2-fig">Parametrische
Darstellung</a></dt><dt>4.5. <a
href="ch04s05.html#surfaceplot-fig">2D-Darstellung</a></dt></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch01.html">Weiter</a></td></tr><tr><td width="40%" align="left" valign="top"> </td><td width="20%"
align="center"> </td><td width="40%" align="right" valign="top"> Kapitel 1.
Einführung</td></tr></table></div></body></html>
diff --git a/help/el/html/ch01.html b/help/el/html/ch01.html
new file mode 100644
index 0000000..44a29b6
--- /dev/null
+++ b/help/el/html/ch01.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Κεφάλαιο 1.
Εισαγωγή</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="index.html" title="Εγχειρίδιο Genius"><link
rel="prev" href="index.html" title="Εγχειρίδιο Genius"><link rel="next" href="ch02.html" title="Κεφάλαιο 2.
Ξεκίνημα"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Κεφάλαιο
1. Εισαγωγή</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="index.html">Προηγ</a> </td><th
width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch02.html">Επόμενο</a></td></tr></table><hr></div><div class="chapter"><di
v class="titlepage"><div><div><h1 class="title"><a name="genius-introduction"></a>Κεφάλαιο 1.
Εισαγωγή</h1></div></div></div><p>Η εφαρμογή <span class="application">Εργαλείο μαθηματικών Genius</span>
είναι μια γενική αριθμομηχανή για χρήση ως αριθμομηχανή επιφάνειας εργασίας, ένα εκπαιδευτικό εργαλείο στα
μαθηματικά και είναι χρήσιμη ακόμα και για έρευνα. Η χρησιμοποιούμενη γλώσσα στο <span
class="application">εργαλείο μαθηματικών Genius</span> σχεδιάζεται για να είναι ‘μαθηματική’ με την έννοια
ότι πρέπει να είναι ‘ότι εννοείτε είναι ότι παίρνετε’. Φυσικά αυτό δεν είναι ένας πλήρως εφικτός στόχος. Το
<span class="applicat
ion">εργαλείο μαθηματικών Genius</span> παρουσιάζει ρητούς, ακέραιους τυχαίας ακρίβειας και αριθμούς κινητής
υποδιαστολής πολλαπλής ακρίβειας χρησιμοποιώντας τη βιβλιοθήκη GMP. Διαχειρίζεται μιγαδικούς αριθμούς
χρησιμοποιώντας καρτεσιανή σημειογραφία. Έχει καλή επεξεργασία διανυσμάτων και πινάκων και μπορεί να
χειριστεί βασική γραμμική άλγεβρα. Η γλώσσα προγραμματισμού επιτρέπει στον χρήστη να ορίσει συναρτήσεις,
μεταβλητές και τροποποιήσεις παραμέτρων.</p><p>Το <span class="application">εργαλείο μαθηματικών
Genius</span> έρχεται σε δύο εκδόσεις. Μια έκδ�
�ση είναι η γραφική έκδοση GNOME, που χαρακτηρίζει μια διεπαφή τεχνοτροπίας IDE και την ικανότητα να
σχεδιάσει συναρτήσεις μιας ή δύο μεταβλητών. Η έκδοση γραμμής εντολών δεν απαιτεί το GNOME, αλλά φυσικά δεν
υλοποιεί οποιοδήποτε γνώρισμα απαιτεί τη γραφική διεπαφή.</p><p>
+ Parts of this manual describe the graphical version of the calculator,
+ but the language is of course the same. The command line only version
+ lacks the graphing capabilities and all other capabilities that require
+ the graphical user interface.
+ </p><p>
+ Generally, when some feature of the language (function, operator, etc...)
+ is new in some version past 1.0.5, it is mentioned, but
+ below 1.0.5 you would have to look at the NEWS file.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="index.html">Προηγ</a> </td><td width="20%" align="center"> </td><td
width="40%" align="right"> <a accesskey="n" href="ch02.html">Επόμενο</a></td></tr><tr><td width="40%"
align="left" valign="top">Εγχειρίδιο Genius </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top"> Κεφάλαιο 2.
Ξεκίνημα</td></tr></table></div></body></html>
diff --git a/help/el/html/ch02.html b/help/el/html/ch02.html
new file mode 100644
index 0000000..0d3232c
--- /dev/null
+++ b/help/el/html/ch02.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Κεφάλαιο 2.
Ξεκίνημα</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="index.html" title="Εγχειρίδιο Genius"><link
rel="prev" href="ch01.html" title="Κεφάλαιο 1. Εισαγωγή"><link rel="next" href="ch02s02.html" title="Όταν
ξεκινάτε το Genius"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Κεφάλαιο 2. Ξεκίνημα</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch01.html">Προηγ</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch02s02.html">Επόμενο</a></td></tr></table><hr></div><div class
="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="genius-getting-started"></a>Κεφάλαιο
2. Ξεκίνημα</h1></div></div></div><div class="toc"><p><b>Πίνακας Περιεχομένων</b></p><dl
class="toc"><dt><span class="sect1"><a href="ch02.html#genius-to-start">Για να ξεκινήσετε το <span
class="application">εργαλείο μαθηματικών Genius</span></a></span></dt><dt><span class="sect1"><a
href="ch02s02.html">Όταν ξεκινάτε το Genius</a></span></dt></dl></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-to-start"></a>Για να
ξεκινήσετε το <span class="application">εργαλείο μαθηματικών Genius</span></h2></div></div></div><p>You can
start <span class="application">Genius Mathematics Tool</span> in the following ways:
+ </p><div class="variablelist"><dl class="variablelist"><dt><span class="term">Το μενού <span
class="guimenu">Εφαρμογές</span></span></dt><dd><p>Ανάλογα με το λειτουργικό σας σύστημα και την έκδοση, το
στοιχείο μενού για το <span class="application">Εργαλείο μαθηματικών Genius</span> μπορεί να εμφανιστεί σε
διαφορετικές θέσεις. Μπορεί να είναι στο <span class="guisubmenu">Εκπαίδευση</span>, <span
class="guisubmenu">Βοηθήματα</span>, <span class="guisubmenu">Γραφείο</span>, <span
class="guisubmenu">Επιστήμη</span>, ή παρόμοια υπομενού, ανάλογα με την συγκεκριμένη διαμόρφωση. Το στοιχείου
μενού που ψάχνετε είναι <span class="guimenuitem">Εργαλείο μαθηματικών Genius</span>. Μόλις το
εντοπίσετε αυτό το στοιχείο μενού πατήστε το για να ξεκινήσετε το <span class="application">Εργαλείο
μαθηματικών Genius</span>.</p></dd><dt><span class="term">Ο διάλογος <span
class="guilabel">Εκτέλεση</span></span></dt><dd><p>Ανάλογα με την εγκατάσταση του συστήματός σας, το στοιχείο
μενού μπορεί να μην είναι διαθέσιμο. Αν δεν είναι, μπορείτε να ανοίξετε τον διάλογο εκτέλεσης και να
εκτελέσετε την <span class="command"><strong>gnome-genius</strong></span>.</p></dd><dt><span
class="term">Γραμμή εντολών</span></dt><dd><p>Για να ξεκινήσετε την έκδοση GNOME του <span
class="application">Εργαλείο μαθηματικών Genius</span> εκτελέστε την <span
class="command"><strong>gnome-genius<
/strong></span> από την γραμμή εντολών.</p><p>Για να ξεκινήσετε μόνο την έκδοση της γραμμής εντολών,
εκτελέστε την ακόλουθη εντολή: <span class="command"><strong>genius</strong></span>. Αυτή η έκδοση δεν
περιλαμβάνει το γραφικό περιβάλλον και κάποιες λειτουργίες όπως η σχεδίαση δεν θα είναι
διαθέσιμες.</p></dd></dl></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch01.html">Προηγ</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch02s02.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Κεφάλαιο 1. Εισαγωγή
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a>
</td><td width="40%" align="right" valign="top"> Όταν ξεκινάτε το
Genius</td></tr></table></div></body></html>
diff --git a/help/el/html/ch02s02.html b/help/el/html/ch02s02.html
new file mode 100644
index 0000000..87e9de9
--- /dev/null
+++ b/help/el/html/ch02s02.html
@@ -0,0 +1,27 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Όταν ξεκινάτε το
Genius</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch02.html" title="Κεφάλαιο 2.
Ξεκίνημα"><link rel="prev" href="ch02.html" title="Κεφάλαιο 2. Ξεκίνημα"><link rel="next" href="ch03.html"
title="Κεφάλαιο 3. Βασική χρήση"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Όταν ξεκινάτε το Genius</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch02.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 2. Ξεκίνημα</th><td width="20%"
align="right"> <a accesskey="n" href="ch03.html">Επόμεν
ο</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-when-start"></a>Όταν ξεκινάτε το Genius</h2></div></div></div><p>Όταν
ξεκινάτε την έκδοση GNOME του <span class="application">Εργαλείο μαθηματικών Genius</span>, το εικονιζόμενο
παράθυρο στο <a class="xref" href="ch02s02.html#mainwindow-fig" title="Σχήμα 2.1. Το παράθυρο Εργαλείο
μαθηματικών Genius">Σχήμα 2.1, «Το παράθυρο <span class="application"> Εργαλείο μαθηματικών
Genius</span>»</a> εμφανίζεται.</p><div class="figure"><a name="mainwindow-fig"></a><p class="title"><b>Σχήμα
2.1. Το παράθυρο <span class="application"> Εργαλείο μαθηματικών Genius</span></b></p><div
class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/genius_window.png" alt="Shows Εργαλείο μαθηματικών Genius main window. Contains titlebar,
menubar, toolbar and working area. Menubar contains Αρχείο, Επεξεργασία, Αριθμομηχανή, Examples, Programs,
Ρυθμίσεις, and Βοήθεια menus."></div></div></div></div><br class="figure-break"><p>Το παράθυρο <span
class="application">Εργαλείο μαθηματικών Genius</span> περιέχει τα παρακάτω στοιχεία:</p><div
class="variablelist"><dl class="variablelist"><dt><span class="term">Γραμμή μενού.</span></dt><dd><p>Τα μενού
στη γραμμή μενού περιέχουν όλες τις εντολές που χρειάζεστε για να δουλέψετε με αρχεία στο <span
class="application">Εργαλείο μαθηματικών Genius</span>. Το μενού <span class="guilabel">Αρχείο</span>
περιέχει στοιχεί
α για φόρτωση και αποθήκευση στοιχείων καθώς και δημιουργία νέων προγραμμάτων. Η εντολή <span
class="guilabel">φόρτωση και εκτέλεση...</span> δεν ανοίγει ένα νέο παράθυρο για το πρόγραμμα, αλλά απλά
εκτελεί άμεσα το πρόγραμμα. Είναι ισοδύναμη με την εντολή <span
class="command"><strong>φόρτωση</strong></span>.</p><p>
+ The <span class="guilabel">Calculator</span> menu controls the
+calculator engine. It allows you to run the currently selected program or to
+interrupt the current calculation. You can also look at the full expression of
+the last answer (useful if the last answer was too large to fit onto the
+console), or you can view a listing of the values of all user defined
+variables. You can also monitor user variables, which is especially useful
+while a long calculation is running, or to debug a certain program.
+ Finally the <span class="guilabel">Calculator</span> allows plotting functions using a
user friendly dialog box.
+ </p><p>
+ The <span class="guilabel">Examples</span> menu is a list of example
+ programs or demos. If you open the menu, it will load the
+ example into a new program, which you can run, edit, modify,
+ and save. These programs should be well documented
+ and generally demonstrate either some feature of <span class="application">Genius
Mathematics Tool</span>
+ or some mathematical concept.
+ </p><p>
+ The <span class="guilabel">Programs</span> menu lists
+ the currently open programs and allows you to switch
+ between them.
+ </p><p>Τα άλλα μενού έχουν τις ίδιες οικείες συναρτήσεις όπως στις άλλες
εφαρμογές.</p></dd><dt><span class="term">Εργαλειοθήκη.</span></dt><dd><p>Η εργαλειοθήκη περιέχει ένα
υποσύνολο των εντολών που μπορείτε να προσπελάσετε από τη γραμμή μενού.</p></dd><dt><span
class="term">Περιοχή εργασίας</span></dt><dd><p>Η περιοχή εργασίας είναι η πρωτεύουσα μέθοδος αλληλεπίδρασης
με την εφαρμογή.</p><p>Η περιοχή εργασίας αρχικά έχει μόνο την καρτέλα <span class="guilabel">κονσόλα</span>,
που είναι ο κύριος τρόπος αλληλεπίδρασης με την αριθμομηχανή. Εδώ πληκτρολογείτε παραστάσεις και τα
αποτελέσματα ε�
�ιστρέφονται αμέσως μετά το πάτημα του πλήκτρου εισαγωγής.</p><p>
+ Alternatively you can write longer programs and those can
+ appear in separate tabs. The programs are a set of commands or
+ functions that can be run all at once rather than entering them
+ at the command line. The programs can be saved in files for later
+ retrieval.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch02.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch02.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch03.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Κεφάλαιο 2. Ξεκίνημα
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%"
align="right" valign="top"> Κεφάλαιο 3. Βασική χρήση</td></tr></table></div></body></html>
diff --git a/help/el/html/ch03.html b/help/el/html/ch03.html
new file mode 100644
index 0000000..6066ae4
--- /dev/null
+++ b/help/el/html/ch03.html
@@ -0,0 +1,31 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Κεφάλαιο 3. Βασική
χρήση</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="index.html" title="Εγχειρίδιο Genius"><link
rel="prev" href="ch02s02.html" title="Όταν ξεκινάτε το Genius"><link rel="next" href="ch03s02.html"
title="Για να δημιουργήσετε ένα νέο πρόγραμμα"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Κεφάλαιο 3. Βασική χρήση</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch02s02.html">Προηγ</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch03s02.html">�
�πόμενο</a></td></tr></table><hr></div><div class="chapter"><div class="titlepage"><div><div><h1
class="title"><a name="genius-usage"></a>Κεφάλαιο 3. Βασική χρήση</h1></div></div></div><div
class="toc"><p><b>Πίνακας Περιεχομένων</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch03.html#genius-usage-workarea">Χρήση της περιοχής εργασίας</a></span></dt><dt><span class="sect1"><a
href="ch03s02.html">Για να δημιουργήσετε ένα νέο πρόγραμμα</a></span></dt><dt><span class="sect1"><a
href="ch03s03.html">Για το άνοιγμα και την εκτέλεση ενός προγράμματος</a></span></dt></dl></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-usage-workarea"></a>Χρήση της περιοχής εργασίας</h2></div></div></div><p>Κανονικά, αλληλεπιδράτε
με την �
�ριθμομηχανή στην καρτέλα <span class="guilabel">κονσόλα</span> της περιοχής εργασίας. Αν τρέχετε την
κειμενική μόνο έκδοση, τότε η κονσόλα θα είναι το μόνο πράγμα που είναι διαθέσιμο σε σας. Αν θέλετε να
χρησιμοποιήσετε το <span class="application">Εργαλείο μαθηματικών Genius</span> ως αριθμομηχανή μόνο,
πληκτρολογήστε απλά την παράστασή σας εδώ και η επιστρεφόμενη τιμή θα υπολογιστεί.</p><p>
+ To evaluate an expression, type it into the <span class="guilabel">Console</span> work area and
press enter.
+ Expressions are written in a
+language called GEL. The most simple GEL expressions just looks like
+mathematics. For example
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>30*70 +
67^3.0 + ln(7) * (88.8/100)</code></strong>
+</pre><p>
+or
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>62734 +
812634 + 77^4 mod 5</code></strong>
+</pre><p>
+or
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>| sin(37) -
e^7 |</code></strong>
+</pre><p>
+or
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>sum n=1 to 70
do 1/n</code></strong>
+</pre><p>
+(Last is the harmonic sum from 1 to 70)
+</p><p>Για να πάρετε έναν κατάλογο συναρτήσεων και εντολών, πληκτρολογήστε: </p><pre class="screen"><code
class="prompt">genius> </code><strong class="userinput"><code>help</code></strong>
+</pre><p> Αν θέλετε να πάρετε περισσότερη βοήθεια για μια συγκεκριμένη συνάρτηση, πληκτρολογήστε: </p><pre
class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>help
FunctionName</code></strong>
+</pre><p> Για να προβάλετε αυτό το εγχειρίδιο, πληκτρολογήστε: </p><pre class="screen"><code
class="prompt">genius> </code><strong class="userinput"><code>manual</code></strong>
+</pre><p>
+Suppose you have previously saved some GEL commands as a program to a file and
+you now want to execute them.
+To load this program from the file <code class="filename">path/to/program.gel</code>,
+type
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>load
path/to/program.gel</code></strong>
+</pre><p>
+<span class="application">Genius Mathematics Tool</span> keeps track of the current directory.
+To list files in the current directory type <span class="command"><strong>ls</strong></span>, to change
directory
+do <strong class="userinput"><code>cd directory</code></strong> as in the UNIX command shell.
+</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch02s02.html">Προηγ</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch03s02.html">Επόμενο</a></td></tr><tr><td
width="40%" align="left" valign="top">Όταν ξεκινάτε το Genius </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top"> Για να δημιουργήσετε
ένα νέο πρόγραμμα</td></tr></table></div></body></html>
diff --git a/help/el/html/ch03s02.html b/help/el/html/ch03s02.html
new file mode 100644
index 0000000..445dc08
--- /dev/null
+++ b/help/el/html/ch03s02.html
@@ -0,0 +1,31 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Για να δημιουργήσετε
ένα νέο πρόγραμμα</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch03.html" title="Κεφάλαιο 3. Βασική
χρήση"><link rel="prev" href="ch03.html" title="Κεφάλαιο 3. Βασική χρήση"><link rel="next"
href="ch03s03.html" title="Για το άνοιγμα και την εκτέλεση ενός προγράμματος"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Για να δημιουργήσετε ένα νέο
πρόγραμμα</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch03.html">Προηγ</a> </td><th
width="60%" a
lign="center">Κεφάλαιο 3. Βασική χρήση</th><td width="20%" align="right"> <a accesskey="n"
href="ch03s03.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-usage-create-program"></a>Για να δημιουργήσετε ένα νέο πρόγραμμα</h2></div></div></div><p>
+ If you wish to enter several more complicated commands, or perhaps write a complicated
+ function using the <a class="link" href="ch05.html" title="Κεφάλαιο 5. Βασικά της GEL">GEL</a>
language, you can create a new
+ program.
+ </p><p>
+To start writing a new program, choose
+<span class="guimenu">File</span> → <span class="guimenuitem">New
+Program</span>. A new tab will appear in the work area. You
+can write a <a class="link" href="ch05.html" title="Κεφάλαιο 5. Βασικά της GEL">GEL</a> program in this work
area.
+Once you have written your program you can run it by
+<span class="guimenu">Calculator</span> → <span class="guimenuitem">Run</span> (or
+the <span class="guilabel">Run</span> toolbar button).
+This will execute your program and will display any output on the <span class="guilabel">Console</span> tab.
+Executing a program is equivalent of taking the text of the program and
+typing it into the console. The only difference is that this input is done
+independent of the console and just the output goes onto the console.
+<span class="guimenu">Calculator</span> → <span class="guimenuitem">Run</span>
+will always run the currently selected program even if you are on the <span class="guilabel">Console</span>
+tab. The currently selected program has its tab in bold type. To select a
+program, just click on its tab.
+ </p><p>
+To save the program you've just written, choose <span class="guimenu">File</span> → <span
class="guimenuitem">Save As...</span>.
+Similarly as in other programs you can choose
+<span class="guimenu">File</span> → <span class="guimenuitem">Save</span> to save a program that already has
+a filename attached to it. If you have many opened programs you have edited and wish to save you can also
choose
+<span class="guimenu">File</span> → <span class="guimenuitem">Save All Unsaved</span>.
+ </p><p>
+ Programs that have unsaved changes will have a "[+]" next to their filename. This way you can
see if the file
+ on disk and the currently opened tab differ in content. Programs which have not yet had a
filename associated
+ with them are always considered unsaved and no "[+]" is printed.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch03.html">Προηγ</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch03.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch03s03.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Κεφάλαιο 3. Βασική
χρήση </td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%"
align="right" valign="top"> Για το άνοιγμα και την εκτέλεση ενός
προγράμματος</td></tr></table></div></body></html>
diff --git a/help/el/html/ch03s03.html b/help/el/html/ch03s03.html
new file mode 100644
index 0000000..f91f340
--- /dev/null
+++ b/help/el/html/ch03s03.html
@@ -0,0 +1,6 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Για το άνοιγμα και την
εκτέλεση ενός προγράμματος</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch03.html" title="Κεφάλαιο 3.
Βασική χρήση"><link rel="prev" href="ch03s02.html" title="Για να δημιουργήσετε ένα νέο πρόγραμμα"><link
rel="next" href="ch04.html" title="Κεφάλαιο 4. Γραφική παράσταση"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Για το άνοιγμα και την εκτέλεση ενός προγράμματος</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch03s02.html">Πρ�
�ηγ</a> </td><th width="60%" align="center">Κεφάλαιο 3. Βασική χρήση</th><td width="20%" align="right"> <a
accesskey="n" href="ch04.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-usage-open-program"></a>Για
το άνοιγμα και την εκτέλεση ενός προγράμματος</h2></div></div></div><p>Για να ανοίξετε ένα αρχείο, επιλέξτε
<span class="guimenu">Αρχείο</span> → <span class="guimenuitem">Άνοιγμα</span>. Μια νέα καρτέλα που περιέχει
το αρχείο θα εμφανιστεί στην περιοχή εργασίας. Μπορείτε να την χρησιμοποιήσετε για να επεξεργαστείτε το
αρχείο.</p><p>Για να εκτελέσετε ένα πρόγραμμα από ένα αρχείο, επιλέξτε <spa
n class="guimenu">Αρχείο</span> → <span class="guimenuitem">Φόρτωση και εκτέλεση...</span>. Αυτό θα τρέξει
το πρόγραμμα χωρίς να το ανοίξει σε ξεχωριστή καρτέλα. Αυτό είναι ισοδύναμο με την εντολή <span
class="command"><strong>φόρτωση</strong></span>.</p><p>
+ If you have made edits to a file you wish to throw away and want to reload to the version
that's on disk,
+ you can choose the
+ <span class="guimenu">File</span> → <span class="guimenuitem">Reload from Disk</span> menuitem.
This is useful for experimenting
+ with a program and making temporary edits, to run a program, but that you do not intend to keep.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch03s02.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch03.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch04.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Για να δημιουργήσετε ένα
νέο πρόγραμμα </td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td
width="40%" align="right" valign="top"> Κεφάλαιο 4. Γραφική παράσταση</td></tr></table></div></body></html>
diff --git a/help/el/html/ch04.html b/help/el/html/ch04.html
new file mode 100644
index 0000000..3bce24f
--- /dev/null
+++ b/help/el/html/ch04.html
@@ -0,0 +1,6 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Κεφάλαιο 4. Γραφική
παράσταση</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="index.html" title="Εγχειρίδιο Genius"><link
rel="prev" href="ch03s03.html" title="Για το άνοιγμα και την εκτέλεση ενός προγράμματος"><link rel="next"
href="ch04s02.html" title="Παραμετρικές γραφικές παραστάσεις"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Κεφάλαιο 4. Γραφική παράσταση</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch03s03.html">Προηγ</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch04s02.html">Επόμενο</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="genius-gel-plotting"></a>Κεφάλαιο
4. Γραφική παράσταση</h1></div></div></div><div class="toc"><p><b>Πίνακας Περιεχομένων</b></p><dl
class="toc"><dt><span class="sect1"><a href="ch04.html#genius-line-plots">Γραμμικές γραφικές
παραστάσεις</a></span></dt><dt><span class="sect1"><a href="ch04s02.html">Παραμετρικές γραφικές
παραστάσεις</a></span></dt><dt><span class="sect1"><a href="ch04s03.html">Γραφικές παραστάσεις πεδίου
κλίσεων</a></span></dt><dt><span class="sect1"><a href="ch04s04.html">Γραφικές παραστάσεις διανυσματικού
πεδίου</a></span></dt><dt><span class="sect1"><a href="ch04s05.html">Γραφικές παρασ
τάσεις επιφάνειας</a></span></dt></dl></div><p>Η υποστήριξη σχεδίασης είναι διαθέσιμη μόνο στην γραφική
έκδοση GNOME. Όλες οι προσβάσιμες σχεδιάσεις από τη γραφική διεπαφή είναι διαθέσιμες από το παράθυρο <span
class="guilabel">Δημιουργία σχεδίου</span>. Μπορείτε να προσπελάσετε αυτό το παράθυρο είτε πατώντας στο
κουμπί <span class="guilabel">Γραφική παράσταση</span> στην εργαλειοθήκη είτε επιλέγοντας <span
class="guilabel">Γραφική παράσταση</span> από το μενού <span class="guilabel">Αριθμομηχανή</span>. Μπορείτε
επίσης να προσπελάσετε τη λειτουργία γραφικής παράστασης χρησιμοποιώντας τις <a class="lin
k" href="ch11s20.html" title="Γραφική παράσταση">συναρτήσεις σχεδίασης</a> της γλώσσας GEL. Δείτε <a
class="xref" href="ch05.html" title="Κεφάλαιο 5. Βασικά της GEL">Κεφάλαιο 5, <i>Βασικά της GEL</i></a> για να
βρείτε πώς να εισάγετε εκφράσεις που καταλαβαίνει το Genius.</p><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-line-plots"></a>Γραμμικές
γραφικές παραστάσεις</h2></div></div></div><p>Για να παραστήσετε με γραφικές παραστάσεις συναρτήσεις
πραγματικών τιμών μιας μεταβλητής, ανοίξτε το παράθυρο <span class="guilabel">Δημιουργία γραφικής
παράστασης</span>. Μπορείτε επίσης να χρησιμοποιήσετε τη συν
άρτηση <a class="link" href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a>
στη γραμμή εντολών (δείτε την τεκμηρίωσή της).</p><p>Μόλις πατήσετε το κουμπί <span class="guilabel">Γραφική
παράσταση</span>, ανοίγει ένα παράθυρο με κάποια σημειωματάρια σε αυτό. Πρέπει να είσαστε στην καρτέλα
σημειωματαρίου <span class="guilabel">Συνάρτηση γραμμικής γραφικής παράστασης</span> και μέσα σε αυτό να
είσαστε στην καρτέλα σημειωματαρίου <span class="guilabel">Συναρτήσεις / εκφράσεις</span>. Δείτε <a
class="xref" href="ch04.html#lineplot-fig" title="Σχήμα 4.1. Δημιουργία παραθύρου γραφικής παράστασης">Σχήμα
4.1, «Δημιουργία παρ
αθύρου γραφικής παράστασης»</a>.</p><div class="figure"><a name="lineplot-fig"></a><p class="title"><b>Σχήμα
4.1. Δημιουργία παραθύρου γραφικής παράστασης</b></p><div class="figure-contents"><div
class="screenshot"><div class="mediaobject"><img src="figures/line_plot.png" alt="Εμφανίζει το παράθυρο
γραμμικής γραφικής παράστασης."></div></div></div></div><br class="figure-break"><p>Πληκτρολογήστε τις
εκφράσεις με <strong class="userinput"><code>x</code></strong> ως ανεξάρτητη μεταβλητή στα πλαίσια κειμένου.
Εναλλακτικά μπορείτε να δώσετε τα ονόματα των συναρτήσεων όπως <strong
class="userinput"><code>cos</code></strong> αντί να πρέπει να πληκτρολογήσετε <strong
class="userinput"><code>cos(x)</code></strong>. Μπορ�
�ίτε να παραστήσετε μέχρι δέκα συναρτήσεις. Αν κάνετε λάθος και το Genius δεν μπορεί να αναλύσει την είσοδο,
θα το υποδείξει με ένα εικονίδιο προειδοποίησης στα δεξιά του πλαισίου εισόδου του κειμένου, όπου προέκυψε το
σφάλμα, και θα σας δώσει έναν διάλογο σφάλματος. Μπορείτε να αλλάξετε τις περιοχές των εξαρτημένων και
ανεξάρτητων μεταβλητών στο κάτω τμήμα του διαλόγου. Η <code class="varname">y</code> (εξαρτημένη) περιοχή
μπορεί να οριστεί αυτόματα ενεργοποιώντας το πλαίσιο ελέγχου <span class="guilabel">Προσαρμογή εξαρτημένου
άξονα</span>. Τα ονόματα των μεταβλ�
�τών μπορούν επίσης να αλλαχθούν. Πατώντας το κουμπί <span class="guilabel">Γραφική παράσταση</span> παράγει
το γράφημα που εμφανίζεται στο <a class="xref" href="ch04.html#lineplot2-fig" title="Σχήμα 4.2. Παράθυρο
γραφικής παράστασης">Σχήμα 4.2, «Παράθυρο γραφικής παράστασης»</a>.</p><p>
+ The variables can be renamed by clicking the <span class="guilabel">Change variable
names...</span> button, which is useful if you wish to print or save the figure and don't want to use the
standard
+ names. Finally you can also avoid printing the legend and the axis labels completely,
+ which is also useful if printing or
+ saving, when the legend might simply be clutter.
+ </p><div class="figure"><a name="lineplot2-fig"></a><p class="title"><b>Σχήμα 4.2. Παράθυρο γραφικής
παράστασης</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/line_plot_graph.png" alt="Το γράφημα που παράχθηκε."></div></div></div></div><br
class="figure-break"><p>Από εκεί μπορείτε να τυπώσετε τη γραφική παράσταση, να δημιουργήσετε ενθυλακωμένη
postscript ή μια έκδοση PNG της γραφικής παράστασης ή να αλλάξετε την εστίαση. Αν ο εξαρτημένος άξονας δεν
ορίστηκε σωστά, μπορείτε να κάνετε το Genius να τον προσαρμόσει, βρίσκοντας τα ακρότατα των συναρτήσεων
γραφημάτων.</p><p>Για τη σχεδίαση χρησιμοποιώντας τη
γραμμή εντολών δείτε την τεκμηρίωση της συνάρτησης <a class="link"
href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a>.</p></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch03s03.html">Προηγ</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> <a accesskey="n" href="ch04s02.html">Επόμενο</a></td></tr><tr><td width="40%" align="left"
valign="top">Για το άνοιγμα και την εκτέλεση ενός προγράμματος </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top"> Παραμετρικές
γραφικές παραστάσεις</td></tr></table></div></body></html>
diff --git a/help/el/html/ch04s02.html b/help/el/html/ch04s02.html
new file mode 100644
index 0000000..017d119
--- /dev/null
+++ b/help/el/html/ch04s02.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Παραμετρικές γραφικές
παραστάσεις</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch04.html" title="Κεφάλαιο 4. Γραφική
παράσταση"><link rel="prev" href="ch04.html" title="Κεφάλαιο 4. Γραφική παράσταση"><link rel="next"
href="ch04s03.html" title="Γραφικές παραστάσεις πεδίου κλίσεων"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Παραμετρικές γραφικές παραστάσεις</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch04.html">Προηγ</a> </td><th width="60%" align="center">Κε
φάλαιο 4. Γραφική παράσταση</th><td width="20%" align="right"> <a accesskey="n"
href="ch04s03.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-parametric-plots"></a>Παραμετρικές γραφικές παραστάσεις</h2></div></div></div><p>Στο παράθυρο
δημιουργίας γραφικών παραστάσεων, μπορείτε επίσης να επιλέξετε την καρτέλα σημειωματαρίου <span
class="guilabel">Παραμετρικά</span> για να δημιουργήσετε παραμετρικές γραφικές παραστάσεις δύο διαστάσεων. Με
αυτόν τον τρόπο μπορείτε να σχεδιάσετε μια συνάρτηση με μια μοναδική παράμετρο. Μπορείτε είτε να ορίσετε τα
σημεία ως <c
ode class="varname">x</code> και <code class="varname">y</code>, είτε να δώσετε έναν μοναδικό μιγαδικό
αριθμό ως μια συνάρτηση της μεταβλητής <code class="varname">t</code>. Η περιοχή της μεταβλητής <code
class="varname">t</code> δίνεται ρητά και η συνάρτηση παίρνει δείγματα σύμφωνα με τη δοσμένη αύξηση. Η
περιοχή <code class="varname">x</code> και <code class="varname">y</code> μπορεί να οριστεί αυτόματα
ενεργοποιώντας το πλαίσιο ελέγχου <span class="guilabel">Προσαρμογή εξαρτημένου άξονα</span>, ή μπορεί να
οριστεί ρητά. Δείτε <a class="xref" href="ch04s02.html#paramplot-fig" title="Σχήμα 4.3. Καρτέλα παραμετρικών
γραφικών παραστάσεων">Σχήμα 4.3, «Καρτέλα
παραμετρικών γραφικών παραστάσεων»</a>.</p><div class="figure"><a name="paramplot-fig"></a><p
class="title"><b>Σχήμα 4.3. Καρτέλα παραμετρικών γραφικών παραστάσεων</b></p><div
class="figure-contents"><div class="screenshot"><div class="mediaobject"><img src="figures/parametric.png"
alt="Η καρτέλα παραμετρικών γραφικών παραστάσεων στο παράθυρο Δημιουργία γραφικής
παράστασης."></div></div></div></div><br class="figure-break"><p>Ένα παράδειγμα των παραμετρικών γραφικών
παραστάσεων δίνεται στο <a class="xref" href="ch04s02.html#paramplot2-fig" title="Σχήμα 4.4. Παραμετρικές
γραφικές παραστάσεις">Σχήμα 4.4, «Παραμετρικές γραφικές παραστάσεις»</a>. Παρόμοιες πράξεις μπορούν ν�
� γίνουν σε τέτοια γραφήματα όπως μπορούν να γίνουν σε άλλες γραμμικές γραφικές παραστάσεις. Για σχεδίαση
χρησιμοποιώντας τη γραμμή εντολών δείτε την τεκμηρίωση της συνάρτησης <a class="link"
href="ch11s20.html#gel-function-LinePlotParametric"><code class="function">LinePlotParametric</code></a> ή <a
class="link" href="ch11s20.html#gel-function-LinePlotCParametric"><code
class="function">LinePlotCParametric</code></a>.</p><div class="figure"><a name="paramplot2-fig"></a><p
class="title"><b>Σχήμα 4.4. Παραμετρικές γραφικές παραστάσεις</b></p><div class="figure-contents"><div
class="screenshot"><div class="mediaobject"><img src="figures/parametric_graph.png" alt="Παραγόμενη
παραμετρική γραφική παράσταση"></div></div></div></div><br class="figure-break"></div
<div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch04.html">Προηγ</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch04.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch04s03.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Κεφάλαιο 4. Γραφική
παράσταση </td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td
width="40%" align="right" valign="top"> Γραφικές παραστάσεις πεδίου
κλίσεων</td></tr></table></div></body></html>
diff --git a/help/el/html/ch04s03.html b/help/el/html/ch04s03.html
new file mode 100644
index 0000000..a9b9367
--- /dev/null
+++ b/help/el/html/ch04s03.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Γραφικές παραστάσεις
πεδίου κλίσεων</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch04.html" title="Κεφάλαιο 4. Γραφική
παράσταση"><link rel="prev" href="ch04s02.html" title="Παραμετρικές γραφικές παραστάσεις"><link rel="next"
href="ch04s04.html" title="Γραφικές παραστάσεις διανυσματικού πεδίου"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Γραφικές παραστάσεις πεδίου
κλίσεων</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch04s02.html">Προηγ</a> </td>
<th width="60%" align="center">Κεφάλαιο 4. Γραφική παράσταση</th><td width="20%" align="right"> <a
accesskey="n" href="ch04s04.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-slopefield-plots"></a>Γραφικές παραστάσεις πεδίου κλίσεων</h2></div></div></div><p>Στο παράθυρο
δημιουργίας γραφικής παράστασης, μπορείτε επίσης να επιλέξετε την καρτέλα σημειωματαρίου <span
class="guilabel">πεδίου κλίσης</span> για τη δημιουργία μιας δισδιάστατης γραφικής παράστασης πεδίου κλίσης.
Παρόμοιες πράξεις μπορούν να γίνουν σε τέτοια γραφήματα όπως μπορούν να γίνουν στις άλλες γραμμικές
γραφικές παραστάσεις. Για σχεδίαση χρησιμοποιώντας τη γραμμή εντολών δείτε την τεκμηρίωση της συνάρτησης <a
class="link" href="ch11s20.html#gel-function-SlopefieldPlot"><code
class="function">SlopefieldPlot</code></a>.</p><p>Όταν ένα πεδίο κλίσης είναι ενεργό, υπάρχει ένα πρόσθετο
διαθέσιμο μενού <span class="guilabel">επίλυσης</span>, μέσα από το οποίο μπορείτε να εμφανίσετε τον διάλογο
επίλυσης. Εδώ μπορείτε να έχετε συγκεκριμένες λύσεις για γραφικές παραστάσεις σε δεδομένες αρχικές συνθήκες.
Μπορείτε είτε να ορίσετε εσωτερικές συνθήκες στον διάλογο, ή μπορείτε να πατήσετε στη γραφική παράσταση
άμεσα για να ορίσετε το αρχικό σημείο. Ενώ ο διάλογος επίλυσης είναι ενεργός, η εστίαση πατώντας και
μεταφέροντας δεν δουλεύει. Πρέπει να κλείσετε πρώτα τον διάλογο, αν θέλετε να εστιάσετε χρησιμοποιώντας το
ποντίκι.</p><p>Ο επιλύτης χρησιμοποιεί την τυπική μέθοδο Runge-Kutta. Οι γραφικές παραστάσεις θα μείνουν στην
οθόνη μέχρι να καθαριστούν. Ο επιλύτης θα σταματήσει όποτε φτάσει στα όρια του παραθύρου σχεδίασης. Η εστίαση
δεν αλλάζει τα όρια ή τις παραμέτρους των λύσεων, θα πρέπει να καθαρίσετε και να τις επανασχεδιάσετε με
κατάλληλες παραμ�
�τρους. Μπορείτε επίσης να χρησιμοποιήσετε τη συνάρτηση <a class="link"
href="ch11s20.html#gel-function-SlopefieldDrawSolution"><code
class="function">SlopefieldDrawSolution</code></a> για να σχεδιάσετε λύσεις από τη γραμμή εντολών ή
προγραμμάτων.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s02.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch04.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch04s04.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Παραμετρικές γραφικές
παραστάσεις </td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td
width="40%" align="right" valign="top"> Γραφικές παραστάσεις δ�
�ανυσματικού πεδίου</td></tr></table></div></body></html>
diff --git a/help/el/html/ch04s04.html b/help/el/html/ch04s04.html
new file mode 100644
index 0000000..b1c77df
--- /dev/null
+++ b/help/el/html/ch04s04.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Γραφικές παραστάσεις
διανυσματικού πεδίου</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch04.html" title="Κεφάλαιο 4. Γραφική
παράσταση"><link rel="prev" href="ch04s03.html" title="Γραφικές παραστάσεις πεδίου κλίσεων"><link rel="next"
href="ch04s05.html" title="Γραφικές παραστάσεις επιφάνειας"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Γραφικές παραστάσεις διανυσματικού πεδίου</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch04s03.html">Προηγ</a
</td><th width="60%" align="center">Κεφάλαιο 4. Γραφική παράσταση</th><td width="20%" align="right"> <a
accesskey="n" href="ch04s05.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-vectorfield-plots"></a>Γραφικές παραστάσεις διανυσματικού πεδίου</h2></div></div></div><p>Στο
παράθυρο δημιουργίας γραφικής παράστασης, μπορείτε να επιλέξετε επίσης την καρτέλα σημειωματαρίου <span
class="guilabel">διανυσματικό πεδίο</span> για να δημιουργήσετε μια δισδιάστατη γραφική παράσταση
διανυσματικού πεδίου. Παρόμοιες λειτουργίες μπορούν να γίνουν σε τέτοια γραφήματα όπως μπορούν να �
�ίνουν σε άλλες γραμμικές γραφικές παραστάσεις. Για σχεδίαση χρησιμοποιώντας τη γραμμή εντολών δείτε την
τεκμηρίωση της συνάρτησης <a class="link" href="ch11s20.html#gel-function-VectorfieldPlot"><code
class="function">VectorfieldPlot</code></a>.</p><p>Από προεπιλογή η κατεύθυνση και το μέγεθος του
διανυσματικού πεδίου εμφανίζονται. Για να εμφανίσετε μόνο την κατεύθυνση και όχι το μέγεθος, σημειώστε το
κατάλληλο πλαίσιο ελέγχου για να κανονικοποιήσετε τα μήκη των διανυσμάτων.</p><p>Όταν ένα πεδίο κλίσης είναι
ενεργό, υπάρχει ένα πρόσθετο διαθέσιμο μενού <span class="guilabel">επιλύτη</span>, μέσα από τ
ο οποίο μπορείτε να εμφανίσετε τον διάλογο επίλυσης. Εδώ μπορείτε να έχετε συγκεκριμένες λύσεις για γραφικές
παραστάσεις σε δεδομένες αρχικές συνθήκες. Μπορείτε είτε να ορίσετε εσωτερικές συνθήκες στον διάλογο, ή
μπορείτε να πατήσετε στη γραφική παράσταση άμεσα για να ορίσετε το αρχικό σημείο. Ενώ ο διάλογος επίλυσης
είναι ενεργός, η εστίαση πατώντας και μεταφέροντας δεν δουλεύει. Πρέπει να κλείσετε πρώτα τον διάλογο, αν
θέλετε να εστιάσετε χρησιμοποιώντας το ποντίκι.</p><p>Ο επιλύτης χρησιμοποιεί την τυπική μέθοδο Runge-Kutta.
Οι γραφικές �
�αραστάσεις θα μείνουν στην οθόνη μέχρι να καθαριστούν. Η εστίαση δεν αλλάζει τα όρια ή τις παραμέτρους των
λύσεων, θα πρέπει να καθαρίσετε και να τις επανασχεδιάσετε με κατάλληλες παραμέτρους. Μπορείτε επίσης να
χρησιμοποιήσετε τη συνάρτηση <a class="link" href="ch11s20.html#gel-function-VectorfieldDrawSolution"><code
class="function">VectorfieldDrawSolution</code></a> για να σχεδιάσετε λύσεις από τη γραμμή εντολών ή
προγραμμάτων.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s03.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch04.html">Πάνω</a></td><td width="40%" align="right"> <a accessk
ey="n" href="ch04s05.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Γραφικές
παραστάσεις πεδίου κλίσεων </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top"> Γραφικές παραστάσεις
επιφάνειας</td></tr></table></div></body></html>
diff --git a/help/el/html/ch04s05.html b/help/el/html/ch04s05.html
new file mode 100644
index 0000000..c8553c5
--- /dev/null
+++ b/help/el/html/ch04s05.html
@@ -0,0 +1,16 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Γραφικές παραστάσεις
επιφάνειας</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch04.html" title="Κεφάλαιο 4. Γραφική
παράσταση"><link rel="prev" href="ch04s04.html" title="Γραφικές παραστάσεις διανυσματικού πεδίου"><link
rel="next" href="ch05.html" title="Κεφάλαιο 5. Βασικά της GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Γραφικές παραστάσεις επιφάνειας</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch04s04.html">Προηγ</a> </td><th width="60%" align="center">Κεφ�
�λαιο 4. Γραφική παράσταση</th><td width="20%" align="right"> <a accesskey="n"
href="ch05.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-surface-plots"></a>Γραφικές
παραστάσεις επιφάνειας</h2></div></div></div><p>Η Genius μπορεί να σχεδιάσει επίσης επιφάνειες. Επιλέξτε την
καρτέλα <span class="guilabel">γραφική παράσταση επιφάνειας</span> στο κύριο σημειωματάριο του παραθύρου
<span class="guilabel">Δημιουργία γραφικής παράστασης</span>. Εδώ μπορείτε να ορίσετε μια μοναδική έκφραση
που πρέπει να χρησιμοποιήσει είτε τις <code class="varname">x</code> και <code class="varname">y</code> ως
πραγματικέ�
� ανεξάρτητες μεταβλητές ή την <code class="varname">z</code> ως μιγαδική μεταβλητή (όπου <code
class="varname">x</code> είναι το πραγματικό τμήμα της <code class="varname">z</code> και <code
class="varname">y</code> είναι το φανταστικό τμήμα). Για παράδειγμα για να σχεδιάσετε το μέτρο της συνάρτησης
συνημιτόνου για μιγαδικές παραμέτρους, μπορείτε να εισάγετε <strong
class="userinput"><code>|cos(z)|</code></strong>. Αυτό θα είναι ισοδύναμο με <strong
class="userinput"><code>|cos(x+1i*y)|</code></strong>. Δείτε <a class="xref"
href="ch04s05.html#surfaceplot-fig" title="Σχήμα 4.5. Γραφικές παραστάσεις επιφάνειας">Σχήμα 4.5, «Γραφικές
παραστάσεις επιφάνειας»</a>. Για σχεδίαση
χρησιμοποιώντας τη γραμμή εντολών, δείτε την τεκμηρίωση της συνάρτησης <a class="link"
href="ch11s20.html#gel-function-SurfacePlot"><code class="function">SurfacePlot</code></a>.</p><p>
+ The <code class="varname">z</code> range can be set automatically by turning on the <span
class="guilabel">Fit dependent axis</span>
+ checkbox. The variables can be renamed by clicking the <span class="guilabel">Change variable
names...</span> button, which is useful if you wish to print or save the figure and don't want to use the
standard
+ names. Finally you can also avoid printing the legend, which is also useful if printing or
+ saving, when the legend might simply be clutter.
+ </p><div class="figure"><a name="surfaceplot-fig"></a><p class="title"><b>Σχήμα 4.5. Γραφικές
παραστάσεις επιφάνειας</b></p><div class="figure-contents"><div class="screenshot"><div
class="mediaobject"><img src="figures/surface_graph.png" alt="Μέτρο της μιγαδικής συνάρτησης
συνημιτόνου."></div></div></div></div><br class="figure-break"><p>
+ In surface mode, left and right arrow keys on your keyboard will rotate the
+ view along the z axis. Alternatively you can rotate along any axis by
+ selecting <span class="guilabel">Rotate axis...</span> in the <span
class="guilabel">View</span>
+ menu. The <span class="guilabel">View</span> menu also has a top view mode which rotates the
+ graph so that the z axis is facing straight out, that is, we view the graph from the top
+ and get essentially just the colors that define the values of the function getting a
+ temperature plot of the function. Finally you should
+ try <span class="guilabel">Start rotate animation</span>, to start a continuous slow rotation.
+ This is especially good if using <span class="application">Genius Mathematics Tool</span> to
present to an audience.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s04.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch04.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Γραφικές παραστάσεις
διανυσματικού πεδίου </td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td
width="40%" align="right" valign="top"> Κεφάλαιο 5. Βασικά της GEL</td></tr></table></div></body></html>
diff --git a/help/el/html/ch05.html b/help/el/html/ch05.html
new file mode 100644
index 0000000..1648d87
--- /dev/null
+++ b/help/el/html/ch05.html
@@ -0,0 +1,48 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Κεφάλαιο 5. Βασικά της
GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="index.html" title="Εγχειρίδιο Genius"><link
rel="prev" href="ch04s05.html" title="Γραφικές παραστάσεις επιφάνειας"><link rel="next" href="ch05s02.html"
title="Χρήση μεταβλητών"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Κεφάλαιο 5. Βασικά της GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch04s05.html">Προηγ</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch05s02.html">Επόμενο</a>
</td></tr></table><hr></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a
name="genius-gel"></a>Κεφάλαιο 5. Βασικά της GEL</h1></div></div></div><div class="toc"><p><b>Πίνακας
Περιεχομένων</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch05.html#genius-gel-values">Τιμές</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-numbers">Αριθμοί</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-booleans">Λογικές τιμές </a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-strings">Συμβολοσειρές</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-null">Null</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s02.html">Χρήση μεταβλητών</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-setting">Ορισμός �
�εταβλητών</a></span></dt><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-built-in">Ενσωματωμένες μεταβλητές</a></span></dt><dt><span
class="sect2"><a href="ch05s02.html#genius-gel-previous-result">Προηγούμενη μεταβλητή
αποτελέσματος</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch05s03.html">Χρησιμοποίηση
συναρτήσεων</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-defining">Ορισμός συναρτήσεων</a></span></dt><dt><span
class="sect2"><a href="ch05s03.html#genius-gel-functions-variable-argument-lists">Κατάλογοι ορισμάτων
μεταβλητής</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-passing-functions">Πέρασμα συναρτήσεων σε
συναρτήσεις</a></span></dt><dt><span class="sect2"><a href="ch05s03.html#genius-gel-functi
ons-operations">Πράξεις σε συναρτήσεις</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s04.html">Διαχωριστικό</a></span></dt><dt><span class="sect1"><a
href="ch05s05.html">Σχόλια</a></span></dt><dt><span class="sect1"><a href="ch05s06.html">Μετρικός
υπολογισμός</a></span></dt><dt><span class="sect1"><a href="ch05s07.html">Κατάλογος τελεστών
GEL</a></span></dt></dl></div><p>GEL σημαίνει γλώσσα επέκτασης Genius. Είναι η γλώσσα που χρησιμοποιείτε για
να γράψετε προγράμματα στη Genius. Ένα πρόγραμμα στη GEL είναι απλά μια παράσταση που υπολογίζει έναν αριθμό.
Το <span class="application">Εργαλείο μαθηματικών Genius</span> μπορεί να χρησιμοποιηθεί ως μια απλή
αριθμομηχανή, ή ως ένα ισχυ
ρό θεωρητικό εργαλείο αναζήτησης. Η σύνταξη πρέπει να έχει όσο πιο ρηχή καμπύλη μάθησης γίνεται, ειδικά για
χρήση ως αριθμομηχανή.</p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-values"></a>Τιμές</h2></div></div></div><p>Οι τιμές στην GEL μπορεί να είναι <a
class="link" href="ch05.html#genius-gel-values-numbers" title="Αριθμοί">αριθμοί</a>, <a class="link"
href="ch05.html#genius-gel-values-booleans" title="Λογικές τιμές">Λογικές τιμές</a> ή <a class="link"
href="ch05.html#genius-gel-values-strings" title="Συμβολοσειρές">συμβολοσειρές</a>. Η GEL θεωρεί επίσης <a
class="link" href="ch08.html" title="Κεφάλαιο 8. Πίνακες στη GEL">πίνακες</a> ως τιμές. Οι τιμές μπ
ορεί να χρησιμοποιηθούν σε υπολογισμούς, εκχωρημένες σε μεταβλητές και να επιστραφούν από τις συναρτήσεις,
μεταξύ άλλων χρήσεων.</p><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-numbers"></a>Αριθμοί</h3></div></div></div><p>Οι ακέραιοι είναι ο πρώτος τύπος
αριθμού στην GEL. Οι ακέραιοι γράφονται με τον κανονικό τρόπο. </p><pre class="programlisting">1234
+</pre><p> Δεκαεξαδικοί και οκταδικοί αριθμοί μπορούν να γραφτούν χρησιμοποιώντας σημειογραφία C. Για
παράδειγμα: </p><pre class="programlisting">0x123ABC
+01234
+</pre><p> Ή μπορείτε να πληκτρολογήσετε αριθμούς σε μια ελεύθερη βάση χρησιμοποιώντας <code
class="literal"><base>\<number></code>. Ψηφία μεγαλύτερα από 10 χρησιμοποιούν γράμματα με
παρόμοιο τρόπο με τα δεκαεξαδικά. Για παράδειγμα, ένας αριθμός με βάση 23 πρέπει να γραφτεί: </p><pre
class="programlisting">23\1234ABCD
+</pre><p>Ο δεύτερος τύπος αριθμού GEL είναι ρητοί. Οι ρητοί εκφράζονται διαιρώντας απλά δύο ακέραιους. Έτσι,
κάποιος μπορεί να γράψει: </p><pre class="programlisting">3/4
+</pre><p> για να πάρει τρία τέταρτα. Οι ρητοί δέχονται επίσης μικτή σημειογραφία κλάσματος. Έτσι, για να
πάρετε ένα και τρία δέκατα μπορείτε να γράψετε: </p><pre class="programlisting">1 3/10
+</pre><p>
+The next type of number is floating point. These are entered in a similar fashion to C notation. You can use
<code class="literal">E</code>, <code class="literal">e</code> or <code class="literal">@</code> as the
exponent delimiter. Note that using the exponent delimiter gives a float even if there is no decimal point in
the number. Examples:
+</p><pre class="programlisting">1.315
+7.887e77
+7.887e-77
+.3
+0.3
+77e5
+</pre><p>
+ When Genius prints a floating point number it will always append a
+ <code class="computeroutput">.0</code> even if the number is whole. This is to indicate that
+ floating point numbers are taken as imprecise quantities. When a number is written in the
+ scientific notation, it is always a floating point number and thus Genius does not
+ print the <code class="computeroutput">.0</code>.
+ </p><p>
+The final type of number in GEL is the complex numbers. You can enter a complex number as a sum of real and
imaginary parts. To add an imaginary part, append an <code class="literal">i</code>. Here are examples of
entering complex numbers:
+</p><pre class="programlisting">1+2i
+8.01i
+77*e^(1.3i)
+</pre><p>
+ </p><div class="important" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Σημαντικό</h3><p>Κατά την εισαγωγή φανταστικών αριθμών, ένας αριθμός πρέπει να είναι μπροστά
από το <code class="literal">i</code>. Αν χρησιμοποιήσετε <code class="literal">i</code> αυτό καθεαυτό, η
Genius θα το ερμηνεύσει ως αναφορά στη μεταβλητή <code class="varname">i</code>. Αν χρειάζεται να αναφέρετε
το <code class="literal">i</code> αυτό καθεαυτό, χρησιμοποιήστε <code class="literal">1i</code> στη θέση
του.</p><p>Για να χρησιμοποιήσετε μικτή σημειογραφία κλάσματος με φανταστικούς αριθμούς, πρέπει να έχετε το
μικτό κλάσμα σε παρενθέσεις. (δηλαδή, <strong clas
s="userinput"><code>(1 2/5)i</code></strong>)</p></div></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a name="genius-gel-values-booleans"></a>Λογικές τιμές
</h3></div></div></div><p>Η Genius επίσης υποστηρίζει εγγενείς λογικές τιμές. Οι δύο σταθερές λογικών τιμών
ορίζονται ως <code class="constant">true</code> και <code class="constant">false</code>· αυτά τα
αναγνωριστικά μπορούν να χρησιμοποιηθούν όπως κάθε άλλη μεταβλητή. Μπορείτε επίσης να χρησιμοποιήσετε τα
αναγνωριστικά <code class="constant">True</code>, <code class="constant">TRUE</code>, <code
class="constant">False</code> και <code class="constant">FALSE</code> ως παραλλαγές για τα παραπάνω.</p><p>Σε
οποιαδήποτε θέση όπου αναμένεται
παράσταση λογικών τιμών, μπορείτε να χρησιμοποιήσετε μια λογική τιμή ή οποιαδήποτε παράσταση παράγει ή έναν
αριθμό ή μια λογική τιμή. Αν η Genius χρειάζεται να υπολογίσει έναν αριθμό ως λογική τιμή θα ερμηνεύσει το 0
ως <code class="constant">ψευδή</code> και οποιοδήποτε άλλο αριθμό ως <code
class="constant">αληθή</code>.</p><p>Επιπλέον, μπορείτε να κάνετε αριθμητική με λογικές τιμές. Για
παράδειγμα: </p><pre class="programlisting">( (1 + αληθές) - ψευδές ) * αληθές
+</pre><p> είναι το ίδιο με: </p><pre class="programlisting">( (αληθές ή αληθές) ή όχι ψευδές ) και αληθές
+</pre><p> Μόνο πρόσθεση, αφαίρεση και πολλαπλασιασμός υποστηρίζονται. Αν αναμείξετε αριθμούς με λογικές
τιμές σε μια παράσταση, τότε οι αριθμοί μετατρέπονται σε λογικές τιμές όπως περιγράφεται παραπάνω. Αυτό
σημαίνει ότι, για παράδειγμα: το </p><pre class="programlisting">1 == αληθές
+</pre><p> πάντα αξιολογείται σε <code class="constant">αληθές</code> αφού το 1 θα μετατραπεί σε <code
class="constant">αληθές</code> πριν συγκριθεί με το <code class="constant">αληθές</code>.</p></div><div
class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-strings"></a>Συμβολοσειρές</h3></div></div></div><p>Όπως οι αριθμοί και οι λογικές
τιμές, οι συμβολοσειρές στην GEL μπορούν να αποθηκευτούν ως τιμές μέσα σε μεταβλητές και να περάσουν σε
συναρτήσεις. Μπορείτε επίσης να συνενώσετε μια συμβολοσειρά με μια άλλη τιμή χρησιμοποιώντας τον τελεστή συν.
Για παράδειγμα: το </p><pre class="programlisting">a=2+3· "Το αποτέλεσμα εί�
�αι: "+a
+</pre><p> θα δημιουργήσει τη συμβολοσειρά: </p><pre class="programlisting">Το αποτέλεσμα είναι: 5
+</pre><p> Μπορείτε επίσης να χρησιμοποιήσετε τις ακολουθίες διαφυγής παρόμοιες με C όπως <code
class="literal">\n</code>,<code class="literal">\t</code>,<code class="literal">\b</code>,<code
class="literal">\a</code> και <code class="literal">\r</code>. Για να πάρετε ένα <code
class="literal">\</code> or <code class="literal">"</code> μέσα στη συμβολοσειρά μπορείτε να βάλετε
εισαγωγικά με ένα <code class="literal">\</code>. Για παράδειγμα: </p><pre class="programlisting">"Slash: \\
Quotes: \" Tabs: \t1\t2\t3"
+</pre><p> θα κάνει μια συμβολοσειρά: </p><pre class="programlisting">Slash: \ Quotes: " Tabs: 1 2
3
+</pre><p> Σημειώστε, όμως, ότι όταν μια συμβολοσειρά επιστρέφεται από μια συνάρτηση, οι διαφυγές είναι σε
εισαγωγικά, έτσι ώστε η έξοδος να μπορεί να χρησιμοποιηθεί ως είσοδος. Αν θέλετε να εκτυπώσετε τη
συμβολοσειρά όπως είναι (χωρίς διαφυγές), χρησιμοποιήστε τις συναρτήσεις <a class="link"
href="ch11s02.html#gel-function-print"><code class="function">print</code></a> ή <a class="link"
href="ch11s02.html#gel-function-printn"><code class="function">printn</code></a>.</p><p>Επιπλέον, μπορείτε να
χρησιμοποιήσετε τη συνάρτηση βιβλιοθήκης <a class="link" href="ch11s02.html#gel-function-string"><code
class="function">string</code></a> για να μετατρέψετε ο,τιδήποτε σε μια συμ�
�ολοσειρά. Για παράδειγμα: το </p><pre class="programlisting">string(22)
+</pre><p> θα επιστρέψει </p><pre class="programlisting">"22"
+</pre><p> Οι συμβολοσειρές μπορούν επίσης να συγκριθούν με τελεστές <code class="literal">==</code> (ίσον),
<code class="literal">!=</code> (όχι ίσο) και <code class="literal"><=></code>
(σύγκρισης)</p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-null"></a>Null</h3></div></div></div><p>
+There is a special value called
+<code class="constant">null</code>. No operations can be performed on
+it, and nothing is printed when it is returned. Therefore,
+<code class="constant">null</code> is useful when you do not want output from an
+expression. The value <code class="constant">null</code> can be obtained as an expression when you
+type <code class="literal">.</code>, the constant <code class="constant">null</code> or nothing.
+By nothing we mean that if you end an expression with
+a separator <code class="literal">;</code>, it is equivalent to ending it with a
+separator followed by a <code class="constant">null</code>.
+ </p><p>Παράδειγμα: </p><pre class="programlisting">x=5;.
+x=5;
+</pre><p>Κάποιες συναρτήσεις επιστρέφουν <code class="constant">null</code>, όταν καμιά τιμή δεν μπορεί να
επιστραφεί ή όταν συμβαίνει ένα σφάλμα. Επίσης η <code class="constant">null</code> χρησιμοποιείται ως ένα
κενό διάνυσμα ή πίνακας, ή μια κενή αναφορά.</p></div></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch04s05.html">Προηγ</a> </td><td width="20%" align="center"> </td><td width="40%" align="right"> <a
accesskey="n" href="ch05s02.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Γραφικές
παραστάσεις επιφάνειας </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top"> Χρήση μετα
βλητών</td></tr></table></div></body></html>
diff --git a/help/el/html/ch05s02.html b/help/el/html/ch05s02.html
new file mode 100644
index 0000000..20be1d7
--- /dev/null
+++ b/help/el/html/ch05s02.html
@@ -0,0 +1,18 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Χρήση
μεταβλητών</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch05.html" title="Κεφάλαιο 5. Βασικά της
GEL"><link rel="prev" href="ch05.html" title="Κεφάλαιο 5. Βασικά της GEL"><link rel="next"
href="ch05s03.html" title="Χρησιμοποίηση συναρτήσεων"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Χρήση μεταβλητών</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch05.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 5. Βασικά της
GEL</th><td width="20%" align="right"> <a accesskey="n" href="ch05s
03.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-variables"></a>Χρήση
μεταβλητών</h2></div></div></div><p>Σύνταξη: </p><pre class="programlisting">VariableName
+</pre><p> Παράδειγμα: </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>e</code></strong>
+=2.71828182846
+</pre><p>Για να αξιολογηθεί μια μεταβλητή αυτή καθεαυτή, εισάγετε απλώς το όνομα της μεταβλητής. Αυτή θα
επιστρέψει την τιμή της μεταβλητής. Μπορείτε να χρησιμοποιήσετε μια μεταβλητή οπουδήποτε θα μπορούσατε
κανονικά να χρησιμοποιήσετε έναν αριθμό ή την συμβολοσειρά. Επιπλέον, οι μεταβλητές είναι απαραίτητες όταν
ορίζονται συναρτήσεις που παίρνουν ορίσματα (δείτε <a class="xref"
href="ch05s03.html#genius-gel-functions-defining" title="Ορισμός συναρτήσεων">«Ορισμός
συναρτήσεων»</a>).</p><div class="tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Χρήση συμπλήρωσης καρτέλας</h3><p>Μπορείτ�
� να χρησιμοποιήσετε την συμπλήρωση καρτέλας για να πάρετε την Genius για να συμπληρωθούν τα ονόματα των
μεταβλητών για σας. Δοκιμάστε την πληκτρολόγηση των πρώτων λίγων γραμμάτων του ονόματος και πατήστε <strong
class="userinput"><code>καρτέλα</code></strong>.</p></div><div class="important" style="margin-left: 0.5in;
margin-right: 0.5in;"><h3 class="title">Τα ονόματα των μεταβλητών είναι με διάκριση πεζών/κεφαλαίων</h3><p>Τα
ονόματα των μεταβλητών είναι με διάκριση πεζών/κεφαλαίων. Αυτό σημαίνει ότι οι μεταβλητές με όνομα <code
class="varname">hello</code>, <code class="varname">HELLO</code> and <code class="varname">Hello</code> είναι
όλες διαφορετικ
ές μεταβλητές.</p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-variables-setting"></a>Ορισμός μεταβλητών</h3></div></div></div><p>Σύνταξη: </p><pre
class="programlisting"><identifier> = <value>
+<identifier> := <value>
+</pre><p> Παράδειγμα: </p><pre class="programlisting">x = 3
+x := 3
+</pre><p>Για εκχώρηση σε μια μεταβλητή, χρησιμοποιήστε τους τελεστές <code class="literal">=</code> ή <code
class="literal">:=</code>. Αυτοί οι τελεστές ορίζουν την τιμή της μεταβλητής και επιστρέφουν την τιμή που
ορίσατε, έτσι μπορείτε να κάνετε πράγματα όπως </p><pre class="programlisting">a = b = 5
+</pre><p> Αυτό θα ορίσει το <code class="varname">b</code> σε 5 και μετά ορίζει επίσης το <code
class="varname">a</code> σε 5.</p><p>Οι τελεστές <code class="literal">=</code> και <code
class="literal">:=</code> μπορούν να χρησιμοποιηθούν και οι δύο για να ορίσουν μεταβλητές. Η διαφορά μεταξύ
τους είναι ότι ο τελεστής <code class="literal">:=</code> δρα πάντα ως μια ανάθεση τελεστή, ενώ ο τελεστής
<code class="literal">=</code> μπορεί να ερμηνευτεί ως δοκιμή για ισότητα όταν χρησιμοποιείται σε ένα
περιεχόμενο όπου μια παράσταση λογικής τιμής αναμένεται.</p><p>Για περισσότερες πληροφορίες σχετικά με την
εμβέλεια των μεταβλητών, δηλ
αδή, πότε είναι ορατές οι μεταβλητές, δείτε <a class="xref" href="ch06s05.html" title="Καθολικές μεταβλητές
και εμβέλεια μεταβλητών">«Καθολικές μεταβλητές και εμβέλεια μεταβλητών»</a>.</p></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a name="genius-gel-variables-built-in"></a>Ενσωματωμένες
μεταβλητές</h3></div></div></div><p>
+GEL has a number of built-in ‘variables’, such as
+<code class="varname">e</code>, <code class="varname">pi</code> or <code class="varname">GoldenRatio</code>.
These are widely used constants with a preset value, and
+they cannot be assigned new values.
+There are a number of other built-in variables.
+See <a class="xref" href="ch11s04.html" title="Σταθερές">«Σταθερές»</a> for a full list. Note that <code
class="varname">i</code> is not by default
+the square root of negative one (the imaginary number), and is undefined to allow its use as a counter. If
you wish to write the imaginary number you need to
+use <strong class="userinput"><code>1i</code></strong>.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-previous-result"></a>Προηγούμενη μεταβλητή αποτελέσματος</h3></div></div></div><p>Οι
μεταβλητές <code class="varname">Ans</code> και <code class="varname">ans</code> μπορούν να χρησιμοποιηθούν
για να πάρετε το αποτέλεσμα της τελευταίας παράστασης. Για παράδειγμα, αν έχετε εκτελέσει κάποιο υπολογισμό,
για να προσθέσετε το 389 στο αποτέλεσμα μπορείτε να κάνετε: </p><pre class="programlisting">Ans+389
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05.html">Προηγ</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch05.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05s03.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Κεφάλαιο 5. Βασικά της
GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%"
align="right" valign="top"> Χρησιμοποίηση συναρτήσεων</td></tr></table></div></body></html>
diff --git a/help/el/html/ch05s03.html b/help/el/html/ch05s03.html
new file mode 100644
index 0000000..94b802c
--- /dev/null
+++ b/help/el/html/ch05s03.html
@@ -0,0 +1,20 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Χρησιμοποίηση
συναρτήσεων</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch05.html" title="Κεφάλαιο 5. Βασικά της
GEL"><link rel="prev" href="ch05s02.html" title="Χρήση μεταβλητών"><link rel="next" href="ch05s04.html"
title="Διαχωριστικό"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Χρησιμοποίηση συναρτήσεων</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s02.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 5. Βασικά της GEL</th><td
width="20%" align="right"> <a accesskey="n" href="
ch05s04.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-functions"></a>Χρησιμοποίηση
συναρτήσεων</h2></div></div></div><p>Σύνταξη: </p><pre class="programlisting">FunctionName(όρισμα1, όρισμα2,
...)
+</pre><p> Παράδειγμα: </p><pre class="programlisting">Factorial(5)
+cos(2*pi)
+gcd(921,317)
+</pre><p> Για να αξιολογήσετε μια συνάρτηση, εισάγετε το όνομα της συνάρτησης, που ακολουθείται από τα
ορίσματα (αν υπάρχουν) της συνάρτησης σε παρενθέσεις. Αυτό θα επιστρέψει το αποτέλεσμα της εφαρμογής της
συνάρτησης στα ορίσματά της. Ο αριθμός των ορισμάτων στη συνάρτηση είναι, φυσικά, διαφορετικός για κάθε
συνάρτηση.</p><p>Υπάρχουν πολλές ενσωματωμένες συναρτήσεις, όπως οι <a class="link"
href="ch11s06.html#gel-function-sin"><code class="function">sin</code></a>, <a class="link"
href="ch11s06.html#gel-function-cos"><code class="function">cos</code></a> και <a class="link"
href="ch11s06.html#gel-function-tan"><code class="function">tan</code></a>. Μπορείτε να χ
ρησιμοποιήσετε την ενσωματωμένη εντολή <a class="link" href="ch11.html#gel-command-help"><code
class="function">help</code></a> για να πάρετε έναν κατάλογο διαθέσιμων συναρτήσεων, ή δείτε <a class="xref"
href="ch11.html" title="Κεφάλαιο 11. Κατάλογος συναρτήσεων της GEL">Κεφάλαιο 11, <i>Κατάλογος συναρτήσεων της
GEL</i></a> για έναν πλήρη κατάλογο.</p><div class="tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Χρήση συμπλήρωσης καρτέλας</h3><p>Μπορείτε να χρησιμοποιήσετε την συμπλήρωση καρτέλας για να
βάλετε την Genius να συμπληρώσει τα ονόματα των συναρτήσεων για σας. Δοκιμάστε την πληκτρολόγηση των πρώτων
λίγων γραμμ�
�των του ονόματος και πατήστε <strong class="userinput"><code>Καρτέλα</code></strong>.</p></div><div
class="important" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Τα ονόματα των
συναρτήσεων είναι με διάκριση πεζών/κεφαλαίων</h3><p>Τα ονόματα των συναρτήσεων είναι με διάκριση
πεζών/κεφαλαίων. Αυτό σημαίνει ότι οι συναρτήσεις με όνομα <code class="function">dosomething</code>, <code
class="function">DOSOMETHING</code> και <code class="function">DoSomething</code> είναι όλες διαφορετικές
συναρτήσεις.</p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-defining"></a>Ορισμός συναρτήσεων</h3></div></div></div><p>Σύνταξη: </p><pre
class="programlisting">function <identifier&
gt;(<comma separated arguments>) = <function body>
+<identifier> = (`() = <function body>)
+</pre><p> Το <code class="literal">`</code> είναι ο χαρακτήρας ` και υποδηλώνει μια ανώνυμη συνάρτηση.
Ορίζοντας την σε ένα όνομα μεταβλητής την ορίζετε αποτελεσματικά ως συνάρτηση.</p><p>Μια συνάρτηση παίρνει
μηδέν ή περισσότερα ορίσματα που χωρίζονται με κόμμα και επιστρέφει το αποτέλεσμα του σώματος της συνάρτησης.
Ορίζοντας τις δικές σας συναρτήσεις είναι κυρίως ένα θέμα ευκολίας· μια πιθανή χρήση είναι να βάλετε σύνολα
συναρτήσεων που ορίστηκαν στα αρχεία GEL, τα οποία η Genius μπορεί να φορτώσει για να τα κάνει διαθέσιμα.
Παράδειγμα: </p><pre class="programlisting">func
tion addup(a,b,c) = a+b+c
+</pre><p> έπειτα <strong class="userinput"><code>addup(1,4,9)</code></strong> δίνει 14</p></div><div
class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-variable-argument-lists"></a>Κατάλογοι ορισμάτων
μεταβλητής</h3></div></div></div><p>Αν συμπεριλάβετε <code class="literal">...</code> μετά το τελευταίο όνομα
ορίσματος στη δήλωση συνάρτησης, τότε η Genius θα επιτρέψει οποιονδήποτε αριθμό ορισμάτων να περαστεί επί
τόπου σε αυτό το όρισμα. Αν δεν περαστούν ορίσματα τότε αυτό το όρισμα θα οριστεί σε <code
class="constant">null</code>. Αλλιώς, θα είναι οριζόντιο διάνυσμα που περιέχει όλα τα ορίσματα. Για
παράδειγμα: </p><pre class="programlisting">
function f(a,b...) = b
+</pre><p> Τότε το <strong class="userinput"><code>f(1,2,3)</code></strong> δίνει <code
class="computeroutput">[2,3]</code>, ενώ <strong class="userinput"><code>f(1)</code></strong> δίνει <code
class="constant">null</code>.</p></div><div class="sect2"><div class="titlepage"><div><div><h3
class="title"><a name="genius-gel-functions-passing-functions"></a>Πέρασμα συναρτήσεων σε
συναρτήσεις</h3></div></div></div><p>Στο Genius, είναι δυνατό να περάσετε μια συνάρτηση ως ένα όρισμα σε μια
άλλη συνάρτηση. Αυτό μπορεί να γίνει χρησιμοποιώντας είτε ‘κόμβους συνάρτησης’ ή ανώνυμες
συναρτήσεις.</p><p>Αν δεν εισάγετε τις παρενθέσεις μετά από ένα όνομα συνάρτησης, αντί να αξιολογηθεί, η
συνάρτηση θα επιστραφεί
στη θέση της ως ‘κόμβος συνάρτησης’. Ο κόμβος συνάρτησης μπορεί τότε να περαστεί σε μια άλλη συνάρτηση.
Παράδειγμα: </p><pre class="programlisting">function f(a,b) = a(b)+1;
+function b(x) = x*x;
+f(b,2)
+</pre><p>Για να περάσετε συναρτήσεις που δεν ορίζονται, μπορείτε να χρησιμοποιήσετε μια ανώνυμη συνάρτηση
(δείτε <a class="xref" href="ch05s03.html#genius-gel-functions-defining" title="Ορισμός συναρτήσεων">«Ορισμός
συναρτήσεων»</a>). Δηλαδή, αν θέλετε να περάσετε μια συνάρτηση χωρίς να της δώσετε ένα όνομα. Σύνταξη:
</p><pre class="programlisting">function(<comma separated arguments>) = <function body>
+`(<comma separated arguments>) = <function body>
+</pre><p> Παράδειγμα: </p><pre class="programlisting">function f(a,b) = a(b)+1;
+f(`(x) = x*x,2)
+</pre><p> Αυτό θα επιστρέψει 5.</p></div><div class="sect2"><div class="titlepage"><div><div><h3
class="title"><a name="genius-gel-functions-operations"></a>Πράξεις σε
συναρτήσεις</h3></div></div></div><p>Κάποιες συναρτήσεις επιτρέπουν αριθμητικές πράξεις και κάποιες
συναρτήσεις μοναδικού ορίσματος όπως <a class="link" href="ch11s05.html#gel-function-exp"><code
class="function">exp</code></a> ή <a class="link" href="ch11s05.html#gel-function-ln"><code
class="function">ln</code></a>, λειτουργούν στη συνάρτηση. Για παράδειγμα, η </p><pre
class="programlisting">exp(sin*cos+4)
+</pre><p> θα επιστρέψει μια συνάρτηση που παίρνει <code class="varname">x</code> και επιστρέφει <strong
class="userinput"><code>exp(sin(x)*cos(x)+4)</code></strong>. Είναι ισοδύναμη λειτουργικά με την
πληκτρολόγηση </p><pre class="programlisting">`(x) = exp(sin(x)*cos(x)+4)
+</pre><p> Αυτή η πράξη μπορεί να είναι χρήσιμη, όταν ορίζετε γρήγορα συναρτήσεις. Για παράδειγμα για να
δημιουργήσετε μια συνάρτηση που λέγεται <code class="varname">f</code> για να εκτελέσετε την παραπάνω πράξη,
μπορείτε να πληκτρολογήσετε απλά: </p><pre class="programlisting">f = exp(sin*cos+4)
+</pre><p> Μπορεί επίσης να χρησιμοποιηθεί στη σχεδίαση. Για παράδειγμα, για να σχεδιάσετε τετράγωνο ημιτόνου
μπορείτε να εισάγετε: </p><pre class="programlisting">LinePlot(sin^2)
+</pre><div class="warning" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Προειδοποίηση</h3><p>Δεν μπορούν όλες οι συναρτήσεις να χρησιμοποιηθούν κατ' αυτόν τον τρόπο.
Για παράδειγμα, όταν χρησιμοποιείτε μια δυαδική πράξη οι συναρτήσεις πρέπει να παίρνουν τον ίδιο αριθμό
ορισμάτων.</p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch05s02.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05s04.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Χρήση μεταβλητών
</td><td width="20%" align="center"><a accesskey="h" href="index.html">
Αρχή</a></td><td width="40%" align="right" valign="top"> Διαχωριστικό</td></tr></table></div></body></html>
diff --git a/help/el/html/ch05s04.html b/help/el/html/ch05s04.html
new file mode 100644
index 0000000..3b1c254
--- /dev/null
+++ b/help/el/html/ch05s04.html
@@ -0,0 +1,28 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Διαχωριστικό</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch05.html"
title="Κεφάλαιο 5. Βασικά της GEL"><link rel="prev" href="ch05s03.html" title="Χρησιμοποίηση
συναρτήσεων"><link rel="next" href="ch05s05.html" title="Σχόλια"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Διαχωριστικό</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch05s03.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 5. Βασικά της
GEL</th><td width="20%" align="right"> <a accesskey="n" href="ch05s05.html">Επόμενο</a></td></tr></
table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-separator"></a>Διαχωριστικό</h2></div></div></div><p>
+ GEL is somewhat different from other languages in how it deals with multiple commands and
functions.
+ In GEL you must chain commands together with a separator operator.
+That is, if you want to type more than one expression you have to use
+the <code class="literal">;</code> operator in between the expressions. This is
+a way in which both expressions are evaluated and the result of the second one (or the last one
+if there is more than two expressions) is returned.
+Suppose you type the following:
+</p><pre class="programlisting">3 ; 5
+</pre><p>
+This expression will yield 5.
+ </p><p>
+This will require some parenthesizing to make it unambiguous sometimes,
+especially if the <code class="literal">;</code> is not the top most primitive. This slightly differs from
+other programming languages where the <code class="literal">;</code> is a terminator of statements, whereas
+in GEL it’s actually a binary operator. If you are familiar with pascal
+this should be second nature. However genius can let you pretend it is a
+terminator to some degree. If a <code class="literal">;</code> is found at the end of a parenthesis or a
block,
+genius will append a null to it as if you would have written
+<strong class="userinput"><code>;null</code></strong>.
+This is useful in case you do not want to return a value from say a loop,
+or if you handle the return differently. Note that it will slightly slow down
+the code if it is executed too often as there is one more operator involved.
+ </p><p>
+ If you are typing expressions in a program you do not have to add a semicolon. In this case
+ genius will simply print the return value whenever it executes the expression. However, do
note that if you are defining a
+ function, the body of the function is a single expression.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s03.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05s05.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Χρησιμοποίηση
συναρτήσεων </td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td
width="40%" align="right" valign="top"> Σχόλια</td></tr></table></div></body></html>
diff --git a/help/el/html/ch05s05.html b/help/el/html/ch05s05.html
new file mode 100644
index 0000000..32c2250
--- /dev/null
+++ b/help/el/html/ch05s05.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Σχόλια</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Εγχειρίδιο Genius"><link rel="up" href="ch05.html" title="Κεφάλαιο 5. Βασικά της GEL"><link rel="prev"
href="ch05s04.html" title="Διαχωριστικό"><link rel="next" href="ch05s06.html" title="Μετρικός
υπολογισμός"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Σχόλια</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s04.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 5. Βασικά της GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch05s06.html">Επόμενο</a></td></tr></table><hr></div><div c
lass="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-comments"></a>Σχόλια</h2></div></div></div><p>
+ GEL is similar to other scripting languages in that <code class="literal">#</code> denotes
+ a comment, that is text that is not meant to be evaluated. Everything beyond the
+ pound sign till the end of line will just be ignored. For example,
+</p><pre class="programlisting"># This is just a comment
+# every line in a comment must have its own pound sign
+# in the next line we set x to the value 123
+x=123;
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s04.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05s06.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Διαχωριστικό </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right"
valign="top"> Μετρικός υπολογισμός</td></tr></table></div></body></html>
diff --git a/help/el/html/ch05s06.html b/help/el/html/ch05s06.html
new file mode 100644
index 0000000..acfb319
--- /dev/null
+++ b/help/el/html/ch05s06.html
@@ -0,0 +1,21 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Μετρικός
υπολογισμός</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch05.html" title="Κεφάλαιο 5. Βασικά της
GEL"><link rel="prev" href="ch05s05.html" title="Σχόλια"><link rel="next" href="ch05s07.html"
title="Κατάλογος τελεστών GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Μετρικός υπολογισμός</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s05.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 5. Βασικά της GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch05s07.html">Επόμε
νο</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-modular-evaluation"></a>Μετρικός υπολογισμός</h2></div></div></div><p>
+ Genius implements modular arithmetic.
+To use it you just add "mod <integer>" after
+the expression. Example:
+<strong class="userinput"><code>2^(5!) * 3^(6!) mod 5</code></strong>
+It could be possible to do modular arithmetic by computing with integers and then modding in the end with
+the <code class="literal">%</code> operator, which simply gives the remainder, but
+that may be time consuming if not impossible when working with larger numbers.
+For example, <strong class="userinput"><code>10^(10^10) % 6</code></strong> will simply not work (the
exponent
+will be too large), while
+<strong class="userinput"><code>10^(10^10) mod 6</code></strong> is instantaneous. The first expression
first tries to compute the integer
+<strong class="userinput"><code>10^(10^10)</code></strong> and then find remainder after division by 6,
while the second expression evaluates
+everything modulo 6 to begin with.
+ </p><p>Μπορείτε να υπολογίσετε τους αντίστροφους των αριθμών mod μερικών ακέραιων χρησιμοποιώντας απλά
ρητούς αριθμούς (φυσικά ο αντίστροφος πρέπει να υπάρχει). Παραδείγματα: </p><pre class="programlisting">10^-1
mod 101
+1/10 mod 101</pre><p> Μπορείτε επίσης να κάνετε υπολογισμό υπολοίπων με πίνακες που συμπεριλαμβάνουν λήψη
αντίστροφων, δυνάμεων και διαίρεση. Παράδειγμα: </p><pre class="programlisting">A = [1,2;3,4]
+B = A^-1 mod 5
+A*B mod 5</pre><p> Αυτό πρέπει να δίνει τον μοναδιαίο πίνακα ως Β που θα είναι ο αντίστροφος του Α mod
5.</p><p>Μερικές συναρτήσεις όπως <a class="link" href="ch11s05.html#gel-function-sqrt"><code
class="function">sqrt</code></a> ή <a class="link" href="ch11s05.html#gel-function-log"><code
class="function">log</code></a> δουλεύουν διαφορετικά όταν είναι κατάσταση σε modulo. Αυτές τότε δουλεύουν
όπως οι διακριτές εκδόσεις που δουλεύουν μέσα στον δακτύλιο των ακεραίων που επιλέξατε. Για παράδειγμα: η
</p><pre class="programlisting">genius> sqrt(4) mod 7
+=
+[2, 5]
+genius> 2*2 mod 7
+= 4</pre><p><code class="function">sqrt</code> θα επιστρέψει στην πραγματικότητα όλες τις πιθανές
τετραγωνικές ρίζες.</p><p>Μην συνδέετε τελεστές mod, απλά τοποθετήστε τους στο τέλος του υπολογισμού, όλοι οι
υπολογισμοί στην παράσταση στα αριστερά θα εκτελεστούν σε αριθμητική mod. Αν βάλετε μια mod μέσα σε μια mod,
θα πάρετε απροσδόκητα αποτελέσματα. Αν θέλετε απλά να πάρετε υπόλοιπο ενός απλού αριθμού και να ελέγξετε
ακριβώς πότε παίρνονται υπόλοιπα, καλύτερα να χρησιμοποιήσετε τον τελεστή <code class="literal">%</code>.
Όταν χρειάζεται να συνδέσετε αρκετές παραστάσεις σε αρ�
�θμητική υπολοίπων με διαφορετικούς διαιρέτες, μπορεί να είναι καλύτερο να χωρίσετε απλά την παράσταση σε
αρκετές και να χρησιμοποιήσετε προσωρινές μεταβλητές για να αποφύγετε ένα mod μέσα σε ένα mod.</p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch05s05.html">Προηγ</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch05.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05s07.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Σχόλια </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right"
valign="top"> Κατάλογος τελεστών GEL</td></tr></table></div></body></html>
diff --git a/help/el/html/ch05s07.html b/help/el/html/ch05s07.html
new file mode 100644
index 0000000..69df3bd
--- /dev/null
+++ b/help/el/html/ch05s07.html
@@ -0,0 +1,47 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Κατάλογος τελεστών
GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch05.html" title="Κεφάλαιο 5. Βασικά της
GEL"><link rel="prev" href="ch05s06.html" title="Μετρικός υπολογισμός"><link rel="next" href="ch06.html"
title="Κεφάλαιο 6. Προγραμματισμός με GEL"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Κατάλογος τελεστών GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch05s06.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 5.
Βασικά της GEL</th><td width="20%" align="right"> <a
accesskey="n" href="ch06.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-operator-list"></a>Κατάλογος τελεστών GEL</h2></div></div></div><p>
+ Everything in GEL is really just an expression. Expressions are stringed together with
+ different operators. As we have seen, even the separator is simply a binary operator
+ in GEL. Here is a list of the operators in GEL.
+ </p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><strong
class="userinput"><code>a;b</code></strong></span></dt><dd><p>Το διαχωριστικό, δίνει και την <code
class="varname">a</code> και την <code class="varname">b</code>, αλλά επιστρέφει μόνο το αποτέλεσμα της <code
class="varname">b</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a=b</code></strong></span></dt><dd><p>Ο τελεστής ανάθεσης. Αυτός αναθέτει τη <code
class="varname">b</code> στη <code class="varname">a</code> (η <code class="varname">a</code> πρέπει να είναι
μια έγκυρη <a class="link" href="ch06s09.html" title="Lvalues (αριστερές τιμές)">lvalue</a>) (σημειώστε όμως
ότι αυτός ο τελεστής μπορεί να μεταφραστεί σε <code class="literal">==</code> αν χρησιμοποιηθε�
� σε μια θέση όπου αναμένεται παράσταση λογικής τιμής)</p></dd><dt><span class="term"><strong
class="userinput"><code>a:=b</code></strong></span></dt><dd><p>Ο τελεστής ανάθεσης. Εκχωρεί την <code
class="varname">b</code> στην <code class="varname">a</code> (η <code class="varname">a</code> πρέπει να
είναι μια έγκυρη <a class="link" href="ch06s09.html" title="Lvalues (αριστερές τιμές)">lvalue</a>). Αυτός
είναι διαφορετικός από τον <code class="literal">=</code>, επειδή δεν μεταφράζεται ποτέ σε μια <code
class="literal">==</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>|a|</code></strong></span></dt><dd><p>
+ Absolute value.
+ In case the expression is a complex number the result will be the modulus
+(distance from the origin). For example:
+<strong class="userinput"><code>|3 * e^(1i*pi)|</code></strong>
+returns 3.
+ </p><p>Δείτε <a class="ulink" href="http://mathworld.wolfram.com/AbsoluteValue.html"
target="_top">Mathworld</a> για περισσότερες πληροφορίες.</p></dd><dt><span class="term"><strong
class="userinput"><code>a^b</code></strong></span></dt><dd><p>Εκθετοποίηση, ανυψώνει μια <code
class="varname">a</code> στη δύναμη <code class="varname">b</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.^b</code></strong></span></dt><dd><p>Εκθετοποίηση στοιχείου κατά στοιχείο. Ανυψώνει
κάθε στοιχείο ενός πίνακα <code class="varname">a</code> στη δύναμη <code class="varname">b</code>. Ή αν η
<code class="varname">b</code> είναι ένας πίνακας του ίδιου μεγέθους όπως η <code class="varname">a</code>,
τότε κάνει την πράξη στοιχείο κατά στοιχείο. Αν η <code class
="varname">a</code> είναι ένας αριθμός και η <code class="varname">b</code> είναι ένας πίνακας, τότε
δημιουργεί έναν πίνακα του ίδιου μεγέθους όπως η <code class="varname">b</code> με τη <code
class="varname">a</code> υψωμένη σε όλες τις διαφορετικές δυνάμεις στην <code
class="varname">b</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a+b</code></strong></span></dt><dd><p>Πρόσθεση. Προσθέτει δύο αριθμούς, πίνακες,
συναρτήσεις ή συμβολοσειρές. Αν προσθέτετε μια συμβολοσειρά σε ο,τιδήποτε το αποτέλεσμα θα είναι απλά μια
συμβολοσειρά. Αν ο ένας είναι ένας τετραγωνικός πίνακας και ο άλλος ένας αριθμός, τότε ο αριθμός πολλαπλα�
�ιάζεται με τον ταυτοτικό πίνακα.</p></dd><dt><span class="term"><strong
class="userinput"><code>a-b</code></strong></span></dt><dd><p>Αφαίρεση. Αφαιρεί δύο αριθμούς, πίνακες ή
συναρτήσεις.</p></dd><dt><span class="term"><strong
class="userinput"><code>a*b</code></strong></span></dt><dd><p>Πολλαπλασιασμός. Αυτός είναι ο κανονικός
πίνακας πολλαπλασιασμού.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.*b</code></strong></span></dt><dd><p>Πολλαπλασιασμός στοιχείο με στοιχείο αν οι
<code class="varname">a</code> και <code class="varname">b</code> είναι πίνακες.</p></dd><dt><span
class="term"><strong class="userinput"><code>a/b</code></strong></span></dt><dd><p>Διαίρεση. Όταν οι <code
class="varname">a</code> και <code class="varname">b</code> είναι μόνο α�
�ιθμοί, αυτή είναι η κανονική διαίρεση. Όταν είναι πίνακες, τότε αυτή είναι ισοδύναμη με <strong
class="userinput"><code>a*b^-1</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a./b</code></strong></span></dt><dd><p>
+ Element by element division. Same as <strong class="userinput"><code>a/b</code></strong>
for
+ numbers, but operates element by element on matrices.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a\b</code></strong></span></dt><dd><p>Οπίσθια διαίρεση. Είναι η ίδια με <strong
class="userinput"><code>b/a</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.\b</code></strong></span></dt><dd><p>Οπίσθια διαίρεση στοιχείου με
στοιχείο.</p></dd><dt><span class="term"><strong
class="userinput"><code>a%b</code></strong></span></dt><dd><p>Ο τελεστής mod (ισοϋπόλοιπο). Αυτός δεν
ενεργοποιεί την <a class="link" href="ch05s06.html" title="Μετρικός υπολογισμός">κατάσταση υπολοίπων</a>,
αλλά επιστρέφει απλά το υπόλοιπο της <strong class="userinput"><code>a/b</code></strong>.</p></dd><dt><span
class="term"><strong class="userinput"><code>a.%b</code></strong></span></dt><dd><p>Ο τελεστής ισοϋπόλο�
�που στοιχείου κατά στοιχείο. Επιστρέφει το ακέραιο υπόλοιπο μετά το στοιχείο κατά στοιχείο του <strong
class="userinput"><code>a./b</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a mod b</code></strong></span></dt><dd><p>Τελεστής υπολογισμού υπολοίπων. Η παράσταση
<code class="varname">a</code> υπολογίζει το modulo <code class="varname">b</code>. Δείτε <a class="xref"
href="ch05s06.html" title="Μετρικός υπολογισμός">«Μετρικός υπολογισμός»</a>. Κάποιες συναρτήσεις και κάποιοι
τελεστές συμπεριφέρονται διαφορετικά με το ισοϋπόλοιπο ενός ακεραίου.</p></dd><dt><span class="term"><strong
class="userinput"><code>a!</code></strong></span></dt><dd><p>Παραγοντικός τελεστής
. Αυτό είναι παρόμοιο με <strong
class="userinput"><code>1*...*(n-2)*(n-1)*n</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a!!</code></strong></span></dt><dd><p>Διπλός παραγοντικός τελεστής. Αυτός είναι
παρόμοιος με <strong class="userinput"><code>1*...*(n-4)*(n-2)*n</code></strong>.</p></dd><dt><span
class="term"><strong class="userinput"><code>a==b</code></strong></span></dt><dd><p>Τελεστής ισότητας.
Επιστρέφει <code class="constant">αληθές</code> ή <code class="constant">ψευδές</code> ανάλογα με το αν οι
<code class="varname">a</code> και <code class="varname">b</code> είναι ίσες ή όχι.</p></dd><dt><span
class="term"><strong class="userinput"><code>a!=b</code></strong></span></dt><dd><p>Τελεστής ανισότητας,
επιστρέφει <code class="constant">αληθές</code> αν η <code cla
ss="varname">a</code> δεν είναι ίση με την <code class="varname">b</code>, αλλιώς επιστρέφει <code
class="constant">ψευδές</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a<>b</code></strong></span></dt><dd><p>Εναλλακτικός τελεστής ανισότητας,
επιστρέφει <code class="constant">αληθές</code> αν η <code class="varname">a</code> δεν είναι ίση με την
<code class="varname">b</code>, αλλιώς επιστρέφει <code class="constant">ψευδές</code>.</p></dd><dt><span
class="term"><strong class="userinput"><code>a<=b</code></strong></span></dt><dd><p>Τελεστής μικρότερος
από ή ίσος, επιστρέφει <code class="constant">αληθές</code> αν <code class="varname">a</code> είναι μικρότερο
από ή ίσο με <code class="varname">b</code>, αλλιώς επιστρέφει <code class="cons
tant">ψευδές</code>. Αυτοί μπορούν να συνδεθούν όπως στο <strong class="userinput"><code>a <= b <=
c</code></strong> (μπορούν επίσης να συνδυαστούν με τον τελεστή λιγότερο από).</p></dd><dt><span
class="term"><strong class="userinput"><code>a>=b</code></strong></span></dt><dd><p>Τελεστής μεγαλύτερος
από ή ίσος, επιστρέφει <code class="constant">αληθές</code> αν η <code class="varname">a</code> είναι
μεγαλύτερη από ή ίση με την <code class="varname">b</code>, αλλιώς επιστρέφει <code
class="constant">ψευδές</code>. Αυτοί μπορούν να συνδεθούν όπως στο <strong class="userinput"><code>a >= b
>= c</code></strong> (μπορούν επίσης να συνδυαστούν με τον τελεστή μεγαλύτερο από).</p></dd><dt><span
class="term"><str
ong class="userinput"><code>a<b</code></strong></span></dt><dd><p>Τελεστής μικρότερος από, επιστρέφει
<code class="constant">αληθές</code> αν <code class="varname">a</code> είναι μικρότερη από <code
class="varname">b</code>, αλλιώς επιστρέφει <code class="constant">ψευδές</code>. Αυτοί μπορούν να συνδεθούν
όπως στο <strong class="userinput"><code>a < b < c</code></strong> (μπορούν επίσης να συνδυαστούν με
τον τελεστή μικρότερο από ή ίσο).</p></dd><dt><span class="term"><strong
class="userinput"><code>a>b</code></strong></span></dt><dd><p>Τελεστής μεγαλύτερος από, επιστρέφει <code
class="constant">αληθές</code> αν η <code class="varname">a</code> είναι μικρότερη από <code
class="varname">b</code>, αλλιώς επιστρέφει <code class="cons
tant">ψευδές</code>. Αυτοί μπορούν να συνδεθούν όπως στο <strong class="userinput"><code>a > b >
c</code></strong> (μπορούν επίσης να συνδυαστούν με τον τελεστή μεγαλύτερο από ή ίσο).</p></dd><dt><span
class="term"><strong class="userinput"><code>a<=>b</code></strong></span></dt><dd><p>Τελεστής
σύγκρισης. Αν <code class="varname">a</code> είναι ίσο με <code class="varname">b</code> επιστρέφει 0, αν
<code class="varname">a</code> είναι μικρότερο από <code class="varname">b</code> επιστρέφει -1 και αν <code
class="varname">a</code> είναι μεγαλύτερο από <code class="varname">b</code> επιστρέφει 1.</p></dd><dt><span
class="term"><strong class="userinput"><code>a και b</code></strong></span></dt><dd><p>Λογικό και. Επιστρέφει
αληθές αν αμφότερ�
� τα <code class="varname">a</code> και <code class="varname">b</code> είναι αληθή, αλλιώς επιστρέφει
ψευδές. Αν είναι δοσμένοι οι αριθμοί, οι μη μηδενικοί αριθμοί αντιμετωπίζονται ως αληθείς.</p></dd><dt><span
class="term"><strong class="userinput"><code>a ή b</code></strong></span></dt><dd><p>
+ Logical or.
+ Returns true if either
+ <code class="varname">a</code> or <code class="varname">b</code> is true,
+ else returns false. If given numbers, nonzero numbers
+ are treated as true.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a xor
b</code></strong></span></dt><dd><p>Λογικό αποκλειστικό ή (xor). Επιστρέφει αληθές αν ένα ακριβώς από τα
<code class="varname">a</code> ή <code class="varname">b</code> είναι αληθές, αλλιώς επιστρέφει ψευδές. Αν οι
αριθμοί είναι δοσμένοι, οι μη μηδενικοί αριθμοί αντιμετωπίζονται ως αληθείς.</p></dd><dt><span
class="term"><strong class="userinput"><code>όχι a</code></strong></span></dt><dd><p>Λογικό όχι. Επιστρέφει
την λογική άρνηση του <code class="varname">a</code></p></dd><dt><span class="term"><strong
class="userinput"><code>-a</code></strong></span></dt><dd><p>
+ Negation operator. Returns the negative of a number or a matrix (works element-wise on a
matrix).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>&a</code></strong></span></dt><dd><p>Αναφορά μεταβλητής (για το πέρασμα μιας
αναφοράς σε μια μεταβλητή). Δείτε <a class="xref" href="ch06s08.html"
title="Αναφορές">«Αναφορές»</a>.</p></dd><dt><span class="term"><strong
class="userinput"><code>*a</code></strong></span></dt><dd><p>Αποαναφορά μεταβλητής (για πρόσβαση σε μια
αναφερθείσα μεταβλητή). Δείτε <a class="xref" href="ch06s08.html"
title="Αναφορές">«Αναφορές»</a>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a'</code></strong></span></dt><dd><p>Αναστροφή συζυγούς πίνακα. Δηλαδή, οι γραμμές
και οι στήλες εναλλάσσονται και παίρνουμε τον συζυγή μιγαδικό όλων των καταχωρί
σεων. Δηλαδή αν τα στοιχεία i,j της <code class="varname">a</code> είναι x+iy, τότε τα στοιχεία j,i του
<strong class="userinput"><code>a'</code></strong> είναι x-iy.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.'</code></strong></span></dt><dd><p>Η αναστροφή πίνακα, δεν παίρνει τον συζυγή
μιγαδικό των καταχωρίσεων. Δηλαδή, τα στοιχεία i,j της <code class="varname">a</code> γίνονται τα στοιχεία
του <strong class="userinput"><code>a.'</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,c)</code></strong></span></dt><dd><p>Λήψη στοιχείου ενός πίνακα στη γραμμή <code
class="varname">b</code> και στήλη <code class="varname">c</code>. Αν οι <code class="varname">b</code>,
<code class="varname">c</code> είναι διανύσματα, τ
ότε αυτό παίρνει τις αντίστοιχες στήλες γραμμές ή υποπίνακες.</p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,)</code></strong></span></dt><dd><p>Λήψη γραμμής ενός πίνακα (ή πολλαπλών
γραμμών αν το <code class="varname">b</code> είναι ένα διάνυσμα).</p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,:)</code></strong></span></dt><dd><p>Ίδιο με το παραπάνω.</p></dd><dt><span
class="term"><strong class="userinput"><code>a@(,c)</code></strong></span></dt><dd><p>Λήψη στήλης ενός πίνακα
(ή στηλών αν το <code class="varname">c</code> είναι ένα διάνυσμα).</p></dd><dt><span class="term"><strong
class="userinput"><code>a@(:,c)</code></strong></span></dt><dd><p>Ίδιο με το παραπάνω.</p></dd><dt><span
class="term"><strong class="userinput"><code>a@(b)</code></stron
g></span></dt><dd><p>Λήψη ενός στοιχείου από έναν πίνακα αντιμετωπίζοντας τον ως διάνυσμα. Αυτό θα διατρέξει
τον πίνακα κατά τη γραμμή.</p></dd><dt><span class="term"><strong
class="userinput"><code>a:b</code></strong></span></dt><dd><p>Δόμηση ενός διανύσματος από το <code
class="varname">a</code> στο <code class="varname">b</code> (ή ορίστε γραμμή, περιοχή στήλης για τον τελεστή
<code class="literal">@</code>). Για παράδειγμα για να πάρετε τις γραμμές 2 μέχρι 4 του πίνακα <code
class="varname">Α</code> μπορούμε να κάνουμε </p><pre class="programlisting">A@(2:4,)
+ </pre><p> ως <strong class="userinput"><code>2:4</code></strong> που θα επιστρέψει ένα διάνυσμα
<strong class="userinput"><code>[2,3,4]</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a:b:c</code></strong></span></dt><dd><p>Δόμηση ενός διανύσματος από <code
class="varname">a</code> σε <code class="varname">c</code> με <code class="varname">b</code> ως ένα βήμα.
Δηλαδή για παράδειγμα </p><pre class="programlisting">genius> 1:2:9
+=
+`[1, 3, 5, 7, 9]
+</pre><p>
+ When the numbers involved are floating point numbers, for example
+ <strong class="userinput"><code>1.0:0.4:3.0</code></strong>, the output is what is expected
+ even though adding 0.4 to 1.0 five times is actually just slightly
+ more than 3.0 due to the way that floating point numbers are
+ stored in base 2 (there is no 0.4, the actual number stored is
+ just ever so slightly bigger). The way this is handled is the
+ same as in the for, sum, and prod loops. If the end is within
+ <strong class="userinput"><code>2^-20</code></strong> times the step size of the endpoint,
+ the endpoint is used and we assume there were roundoff errors.
+ This is not perfect, but it handles the majority of the cases.
+ This check is done only from version 1.0.18 onwards, so execution
+ of your code may differ on older versions. If you want to avoid
+ dealing with this issue, use actual rational numbers, possibly
+ using the <code class="function">float</code> if you wish to get floating
+ point numbers in the end. For example
+ <strong class="userinput"><code>1:2/5:3</code></strong> does the right thing and
+ <strong class="userinput"><code>float(1:2/5:3)</code></strong> even gives you floating
+ point numbers and is ever so slightly more precise than
+ <strong class="userinput"><code>1.0:0.4:3.0</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>(a)i</code></strong></span></dt><dd><p>Κάντε έναν φανταστικό αριθμό (πολλαπλασιάστε
το <code class="varname">a</code> με τον φανταστικό). Σημειώστε ότι, κανονικά ο αριθμός <code
class="varname">i</code> γράφεται ως <strong class="userinput"><code>1i</code></strong>. Έτσι το παραπάνω
είναι ίσο με </p><pre class="programlisting">(a)*1i
+ </pre></dd><dt><span class="term"><strong
class="userinput"><code>`a</code></strong></span></dt><dd><p>Βάλτε ` σε ένα αναγνωριστικό έτσι ώστε να μην
υπολογιστεί. Ή βάλτε ` σε έναν πίνακα, έτσι ώστε να μην επεκταθεί.</p></dd><dt><span class="term"><strong
class="userinput"><code>a swapwith b</code></strong></span></dt><dd><p>Εναλλαγή τιμής του <code
class="varname">a</code> με την τιμή του <code class="varname">b</code>. Πρός το παρόν δεν λειτουργεί σε
περιοχές στοιχείων πίνακα. Επιστρέφει <code class="constant">null</code>. Διαθέσιμο από την έκδοση
1.0.13.</p></dd><dt><span class="term"><strong class="userinput"><code>increment
a</code></strong></span></dt><dd><p>Αύξηση της μεταβλητής <code class="varname">a</code> κατά 1. Αν η <code
class="varname">a<
/code> είναι ένας πίνακας, τότε αυξάνεται κάθε στοιχείο. Αυτό είναι ισοδύναμο με το <strong
class="userinput"><code>a=a+1</code></strong>, αλλά είναι κάπως γρηγορότερο. Επιστρέφει <code
class="constant">null</code>. Διαθέσιμο από την έκδοση 1.0.13.</p></dd><dt><span class="term"><strong
class="userinput"><code>increment a by b</code></strong></span></dt><dd><p>Αυξάνει τη μεταβλητή <code
class="varname">a</code> κατά <code class="varname">b</code>. Αν η <code class="varname">a</code> είναι ένας
πίνακας, τότε αυξάνεται κάθε στοιχείο. Αυτό είναι ισοδύναμο με το <strong
class="userinput"><code>a=a+b</code></strong>, αλλά είναι κάπως γρηγορότερο. Επιστρέφει <code
class="constant">null</code>. Διαθέσιμο από την έκδοση 1.0.
13.</p></dd></dl></div><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Σημείωση</h3><p>Ο τελεστής @() καθιστά τον: τελεστή πιο χρήσιμο. Με αυτό μπορείτε να ορίσετε
περιοχές ενός πίνακα. Έτσι ώστε a@(2:4,6) είναι οι γραμμές 2,3,4 της στήλης 6. Ή a@(,1:2) θα σας πάρει τις
πρώτες δύο στήλες ενός πίνακα. Μπορείτε επίσης να αναθέσετε στον τελεστή @(), όσο η δεξιά τιμή είναι ο
πίνακας που ταιριάζει στην περιοχή σε μέγεθος, ή αν είναι οποιουδήποτε άλλου τύπου τιμής.</p></div><div
class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Σημείωση</h3><p>Οι τελεστές
σύγκρισης (εκτός από τον τελεστή <
=> που συμπεριφέρεται κανονικά), δεν είναι αυστηρά δυαδικοί τελεστές, μπορούν στην πραγματικότητα να
ομαδοποιηθούν με τον κανονικό μαθηματικό τρόπο, π.χ.: (1<x<=y<5) είναι μια επιτρεπτή παράσταση
λογικών τιμών και σημαίνει απλά αυτό που πρέπει, δηλαδή (1<x and x≤y and y<5)</p></div><div
class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Σημείωση</h3><p>Ο μοναδιαίος
τελεστής μείον λειτουργεί με διαφορετικό τρόπο ανάλογα με το πού εμφανίζεται. Αν εμφανίζεται πριν από ένα
αριθμό έχει στενή προτεραιότητα, αν εμφανίζεται μπροστά από μια παράσταση έχει μικρότε
ρη προτεραιότητα από τη δύναμη και τους παραγοντικούς τελεστές. Έτσι για παράδειγμα <strong
class="userinput"><code>-1^k</code></strong> είναι στην πραγματικότητα <strong
class="userinput"><code>(-1)^k</code></strong>, αλλά <strong
class="userinput"><code>-foo(1)^k</code></strong> είναι στην πραγματικότητα <strong
class="userinput"><code>-(foo(1)^k)</code></strong>. Γιαυτό να προσέχετε τη χρήση του και αν αμφιβάλετε,
προσθέστε παρενθέσεις.</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch05s06.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06.html">Επόμενο</a></td></tr><tr><
td width="40%" align="left" valign="top">Μετρικός υπολογισμός </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top"> Κεφάλαιο 6.
Προγραμματισμός με GEL</td></tr></table></div></body></html>
diff --git a/help/el/html/ch06.html b/help/el/html/ch06.html
new file mode 100644
index 0000000..dd68afb
--- /dev/null
+++ b/help/el/html/ch06.html
@@ -0,0 +1,8 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Κεφάλαιο 6.
Προγραμματισμός με GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="index.html" title="Εγχειρίδιο
Genius"><link rel="prev" href="ch05s07.html" title="Κατάλογος τελεστών GEL"><link rel="next"
href="ch06s02.html" title="Βρόχοι"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Κεφάλαιο 6. Προγραμματισμός με GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s07.html">Προηγ</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch06s02.html">Επόμενο</a></td></t
r></table><hr></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a
name="genius-gel-programming"></a>Κεφάλαιο 6. Προγραμματισμός με GEL</h1></div></div></div><div
class="toc"><p><b>Πίνακας Περιεχομένων</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch06.html#genius-gel-conditionals">Εξαρτήσεις</a></span></dt><dt><span class="sect1"><a
href="ch06s02.html">Βρόχοι</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-while">Βρόχοι While</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-for">Βρόχοι For</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-foreach">Βρόχοι Foreach</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-break-continue">Break και Continue (διακοπή και
συνέχιση)</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch06s03.html">Sums και Products (αθροίσματα και γινόμενα)</a></span></dt><dt><span class="sect1"><a
href="ch06s04.html">Τελεστές σύγκρισης</a></span></dt><dt><span class="sect1"><a
href="ch06s05.html">Καθολικές μεταβλητές και εμβέλεια μεταβλητών</a></span></dt><dt><span class="sect1"><a
href="ch06s06.html">Μεταβλητές παραμέτρων</a></span></dt><dt><span class="sect1"><a
href="ch06s07.html">Επιστροφή</a></span></dt><dt><span class="sect1"><a
href="ch06s08.html">Αναφορές</a></span></dt><dt><span class="sect1"><a href="ch06s09.html">Lvalues (αριστερές
τιμές)</a></span></dt></dl></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-conditionals"></a>Εξαρτήσεις</h2></div></div></div><p>Σύνταξη:
</p><pre class="programlisting">if <expression1> then <expressio
n2> [else <expression3>]
+</pre><p> Αν <code class="literal">else</code> παραλείπεται, τότε αν η <code
class="literal">expression1</code> δίνει <code class="constant">ψευδές</code> ή 0, επιστρέφεται η <code
class="literal">NULL</code>.</p><p>Παραδείγματα: </p><pre class="programlisting">if(a==5)then(a=a-1)
+if b<a then b=a
+if c>0 then c=c-1 else c=0
+a = ( if b>0 then b else 1 )
+</pre><p> Σημειώστε ότι <code class="literal">=</code> θα μεταφραστεί σε <code class="literal">==</code> αν
χρησιμοποιηθεί μέσα στην παράσταση για <code class="literal">if</code>, έτσι το </p><pre
class="programlisting">if a=5 then a=a-1
+</pre><p> θα ερμηνευτεί ως: </p><pre class="programlisting">if a==5 then a:=a-1
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s07.html">Προηγ</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch06s02.html">Επόμενο</a></td></tr><tr><td
width="40%" align="left" valign="top">Κατάλογος τελεστών GEL </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top">
Βρόχοι</td></tr></table></div></body></html>
diff --git a/help/el/html/ch06s02.html b/help/el/html/ch06s02.html
new file mode 100644
index 0000000..47205dc
--- /dev/null
+++ b/help/el/html/ch06s02.html
@@ -0,0 +1,32 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Βρόχοι</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Εγχειρίδιο Genius"><link rel="up" href="ch06.html" title="Κεφάλαιο 6. Προγραμματισμός με GEL"><link
rel="prev" href="ch06.html" title="Κεφάλαιο 6. Προγραμματισμός με GEL"><link rel="next" href="ch06s03.html"
title="Sums και Products (αθροίσματα και γινόμενα)"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Βρόχοι</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 6. Προγραμματισμός με GEL</th><td
width="20%" align="right">
<a accesskey="n" href="ch06s03.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-loops"></a>Βρόχοι</h2></div></div></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a name="genius-gel-loops-while"></a>Βρόχοι
While</h3></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">while <expression1> do <expression2>
+until <expression1> do <expression2>
+do <expression2> while <expression1>
+do <expression2> until <expression1></pre><p>
+
+ These are similar to other languages. However, as in GEL it is simply an expression that must have
some return value, these
+ constructs will simply return the result of the last iteration or <code class="literal">NULL</code>
if no iteration was done. In the boolean expression, <code class="literal">=</code> is translated into <code
class="literal">==</code> just as for the <code class="literal">if</code> statement.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-for"></a>Βρόχοι For</h3></div></div></div><p>Σύνταξη: </p><pre
class="programlisting">for <identifier> = <from> to <to> do <body>
+for <identifier> = <from> to <to> by <increment> do <body></pre><p> Βρόχος με
αναγνωριστικό ορίζεται για όλες τις τιμές από το <code class="literal"><from></code> μέχρι το <code
class="literal"><to></code>, χρησιμοποιώντας προαιρετικά μια αύξηση άλλη από 1. Αυτοί είναι
γρηγορότεροι, πιο ωραίοι και περισσότερο συμπαγείς από τους κανονικούς βρόχους όπως παραπάνω, αλλά λιγότερο
ευέλικτοι. Το αναγνωριστικό πρέπει να είναι ένα αναγνωριστικό και δεν μπορεί να είναι μια αποαναφορά. Η τιμή
του αναγνωριστικού είναι η τελευταία τιμή του ή <code class="literal"><from></code> αν το σώμα δεν
υπολογί
στηκε ποτέ. Η μεταβλητή εγγυάται την αρχικοποίηση μετά από ένα βρόχο, έτσι μπορείτε να την χρησιμοποιήσετε
με ασφάλεια. Επίσης τα <code class="literal"><from></code>, <code class="literal"><to></code> και
<code class="literal"><increment></code> πρέπει να είναι μη μιγαδικές τιμές. Το <code
class="literal"><to></code> δεν είναι βέβαιο ότι θα επιτευχθεί, αλλά δεν θα ξεπεραστεί ποτέ, για
παράδειγμα το παρακάτω εκτυπώνει περιττούς αριθμούς από 1 έως 19: </p><pre class="programlisting">for i = 1
to 20 by 2 do print(i)
+</pre><p>
+ When one of the values is a floating point number, then the
+ final check is done to within 2^-20 of the step size. That is,
+ even if we overshoot by 2^-20 times the "by" above, we still execute the last
+ iteration. This way
+</p><pre class="programlisting">for x = 0 to 1 by 0.1 do print(x)
+</pre><p>
+does the expected even though adding 0.1 ten times becomes just slightly more than 1.0 due to the way that
floating point numbers
+are stored in base 2 (there is no 0.1, the actual number stored is just ever so slightly bigger). This is
not perfect but it handles
+the majority of the cases. If you want to avoid dealing with this issue, use actual rational numbers for
example:
+</p><pre class="programlisting">for x = 0 to 1 by 1/10 do print(x)
+</pre><p>
+ This check is done only from version 1.0.16 onwards, so execution of your code may differ on
older versions.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-foreach"></a>Βρόχοι Foreach</h3></div></div></div><p>Σύνταξη: </p><pre
class="programlisting">for <identifier> in <matrix> do <body></pre><p> Για κάθε στοιχείο
στον πίνακα, πηγαίνοντας γραμμή ανά γραμμή από αριστερά προς τα δεξιά, εκτελούμε το σώμα με το αναγνωριστικό
ορισμένο στο τρέχον στοιχείο. Για να εκτυπώσετε τους αριθμούς 1,2,3 και 4 με αυτήν τη σειρά θα μπορούσατε να
κάνετε: </p><pre class="programlisting">for n in [1,2:3,4] do print(n)
+</pre><p> Αν επιθυμείτε να διασχίσετε τις γραμμές και τις στήλες ενός πίνακα, μπορείτε να χρησιμοποιήσετε
τις συναρτήσεις RowsOf και ColumnsOf που επιστρέφουν ένα διάνυσμα γραμμών ή στηλών του πίνακα. Έτσι, το
</p><pre class="programlisting">for n in RowsOf ([1,2:3,4]) do print(n)
+</pre><p> θα εκτυπώσει [1,2] και έπειτα [3,4].</p></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a name="genius-gel-loops-break-continue"></a>Break και
Continue (διακοπή και συνέχιση)</h3></div></div></div><p>Μπορείτε επίσης να χρησιμοποιήσετε τις εντολές <code
class="literal">break</code> και <code class="literal">continue</code> σε βρόχους. Η εντολή <code
class="literal">continue</code> θα επανεκκινήσει τον τρέχοντα βρόχο στην επόμενη του επανάληψη, ενώ η εντολή
<code class="literal">break</code> φεύγει από τον τρέχοντα βρόχο. </p><pre
class="programlisting">while(<expression1>) do (
+ if(<expression2>) break
+ else if(<expression3>) continue;
+ <expression4>
+)
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06.html">Προηγ</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch06.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s03.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Κεφάλαιο 6.
Προγραμματισμός με GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top"> Sums και Products (αθροίσματα και
γινόμενα)</td></tr></table></div></body></html>
diff --git a/help/el/html/ch06s03.html b/help/el/html/ch06s03.html
new file mode 100644
index 0000000..0fdf891
--- /dev/null
+++ b/help/el/html/ch06s03.html
@@ -0,0 +1,6 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Sums και Products
(αθροίσματα και γινόμενα)</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch06.html" title="Κεφάλαιο 6.
Προγραμματισμός με GEL"><link rel="prev" href="ch06s02.html" title="Βρόχοι"><link rel="next"
href="ch06s04.html" title="Τελεστές σύγκρισης"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Sums και Products (αθροίσματα και γινόμενα)</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch06s02.html">Προηγ</a> </td><th width="60%"
align="center">Κεφάλαιο 6. Προγραμματισμός με GEL
</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s04.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-sums-products"></a>Sums
και Products (αθροίσματα και γινόμενα)</h2></div></div></div><p>Σύνταξη: </p><pre class="programlisting">sum
<identifier> = <from> to <to> do <body>
+sum <identifier> = <from> to <to> by <increment> do <body>
+sum <identifier> in <matrix> do <body>
+prod <identifier> = <from> to <to> do <body>
+prod <identifier> = <from> to <to> by <increment> do <body>
+prod <identifier> in <matrix> do <body></pre><p> Αν αντικαταστήσετε το <code
class="literal">for</code> με το <code class="literal">sum</code> ή <code class="literal">prod</code>, τότε
θα πάρετε ένα άθροισμα ή γινόμενο αντί για έναν βρόχο <code class="literal">for</code> loop. Αντί για
επιστροφή στην τελευταία τιμή, αυτά θα επιστρέψουν το άθροισμα ή το γινόμενο των τιμών αντίστοιχα.</p><p>Αν
δεν εκτελεστεί κανένα σώμα (για παράδειγμα <strong class="userinput"><code>sum i=1 to 0 do
...</code></strong>) τότε το <code class="literal">sum</code> επιστρέφει 0 και το <code
class="literal">prod</code> επιστρέφει 1 όπως είναι η τυπική σύμβαση.</p><p>Για αριθμούς κινητής υποδιαστολής
η �
�δια στρογγυλοποίηση προστασίας σφάλματος γίνεται όπως στον βρόχο for. Δείτε <a class="xref"
href="ch06s02.html#genius-gel-loops-for" title="Βρόχοι For">«Βρόχοι For»</a>.</p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch06s02.html">Προηγ</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch06.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s04.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Βρόχοι </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right"
valign="top"> Τελεστές σύγκρισης</td></tr></table></div></body></html>
diff --git a/help/el/html/ch06s04.html b/help/el/html/ch06s04.html
new file mode 100644
index 0000000..da60850
--- /dev/null
+++ b/help/el/html/ch06s04.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Τελεστές
σύγκρισης</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch06.html" title="Κεφάλαιο 6.
Προγραμματισμός με GEL"><link rel="prev" href="ch06s03.html" title="Sums και Products (αθροίσματα και
γινόμενα)"><link rel="next" href="ch06s05.html" title="Καθολικές μεταβλητές και εμβέλεια
μεταβλητών"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Τελεστές
σύγκρισης</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch06s03.html">Προηγ</a> </td><th
width="60%" align="center">Κεφάλαιο 6.
Προγραμματισμός με GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s05.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-comparison-operators"></a>Τελεστές σύγκρισης</h2></div></div></div><p>Οι παρακάτω τυπικοί
τελεστές σύγκρισης υποστηρίζονται στο GEL και έχουν την προφανή σημασία: <code class="literal">==</code>,
<code class="literal">>=</code>, <code class="literal"><=</code>, <code class="literal">!=</code>,
<code class="literal"><></code>, <code class="literal"><</code>, <code class="literal">></code>.
Επιστρέφουν <code class="constant">αληθές</code> ή <code class="constant">ψευδές</code>. Οι τελεστές <code
class="literal">!=</code> και <code class="literal"><></code> εί
ναι το ίδιο πράγμα και σημαίνουν "δεν είναι ίσο με". Η GEL επίσης υποστηρίζει τον τελεστή <code
class="literal"><=></code>, που επιστρέφει -1 αν το αριστερό μέλος είναι μικρότερο, 0 αν και τα δύο
μέλη είναι ίσα, 1 αν το αριστερό μέλος είναι μεγαλύτερο.</p><p>Κανονικά <code class="literal">=</code>
μεταφράζεται σε <code class="literal">==</code> αν συμβεί να είναι κάπου όπου το GEL αναμένει μια συνθήκη
όπως στη συνθήκη if. Για παράδειγμα </p><pre class="programlisting">if a=b then c
+if a==b then c
+</pre><p> είναι το ίδιο πράγμα στη GEL. Όμως, θα πρέπει να χρησιμοποιήσετε πραγματικά το <code
class="literal">==</code> ή <code class="literal">:=</code> όταν θέλετε να συγκρίνετε ή να αναθέσετε
αντίστοιχα, αν θέλετε ο κώδικας σας να είναι ευανάγνωστος και να αποφύγετε λάθη.</p><p>Όλοι οι τελεστές
σύγκρισης (εκτός από τον τελεστή <code class="literal"><=></code> που συμπεριφέρεται κανονικά), δεν
είναι αυστηρά δυαδικοί τελεστές, μπορούν στην πραγματικότητα να ομαδοποιηθούν με τον κανονικό μαθηματικό
τρόπο, π.χ.: (<code class="literal">1<x<=y<5</code>) είναι μια επιτρεπτή παράσταση λογικών τιμών κα�
� σημαίνει ακριβώς αυτό που πρέπει, δηλαδή (1<x and x≤y and y<5)</p><p>Για να δημιουργήσετε λογικές
παραστάσεις χρησιμοποιήστε τις λέξεις <code class="literal">not</code>, <code class="literal">and</code>,
<code class="literal">or</code>, <code class="literal">xor</code>. Οι τελεστές <code
class="literal">or</code> και <code class="literal">and</code> είναι ειδικές οντότητες επειδή υπολογίζουν τα
ορίσματά τους ένα προς ένα, έτσι το συνηθισμένο κόλπο για υπό όρο υπολογισμό δουλεύει εδώ επίσης. Για
παράδειγμα, <code class="literal">1 or a=1</code> δεν θα ορίσουν <code class="literal">a=1</code> αφού το
πρώτο όρισμα ήταν αληθές.</p></div><div class="navfooter"><hr><table width="100%" summary="Navi
gation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch06s03.html">Προηγ</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch06.html">Πάνω</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s05.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Sums και
Products (αθροίσματα και γινόμενα) </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top"> Καθολικές μεταβλητές και εμβέλεια
μεταβλητών</td></tr></table></div></body></html>
diff --git a/help/el/html/ch06s05.html b/help/el/html/ch06s05.html
new file mode 100644
index 0000000..c49d058
--- /dev/null
+++ b/help/el/html/ch06s05.html
@@ -0,0 +1,41 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Καθολικές μεταβλητές
και εμβέλεια μεταβλητών</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch06.html" title="Κεφάλαιο 6.
Προγραμματισμός με GEL"><link rel="prev" href="ch06s04.html" title="Τελεστές σύγκρισης"><link rel="next"
href="ch06s06.html" title="Μεταβλητές παραμέτρων"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Καθολικές μεταβλητές και εμβέλεια μεταβλητών</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch06s04.html">Προηγ</a> </td><th width="60%" align="cent
er">Κεφάλαιο 6. Προγραμματισμός με GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s06.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-variables-global"></a>Καθολικές μεταβλητές και εμβέλεια
μεταβλητών</h2></div></div></div><p>Η GEL είναι μια <a class="ulink"
href="http://en.wikipedia.org/wiki/Scope_%28programming%29" target="_top">δυναμική γλώσσα με εμβέλεια</a>. Θα
εξηγήσουμε τι σημαίνει αυτό παρακάτω. Δηλαδή, κανονικές μεταβλητές και συναρτήσεις είναι δυναμικά με
εμβέλεια. Η εξαίρεση είναι οι <a class="link" href="ch06s06.html" title="Μεταβλητές παραμέτρων">μεταβλητές
παραμέτρου</a>, που εί�
�αι πάντα καθολικές.</p><p>Όπως οι περισσότερες γλώσσες προγραμματισμού, η GEL έχει διαφορετικούς τύπους
μεταβλητών. Κανονικά, όταν μια μεταβλητή ορίζεται σε μια συνάρτηση, είναι ορατή από αυτή τη συνάρτηση και από
όλες τις συναρτήσεις που καλούνται (όλες με υψηλότερα περιεχόμενα). Για παράδειγμα, ας υποθέσουμε ότι μια
συνάρτηση <code class="function">f</code> ορίζει μια μεταβλητή <code class="varname">a</code> και έπειτα
καλεί τη συνάρτηση <code class="function">g</code>. Τότε η συνάρτηση <code class="function">g</code> μπορεί
να αναφέρει την <code class="varname">a</code>. Αλλά μόλις η <code class="function">f</code> επιστ
ρέφει, η μεταβλητή <code class="varname">a</code> βγαίνει εκτός εμβέλειας. Για παράδειγμα, ο παρακάτω
κώδικας θα εμφανίσει 5. Η συνάρτηση <code class="function">g</code> δεν μπορεί να κληθεί στο ανώτατο επίπεδο
(έξω από τη <code class="function">f</code> ως <code class="varname">a</code> δεν θα οριστεί). </p><pre
class="programlisting">function f() = (a:=5; g());
+function g() = print(a);
+f();
+</pre><p>Αν ορίσετε μια μεταβλητή μέσα σε μια συνάρτηση θα επικαλύψει οποιεσδήποτε μεταβλητές ορίστηκαν στις
συναρτήσεις κλήσης. Για παράδειγμα, τροποποιούμε τον παραπάνω κώδικα και γράφουμε: </p><pre
class="programlisting">function f() = (a:=5; g());
+function g() = print(a);
+a:=10;
+f();
+</pre><p> Αυτός ο κώδικας θα εμφανίσει ακόμα 5. Αλλά αν καλέσετε την <code class="function">g</code> έξω από
την <code class="function">f</code>, τότε θα πάρετε ένα αποτέλεσμα 10. Σημειώστε ότι, ο ορισμός μιας <code
class="varname">a</code> σε 5 μέσα σε μια <code class="function">f</code> δεν αλλάζει την τιμή της <code
class="varname">a</code> στο ανώτατο (καθολικό) επίπεδο, έτσι αν τώρα ελέγξετε την τιμή της <code
class="varname">a</code> θα είναι ακόμα 10.</p><p>Τα ορίσματα συναρτήσεων είναι ακριβώς όπως οι μεταβλητές
που ορίστηκαν μέσα στη συνάρτηση, εκτός από το ότι είναι αρχικοποιημένες με την τιμή που περάστηκε στη
συνάρτηση. Πέρ
α από αυτό το σημείο, αντιμετωπίζονται ακριβώς όπως όλες οι άλλες μεταβλητές που ορίστηκαν μέσα στη
συνάρτηση.</p><p>Οι συναρτήσεις αντιμετωπίζονται ακριβώς όπως οι μεταβλητές. Συνεπώς, μπορείτε τοπικά να
επανορίσετε τις συναρτήσεις. Κανονικά, (στο ανώτατο επίπεδο) δεν μπορείτε να επανορίσετε προστατευμένες
μεταβλητές και συναρτήσεις. Αλλά τοπικά μπορείτε να το κάνετε. Θεωρείστε την ακόλουθη συνεδρία: </p><pre
class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>function f(x) =
sin(x)^2</code></strong>
+= (`(x)=(sin(x)^2))
+<code class="prompt">genius> </code><strong class="userinput"><code>function f(x) =
sin(x)^2</code></strong>
+= (`(x)=(sin(x)^2))
+<code class="prompt">genius> </code><strong class="userinput"><code>function g(x) = ((function
sin(x)=x^10);f(x))</code></strong>
+= (`(x)=((sin:=(`(x)=(x^10)));f(x)))
+<code class="prompt">genius> </code><strong class="userinput"><code>g(10)</code></strong>
+= 1e20
+</pre><p>
+ Functions and variables defined at the top level are
+ considered global. They are visible from anywhere. As we
+ said the following function <code class="function">f</code>
+ will not change the value of <code class="varname">a</code> to 5.
+</p><pre class="programlisting">a=6;
+function f() = (a:=5);
+f();
+</pre><p>
+ Sometimes, however, it is necessary to set
+a global variable from inside a function. When this behavior is needed,
+use the
+<a class="link" href="ch11s02.html#gel-function-set"><code class="function">set</code></a> function. Passing
a string or a quoted identifier to
+this function sets the variable globally (on the top level).
+For example, to set
+<code class="varname">a</code> to the value 3 you could call:
+</p><pre class="programlisting">set(`a,3)
+</pre><p>
+or:
+</p><pre class="programlisting">set("a",3)
+</pre><p>
+ </p><p>Η συνάρτηση <code class="function">set</code> ορίζει πάντα την καθολική ανωτάτου επιπέδου.
Δεν υπάρχει τρόπος να οριστεί μια τοπική μεταβλητή σε κάποια συνάρτηση από μια υπορουτίνα. Αν αυτό
απαιτείται, πρέπει να χρησιμοποιηθεί το πέρασμα με αναφορά.</p><p>
+ See also the
+ <a class="link" href="ch11s02.html#gel-function-SetElement"><code
class="function">SetElement</code></a> and
+ <a class="link" href="ch11s02.html#gel-function-SetVElement"><code
class="function">SetVElement</code></a> functions.
+ </p><p>Για να ανακεφαλαιώσουμε σε μια πιο τεχνική γλώσσα: Η Genius λειτουργεί με διαφορετικά
αριθμημένα περιεχόμενα. Το ανώτατο επίπεδο είναι το περιεχόμενο 0 (μηδέν). Όποτε μια συνάρτηση εισέρχεται, το
περιεχόμενο αυξάνεται και όταν η συνάρτηση επιστρέφει το περιεχόμενο μειώνεται. Μια συνάρτηση ή μια μεταβλητή
είναι πάντα ορατή από όλα τα περιεχόμενα με υψηλότερη αρίθμηση. Όταν μια μεταβλητή ορίζεται σε ένα
περιεχόμενο χαμηλότερης αρίθμησης, τότε ο ορισμός αυτής της μεταβλητής επιδρά στη δημιουργία μιας νέας
τοπικής μεταβλητής με τον τρέ
χοντα αριθμό περιεχομένου και αυτή η μεταβλητή θα είναι τώρα ορατή από όλα τα περιεχόμενα με υψηλότερη
αρίθμηση.</p><p>Υπάρχουν επίσης αληθινές τοπικές μεταβλητές, που δεν φαίνονται από οπουδήποτε εκτός από το
τρέχον περιεχόμενο. Επίσης όταν επιστρέφονται συναρτήσεις με τιμή μπορεί να αναφέρονται σε μεταβλητές μη
ορατές από υψηλότερο περιεχόμενο και αυτό μπορεί να είναι ένα πρόβλημα. Δείτε τις ενότητες <a class="link"
href="ch07s04.html" title="Αληθείς τοπικές μεταβλητές">Αληθείς τοπικές μεταβλητές</a> και <a class="link"
href="ch07s03.html" title="Επιστροφή συναρτήσεων">Ε�
�ιστροφή συναρτήσεων</a>.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch06s04.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s06.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Τελεστές σύγκρισης
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%"
align="right" valign="top"> Μεταβλητές παραμέτρων</td></tr></table></div></body></html>
diff --git a/help/el/html/ch06s06.html b/help/el/html/ch06s06.html
new file mode 100644
index 0000000..d008894
--- /dev/null
+++ b/help/el/html/ch06s06.html
@@ -0,0 +1,4 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Μεταβλητές
παραμέτρων</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch06.html" title="Κεφάλαιο 6.
Προγραμματισμός με GEL"><link rel="prev" href="ch06s05.html" title="Καθολικές μεταβλητές και εμβέλεια
μεταβλητών"><link rel="next" href="ch06s07.html" title="Επιστροφή"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Μεταβλητές παραμέτρων</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch06s05.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 6. Προγραμματισμός
με
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s07.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-parameters"></a>Μεταβλητές παραμέτρων</h2></div></div></div><p>Όπως είπαμε πριν, υπάρχουν
ειδικές μεταβλητές που λέγονται παράμετροι που υπάρχουν σε όλες τις εμβέλειες. Για να δηλώσετε μια παράμετρο
που λέγεται <code class="varname">foo</code> με την αρχική τιμή 1, γράφουμε </p><pre
class="programlisting">parameter foo = 1
+</pre><p> Από κει και πέρα η <code class="varname">foo</code> είναι μια αυστηρά καθολική μεταβλητή.
Ορίζοντας την <code class="varname">foo</code> μέσα σε οποιαδήποτε συνάρτηση θα τροποποιεί τη μεταβλητή σε
όλα τα περιεχόμενα, δηλαδή, οι συναρτήσεις δεν έχουν ένα ιδιωτικό αντίγραφο των παραμέτρων.</p><p>Όταν
αποκαθορίζετε μια παράμετρο χρησιμοποιώντας τη συνάρτηση <a class="link"
href="ch11s02.html#gel-function-undefine"><code class="function">undefine</code></a>, σταματά να είναι μια
παράμετρος.</p><p>
+ Some parameters are built-in and modify the behavior of genius.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s05.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s07.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Καθολικές μεταβλητές
και εμβέλεια μεταβλητών </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top">
Επιστροφή</td></tr></table></div></body></html>
diff --git a/help/el/html/ch06s07.html b/help/el/html/ch06s07.html
new file mode 100644
index 0000000..df741be
--- /dev/null
+++ b/help/el/html/ch06s07.html
@@ -0,0 +1,9 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Επιστροφή</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Εγχειρίδιο Genius"><link rel="up" href="ch06.html" title="Κεφάλαιο 6. Προγραμματισμός με GEL"><link
rel="prev" href="ch06s06.html" title="Μεταβλητές παραμέτρων"><link rel="next" href="ch06s08.html"
title="Αναφορές"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Επιστροφή</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s06.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 6. Προγραμματισμός με GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch06s08.html">Επόμενο
</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-returning"></a>Επιστροφή</h2></div></div></div><p>Κανονικά, μια
συνάρτηση είναι μία ή πολλές παραστάσεις χωρισμένες με ; και η τιμή της τελευταίας παράστασης επιστρέφεται.
Αυτό είναι θαυμάσιο για απλές συναρτήσεις, αλλά μερικές φορές δεν θέλετε μια συνάρτηση νε επιστρέφει το
τελευταίο υπολογισμένο πράγμα. Μπορείτε, για παράδειγμα, να θέλετε να επιστρέψετε από το μέσο μιας
συνάρτησης. Σε αυτήν την περίπτωση, μπορείτε να χρησιμοποιήσετε τη λέξη-κλειδί <code
class="literal">return</code>. Η <code cl
ass="literal">return</code> παίρνει ένα όρισμα, που είναι η τιμή για επιστροφή.</p><p>Παράδειγμα: </p><pre
class="programlisting">function f(x) = (
+ y=1;
+ while true do (
+ if x>50 then return y;
+ y=y+1;
+ x=x+1
+ )
+)
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch06s06.html">Προηγ</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch06.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s08.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Μεταβλητές παραμέτρων
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%"
align="right" valign="top"> Αναφορές</td></tr></table></div></body></html>
diff --git a/help/el/html/ch06s08.html b/help/el/html/ch06s08.html
new file mode 100644
index 0000000..5f44964
--- /dev/null
+++ b/help/el/html/ch06s08.html
@@ -0,0 +1,7 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Αναφορές</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Εγχειρίδιο Genius"><link rel="up" href="ch06.html" title="Κεφάλαιο 6. Προγραμματισμός με GEL"><link
rel="prev" href="ch06s07.html" title="Επιστροφή"><link rel="next" href="ch06s09.html" title="Lvalues
(αριστερές τιμές)"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Αναφορές</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s07.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 6. Προγραμματισμός με GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch06s09.html">Επόμενο</a>
</td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-references"></a>Αναφορές</h2></div></div></div><p>Μπορεί να είναι
απαραίτητο για μερικές συναρτήσεις να επιστραφούν περισσότερες από μία τιμές. Αυτό μπορεί να επιτευχθεί
επιστρέφοντας ένα διάνυσμα τιμών, αλλά πολλές φορές, είναι βολικό να χρησιμοποιήσετε το πέρασμα μιας αναφοράς
σε μια μεταβλητή. Περνάτε μια αναφορά σε μια μεταβλητή σε μια συνάρτηση και η συνάρτηση θα ορίσει τη
μεταβλητή για σας χρησιμοποιώντας μια αποαναφορά. Δεν πρέπει να χρησιμοποιείτε αναφορές μόνο για αυ�
�όν το σκοπό, αλλά αυτή είναι η κύρια χρήση τους.</p><p>Όταν χρησιμοποιείτε συναρτήσεις που επιστρέφουν
τιμές μέσα από αναφορές στη λίστα ορισμάτων, περάστε απλά το όνομα της μεταβλητής με ένα (A x v: </p><p>Οι
λεπτομέρειες του πώς δουλεύουν οι αναφορές και η σύνταξη είναι παρόμοιες με τη γλώσσα C. Ο τελεστής <code
class="literal">&</code> αναφέρεται σε μια μεταβλητή και το <code class="literal">*</code> αποαναφέρει
μια μεταβλητή. Αμφότεροι μπορούν να εφαρμοστούν μόνο σε ένα αναγνωριστικό, έτσι το <code
class="literal">**a</code> δεν είναι επιτρεπτή παράσταση στο GEL.</p><p>Οι αναφορές εξη�
�ούνται καλύτερα με ένα παράδειγμα: </p><pre class="programlisting">a=1;
+b=&a;
+*b=2;
+</pre><p> τώρα η <code class="varname">a</code> περιέχει 2. Μπορείτε επίσης να αναφέρετε συναρτήσεις: το
</p><pre class="programlisting">function f(x) = x+1;
+t=&f;
+*t(3)
+</pre><p> μας δίνει 4.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch06s07.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s09.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Επιστροφή </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right"
valign="top"> Lvalues (αριστερές τιμές)</td></tr></table></div></body></html>
diff --git a/help/el/html/ch06s09.html b/help/el/html/ch06s09.html
new file mode 100644
index 0000000..8cfcd25
--- /dev/null
+++ b/help/el/html/ch06s09.html
@@ -0,0 +1,13 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Lvalues (αριστερές
τιμές)</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch06.html" title="Κεφάλαιο 6.
Προγραμματισμός με GEL"><link rel="prev" href="ch06s08.html" title="Αναφορές"><link rel="next"
href="ch07.html" title="Κεφάλαιο 7. Προχωρημένος προγραμματισμός με GEL"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Lvalues (αριστερές τιμές)</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch06s08.html">Προηγ</a> </td><th width="60%"
align="center">Κεφάλαιο 6. Προγραμματισμός με GEL</th><
td width="20%" align="right"> <a accesskey="n" href="ch07.html">Επόμενο</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-lvalues"></a>Lvalues (αριστερές τιμές)</h2></div></div></div><p>Μια lvalue είναι το αριστερό
μέλος μιας ανάθεσης. Με άλλα λόγια, μια lvalue είναι αυτό που αναθέτετε σε κάτι. Έγκυρες lvalues είναι:
</p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><strong
class="userinput"><code>a</code></strong></span></dt><dd><p>Αναγνωριστικό. Εδώ μπορεί να οριστεί η μεταβλητή
του ονόματος <code class="varname">a</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>*a</code></strong></span></dt><dd><p>Αποαναφορά ενός αναγνωριστικού. Αυτό θα ο�
�ίσει οποιαδήποτε μεταβλητή δείχνει στο <code class="varname">a</code>.</p></dd><dt><span
class="term"><strong class="userinput"><code>a@(<region>)</code></strong></span></dt><dd><p>Μια περιοχή
ενός πίνακα. Εδώ η περιοχή ορίζεται κανονικά όπως στην περίπτωση του κανονικού τελεστή @() και μπορεί να
είναι μια μοναδική καταχώριση, ή μια πλήρης περιοχή του πίνακα.</p></dd></dl></div><p>
+Examples:
+</p><pre class="programlisting">a:=4
+*tmp := 89
+a@(1,1) := 5
+a@(4:8,3) := [1,2,3,4,5]'
+</pre><p>
+Note that both <code class="literal">:=</code> and <code class="literal">=</code> can be used
+interchangeably. Except if the assignment appears in a condition.
+It is thus always safer to just use
+<code class="literal">:=</code> when you mean assignment, and <code class="literal">==</code>
+when you mean comparison.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s08.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Αναφορές </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right"
valign="top"> Κεφάλαιο 7. Προχωρημένος προγραμματισμός με GEL</td></tr></table></div></body></html>
diff --git a/help/el/html/ch07.html b/help/el/html/ch07.html
new file mode 100644
index 0000000..7daa258
--- /dev/null
+++ b/help/el/html/ch07.html
@@ -0,0 +1,8 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Κεφάλαιο 7.
Προχωρημένος προγραμματισμός με GEL</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="index.html"
title="Εγχειρίδιο Genius"><link rel="prev" href="ch06s09.html" title="Lvalues (αριστερές τιμές)"><link
rel="next" href="ch07s02.html" title="Σύνταξη ανωτάτου επιπέδου"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Κεφάλαιο 7. Προχωρημένος προγραμματισμός με GEL</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch06s09.html">Προηγ</a> </td><th width="60%" align="center">
</th><td width
="20%" align="right"> <a accesskey="n" href="ch07s02.html">Επόμενο</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 class="title"><a
name="genius-gel-programming-advanced"></a>Κεφάλαιο 7. Προχωρημένος προγραμματισμός με
GEL</h1></div></div></div><div class="toc"><p><b>Πίνακας Περιεχομένων</b></p><dl class="toc"><dt><span
class="sect1"><a href="ch07.html#genius-gel-error-handling">Χειρισμός σφάλματος</a></span></dt><dt><span
class="sect1"><a href="ch07s02.html">Σύνταξη ανωτάτου επιπέδου</a></span></dt><dt><span class="sect1"><a
href="ch07s03.html">Επιστροφή συναρτήσεων</a></span></dt><dt><span class="sect1"><a
href="ch07s04.html">Αληθείς τοπικές μεταβλητές</a></span></dt><dt><span class="sect1"><a
href="ch07s05.html">Διαδικασία έναρξης GEL</a></span></dt><dt><span class="se
ct1"><a href="ch07s06.html">Φόρτωση προγραμμάτων</a></span></dt></dl></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-error-handling"></a>Χειρισμός σφάλματος</h2></div></div></div><p>Αν εντοπίσετε ένα σφάλμα
στη συνάρτησή σας, μπορείτε να το αποφύγετε. Για φυσιολογικά σφάλματα, όπως εσφαλμένους τύπους ορισμάτων,
μπορείτε να παραλείψετε να υπολογίσετε τη συνάρτηση προσθέτοντας την δήλωση <code
class="literal">bailout</code>. Αν κάτι πήγε πραγματικά εσφαλμένα και θέλετε να τερματίσετε πλήρως τον
τρέχοντα υπολογισμό, μπορείτε να χρησιμοποιήσετε το <code class="literal">exception</code>.</p><p>Για �
�αράδειγμα αν θέλετε να ελέγξετε για ορίσματα στη συνάρτησή σας. Θα μπορούσατε να χρησιμοποιήσετε τον
ακόλουθο κώδικα. </p><pre class="programlisting">function f(M) = (
+ if not IsMatrix (M) then (
+ error ("M not a matrix!");
+ bailout
+ );
+ ...
+)
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s09.html">Προηγ</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch07s02.html">Επόμενο</a></td></tr><tr><td
width="40%" align="left" valign="top">Lvalues (αριστερές τιμές) </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top"> Σύνταξη ανωτάτου
επιπέδου</td></tr></table></div></body></html>
diff --git a/help/el/html/ch07s02.html b/help/el/html/ch07s02.html
new file mode 100644
index 0000000..ebd7cd1
--- /dev/null
+++ b/help/el/html/ch07s02.html
@@ -0,0 +1,19 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Σύνταξη ανωτάτου
επιπέδου</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch07.html" title="Κεφάλαιο 7. Προχωρημένος
προγραμματισμός με GEL"><link rel="prev" href="ch07.html" title="Κεφάλαιο 7. Προχωρημένος προγραμματισμός με
GEL"><link rel="next" href="ch07s03.html" title="Επιστροφή συναρτήσεων"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Σύνταξη ανωτάτου επιπέδου</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch07.html">Προηγ</a> </td><th width="60%" align="center">
Κεφάλαιο 7. Προχωρημένος προγραμματισμός με GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s03.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-toplevel-syntax"></a>Σύνταξη ανωτάτου επιπέδου</h2></div></div></div><p>
+ The syntax is slightly different if you enter statements on
+ the top level versus when they are inside parentheses or
+ inside functions. On the top level, enter acts the same as if
+ you press return on the command line. Therefore think of programs
+ as just sequence of lines as if were entered on the command line.
+ In particular, you do not need to enter the separator at the end of the
+ line (unless it is of course part of several statements inside
+ parentheses).
+ </p><p>Ο παρακάτω κώδικας θα παράξει ένα σφάλμα όταν εισαχθεί στο ανώτατο επίπεδο ενός προγράμματος,
ενώ θα δουλέψει θαυμάσια σε μια συνάρτηση. </p><pre class="programlisting">if Something() then
+ DoSomething()
+else
+ DoSomethingElse()
+</pre><p>Το πρόβλημα είναι ότι μετά το <span class="application">Εργαλείο μαθηματικών Genius</span> βλέπει
το τέλος της γραμμής μετά τη δεύτερη γραμμή, θα αποφασίσει ότι έχουμε ολόκληρη τη δήλωση και θα την
εκτελέσει. Μετά την εκτέλεση, το <span class="application">Εργαλείο μαθηματικών Genius</span> θα συνεχίσει με
την επόμενη γραμμή, θα δει το <code class="literal">else</code> και θα παράξει ένα σφάλμα ανάλυσης. Για να το
διορθώσετε, χρησιμοποιήστε παρενθέσεις. Το <span class="application">Εργαλείο μαθηματικών Genius</span> δεν
θα ικανοποιηθεί μέχρι να βρει ότι όλες οι παρενθέσεις έχουν κλείσει. </p><pre class="progra
mlisting">if Something() then (
+ DoSomething()
+) else (
+ DoSomethingElse()
+)
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch07.html">Προηγ</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch07.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07s03.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Κεφάλαιο 7.
Προχωρημένος προγραμματισμός με GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top"> Επιστροφή
συναρτήσεων</td></tr></table></div></body></html>
diff --git a/help/el/html/ch07s03.html b/help/el/html/ch07s03.html
new file mode 100644
index 0000000..a11f210
--- /dev/null
+++ b/help/el/html/ch07s03.html
@@ -0,0 +1,27 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Επιστροφή
συναρτήσεων</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch07.html" title="Κεφάλαιο 7. Προχωρημένος
προγραμματισμός με GEL"><link rel="prev" href="ch07s02.html" title="Σύνταξη ανωτάτου επιπέδου"><link
rel="next" href="ch07s04.html" title="Αληθείς τοπικές μεταβλητές"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Επιστροφή συναρτήσεων</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch07s02.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 7. Προχωρη�
�ένος προγραμματισμός με GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s04.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-returning-functions"></a>Επιστροφή συναρτήσεων</h2></div></div></div><p>Είναι δυνατό να
επιστρέψετε συναρτήσεις ως τιμή. Με αυτόν τον τρόπο μπορείτε να δομήσετε συναρτήσεις που κατασκευάζουν
συναρτήσεις ειδικού σκοπού σύμφωνα με κάποιες παραμέτρους. Το ευαίσθητο κομμάτι είναι τι μεταβλητές βλέπει η
συνάρτηση. Ο τρόπος που αυτό δουλεύει στο GEL είναι ότι όταν μια συνάρτηση επιστρέφει μια άλλη συνάρτηση, όλα
τα αναγνωριστικά που αναφέρθηκαν στο σώμα της συνάρτησης που βγήκε εκτός εμβέλειας προτάσσουν ένα ιδιωτικό
λεξικό της επιστρεφόμενης συνάρτησης. Έτσι η συνάρτηση θα δει όλες τις μεταβλητέςπου ήταν στην εμβέλεια όταν
ορίστηκε. Για παράδειγμα, ορίζουμε μια συνάρτηση που επιστρέφει μια συνάρτηση που προσθέτει 5 στο όρισμά της.
</p><pre class="programlisting">function f() = (
+ k = 5;
+ `(x) = (x+k)
+)
+</pre><p> Σημειώστε ότι, η συνάρτηση προσθέτει τη <code class="varname">k</code> στη <code
class="varname">x</code>. Μπορείτε να τη χρησιμοποιήσετε ως εξής. </p><pre class="programlisting">g = f();
+g(5)
+</pre><p> Και η <strong class="userinput"><code>g(5)</code></strong> πρέπει να επιστρέψει 10.</p><p>Πρέπει
να σημειώσετε ότι η τιμή της <code class="varname">k</code> που χρησιμοποιείται είναι αυτή που επιστρέφεται
στην πραγματικότητα από την <code class="function">f</code>. Για παράδειγμα: το </p><pre
class="programlisting">function f() = (
+ k := 5;
+ function r(x) = (x+k);
+ k := 10;
+ r
+)
+</pre><p> θα επιστρέψει μια συνάρτηση που προσθέτει 10 στο όρισμά της αντί για 5. Αυτό συμβαίνει επειδή το
πρόσθετο λεξικό δημιουργείται μόνο όταν το περιεχόμενο στο οποίο η συνάρτηση ορίστηκε τελειώνει, που
συμβαίνει όταν η συνάρτηση <code class="function">f</code> επιστρέφεται. Αυτό είναι συνεπές με το πώς θα
περιμένατε η συνάρτηση <code class="function">r</code> να δουλέψει μέσα στη συνάρτηση <code
class="function">f</code> σύμφωνα με τους κανόνες εμβέλειας των μεταβλητών στη GEL. Μόνο αυτές οι μεταβλητές
προστίθενται στο πρόσθετο λεξικό που είναι στο περιεχόμενο που μόλις τελείω�
�ε και δεν υπάρχει πια. Οι χρησιμοποιούμενες μεταβλητές στη συνάρτηση που είναι ακόμα σε έγκυρα περιεχόμενα
θα δουλέψουν ως συνήθως, χρησιμοποιώντας την τρέχουσα τιμή της μεταβλητής. Η μόνη διαφορά είναι με τις
καθολικές μεταβλητές και συναρτήσεις. Όλα τα αναγνωριστικά που αναφέρθηκαν σε καθολικές μεταβλητές κατά τον
ορισμό της συνάρτησης δεν προστίθενται στο ιδιωτικό λεξικό. Αυτό συμβαίνει για να αποφευχθεί πολλή περιττή
εργασία κατά την επιστροφή συναρτήσεων και μπορεί σπάνια να είναι πρόβλημα. Για παράδειγμα, ας υποθέσουμε ότι
δ
ιαγράφετε το "k=5" από τη συνάρτηση <code class="function">f</code> και στο ανώτατο επίπεδο ορίζετε την
<code class="varname">k</code> να είναι ας πούμε 5. Τότε όταν εκτελείτε τη <code class="function">f</code>, η
συνάρτηση <code class="function">r</code> δεν θα βάλει την <code class="varname">k</code> στο ιδιωτικό
λεξικό, επειδή είναι καθολική (ανωτάτου επιπέδου) τη στιγμή του ορισμού της <code
class="function">r</code>.</p><p>Μερικές φορές είναι καλύτερο να έχετε περισσότερο έλεγχο στο πώς
αντιγράφονται οι μεταβλητές στο ιδιωτικό λεξικό. Από την έκδοση 1.0.7, μπορείτε να ορίσετε ποιες μεταβλητές
αντιγράφονται στο ιδιωτικό λεξι
κό βάζοντας πρόσθετες αγκύλες μετά τα ορίσματα με τον κατάλογο των μεταβλητών να αντιγράφεται χωριζόμενο με
κόμματα. Αν το κάνετε αυτό, τότε οι μεταβλητές αντιγράφονται στο προσωπικό λεξικό τη στιγμή του ορισμού της
συνάρτησης και το ιδιωτικό λεξικό δεν επηρεάζεται κατόπιν. Για παράδειγμα το </p><pre
class="programlisting">function f() = (
+ k := 5;
+ function r(x) [k] = (x+k);
+ k := 10;
+ r
+)
+</pre><p> θα επιστρέψει μια συνάρτηση που όταν καλείται θα προσθέσει 5 στο όρισμά του. Το τοπικό αντίγραφο
της <code class="varname">k</code> δημιουργήθηκε όταν η συνάρτηση ορίστηκε.</p><p>Όταν θέλετε η συνάρτηση να
μην έχει κανένα ιδιωτικό λεξικό, τότε βάλτε κενές αγκύλες μετά την λίστα ορισμάτων. Τότε κανένα ιδιωτικό
λεξικό δεν θα δημιουργηθεί. Κάνοντας το αυξάνετε την αποτελεσματικότητα, όταν ένα προσωπικό λεξικό δεν
χρειάζεται ή όταν θέλετε η συνάρτηση να αναζητήσει όλες τις μεταβλητές όπως τις βλέπει όταν καλούνται. Για
παράδειγμα ας υποθέσουμε ότι θ
έλετε η επιστρεφόμενη συνάρτηση από την <code class="function">f</code> να δει την τιμή της <code
class="varname">k</code> από το ανώτατο επίπεδο παρά το ότι εκεί είναι μια τοπική μεταβλητή με το ίδιο όνομα
κατά τη διάρκεια του ορισμού. Έτσι ο κώδικας </p><pre class="programlisting">function f() = (
+ k := 5;
+ function r(x) [] = (x+k);
+ r
+);
+k := 10;
+g = f();
+g(10)
+</pre><p> θα επιστρέψει 20 και όχι 15, που θα συμβεί αν η <code class="varname">k</code> με μια τιμή 5
προστέθηκε στο ιδιωτικό λεξικό.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch07s02.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch07.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07s04.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Σύνταξη ανωτάτου
επιπέδου </td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%"
align="right" valign="top"> Αληθείς τοπικές μεταβλητές</td></tr></table></div></body></html>
diff --git a/help/el/html/ch07s04.html b/help/el/html/ch07s04.html
new file mode 100644
index 0000000..ab92913
--- /dev/null
+++ b/help/el/html/ch07s04.html
@@ -0,0 +1,40 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Αληθείς τοπικές
μεταβλητές</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch07.html" title="Κεφάλαιο 7. Προχωρημένος
προγραμματισμός με GEL"><link rel="prev" href="ch07s03.html" title="Επιστροφή συναρτήσεων"><link rel="next"
href="ch07s05.html" title="Διαδικασία έναρξης GEL"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Αληθείς τοπικές μεταβλητές</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07s03.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 7.
Προχωρη�
�ένος προγραμματισμός με GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s05.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-true-local-variables"></a>Αληθείς τοπικές μεταβλητές</h2></div></div></div><p>Κατά τη
μεταβίβαση συναρτήσεων σε άλλες συναρτήσεις, η κανονική εμβέλεια των μεταβλητών μπορεί να είναι ανεπιθύμητη.
Για παράδειγμα: </p><pre class="programlisting">k := 10;
+function r(x) = (x+k);
+function f(g,x) = (
+ k := 5;
+ g(x)
+);
+f(r,1)
+</pre><p> προφανώς θέλετε η συνάρτηση <code class="function">r</code> κατά τη μεταβίβαση ως <code
class="function">g</code> στη <code class="function">f</code> να δει τη <code class="varname">k</code> ως 10
αντί για 5, έτσι ώστε ο κώδικας να επιστρέψει 11 και όχι 6. Όμως, όπως είναι γραμμένο, η συνάρτηση κατά την
εκτέλεση θα δει τη <code class="varname">k</code> που είναι ίση με 5. Υπάρχουν δύο τρόποι για την επίλυση
αυτού του θέματος. Κάποιος πρέπει να κάνει την <code class="function">r</code> να πάρει την <code
class="varname">k</code> σε ένα ιδιωτικό λεξικό χρησιμοποιώντας την σημειογραφία αγκύλης στην ενότητα <a
class="link" href="ch07s03.html" title="Επιστροφή
συναρτήσεων">Επιστροφή συναρτήσεων</a>.</p><p>
+ But there is another solution. Since version 1.0.7 there are
+ true local variables. These are variables that are visible only
+ from the current context and not from any called functions.
+ We could define <code class="varname">k</code> as a local variable in the
+ function <code class="function">f</code>. To do this add a
+ <span class="command"><strong>local</strong></span> statement as the first statement in the
+ function (it must always be the first statement in the function).
+ You can also make any arguments be local variables as well.
+ That is,
+</p><pre class="programlisting">function f(g,x) = (
+ local g,x,k;
+ k := 5;
+ g(x)
+);
+</pre><p>
+ Then the code will work as expected and prints out 11.
+ Note that the <span class="command"><strong>local</strong></span> statement initializes
+ all the referenced variables (except for function arguments) to
+ a <code class="constant">null</code>.
+ </p><p>
+ If all variables are to be created as locals you can just pass an
+ asterisk instead of a list of variables. In this case the variables
+ will not be initialized until they are actually set of course.
+ So the following definition of <code class="function">f</code>
+ will also work:
+</p><pre class="programlisting">function f(g,x) = (
+ local *;
+ k := 5;
+ g(x)
+);
+</pre><p>
+ </p><p>Είναι μια καλή πρακτική όλες οι συναρτήσεις που παίρνουν άλλες συναρτήσεις ως ορίσματα να
χρησιμοποιούν τοπικές μεταβλητές. Με αυτόν το τρόπο η μεταβιβαζόμενη συνάρτηση δεν βλέπει λεπτομέρειες
υλοποίησης και δεν μπερδεύεται.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch07s03.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch07.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07s05.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Επιστροφή συναρτήσεων
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%"
align="right
" valign="top"> Διαδικασία έναρξης GEL</td></tr></table></div></body></html>
diff --git a/help/el/html/ch07s05.html b/help/el/html/ch07s05.html
new file mode 100644
index 0000000..2ac3711
--- /dev/null
+++ b/help/el/html/ch07s05.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Διαδικασία έναρξης
GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch07.html" title="Κεφάλαιο 7. Προχωρημένος
προγραμματισμός με GEL"><link rel="prev" href="ch07s04.html" title="Αληθείς τοπικές μεταβλητές"><link
rel="next" href="ch07s06.html" title="Φόρτωση προγραμμάτων"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Διαδικασία έναρξης GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07s04.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 7.
Προχωρημένος π�
�ογραμματισμός με GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s06.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-startup-procedure"></a>Διαδικασία έναρξης GEL</h2></div></div></div><p>Αρχικά το πρόγραμμα
αναζητά το εγκατεστημένο αρχείο βιβλιοθήκης (τη μεταγλωττισμένη έκδοση <code
class="filename">lib.cgel</code>) στον εγκατεστημένο κατάλογο, έπειτα ψάχνει στον τρέχοντα κατάλογο και
έπειτα προσπαθεί να φορτώσει το αμεταγλώττιστο αρχείο που λέγεται <code
class="filename">~/.geniusinit</code>.</p><p>Αν ποτέ αλλάξετε την εγκατεστημένη θέση της βιβλιοθήκης, θα
πρέπε�
� πρώτα να τη μεταγλωττίσετε με <span class="command"><strong>genius --compile loader.gel >
lib.cgel</strong></span></p></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch07s04.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch07.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07s06.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Αληθείς τοπικές
μεταβλητές </td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td
width="40%" align="right" valign="top"> Φόρτωση προγραμμάτων</td></tr></table></div></body></html>
diff --git a/help/el/html/ch07s06.html b/help/el/html/ch07s06.html
new file mode 100644
index 0000000..f108b2a
--- /dev/null
+++ b/help/el/html/ch07s06.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Φόρτωση
προγραμμάτων</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch07.html" title="Κεφάλαιο 7. Προχωρημένος
προγραμματισμός με GEL"><link rel="prev" href="ch07s05.html" title="Διαδικασία έναρξης GEL"><link rel="next"
href="ch08.html" title="Κεφάλαιο 8. Πίνακες στη GEL"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Φόρτωση προγραμμάτων</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch07s05.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 7. Προχωρημένος
προγρ�
�μματισμός με GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch08.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-loading-programs"></a>Φόρτωση προγραμμάτων</h2></div></div></div><p>
+Sometimes you have a larger program you wrote into a file and want to read that file into <span
class="application">Genius Mathematics Tool</span>. In these situations, you have two options. You can keep
the functions you use most inside the <code class="filename">~/.geniusinit</code> file. Or if you want to
load up a file in a middle of a session (or from within another file), you can type <span
class="command"><strong>load <list of filenames></strong></span> at the prompt. This has to be done on
the top level and not inside any function or whatnot, and it cannot be part of any expression. It also has a
slightly different syntax than the rest of genius, more similar to a shell. You can enter the file in quotes.
If you use the '' quotes, you will get exactly the string that you typed, if you use the "" quotes, special
characters will be unescaped as they are for strings. Example:
+</p><pre class="programlisting">load program1.gel program2.gel
+load "Weird File Name With SPACES.gel"
+</pre><p>
+There are also <span class="command"><strong>cd</strong></span>, <span
class="command"><strong>pwd</strong></span> and <span class="command"><strong>ls</strong></span> commands
built in. <span class="command"><strong>cd</strong></span> will take one argument, <span
class="command"><strong>ls</strong></span> will take an argument that is like the glob in the UNIX shell
(i.e., you can use wildcards). <span class="command"><strong>pwd</strong></span> takes no arguments. For
example:
+</p><pre class="programlisting">cd directory_with_gel_programs
+ls *.gel
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07s05.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch07.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch08.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Διαδικασία έναρξης GEL
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%"
align="right" valign="top"> Κεφάλαιο 8. Πίνακες στη GEL</td></tr></table></div></body></html>
diff --git a/help/el/html/ch08.html b/help/el/html/ch08.html
new file mode 100644
index 0000000..e4cc455
--- /dev/null
+++ b/help/el/html/ch08.html
@@ -0,0 +1,43 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Κεφάλαιο 8. Πίνακες
στη GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="index.html" title="Εγχειρίδιο Genius"><link
rel="prev" href="ch07s06.html" title="Φόρτωση προγραμμάτων"><link rel="next" href="ch08s02.html"
title="Συζυγής αντιστροφή και τελεστής αντιστροφής"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Κεφάλαιο 8. Πίνακες στη GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07s06.html">Προηγ</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href
="ch08s02.html">Επόμενο</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-gel-matrices"></a>Κεφάλαιο 8. Πίνακες στη
GEL</h1></div></div></div><div class="toc"><p><b>Πίνακας Περιεχομένων</b></p><dl class="toc"><dt><span
class="sect1"><a href="ch08.html#genius-gel-matrix-support">Εισαγωγή πινάκων</a></span></dt><dt><span
class="sect1"><a href="ch08s02.html">Συζυγής αντιστροφή και τελεστής αντιστροφής</a></span></dt><dt><span
class="sect1"><a href="ch08s03.html">Γραμμική Άλγεβρα</a></span></dt></dl></div><p>
+ Genius has support for vectors and matrices and possesses a sizable library of
+ matrix manipulation and linear algebra functions.
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-matrix-support"></a>Εισαγωγή πινάκων</h2></div></div></div><p>
+To enter matrices, you can use one of the following two syntaxes. You can either enter
+the matrix on one line, separating values by commas and rows by semicolons. Or you
+can enter each row on one line, separating
+values by commas.
+You can also just combine the two methods.
+So to enter a 3x3 matrix
+of numbers 1-9 you could do
+</p><pre class="programlisting">[1,2,3;4,5,6;7,8,9]
+</pre><p>
+or
+</p><pre class="programlisting">[1, 2, 3
+ 4, 5, 6
+ 7, 8, 9]
+</pre><p>
+Do not use both ';' and return at once on the same line though.
+ </p><p>
+You can also use the matrix expansion functionality to enter matrices.
+For example you can do:
+</p><pre class="programlisting">a = [ 1, 2, 3
+ 4, 5, 6
+ 7, 8, 9]
+b = [ a, 10
+ 11, 12]
+</pre><p>
+and you should get
+</p><pre class="programlisting">[1, 2, 3, 10
+ 4, 5, 6, 10
+ 7, 8, 9, 10
+ 11, 11, 11, 12]
+</pre><p>
+similarly you can build matrices out of vectors and other stuff like that.
+ </p><p>Ένα άλλο είναι ότι αρχικοποιούνται μη καθορισμένα σημεία σε 0, έτσι το </p><pre
class="programlisting">[1, 2, 3
+ 4, 5
+ 6]
+</pre><p> θα καταλήξει να είναι </p><pre class="programlisting">
+[1, 2, 3
+ 4, 5, 0
+ 6, 0, 0]
+</pre><p>Όταν υπολογίζονται πίνακες, υπολογίζονται και διατρέχονται κατά την έννοια της γραμμής. Αυτό είναι
ακριβώς όπως ο τελεστής <code class="literal">M@(j)</code> που διατρέχει τον πίνακα κατά την έννοια της
γραμμής.</p><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Σημείωση</h3><p>Προσέξτε τη χρήση επιστροφών για εκφράσεις μέσα σε αγκύλες <code
class="literal">[ ]</code>, επειδή έχουν μια ελαφρώς διαφορετική έννοια εδώ. Θα ξεκινήσετε μια νέα
γραμμή.</p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch07s06.html">Προηγ</a> </td><td width="20%"
align="center"> <
/td><td width="40%" align="right"> <a accesskey="n" href="ch08s02.html">Επόμενο</a></td></tr><tr><td
width="40%" align="left" valign="top">Φόρτωση προγραμμάτων </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top"> Συζυγής αντιστροφή
και τελεστής αντιστροφής</td></tr></table></div></body></html>
diff --git a/help/el/html/ch08s02.html b/help/el/html/ch08s02.html
new file mode 100644
index 0000000..96c4b23
--- /dev/null
+++ b/help/el/html/ch08s02.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Συζυγής αντιστροφή και
τελεστής αντιστροφής</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch08.html" title="Κεφάλαιο 8. Πίνακες στη
GEL"><link rel="prev" href="ch08.html" title="Κεφάλαιο 8. Πίνακες στη GEL"><link rel="next"
href="ch08s03.html" title="Γραμμική Άλγεβρα"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Συζυγής αντιστροφή και τελεστής αντιστροφής</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch08.html">Προηγ</a> </td><th width="60%"
align="center">Κεφάλαιο 8.
Πίνακες στη GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch08s03.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-matrix-transpose"></a>Συζυγής αντιστροφή και τελεστής
αντιστροφής</h2></div></div></div><p>Μπορείτε να πάρετε τον συζυγή ενός ανάστροφου πίνακα χρησιμοποιώντας τον
τελεστή <code class="literal">'</code>. Δηλαδή, η καταχώριση στην <code class="varname">i</code>στη στήλη και
στην <code class="varname">j</code>στη γραμμή θα είναι ο μιγαδικός συζυγής της καταχώρισης στη <code
class="varname">j</code>στη στήλη και την <code class="varname">i</code>στη γραμμή του αρχικού πίνακα. Για
παράδει�
�μα: </p><pre class="programlisting">[1,2,3]*[4,5,6]'
+</pre><p> Αναστρέφουμε το δεύτερο διάνυσμα για να κάνουμε τον πολλαπλασιασμό του πίνακα δυνατό. Αν θέλετε
απλά να αναστρέψετε έναν πίνακα χωρίς να πάρετε τον συζυγή του, μπορείτε να χρησιμοποιήσετε τον τελεστή <code
class="literal">.'</code>. Για παράδειγμα: </p><pre class="programlisting">[1,2,3]*[4,5,6i].'
+</pre><p>Σημειώστε ότι ο κανονικός ανάστροφος, δηλαδή ο τελεστής <code class="literal">.'</code>, είναι πολύ
γρηγορότερος και δεν θα δημιουργήσει ένα νέο αντίγραφο του πίνακα στη μνήμη. Η αναστροφή του συζυγή δεν
δημιουργεί ένα νέο αντίγραφο δυστυχώς. Συνιστάται να χρησιμοποιείτε πάντα τον τελεστή <code
class="literal">.'</code> όταν δουλεύετε με πραγματικούς πίνακες και διανύσματα.</p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch08.html">Προηγ</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch08.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n" href="ch08s03.html">Επόμενο</a
</td></tr><tr><td width="40%" align="left" valign="top">Κεφάλαιο 8. Πίνακες στη GEL </td><td width="20%"
align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top">
Γραμμική Άλγεβρα</td></tr></table></div></body></html>
diff --git a/help/el/html/ch08s03.html b/help/el/html/ch08s03.html
new file mode 100644
index 0000000..6f8b42d
--- /dev/null
+++ b/help/el/html/ch08s03.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Γραμμική
Άλγεβρα</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch08.html" title="Κεφάλαιο 8. Πίνακες στη
GEL"><link rel="prev" href="ch08s02.html" title="Συζυγής αντιστροφή και τελεστής αντιστροφής"><link
rel="next" href="ch09.html" title="Κεφάλαιο 9. Πολυώνυμα στην GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Γραμμική Άλγεβρα</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch08s02.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 8. Πίνακες στη
GEL</th><td width="2
0%" align="right"> <a accesskey="n" href="ch09.html">Επόμενο</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-matrix-linalg"></a>Γραμμική Άλγεβρα</h2></div></div></div><p>Η Genius υλοποιεί πολλές
χρήσιμες ρουτίνες χειρισμού γραμμικής άλγεβρας και πινάκων. Δείτε <a class="link" href="ch11s09.html"
title="Γραμμική Άλγεβρα">γραμμική άλγεβρα</a> και τις ενότητες <a class="link" href="ch11s08.html"
title="Διαχείριση πινάκων">Χειρισμός πίνακα</a> του καταλόγου συναρτήσεων GEL.</p><p>Οι υλοποιούμενες
ρουτίνες γραμμικής άλγεβρας στο GEL δεν έρχονται προς το παρόν από ένα καλά ελεγμένο αριθμητικό πακέτο κ
αι έτσι δεν πρέπει να χρησιμοποιηθούν για κρίσιμους αριθμητικούς υπολογισμούς. Από την άλλη μεριά, η Genius
υλοποιεί πολύ καλά πολλές πράξεις γραμμικής άλγεβρας με ρητούς και ακέραιους συντελεστές. Αυτές είναι έμφυτα
ακριβείς και στην πραγματικότητα θα σας δώσουν πολύ καλύτερα αποτελέσματα από τις συνηθισμένες ρουτίνες
διπλής ακρίβειας για γραμμική άλγεβρα.</p><p>Για παράδειγμα, είναι χωρίς νόημα να υπολογίσετε την τάξη και
μηδενικό χώρο ενός πίνακα κινητής υποδιαστολής αφού για όλους τους πρακτικούς σκοπούς, χρειάζεται να
θεωρήσουμε ό
τι ο πίνακας έχει κάποια μικρά σφάλματα. Είναι πιθανό να πάρετε ένα διαφορετικό αποτέλεσμα από αυτό που
περιμένετε. Το πρόβλημα είναι κάτω από μια μικρή διαταραχή κάθε πίνακας είναι πλήρους τάξης και
αντιστρέψιμος. Αν ο πίνακας όμως είναι ρητών αριθμών, τότε η τάξη και ο μηδενικός χώρος είναι πάντα
ακριβείς.</p><p>Γενικά, όταν η Genius υπολογίζει τη βάση συγκεκριμένου διανυσματικού χώρου (για παράδειγμα με
την <a class="link" href="ch11s09.html#gel-function-NullSpace"><code class="function">NullSpace</code></a>)
θα δώσει τη βάση ως πίνακα, στον οποίον οι στήλες είναι τα διανύσματα της βάσ�
�ς. Δηλαδή, όταν η Genius μιλά για έναν γραμμικό υπόχωρο σημαίνει ένας πίνακας του οποίου ο χώρος στηλών
είναι ο δοσμένος γραμμικός υπόχωρος.</p><p>Θα πρέπει να σημειωθεί ότι η Genius μπορεί να θυμάται
συγκεκριμένες ιδιότητες ενός πίνακα. Για παράδειγμα, θα θυμάται ότι ο πίνακας είναι σε ανηγμένη μορφή
γραμμής. Αν γίνουν πολλές κλήσεις σε συναρτήσεις που χρησιμοποιούν εσωτερικά ανηγμένη μορφή γραμμής του
πίνακα, μπορούμε απλά να μειώσουμε τη γραμμή του πίνακα προκαταβολικά μια φορά. Διαδοχικές κλήσεις στο <a
class="link" href="ch11s09.html#gel-function-rref"><code class="func
tion">rref</code></a> θα είναι πολύ γρήγορες.</p></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch08s02.html">Προηγ</a>
</td><td width="20%" align="center"><a accesskey="u" href="ch08.html">Πάνω</a></td><td width="40%"
align="right"> <a accesskey="n" href="ch09.html">Επόμενο</a></td></tr><tr><td width="40%" align="left"
valign="top">Συζυγής αντιστροφή και τελεστής αντιστροφής </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top"> Κεφάλαιο 9. Πολυώνυμα στην
GEL</td></tr></table></div></body></html>
diff --git a/help/el/html/ch09.html b/help/el/html/ch09.html
new file mode 100644
index 0000000..0807d12
--- /dev/null
+++ b/help/el/html/ch09.html
@@ -0,0 +1,7 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Κεφάλαιο 9. Πολυώνυμα
στην GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="index.html" title="Εγχειρίδιο Genius"><link
rel="prev" href="ch08s03.html" title="Γραμμική Άλγεβρα"><link rel="next" href="ch10.html" title="Κεφάλαιο 10.
Θεωρία συνόλων στη GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Κεφάλαιο 9. Πολυώνυμα στην GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch08s03.html">Προηγ</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch10.html">Επόμ�
�νο</a></td></tr></table><hr></div><div class="chapter"><div class="titlepage"><div><div><h1
class="title"><a name="genius-gel-polynomials"></a>Κεφάλαιο 9. Πολυώνυμα στην GEL</h1></div></div></div><div
class="toc"><p><b>Πίνακας Περιεχομένων</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch09.html#genius-gel-polynomials-using">Χρήση πολυωνύμων</a></span></dt></dl></div><p>Προς το παρόν η
Genius μπορεί να χειριστεί πολυώνυμα μιας μεταβλητής γραμμένα ως διανύσματα και να κάνει μερικές βασικές
πράξεις με αυτές. Είναι προγραμματισμένο να επεκτείνει αυτήν την υποστήριξη παραπέρα.</p><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-polynomials-using"></a>Χρήση πολυωνύμων</h2><
/div></div></div><p>Προς το παρόν πολυώνυμα με μια μεταβλητή είναι μόνο οριζόντια διανύσματα με τιμή μόνο
κόμβων. Η δύναμη του όρου είναι η θέση στο διάνυσμα, με την πρώτη θέση να είναι το 0. Έτσι, το </p><pre
class="programlisting">[1,2,3]
+</pre><p> μεταφράζεται σε ένα πολυωνύμου του </p><pre class="programlisting">1 + 2*x + 3*x^2
+</pre><p>Μπορείτε να προσθέσετε, αφαιρέσετε και να πολλαπλασιάσετε πολυώνυμα χρησιμοποιώντας τις συναρτήσεις
<a class="link" href="ch11s15.html#gel-function-AddPoly"><code class="function">AddPoly</code></a>, <a
class="link" href="ch11s15.html#gel-function-SubtractPoly"><code class="function">SubtractPoly</code></a> και
<a class="link" href="ch11s15.html#gel-function-MultiplyPoly"><code class="function">MultiplyPoly</code></a>
αντίστοιχα. Μπορείτε να εκτυπώσετε ένα πολυώνυμο χρησιμοποιώντας τη συνάρτηση <a class="link"
href="ch11s15.html#gel-function-PolyToString"><code class="function">PolyToString</code></a>. Για παράδειγμα,
το </p><pre class="programlisting">PolyToString([1,2,3],"y")
+</pre><p> δίνει </p><pre class="programlisting">3*y^2 + 2*y + 1
+</pre><p> Μπορείτε επίσης να πάρετε μια αναπαράσταση συνάρτησης του πολυωνύμου έτσι ώστε να μπορέσετε την
υπολογίσετε. Αυτό γίνεται χρησιμοποιώντας την <a class="link"
href="ch11s15.html#gel-function-PolyToFunction"><code class="function">PolyToFunction</code></a>, που
επιστρέφει μια ανώνυμη συνάρτηση. </p><pre class="programlisting">f = PolyToFunction([0,1,1])
+f(2)
+</pre><p>Είναι επίσης δυνατό να βρείτε ρίζες πολυωνύμων βαθμών 1 μέχρι 4 χρησιμοποιώντας τη συνάρτηση <a
class="link" href="ch11s13.html#gel-function-PolynomialRoots"><code
class="function">PolynomialRoots</code></a>, που καλεί τη συνάρτηση κατάλληλου τύπου. Πολυώνυμα μεγαλύτερου
βαθμού πρέπει να μετατραπούν σε συναρτήσεις και να επιλυθούν αριθμητικά χρησιμοποιώντας μια συνάρτηση όπως οι
<a class="link" href="ch11s13.html#gel-function-FindRootBisection"><code
class="function">FindRootBisection</code></a>, <a class="link"
href="ch11s13.html#gel-function-FindRootFalsePosition"><code
class="function">FindRootFalsePosition</code></a>, <a class="link"
href="ch11s13.html#gel-function-FindRootMullersMethod"><code class="function">FindRootMullersMethod</code></
a>, ή <a class="link" href="ch11s13.html#gel-function-FindRootSecant"><code
class="function">FindRootSecant</code></a>.</p><p>Δείτε <a class="xref" href="ch11s15.html"
title="Πολυώνυμα">«Πολυώνυμα»</a> στον κατάλογο συναρτήσεων για τις υπόλοιπες συναρτήσεις που δρουν σε
πολυώνυμα.</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch08s03.html">Προηγ</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch10.html">Επόμενο</a></td></tr><tr><td
width="40%" align="left" valign="top">Γραμμική Άλγεβρα </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top"> Κεφάλαιο 10. Θεωρία συνόλων στη
GEL</td></tr></table></div></bod
y></html>
diff --git a/help/el/html/ch10.html b/help/el/html/ch10.html
new file mode 100644
index 0000000..7a9982d
--- /dev/null
+++ b/help/el/html/ch10.html
@@ -0,0 +1,7 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Κεφάλαιο 10. Θεωρία
συνόλων στη GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="index.html" title="Εγχειρίδιο Genius"><link
rel="prev" href="ch09.html" title="Κεφάλαιο 9. Πολυώνυμα στην GEL"><link rel="next" href="ch11.html"
title="Κεφάλαιο 11. Κατάλογος συναρτήσεων της GEL"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Κεφάλαιο 10. Θεωρία συνόλων στη GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch09.html">Προηγ</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right">�
�<a accesskey="n" href="ch11.html">Επόμενο</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-gel-settheory"></a>Κεφάλαιο 10. Θεωρία συνόλων
στη GEL</h1></div></div></div><div class="toc"><p><b>Πίνακας Περιεχομένων</b></p><dl class="toc"><dt><span
class="sect1"><a href="ch10.html#genius-gel-sets-using">Χρήση συνόλων</a></span></dt></dl></div><p>Η Genius
έχει κάποια βασική θεωρητική λειτουργικότητα συνόλων ενσωματωμένη. Προς το παρόν ένα σύνολο είναι απλά ένα
διάνυσμα (ή πίνακας). Κάθε ξεχωριστό αντικείμενο αντιμετωπίζεται ως διαφορετικό στοιχείο.</p><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-sets-using"></a>Χρήσ�
� συνόλων</h2></div></div></div><p>Ακριβώς όπως τα διανύσματα, τα αντικείμενα στα σύνολα μπορούν να
περιλαμβάνουν αριθμούς, συμβολοσειρές <code class="constant">null</code>, πίνακες και διανύσματα. Σχεδιάζεται
στο μέλλον να υπάρχει ένας αποκλειστικός τύπος για σύνολα, αντί να χρησιμοποιούνται διανύσματα. Σημειώστε ότι
οι αριθμοί κινητής υποδιαστολής είναι διακριτοί από τους ακέραιους, ακόμα κι αν εμφανίζονται το ίδιο. Δηλαδή
η Genius θα θεωρήσει τις <code class="constant">0</code> και <code class="constant">0.0</code> ως δύο
διαφορετικά στοιχεία. Η <code class="constant">null</code> αντιμετωπίζεται ως ένα κε
νό σύνολο.</p><p>Για να δομήσετε ένα σύνολο από ένα διάνυσμα, χρησιμοποιήστε τη συνάρτηση <a class="link"
href="ch11s16.html#gel-function-MakeSet"><code class="function">MakeSet</code></a>. Προς το παρόν, θα
επιστρέψει απλά ένα νέο διάνυσμα, όπου κάθε στοιχείο είναι μοναδικό. </p><pre class="screen"><code
class="prompt">genius> </code><strong class="userinput"><code>MakeSet([1,2,2,3])</code></strong>
+= [1, 2, 3]
+</pre><p>Παρόμοια, υπάρχουν συναρτήσεις <a class="link" href="ch11s16.html#gel-function-Union"><code
class="function">Union</code></a>, <a class="link" href="ch11s16.html#gel-function-Intersection"><code
class="function">Intersection</code></a>, <a class="link" href="ch11s16.html#gel-function-SetMinus"><code
class="function">SetMinus</code></a>, που είναι μάλλον αυτονόητες. Για παράδειγμα: </p><pre
class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>Union([1,2,3],
[1,2,4])</code></strong>
+= [1, 2, 4, 3]
+</pre><p> Σημειώστε ότι δεν εγγυάται καμία τάξη για τις τιμές επιστροφής. Αν θέλετε να ταξινομήσετε το
διάνυσμα θα πρέπει να χρησιμοποιήσετε τη συνάρτηση <a class="link"
href="ch11s08.html#gel-function-SortVector"><code class="function">SortVector</code></a>.</p><p>Για τον
έλεγχο μέλους, υπάρχουν συναρτήσεις <a class="link" href="ch11s16.html#gel-function-IsIn"><code
class="function">IsIn</code></a> and <a class="link" href="ch11s16.html#gel-function-IsSubset"><code
class="function">IsSubset</code></a>, που επιστρέφουν μια λογική τιμή. Για παράδειγμα: </p><pre
class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>IsIn (1,
[0,1,2])</code></strong>
+= true
+</pre><p> Η είσοδος <strong class="userinput"><code>IsIn(x,X)</code></strong> είναι φυσικά ισοδύναμη με
<strong class="userinput"><code>IsSubset([x],X)</code></strong>. Σημειώστε ότι, αφού το κενό σύνολο είναι ένα
υποσύνολο κάθε συνόλου, η <strong class="userinput"><code>IsSubset(null,X)</code></strong> είναι πάντα
αληθής.</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch09.html">Προηγ</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch11.html">Επόμενο</a></td></tr><tr><td
width="40%" align="left" valign="top">Κεφάλαιο 9. Πολυώνυμα στην GEL </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top"> Κεφάλαιο 11
. Κατάλογος συναρτήσεων της GEL</td></tr></table></div></body></html>
diff --git a/help/el/html/ch11.html b/help/el/html/ch11.html
new file mode 100644
index 0000000..05fb5a1
--- /dev/null
+++ b/help/el/html/ch11.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="index.html" title="Εγχειρίδιο Genius"><link
rel="prev" href="ch10.html" title="Κεφάλαιο 10. Θεωρία συνόλων στη GEL"><link rel="next" href="ch11s02.html"
title="Βασικά"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Κεφάλαιο
11. Κατάλογος συναρτήσεων της GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch10.html">Προηγ</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href
="ch11s02.html">Επόμενο</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-gel-function-list"></a>Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL</h1></div></div></div><div class="toc"><p><b>Πίνακας Περιεχομένων</b></p><dl
class="toc"><dt><span class="sect1"><a
href="ch11.html#genius-gel-function-list-commands">Εντολές</a></span></dt><dt><span class="sect1"><a
href="ch11s02.html">Βασικά</a></span></dt><dt><span class="sect1"><a
href="ch11s03.html">Παράμετροι</a></span></dt><dt><span class="sect1"><a
href="ch11s04.html">Σταθερές</a></span></dt><dt><span class="sect1"><a
href="ch11s05.html">Αριθμητικό</a></span></dt><dt><span class="sect1"><a
href="ch11s06.html">Τριγωνομετρία</a></span></dt><dt><span class="sect1"><a href="ch11s07.html">Θεωρία
αριθμών</a></span></dt><dt><span class="sect1"><a
href="ch11s08.html">Διαχείριση πινάκων</a></span></dt><dt><span class="sect1"><a
href="ch11s09.html">Γραμμική Άλγεβρα</a></span></dt><dt><span class="sect1"><a
href="ch11s10.html">Συνδυαστική Ανάλυση</a></span></dt><dt><span class="sect1"><a
href="ch11s11.html">Μαθηματική Ανάλυση</a></span></dt><dt><span class="sect1"><a
href="ch11s12.html">Συναρτήσεις</a></span></dt><dt><span class="sect1"><a href="ch11s13.html">Επίλυση
εξίσωσης</a></span></dt><dt><span class="sect1"><a href="ch11s14.html">Στατιστική</a></span></dt><dt><span
class="sect1"><a href="ch11s15.html">Πολυώνυμα</a></span></dt><dt><span class="sect1"><a
href="ch11s16.html">Θεωρία συνόλων</a></span></dt><dt><span class="sect1"><a
href="ch11s17.html">Αντιμεταθετική άλγεβρα</a></span></dt><dt><span class="sect1"><a
href="ch11s18.html">Διάφορα</a></span></dt><dt><span
class="sect1"><a href="ch11s19.html">Συμβολικές πράξεις</a></span></dt><dt><span class="sect1"><a
href="ch11s20.html">Γραφική παράσταση</a></span></dt></dl></div><p>Για να πάρετε βοήθεια σε μια συγκεκριμένη
συνάρτηση από την κονσόλα πληκτρολογήστε: </p><pre class="programlisting">βοήθεια FunctionName
+</pre><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-commands"></a>Εντολές</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a name="gel-command-help"></a>help</span></dt><dd><pre
class="synopsis">βοήθεια</pre><pre class="synopsis">βοήθεια FunctionName</pre><p>Εμφάνιση βοήθειας (ή βοήθεια
για μια συνάρτηση/εντολή).</p></dd><dt><span class="term"><a
name="gel-command-load"></a>load</span></dt><dd><pre class="synopsis">load "file.gel"</pre><p>Load a file
into the interpreter. The file will execute
+as if it were typed onto the command line.</p></dd><dt><span class="term"><a
name="gel-command-cd"></a>cd</span></dt><dd><pre class="synopsis">cd /directory/name</pre><p>Αλλαγή καταλόγου
εργασίας σε <code class="filename">/directory/name</code>.</p></dd><dt><span class="term"><a
name="gel-command-pwd"></a>pwd</span></dt><dd><pre class="synopsis">pwd</pre><p>Εμφάνιση του τρέχοντος
καταλόγου εργασίας.</p></dd><dt><span class="term"><a name="gel-command-ls"></a>ls</span></dt><dd><pre
class="synopsis">ls</pre><p>Λίστα αρχείων στον τρέχοντα κατάλογο.</p></dd><dt><span class="term"><a
name="gel-command-plugin"></a>plugin</span></dt><dd><pre class="synopsis">plugin plugin_name</pre><p>Φόρτωση
ενός προσθέτου. Το πρόσθετο πρέπει να εγκατασταθεί στο σύστημα στο σωστό
κατάλογο.</p></dd></dl></div></div></div><div class
="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch10.html">Προηγ</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> <a accesskey="n" href="ch11s02.html">Επόμενο</a></td></tr><tr><td width="40%" align="left"
valign="top">Κεφάλαιο 10. Θεωρία συνόλων στη GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top">
Βασικά</td></tr></table></div></body></html>
diff --git a/help/el/html/ch11s02.html b/help/el/html/ch11s02.html
new file mode 100644
index 0000000..6affe30
--- /dev/null
+++ b/help/el/html/ch11s02.html
@@ -0,0 +1,38 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Βασικά</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Εγχειρίδιο Genius"><link rel="up" href="ch11.html" title="Κεφάλαιο 11. Κατάλογος συναρτήσεων της
GEL"><link rel="prev" href="ch11.html" title="Κεφάλαιο 11. Κατάλογος συναρτήσεων της GEL"><link rel="next"
href="ch11s03.html" title="Παράμετροι"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Βασικά</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 11. Κατάλογος συναρτήσεων της
GEL</th><td width="20%" align="right"> <a ac
cesskey="n" href="ch11s03.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-basic"></a>Βασικά</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-AskButtons"></a>AskButtons</span></dt><dd><pre class="synopsis">AskButtons
(query)</pre><pre class="synopsis">AskButtons (query, button1, ...)</pre><p>Ερωτά και παρουσιάζει έναν
κατάλογο κουμπιών στον χρήστη (ή ένα μενού επιλογών σε κατάσταση κειμένου). Επιστρέφει τον δείκτη με βάση το
1 του πατημένου κουμπιού. Δηλαδή, επιστρέφει 1 αν το πρώτο κουμπί πατήθηκε, 2 αν το δεύτερο κουμπί πατήθηκε
και ούτω καθεξής. Αν ο χρήστης
κλείσει το παράθυρο (ή απλά πατήσει εισαγωγή στην κατάσταση κειμένου), τότε η <code
class="constant">null</code> επιστρέφεται. Η εκτέλεση του προγράμματος εμποδίζεται μέχρι να απαντήσει ο
χρήστης.</p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-AskString"></a>AskString</span></dt><dd><pre class="synopsis">AskString (query)</pre><pre
class="synopsis">AskString (query, default)</pre><p>Asks a question and lets the user enter a string, which
+it then returns. If the user cancels or closes the window, then
+<code class="constant">null</code> is returned. The execution of the program
+is blocked until the user responds. If <code class="varname">default</code> is given, then it is pre-typed
in for the user to just press enter on (version 1.0.6 onwards).</p></dd><dt><span class="term"><a
name="gel-function-Compose"></a>Compose</span></dt><dd><pre class="synopsis">Compose (f,g)</pre><p>Σύνθεση
δύο συναρτήσεων και επιστροφή μιας συνάρτησης που είναι η σύνθεση των <code class="function">f</code> και
<code class="function">g</code>.</p></dd><dt><span class="term"><a
name="gel-function-ComposePower"></a>ComposePower</span></dt><dd><pre class="synopsis">ComposePower
(f,n,x)</pre><p>Σύνθεση και εκτέλεση μιας συνάρτησης με τον εαυτό της <code class="varname">n</code> φορές,
μεταβιβάζοντας την <code class="varname">x</code> ως όρισμα. Επιστροφή της <code class="varname">x</code> αν
η <code class="varname">n</
code> είναι ίση με 0. Παράδειγμα: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>function f(x) = x^2 ;</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>ComposePower (f,3,7)</code></strong>
+= 5764801
+<code class="prompt">genius></code> <strong class="userinput"><code>f(f(f(7)))</code></strong>
+= 5764801
+</pre></dd><dt><span class="term"><a name="gel-function-Evaluate"></a>Evaluate</span></dt><dd><pre
class="synopsis">Evaluate (str)</pre><p>Αναλύει και υπολογίζει μια συμβολοσειρά.</p></dd><dt><span
class="term"><a name="gel-function-GetCurrentModulo"></a>GetCurrentModulo</span></dt><dd><pre
class="synopsis">GetCurrentModulo</pre><p>Λήψη του τρέχοντος ισοϋπόλοιπου από το περιεχόμενο έξω από τη
συνάρτηση. Δηλαδή, αν εκτελέστηκε έξω από την συνάρτηση σε modulo (χρησιμοποιώντας <code
class="literal">mod</code>), τότε αυτό επιστρέφει ποιο ήταν αυτό το modulo. Κανονικά το καλούμενο σώμα της
συνάρτησης δεν εκτελείται σε αριθμητική υπολοίπων και αυτή η ενσωματωμένη συνάρτηση κάνει δυνατή την �
�νημέρωση των συναρτήσεων GEL αριθμητικής υπολοίπων.</p></dd><dt><span class="term"><a
name="gel-function-Identity"></a>Identity</span></dt><dd><pre class="synopsis">Identity (x)</pre><p>Identity
function, returns its argument. It is equivalent to <strong class="userinput"><code>function
Identity(x)=x</code></strong>.</p></dd><dt><span class="term"><a
name="gel-function-IntegerFromBoolean"></a>IntegerFromBoolean</span></dt><dd><pre
class="synopsis">IntegerFromBoolean (bval)</pre><p>Κάνει τον ακέραιο (0 για <code
class="constant">ψευδή</code> ή 1 για <code class="constant">αληθή</code>) από μια λογική τιμή. Η <code
class="varname">bval</code> μπορεί επίσης να είναι ένας αριθμός οπότε μια μη μηδενική τιμή θα ερμηνευτεί ως
<code class="constant">αληθής</code> και το μηδέν θα ερμηνευτεί ως <cod
e class="constant">ψευδής</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsBoolean"></a>IsBoolean</span></dt><dd><pre class="synopsis">IsBoolean
(arg)</pre><p>Ελέγχει αν το όρισμα είναι λογική τιμή (και όχι αριθμός).</p></dd><dt><span class="term"><a
name="gel-function-IsDefined"></a>IsDefined</span></dt><dd><pre class="synopsis">IsDefined
(id)</pre><p>Ελέγχει αν ένα αναγνωριστικό ορίζεται. Θα πρέπει να περάσετε μια συμβολοσειρά ή και
αναγνωριστικό. Αν περάσετε έναν πίνακα, κάθε καταχώριση θα υπολογιστεί ξεχωριστά και ο πίνακας πρέπει να
περιέχει συμβολοσειρές ή αναγνωριστικά.</p></dd><dt><span class="term"><a
name="gel-function-IsFunction"></a>IsFunction</span></dt><dd><pre class="synopsis">IsFunction
(arg)</pre><p>Ελ�
�γχει αν το όρισμα είναι συνάρτηση.</p></dd><dt><span class="term"><a
name="gel-function-IsFunctionOrIdentifier"></a>IsFunctionOrIdentifier</span></dt><dd><pre
class="synopsis">IsFunctionOrIdentifier (arg)</pre><p>Ελέγχει αν το όρισμα είναι συνάρτηση ή ένα
αναγνωριστικό.</p></dd><dt><span class="term"><a
name="gel-function-IsFunctionRef"></a>IsFunctionRef</span></dt><dd><pre class="synopsis">IsFunctionRef
(arg)</pre><p>Ελέγχει αν το όρισμα είναι μια συνάρτηση αναφοράς. Αυτό περιλαμβάνει αναφορές
μεταβλητών.</p></dd><dt><span class="term"><a name="gel-function-IsMatrix"></a>IsMatrix</span></dt><dd><pre
class="synopsis">IsMatrix (arg)</pre><p>Ελέγχει αν ένα όρισμα είναι ένας πίνακας. Αν και η <code
class="constant">null</code> θεωρείται μερικές φορές ως κενός �
�ίνακας, η συνάρτηση <code class="function">IsMatrix</code> δεν θεωρεί την <code
class="constant">null</code> ως πίνακα.</p></dd><dt><span class="term"><a
name="gel-function-IsNull"></a>IsNull</span></dt><dd><pre class="synopsis">IsNull (arg)</pre><p>Ελέγχει αν το
όρισμα είναι μια <code class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsString"></a>IsString</span></dt><dd><pre class="synopsis">IsString (arg)</pre><p>Ελέγχει
αν το όρισμα είναι μια συμβολοσειρά κειμένου.</p></dd><dt><span class="term"><a
name="gel-function-IsValue"></a>IsValue</span></dt><dd><pre class="synopsis">IsValue (arg)</pre><p>Ελέγχει αν
το όρισμα είναι αριθμός.</p></dd><dt><span class="term"><a
name="gel-function-Parse"></a>Parse</span></dt><dd><pre class="synopsis">Parse (str)</pre><p>Αναλύει, αλλά
δεν υπολογίζε
ι μια συμβολοσειρά. Σημειώστε ότι, συγκεκριμένος προϋπολογισμός γίνεται κατά τη διάρκεια του σταδίου
ανάλυσης.</p></dd><dt><span class="term"><a
name="gel-function-SetFunctionFlags"></a>SetFunctionFlags</span></dt><dd><pre
class="synopsis">SetFunctionFlags (id,flags...)</pre><p>Ορίζει σημαίες για μια συνάρτηση, προς το παρόν <code
class="literal">"PropagateMod"</code> and <code class="literal">"NoModuloArguments"</code>. Αν η <code
class="literal">"PropagateMod"</code> οριστεί, τότε το σώμα της συνάρτησης υπολογίζεται σε αριθμητική
υπολοίπων, όταν η συνάρτηση καλείται μέσα σε μια ομάδα που υπολογίστηκε χρησιμοποιώντας αριθμητική υπολοίπων
(χρησιμοποιώντας <code class="literal">mod<
/code>). Αν είναι <code class="literal">"NoModuloArguments"</code>, τότε τα ορίσματα της συνάρτησης δεν
υπολογίζονται ποτέ χρησιμοποιώντας αριθμητική υπολοίπων.</p></dd><dt><span class="term"><a
name="gel-function-SetHelp"></a>SetHelp</span></dt><dd><pre class="synopsis">SetHelp
(id,category,desc)</pre><p>Ορισμός της γραμμής περιγραφής κατηγορίας και βοήθειας για μια
συνάρτηση.</p></dd><dt><span class="term"><a
name="gel-function-SetHelpAlias"></a>SetHelpAlias</span></dt><dd><pre class="synopsis">SetHelpAlias
(id,alias)</pre><p>Εγκαθιστά μια παραλλαγή βοήθειας.</p></dd><dt><span class="term"><a
name="gel-function-chdir"></a>chdir</span></dt><dd><pre class="synopsis">chdir (dir)</pre><p>Αλλάζει τον
τρέχοντα κατάλογο, το ίδιο με <span class="command"><strong>cd</stro
ng></span>.</p></dd><dt><span class="term"><a
name="gel-function-CurrentTime"></a>CurrentTime</span></dt><dd><pre
class="synopsis">CurrentTime</pre><p>Επιστρέφει τον τρέχοντα χρόνο UNIX με ακρίβεια μικροδευτερολέπτου ως
έναν αριθμό κινητής υποδιαστολής. Δηλαδή, επιστρέφει τον αριθμό των δευτερολέπτων από την 1η Ιανουαρίου
1970.</p><p>Version 1.0.15 onwards.</p></dd><dt><span class="term"><a
name="gel-function-display"></a>display</span></dt><dd><pre class="synopsis">display
(str,expr)</pre><p>Εμφανίζει μια συμβολοσειρά και μια έκφραση με άνω-κάτω τελεία για να τις
διακρίνει.</p></dd><dt><span class="term"><a
name="gel-function-DisplayVariables"></a>DisplayVariables</span></dt><dd><pre
class="synopsis">DisplayVariables (var1,var2,...)</pre><p>Εμφάνιση συνό
λου μεταβλητών. Οι μεταβλητές μπορούν να δοθούν ως συμβολοσειρές ή αναγνωριστικά. Για παράδειγμα: </p><pre
class="programlisting">DisplayVariables(`x,`y,`z)
+ </pre><p>Αν κληθεί χωρίς ορίσματα (πρέπει να παρέχεται άδεια λίστα ορισμάτων), όπως </p><pre
class="programlisting">DisplayVariables()
+ </pre><p> τότε όλες οι μεταβλητές εκτυπώνονται συμπεριλαμβανομένου ενός ιχνηλάτηση στοίβας
παρόμιου με την <span class="guilabel">Εμφάνιση μεταβλητών χρήστη</span> στην έκδοση γραφικών.</p><p>Version
1.0.18 onwards.</p></dd><dt><span class="term"><a name="gel-function-error"></a>error</span></dt><dd><pre
class="synopsis">error (str)</pre><p>Εμφανίζει μια συμβολοσειρά στη ροή σφάλματος (στην
κονσόλα).</p></dd><dt><span class="term"><a name="gel-function-exit"></a>exit</span></dt><dd><pre
class="synopsis">exit</pre><p>Παραλλαγές: <code class="function">quit</code></p><p>Φεύγει από το
πρόγραμμα.</p></dd><dt><span class="term"><a name="gel-function-false"></a>false</span></dt><dd><pre
class="synopsis">false</pre><p>Παραλλαγές: <code class="function">False</code
<code class="function">FALSE</code></p><p>Η λογική τιμή <code
class="constant">ψευδές</code>.</p></dd><dt><span class="term"><a
name="gel-function-manual"></a>manual</span></dt><dd><pre class="synopsis">manual</pre><p>Προβολή του
εγχειριδίου χρήστη.</p></dd><dt><span class="term"><a
name="gel-function-print"></a>print</span></dt><dd><pre class="synopsis">print (str)</pre><p>Εμφανίζει μια
παράσταση και έπειτα δίνει μια νέα γραμμή. Το όρισμα <code class="varname">str</code> μπορεί να είναι
οποιαδήποτε παράσταση. Γίνεται συμβολοσειρά πριν την εμφάνιση.</p></dd><dt><span class="term"><a
name="gel-function-printn"></a>printn</span></dt><dd><pre class="synopsis">printn (str)</pre><p>Εμφανίζει
μια παράσταση χωρίς μια τελική νέα γραμμή. Το όρισμα <code class="varname"
str</code> μπορεί να είναι οποιαδήποτε παράσταση. Γίνεται συμβολοσειρά πριν την εμφάνιση.</p></dd><dt><span
class="term"><a name="gel-function-PrintTable"></a>PrintTable</span></dt><dd><pre
class="synopsis">PrintTable (f,v)</pre><p>Εκτύπωση ενός πίνακα τιμών για μια λειτουργία. Οι τιμές είναι στο
διάνυσμα <code class="varname">vvarname>. PrintTable (f,[0:10])
+ vvarname> </code></p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-protect"></a>protect</span></dt><dd><pre class="synopsis">protect (id)</pre><p>Προστατεύει
μια μεταβλητή από τροποποίηση. Αυτό χρησιμοποιείται στις εσωτερικές συναρτήσεις GEL για να αποφευχθεί η
τυχαία αντικατάστασή τους.</p></dd><dt><span class="term"><a
name="gel-function-ProtectAll"></a>ProtectAll</span></dt><dd><pre class="synopsis">ProtectAll
()</pre><p>Προστατεύει όλες τις τρέχουσες ορισμένες μεταβλητές, παραμέτρους και συναρτήσεις από τροποποίηση.
Αυτό χρησιμοποιείται στις εσωτερικές συναρτήσεις GEL για να αποφευχθεί η τυχαία αντικατάστασή τους. Κανονικά
το <span clas
s="application">Εργαλείο μαθηματικών Genius</span> θεωρεί απροστάτευτες τις μεταβλητές που όρισε ο
χρήστης.</p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-set"></a>set</span></dt><dd><pre class="synopsis">set (id,val)</pre><p>Set a global
variable. The <code class="varname">id</code>
+ can be either a string or a quoted identifier.
+ For example:
+ </p><pre class="programlisting">set(`x,1)
+ </pre><p>
+ will set the global variable <code class="varname">x</code> to the value 1.
+ </p><p>The function returns the <code class="varname">val</code>, to be
+ usable in chaining.</p></dd><dt><span class="term"><a
name="gel-function-SetElement"></a>SetElement</span></dt><dd><pre class="synopsis">SetElement
(id,row,col,val)</pre><p>Set an element of a global variable which is a matrix.
+ The <code class="varname">id</code>
+ can be either a string or a quoted identifier.
+ For example:
+ </p><pre class="programlisting">SetElement(`x,2,3,1)
+ </pre><p>
+ will set the second row third column element of the global variable <code
class="varname">x</code> to the value 1. If no global variable of the name exists, or if it is set to
something that's not a matrix, a new zero matrix of appropriate size will be created.
+ </p><p>The <code class="varname">row</code> and <code class="varname">col</code> can also be
ranges, and the semantics are the same as for regular setting of the elements with an equals sign.
+ </p><p>The function returns the <code class="varname">val</code>, to be
+ usable in chaining.</p><p>Available from 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SetVElement"></a>SetVElement</span></dt><dd><pre class="synopsis">SetElement
(id,elt,val)</pre><p>Set an element of a global variable which is a vector.
+ The <code class="varname">id</code>
+ can be either a string or a quoted identifier.
+ For example:
+ </p><pre class="programlisting">SetElement(`x,2,1)
+ </pre><p>
+ will set the second element of the global vector variable <code class="varname">x</code> to the
value 1. If no global variable of the name exists, or if it is set to something that's not a vector
(matrix), a new zero row vector of appropriate size will be created.
+ </p><p>The <code class="varname">elt</code> can also be a range, and the semantics are the same as
for regular setting of the elements with an equals sign.
+ </p><p>The function returns the <code class="varname">val</code>, to be
+ usable in chaining.</p><p>Available from 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-string"></a>string</span></dt><dd><pre class="synopsis">string (s)</pre><p>Δημιουργία
συμβολοσειράς. Αυτή θα δημιουργήσει μια συμβολοσειρά από οποιοδήποτε όρισμα.</p></dd><dt><span
class="term"><a name="gel-function-true"></a>true</span></dt><dd><pre
class="synopsis">true</pre><p>Παραλλαγές: <code class="function">True</code><code
class="function">TRUE</code></p><p>Η λογική τιμή <code class="constant">true</code>.</p></dd><dt><span
class="term"><a name="gel-function-undefine"></a>undefine</span></dt><dd><pre class="synopsis">undefine
(id)</pre><p>Παραλλαγές: <code class="function">Undefine</code></p><p>Αποκαθορισμός μεταβλητής. Αυτό
περιλαμβάνει τοπικές και καθολικές, κάθε τιμή σε όλα τα
επίπεδα περιεχομένου καθαρίζεται. Αυτή η συνάρτηση πρέπει πραγματικά να μην χρησιμοποιηθεί σε τοπικές
μεταβλητές. Ένα διάνυσμα αναγνωριστικών μπορεί επίσης να περαστεί για αποκαθορισμό πολλών
μεταβλητών.</p></dd><dt><span class="term"><a
name="gel-function-UndefineAll"></a>UndefineAll</span></dt><dd><pre class="synopsis">UndefineAll
()</pre><p>Αποκαθορίζει όλες τις απροστάτευτες καθολικές μεταβλητές (συμπεριλαμβάνοντας συναρτήσεις και
παραμέτρους). Κανονικά το <span class="application">Εργαλείο μαθηματικών Genius</span> θεωρεί τις
προστατευμένες μεταβλητές ως ορισμένες από το σύστημα συναρτήσεις και μεταβλ
ητές. Σημειώστε ότι η <code class="function">UndefineAll</code> αφαιρεί μόνο τον καθολικό ορισμό των
συμβόλων και όχι των τοπικών, έτσι ώστε να μπορεί να εκτελεστεί μέσα από άλλες συναρτήσεις με
ασφάλεια.</p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-unprotect"></a>unprotect</span></dt><dd><pre class="synopsis">unprotect
(id)</pre><p>Αφαιρεί την προστασία μιας μεταβλητής από τροποποίηση.</p></dd><dt><span class="term"><a
name="gel-function-UserVariables"></a>UserVariables</span></dt><dd><pre class="synopsis">UserVariables
()</pre><p>Επιστρέφει ένα διάνυσμα αναγνωριστικών ορισμένων από τον χρήστη (απροστάτευτων) καθολικών
μεταβλητών.</p><p>Version 1.0.7 onwards.</p></dd><dt><sp
an class="term"><a name="gel-function-wait"></a>wait</span></dt><dd><pre class="synopsis">wait
(secs)</pre><p>Περιμένει ορισμένα δευτερόλεπτα. Η <code class="varname">secs</code> πρέπει να είναι μη
αρνητική. Το μηδέν γίνεται δεκτό και τίποτα δεν συμβαίνει σε αυτήν την περίπτωση, εκτός από το ότι πιθανά
συμβάντα διεπαφής χρήστη επεξεργάζονται.</p><p>Since version 1.0.18, <code class="varname">secs</code> can be
a noninteger number, so
+ <strong class="userinput"><code>wait(0.1)</code></strong> will wait for one tenth of a
second.</p></dd><dt><span class="term"><a name="gel-function-version"></a>version</span></dt><dd><pre
class="synopsis">version</pre><p>Επιστρέφει την έκδοση του Genius ως ένα οριζόντιο διάνυσμα 3 με πρώτη την
κύρια έκδοση, έπειτα την δευτερεύουσα και τελικά το επίπεδο διόρθωσης.</p></dd><dt><span class="term"><a
name="gel-function-warranty"></a>warranty</span></dt><dd><pre class="synopsis">warranty</pre><p>Δίνει τις
πληροφορίες εγγύησης.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11.html">Προηγ</a>
</td><td width="20%" align="center"><a accesskey="u" href="ch11.html">Πάνω</a></td><td width="40%"
align="right"> <a accesskey="
n" href="ch11s03.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Κεφάλαιο 11.
Κατάλογος συναρτήσεων της GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top">
Παράμετροι</td></tr></table></div></body></html>
diff --git a/help/el/html/ch11s03.html b/help/el/html/ch11s03.html
new file mode 100644
index 0000000..1fee422
--- /dev/null
+++ b/help/el/html/ch11s03.html
@@ -0,0 +1,6 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Παράμετροι</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch11.html"
title="Κεφάλαιο 11. Κατάλογος συναρτήσεων της GEL"><link rel="prev" href="ch11s02.html" title="Βασικά"><link
rel="next" href="ch11s04.html" title="Σταθερές"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Παράμετροι</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s02.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL</th><td width="20%" align="right"> <a accesskey="n" href="ch11s04.html">Επόμε�
�ο</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-function-parameters"></a>Παράμετροι</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ChopTolerance"></a>ChopTolerance</span></dt><dd><pre class="synopsis">ChopTolerance =
number</pre><p>Ανοχή της συνάρτησης <code class="function">Chop</code>.</p></dd><dt><span class="term"><a
name="gel-function-ContinuousNumberOfTries"></a>ContinuousNumberOfTries</span></dt><dd><pre
class="synopsis">ContinuousNumberOfTries = number</pre><p>Αριθμός επαναλήψεων για την εύρεση του ορίου για τη
συνέχεια και τα όρια.</p></dd><dt><span class="term"><a
name="gel-function-ContinuousSFS"></a>ContinuousSFS</span></dt><dd><pre class="synopsis">ContinuousSFS =
number</pre><p>Αριθμός διαδοχικ�
�ν βημάτων για να είναι μέσα στην ανοχή για τον υπολογισμό της συνέχειας.</p></dd><dt><span class="term"><a
name="gel-function-ContinuousTolerance"></a>ContinuousTolerance</span></dt><dd><pre
class="synopsis">ContinuousTolerance = number</pre><p>Η ανοχή για συνέχεια των συναρτήσεων και για υπολογισμό
του ορίου.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeNumberOfTries"></a>DerivativeNumberOfTries</span></dt><dd><pre
class="synopsis">DerivativeNumberOfTries = number</pre><p>Αριθμός επαναλήψεων για την εύρεση του ορίου για
την παράγωγο.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeSFS"></a>DerivativeSFS</span></dt><dd><pre class="synopsis">DerivativeSFS =
number</pre><p>Αριθμός διαδοχικών βημάτων για να είναι μέσα στην ανοχή για
τον υπολογισμό της παραγώγου.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeTolerance"></a>DerivativeTolerance</span></dt><dd><pre
class="synopsis">DerivativeTolerance = number</pre><p>Ανοχή για τον υπολογισμό των παραγώγων των
συναρτήσεων.</p></dd><dt><span class="term"><a
name="gel-function-ErrorFunctionTolerance"></a>ErrorFunctionTolerance</span></dt><dd><pre
class="synopsis">ErrorFunctionTolerance = number</pre><p>Ανοχή της <a class="link"
href="ch11s12.html#gel-function-ErrorFunction"><code
class="function">ErrorFunction</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-FloatPrecision"></a>FloatPrecision</span></dt><dd><pre class="synopsis">FloatPrecision =
number</pre><p>Ακρίβεια κινητής υποδιαστολής.</p></dd><dt><span class="term"><a
name="gel-function-FullExpressions"></a>FullExpressions</span></dt><dd><pre class="synopsis">FullE
xpressions = boolean</pre><p>Εμφάνιση πλήρων εκφράσεων, ακόμα κι αν είναι περισσότερες από μία
γραμμή.</p></dd><dt><span class="term"><a
name="gel-function-GaussDistributionTolerance"></a>GaussDistributionTolerance</span></dt><dd><pre
class="synopsis">GaussDistributionTolerance = number</pre><p>Ανοχή της συνάρτησης <a class="link"
href="ch11s14.html#gel-function-GaussDistribution"><code
class="function">GaussDistribution</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-IntegerOutputBase"></a>IntegerOutputBase</span></dt><dd><pre
class="synopsis">IntegerOutputBase = number</pre><p>Βάση εξόδου ακεραίων.</p></dd><dt><span class="term"><a
name="gel-function-IsPrimeMillerRabinReps"></a>IsPrimeMillerRabinReps</span></dt><dd><pre
class="synopsis">IsPrimeMillerRabinReps = number</pre><p>Αριθμός των πρόσθετων δοκιμών Miller-Rabin που θα εκ�
�ελεστούν σε έναν αριθμό πριν τη δήλωση του ως πρώτου στην <a class="link"
href="ch11s07.html#gel-function-IsPrime"><code class="function">IsPrime</code></a>.</p></dd><dt><span
class="term"><a name="gel-function-LinePlotDrawLegends"></a>LinePlotDrawLegends</span></dt><dd><pre
class="synopsis">LinePlotDrawLegends = true</pre><p>Λέει στο Genius να σχεδιάσει τα υπομνήματα για τις <a
class="link" href="ch11s20.html" title="Γραφική παράσταση">συναρτήσεις γραφικής παράστασης γραμμής</a> όπως
<a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawAxisLabels"></a>LinePlotDrawAxisLabels</span></dt><dd><pre
class="synopsis">LinePlotDrawAxisLabels = true</pre><p>Λέει στο Genius να σχεδιάσει τις ετικέτες του
άξονα για τις <a class="link" href="ch11s20.html" title="Γραφική παράσταση">συναρτήσεις γραφικής παράστασης
γραμμής</a> όπως <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>.</p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotVariableNames"></a>LinePlotVariableNames</span></dt><dd><pre
class="synopsis">LinePlotVariableNames = ["x","y","z","t"]</pre><p>Λέει στο Genius ποια ονόματα μεταβλητών
χρησιμοποιούνται ως προεπιλεγμένα ονόματα για τις <a class="link" href="ch11s20.html" title="Γραφική
παράσταση">συναρτήσεις γραφικής παράστασης γραμμής</a> όπως <a class="link"
href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a> και
παρόμοιες.</p><p>Version 1.0.1
0 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotWindow"></a>LinePlotWindow</span></dt><dd><pre class="synopsis">LinePlotWindow =
[x1,x2,y1,y2]</pre><p>Ορίζει τα όρια για τις <a class="link" href="ch11s20.html" title="Γραφική
παράσταση">συναρτήσεις γραφικής παράστασης γραμμής</a> όπως <a class="link"
href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a>.</p></dd><dt><span
class="term"><a name="gel-function-MaxDigits"></a>MaxDigits</span></dt><dd><pre class="synopsis">MaxDigits =
number</pre><p>Μέγιστα αριθμός ψηφίων που θα εμφανίζονται.</p></dd><dt><span class="term"><a
name="gel-function-MaxErrors"></a>MaxErrors</span></dt><dd><pre class="synopsis">MaxErrors =
number</pre><p>Μέγιστος αριθμός σφαλμάτων που θα εμφανίζονται.</p></dd><dt><span class="term"><a
name="gel-functi
on-MixedFractions"></a>MixedFractions</span></dt><dd><pre class="synopsis">MixedFractions =
boolean</pre><p>Αν είναι αληθές, εμφανίζονται μικτά κλάσματα.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegralFunction"></a>NumericalIntegralFunction</span></dt><dd><pre
class="synopsis">NumericalIntegralFunction = function</pre><p>Η χρησιμοποιούμενη συνάρτηση για αριθμητική
ολοκλήρωση στη <a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegralSteps"></a>NumericalIntegralSteps</span></dt><dd><pre
class="synopsis">NumericalIntegralSteps = number</pre><p>Βήματα για εκτέλεση στη <a class="link"
href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p></dd><dt><span class="term
"><a name="gel-function-OutputChopExponent"></a>OutputChopExponent</span></dt><dd><pre
class="synopsis">OutputChopExponent = number</pre><p>Όταν ένας άλλος αριθμός στο αντικείμενο εμφανίζεται
(πίνακας ή τιμή) που είναι μεγαλύτερος από 10<sup>-OutputChopWhenExponent</sup> και ο εμφανιζόμενος αριθμός
είναι μικρότερος από 10<sup>-OutputChopExponent</sup>, τότε εμφανίζεται ο <code
class="computeroutput">0.0</code> αντί για τον αριθμό.</p><p>Η έξοδος δεν είναι ποτέ κομμένη αν η <code
class="function">OutputChopExponent</code> είναι μηδέν. Πρέπει να είναι ένας μη αρνητικός ακέραιος.</p><p>Αν
θέλετε η έξοδος να περικόπτεται πάντα σύμφωνα με την <code class="function">OutputChopExponent</code>, τότε
ορίστ
ε την <code class="function">OutputChopWhenExponent</code>, σε κάτι μεγαλύτερο από ή ίσο με <code
class="function">OutputChopExponent</code>.</p></dd><dt><span class="term"><a
name="gel-function-OutputChopWhenExponent"></a>OutputChopWhenExponent</span></dt><dd><pre
class="synopsis">OutputChopWhenExponent = number</pre><p>Πότε να περικόψετε την έξοδο. Δείτε <a class="link"
href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-OutputStyle"></a>OutputStyle</span></dt><dd><pre class="synopsis">OutputStyle =
string</pre><p>Η τεχνοτροπία εξόδου μπορεί να είναι <code class="literal">κανονική</code>, <code
class="literal">latex</code>, <code class="literal">mathml</code> ή <code
class="literal">troff</code>.</p><p>Αυτή επηρεάζει κυρίως πώς εμφανίζοντα
ι οι πίνακες και τα κλάσματα και είναι χρήσιμη για επικόλληση στα έγγραφα. Για παράδειγμα μπορείτε να την
ορίσετε σε latex με: </p><pre class="programlisting">OutputStyle = "latex"
+</pre></dd><dt><span class="term"><a
name="gel-function-ResultsAsFloats"></a>ResultsAsFloats</span></dt><dd><pre class="synopsis">ResultsAsFloats
= boolean</pre><p>Μετατροπή όλων των αποτελεσμάτων σε αριθμούς κινητής υποδιαστολής πριν την
εμφάνιση.</p></dd><dt><span class="term"><a
name="gel-function-ScientificNotation"></a>ScientificNotation</span></dt><dd><pre
class="synopsis">ScientificNotation = boolean</pre><p>Χρήση επιστημονικής σημειογραφίας.</p></dd><dt><span
class="term"><a name="gel-function-SlopefieldTicks"></a>SlopefieldTicks</span></dt><dd><pre
class="synopsis">SlopefieldTicks = [vertical,horizontal]</pre><p>Ορίζει τον αριθμό των κάθετων και οριζόντιων
υποδιαιρέσεων σε μια γραφική παράσταση πεδίου κλίσης. (Δείτε <a class="link"
href="ch11s20.html#gel-function-SlopefieldPlo
t"><code class="function">SlopefieldPlot</code></a>).</p><p>Version 1.0.10 onwards.</p></dd><dt><span
class="term"><a name="gel-function-SumProductNumberOfTries"></a>SumProductNumberOfTries</span></dt><dd><pre
class="synopsis">SumProductNumberOfTries = number</pre><p>Πόσες επαναλήψεις να δοκιμαστούν για <a
class="link" href="ch11s11.html#gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a> και
<a class="link" href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SumProductSFS"></a>SumProductSFS</span></dt><dd><pre class="synopsis">SumProductSFS =
number</pre><p>Πόσα διαδοχικά βήματα να γίνουν μέσα στην ανοχή για <a class="link"
href="ch11s11.html#gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a> και <a
class="link" href="ch11s11.html#gel-function-InfinitePro
duct"><code class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SumProductTolerance"></a>SumProductTolerance</span></dt><dd><pre
class="synopsis">SumProductTolerance = number</pre><p>Ανοχή για <a class="link"
href="ch11s11.html#gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a> και <a
class="link" href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawLegends"></a>SurfacePlotDrawLegends</span></dt><dd><pre
class="synopsis">SurfacePlotDrawLegends = true</pre><p>Λέει στο Genius να σχεδιάσει τα υπομνήματα για τις <a
class="link" href="ch11s20.html" title="Γραφική παράσταση">συναρτήσεις γραφικής παράστασης επιφάνειας</a>
όπως <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code class=
"function">SurfacePlot</code></a>.</p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotVariableNames"></a>SurfacePlotVariableNames</span></dt><dd><pre
class="synopsis">SurfacePlotVariableNames = ["x","y","z"]</pre><p>Tells genius which variable names are used
as default names for <a class="link" href="ch11s20.html" title="Γραφική παράσταση">surface plotting
+ functions</a> using <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>.
+ Note that the <code class="varname">z</code> does not refer to the dependent (vertical) axis, but
to the independent complex variable
+ <strong class="userinput"><code>z=x+iy</code></strong>.
+ </p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotWindow"></a>SurfacePlotWindow</span></dt><dd><pre
class="synopsis">SurfacePlotWindow = [x1,x2,y1,y2,z1,z2]</pre><p>Ορίζει τα όρια για τη γραφική παράσταση
επιφάνειας (Δείτε <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>).</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldNormalized"></a>VectorfieldNormalized</span></dt><dd><pre
class="synopsis">VectorfieldNormalized = true</pre><p>Αν θα πρέπει η γραφική παράσταση του διανυσματικού
πεδίου να έχει κανονικοποιημένο μήκος βέλους. Αν είναι αληθές, τα διανυσματικά πεδία θα εμφανίσουν μόνο την
κατεύθυνση και όχι το μέγεθος. (Δείτε <a class="link" hr
ef="ch11s20.html#gel-function-VectorfieldPlot"><code
class="function">VectorfieldPlot</code></a>).</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldTicks"></a>VectorfieldTicks</span></dt><dd><pre
class="synopsis">VectorfieldTicks = [vertical,horizontal]</pre><p>Ορίζει τον αριθμό των κάθετων και
οριζόντιων υποδιαιρέσεων σε μια γραφική παράσταση διανυσματικού πεδίου. (Δείτε <a class="link"
href="ch11s20.html#gel-function-VectorfieldPlot"><code
class="function">VectorfieldPlot</code></a>).</p><p>Version 1.0.10 onwards.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s02.html">Προηγ</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n" href="ch11s04.html">Επόμενο
</a></td></tr><tr><td width="40%" align="left" valign="top">Βασικά </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top">
Σταθερές</td></tr></table></div></body></html>
diff --git a/help/el/html/ch11s04.html b/help/el/html/ch11s04.html
new file mode 100644
index 0000000..cbb78a5
--- /dev/null
+++ b/help/el/html/ch11s04.html
@@ -0,0 +1,36 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Σταθερές</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Εγχειρίδιο Genius"><link rel="up" href="ch11.html" title="Κεφάλαιο 11. Κατάλογος συναρτήσεων της
GEL"><link rel="prev" href="ch11s03.html" title="Παράμετροι"><link rel="next" href="ch11s05.html"
title="Αριθμητικό"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Σταθερές</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s03.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 11. Κατάλογος συναρτήσεων της
GEL</th><td width="20%" align="right"> <a accesskey="n" href="ch11s05.html">Επό�
�ενο</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-function-list-constants"></a>Σταθερές</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-CatalanConstant"></a>CatalanConstant</span></dt><dd><pre
class="synopsis">CatalanConstant</pre><p>Η σταθερά του Catalan, περίπου 0.915... Ορίζεται να είναι η σειρά,
όπου οι όροι είναι <strong class="userinput"><code>(-1^k)/((2*k+1)^2)</code></strong>, με την <code
class="varname">k</code> να κυμαίνεται από 0 μέχρι το άπειρο.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Catalan%27s_constant"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/CatalansConstant.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EulerConstant"></a>EulerConstant</span></dt><dd><pre
class="synopsis">EulerConstant</pre><p>Παραλλαγές: <code class="function">gamma</code></p><p>
+ Euler's constant gamma. Sometimes called the
+ Euler-Mascheroni constant.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Euler-Mascheroni_constant"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/MascheroniConstant" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Euler-MascheroniConstant.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GoldenRatio"></a>GoldenRatio</span></dt><dd><pre class="synopsis">GoldenRatio</pre><p>Η
χρυσή τομή.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Golden_ratio" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/GoldenRatio" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/GoldenRatio.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Gravity"></a>Gravity</span></dt><dd><pre
class="synopsis">Gravity</pre><p>Free fall acceleration at sea level in meters per second squared. This is
the standard gravity constant 9.80665. The gravity
+ in your particular neck of the woods might be different due to different altitude and the
fact that the earth is not perfectly
+ round and uniform.</p><p>Δείτε <a class="ulink"
href="http://en.wikipedia.org/wiki/Standard_gravity" target="_top">Wikipedia</a> για περισσότερες
πληροφορίες.</p></dd><dt><span class="term"><a name="gel-function-e"></a>e</span></dt><dd><pre
class="synopsis">e</pre><p>
+ The base of the natural logarithm. <strong class="userinput"><code>e^x</code></strong>
+ is the exponential function
+ <a class="link" href="ch11s05.html#gel-function-exp"><code class="function">exp</code></a>. It
is approximately
+ 2.71828182846... This number is sometimes called Euler's number, although there are
+ several numbers that are also called Euler's. An example is the gamma constant: <a class="link"
href="ch11s04.html#gel-function-EulerConstant"><code class="function">EulerConstant</code></a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/E_(mathematical_constant)"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/E" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/e.html" target="_top">Mathworld</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-pi"></a>pi</span></dt><dd><pre
class="synopsis">pi</pre><p>Ο αριθμός π, που είναι ο λόγος της περιφέρειας ενός κύκλου προς τη διάμετρό του.
Αυτός είναι περίπου 3.14159265359...</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Pi" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Pi" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Pi.html" target="_top">Mathworld</a> for more
information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s03.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s05.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Παράμετροι </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right"
valign="top"> Αριθμητικό</td></tr></table></div></body></html>
diff --git a/help/el/html/ch11s05.html b/help/el/html/ch11s05.html
new file mode 100644
index 0000000..34e0c39
--- /dev/null
+++ b/help/el/html/ch11s05.html
@@ -0,0 +1,61 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Αριθμητικό</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch11.html"
title="Κεφάλαιο 11. Κατάλογος συναρτήσεων της GEL"><link rel="prev" href="ch11s04.html"
title="Σταθερές"><link rel="next" href="ch11s06.html" title="Τριγωνομετρία"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Αριθμητικό</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch11s04.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 11.
Κατάλογος συναρτήσεων της GEL</th><td width="20%" align="right"> <a accesskey="n" href="ch11s06.htm
l">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a
name="genius-gel-function-list-numeric"></a>Αριθμητικό</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-AbsoluteValue"></a>AbsoluteValue</span></dt><dd><pre class="synopsis">AbsoluteValue
(x)</pre><p>Παραλλαγές: <code class="function">abs</code></p><p>
+ Absolute value of a number and if <code class="varname">x</code> is
+ a complex value the modulus of <code class="varname">x</code>. I.e. this
+ the distance of <code class="varname">x</code> to the origin. This is equivalent
+ to <strong class="userinput"><code>|x|</code></strong>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Absolute_value" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/AbsoluteValue" target="_top">Planetmath (absolute
value)</a>,
+ <a class="ulink" href="http://planetmath.org/ModulusOfComplexNumber" target="_top">Planetmath
(modulus)</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/AbsoluteValue.html" target="_top">Mathworld
(absolute value)</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/ComplexModulus.html" target="_top">Mathworld
(complex modulus)</a>
+for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Chop"></a>Chop</span></dt><dd><pre
class="synopsis">Chop (x)</pre><p>Αντικατάσταση πολύ μικρού αριθμού με μηδέν.</p></dd><dt><span
class="term"><a name="gel-function-ComplexConjugate"></a>ComplexConjugate</span></dt><dd><pre
class="synopsis">ComplexConjugate (z)</pre><p>Παραλλαγές: <code class="function">conj</code><code
class="function">Conj</code></p><p>Υπολογίζει τον μιγαδικό συζυγή του μιγαδικού αριθμού <code
class="varname">z</code>. Αν η <code class="varname">z</code> είναι ένα διάνυσμα ή πίνακας, όλα τα στοιχεία
του παίρνουν συζυγή.</p><p>Δείτε <a class="ulink" href="http://en.wikipedia.org/wiki/Complex_conjugate"
target="_top">Wikipedia</a> για περισσότερες πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-Denominator
"></a>Denominator</span></dt><dd><pre class="synopsis">Denominator (x)</pre><p>Λήψη του παρανομαστή ενός
ρητού αριθμού.</p><p>Δείτε <a class="ulink" href="http://en.wikipedia.org/wiki/Denominator"
target="_top">Wikipedia</a> για περισσότερες πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-FractionalPart"></a>FractionalPart</span></dt><dd><pre class="synopsis">FractionalPart
(x)</pre><p>Επιστροφή του κλασματικού μέρους ενός αριθμού.</p><p>Δείτε <a class="ulink"
href="http://en.wikipedia.org/wiki/Fractional_part" target="_top">Wikipedia</a> για περισσότερες
πληροφορίες.</p></dd><dt><span class="term"><a name="gel-function-Im"></a>Im</span></dt><dd><pre
class="synopsis">Im (z)</pre><p>Παραλλαγές: <code class="function">ImaginaryPart</code></p><p>Get the
imaginary part of a complex number. For example <strong class="
userinput"><code>Re(3+4i)</code></strong> yields 4.</p><p>Δείτε <a class="ulink"
href="http://en.wikipedia.org/wiki/Imaginary_part" target="_top">Wikipedia</a> για περισσότερες
πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-IntegerQuotient"></a>IntegerQuotient</span></dt><dd><pre class="synopsis">IntegerQuotient
(m,n)</pre><p>Διαίρεση χωρίς υπόλοιπο.</p></dd><dt><span class="term"><a
name="gel-function-IsComplex"></a>IsComplex</span></dt><dd><pre class="synopsis">IsComplex
(num)</pre><p>Check if argument is a complex (non-real) number. Do note that we really mean nonreal number.
That is,
+ <strong class="userinput"><code>IsComplex(3)</code></strong> yields false, while
+ <strong class="userinput"><code>IsComplex(3-1i)</code></strong> yields true.</p></dd><dt><span
class="term"><a name="gel-function-IsComplexRational"></a>IsComplexRational</span></dt><dd><pre
class="synopsis">IsComplexRational (num)</pre><p>Ελέγχει αν το όρισμα είναι πιθανόν μιγαδικός ρητός αριθμός.
Δηλαδή, αν και το πραγματικό και το φανταστικό μέρος δίνονται ως ρητοί αριθμοί. Φυσικά ρητός σημαίνει απλά
"μη αποθηκευμένος ως αριθμός κινητής υποδιαστολής."</p></dd><dt><span class="term"><a
name="gel-function-IsFloat"></a>IsFloat</span></dt><dd><pre class="synopsis">IsFloat (num)</pre><p>Check if
argument is a real floating point number (non-complex).</p></dd><dt><span class="term"><a
name="gel-function-IsGaussInteger"></a>IsGaussInteger</span></dt><dd><pre class="synopsis">IsGaussInteger
(num)</p
re><p>Παραλλαγές: <code class="function">IsComplexInteger</code></p><p>Check if argument is a possibly
complex integer. That is a complex integer is a number of
+ the form <strong class="userinput"><code>n+1i*m</code></strong> where <code
class="varname">n</code> and <code class="varname">m</code>
+ are integers.</p></dd><dt><span class="term"><a
name="gel-function-IsInteger"></a>IsInteger</span></dt><dd><pre class="synopsis">IsInteger
(num)</pre><p>Ελέγχει αν το όρισμα είναι ένας ακέραιος (μη μιγαδικός).</p></dd><dt><span class="term"><a
name="gel-function-IsNonNegativeInteger"></a>IsNonNegativeInteger</span></dt><dd><pre
class="synopsis">IsNonNegativeInteger (num)</pre><p>Check if argument is a non-negative real integer. That
is, either a positive integer or zero.</p></dd><dt><span class="term"><a
name="gel-function-IsPositiveInteger"></a>IsPositiveInteger</span></dt><dd><pre
class="synopsis">IsPositiveInteger (num)</pre><p>Παραλλαγές: <code
class="function">IsNaturalNumber</code></p><p>Ελέγχει αν το όρισμα είναι θετικός πραγματικός ακέραιος.
Σημειώστε ότι δεχόμαστε τη σύμβαση ότι το 0 δεν είναι φυσικός αριθμ
ός.</p></dd><dt><span class="term"><a name="gel-function-IsRational"></a>IsRational</span></dt><dd><pre
class="synopsis">IsRational (num)</pre><p>Ελέγχει αν το όρισμα είναι ένας ρητός αριθμός (μη μιγαδικός).
Φυσικά ρητός σημαίνει απλά "μη αποθηκευμένος ως αριθμός κινητής υποδιαστολής."</p></dd><dt><span
class="term"><a name="gel-function-IsReal"></a>IsReal</span></dt><dd><pre class="synopsis">IsReal
(num)</pre><p>Ελέγχει αν το όρισμα είναι ένας πραγματικός αριθμός.</p></dd><dt><span class="term"><a
name="gel-function-Numerator"></a>Numerator</span></dt><dd><pre class="synopsis">Numerator (x)</pre><p>Λήψη
του αριθμητή ενός ρητού αριθμού.</p><p>Δείτε <a class="ulink" href="http://en.wikipedia.org/wiki/Numerator"
target="_top">Wikipedia</a> για περισσότερες πληροφ
ορίες.</p></dd><dt><span class="term"><a name="gel-function-Re"></a>Re</span></dt><dd><pre
class="synopsis">Re (z)</pre><p>Παραλλαγές: <code class="function">RealPart</code></p><p>Get the real part of
a complex number. For example <strong class="userinput"><code>Re(3+4i)</code></strong> yields 3.</p><p>Δείτε
<a class="ulink" href="http://en.wikipedia.org/wiki/Real_part" target="_top">Wikipedia</a> για περισσότερες
πληροφορίες.</p></dd><dt><span class="term"><a name="gel-function-Sign"></a>Sign</span></dt><dd><pre
class="synopsis">Sign (x)</pre><p>Παραλλαγές: <code class="function">sign</code></p><p>Επιστρέφει το πρόσημο
ενός αριθμού. Δηλαδή επιστρέφει <code class="literal">-1</code> αν η τιμή είναι αρνητική, <code
class="literal">0</code> αν η τιμή είναι μηδέν και <code class="literal">1</code> αν η τιμή είναι θετική
. Αν <code class="varname">x</code> είναι μια μιγαδική τιμή τότε η <code class="function">Sign</code>
επιστρέφει την κατεύθυνση ή 0.</p></dd><dt><span class="term"><a
name="gel-function-ceil"></a>ceil</span></dt><dd><pre class="synopsis">ceil (x)</pre><p>Παραλλαγές: <code
class="function">Ceiling</code></p><p>Παίρνει τον πιο μικρό ακέραιο μεγαλύτερο από ή ίσο με τη <code
class="varname">n</code>. Παραδείγματα: </p><pre class="screen"><code class="prompt">genius></code>
<strong class="userinput"><code>ceil(1.1)</code></strong>
+= 2
+<code class="prompt">genius></code> <strong class="userinput"><code>ceil(-1.1)</code></strong>
+= -1
+</pre><p>Note that you should be careful and notice that floating point
+ numbers are stored in binary and so may not be what you
+ expect. For example <strong class="userinput"><code>ceil(420/4.2)</code></strong>
+ returns 101 instead of the expected 100. This is because
+ 4.2 is actually very slightly less than 4.2. Use rational
+ representation <strong class="userinput"><code>42/10</code></strong> if you want
+ exact arithmetic.
+ </p></dd><dt><span class="term"><a name="gel-function-exp"></a>exp</span></dt><dd><pre
class="synopsis">exp (x)</pre><p>Η εκθετική συνάρτηση. Αυτή είναι η συνάρτηση <strong
class="userinput"><code>e^x</code></strong> όπου <code class="varname">e</code> είναι η <a class="link"
href="ch11s04.html#gel-function-e">βάση του φυσικού λογαρίθμου</a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Exponential_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/LogarithmFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/ExponentialFunction.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-float"></a>float</span></dt><dd><pre
class="synopsis">float (x)</pre><p>Δημιουργεί αριθμό τιμής κινητής υποδιαστολής. Δηλαδή επιστρέφει την
αναπαράσταση κινητής υποδιαστολής του αριθμού <code class="varname">x</code>.</p></dd><dt><span
class="term"><a name="gel-function-floor"></a>floor</span></dt><dd><pre class="synopsis">floor
(x)</pre><p>Παραλλαγές: <code class="function">Floor</code></p><p>Παίρνει τον μεγαλύτερο ακέραιο που είναι
μικρότερος από ή ίσος με <code class="varname">n</code>.</p></dd><dt><span class="term"><a
name="gel-function-ln"></a>ln</span></dt><dd><pre class="synopsis">ln (x)</pre><p>Ο φυσικός λογάριθμος, ο
λογάριθμος με βάση το <code class="varname">e</code>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Natural_logarithm"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/LogarithmFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/NaturalLogarithm.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-log"></a>log</span></dt><dd><pre
class="synopsis">log (x)</pre><pre class="synopsis">log (x,b)</pre><p>Ο λογάριθμος του <code
class="varname">x</code> με βάση <code class="varname">b</code> (καλεί <a class="link"
href="ch11s07.html#gel-function-DiscreteLog"><code class="function">DiscreteLog</code></a> αν είναι σε
κατάσταση modulo), αν η βάση δεν δίνεται, <a class="link" href="ch11s04.html#gel-function-e"><code
class="varname">e</code></a> χρησιμοποιείται.</p></dd><dt><span class="term"><a
name="gel-function-log10"></a>log10</span></dt><dd><pre class="synopsis">log10 (x)</pre><p>Ο λογάριθμος της
<code class="varname">x</code> με βάση 10.</p></dd><dt><span class="term"><a
name="gel-function-log2"></a>log2</span></dt><dd><pre class="synopsis">log2 (x)</pre><p>Παραλλαγές: <code
class="function">lg</code></p><p>Ο λο�
�άριθμος του <code class="varname">x</code> με βάση 2.</p></dd><dt><span class="term"><a
name="gel-function-max"></a>max</span></dt><dd><pre class="synopsis">max (a,args...)</pre><p>Παραλλαγές:
<code class="function">Max</code><code class="function">Maximum</code></p><p>Επιστρέφει το μέγιστο των
ορισμάτων ή πίνακα.</p></dd><dt><span class="term"><a name="gel-function-min"></a>min</span></dt><dd><pre
class="synopsis">min (a,args...)</pre><p>Παραλλαγές: <code class="function">Min</code><code
class="function">Minimum</code></p><p>Επιστρέφει το ελάχιστο των ορισμάτων ή πίνακα.</p></dd><dt><span
class="term"><a name="gel-function-rand"></a>rand</span></dt><dd><pre class="synopsis">rand
(size...)</pre><p>Δημιουργεί τυχαίο αριθμό κινητής υποδιαστολής στην περιοχή <code
class="literal">[0,1)</code>. Αν το μέγεθ�
�ς δίνεται, τότε ένας πίνακας (αν δύο αριθμοί ορίζονται) ή ένα διάνυσμα (αν ορίζεται ένας αριθμός) του
δοσμένου μεγέθους επιστρέφεται.</p></dd><dt><span class="term"><a
name="gel-function-randint"></a>randint</span></dt><dd><pre class="synopsis">randint
(max,size...)</pre><p>Δημιουργεί τυχαίο ακέραιο στην περιοχή <code class="literal">[0,max)</code>. Αν το
μέγεθος δίνεται, τότε ένας πίνακας (αν ορίζονται δύο αριθμοί) ή ένα διάνυσμα (αν ορίζεται ένας αριθμός) του
δοσμένου μεγέθους επιστρέφεται. Για παράδειγμα, </p><pre class="screen"><code
class="prompt">genius></code> <strong class="userinput"><code>randint(4)</code></strong>
+= 3
+<code class="prompt">genius></code> <strong class="userinput"><code>randint(4,2)</code></strong>
+=
+[0 1]
+<code class="prompt">genius></code> <strong class="userinput"><code>randint(4,2,3)</code></strong>
+=
+[2 2 1
+ 0 0 3]
+</pre></dd><dt><span class="term"><a name="gel-function-round"></a>round</span></dt><dd><pre
class="synopsis">round (x)</pre><p>Παραλλαγές: <code class="function">Round</code></p><p>Στρογγυλοποίηση
αριθμού.</p></dd><dt><span class="term"><a name="gel-function-sqrt"></a>sqrt</span></dt><dd><pre
class="synopsis">sqrt (x)</pre><p>Παραλλαγές: <code class="function">SquareRoot</code></p><p>Η τετραγωνική
ρίζα. Όταν λειτουργεί modulo κάποιοι ακέραιοι θα επιστρέψουν ή μια <code class="constant">null</code> ή ένα
διάνυσμα τετραγωνικών ριζών. Παραδείγματα: </p><pre class="screen"><code class="prompt">genius></code>
<strong class="userinput"><code>sqrt(2)</code></strong>
+= 1.41421356237
+<code class="prompt">genius></code> <strong class="userinput"><code>sqrt(-1)</code></strong>
+= 1i
+<code class="prompt">genius></code> <strong class="userinput"><code>sqrt(4) mod 7</code></strong>
+=
+[2 5]
+<code class="prompt">genius></code> <strong class="userinput"><code>2*2 mod 7</code></strong>
+= 4
+</pre><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Square_root" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/SquareRoot" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-trunc"></a>trunc</span></dt><dd><pre
class="synopsis">trunc (x)</pre><p>Παραλλαγές: <code class="function">Truncate</code><code
class="function">IntegerPart</code></p><p>Περικοπή αριθμού σε ακέραιο (επιστροφή του ακέραιου
μέρους).</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s04.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s06.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Σταθερές </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right"
valign="top"> Τριγωνομετρία</td></tr></table></div></body></html>
diff --git a/help/el/html/ch11s06.html b/help/el/html/ch11s06.html
new file mode 100644
index 0000000..c48c58b
--- /dev/null
+++ b/help/el/html/ch11s06.html
@@ -0,0 +1,56 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Τριγωνομετρία</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch11.html"
title="Κεφάλαιο 11. Κατάλογος συναρτήσεων της GEL"><link rel="prev" href="ch11s05.html"
title="Αριθμητικό"><link rel="next" href="ch11s07.html" title="Θεωρία αριθμών"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Τριγωνομετρία</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch11s05.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 11.
Κατάλογος συναρτήσεων της GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s07.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-trigonometry"></a>Τριγωνομετρία</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-acos"></a>acos</span></dt><dd><pre class="synopsis">acos (x)</pre><p>Παραλλαγές: <code
class="function">arccos</code></p><p>Η συνάρτηση arccos (τόξο συνημιτόνου).</p></dd><dt><span class="term"><a
name="gel-function-acosh"></a>acosh</span></dt><dd><pre class="synopsis">acosh (x)</pre><p>Παραλλαγές: <code
class="function">arccosh</code></p><p>Η συνάρτηση arccosh (τόξο υπερβολικού συνημιτόνου).</p></dd><dt><span
class="term"><a name="gel-function-acot"></a>acot</span></dt><dd><pre class="synopsis">acot
(x)</pre><p>Παραλλαγές: <code class="fu
nction">arccot</code></p><p>Η συνάρτηση arccot (τόξο συνεφαπτομένης).</p></dd><dt><span class="term"><a
name="gel-function-acoth"></a>acoth</span></dt><dd><pre class="synopsis">acoth (x)</pre><p>Παραλλαγές: <code
class="function">arccoth</code></p><p>Η συνάρτηση arccoth (τόξο υπερβολικής
συνεφαπτομένης).</p></dd><dt><span class="term"><a name="gel-function-acsc"></a>acsc</span></dt><dd><pre
class="synopsis">acsc (x)</pre><p>Παραλλαγές: <code class="function">arccsc</code></p><p>Η συνάρτηση τόξου
συντέμνουσας.</p></dd><dt><span class="term"><a name="gel-function-acsch"></a>acsch</span></dt><dd><pre
class="synopsis">acsch (x)</pre><p>Παραλλαγές: <code class="function">arccsch</code></p><p>Η συνάρτηση τόξου
υπερβολικής συντέμνουσας.</p></dd><dt><span class="term"><a
name="gel-function-asec"></a>asec</span></dt><dd><pre
class="synopsis">asec (x)</pre><p>Παραλλαγές: <code class="function">arcsec</code></p><p>Η συνάρτηση τόξου
τέμνουσας.</p></dd><dt><span class="term"><a name="gel-function-asech"></a>asech</span></dt><dd><pre
class="synopsis">asech (x)</pre><p>Παραλλαγές: <code class="function">arcsech</code></p><p>Η συνάρτηση τόξου
υπερβολικής τέμνουσας.</p></dd><dt><span class="term"><a
name="gel-function-asin"></a>asin</span></dt><dd><pre class="synopsis">asin (x)</pre><p>Παραλλαγές: <code
class="function">arcsin</code></p><p>Η συνάρτηση arcsin (τόξο ημιτόνου).</p></dd><dt><span class="term"><a
name="gel-function-asinh"></a>asinh</span></dt><dd><pre class="synopsis">asinh (x)</pre><p>Παραλλαγές: <code
class="function">arcsinh</code></p><p>Η συνάρτηση arcsinh (τόξο υπερβολικού ημιτόνου).</p></dd><dt><span
class="term"><a name="gel-functio
n-atan"></a>atan</span></dt><dd><pre class="synopsis">atan (x)</pre><p>Παραλλαγές: <code
class="function">arctan</code></p><p>Υπολογίζει τη συνάρτηση arctan (τόξο εφαπτομένης).</p><p>Δείτε <a
class="ulink" href="http://en.wikipedia.org/wiki/Arctangent" target="_top">Wikipedia</a> ή <a class="ulink"
href="http://mathworld.wolfram.com/InverseTangent.html" target="_top">Mathworld</a> για περισσότερες
πληροφορίες.</p></dd><dt><span class="term"><a name="gel-function-atanh"></a>atanh</span></dt><dd><pre
class="synopsis">atanh (x)</pre><p>Παραλλαγές: <code class="function">arctanh</code></p><p>Η συνάρτηση
arctanh (τόξο υπερβολικής εφαπτομένης).</p></dd><dt><span class="term"><a
name="gel-function-atan2"></a>atan2</span></dt><dd><pre class="synopsis">atan2 (y, x)</pre><p>Παραλλαγές:
<code class="function">arctan2</code></p><p>Calculates the arctan2 f
unction. If
+ <strong class="userinput"><code>x>0</code></strong> then it returns
+ <strong class="userinput"><code>atan(y/x)</code></strong>. If <strong
class="userinput"><code>x<0</code></strong>
+ then it returns <strong class="userinput"><code>sign(y) * (pi - atan(|y/x|)</code></strong>.
+ When <strong class="userinput"><code>x=0</code></strong> it returns <strong
class="userinput"><code>sign(y) *
+ pi/2</code></strong>. <strong class="userinput"><code>atan2(0,0)</code></strong> returns 0
+ rather than failing.
+ </p><p>Δείτε <a class="ulink" href="http://en.wikipedia.org/wiki/Atan2" target="_top">Wikipedia</a>
ή <a class="ulink" href="http://mathworld.wolfram.com/InverseTangent.html" target="_top">Mathworld</a> για
περισσότερες πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-cos"></a>cos</span></dt><dd><pre class="synopsis">cos (x)</pre><p>Υπολογίζει τη συνάρτηση
του συνημιτόνου.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-cosh"></a>cosh</span></dt><dd><pre
class="synopsis">cosh (x)</pre><p>Υπολογίζει την συνάρτηση υπερβολικού συνημιτόνου.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-cot"></a>cot</span></dt><dd><pre
class="synopsis">cot (x)</pre><p>Η συνάρτηση συνεφαπτομένης.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-coth"></a>coth</span></dt><dd><pre
class="synopsis">coth (x)</pre><p>Η συνάρτηση υπερβολικής συνεφαπτομένης.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-csc"></a>csc</span></dt><dd><pre
class="synopsis">csc (x)</pre><p>Η συνάρτηση συντέμνουσας.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-csch"></a>csch</span></dt><dd><pre
class="synopsis">csch (x)</pre><p>Η συνάρτηση υπερβολικής συντέμνουσας.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sec"></a>sec</span></dt><dd><pre
class="synopsis">sec (x)</pre><p>Η συνάρτηση τέμνουσας.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sech"></a>sech</span></dt><dd><pre
class="synopsis">sech (x)</pre><p>Η συνάρτηση υπερβολικής τέμνουσας.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sin"></a>sin</span></dt><dd><pre
class="synopsis">sin (x)</pre><p>Υπολογίζει τη συνάρτηση του ημιτόνου.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sinh"></a>sinh</span></dt><dd><pre
class="synopsis">sinh (x)</pre><p>Υπολογίζει την συνάρτηση υπερβολικού ημιτόνου.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-tan"></a>tan</span></dt><dd><pre
class="synopsis">tan (x)</pre><p>Υπολογίζει τη συνάρτηση της εφαπτομένης.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-tanh"></a>tanh</span></dt><dd><pre
class="synopsis">tanh (x)</pre><p>Η συνάρτηση υπερβολικής εφαπτομένης.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s05.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s07.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Αριθμητικό </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right"
valign="top"> Θεωρία αριθμών</td></tr></table></div></body></html>
diff --git a/help/el/html/ch11s07.html b/help/el/html/ch11s07.html
new file mode 100644
index 0000000..5306b5e
--- /dev/null
+++ b/help/el/html/ch11s07.html
@@ -0,0 +1,138 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Θεωρία
αριθμών</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch11.html" title="Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL"><link rel="prev" href="ch11s06.html" title="Τριγωνομετρία"><link rel="next"
href="ch11s08.html" title="Διαχείριση πινάκων"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Θεωρία αριθμών</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s06.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL</th><td width="20%" align="right"> <
a accesskey="n" href="ch11s08.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-number-theory"></a>Θεωρία αριθμών</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AreRelativelyPrime"></a>AreRelativelyPrime</span></dt><dd><pre
class="synopsis">AreRelativelyPrime (a,b)</pre><p>Είναι οι πραγματικοί ακέραιοι <code
class="varname">a</code> και <code class="varname">b</code> σχετικοί πρώτοι; Επιστρέφει <code
class="constant">αληθές</code> ή <code class="constant">ψευδές</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Coprime_integers"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/RelativelyPrime" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/RelativelyPrime.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-BernoulliNumber"></a>BernoulliNumber</span></dt><dd><pre class="synopsis">BernoulliNumber
(n)</pre><p>Επιστρέφει τον <code class="varname">n</code>στό αριθμό Bernoulli.</p><p>Δείτε <a class="ulink"
href="http://en.wikipedia.org/wiki/Bernoulli_number" target="_top">Wikipedia</a> ή <a class="ulink"
href="http://mathworld.wolfram.com/BernoulliNumber.html" target="_top">Mathworld</a> για περισσότερες
πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-ChineseRemainder"></a>ChineseRemainder</span></dt><dd><pre
class="synopsis">ChineseRemainder (a,m)</pre><p>Παραλλαγές: <code class="function">CRT</code></p><p>Εύρεση
του <code class="varname">x</code> που επιλύει το δοσμένο σύστημα με το διάνυσμα <code
class="varname">a</code> και modulo τα στοιχεία του <code class="varname">m</code>, χ
ρησιμοποιώντας το θεώρημα υπολοίπου του Κινέζου.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Chinese_remainder_theorem"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/ChineseRemainderTheorem"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/ChineseRemainderTheorem.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CombineFactorizations"></a>CombineFactorizations</span></dt><dd><pre
class="synopsis">CombineFactorizations (a,b)</pre><p>Με δεδομένες δύο παραγοντοποιήσεις, δίνει την
παραγοντοποίηση του γινομένου.</p><p>Δείτε <a class="link"
href="ch11s07.html#gel-function-Factorize">παραγοντοποίηση</a>.</p></dd><dt><span class="term"><a
name="gel-function-ConvertFromBase"></a>ConvertFromBase</span></dt><dd><pre class="synopsis">ConvertFromBase
(v,b)</pre><p>Μετατρέπει ένα διάνυσμα τιμών που δείχνει δυνάμεις του b στον αριθμό a.</p></dd><dt><span
class="term"><a name="gel-function-ConvertToBase"></a>ConvertToBase</span></dt><dd><pre
class="synopsis">ConvertToBase (n,b)</pre><p>Μετατρέπει έναν αριθμό σε ένα διάνυσμα δυνάμεων για στοιχεία στ�
� βάση <code class="varname">b</code>.</p></dd><dt><span class="term"><a
name="gel-function-DiscreteLog"></a>DiscreteLog</span></dt><dd><pre class="synopsis">DiscreteLog
(n,b,q)</pre><p>Βρίσκει τον διακριτό λογάριθμο της <code class="varname">n</code> με βάση <code
class="varname">b</code> στην F<sub>q</sub>, το πεπερασμένο πεδίο τάξης <code class="varname">q</code>, όπου
η <code class="varname">q</code> είναι ένας πρώτος, χρησιμοποιώντας τον αλγόριθμο
Silver-Pohlig-Hellman.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Discrete_logarithm"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/DiscreteLogarithm" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/DiscreteLogarithm.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Divides"></a>Divides</span></dt><dd><pre
class="synopsis">Divides (m,n)</pre><p>Ελέγχει τη διαιρετότητα (αν η <code class="varname">m</code> διαιρεί
την <code class="varname">n</code>).</p></dd><dt><span class="term"><a
name="gel-function-EulerPhi"></a>EulerPhi</span></dt><dd><pre class="synopsis">EulerPhi
(n)</pre><p>Υπολογίζει τη συνάρτηση φι του Όιλερ για την <code class="varname">n</code>, δηλαδή τον αριθμό
των ακεραίων μεταξύ 1 και <code class="varname">n</code> που είναι σχετικά πρώτοι με την <code
class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Euler_phi" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/EulerPhifunction" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/TotientFunction.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ExactDivision"></a>ExactDivision</span></dt><dd><pre class="synopsis">ExactDivision
(n,d)</pre><p>Επιστρέφει <strong class="userinput"><code>n/d</code></strong>, αλλά μόνο αν η <code
class="varname">d</code> διαιρεί την <code class="varname">n</code>. Αν η <code class="varname">d</code> δεν
διαιρεί την <code class="varname">n</code>, τότε αυτή η συνάρτηση επιστρέφει σκουπίδια. Αυτή είναι πολύ πιο
γρήγορη για πολύ μεγάλους αριθμούς από την πράξη <strong class="userinput"><code>n/d</code></strong>, αλλά
φυσικά χρήσιμη μόνο αν ξέρετε ότι η διαίρεση είναι ακριβής.</p></dd><dt><span class="term"><a
name="gel-function-Factorize"></a>Factorize</span></dt><dd><pre class="synopsis">Factorize
(n)</pre><p>Επιστρέφει την παρ
αγοντοποίηση ενός αριθμού ως πίνακα. Η πρώτη γραμμή είναι οι πρώτοι στην παραγοντοποίηση (συμπεριλαμβάνοντας
το 1) και η δεύτερη γραμμή είναι οι δυνάμεις. Έτσι για παράδειγμα: </p><pre class="screen"><code
class="prompt">genius></code> <strong class="userinput"><code>Factorize(11*11*13)</code></strong>
+=
+[1 11 13
+ 1 2 1]</pre><p>Δείτε <a class="ulink" href="http://en.wikipedia.org/wiki/Factorization"
target="_top">Wikipedia</a> για περισσότερες πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-Factors"></a>Factors</span></dt><dd><pre class="synopsis">Factors (n)</pre><p>Επιστρέφει
όλους τους παράγοντες της <code class="varname">n</code> σε ένα διάνυσμα. Αυτή περιλαμβάνει όλους τους μη
πρώτους παράγοντες επίσης. Περιλαμβάνει το 1 και τον ίδιο τον αριθμό. Έτσι για παράδειγμα για να εμφανίσετε
όλους τους τέλειους αριθμούς (αυτούς που είναι αθροίσματα των παραγόντων τους) μέχρι τον αριθμό 1000 μπορείτε
να κάνετε (αυτό φυσικά είναι πολύ ανεπαρκές) </p><
pre class="programlisting">for n=1 to 1000 do (
+ if MatrixSum (Factors(n)) == 2*n then
+ print(n)
+)
+</pre></dd><dt><span class="term"><a
name="gel-function-FermatFactorization"></a>FermatFactorization</span></dt><dd><pre
class="synopsis">FermatFactorization (n,tries)</pre><p>Δοκιμάζει την παραγοντοποίηση Φερμά της <code
class="varname">n</code> στο <strong class="userinput"><code>(t-s)*(t+s)</code></strong>, επιστρέφει τις
<code class="varname">t</code> και <code class="varname">s</code> ως ένα διάνυσμα αν είναι δυνατό, αλλιώς
<code class="constant">null</code>. Η <code class="varname">tries</code> καθορίζει τον αριθμό των προσπαθειών
πριν να σταματήσει.</p><p>Αυτή είναι μια αρκετά καλή παραγοντοποίηση, αν ο αριθμός σας είναι το γινόμενο δύο
παραγόντων που είναι πολύ κοντά μεταξύ τους.</p><p>Δείτε <a class="ulink" href="http://en.wi
kipedia.org/wiki/Fermat_factorization" target="_top">Wikipedia</a> για περισσότερες
πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-FindPrimitiveElementMod"></a>FindPrimitiveElementMod</span></dt><dd><pre
class="synopsis">FindPrimitiveElementMod (q)</pre><p>Βρίσκει το πρώτο βασικό στοιχείο στην F<sub>q</sub>, την
πεπερασμένη ομάδα της τάξης <code class="varname">q</code>. Φυσικά η <code class="varname">q</code> πρέπει να
είναι πρώτος.</p></dd><dt><span class="term"><a
name="gel-function-FindRandomPrimitiveElementMod"></a>FindRandomPrimitiveElementMod</span></dt><dd><pre
class="synopsis">FindRandomPrimitiveElementMod (q)</pre><p>Βρίσκει ένα τυχαίο βασικό στοιχείο στην
F<sub>q</sub>, την πεπερασμένη ομάδα της τάξης <code class="varname">q</code> (το q πρέπει να είναι πρώτ
ος).</p></dd><dt><span class="term"><a
name="gel-function-IndexCalculus"></a>IndexCalculus</span></dt><dd><pre class="synopsis">IndexCalculus
(n,b,q,S)</pre><p>Υπολογίζει τη διακριτή λογαριθμική βάση <code class="varname">b</code> του n στο
F<sub>q</sub>, την πεπερασμένη ομάδα της τάξης <code class="varname">q</code> (<code class="varname">q</code>
είναι ένας πρώτος), χρησιμοποιώντας τη βάση του συντελεστή <code class="varname">S</code>. Η <code
class="varname">S</code> πρέπει να είναι μια στήλη πρώτων πιθανόν με μια δεύτερη στήλη προϋπολογισμένη από
την <a class="link" href="ch11s07.html#gel-function-IndexCalculusPrecalculation"><code
class="function">IndexCalculusPrecalculation</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-IndexCalculusPrecalculation"></a>IndexCalcu
lusPrecalculation</span></dt><dd><pre class="synopsis">IndexCalculusPrecalculation (b,q,S)</pre><p>Εκτελεί
το βήμα προϋπολογισμού του <a class="link" href="ch11s07.html#gel-function-IndexCalculus"><code
class="function">IndexCalculus</code></a> για λογαρίθμους με βάση <code class="varname">b</code> στο
F<sub>q</sub>, την πεπερασμένη ομάδα της τάξης <code class="varname">q</code> (<code class="varname">q</code>
είναι ένας πρώτος), για τη βάση συντελεστή <code class="varname">S</code> (όπου <code
class="varname">S</code> είναι ένα διάνυσμα στήλης πρώτων). Οι λογάριθμοι θα προϋπολογιστούν και θα
επιστραφούν στη δεύτερη στήλη.</p></dd><dt><span class="term"><a
name="gel-function-IsEven"></a>IsEven</span></dt><dd><pre class="synopsis">IsEven (n)</pre><p>Ελέγχει αν ο �
�κέραιος είναι άρτιος.</p></dd><dt><span class="term"><a
name="gel-function-IsMersennePrimeExponent"></a>IsMersennePrimeExponent</span></dt><dd><pre
class="synopsis">IsMersennePrimeExponent (p)</pre><p>Ελέγχει αν ο θετικός ακέραιος <code
class="varname">p</code> είναι ένας εκθέτης πρώτου Μερσέν. Δηλαδή, αν 2<sup>p</sup>-1 είναι ένας πρώτος. Το
κάνει αναζητώντας τον σε έναν πίνακα γνωστών τιμών που είναι σχετικά σύντομος. Δείτε επίσης <a class="link"
href="ch11s07.html#gel-function-MersennePrimeExponents">MersennePrimeExponents</a> και <a class="link"
href="ch11s07.html#gel-function-LucasLehmer">LucasLehmer</a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Mersenne_prime" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MersenneNumbers" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/MersennePrime.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://www.mersenne.org/" target="_top">GIMPS</a>
+ for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsNthPower"></a>IsNthPower</span></dt><dd><pre class="synopsis">IsNthPower
(m,n)</pre><p>Ελέγχει αν ένας ρητός αριθμός <code class="varname">m</code> είναι μια τέλεια <code
class="varname">n</code>στή δύναμη. Δείτε επίσης <a class="link"
href="ch11s07.html#gel-function-IsPerfectPower">IsPerfectPower</a> και <a class="link"
href="ch11s07.html#gel-function-IsPerfectSquare">IsPerfectSquare</a>.</p></dd><dt><span class="term"><a
name="gel-function-IsOdd"></a>IsOdd</span></dt><dd><pre class="synopsis">IsOdd (n)</pre><p>Έλεγχος αν ο
ακέραιος είναι περιττός.</p></dd><dt><span class="term"><a
name="gel-function-IsPerfectPower"></a>IsPerfectPower</span></dt><dd><pre class="synopsis">IsPerfectPower
(n)</pre><p>Check an integer for being any perfect power, a<sup>b</sup>.</p></dd><dt><span class="term"><a
name="gel-function-IsPerfectSquare
"></a>IsPerfectSquare</span></dt><dd><pre class="synopsis">IsPerfectSquare (n)</pre><p>Ελέγχει αν ένας
ακέραιος είναι τέλειο τετράγωνο ενός ακεραίου. Ο αριθμός πρέπει να είναι πραγματικός ακέραιος. Οι αρνητικοί
ακέραιοι φυσικά δεν είναι ποτέ τέλεια τετράγωνα πραγματικών ακεραίων.</p></dd><dt><span class="term"><a
name="gel-function-IsPrime"></a>IsPrime</span></dt><dd><pre class="synopsis">IsPrime (n)</pre><p>Ελέγχει τους
πρώτους αριθμούς ακεραίων, για αριθμούς μικρότερους από 2.5e10 η απάντηση είναι προσδιοριστική (αν η υπόθεση
Ρίμαν είναι αληθής). Για αριθμούς μεγαλύτερους, η πιθανότητα ψευδών θετικών εξαρτάται από την <a class="link"
href="
ch11s03.html#gel-function-IsPrimeMillerRabinReps"><code class="function">IsPrimeMillerRabinReps</code></a>.
Δηλαδή, η πιθανότητα ψευδούς θετικού είναι 1/4 στη δύναμη <code
class="function">IsPrimeMillerRabinReps</code>. Η προεπιλεγμένη τιμή του 22 δίνει μια πιθανότητα περίπου
5.7e-14.</p><p>Αν η <code class="constant">ψευδής</code> επιστρέφεται, μπορείτε να είστε σίγουροι ότι ο
αριθμός είναι σύνθετος. Αν θέλετε να είσαστε ολότελα βέβαιοι ότι έχετε έναν πρώτο μπορείτε να χρησιμοποιήσετε
την <a class="link" href="ch11s07.html#gel-function-MillerRabinTestSure"><code
class="function">MillerRabinTestSure</code></a>, αλλά μπορεί να πάρει πολύ περισσότερο.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsPrimitiveMod"></a>IsPrimitiveMod</span></dt><dd><pre class="synopsis">IsPrimitiveMod
(g,q)</pre><p>Ελέγχει αν το <code class="varname">g</code> είναι βασικό στην F<sub>q</sub>, η πεπερασμένη
ομάδα της τάξης <code class="varname">q</code>, όπου <code class="varname">q</code> είναι ένας πρώτος. Αν το
<code class="varname">q</code> δεν είναι πρώτος τα αποτελέσματα είναι ψευδή.</p></dd><dt><span
class="term"><a
name="gel-function-IsPrimitiveModWithPrimeFactors"></a>IsPrimitiveModWithPrimeFactors</span></dt><dd><pre
class="synopsis">IsPrimitiveModWithPrimeFactors (g,q,f)</pre><p>Ελέγχει αν το <code class="varname">g</code>
είναι βασικό στην F<sub>q</sub>, την πεπερασμένη ομάδα της τάξης <code class="varname">q</code>, όπου <code
class="varname">q</code> ε
ίναι ένας πρώτος και το <code class="varname">f</code> είναι ένα διάνυσμα πρώτων παραγόντων του <code
class="varname">q</code>-1. Αν το <code class="varname">q</code> δεν είναι πρώτος τα αποτελέσματα είναι
ψευδή.</p></dd><dt><span class="term"><a
name="gel-function-IsPseudoprime"></a>IsPseudoprime</span></dt><dd><pre class="synopsis">IsPseudoprime
(n,b)</pre><p>Αν το <code class="varname">n</code> είναι ένας ψευδοπρώτος με βάση <code
class="varname">b</code> αλλά όχι ένας πρώτος, δηλαδή αν <strong class="userinput"><code>b^(n-1) == 1 mod
n</code></strong>. Αυτό καλεί την <a class="link" href="ch11s07.html#gel-function-PseudoprimeTest"><code
class="function">PseudoprimeTest</code></a></p></dd><dt><span class="term"><a
name="gel-function-IsStrongPseudoprime"></a>IsStrongPseudoprime</span></dt><dd><pre class="synopsis
">IsStrongPseudoprime (n,b)</pre><p>Ελέγχει αν το <code class="varname">n</code> είναι ένας ισχυρός
ψευδοπρώτος με βάση <code class="varname">b</code>, αλλά όχι πρώτος.</p></dd><dt><span class="term"><a
name="gel-function-Jacobi"></a>Jacobi</span></dt><dd><pre class="synopsis">Jacobi (a,b)</pre><p>Παραλλαγές:
<code class="function">JacobiSymbol</code></p><p>Υπολογίζει το σύμβολο Τζακόμπι (a/b) (το b πρέπει να είναι
περιττός).</p></dd><dt><span class="term"><a
name="gel-function-JacobiKronecker"></a>JacobiKronecker</span></dt><dd><pre class="synopsis">JacobiKronecker
(a,b)</pre><p>Παραλλαγές: <code class="function">JacobiKroneckerSymbol</code></p><p>Υπολογίζει το σύμβολο
Τζακόμπι (a/b) με την επέκταση Κρόνεκερ (a/2)=(2/a) όταν είναι περιττός, ή (a/2)=0 όταν είναι άρτιος.<
/p></dd><dt><span class="term"><a
name="gel-function-LeastAbsoluteResidue"></a>LeastAbsoluteResidue</span></dt><dd><pre
class="synopsis">LeastAbsoluteResidue (a,n)</pre><p>Επιστρέφει το υπόλοιπο του <code class="varname">a</code>
mod <code class="varname">n</code>, με την ελάχιστη απόλυτη τιμή (στο διάστημα -n/2 έως
n/2).</p></dd><dt><span class="term"><a name="gel-function-Legendre"></a>Legendre</span></dt><dd><pre
class="synopsis">Legendre (a,p)</pre><p>Παραλλαγές: <code
class="function">LegendreSymbol</code></p><p>Υπολογίζει το σύμβολο Λεζάντρ (a/p).</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/LegendreSymbol" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/LegendreSymbol.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-LucasLehmer"></a>LucasLehmer</span></dt><dd><pre class="synopsis">LucasLehmer
(p)</pre><p>Ελέγχει αν 2<sup>p</sup>-1 είναι ένας πρώτος Μερσέν χρησιμοποιώντας τη δοκιμή Lucas-Lehmer. Δείτε
επίσης <a class="link" href="ch11s07.html#gel-function-MersennePrimeExponents">MersennePrimeExponents</a> και
<a class="link" href="ch11s07.html#gel-function-IsMersennePrimeExponent">IsMersennePrimeExponent</a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LucasLhemer" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/Lucas-LehmerTest.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-LucasNumber"></a>LucasNumber</span></dt><dd><pre class="synopsis">LucasNumber
(n)</pre><p>Επιστρέφει τον <code class="varname">n</code>στο αριθμό Lucas.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lucas_number" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LucasNumbers" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/LucasNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MaximalPrimePowerFactors"></a>MaximalPrimePowerFactors</span></dt><dd><pre
class="synopsis">MaximalPrimePowerFactors (n)</pre><p>Επιστρέφει όλους τους μέγιστους πρώτους παράγοντες
δύναμης ενός αριθμού.</p></dd><dt><span class="term"><a
name="gel-function-MersennePrimeExponents"></a>MersennePrimeExponents</span></dt><dd><pre
class="synopsis">MersennePrimeExponents</pre><p>Ένα διάνυσμα με γνωστούς πρώτους εκθέτες Μερσέν, δηλαδή ένας
κατάλογος θετικών ακεραίων <code class="varname">p</code> έτσι ώστε το 2<sup>p</sup>-1 να είναι πρώτος. Δείτε
επίσης <a class="link" href="ch11s07.html#gel-function-IsMersennePrimeExponent">IsMersennePrimeExponent</a>
και <a class="link" href="ch11s07.html#gel-function-LucasLehmer">LucasLehmer</a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Mersenne_prime" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MersenneNumbers" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/MersennePrime.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://www.mersenne.org/" target="_top">GIMPS</a>
+ for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MillerRabinTest"></a>MillerRabinTest</span></dt><dd><pre class="synopsis">MillerRabinTest
(n,reps)</pre><p>Χρησιμοποιεί τη δοκιμή πρώτων αριθμών Miller-Rabin στο <code class="varname">n</code>, <code
class="varname">reps</code> είναι ο αριθμός των φορών. Η πιθανότητα ενός ψευδούς θετικού είναι <strong
class="userinput"><code>(1/4)^reps</code></strong>. Είναι προφανώς συνήθως καλύτερο να χρησιμοποιήσετε <a
class="link" href="ch11s07.html#gel-function-IsPrime"><code class="function">IsPrime</code></a> αφού είναι
γρηγορότερο και καλύτερο σε μικρότερους ακέραιους.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/MillerRabinPrimeTest" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MillerRabinTestSure"></a>MillerRabinTestSure</span></dt><dd><pre
class="synopsis">MillerRabinTestSure (n)</pre><p>
+ Use the Miller-Rabin primality test on <code class="varname">n</code> with
+ enough bases that assuming the Generalized Riemann Hypothesis the
+ result is deterministic.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MillerRabinPrimeTest" target="_top">Planetmath</a>,
or
+ <a class="ulink" href="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-ModInvert"></a>ModInvert</span></dt><dd><pre
class="synopsis">ModInvert (n,m)</pre><p>Επιστρέφει τον αντίστροφο του n mod m.</p><p>Δείτε <a class="ulink"
href="http://mathworld.wolfram.com/ModularInverse.html" target="_top">Mathworld</a> για περισσότερες
πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-MoebiusMu"></a>MoebiusMu</span></dt><dd><pre class="synopsis">MoebiusMu
(n)</pre><p>Επιστρέφει την συνάρτηση mu του Moebius υπολογισμένη στο <code class="varname">n</code>. Δηλαδή,
επιστρέφει 0 αν το <code class="varname">n</code> δεν είναι γινόμενο διακριτών πρώτων και <strong
class="userinput"><code>(-1)^k</code></strong> αν είναι γινόμενο των <code class="varname">k</code> διακριτών
πρώτων.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MoebiusFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/MoebiusFunction.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-NextPrime"></a>NextPrime</span></dt><dd><pre
class="synopsis">NextPrime (n)</pre><p>Επιστρέφει τον ελάχιστο πρώτο που είναι μεγαλύτερος από τον <code
class="varname">n</code>. Οι αρνητικοί των πρώτων θεωρούνται πρώτοι και έτσι για να πάρετε τον προηγούμενο
πρώτο μπορείτε να χρησιμοποιήσετε <strong class="userinput"><code>-NextPrime(-n)</code></strong>.</p><p>Αυτή
η συνάρτηση χρησιμοποιεί τη <code class="function">mpz_nextprime</code> του GMP που με τη σειρά της
χρησιμοποιεί την πιθανοθεωρητική δοκιμή Μίλερ-Ράμπιν (Δείτε επίσης <a class="link"
href="ch11s07.html#gel-function-MillerRabinTest"><code class="function">MillerRabinTest</code></a>). Η
πιθανότητα ψε�
�δούς θετικού δεν ρυθμίζεται, αλλά είναι αρκετά χαμηλή για όλους τους πρακτικούς σκοπούς.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PadicValuation"></a>PadicValuation</span></dt><dd><pre class="synopsis">PadicValuation
(n,p)</pre><p>Επιστρέφει τον υπολογισμό p-adic (αριθμός των τελικών μηδενικών στη βάση <code
class="varname">p</code>).</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/P-adic_order" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/PAdicValuation" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-PowerMod"></a>PowerMod</span></dt><dd><pre
class="synopsis">PowerMod (a,b,m)</pre><p>
+ Compute <strong class="userinput"><code>a^b mod m</code></strong>. The
+ <code class="varname">b</code>'s power of <code class="varname">a</code> modulo
+ <code class="varname">m</code>. It is not necessary to use this function
+ as it is automatically used in modulo mode. Hence
+ <strong class="userinput"><code>a^b mod m</code></strong> is just as fast.
+ </p></dd><dt><span class="term"><a name="gel-function-Prime"></a>Prime</span></dt><dd><pre
class="synopsis">Prime (n)</pre><p>Παραλλαγές: <code class="function">prime</code></p><p>Επιστρέφει τον <code
class="varname">n</code>στό πρώτο (μέχρι ένα όριο).</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PrimeFactors"></a>PrimeFactors</span></dt><dd><pre class="synopsis">PrimeFactors
(n)</pre><p>Επιστρέφει όλους τους πρώτους παράγοντες ενός αριθμού ως διάνυσμα.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Prime_factor" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeFactor.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PseudoprimeTest"></a>PseudoprimeTest</span></dt><dd><pre class="synopsis">PseudoprimeTest
(n,b)</pre><p>Δοκιμή ψευδοπρώτου, επιστρέφει <code class="constant">αληθές</code> αν και μόνο αν <strong
class="userinput"><code>b^(n-1) == 1 mod n</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Pseudoprime" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Pseudoprime.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RemoveFactor"></a>RemoveFactor</span></dt><dd><pre class="synopsis">RemoveFactor
(n,m)</pre><p>Αφαιρεί όλα τα στιγμιότυπα του παράγοντα <code class="varname">m</code> από τον αριθμό <code
class="varname">n</code>. Δηλαδή, διαιρεί με τη μέγιστη δύναμη του <code class="varname">m</code>, που
διαιρεί το <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Divisibility" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Factor.html" target="_top">Mathworld</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SilverPohligHellmanWithFactorization"></a>SilverPohligHellmanWithFactorization</span></dt><dd><pre
class="synopsis">SilverPohligHellmanWithFactorization (n,b,q,f)</pre><p>Βρίσκει τους διακριτούς λογάριθμους
του <code class="varname">n</code> με βάση το <code class="varname">b</code> στο F<sub>q</sub>, την
πεπερασμένη ομάδα της τάξης <code class="varname">q</code>, όπου <code class="varname">q</code> είναι ένας
πρώτος που χρησιμοποιεί τον αλγόριθμο Silver-Pohlig-Hellman, με δεδομένο το <code class="varname">f</code>
είναι η παραγοντοποίηση του <code class="varname">q</code>-1.</p></dd><dt><span class="term"><a
name="gel-function-SqrtModPrime"></a>SqrtModPrime</span></dt><dd><pre class="synopsis">SqrtModPrime
(n,p)</pre><p>Βρίσκει την τετραγωνική �
�ίζα του <code class="varname">n</code> modulo <code class="varname">p</code> (όπου το <code
class="varname">p</code> είναι πρώτος). Null επιστρέφεται αν δεν είναι ένα υπόλοιπο δευτεροβάθμιας.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/QuadraticResidue" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/QuadraticResidue.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-StrongPseudoprimeTest"></a>StrongPseudoprimeTest</span></dt><dd><pre
class="synopsis">StrongPseudoprimeTest (n,b)</pre><p>Εκτελεί τη δοκιμή ισχυρού ψευδοπρώτου με βάση <code
class="varname">b</code> στο <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Strong_pseudoprime"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/StrongPseudoprime" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/StrongPseudoprime.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-gcd"></a>gcd</span></dt><dd><pre
class="synopsis">gcd (a,args...)</pre><p>Παραλλαγές: <code class="function">GCD</code></p><p>
+ Greatest common divisor of integers. You can enter as many
+ integers as you want in the argument list, or you can give
+ a vector or a matrix of integers. If you give more than
+ one matrix of the same size then GCD is done element by
+ element.
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Greatest_common_divisor"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/GreatestCommonDivisor" target="_top">Planetmath</a>,
or
+ <a class="ulink" href="http://mathworld.wolfram.com/GreatestCommonDivisor.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-lcm"></a>lcm</span></dt><dd><pre
class="synopsis">lcm (a,args...)</pre><p>Παραλλαγές: <code class="function">LCM</code></p><p>
+ Least common multiplier of integers. You can enter as many
+ integers as you want in the argument list, or you can give a
+ vector or a matrix of integers. If you give more than one
+ matrix of the same size then LCM is done element by element.
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Least_common_multiple"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LeastCommonMultiple" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/LeastCommonMultiple.html"
target="_top">Mathworld</a> for more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s06.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s08.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Τριγωνομετρία </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right"
valign="top"> Διαχείριση πινάκων</td></tr></table></div></body></html>
diff --git a/help/el/html/ch11s08.html b/help/el/html/ch11s08.html
new file mode 100644
index 0000000..2da51ad
--- /dev/null
+++ b/help/el/html/ch11s08.html
@@ -0,0 +1,23 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Διαχείριση
πινάκων</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch11.html" title="Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL"><link rel="prev" href="ch11s07.html" title="Θεωρία αριθμών"><link rel="next"
href="ch11s09.html" title="Γραμμική Άλγεβρα"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Διαχείριση πινάκων</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s07.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL</th><td width="20%" alig
n="right"> <a accesskey="n" href="ch11s09.html">Επόμενο</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-matrix"></a>Διαχείριση πινάκων</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ApplyOverMatrix"></a>ApplyOverMatrix</span></dt><dd><pre class="synopsis">ApplyOverMatrix
(a,func)</pre><p>Εφαρμόζει μια συνάρτηση σε όλες τις καταχωρίσεις ενός πίνακα και επιστρέφει έναν πίνακα των
αποτελεσμάτων.</p></dd><dt><span class="term"><a
name="gel-function-ApplyOverMatrix2"></a>ApplyOverMatrix2</span></dt><dd><pre
class="synopsis">ApplyOverMatrix2 (a,b,func)</pre><p>Εφαρμόζει μια συνάρτηση σε όλες τις καταχωρίσεις των 2
πινάκων (ή 1 τιμή κα
ι 1 πίνακα) και επιστρέφει έναν πίνακα των αποτελεσμάτων.</p></dd><dt><span class="term"><a
name="gel-function-ColumnsOf"></a>ColumnsOf</span></dt><dd><pre class="synopsis">ColumnsOf
(M)</pre><p>Παίρνει τις στήλες ενός πίνακα ως οριζόντιο διάνυσμα.</p></dd><dt><span class="term"><a
name="gel-function-ComplementSubmatrix"></a>ComplementSubmatrix</span></dt><dd><pre
class="synopsis">ComplementSubmatrix (m,r,c)</pre><p>Αφαιρεί στήλες και γραμμές από έναν
πίνακα.</p></dd><dt><span class="term"><a
name="gel-function-CompoundMatrix"></a>CompoundMatrix</span></dt><dd><pre class="synopsis">CompoundMatrix
(k,A)</pre><p>Υπολογίζει τον kστό σύνθετο πίνακα του Α.</p></dd><dt><span class="term"><a
name="gel-function-CountZeroColumns"></a>CountZeroColumns</span></dt><dd><pre
class="synopsis">CountZeroColumns (M)</pre><p>Υπολο�
�ίζει τον αριθμό των μηδενικών στηλών σε έναν πίνακα. Για παράδειγμα, αφού ο πίνακάς σας μειώσει έναν
πίνακα, μπορείτε να τον χρησιμοποιήσετε για να βρείτε τη μηδενικότητα. Δείτε <a class="link"
href="ch11s09.html#gel-function-cref"><code class="function">cref</code></a> και <a class="link"
href="ch11s09.html#gel-function-Nullity"><code class="function">Nullity</code></a>.</p></dd><dt><span
class="term"><a name="gel-function-DeleteColumn"></a>DeleteColumn</span></dt><dd><pre
class="synopsis">DeleteColumn (M,col)</pre><p>Διαγράφει μια στήλη ενός πίνακα.</p></dd><dt><span
class="term"><a name="gel-function-DeleteRow"></a>DeleteRow</span></dt><dd><pre class="synopsis">DeleteRow
(M,row)</pre><p>Διαγράφει μια γραμμή ενός πίνακα.</p></dd><dt><span class="term"><a name="gel-functio
n-DiagonalOf"></a>DiagonalOf</span></dt><dd><pre class="synopsis">DiagonalOf (M)</pre><p>Δίνει τις διαγώνιες
καταχωρίσεις ενός πίνακα ως διάνυσμα στήλης.</p><p>Δείτε <a class="ulink"
href="http://en.wikipedia.org/wiki/Diagonal_of_a_matrix#Matrices" target="_top">Wikipedia</a> για
περισσότερες πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-DotProduct"></a>DotProduct</span></dt><dd><pre class="synopsis">DotProduct
(u,v)</pre><p>Get the dot product of two vectors. The vectors must be of the
+ same size. No conjugates are taken so this is a bilinear form even if working over the
complex numbers; This is the bilinear scalar product not the sesquilinear scalar product. See <a
class="link" href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a> for the standard
sesquilinear inner product.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Dot_product" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DotProduct" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ExpandMatrix"></a>ExpandMatrix</span></dt><dd><pre class="synopsis">ExpandMatrix
(M)</pre><p>Επεκτείνει έναν πίνακα ακριβώς όπως κάνουμε με εισόδους πίνακα χωρίς κλείσιμο εισαγωγικών.
Δηλαδή, επεκτείνουμε οποιουσδήποτε εσωτερικούς πίνακες ως ομάδες. Αυτός είναι ένας τρόπος για να
κατασκευάσετε πίνακες από μικρότερους και αυτό γίνεται κανονικά αυτόματα σε εισόδους εκτός και ο πίνακας
είναι με εισαγωγικά.</p></dd><dt><span class="term"><a
name="gel-function-HermitianProduct"></a>HermitianProduct</span></dt><dd><pre
class="synopsis">HermitianProduct (u,v)</pre><p>Παραλλαγές: <code
class="function">InnerProduct</code></p><p>Δίνει το ερ
μιτιανό γινόμενο δύο διανυσμάτων. Τα διανύσματα πρέπει να είναι του ίδιου μεγέθους. Αυτό είναι μια
γραμμικο-ημιγραμμική μορφή χρησιμοποιώντας τον ταυτοτικό πίνακα.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Sesquilinear_form"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/HermitianInnerProduct.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-I"></a>I</span></dt><dd><pre
class="synopsis">I (n)</pre><p>Παραλλαγές: <code class="function">eye</code></p><p>Επιστρέφει έναν ταυτοτικό
πίνακα δοσμένου μεγέθους, δηλαδή <code class="varname">n</code> επί <code class="varname">n</code>. Αν το
<code class="varname">n</code> είναι μηδέν, επιστρέφει <code class="constant">null</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Identity_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/IdentityMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IndexComplement"></a>IndexComplement</span></dt><dd><pre class="synopsis">IndexComplement
(vec,msize)</pre><p>Επιστρέφει το συμπλήρωμα δείκτη ενός διανύσματος δεικτών. Ο πρώτος δείκτης είναι ένα. Για
παράδειγμα για διάνυσμα <strong class="userinput"><code>[2,3]</code></strong> και μέγεθος <strong
class="userinput"><code>5</code></strong>, επιστρέφει <strong
class="userinput"><code>[1,4,5]</code></strong>. Αν <code class="varname">msize</code> είναι 0, επιστρέφει
πάντα <code class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsDiagonal"></a>IsDiagonal</span></dt><dd><pre class="synopsis">IsDiagonal (M)</pre><p>Αν
είναι ένας διαγώνιος πίνακας.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Diagonal_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/DiagonalMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsIdentity"></a>IsIdentity</span></dt><dd><pre class="synopsis">IsIdentity
(x)</pre><p>Ελέγχει αν ένας πίνακας είναι ο ταυτοτικός πίνακας. Επιστρέφει αυτόματα <code
class="constant">ψευδές</code> αν ο πίνακας δεν είναι τετραγωνικός. Δουλεύει επίσης με αριθμούς και σε αυτήν
την περίπτωση είναι ισοδύναμος με <strong class="userinput"><code>x==1</code></strong>. Όταν <code
class="varname">x</code> είναι <code class="constant">null</code> (μπορούμε να τον θεωρήσουμε ως έναν πίνακα
0 επί 0), δεν δημιουργείται κανένα σφάλμα και επιστρέφεται <code
class="constant">ψευδές</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsLowerTriangular"></a>IsLowerTriangular</sp
an></dt><dd><pre class="synopsis">IsLowerTriangular (M)</pre><p>Αν είναι ένας κάτω τριγωνικός πίνακας.
Δηλαδή, αν είναι όλες οι καταχωρίσεις πάνω από τη διαγώνιο είναι μηδέν.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixInteger"></a>IsMatrixInteger</span></dt><dd><pre class="synopsis">IsMatrixInteger
(M)</pre><p>Check if a matrix is a matrix of integers (non-complex).</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixNonnegative"></a>IsMatrixNonnegative</span></dt><dd><pre
class="synopsis">IsMatrixNonnegative (M)</pre><p>Ελέγχει αν ο πίνακας είναι μη αρνητικός, δηλαδή, αν κάθε
στοιχείο είναι μη αρνητικός. Μην μπερδεύετε θετικά πίνακες με θετικούς ημιορισμένους πίνακες.</p><p>Δείτε <a
class="ulink" href="http://en.wikipedia.org/wiki/
Positive_matrix" target="_top">Wikipedia</a> για περισσότερες πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixPositive"></a>IsMatrixPositive</span></dt><dd><pre
class="synopsis">IsMatrixPositive (M)</pre><p>Ελέγχει αν ένας πίνακας είναι θετικός, δηλαδή, αν κάθε στοιχείο
είναι θετικό (και συνεπώς πραγματικό). Ειδικά, κανένα στοιχείο δεν είναι 0. Μην μπερδεύετε θετικούς πίνακες
με θετικά ορισμένους πίνακες.</p><p>Δείτε <a class="ulink"
href="http://en.wikipedia.org/wiki/Positive_matrix" target="_top">Wikipedia</a> για περισσότερες
πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixRational"></a>IsMatrixRational</span></dt><dd><pre
class="synopsis">IsMatrixRational (M)</pre><p>Ελέγχει αν ένας πίν�
�κας είναι ένας πίνακας ρητών αριθμών (μη μιγαδικός).</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixReal"></a>IsMatrixReal</span></dt><dd><pre class="synopsis">IsMatrixReal
(M)</pre><p>Ελέγχει αν ένας πίνακας είναι ένας πίνακας πραγματικών αριθμών (μη μιγαδικός).</p></dd><dt><span
class="term"><a name="gel-function-IsMatrixSquare"></a>IsMatrixSquare</span></dt><dd><pre
class="synopsis">IsMatrixSquare (M)</pre><p>Ελέγχει αν ένας πίνακας είναι τετράγωνος, δηλαδή, αν το πλάτος
του είναι ίσο με το ύψος του.</p></dd><dt><span class="term"><a
name="gel-function-IsUpperTriangular"></a>IsUpperTriangular</span></dt><dd><pre
class="synopsis">IsUpperTriangular (M)</pre><p>Είναι ένας άνω τριγωνικός πίνακας; Δηλαδή, ένας πίνακας είναι
άνω τρ
ιγωνικός αν όλες οι καταχωρίσεις κάτω από τη διαγώνιο είναι μηδέν.</p></dd><dt><span class="term"><a
name="gel-function-IsValueOnly"></a>IsValueOnly</span></dt><dd><pre class="synopsis">IsValueOnly
(M)</pre><p>Ελέγχει αν ο πίνακας είναι ένας πίνακας μόνο αριθμών. Πολλές εσωτερικές συναρτήσεις κάνουν αυτόν
τον έλεγχο. Οι τιμές μπορεί να είναι οποιοιδήποτε αριθμοί συμπεριλαμβανομένων μιγαδικών
αριθμών.</p></dd><dt><span class="term"><a name="gel-function-IsVector"></a>IsVector</span></dt><dd><pre
class="synopsis">IsVector (v)</pre><p>Αν είναι το όρισμα οριζόντιο ή κάθετο διάνυσμα. Η Genius δεν ξεχωρίζει
μεταξύ πίνακα και διανύσματος και ένα διάνυσμα είναι απλά �
�νας πίνακας 1 επί <code class="varname">n</code> ή <code class="varname">n</code> επί 1.</p></dd><dt><span
class="term"><a name="gel-function-IsZero"></a>IsZero</span></dt><dd><pre class="synopsis">IsZero
(x)</pre><p>Ελέγχει αν ένας πίνακας αποτελείται όλος από μηδενικά. Δουλεύει επίσης και σε αριθμούς, οπότε
είναι ισοδύναμος με <strong class="userinput"><code>x==0</code></strong>. Όταν η <code
class="varname">x</code> είναι <code class="constant">null</code> (μπορούμε να σκεφτούμε ως έναν πίνακα 0 επί
0), δεν δημιουργείται κανένα σφάλμα και επιστρέφεται η <code class="constant">true</code> επειδή η συνθήκη
είναι κενή.</p></dd><dt><span class="term"><a
name="gel-function-LowerTriangular"></a>LowerTriangular</span></dt><dd><pre class="synopsis">LowerTriang
ular (M)</pre><p>Επιστρέφει ένα αντίγραφο του πίνακα <code class="varname">M</code> με όλες τις καταχωρίσεις
πάνω από τη διαγώνιο ορισμένες σε μηδέν.</p></dd><dt><span class="term"><a
name="gel-function-MakeDiagonal"></a>MakeDiagonal</span></dt><dd><pre class="synopsis">MakeDiagonal
(v,arg...)</pre><p>Παραλλαγές: <code class="function">diag</code></p><p>Δημιουργεί έναν διαγώνιο πίνακα από
ένα διάνυσμα. Εναλλακτικά μπορείτε να περάσετε στις τιμές για να βάλετε τη διαγώνιο ως ορίσματα. Έτσι <strong
class="userinput"><code>MakeDiagonal([1,2,3])</code></strong> είναι το ίδιο με <strong
class="userinput"><code>MakeDiagonal(1,2,3)</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Diagonal_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/DiagonalMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MakeVector"></a>MakeVector</span></dt><dd><pre class="synopsis">MakeVector
(A)</pre><p>Δημιουργεί ένα διάνυσμα στήλης από έναν πίνακα βάζοντας στήλες τις μεν πάνω από τις άλλες.
Επιστρέφει <code class="constant">null</code> όταν δίνεται <code
class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-MatrixProduct"></a>MatrixProduct</span></dt><dd><pre class="synopsis">MatrixProduct
(A)</pre><p>Υπολογίζει το γινόμενο όλων των στοιχείων σε ένα πίνακα ή διάνυσμα. Δηλαδή, πολλαπλασιάζουμε όλα
τα στοιχεία και επιστρέφει έναν αριθμό που είναι το γινόμενο όλων των στοιχείων.</p></dd><dt><span
class="term"><a name="gel-function-MatrixSum"></a>MatrixSum</sp
an></dt><dd><pre class="synopsis">MatrixSum (A)</pre><p>Υπολογίζει το άθροισμα όλων των στοιχείων σε ένα
πίνακα ή διάνυσμα. Δηλαδή, προσθέτουμε όλα τα στοιχεία και επιστρέφει έναν αριθμό που είναι το άθροισμα όλων
των στοιχείων.</p></dd><dt><span class="term"><a
name="gel-function-MatrixSumSquares"></a>MatrixSumSquares</span></dt><dd><pre
class="synopsis">MatrixSumSquares (A)</pre><p>Υπολογίζει το άθροισμα των τετραγώνων όλων των στοιχείων σε
έναν πίνακα ή διάνυσμα.</p></dd><dt><span class="term"><a
name="gel-function-NonzeroColumns"></a>NonzeroColumns</span></dt><dd><pre class="synopsis">NonzeroColumns
(M)</pre><p>Επιστρέφει ένα διάνυσμα γραμμής των δεικτών των μη μηδενικών στηλών στον πίνακα <code
class="varname">M</code>.</p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NonzeroElements"></a>NonzeroElements</span></dt><dd><pre class="synopsis">NonzeroElements
(v)</pre><p>Επιστρέφει ένα διάνυσμα γραμμής των δεικτών των μη μηδενικών στοιχείων του διανύσματος <code
class="varname">v</code>.</p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-OuterProduct"></a>OuterProduct</span></dt><dd><pre class="synopsis">OuterProduct
(u,v)</pre><p>Δίνει το εξωτερικό γινόμενο δύο διανυσμάτων. Δηλαδή, ας υποθέσουμε ότι <code
class="varname">u</code> και <code class="varname">v</code> είναι κάθετα διανύσματα, τότε το εξωτερικό
γινόμενο είναι <strong class="userinput"><code>v * u.'</code></strong>.</p></dd><dt><span class="term"><a
name="ge
l-function-ReverseVector"></a>ReverseVector</span></dt><dd><pre class="synopsis">ReverseVector
(v)</pre><p>Αντίστροφα στοιχεία σε ένα διάνυσμα. Επιστρέφει <code class="constant">null</code> αν δίνεται
<code class="constant">null</code></p></dd><dt><span class="term"><a
name="gel-function-RowSum"></a>RowSum</span></dt><dd><pre class="synopsis">RowSum (m)</pre><p>Υπολογίζει το
άθροισμα κάθε γραμμής σε έναν πίνακα και επιστρέφει ένα κάθετο διάνυσμα με το αποτέλεσμα.</p></dd><dt><span
class="term"><a name="gel-function-RowSumSquares"></a>RowSumSquares</span></dt><dd><pre
class="synopsis">RowSumSquares (m)</pre><p>Υπολογίζει το άθροισμα των τετραγώνων κάθε γραμμής σε έναν πίνακα
και επιστρέφει ένα κάθετο διάνυσμα με τα αποτελέσματα.</p></dd><dt>
<span class="term"><a name="gel-function-RowsOf"></a>RowsOf</span></dt><dd><pre class="synopsis">RowsOf
(M)</pre><p>Δίνει τις γραμμές ενός πίνακα ως κάθετο διάνυσμα. Κάθε στοιχείο του διανύσματος είναι ένα
οριζόντιο διάνυσμα που είναι η αντίστοιχη γραμμή του <code class="varname">M</code>. Αυτή η συνάρτηση είναι
χρήσιμη, αν θέλετε να κάνετε βρόχο στις γραμμές ενός πίνακα. Για παράδειγμα, ως <strong
class="userinput"><code>for r in RowsOf(M) do
+something(r)</code></strong>.</p></dd><dt><span class="term"><a
name="gel-function-SetMatrixSize"></a>SetMatrixSize</span></dt><dd><pre class="synopsis">SetMatrixSize
(M,rows,columns)</pre><p>Δημιουργεί νέο πίνακα δεδομένου μεγέθους από τον παλιό. Δηλαδή, θα επιστραφεί ένας
νέος πίνακας στον οποίον ο παλιός αντιγράφηκε. Οι καταχωρίσεις που δεν ταιριάζουν περικόπτονται και ο
πρόσθετος χώρος συμπληρώνεται με μηδενικά. Αν <code class="varname">rows</code> ή <code
class="varname">columns</code> είναι μηδέν, τότε επιστρέφεται <code
class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-ShuffleVector"></a>ShuffleVector</span></dt><dd><pre class="synopsis">ShuffleVector
(v)</pre><p>Shuffle elements in a vector. Return <code class="const
ant">null</code> if given <code class="constant">null</code>.</p><p>Version 1.0.13
onwards.</p></dd><dt><span class="term"><a name="gel-function-SortVector"></a>SortVector</span></dt><dd><pre
class="synopsis">SortVector (v)</pre><p>Ταξινόμηση στοιχείων διανύσματος με αύξουσα
διάταξη.</p></dd><dt><span class="term"><a
name="gel-function-StripZeroColumns"></a>StripZeroColumns</span></dt><dd><pre
class="synopsis">StripZeroColumns (M)</pre><p>Αφαιρεί όλες τις ολότελα μηδενικές στήλες του <code
class="varname">M</code>.</p></dd><dt><span class="term"><a
name="gel-function-StripZeroRows"></a>StripZeroRows</span></dt><dd><pre class="synopsis">StripZeroRows
(M)</pre><p>Αφαιρεί όλες τις ολότελα μηδενικές γραμμές του <code class="varname">M</code>.</p></dd><dt><span
class="term"><a name="gel-function-Submatrix"></a>Submatrix</span></dt><dd><pre class="synopsis">
Submatrix (m,r,c)</pre><p>Επιστρέφει στήλες και γραμμές από έναν πίνακα. Αυτό είναι ακριβώς ισοδύναμο με το
<strong class="userinput"><code>m@(r,c)</code></strong>. Τα <code class="varname">r</code> και <code
class="varname">c</code> πρέπει να είναι διανύσματα γραμμών και στηλών (ή μεμονωμένοι αριθμοί αν χρειάζεται
μόνο μια γραμμή ή στήλη).</p></dd><dt><span class="term"><a
name="gel-function-SwapRows"></a>SwapRows</span></dt><dd><pre class="synopsis">SwapRows
(m,row1,row2)</pre><p>Εναλλάσσει δύο γραμμές σε έναν πίνακα.</p></dd><dt><span class="term"><a
name="gel-function-UpperTriangular"></a>UpperTriangular</span></dt><dd><pre class="synopsis">UpperTriangular
(M)</pre><p>Επιστρέφει ένα αντίγραφο του πίνακα <code class="varname">M</code> με όλες τ
ις καταχωρίσεις κάτω από τη διαγώνιο ορισμένες σε μηδέν.</p></dd><dt><span class="term"><a
name="gel-function-columns"></a>columns</span></dt><dd><pre class="synopsis">columns (M)</pre><p>Δίνει τον
αριθμό των στηλών ενός πίνακα.</p></dd><dt><span class="term"><a
name="gel-function-elements"></a>elements</span></dt><dd><pre class="synopsis">elements (M)</pre><p>Δίνει τον
συνολικό αριθμό των στοιχείων ενός πίνακα. Αυτός είναι ο αριθμός των στηλών επί τον αριθμό των
γραμμών.</p></dd><dt><span class="term"><a name="gel-function-ones"></a>ones</span></dt><dd><pre
class="synopsis">ones (rows,columns...)</pre><p>Δημιουργεί έναν πίνακα από όλους (ή ένα διάνυσμα γραμμής αν
δίνεται μόνο ένα όρισμα). Επιστρέφει <code class="constant">null
</code> αν οποιαδήποτε σειρά ή στήλη είναι μηδέν.</p></dd><dt><span class="term"><a
name="gel-function-rows"></a>rows</span></dt><dd><pre class="synopsis">rows (M)</pre><p>Δίνει τον αριθμό των
γραμμών ενός πίνακα.</p></dd><dt><span class="term"><a
name="gel-function-zeros"></a>zeros</span></dt><dd><pre class="synopsis">zeros
(rows,columns...)</pre><p>Δημιουργεί έναν πίνακα όλων των μηδενικών (ή ένα διάνυσμα γραμμής αν δίνεται μόνο
ένα όρισμα). Επιστρέφει <code class="constant">null</code> αν οποιαδήποτε σειρά ή στήλη είναι
μηδέν.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s07.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Πάνω
</a></td><td width="40%" align="right"> <a accesskey="n" href="ch11s09.html">Επόμενο</a></td></tr><tr><td
width="40%" align="left" valign="top">Θεωρία αριθμών </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top"> Γραμμική
Άλγεβρα</td></tr></table></div></body></html>
diff --git a/help/el/html/ch11s09.html b/help/el/html/ch11s09.html
new file mode 100644
index 0000000..5a17347
--- /dev/null
+++ b/help/el/html/ch11s09.html
@@ -0,0 +1,158 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Γραμμική
Άλγεβρα</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch11.html" title="Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL"><link rel="prev" href="ch11s08.html" title="Διαχείριση πινάκων"><link rel="next"
href="ch11s10.html" title="Συνδυαστική Ανάλυση"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Γραμμική Άλγεβρα</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s08.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL</th><td width="20%
" align="right"> <a accesskey="n" href="ch11s10.html">Επόμενο</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-linear-algebra"></a>Γραμμική Άλγεβρα</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AuxiliaryUnitMatrix"></a>AuxiliaryUnitMatrix</span></dt><dd><pre
class="synopsis">AuxiliaryUnitMatrix (n)</pre><p>Δίνει τον βοηθητικό μοναδιαίο πίνακα μεγέθους <code
class="varname">n</code>. Αυτός είναι ένας τετραγωνικός πίνακας με όλα μηδέν εκτός από την υπερδιαγώνιο που
είναι όλα 1. Είναι ο σύνθετος πίνακας Jordan με ιδιοτιμή ενός μηδενικού.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/JordanCanonicalFormTheorem"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/JordanBlock.html" target="_top">Mathworld</a>
for more information on Jordan Canonical Form.
+ </p></dd><dt><span class="term"><a
name="gel-function-BilinearForm"></a>BilinearForm</span></dt><dd><pre class="synopsis">BilinearForm
(v,A,w)</pre><p>Υπολογίζει (v,w) ως προς τη διγραμμική μορφή που δίνεται από τον πίνακα Α.</p></dd><dt><span
class="term"><a name="gel-function-BilinearFormFunction"></a>BilinearFormFunction</span></dt><dd><pre
class="synopsis">BilinearFormFunction (A)</pre><p>Επιστρέφει μια συνάρτηση που υπολογίζει δύο διανύσματα ως
προς τη διγραμμική μορφή που δίνεται από το Α.</p></dd><dt><span class="term"><a
name="gel-function-CharacteristicPolynomial"></a>CharacteristicPolynomial</span></dt><dd><pre
class="synopsis">CharacteristicPolynomial (M)</pre><p>Παραλλαγές: <code
class="function">CharPoly</code></p><p>Δίνει το χαρακτηριστικό πολυώνυμο ως διάνυσμα.
Δηλαδή, επιστρέφει τους συντελεστές του πολυωνύμου ξεκινώντας με τον σταθερό όρο. Αυτό είναι το πολυώνυμο
που ορίστηκε από <strong class="userinput"><code>det(M-xI)</code></strong>. Οι ρίζες αυτού του πολυωνύμου
είναι οι ιδιοτιμές του <code class="varname">M</code>. Δείτε επίσης <a class="link"
href="ch11s09.html#gel-function-CharacteristicPolynomialFunction">CharacteristicPolynomialFunction</a>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Characteristic_polynomial"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/CharacteristicEquation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CharacteristicPolynomialFunction"></a>CharacteristicPolynomialFunction</span></dt><dd><pre
class="synopsis">CharacteristicPolynomialFunction (M)</pre><p>Δίνει το χαρακτηριστικό πολυώνυμο ως συνάρτηση.
Αυτό είναι το πολυώνυμο που ορίστηκε από το <strong class="userinput"><code>det(M-xI)</code></strong>. Οι
ρίζες αυτού του πολυωνύμου είναι οι ιδιοτιμές του <code class="varname">M</code>. Δείτε επίσης <a
class="link" href="ch11s09.html#gel-function-CharacteristicPolynomial">CharacteristicPolynomial</a>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Characteristic_polynomial"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/CharacteristicEquation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ColumnSpace"></a>ColumnSpace</span></dt><dd><pre class="synopsis">ColumnSpace
(M)</pre><p>Δίνει έναν πίνακα βάσης για τον χώρο στηλών ενός πίνακα. Δηλαδή, επιστρέφει έναν πίνακα του
οποίου οι στήλες είναι η βάση για τον χώρο στηλών του <code class="varname">M</code>. Αυτός είναι ο χώρος που
καλύπτεται από τις στήλες του <code class="varname">M</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Row_and_column_spaces"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CommutationMatrix"></a>CommutationMatrix</span></dt><dd><pre
class="synopsis">CommutationMatrix (m, n)</pre><p>Επιστρέφει τον αντιμεταθετικό πίνακα <strong
class="userinput"><code>K(m,n)</code></strong> που είναι ο μοναδικός πίνακας <strong
class="userinput"><code>m*n</code></strong> επί <strong class="userinput"><code>m*n</code></strong> τέτοιος
ώστε <strong class="userinput"><code>K(m,n) * MakeVector(A) = MakeVector(A.')</code></strong> για όλους τους
πίνακες <code class="varname">Α</code> <code class="varname">m</code> επί <code
class="varname">n</code>.</p></dd><dt><span class="term"><a
name="gel-function-CompanionMatrix"></a>CompanionMatrix</span></dt><dd><pre class="synopsis">CompanionMatrix
(p)</pre><p>Συνοδός πίνακας ενός πολυωνύμου (ως διανύσματος).</p></dd><dt><span cl
ass="term"><a name="gel-function-ConjugateTranspose"></a>ConjugateTranspose</span></dt><dd><pre
class="synopsis">ConjugateTranspose (M)</pre><p>Συζυγής ανάστροφος πίνακας (συζυγής). Αυτός είναι ο ίδιος με
τον τελεστή <strong class="userinput"><code>'</code></strong>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Conjugate_transpose"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/ConjugateTranspose" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Convolution"></a>Convolution</span></dt><dd><pre class="synopsis">Convolution
(a,b)</pre><p>Παραλλαγές: <code class="function">convol</code></p><p>Υπολογίζει τη συνέλιξη των δύο
οριζόντιων διανυσμάτων.</p></dd><dt><span class="term"><a
name="gel-function-ConvolutionVector"></a>ConvolutionVector</span></dt><dd><pre
class="synopsis">ConvolutionVector (a,b)</pre><p>Υπολογίζει τη συνέλιξη των δύο οριζόντιων διανυσμάτων.
Επιστρέφει αποτέλεσμα ως διάνυσμα του οποίου τα στοιχεία δεν προστίθεται μαζί.</p></dd><dt><span
class="term"><a name="gel-function-CrossProduct"></a>CrossProduct</span></dt><dd><pre
class="synopsis">CrossProduct (v,w)</pre><p>Διανυσματικό γινόμενο δύο διανυσμάτων στο R<sup>3</sup> ως διάν�
�σμα στήλης.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Cross_product" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-DeterminantalDivisorsInteger"></a>DeterminantalDivisorsInteger</span></dt><dd><pre
class="synopsis">DeterminantalDivisorsInteger (M)</pre><p>Get the determinantal divisors of an integer
matrix.</p></dd><dt><span class="term"><a name="gel-function-DirectSum"></a>DirectSum</span></dt><dd><pre
class="synopsis">DirectSum (M,N...)</pre><p>Ευθύ άθροισμα των πινάκων.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Matrix_addition#directsum"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-DirectSumMatrixVector"></a>DirectSumMatrixVector</span></dt><dd><pre
class="synopsis">DirectSumMatrixVector (v)</pre><p>Ευθύ άθροισμα ενός διανύσματος πινάκων.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Matrix_addition#directsum"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Eigenvalues"></a>Eigenvalues</span></dt><dd><pre class="synopsis">Eigenvalues
(M)</pre><p>Παραλλαγές: <code class="function">eig</code></p><p>Δίνει τις ιδιοτιμές ενός τετραγωνικού πίνακα.
Προς το παρόν δουλεύει μόνο για πίνακες μεγέθους μέχρι 4 επί 4, ή για τριγωνικούς πίνακες (για τους οποίους
οι ιδιοτιμές είναι στη διαγώνιο).</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eigenvalue" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/Eigenvalue" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/Eigenvalue.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Eigenvectors"></a>Eigenvectors</span></dt><dd><pre class="synopsis">Eigenvectors
(M)</pre><pre class="synopsis">Eigenvectors (M, &eigenvalues)</pre><pre class="synopsis">Eigenvectors (M,
&eigenvalues, &multiplicities)</pre><p>Δίνει τα ιδιοδιανύσματα ενός τετραγωνικού πίνακα. Προαιρετικά
παίρνετε επίσης τις ιδιοτιμές και τις αλγεβρικές πολλαπλότητες. Προς το παρόν δουλεύει μόνο για πίνακες
μεγέθους μέχρι 2 επί 2.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eigenvector" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/Eigenvector" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/Eigenvector.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GramSchmidt"></a>GramSchmidt</span></dt><dd><pre class="synopsis">GramSchmidt
(v,B...)</pre><p>Εφαρμόζει τη διεργασία Gram-Schmidt (στις στήλες) ως προς το εσωτερικό γινόμενο που δίνεται
από το <code class="varname">B</code>. Αν το <code class="varname">B</code> δεν δίνεται, τότε χρησιμοποιείται
το τυπικό ερμιτιανό γινόμενο. Το <code class="varname">B</code> μπορεί να είναι ή γραμμικο-ημιγραμμική
συνάρτηση δύο ορισμάτων ή μπορεί να είναι ένας πίνακας που δίνει μια γραμμικο-ημιγραμμική μορφή. Τα
διανύσματα θα γίνονται ορθοκανονικά ως προς το <code class="varname">B</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/GramSchmidtOrthogonalization"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-HankelMatrix"></a>HankelMatrix</span></dt><dd><pre class="synopsis">HankelMatrix
(c,r)</pre><p>Hankel matrix, a matrix whose skew-diagonals are constant. <code class="varname">c</code> is
the first row and <code class="varname">r</code> is the
+ last column. It is assumed that both arguments are vectors and the last element of <code
class="varname">c</code> is the same
+ as the first element of <code class="varname">r</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hankel_matrix" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-HilbertMatrix"></a>HilbertMatrix</span></dt><dd><pre class="synopsis">HilbertMatrix
(n)</pre><p>Πίνακας Χίλμπερτ τάξης <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hilbert_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/HilbertMatrix" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-Image"></a>Image</span></dt><dd><pre
class="synopsis">Image (T)</pre><p>Δίνει την εικόνα (διάστημα στήλης) ενός γραμμικού μετασχηματισμού.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Row_and_column_spaces"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-InfNorm"></a>InfNorm</span></dt><dd><pre
class="synopsis">InfNorm (v)</pre><p>Δίνει την απειρονόρμα ενός διανύσματος, μερικές φορές λέγεται νόρμα
ελάχιστου άνω φράγματος ή νόρμα μεγίστου.</p></dd><dt><span class="term"><a
name="gel-function-InvariantFactorsInteger"></a>InvariantFactorsInteger</span></dt><dd><pre
class="synopsis">InvariantFactorsInteger (M)</pre><p>Get the invariant factors of a square integer
matrix.</p></dd><dt><span class="term"><a
name="gel-function-InverseHilbertMatrix"></a>InverseHilbertMatrix</span></dt><dd><pre
class="synopsis">InverseHilbertMatrix (n)</pre><p>Αντίστροφος πίνακας Χίλμπερτ τάξης <code
class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hilbert_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/HilbertMatrix" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsHermitian"></a>IsHermitian</span></dt><dd><pre class="synopsis">IsHermitian
(M)</pre><p>Αν είναι ένας ερμιτιανός πίνακας. Δηλαδή, αν είναι ίσος με τον ανάστροφο συζυγή.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hermitian_matrix"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HermitianMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsInSubspace"></a>IsInSubspace</span></dt><dd><pre class="synopsis">IsInSubspace
(v,W)</pre><p>Ελέγχει αν ένα διάνυσμα είναι σε έναν υπόχωρο.</p></dd><dt><span class="term"><a
name="gel-function-IsInvertible"></a>IsInvertible</span></dt><dd><pre class="synopsis">IsInvertible
(n)</pre><p>Αν είναι ένας πίνακας (ή αριθμός) αντιστρέψιμος (ένας ακέραιος πίνακας είναι αντιστρέψιμος αν και
μόνο αν είναι αντιστρέψιμος στους ακέραιους).</p></dd><dt><span class="term"><a
name="gel-function-IsInvertibleField"></a>IsInvertibleField</span></dt><dd><pre
class="synopsis">IsInvertibleField (n)</pre><p>Αν είναι ένας πίνακας (ή αριθμός) αντιστρέψιμος σε ένα
πεδίο.</p></dd><dt><span class="term"><a name="gel-function-IsNormal"><
/a>IsNormal</span></dt><dd><pre class="synopsis">IsNormal (M)</pre><p>Αν είναι ο <code
class="varname">M</code> ένας κανονικός πίνακας. Δηλαδή, κάνει <strong class="userinput"><code>M*M' ==
M'*M</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/NormalMatrix" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/NormalMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsPositiveDefinite"></a>IsPositiveDefinite</span></dt><dd><pre
class="synopsis">IsPositiveDefinite (M)</pre><p>Αν είναι το <code class="varname">M</code> ένας ερμιτιανός
θετικά ορισμένος πίνακας. Δηλαδή, αν το <strong
class="userinput"><code>HermitianProduct(M*v,v)</code></strong> είναι πάντα αυστηρά θετικό για κάθε διάνυσμα
<code class="varname">v</code>. Ο <code class="varname">M</code> πρέπει να είναι τετραγωνικός και ερμιτιανός
για να είναι θετικά ορισμένος. Ο έλεγχος που εκτελείται είναι ότι κάθε βασικός υποπίνακας έχει μία μη
αρνητική ορίζουσα. (Δείτε <a class="link"
href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a>)</p><p>Σημειώστε ότι κά
ποιοι συγγραφείς (για παράδειγμα Mathworld) δεν απαιτούν ο <code class="varname">M</code> να είναι
ερμιτιανός και τότε η συνθήκη είναι στο πραγματικό μέρος του εσωτερικού γινομένου, αλλά δεν παίρνουμε αυτήν
την πλευρά. Αν θέλετε να εκτελέσετε αυτόν τον έλεγχο, ελέγξτε απλά το ερμητιανό μέρος του πίνακα <code
class="varname">M</code> ως εξής: <strong
class="userinput"><code>IsPositiveDefinite(M+M')</code></strong>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Positive-definite_matrix"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/PositiveDefinite" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/PositiveDefiniteMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsPositiveSemidefinite"></a>IsPositiveSemidefinite</span></dt><dd><pre
class="synopsis">IsPositiveSemidefinite (M)</pre><p>Αν είναι ο <code class="varname">M</code> ένας ερμιτιανός
θετικά ημιορισμένος πίνακας. Δηλαδή, αν το <strong
class="userinput"><code>HermitianProduct(M*v,v)</code></strong> είναι πάντα μη αρνητικό για κάθε διάνυσμα
<code class="varname">v</code>. Το <code class="varname">M</code> πρέπει να είναι τετραγωνικός και ερμιτιανός
για να είναι θετικά ημιορισμένος. Ο έλεγχος που εκτελείται είναι ότι κάθε βασικός υποπίνακας έχει μια μη
αρνητική ορίζουσα. (Δείτε <a class="link"
href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a>)</p><p>Σημειώ
στε ότι κάποιοι συγγραφείς δεν απαιτούν ο <code class="varname">M</code> να είναι ερμιτιανός και τότε η
συνθήκη είναι στο πραγματικό μέρος του εσωτερικού γινομένου, αλλά δεν παίρνουμε αυτήν την πλευρά. Αν θέλετε
να εκτελέσετε αυτόν τον έλεγχο, ελέγξτε απλά το ερμιτιανό μέρος του πίνακα <code class="varname">M</code> ως
εξής: <strong class="userinput"><code>IsPositiveSemidefinite(M+M')</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PositiveSemidefinite" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PositiveSemidefiniteMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsSkewHermitian"></a>IsSkewHermitian</span></dt><dd><pre class="synopsis">IsSkewHermitian
(M)</pre><p>Αν είναι ο πίνακας λοξός ερμιτιανός. Δηάδή, αν είναι ο συζυγής ανάστροφος ίσος με τον αρνητικό
του πίνακα.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SkewHermitianMatrix" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-IsUnitary"></a>IsUnitary</span></dt><dd><pre
class="synopsis">IsUnitary (M)</pre><p>Είναι ένας πίνακας μοναδιαίος; Δηλαδή, αν είναι οι <strong
class="userinput"><code>M'*M</code></strong> and <strong class="userinput"><code>M*M'</code></strong> ίσοι
στην ταυτότητα.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/UnitaryTransformation" target="_top">Planetmath</a>
or
+ <a class="ulink" href="http://mathworld.wolfram.com/UnitaryMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-JordanBlock"></a>JordanBlock</span></dt><dd><pre class="synopsis">JordanBlock
(n,lambda)</pre><p>Παραλλαγές: <code class="function">J</code></p><p>Δίνει το μπλοκ Jordan που αντιστοιχεί
στην ιδιοτιμή <code class="varname">lambda</code> με πολλαπλότητα <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/JordanCanonicalFormTheorem"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/JordanBlock.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Kernel"></a>Kernel</span></dt><dd><pre
class="synopsis">Kernel (T)</pre><p>Δίνει τον πυρήνα (διάστημα κενού) ενός γραμμικού
μετασχηματισμού.</p><p>(Δείτε <a class="link"
href="ch11s09.html#gel-function-NullSpace">NullSpace</a>)</p></dd><dt><span class="term"><a
name="gel-function-KroneckerProduct"></a>KroneckerProduct</span></dt><dd><pre
class="synopsis">KroneckerProduct (M, N)</pre><p>Παραλλαγές: <code
class="function">TensorProduct</code></p><p>Υπολογίζει το γινόμενο Κρόνεκερ (γινόμενο τανυστή σε τυπική βάση)
δύο πινάκων.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Kronecker_product"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/KroneckerProduct" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/KroneckerProduct.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LUDecomposition"></a>LUDecomposition</span></dt><dd><pre class="synopsis">LUDecomposition
(A, L, U)</pre><p>
+ Get the LU decomposition of <code class="varname">A</code>, that is
+ find a lower triangular matrix and upper triangular
+ matrix whose product is <code class="varname">A</code>.
+ Store the result in the <code class="varname">L</code> and
+ <code class="varname">U</code>, which should be references. It returns <code
class="constant">true</code>
+ if successful.
+ For example suppose that A is a square matrix, then after running:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LUDecomposition(A,&L,&U)</code></strong>
+</pre><p>
+ You will have the lower matrix stored in a variable called
+ <code class="varname">L</code> and the upper matrix in a variable called
+ <code class="varname">U</code>.
+ </p><p>Αυτή είναι η ανάλυση LU ενός πίνακα γνωστό και ως Crout και/ή αναγωγή Σολεσκί. (ISBN
0-201-11577-8 pp.99-103) Ο άνω τριγωνικός πίνακας χαρακτηρίζει μια διαγώνιο τιμών 1 (ένα). Αυτή δεν είναι η
μέθοδος του Doolittle που χαρακτηρίζει τη διαγώνιο του 1 στον κάτω πίνακα.</p><p>Δεν έχουν όλοι οι πίνακες
αναλύσεις LU, για παράδειγμα το <strong class="userinput"><code>[0,1;1,0]</code></strong> δεν έχει και αυτή η
συνάρτηση επιστρέφει <code class="constant">false</code> σε αυτήν την περίπτωση και ορίζει <code
class="varname">L</code> και<code class="varname">U</code> σε <code class="constant">null</code>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/LU_decomposition" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LUDecomposition" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/LUDecomposition.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Minor"></a>Minor</span></dt><dd><pre
class="synopsis">Minor (M,i,j)</pre><p>Δίνει τον ελάσσονα <code class="varname">i</code>-<code
class="varname">j</code> ενός πίνακα.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Minor" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-NonPivotColumns"></a>NonPivotColumns</span></dt><dd><pre class="synopsis">NonPivotColumns
(M)</pre><p>Επιστρέφει τις στήλες που δεν είναι οδηγούσες στήλες ενός πίνακα.</p></dd><dt><span
class="term"><a name="gel-function-Norm"></a>Norm</span></dt><dd><pre class="synopsis">Norm
(v,p...)</pre><p>Παραλλαγές: <code class="function">norm</code></p><p>Δίνει τη νόρμα p (ή νόρμα 2 αν κανένα p
δεν δίνεται) ενός διανύσματος.</p></dd><dt><span class="term"><a
name="gel-function-NullSpace"></a>NullSpace</span></dt><dd><pre class="synopsis">NullSpace (T)</pre><p>Δίνει
τον μηδενικό χώρο ενός πίνακα. Δηλαδή, τον πυρήνα της γραμμικής απεικόνισης που απεικονίζει ο πίνακας. Αυτός
επιστρέφεται ως ένας πίνακ�
�ς του οποίου ο χώρος στηλών είναι ο μηδενικός χώρος του <code class="varname">T</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Nullspace" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-Nullity"></a>Nullity</span></dt><dd><pre
class="synopsis">Nullity (M)</pre><p>Παραλλαγές: <code class="function">nullity</code></p><p>Δίνει την
μηδενικότητα ενός πίνακα. Δηλαδή, επιστρέφει τη διάσταση του μηδενικού χώρου· η διάσταση του πυρήνα του <code
class="varname">M</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Nullity" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-OrthogonalComplement"></a>OrthogonalComplement</span></dt><dd><pre
class="synopsis">OrthogonalComplement (M)</pre><p>Δίνει του ορθογωνίου συμπληρώματος του χώρου
στήλης.</p></dd><dt><span class="term"><a
name="gel-function-PivotColumns"></a>PivotColumns</span></dt><dd><pre class="synopsis">PivotColumns
(M)</pre><p>Επιστρέφει τις οδηγούσες στήλες ενός πίνακα, δηλαδή τις στήλες που έχουν ένα αρχικό 1 σε ανηγμένη
μορφή κατά γραμμές. Επίσης επιστρέφει τη γραμμή που αυτό συμβαίνει.</p></dd><dt><span class="term"><a
name="gel-function-Projection"></a>Projection</span></dt><dd><pre class="synopsis">Projection
(v,W,B...)</pre><p>Προβολή του διανύσματος <code class="varname">v</code> στον υπόχωρο <code class="va
rname">W</code> ως προς το δοσμένο εσωτερικό γινόμενο από το <code class="varname">B</code>. Αν το <code
class="varname">B</code> δεν δίνεται, τότε το τυπικό ερμιτιανό γινόμενο χρησιμοποιείται. Το <code
class="varname">B</code> μπορεί ή να είναι γραμμικο-ημιγραμμική συνάρτηση των δύο ορισμάτων ή μπορεί να είναι
ένας πίνακας που δίνει μια γραμμικο-ημιγραμμική μορφή.</p></dd><dt><span class="term"><a
name="gel-function-QRDecomposition"></a>QRDecomposition</span></dt><dd><pre class="synopsis">QRDecomposition
(A, Q)</pre><p>Δίνει την ανάλυση QR ενός τετραγωνικού πίνακα <code class="varname">A</code>, επιστρέφει τον
άνω τριγωνικό πίνακα <code class="varname">R</code> και ορίζει το <code class
="varname">Q</code> στον ορθογώνιο (μοναδιαίο) πίνακα. Το <code class="varname">Q</code> πρέπει να είναι μια
αναφορά ή <code class="constant">null</code>, αν δεν θέλετε καμιά επιστροφή. Για παράδειγμα: </p><pre
class="screen"><code class="prompt">genius></code> <strong class="userinput"><code>R =
QRDecomposition(A,&Q)</code></strong>
+</pre><p> Θα έχετε τον άνω τριγωνικό πίνακα αποθηκευμένο σε μια μεταβλητή που λέγεται <code
class="varname">R</code> και τον ορθογώνιο (μοναδιαίο) πίνακα αποθηκευμένο στο <code
class="varname">Q</code>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/QR_decomposition" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/QRDecomposition" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/QRDecomposition.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RayleighQuotient"></a>RayleighQuotient</span></dt><dd><pre
class="synopsis">RayleighQuotient (A,x)</pre><p>Επιστρέφει το πηλίκο Ρέιλι (λέγεται επίσης πηλίκο ή λόγος
Ρέιλι-Ρίτζ) ενός πίνακα και ενός διανύσματος.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RayleighQuotient" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RayleighQuotientIteration"></a>RayleighQuotientIteration</span></dt><dd><pre
class="synopsis">RayleighQuotientIteration (A,x,epsilon,maxiter,vecref)</pre><p>Βρίσκει τις ιδιοτιμές του
<code class="varname">A</code> χρησιμοποιώντας τη μέθοδο επανάληψης πηλίκου Ρέιλι. Το <code
class="varname">x</code> είναι μια πρόβλεψη στο ιδιοδιάνυσμα και μπορεί να είναι τυχαία. Πρέπει να έχει μη
μηδενικό φανταστικό μέρος, αν θα έχει κάποια πιθανότητα στην εύρεση μιγαδικών ιδιοτιμών. Ο κώδικας θα
εκτελεστεί στις περισσότερες επαναλήψεις <code class="varname">maxiter</code> και θα επιστρέψει <code
class="constant">null</code> αν δε μπορούμε να πά�
�ουμε ένα σφάλμα του <code class="varname">epsilon</code>. Το <code class="varname">vecref</code> πρέπει να
είναι <code class="constant">null</code> ή μια αναφορά σε μεταβλητή όπου το ιδιοδιάνυσμα πρέπει να
αποθηκευτεί.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RayleighQuotient" target="_top">Planetmath</a> for
more information on Rayleigh quotient.
+ </p></dd><dt><span class="term"><a name="gel-function-Rank"></a>Rank</span></dt><dd><pre
class="synopsis">Rank (M)</pre><p>Παραλλαγές: <code class="function">rank</code></p><p>Δίνει την τάξη ενός
πίνακα.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SylvestersLaw" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RosserMatrix"></a>RosserMatrix</span></dt><dd><pre class="synopsis">RosserMatrix
()</pre><p>Επιστρέφει τον πίνακα Ρόσερ, που είναι ένα κλασικό συμμετρικό πρόβλημα δοκιμής
ιδιοτιμής.</p></dd><dt><span class="term"><a
name="gel-function-Rotation2D"></a>Rotation2D</span></dt><dd><pre class="synopsis">Rotation2D
(angle)</pre><p>Aliases: <code class="function">RotationMatrix</code></p><p>Επιστρέφει τον πίνακα που
αντιστοιχεί στην περιστροφή γύρω από το αρχικό στο R<sup>2</sup>.</p></dd><dt><span class="term"><a
name="gel-function-Rotation3DX"></a>Rotation3DX</span></dt><dd><pre class="synopsis">Rotation3DX
(angle)</pre><p>Επιστρέφει τον πίνακα που αντιστοιχεί στην περιστροφή γύρω από τον αρχικό στο R<sup>3</sup> �
�ύρω από τον άξονα x.</p></dd><dt><span class="term"><a
name="gel-function-Rotation3DY"></a>Rotation3DY</span></dt><dd><pre class="synopsis">Rotation3DY
(angle)</pre><p>Επιστρέφει τον πίνακα που αντιστοιχεί στην περιστροφή γύρω από τον αρχικό στο R<sup>3</sup>
γύρω από τον άξονα y.</p></dd><dt><span class="term"><a
name="gel-function-Rotation3DZ"></a>Rotation3DZ</span></dt><dd><pre class="synopsis">Rotation3DZ
(angle)</pre><p>Επιστρέφει τον πίνακα που αντιστοιχεί στην περιστροφή γύρω από τον αρχικό στο R<sup>3</sup>
γύρω από τον άξονα z.</p></dd><dt><span class="term"><a
name="gel-function-RowSpace"></a>RowSpace</span></dt><dd><pre class="synopsis">RowSpace (M)</pre><p>Δίνει
έναν πίνακα βάσης για χώρο γραμμών ενός πίνακα.</p></dd><dt><span class="term"><a nam
e="gel-function-SesquilinearForm"></a>SesquilinearForm</span></dt><dd><pre class="synopsis">SesquilinearForm
(v,A,w)</pre><p>Υπολογίζει το (v,w) ως προς τη γραμμικο-ημιγραμμική μορφή που δίνεται από τον πίνακα
Α.</p></dd><dt><span class="term"><a
name="gel-function-SesquilinearFormFunction"></a>SesquilinearFormFunction</span></dt><dd><pre
class="synopsis">SesquilinearFormFunction (A)</pre><p>Επιστρέφει μια συνάρτηση που υπολογίζει δύο διανύσματα
ως προς τη γραμμικο-ημιγραμμική μορφή που δίνεται από το Α.</p></dd><dt><span class="term"><a
name="gel-function-SmithNormalFormField"></a>SmithNormalFormField</span></dt><dd><pre
class="synopsis">SmithNormalFormField (A)</pre><p>Επιστρέφει την κανονική μορφή Σμιθ ενός πίνακα για πεδία
(θα τελειώνει με 1 στη δ
ιαγώνιο).</p><p>Δείτε <a class="ulink" href="http://en.wikipedia.org/wiki/Smith_normal_form"
target="_top">Wikipedia</a> για περισσότερες πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-SmithNormalFormInteger"></a>SmithNormalFormInteger</span></dt><dd><pre
class="synopsis">SmithNormalFormInteger (M)</pre><p>Return the Smith normal form for square integer matrices
over integers.</p><p>Δείτε <a class="ulink" href="http://en.wikipedia.org/wiki/Smith_normal_form"
target="_top">Wikipedia</a> για περισσότερες πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-SolveLinearSystem"></a>SolveLinearSystem</span></dt><dd><pre
class="synopsis">SolveLinearSystem (M,V,args...)</pre><p>Επιλύει το γραμμικό σύστημα Mx=V, επιστρέφει τη λύση
V αν υπάρχει μια μοναδική λύση, αλλιώς <code class="constant">null</code>. Δύο πρ
όσθετες παράμετροι αναφοράς μπορούν να χρησιμοποιηθούν προαιρετικά για να δώσουν τα ανηγμένα M και
V.</p></dd><dt><span class="term"><a
name="gel-function-ToeplitzMatrix"></a>ToeplitzMatrix</span></dt><dd><pre class="synopsis">ToeplitzMatrix (c,
r...)</pre><p>Επιστρέφει τον πίνακα Toeplitz που κατασκευάστηκε με δεδομένη την πρώτη στήλη c και
(προαιρετικά) την πρώτη γραμμή r. Αν δίνεται μόνο η στήλη c, τότε είναι συζυγής και η μη συζυγής έκδοση
χρησιμοποιείται για να δώσει η πρώτη γραμμή τον ερμιτιανό πίνακα (αν το πρώτο στοιχείο είναι πραγματικός
φυσικά).</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Toeplitz_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/ToeplitzMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Trace"></a>Trace</span></dt><dd><pre
class="synopsis">Trace (M)</pre><p>Παραλλαγές: <code class="function">trace</code></p><p>Υπολογίζει το ίχνος
ενός πίνακα. Δηλαδή, το άθροισμα των διαγώνιων στοιχείων.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trace_(linear_algebra)"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Trace" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-Transpose"></a>Transpose</span></dt><dd><pre
class="synopsis">Transpose (M)</pre><p>Ανάστροφος ενός πίνακα. Αυτός είναι ο ίδιος με τον τελεστή <strong
class="userinput"><code>.'</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Transpose" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Transpose" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-VandermondeMatrix"></a>VandermondeMatrix</span></dt><dd><pre
class="synopsis">VandermondeMatrix (v)</pre><p>Παραλλαγές: <code
class="function">vander</code></p><p>Επιστρέφει τον πίνακα Vandermonde.</p><p>Δείτε <a class="ulink"
href="http://en.wikipedia.org/wiki/Vandermonde_matrix" target="_top">Wikipedia</a> για περισσότερες
πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-VectorAngle"></a>VectorAngle</span></dt><dd><pre class="synopsis">VectorAngle
(v,w,B...)</pre><p>Η γωνία των δύο διανυσμάτων ως προς το εσωτερικό γινόμενο που δίνει ο <code
class="varname">B</code>. Αν ο <code class="varname">B</code> δεν δίνεται, τότε το τυπικό ερμιτιανό γινόμενο
χρησιμοποιείται. Ο <code class="varname">B</code> μπορεί είτε ν�
� είναι γραμμικο-ημιγραμμική συνάρτηση δύο ορισμάτων ή μπορεί να είναι ένας πίνακας που δίνει μια
γραμμικο-ημιγραμμική μορφή.</p></dd><dt><span class="term"><a
name="gel-function-VectorSpaceDirectSum"></a>VectorSpaceDirectSum</span></dt><dd><pre
class="synopsis">VectorSpaceDirectSum (M,N)</pre><p>Το ευθύ άθροισμα των διαστημάτων διανύσματος Μ και
Ν.</p></dd><dt><span class="term"><a
name="gel-function-VectorSubspaceIntersection"></a>VectorSubspaceIntersection</span></dt><dd><pre
class="synopsis">VectorSubspaceIntersection (M,N)</pre><p>Τομή των υποχώρων που δίνονται από Μ και
Ν.</p></dd><dt><span class="term"><a
name="gel-function-VectorSubspaceSum"></a>VectorSubspaceSum</span></dt><dd><pre
class="synopsis">VectorSubspaceSum (M,N)</pre><p>Το άθροισμα των διανυσματικών �
�ώρων M και N, δηλαδή {w | w=m+n, m στο M, n στο N}.</p></dd><dt><span class="term"><a
name="gel-function-adj"></a>adj</span></dt><dd><pre class="synopsis">adj (m)</pre><p>Παραλλαγές: <code
class="function">Adjugate</code></p><p>Δίνει τον κλασικό συζυγή ενός πίνακα.</p></dd><dt><span
class="term"><a name="gel-function-cref"></a>cref</span></dt><dd><pre class="synopsis">cref
(M)</pre><p>Παραλλαγές: <code class="function">CREF</code><code
class="function">ColumnReducedEchelonForm</code></p><p>Υπολογίζει την ανηγμένη κλιμακωτή μορφή κατά
στήλες.</p></dd><dt><span class="term"><a name="gel-function-det"></a>det</span></dt><dd><pre
class="synopsis">det (M)</pre><p>Παραλλαγές: <code class="function">Determinant</code></p><p>Δίνει την
ορίζουσα ενός πίνακα.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Determinant" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Determinant2" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-ref"></a>ref</span></dt><dd><pre
class="synopsis">ref (M)</pre><p>Παραλλαγές: <code class="function">REF</code><code
class="function">RowEchelonForm</code></p><p>Δίνει την μορφή κλιμακωτής γραμμής ενός πίνακα. Δηλαδή,
εφαρμόζει την απαλοιφή Γκάους, αλλά όχι την πίσω πρόσθεση στο <code class="varname">M</code>. Οι οδηγούσες
γραμμές διαιρούνται για να κάνουν όλους τους οδηγούς 1.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Row_echelon_form" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/RowEchelonForm" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-rref"></a>rref</span></dt><dd><pre
class="synopsis">rref (M)</pre><p>Παραλλαγές: <code class="function">RREF</code><code
class="function">ReducedRowEchelonForm</code></p><p>Δίνει τη ανηγμένη κλιμακωτή μορφή κατά γραμμές ενός
πίνακα. Δηλαδή, εφαρμόζει την απαλοιφή Γκάους μαζί με την πίσω πρόσθεση στο <code
class="varname">M</code>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Reduced_row_echelon_form"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/ReducedRowEchelonForm" target="_top">Planetmath</a>
for more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s08.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s10.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Διαχείριση πινάκων
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%"
align="right" valign="top"> Συνδυαστική Ανάλυση</td></tr></table></div></body></html>
diff --git a/help/el/html/ch11s10.html b/help/el/html/ch11s10.html
new file mode 100644
index 0000000..8b92d08
--- /dev/null
+++ b/help/el/html/ch11s10.html
@@ -0,0 +1,58 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Συνδυαστική
Ανάλυση</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch11.html" title="Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL"><link rel="prev" href="ch11s09.html" title="Γραμμική Άλγεβρα"><link rel="next"
href="ch11s11.html" title="Μαθηματική Ανάλυση"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Συνδυαστική Ανάλυση</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s09.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL</th><td widt
h="20%" align="right"> <a accesskey="n" href="ch11s11.html">Επόμενο</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-combinatorics"></a>Συνδυαστική Ανάλυση</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Catalan"></a>Catalan</span></dt><dd><pre class="synopsis">Catalan (n)</pre><p>Δίνει τον
<code class="varname">n</code>στό αριθμό Catalan.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/CatalanNumbers" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Combinations"></a>Combinations</span></dt><dd><pre class="synopsis">Combinations
(k,n)</pre><p>Δίνει όλους τους συνδυασμούς των k αριθμών από 1 μέχρι n ως ένα διάνυσμα διανυσμάτων. (Δείτε
επίσης <a class="link"
href="ch11s10.html#gel-function-NextCombination">NextCombination</a>)</p></dd><dt><span class="term"><a
name="gel-function-DoubleFactorial"></a>DoubleFactorial</span></dt><dd><pre class="synopsis">DoubleFactorial
(n)</pre><p>Διπλό παραγοντικό: <strong class="userinput"><code>n(n-2)(n-4)...</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/DoubleFactorial" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Factorial"></a>Factorial</span></dt><dd><pre
class="synopsis">Factorial (n)</pre><p>Παραγοντικό: <strong
class="userinput"><code>n(n-1)(n-2)...</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Factorial" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FallingFactorial"></a>FallingFactorial</span></dt><dd><pre
class="synopsis">FallingFactorial (n,k)</pre><p>Μειούμενο παραγοντικό: <strong class="userinput"><code>(n)_k
= n(n-1)...(n-(k-1))</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/FallingFactorial" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Fibonacci"></a>Fibonacci</span></dt><dd><pre
class="synopsis">Fibonacci (x)</pre><p>Παραλλαγές: <code class="function">fib</code></p><p>Υπολογίζει τον
<code class="varname">n</code>στό αριθμό Φιμπονάτσι. Δηλαδή, τον αριθμό που ορίζεται αναδρομικά από <strong
class="userinput"><code>Fibonacci(n) = Fibonacci(n-1) + Fibonacci(n-2)</code></strong> και <strong
class="userinput"><code>Fibonacci(1) = Fibonacci(2) = 1</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fibonacci_number" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/FibonacciSequence" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FibonacciNumber.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FrobeniusNumber"></a>FrobeniusNumber</span></dt><dd><pre class="synopsis">FrobeniusNumber
(v,arg...)</pre><p>Υπολογίζει τον αριθμό Φρομπένιους. Δηλαδή, υπολογίζει τον ελάχιστο αριθμό που δεν μπορεί
να δοθεί ως μη αρνητικός ακέραιος γραμμικός συνδυασμός του δοσμένου διανύσματος μη αρνητικών ακεραίων. Το
διάνυσμα μπορεί να δοθεί ως διακριτοί αριθμοί ενός μοναδικού διανύσματος. Όλοι οι δεδομένοι αριθμοί πρέπει να
έχουν ΜΚΔ 1.</p><p>Δείτε <a class="ulink" href="http://mathworld.wolfram.com/FrobeniusNumber.html"
target="_top">Mathworld</a> για περισσότερες πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-GaloisMatri
x"></a>GaloisMatrix</span></dt><dd><pre class="synopsis">GaloisMatrix (combining_rule)</pre><p>Galois matrix
given a linear combining rule (a_1*x_1+...+a_n*x_n=x_(n+1)).</p></dd><dt><span class="term"><a
name="gel-function-GreedyAlgorithm"></a>GreedyAlgorithm</span></dt><dd><pre class="synopsis">GreedyAlgorithm
(n,v)</pre><p>Βρίσκει το διάνυσμα <code class="varname">c</code> μη αρνητικών ακεραίων έτσι ώστε να παίρνει
το εσωτερικό γινόμενο με το <code class="varname">v</code> να είναι ίσο με n. Αν δεν είναι δυνατό, επιστρέφει
<code class="constant">null</code>. Το <code class="varname">v</code> πρέπει να δίνεται ταξινομημένο με
αύξουσα διάταξη και πρέπει να αποτελείται από μη αρνητικούς ακέραιους.</p><p>Δείτε <a class="ulink"
href="http://mathworld.wolfram.com/GreedyAlg
orithm.html" target="_top">Mathworld</a> για περισσότερες πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-HarmonicNumber"></a>HarmonicNumber</span></dt><dd><pre class="synopsis">HarmonicNumber
(n,r)</pre><p>Παραλλαγές: <code class="function">HarmonicH</code></p><p>Αρμονικός αριθμός, ο <code
class="varname">n</code>στός αρμονικός αριθμός της τάξης <code class="varname">r</code>.</p></dd><dt><span
class="term"><a name="gel-function-Hofstadter"></a>Hofstadter</span></dt><dd><pre class="synopsis">Hofstadter
(n)</pre><p>Η συνάρτηση Χόφσταντερ q(n) ορίζεται από q(1)=1, q(2)=1,
q(n)=q(n-q(n-1))+q(n-q(n-2)).</p></dd><dt><span class="term"><a
name="gel-function-LinearRecursiveSequence"></a>LinearRecursiveSequence</span></dt><dd><pre
class="synopsis">LinearRecursiveSequence (seed_values,combining_rule,n)</pre><p>Υπολογίζει τη γραμμική κ
υκλική ακολουθία χρησιμοποιώντας το βηματισμό Γκαλουά.</p></dd><dt><span class="term"><a
name="gel-function-Multinomial"></a>Multinomial</span></dt><dd><pre class="synopsis">Multinomial
(v,arg...)</pre><p>Υπολογίζει τους πολυωνυμικούς συντελεστές. Παίρνει ένα διάνυσμα από <code
class="varname">k</code> μη αρνητικούς ακέραιους και υπολογίζει τον πολυωνυμικό συντελεστή. Αυτός αντιστοιχεί
με τον συντελεστή στο ομογενές πολυώνυμο σε <code class="varname">k</code> μεταβλητές με τις αντίστοιχες
δυνάμεις.</p><p>Ο τύπος για <strong class="userinput"><code>Multinomial(a,b,c)</code></strong> μπορεί να
γραφτεί ως: </p><pre class="programlisting">(a+b+c)! / (a!b!c!)
+</pre><p> Με άλλα λόγια, αν μπορούμε να έχουμε δύο μόνο στοιχεία, τότε το <strong
class="userinput"><code>Multinomial(a,b)</code></strong> είναι το ίδιο με το <strong
class="userinput"><code>Binomial(a+b,a)</code></strong> ή <strong
class="userinput"><code>Binomial(a+b,b)</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Multinomial_theorem"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MultinomialTheorem" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/MultinomialCoefficient.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-NextCombination"></a>NextCombination</span></dt><dd><pre class="synopsis">NextCombination
(v,n)</pre><p>Δίνει τον συνδυασμό που μπορεί να έρθει μετά το v στην κλήση στους συνδυασμούς της συνάρτησης,
ο πρώτος συνδυασμός πρέπει να είναι <strong class="userinput"><code>[1:k]</code></strong>. Αυτή η συνάρτηση
είναι χρήσιμη, αν έχετε πολλούς συνδυασμούς να περάσετε και δεν θέλετε να σπαταλήσετε μνήμη για να τους
αποθηκεύσετε όλους.</p><p>
+ For example with Combinations you would normally write a loop like:
+ </p><pre class="screen"><strong class="userinput"><code>for n in Combinations (4,6) do (
+ SomeFunction (n)
+);</code></strong>
+</pre><p>
+ But with NextCombination you would write something like:
+ </p><pre class="screen"><strong class="userinput"><code>n:=[1:4];
+do (
+ SomeFunction (n)
+) while not IsNull(n:=NextCombination(n,6));</code></strong>
+</pre><p>
+ See also <a class="link" href="ch11s10.html#gel-function-Combinations">Combinations</a>.
+ </p></dd><dt><span class="term"><a name="gel-function-Pascal"></a>Pascal</span></dt><dd><pre
class="synopsis">Pascal (i)</pre><p>Δίνει το τρίγωνο του Πασκάλ ως πίνακα. Αυτό θα επιστρέψει έναν <code
class="varname">i</code>+1 επί <code class="varname">i</code>+1 κάτω διαγώνιο πίνακα που είναι το τρίγωνο
Πασκάλ μετά από <code class="varname">i</code> επαναλήψεις.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PascalsTriangle" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Permutations"></a>Permutations</span></dt><dd><pre class="synopsis">Permutations
(k,n)</pre><p>Δίνει όλες τις μεταθέσεις των <code class="varname">k</code> αριθμών από 1 μέχρι <code
class="varname">n</code> ως ένα διάνυσμα διανυσμάτων.</p><p>Δείτε <a class="ulink"
href="http://mathworld.wolfram.com/Permutation.html" target="_top">Mathworld</a> ή <a class="ulink"
href="http://en.wikipedia.org/wiki/Permutation" target="_top">Wikipedia</a> για περισσότερες
πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-RisingFactorial"></a>RisingFactorial</span></dt><dd><pre class="synopsis">RisingFactorial
(n,k)</pre><p>Παραλλαγές: <code class="function">Pochhammer</code></p><p>(Pochhammer) Rising factorial: (n)_k
= n(n+1)...(n+(k-1)).</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RisingFactorial" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-StirlingNumberFirst"></a>StirlingNumberFirst</span></dt><dd><pre
class="synopsis">StirlingNumberFirst (n,m)</pre><p>Παραλλαγές: <code
class="function">StirlingS1</code></p><p>Ο αριθμός Στέρλινγκ πρώτου είδους.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/StirlingNumbersOfTheFirstKind"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-StirlingNumberSecond"></a>StirlingNumberSecond</span></dt><dd><pre
class="synopsis">StirlingNumberSecond (n,m)</pre><p>Παραλλαγές: <code
class="function">StirlingS2</code></p><p>Ο αριθμός Στέρλινγκ δεύτερου είδους.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/StirlingNumbersSecondKind"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Subfactorial"></a>Subfactorial</span></dt><dd><pre class="synopsis">Subfactorial
(n)</pre><p>Subfactorial: n! times sum_{k=0}^n (-1)^k/k!.</p></dd><dt><span class="term"><a
name="gel-function-Triangular"></a>Triangular</span></dt><dd><pre class="synopsis">Triangular
(nth)</pre><p>Υπολογίζει τον <code class="varname">n</code>στό τριγωνικό αριθμό.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/TriangularNumbers" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-nCr"></a>nCr</span></dt><dd><pre
class="synopsis">nCr (n,r)</pre><p>Παραλλαγές: <code class="function">Binomial</code></p><p>Υπολογίζει
συνδυασμούς, δηλαδή, τον συντελεστή διωνύμου. Το <code class="varname">n</code> μπορεί να είναι οποιοσδήποτε
πραγματικός αριθμός.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Choose" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-nPr"></a>nPr</span></dt><dd><pre
class="synopsis">nPr (n,r)</pre><p>Calculate the number of permutations of size
+ <code class="varname">r</code> of numbers from 1 to <code class="varname">n</code>.</p><p>Δείτε <a
class="ulink" href="http://mathworld.wolfram.com/Permutation.html" target="_top">Mathworld</a> ή <a
class="ulink" href="http://en.wikipedia.org/wiki/Permutation" target="_top">Wikipedia</a> για περισσότερες
πληροφορίες.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s09.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s11.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Γραμμική Άλγεβρα
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%"
align="right" valign="top"> Μαθηματική Ανάλυση</td></tr></table
</div></body></html>
diff --git a/help/el/html/ch11s11.html b/help/el/html/ch11s11.html
new file mode 100644
index 0000000..78db037
--- /dev/null
+++ b/help/el/html/ch11s11.html
@@ -0,0 +1,13 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Μαθηματική
Ανάλυση</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch11.html" title="Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL"><link rel="prev" href="ch11s10.html" title="Συνδυαστική Ανάλυση"><link rel="next"
href="ch11s12.html" title="Συναρτήσεις"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Μαθηματική Ανάλυση</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s10.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL</th><td width="20%" ali
gn="right"> <a accesskey="n" href="ch11s12.html">Επόμενο</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-calculus"></a>Μαθηματική Ανάλυση</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-CompositeSimpsonsRule"></a>CompositeSimpsonsRule</span></dt><dd><pre
class="synopsis">CompositeSimpsonsRule (f,a,b,n)</pre><p>Ολοκλήρωση του f από τον σύνθετο κανόνα του Σίμπσον
στο διάστημα [a,b] με n υποδιαστήματα με σφάλμα του max(f'''')*h^4*(b-a)/180, σημειώστε ότι το n πρέπει να
είναι άρτιος.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SimpsonsRule" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CompositeSimpsonsRuleTolerance"></a>CompositeSimpsonsRuleTolerance</span></dt><dd><pre
class="synopsis">CompositeSimpsonsRuleTolerance (f,a,b,FourthDerivativeBound,Tolerance)</pre><p>Ολοκλήρωση
της f από τον σύνθετο κανόνα Σίμπσον του διαστήματος [a,b] με τον αριθμό των υπολογιζόμενων βημάτων από το
τέταρτο φράγμα παραγώγου και την επιθυμητή ανοχή.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SimpsonsRule" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Derivative"></a>Derivative</span></dt><dd><pre class="synopsis">Derivative
(f,x0)</pre><p>Προσπαθεί να υπολογίσει την παράγωγου δοκιμάζοντας πρώτα συμβολικά και έπειτα
αριθμητικά.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EvenPeriodicExtension"></a>EvenPeriodicExtension</span></dt><dd><pre
class="synopsis">EvenPeriodicExtension (f,L)</pre><p>Επιστρέφει μια συνάρτηση που είναι άρτια περιοδική
επέκταση της <code class="function">f</code> με ημιπερίοδο <code class="varname">L</code>. Δηλαδή μια
συνάρτηση που ορίστηκε στο διάστημα <strong class="userinput"><code>[0,L]</code></strong> επεκτάθηκε για να
είναι άρτια στο <strong class="userinput"><code>[-L,L]</code></strong> και έπειτα επεκτάθηκε να είναι
περιοδική με περίοδο <strong class="userinput"><code>2*L</code></strong>.</p><p>Δείτε επίσης <a class="link"
href="ch11s11.html#gel-function-OddPeriodicExtension">OddPeriodicExtension</a> και <a class="link"
href="ch11s11.html#gel-function-Periodi
cExtension">PeriodicExtension</a>.</p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-FourierSeriesFunction"></a>FourierSeriesFunction</span></dt><dd><pre
class="synopsis">FourierSeriesFunction (a,b,L)</pre><p>Επιστρέφει μια συνάρτηση που είναι μια σειρά Φουριέ με
τους συντελεστές δοσμένους από τα διανύσματα <code class="varname">a</code> (ημίτονα) and <code
class="varname">b</code> (συνημίτονα). Σημειώστε ότι, το <strong
class="userinput"><code>a@(1)</code></strong> είναι συντελεστής σταθεράς! Δηλαδή, το <strong
class="userinput"><code>a@(n)</code></strong> αναφέρεται στον όρο <strong
class="userinput"><code>cos(x*(n-1)*pi/L)</code></strong>, ενώ το <strong
class="userinput"><code>b@(n)</code></strong> αναφέρεται στον όρο <strong class="userinput"><code>sin(x*
n*pi/L)</code></strong>. Είτε το <code class="varname">a</code> είτε το <code class="varname">b</code>
μπορεί να είναι <code class="constant">null</code>.</p><p>Δείτε <a class="ulink"
href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> ή <a class="ulink"
href="http://mathworld.wolfram.com/FourierSeries.html" target="_top">Mathworld</a> για περισσότερες
πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-InfiniteProduct"></a>InfiniteProduct</span></dt><dd><pre class="synopsis">InfiniteProduct
(func,start,inc)</pre><p>Προσπαθεί να υπολογίσει ένα άπειρο γινόμενο για μια συνάρτηση απλής
παραμέτρου.</p></dd><dt><span class="term"><a
name="gel-function-InfiniteProduct2"></a>InfiniteProduct2</span></dt><dd><pre
class="synopsis">InfiniteProduct2 (func,arg,start,inc)</pre><p>Προσπαθεί να υπολογίσει �
�να άπειρο γινόμενο για μια συνάρτηση διπλής παραμέτρου με func(arg,n).</p></dd><dt><span class="term"><a
name="gel-function-InfiniteSum"></a>InfiniteSum</span></dt><dd><pre class="synopsis">InfiniteSum
(func,start,inc)</pre><p>Προσπαθεί να υπολογίσει ένα άπειρο άθροισμα για μια συνάρτηση απλής
παραμέτρου.</p></dd><dt><span class="term"><a
name="gel-function-InfiniteSum2"></a>InfiniteSum2</span></dt><dd><pre class="synopsis">InfiniteSum2
(func,arg,start,inc)</pre><p>Προσπαθεί να υπολογίσει ένα άπειρο άθροισμα για μια συνάρτηση διπλής παραμέτρου
με func(arg,n).</p></dd><dt><span class="term"><a
name="gel-function-IsContinuous"></a>IsContinuous</span></dt><dd><pre class="synopsis">IsContinuous
(f,x0)</pre><p>Δοκιμάστε για να δείτε αν μια συνάρτηση πραγμα
τικών τιμών είναι συνεχής στο x0 υπολογίζοντας το όριο εκεί.</p></dd><dt><span class="term"><a
name="gel-function-IsDifferentiable"></a>IsDifferentiable</span></dt><dd><pre
class="synopsis">IsDifferentiable (f,x0)</pre><p>Δοκιμή διαφορισιμότητας προσεγγίζοντας το αριστερό και δεξιό
όριο και συγκρίνοντας.</p></dd><dt><span class="term"><a
name="gel-function-LeftLimit"></a>LeftLimit</span></dt><dd><pre class="synopsis">LeftLimit
(f,x0)</pre><p>Υπολογίζει το αριστερό όριο μιας συνάρτησης πραγματικών στο x0.</p></dd><dt><span
class="term"><a name="gel-function-Limit"></a>Limit</span></dt><dd><pre class="synopsis">Limit
(f,x0)</pre><p>Υπολογίζει το όριο μιας συνάρτησης πραγματικών στο x0. Προσπαθεί να υπολογίσει και το αριστερό
κα�
� το δεξιό όριο.</p></dd><dt><span class="term"><a
name="gel-function-MidpointRule"></a>MidpointRule</span></dt><dd><pre class="synopsis">MidpointRule
(f,a,b,n)</pre><p>Ολοκλήρωση με τον κανόνα μέσου.</p></dd><dt><span class="term"><a
name="gel-function-NumericalDerivative"></a>NumericalDerivative</span></dt><dd><pre
class="synopsis">NumericalDerivative (f,x0)</pre><p>Παραλλαγές: <code
class="function">NDerivative</code></p><p>Προσπάθεια υπολογισμού αριθμητικής παραγώγου.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSeriesCoefficients"></a>NumericalFourierSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierSeriesCoefficients (f,L,N)</pre><p>Επιστρέφει ένα διάνυσμα διανυσμάτων
<strong class="userinput"><code>[a,b]</code></strong> όπου το <code class="varname">a</code> είναι οι
συντελεστές συνημιτόνου και το <code class="varname">b</code> είναι οι συντελεστές ημιτόνου της σειράς Φουριέ
του <code class="function">f</code> με ημιπερίοδο <code class="varname">L</code> (που ορίζεται στο <strong
class="userinput"><code>[-L,L]</code></strong> και επεκτείνεται περιοδικά) με συντελεστές μέχρι τον <code
class="varname">N</code>στό αρμονικό που υπολογίζεται αριθμητικά. Οι συν�
�ελεστές υπολογίζονται με αριθμητική ολοκλήρωση χρησιμοποιώντας το <a class="link"
href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Δείτε <a class="ulink"
href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> ή <a class="ulink"
href="http://mathworld.wolfram.com/FourierSeries.html" target="_top">Mathworld</a> για περισσότερες
πληροφορίες.</p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSeriesFunction"></a>NumericalFourierSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierSeriesFunction (f,L,N)</pre><p>Επιστρέφει μια συνάρτηση που είναι η σειρά
Φουριέ του <code class="function">f</code> με ημιπερίοδο <code class="varname">L</code> (που ορίζεται στο
<strong class="use
rinput"><code>[-L,L]</code></strong> και επεκτείνεται περιοδικά) με συντελεστές μέχρι τον <code
class="varname">N</code>στό αρμονικό που υπολογίζεται αριθμητικά. Αυτή είναι η τριγωνομετρική πραγματική
σειρά που αποτελείται από ημίτονα και συνημίτονα. Οι συντελεστές υπολογίζονται με αριθμητική ολοκλήρωση
χρησιμοποιώντας το <a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Δείτε <a class="ulink"
href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> ή <a class="ulink"
href="http://mathworld.wolfram.com/FourierSeries.html" target="_top">Mathworld</a> για περισσότερες
πληροφορίες.</p><p>Version 1.0.7 onwards.</p></dd><dt><span clas
s="term"><a
name="gel-function-NumericalFourierCosineSeriesCoefficients"></a>NumericalFourierCosineSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierCosineSeriesCoefficients (f,L,N)</pre><p>Επιστρέφει ένα διάνυσμα
συντελεστών της σειράς Φουριέ συνημιτόνου του <code class="function">f</code> με ημιπερίοδο <code
class="varname">L</code>. Δηλαδή, η <code class="function">f</code> ορισμένη στο <strong
class="userinput"><code>[0,L]</code></strong> παίρνει την άρτια περιοδική επέκταση και υπολογίζει τη σειρά
Φουριέ, η οποία έχει μόνο όρους συνημιτόνου. Η σειρά υπολογίζεται μέχρι τον <code class="varname">N</code>στό
αρμονικό. Οι συντελεστές υπολογίζονται με αριθμητική ολοκλήρωση χρησιμοποι�
�ντας την <a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>. Σημειώστε ότι το <strong
class="userinput"><code>a@(1)</code></strong> είναι ο συντελεστής σταθεράς! Δηλαδή, <strong
class="userinput"><code>a@(n)</code></strong> αναφέρεται στον όρο <strong
class="userinput"><code>cos(x*(n-1)*pi/L)</code></strong>.</p><p>Δείτε <a class="ulink"
href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> ή <a class="ulink"
href="http://mathworld.wolfram.com/FourierCosineSeries.html" target="_top">Mathworld</a> Για περισσότερες
πληροφορίες.</p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierCosineSeriesFunction"></a>NumericalFourierCosineSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierCosineSeriesFunction (f,L,N)</pre><p>Επιστ�
�έφει μια συνάρτηση που είναι η σειρά Φουριέ συνημιτόνου του <code class="function">f</code> με ημιπερίοδο
<code class="varname">L</code>. Δηλαδή, παίρνουμε την <code class="function">f</code> ορισμένη στο <strong
class="userinput"><code>[0,L]</code></strong>, παίρνει την άρτια περιοδική επέκταση και υπολογίζει τη σειρά
Φουριέ, η οποία έχει μόνο όρους συνημιτόνου. Η σειρά υπολογίζεται μέχρι τον <code class="varname">N</code>στό
αρμονικό. Οι συντελεστές υπολογίζονται με αριθμητική ολοκλήρωση χρησιμοποιώντας την <a class="link"
href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Δείτε <a class="ulink"
href="http://en.wikipedia.org/wiki/Fo
urier_series" target="_top">Wikipedia</a> ή <a class="ulink"
href="http://mathworld.wolfram.com/FourierCosineSeries.html" target="_top">Mathworld</a> Για περισσότερες
πληροφορίες.</p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSineSeriesCoefficients"></a>NumericalFourierSineSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierSineSeriesCoefficients (f,L,N)</pre><p>Επιστρέφει ένα διάνυσμα συντελεστών
της σειράς Φουριέ ημιτόνου του <code class="function">f</code> με ημιπερίοδο <code class="varname">L</code>.
Δηλαδή, η <code class="function">f</code> ορισμένη στο <strong class="userinput"><code>[0,L]</code></strong>
παίρνει την περιττή περιοδική επέκταση και υπολογίζει τη σειρά Φουριέ, η οποία έχει μόνο όρους ημιτ�
�νου. Η σειρά υπολογίζεται μέχρι τον <code class="varname">N</code>στό αρμονικό. Οι συντελεστές
υπολογίζονται με αριθμητική ολοκλήρωση χρησιμοποιώντας την <a class="link"
href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Δείτε <a class="ulink"
href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> ή <a class="ulink"
href="http://mathworld.wolfram.com/FourierSineSeries.html" target="_top">Mathworld</a> για περισσότερες
πληροφορίες.</p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSineSeriesFunction"></a>NumericalFourierSineSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierSineSeriesFunction (f,L,N)</pre><p>Επιστρέφει μια συνάρτηση που είναι η
σειρά Φουρ
ιέ ημιτόνου του <code class="function">f</code> με ημιπερίοδο <code class="varname">L</code>. Δηλαδή,
παίρνουμε τη <code class="function">f</code> ορισμένη στο <strong
class="userinput"><code>[0,L]</code></strong>, παίρνει την άρτια περιοδική επέκταση και υπολογίζει τη σειρά
Φουριέ, η οποία έχει μόνο όρους ημιτόνου. Η σειρά υπολογίζεται μέχρι τον <code class="varname">N</code>στό
αρμονικό. Οι συντελεστές υπολογίζονται με αριθμητική ολοκλήρωση χρησιμοποιώντας την <a class="link"
href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Δείτε <a class="ulink"
href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> ή <a class="ulink"
href="http://mathworld.wolfr
am.com/FourierSineSeries.html" target="_top">Mathworld</a> για περισσότερες πληροφορίες.</p><p>Version 1.0.7
onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegral"></a>NumericalIntegral</span></dt><dd><pre
class="synopsis">NumericalIntegral (f,a,b)</pre><p>Ολοκλήρωση με τον κανόνα που ορίστηκε στο
NumericalIntegralFunction του f από το a μέχρι το b χρησιμοποιώντας βήματα
NumericalIntegralSteps.</p></dd><dt><span class="term"><a
name="gel-function-NumericalLeftDerivative"></a>NumericalLeftDerivative</span></dt><dd><pre
class="synopsis">NumericalLeftDerivative (f,x0)</pre><p>Προσπαθεί να υπολογίσει την αριθμητική αριστερή
παράγωγο.</p></dd><dt><span class="term"><a
name="gel-function-NumericalLimitAtInfinity"></a>NumericalLimitAtInfinity</span></dt><dd><pre
class="synopsis">NumericalLimitAtInfinity (_f,step
_fun,tolerance,successive_for_success,N)</pre><p>Προσπαθεί να υπολογίσει το όριο του f(step_fun(i)) καθώς το
i πηγαίνει από 1 έως N.</p></dd><dt><span class="term"><a
name="gel-function-NumericalRightDerivative"></a>NumericalRightDerivative</span></dt><dd><pre
class="synopsis">NumericalRightDerivative (f,x0)</pre><p>Προσπαθεί να υπολογίσει την αριθμητική δεξιά
παράγωγο.</p></dd><dt><span class="term"><a
name="gel-function-OddPeriodicExtension"></a>OddPeriodicExtension</span></dt><dd><pre
class="synopsis">OddPeriodicExtension (f,L)</pre><p>Επιστρέφει μια συνάρτηση που είναι περιττή περιοδική
επέκταση της <code class="function">f</code> με ημιπερίοδο <code class="varname">L</code>. Δηλαδή μια
συνάρτηση που ορίστηκε στο διάστημα <strong class="userinput"><code>[0,L]</code></
strong> επεκτάθηκε για να είναι περιττή στο <strong class="userinput"><code>[-L,L]</code></strong> και
έπειτα επεκτάθηκε να είναι περιοδική με περίοδο <strong
class="userinput"><code>2*L</code></strong>.</p><p>Δείτε επίσης <a class="link"
href="ch11s11.html#gel-function-EvenPeriodicExtension">EvenPeriodicExtension</a> και <a class="link"
href="ch11s11.html#gel-function-PeriodicExtension">PeriodicExtension</a>.</p><p>Version 1.0.7
onwards.</p></dd><dt><span class="term"><a
name="gel-function-OneSidedFivePointFormula"></a>OneSidedFivePointFormula</span></dt><dd><pre
class="synopsis">OneSidedFivePointFormula (f,x0,h)</pre><p>Υπολογίζει τη μονόπλευρη παράγωγο χρησιμοποιώντας
τον τύπο πέντε σημείων.</p></dd><dt><span class="term"><a
name="gel-function-OneSidedThreePointFormula"></a>OneSidedThreePointFormula</span></dt><dd><pre cla
ss="synopsis">OneSidedThreePointFormula (f,x0,h)</pre><p>Υπολογίζει τη μονόπλευρη παράγωγο χρησιμοποιώντας
τον τύπο τριών σημείων.</p></dd><dt><span class="term"><a
name="gel-function-PeriodicExtension"></a>PeriodicExtension</span></dt><dd><pre
class="synopsis">PeriodicExtension (f,a,b)</pre><p>Επιστρέφει μια συνάρτηση που είναι η περιοδική επέκταση
της <code class="function">f</code> ορισμένη στο διάστημα <strong
class="userinput"><code>[a,b]</code></strong> και έχει περίοδο <strong
class="userinput"><code>b-a</code></strong>.</p><p>Δείτε επίσης <a class="link"
href="ch11s11.html#gel-function-OddPeriodicExtension">OddPeriodicExtension</a> και <a class="link"
href="ch11s11.html#gel-function-EvenPeriodicExtension">EvenPeriodicExtension</a>.</p><p>Version 1.0.7
onwards.</p></dd><dt><span class="term"><a name="gel-func
tion-RightLimit"></a>RightLimit</span></dt><dd><pre class="synopsis">RightLimit (f,x0)</pre><p>Υπολογίζει το
δεξιό όριο μιας συνάρτησης πραγματικών στο x0.</p></dd><dt><span class="term"><a
name="gel-function-TwoSidedFivePointFormula"></a>TwoSidedFivePointFormula</span></dt><dd><pre
class="synopsis">TwoSidedFivePointFormula (f,x0,h)</pre><p>Υπολογίζει τη δίπλευρη παράγωγο χρησιμοποιώντας
τον τύπο πέντε σημείων.</p></dd><dt><span class="term"><a
name="gel-function-TwoSidedThreePointFormula"></a>TwoSidedThreePointFormula</span></dt><dd><pre
class="synopsis">TwoSidedThreePointFormula (f,x0,h)</pre><p>Υπολογίζει τη δίπλευρη παράγωγο χρησιμοποιώντας
τον τύπο τριών σημείων.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a acc
esskey="p" href="ch11s10.html">Προηγ</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s12.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Συνδυαστική Ανάλυση
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%"
align="right" valign="top"> Συναρτήσεις</td></tr></table></div></body></html>
diff --git a/help/el/html/ch11s12.html b/help/el/html/ch11s12.html
new file mode 100644
index 0000000..820dd71
--- /dev/null
+++ b/help/el/html/ch11s12.html
@@ -0,0 +1,31 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Συναρτήσεις</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch11.html"
title="Κεφάλαιο 11. Κατάλογος συναρτήσεων της GEL"><link rel="prev" href="ch11s11.html" title="Μαθηματική
Ανάλυση"><link rel="next" href="ch11s13.html" title="Επίλυση εξίσωσης"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Συναρτήσεις</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch11s11.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 11.
Κατάλογος συναρτήσεων της GEL</th><td width="20%" align="right"> <a acc
esskey="n" href="ch11s13.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-functions"></a>Συναρτήσεις</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a name="gel-function-Argument"></a>Argument</span></dt><dd><pre
class="synopsis">Argument (z)</pre><p>Παραλλαγές: <code class="function">Arg</code><code
class="function">arg</code></p><p>όρισμα (γωνία) μιγαδικού αριθμού.</p></dd><dt><span class="term"><a
name="gel-function-BesselJ0"></a>BesselJ0</span></dt><dd><pre class="synopsis">BesselJ0 (x)</pre><p>Η
συνάρτηση Μπεσέλ πρώτου είδους τάξης 0. Εφαρμόζεται μόνο για πραγματικούς αριθμούς.</p><p>Δείτε <a
class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wik
ipedia</a> για περισσότερες πληροφορίες.</p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselJ1"></a>BesselJ1</span></dt><dd><pre class="synopsis">BesselJ1 (x)</pre><p>Η
συνάρτηση Μπεσέλ πρώτου είδους τάξης 1. Εφαρμόζεται μόνο για πραγματικούς αριθμούς.</p><p>Δείτε <a
class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a> για
περισσότερες πληροφορίες.</p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselJn"></a>BesselJn</span></dt><dd><pre class="synopsis">BesselJn (n,x)</pre><p>Η
συνάρτηση Μπεσέλ πρώτου είδους τάξης <code class="varname">n</code>. Εφαρμόζεται μόνο για πραγματικούς
αριθμούς.</p><p>Δείτε <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_fu
nctions" target="_top">Wikipedia</a> για περισσότερες πληροφορίες.</p><p>Version 1.0.16
onwards.</p></dd><dt><span class="term"><a name="gel-function-BesselY0"></a>BesselY0</span></dt><dd><pre
class="synopsis">BesselY0 (x)</pre><p>Η συνάρτηση Μπεσέλ δεύτερου είδους τάξης 0. Εφαρμόζεται μόνο για
πραγματικούς αριθμούς.</p><p>Δείτε <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions"
target="_top">Wikipedia</a> για περισσότερες πληροφορίες.</p><p>Version 1.0.16 onwards.</p></dd><dt><span
class="term"><a name="gel-function-BesselY1"></a>BesselY1</span></dt><dd><pre class="synopsis">BesselY1
(x)</pre><p>Η συνάρτηση Μπεσέλ δεύτερου είδους τάξης 1. Εφαρμόζεται μόνο για πραγματικούς
αριθμούς.</p><p>Δείτε <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel
_functions" target="_top">Wikipedia</a> για περισσότερες πληροφορίες.</p><p>Version 1.0.16
onwards.</p></dd><dt><span class="term"><a name="gel-function-BesselYn"></a>BesselYn</span></dt><dd><pre
class="synopsis">BesselYn (n,x)</pre><p>Η συνάρτηση Μπεσέλ δεύτερου είδους τάξης <code
class="varname">n</code>. Εφαρμόζεται μόνο για πραγματικούς αριθμούς.</p><p>Δείτε <a class="ulink"
href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a> για περισσότερες
πληροφορίες.</p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-DirichletKernel"></a>DirichletKernel</span></dt><dd><pre class="synopsis">DirichletKernel
(n,t)</pre><p>Dirichlet kernel of order <code class="varname">n</code>.</p></dd><dt><span class="term"><a
name="gel-function-DiscreteDelta"></a>DiscreteDelta</span></dt><dd><pre class="synopsis
">DiscreteDelta (v)</pre><p>Returns 1 if and only if all elements are zero.</p></dd><dt><span
class="term"><a name="gel-function-ErrorFunction"></a>ErrorFunction</span></dt><dd><pre
class="synopsis">ErrorFunction (x)</pre><p>Παραλλαγές: <code class="function">erf</code></p><p>Η συνάρτηση
σφάλματος, 2/sqrt(pi) * int_0^x e^(-t^2) dt.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Error_function" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/ErrorFunction" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FejerKernel"></a>FejerKernel</span></dt><dd><pre class="synopsis">FejerKernel
(n,t)</pre><p>Ο πυρήνας Fejer τάξης <code class="varname">n</code> που υπολογίστηκε στο <code
class="varname">t</code></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/FejerKernel" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GammaFunction"></a>GammaFunction</span></dt><dd><pre class="synopsis">GammaFunction
(x)</pre><p>Παραλλαγές: <code class="function">Gamma</code></p><p>Η συνάρτηση γάμα. Προς το παρόν υλοποιείται
μόνο για πραγματικούς.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/GammaFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Gamma_function" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-KroneckerDelta"></a>KroneckerDelta</span></dt><dd><pre class="synopsis">KroneckerDelta
(v)</pre><p>Επιστρέφει 1 αν και μόνο αν όλα τα στοιχεία είναι ίσα.</p></dd><dt><span class="term"><a
name="gel-function-LambertW"></a>LambertW</span></dt><dd><pre class="synopsis">LambertW (x)</pre><p>Ο βασικός
κλάδος της συνάρτησης W Λαμπέρ υπολογίζεται μόνο για πραγματικές τιμές μεγαλύτερες ή ίσες από <strong
class="userinput"><code>-1/e</code></strong>. Δηλαδή, <code class="function">LambertW</code> είναι το
αντίστροφο της παράστασης <strong class="userinput"><code>x*e^x</code></strong>. Ακόμα για πραγματικούς <code
class="varname">x</code> αυτή η παράσταση δεν είναι ένα προς ένα και συνεπώς έχει
δύο κλάδους στο <strong class="userinput"><code>[-1/e,0)</code></strong>. Δείτε <a class="link"
href="ch11s12.html#gel-function-LambertWm1"><code class="function">LambertWm1</code></a> για τον άλλο
πραγματικό κλάδο.</p><p>Δείτε <a class="ulink" href="http://en.wikipedia.org/wiki/Lambert_W_function"
target="_top">Wikipedia</a> για περισσότερες πληροφορίες.</p><p>Version 1.0.18 onwards.</p></dd><dt><span
class="term"><a name="gel-function-LambertWm1"></a>LambertWm1</span></dt><dd><pre class="synopsis">LambertWm1
(x)</pre><p>Ο κλάδος μείον-ένα της συνάρτησης W Λαμπέρ υπολογίζεται μόνο για πραγματικές τιμές μεγαλύτερες ή
ίσες με <strong class="userinput"><code>-1/e</code></strong> και μικρότερες από 0. Δηλαδή, το <code
class="function">LambertWm1</code> είναι ο δεύτερος κλάδος
του αντίστροφου <strong class="userinput"><code>x*e^x</code></strong>. Δείτε <a class="link"
href="ch11s12.html#gel-function-LambertW"><code class="function">LambertW</code></a> για τον βασικό
κλάδο.</p><p>Δείτε <a class="ulink" href="http://en.wikipedia.org/wiki/Lambert_W_function"
target="_top">Wikipedia</a> για περισσότερες πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-MinimizeFunction"></a>MinimizeFunction</span></dt><dd><pre
class="synopsis">MinimizeFunction (func,x,incr)</pre><p>Βρίσκει την πρώτη τιμή όπου f(x)=0.</p></dd><dt><span
class="term"><a name="gel-function-MoebiusDiskMapping"></a>MoebiusDiskMapping</span></dt><dd><pre
class="synopsis">MoebiusDiskMapping (a,z)</pre><p>Μετασχηματισμός Μέμπιους του δίσκου στον εαυτόν του,
απεικονίζοντας το a στο 0.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMapping"></a>MoebiusMapping</span></dt><dd><pre class="synopsis">MoebiusMapping
(z,z2,z3,z4)</pre><p>Μετασχηματισμός Μέμπιους χρησιμοποιώντας τον διπλό λόγο παίρνοντας z2,z3,z4 στο 1,0, και
άπειρο αντίστοιχα.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToInfty"></a>MoebiusMappingInftyToInfty</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToInfty (z,z2,z3)</pre><p>Απεικόνιση Μέμπιους χρησιμοποιώντας τον διπλό
λόγο παίρνοντας άπειρο στο άπειρο και z2,z3 στο 1 και 0 αντίστοιχα.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToOne"></a>MoebiusMappingInftyToOne</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToOne (z,z3,z4)</pre><p>Μετασχηματισμός Μέμπιους χρησιμοποιώντας τον
διπλό λόγο παίρνοντας άπειρο στο 1 και z3,z4 στο 0 και άπειρο αντίστοιχα.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToZero"></a>MoebiusMappingInftyToZero</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToZero (z,z2,z4)</pre><p>Μετασχηματισμός Μέμπιους χρησιμοποιώντας τον
διπλό λόγο παίρνοντας άπειρο στο 0 και z2,z4 στο 1 και άπειρο αντίστοιχα.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PoissonKernel"></a>PoissonKernel</span></dt><dd><pre class="synopsis">PoissonKernel
(r,sigma)</pre><p>Πυρήνας Πουασόν στο D(0,1) (μη κανονικοποιημένο στο 1, δηλαδή το ολοκλήρωμα αυτού είναι
2pi).</p></dd><dt><span class="term"><a
name="gel-function-PoissonKernelRadius"></a>PoissonKernelRadius</span></dt><dd><pre
class="synopsis">PoissonKernelRadius (r,sigma)</pre><p>Πυρήνας Πουασόν στο D(0,R) (μη κανονικοποιημένο στο
1).</p></dd><dt><span class="term"><a name="gel-function-RiemannZeta"></a>RiemannZeta</span></dt><dd><pre
class="synopsis">RiemannZeta (x)</pre><p>Παραλλαγές: <code class="function">zeta</code></p><p>Η συνάρτηση
ζήτα Ρίμαν. Προς το παρόν υλοποιείται μόνο για πραγματικούς.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RiemannZetaFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Riemann_zeta_function"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-UnitStep"></a>UnitStep</span></dt><dd><pre
class="synopsis">UnitStep (x)</pre><p>Το μοναδιαίο βήμα συνάρτησης είναι 0 για x<0, 1 αλλιώς. Αυτό είναι
το ολοκλήρωμα της συνάρτησης δέλτα Ντιράκ. Λέγεται επίσης συνάρτηση Χέβισαϊντ.</p><p>Δείτε <a class="ulink"
href="http://en.wikipedia.org/wiki/Unit_step" target="_top">Wikipedia</a> για περισσότερες
πληροφορίες.</p></dd><dt><span class="term"><a name="gel-function-cis"></a>cis</span></dt><dd><pre
class="synopsis">cis (x)</pre><p>Η συνάρτηση <code class="function">cis</code>, δηλαδή είναι η ίδια με τη
<strong class="userinput"><code>cos(x)+1i*sin(x)</code></strong></p></dd><dt><span class="term"><a
name="gel-function-deg2rad"></a>deg2rad</span></dt><dd><pre class="synopsis">deg2rad (x)</pre><
p>Μετατρέπει βαθμούς σε ακτίνια.</p></dd><dt><span class="term"><a
name="gel-function-rad2deg"></a>rad2deg</span></dt><dd><pre class="synopsis">rad2deg (x)</pre><p>Μετατρέπει
ακτίνια σε μοίρες.</p></dd><dt><span class="term"><a name="gel-function-sinc"></a>sinc</span></dt><dd><pre
class="synopsis">sinc (x)</pre><p>Υπολογίζει τη μη κανονικοποιημένη συνάρτηση sinc, δηλαδή την <strong
class="userinput"><code>sin(x)/x</code></strong>. Αν θέλετε την κανονικοποιημένη συνάρτηση καλέστε <strong
class="userinput"><code>sinc(pi*x)</code></strong>.</p><p>Δείτε <a class="ulink"
href="http://en.wikipedia.org/wiki/Sinc" target="_top">Wikipedia</a> για περισσότερες
πληροφορίες.</p><p>Version 1.0.16 onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width=
"40%" align="left"><a accesskey="p" href="ch11s11.html">Προηγ</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch11.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s13.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Μαθηματική Ανάλυση
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%"
align="right" valign="top"> Επίλυση εξίσωσης</td></tr></table></div></body></html>
diff --git a/help/el/html/ch11s13.html b/help/el/html/ch11s13.html
new file mode 100644
index 0000000..1615e81
--- /dev/null
+++ b/help/el/html/ch11s13.html
@@ -0,0 +1,113 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Επίλυση
εξίσωσης</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch11.html" title="Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL"><link rel="prev" href="ch11s12.html" title="Συναρτήσεις"><link rel="next"
href="ch11s14.html" title="Στατιστική"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Επίλυση εξίσωσης</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s12.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL</th><td width="20%" align="right"> <a accesskey
="n" href="ch11s14.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-equation-solving"></a>Επίλυση εξίσωσης</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-CubicFormula"></a>CubicFormula</span></dt><dd><pre class="synopsis">CubicFormula
(p)</pre><p>Υπολογίζει τις ρίζες ενός κυβικού (βαθμού 3) πολυωνύμου χρησιμοποιώντας τον κυβικό τύπο. Το
πολυώνυμο πρέπει να δίνεται ως ένα διάνυσμα συντελεστών. Δηλαδή <strong class="userinput"><code>4*x^3 + 2*x +
1</code></strong> αντιστοιχεί στο διάνυσμα <strong class="userinput"><code>[1,2,0,4]</code></strong>.
Επιστρέφει ένα διάνυσμα στήλης των τριώ�
� λύσεων. Η πρώτη λύση είναι πάντα η πραγματική καθώς μια κυβική έχει πάντα μια πραγματική λύση.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/CubicFormula" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/CubicFormula.html"
target="_top">Mathworld</a>, or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Cubic_equation" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EulersMethod"></a>EulersMethod</span></dt><dd><pre class="synopsis">EulersMethod
(f,x0,y0,x1,n)</pre><p>
+ Use classical Euler's method to numerically solve y'=f(x,y) for
+ initial <code class="varname">x0</code>, <code class="varname">y0</code> going to
+ <code class="varname">x1</code> with <code class="varname">n</code> increments,
+ returns <code class="varname">y</code> at <code class="varname">x1</code>.
+ Unless you explicitly want to use Euler's method, you should really
+ think about using
+ <a class="link" href="ch11s13.html#gel-function-RungeKutta">RungeKutta</a>
+ for solving ODE.
+ </p><p>Τα συστήματα μπορούν να επιλυθούν έχοντας απλά το <code class="varname">y</code> να είναι
ένα διάνυσμα (στήλης) παντού. Δηλαδή, το <code class="varname">y0</code> μπορεί να είναι ένα διάνυσμα, οπότε
το <code class="varname">f</code> πρέπει να πάρει έναν αριθμό <code class="varname">x</code> και ένα διάνυσμα
του ίδιου μεγέθους για το δεύτερο όρισμα και πρέπει να επιστρέψει ένα διάνυσμα του ίδιου μεγέθους.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/EulerForwardMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eulers_method" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EulersMethodFull"></a>EulersMethodFull</span></dt><dd><pre
class="synopsis">EulersMethodFull (f,x0,y0,x1,n)</pre><p>
+ Use classical Euler's method to numerically solve y'=f(x,y) for
+ initial <code class="varname">x0</code>, <code class="varname">y0</code> going to
+ <code class="varname">x1</code> with <code class="varname">n</code> increments,
+ returns a 2 by <strong class="userinput"><code>n+1</code></strong> matrix with the
+ <code class="varname">x</code> and <code class="varname">y</code> values.
+ Unless you explicitly want to use Euler's method, you should really
+ think about using
+ <a class="link" href="ch11s13.html#gel-function-RungeKuttaFull">RungeKuttaFull</a>
+ for solving ODE.
+ Suitable
+ for plugging into
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawPoints">LinePlotDrawPoints</a>.
+ </p><p>
+ Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>line =
EulersMethodFull(`(x,y)=y,0,1.0,3.0,50);</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(line,"window","fit","color","blue","legend","Exponential
growth");</code></strong>
+</pre><p>
+ </p><p>Τα συστήματα μπορούν να επιλυθούν έχοντας απλά το <code class="varname">y</code> να είναι
ένα διάνυσμα (στήλης) παντού. Δηλαδή, το <code class="varname">y0</code> μπορεί να είναι ένα διάνυσμα, οπότε
το <code class="varname">f</code> πρέπει να πάρει έναν αριθμό <code class="varname">x</code> και ένα διάνυσμα
του ίδιου μεγέθους για το δεύτερο όρισμα και πρέπει να επιστρέψει ένα διάνυσμα του ίδιου μεγέθους.</p><p>
+ The output for a system is still a n by 2 matrix with the second
+ entry being a vector. If you wish to plot the line, make sure to use row vectors, and then
flatten the matrix with
+ <a class="link" href="ch11s08.html#gel-function-ExpandMatrix">ExpandMatrix</a>,
+ and pick out the right columns. Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
EulersMethodFull(`(x,y)=[y@(2),-y@(1)],0,[1.0,1.0],10.0,500);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
ExpandMatrix(lines);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>firstline =
lines@(,[1,2]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>secondline =
lines@(,[1,3]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>LinePlotWindow =
[0,10,-2,2];</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(firstline,"color","blue","legend","First");</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(secondline,"color","red","thickness",3,"legend","Second");</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/EulerForwardMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eulers_method" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-FindRootBisection"></a>FindRootBisection</span></dt><dd><pre
class="synopsis">FindRootBisection (f,a,b,TOL,N)</pre><p>Βρίσκει τις ρίζες μιας συνάρτησης χρησιμοποιώντας τη
μέθοδο διχοτόμησης. Τα <code class="varname">a</code> και <code class="varname">b</code> είναι το αρχικό
διάστημα πρόβλεψης, τα <strong class="userinput"><code>f(a)</code></strong> και <strong
class="userinput"><code>f(b)</code></strong> πρέπει να έχουν αντίθετα πρόσημα. Το <code
class="varname">TOL</code> είναι η επιθυμητή ανοχή και <code class="varname">N</code> είναι το όριο στον
αριθμό των επαναλήψεων εκτέλεσης, 0 σημαίνει χωρίς όριο. Η συνάρτηση επιστρέφει ένα διάνυσμα <str
ong class="userinput"><code>[success,value,iteration]</code></strong>, όπου <code
class="varname">success</code> είναι μια λογική τιμή που δείχνει επιτυχία, <code class="varname">value</code>
είναι η τελευταία υπολογισμένη τιμή και <code class="varname">iteration</code> είναι ο αριθμός των
επαναλήψεων που έγιναν.</p></dd><dt><span class="term"><a
name="gel-function-FindRootFalsePosition"></a>FindRootFalsePosition</span></dt><dd><pre
class="synopsis">FindRootFalsePosition (f,a,b,TOL,N)</pre><p>Βρίσκει τις ρίζες μιας συνάρτησης
χρησιμοποιώντας τη μέθοδο ψευδούς θέσης. Τα <code class="varname">a</code> και <code class="varname">b</code>
είναι το αρχικό διάστημα πρόβλεψης, τα <strong class="userinput"><code>f(a)</code></strong> και <strong
class="userinput"><code>f(b)<
/code></strong> πρέπει να έχουν αντίθετα πρόσημα. Το <code class="varname">TOL</code> είναι η επιθυμητή
ανοχή και <code class="varname">N</code> είναι το όριο στον αριθμό των επαναλήψεων εκτέλεσης, 0 σημαίνει
χωρίς όριο. Η συνάρτηση επιστρέφει ένα διάνυσμα <strong
class="userinput"><code>[success,value,iteration]</code></strong>, όπου <code class="varname">success</code>
είναι μια λογική τιμή που δείχνει επιτυχία, <code class="varname">value</code> είναι η τελευταία υπολογισμένη
τιμή και <code class="varname">iteration</code> είναι ο αριθμός των επαναλήψεων που έγιναν.</p></dd><dt><span
class="term"><a name="gel-function-FindRootMullersMethod"></a>FindRootMullersMethod</span></dt><dd><pre
class="synopsis">FindRootMullersMeth
od (f,x0,x1,x2,TOL,N)</pre><p>Βρίσκει τις ρίζες μιας συνάρτησης χρησιμοποιώντας τη μέθοδο Μίλερ. Το <code
class="varname">TOL</code> είναι η επιθυμητή ανοχή και <code class="varname">N</code> είναι το όριο στον
αριθμό των επαναλήψεων εκτέλεσης, 0 σημαίνει χωρίς όριο. Η συνάρτηση επιστρέφει ένα διάνυσμα <strong
class="userinput"><code>[success,value,iteration]</code></strong>, όπου <code class="varname">success</code>
είναι μια λογική τιμή που δείχνει επιτυχία, <code class="varname">value</code> είναι η τελευταία υπολογισμένη
τιμή και <code class="varname">iteration</code> είναι ο αριθμός των επαναλήψεων που έγιναν.</p></dd><dt><span
class="term"><a name="gel-function-FindRootSecant"></a>FindRootS
ecant</span></dt><dd><pre class="synopsis">FindRootSecant (f,a,b,TOL,N)</pre><p>Βρίσκει τις ρίζες μιας
συνάρτησης χρησιμοποιώντας τη μέθοδο τέμνουσας. Τα <code class="varname">a</code> και <code
class="varname">b</code> είναι το αρχικό διάστημα πρόβλεψης, τα <strong
class="userinput"><code>f(a)</code></strong> και <strong class="userinput"><code>f(b)</code></strong> πρέπει
να έχουν αντίθετα πρόσημα. Το <code class="varname">TOL</code> είναι η επιθυμητή ανοχή και <code
class="varname">N</code> είναι το όριο στον αριθμό των επαναλήψεων εκτέλεσης, 0 σημαίνει χωρίς όριο. Η
συνάρτηση επιστρέφει ένα διάνυσμα <strong class="userinput"><code>[success,value,iteration]</code></strong>,
όπου <code class="varname">success</code> είναι �
�ια λογική τιμή που δείχνει επιτυχία, <code class="varname">value</code> είναι η τελευταία υπολογισμένη τιμή
και <code class="varname">iteration</code> είναι ο αριθμός των επαναλήψεων που έγιναν.</p></dd><dt><span
class="term"><a name="gel-function-HalleysMethod"></a>HalleysMethod</span></dt><dd><pre
class="synopsis">HalleysMethod (f,df,ddf,guess,epsilon,maxn)</pre><p>Find zeros using Halley's method. <code
class="varname">f</code> is
+ the function, <code class="varname">df</code> is the derivative of
+ <code class="varname">f</code>, and <code class="varname">ddf</code> is the second
derivative of
+ <code class="varname">f</code>. <code class="varname">guess</code> is the initial
+ guess. The function returns after two successive values are
+ within <code class="varname">epsilon</code> of each other, or after <code
class="varname">maxn</code> tries, in which case the function returns <code class="constant">null</code>
indicating failure.
+ </p><p>Δείτε επίσης <a class="link" href="ch11s13.html#gel-function-NewtonsMethod"><code
class="function">NewtonsMethod</code></a> και <a class="link"
href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>.</p><p>Παράδειγμα εύρεσης της τετραγωνικής ρίζας του 10:
</p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>HalleysMethod(`(x)=x^2-10,`(x)=2*x,`(x)=2,3,10^-10,100)</code></strong>
+</pre><p>Δείτε <a class="ulink" href="http://en.wikipedia.org/wiki/Halley%27s_method"
target="_top">Wikipedia</a> για περισσότερες πληροφορίες.</p><p>Version 1.0.18 onwards.</p></dd><dt><span
class="term"><a name="gel-function-NewtonsMethod"></a>NewtonsMethod</span></dt><dd><pre
class="synopsis">NewtonsMethod (f,df,guess,epsilon,maxn)</pre><p>Βρίσκει μηδενικά χρησιμοποιώντας τη μέθοδο
Νεύτωνα. Το <code class="varname">f</code> είναι η συνάρτηση και <code class="varname">df</code> είναι η
παράγωγος του <code class="varname">f</code>. Η <code class="varname">guess</code> είναι η αρχική πρόβλεψη. Η
συνάρτηση επιστρέφει μετά από δύο διαδοχικές τιμές που είναι μέσα στο <code class="varname">epsilon</code>
μεταξύ τους, ή μετά από <code class="varname">maxn</code> προσ
πάθειες, οπότε η συνάρτηση επιστρέφει <code class="constant">null</code> που δείχνει αποτυχία.</p><p>Δείτε
επίσης <a class="link" href="ch11s15.html#gel-function-NewtonsMethodPoly"><code
class="function">NewtonsMethodPoly</code></a> and <a class="link"
href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>.</p><p>Παράδειγμα εύρεσης της τετραγωνικής ρίζας του 10:
</p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>NewtonsMethod(`(x)=x^2-10,`(x)=2*x,3,10^-10,100)</code></strong>
+</pre><p>Δείτε <a class="ulink" href="http://en.wikipedia.org/wiki/Newtons_method"
target="_top">Wikipedia</a> για περισσότερες πληροφορίες.</p><p>Version 1.0.18 onwards.</p></dd><dt><span
class="term"><a name="gel-function-PolynomialRoots"></a>PolynomialRoots</span></dt><dd><pre
class="synopsis">PolynomialRoots (p)</pre><p>Υπολογίζει ρίζες ενός πολυωνύμου (βαθμών από 1 μέχρι 4)
χρησιμοποιώντας τους τύπους για τέτοια πολυώνυμα. Το πολυώνυμο πρέπει να δίνεται ως ένα διάνυσμα συντελεστών.
Δηλαδή το <strong class="userinput"><code>4*x^3 + 2*x + 1</code></strong> αντιστοιχεί στο διάνυσμα <strong
class="userinput"><code>[1,2,0,4]</code></strong>. Επιστρέφει ένα διάνυσμα στήλης των λύσεων.</p><p>Η
συνάρτηση καλεί <a class="link" href="ch
11s13.html#gel-function-QuadraticFormula">QuadraticFormula</a>, <a class="link"
href="ch11s13.html#gel-function-CubicFormula">CubicFormula</a> και <a class="link"
href="ch11s13.html#gel-function-QuarticFormula">QuarticFormula</a>.</p></dd><dt><span class="term"><a
name="gel-function-QuadraticFormula"></a>QuadraticFormula</span></dt><dd><pre
class="synopsis">QuadraticFormula (p)</pre><p>Υπολογίζει ρίζες ενός δευτεροβάθμιου πολυωνύμου (βαθμού 2)
χρησιμοποιώντας τον τύπο δευτεροβάθμιας. Το πολυώνυμο πρέπει να δίνεται ως ένα διάνυσμα συντελεστών. Δηλαδή
το <strong class="userinput"><code>3*x^2 + 2*x + 1</code></strong> αντιστοιχεί στο διάνυσμα <strong
class="userinput"><code>[1,2,3]</code></strong>. Επιστρέφει ένα διάνυσμα στήλης των δύο λύσεων.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/QuadraticFormula" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/QuadraticFormula.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-QuarticFormula"></a>QuarticFormula</span></dt><dd><pre class="synopsis">QuarticFormula
(p)</pre><p>Υπολογίζει ρίζες ενός τεταρτοβάθμιου πολυωνύμου (βαθμού 4) χρησιμοποιώντας τον τύπο
τεταρτοβάθμιας. Το πολυώνυμο πρέπει να δίνεται ως ένα διάνυσμα συντελεστών. Δηλαδή το <strong
class="userinput"><code>5*x^4 + 2*x + 1</code></strong> αντιστοιχεί στο διάνυσμα <strong
class="userinput"><code>[1,2,0,0,5]</code></strong>. Επιστρέφει ένα διάνυσμα στήλης τεσσάρων λύσεων.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/QuarticFormula" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/QuarticEquation.html"
target="_top">Mathworld</a>, or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Quartic_equation" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RungeKutta"></a>RungeKutta</span></dt><dd><pre class="synopsis">RungeKutta
(f,x0,y0,x1,n)</pre><p>Χρησιμοποιεί την κλασική μη αναπροσαρμοστική μέθοδο τέταρτης τάξης Runge-Kutta για
αριθμητική επίλυση της y'=f(x,y) με αρχικά <code class="varname">x0</code>, <code class="varname">y0</code>
πηγαίνει στο <code class="varname">x1</code> με βήματα <code class="varname">n</code>, επιστρέφει <code
class="varname">y</code> στο <code class="varname">x1</code>.</p><p>Τα συστήματα μπορούν να επιλυθούν έχοντας
απλά το <code class="varname">y</code> να είναι ένα διάνυσμα (στήλης) παντού. Δηλαδή, το <code
class="varname">y0</code> μπορεί να είναι ένα διάνυσμα, οπότε το <code class="varname">f</code> πρ�
�πει να πάρει έναν αριθμό <code class="varname">x</code> και ένα διάνυσμα του ίδιου μεγέθους για το δεύτερο
όρισμα και πρέπει να επιστρέψει ένα διάνυσμα του ίδιου μεγέθους.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/Runge-KuttaMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Runge-Kutta_methods"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RungeKuttaFull"></a>RungeKuttaFull</span></dt><dd><pre class="synopsis">RungeKuttaFull
(f,x0,y0,x1,n)</pre><p>
+ Use classical non-adaptive fourth order Runge-Kutta method to
+ numerically solve
+ y'=f(x,y) for initial <code class="varname">x0</code>, <code class="varname">y0</code>
+ going to <code class="varname">x1</code> with <code class="varname">n</code>
+ increments,
+ returns a 2 by <strong class="userinput"><code>n+1</code></strong> matrix with the
+ <code class="varname">x</code> and <code class="varname">y</code> values. Suitable
+ for plugging into
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawPoints">LinePlotDrawPoints</a>.
+ </p><p>
+ Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>line =
RungeKuttaFull(`(x,y)=y,0,1.0,3.0,50);</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(line,"window","fit","color","blue","legend","Exponential
growth");</code></strong>
+</pre><p>
+ </p><p>Τα συστήματα μπορούν να επιλυθούν έχοντας απλά το <code class="varname">y</code> να είναι
ένα διάνυσμα (στήλης) παντού. Δηλαδή, το <code class="varname">y0</code> μπορεί να είναι ένα διάνυσμα, οπότε
το <code class="varname">f</code> πρέπει να πάρει έναν αριθμό <code class="varname">x</code> και ένα διάνυσμα
του ίδιου μεγέθους για το δεύτερο όρισμα και πρέπει να επιστρέψει ένα διάνυσμα του ίδιου μεγέθους.</p><p>
+ The output for a system is still a n by 2 matrix with the second
+ entry being a vector. If you wish to plot the line, make sure to use row vectors, and then
flatten the matrix with
+ <a class="link" href="ch11s08.html#gel-function-ExpandMatrix">ExpandMatrix</a>,
+ and pick out the right columns. Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
RungeKuttaFull(`(x,y)=[y@(2),-y@(1)],0,[1.0,1.0],10.0,100);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
ExpandMatrix(lines);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>firstline =
lines@(,[1,2]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>secondline =
lines@(,[1,3]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>LinePlotWindow =
[0,10,-2,2];</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(firstline,"color","blue","legend","First");</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(secondline,"color","red","thickness",3,"legend","Second");</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/Runge-KuttaMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Runge-Kutta_methods"
target="_top">Wikipedia</a> for more information.
+ </p><p>Version 1.0.10 onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s12.html">Προηγ</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s14.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Συναρτήσεις </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right"
valign="top"> Στατιστική</td></tr></table></div></body></html>
diff --git a/help/el/html/ch11s14.html b/help/el/html/ch11s14.html
new file mode 100644
index 0000000..92fd75f
--- /dev/null
+++ b/help/el/html/ch11s14.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Στατιστική</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch11.html"
title="Κεφάλαιο 11. Κατάλογος συναρτήσεων της GEL"><link rel="prev" href="ch11s13.html" title="Επίλυση
εξίσωσης"><link rel="next" href="ch11s15.html" title="Πολυώνυμα"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Στατιστική</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s13.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL</th><td width="20%" align="right"> <a accesskey="n" href="ch11
s15.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a
name="genius-gel-function-list-statistics"></a>Στατιστική</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a name="gel-function-Average"></a>Average</span></dt><dd><pre
class="synopsis">Average (m)</pre><p>Παραλλαγές: <code class="function">average</code><code
class="function">Mean</code><code class="function">mean</code></p><p>Υπολογίζει τον μέσο όρο ενός ολόκληρου
πίνακα.</p><p>Δείτε <a class="ulink" href="http://mathworld.wolfram.com/ArithmeticMean.html"
target="_top">Mathworld</a> για περισσότερες πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-GaussDistribution"></a>GaussDistribution</span></dt><dd><pre
class="synopsis">GaussDistribution (x,sigma)</pre><p>Ολοκλήρ�
�μα της GaussFunction από 0 μέχρι <code class="varname">x</code> (περιοχή κάτω από την κανονική
καμπύλη).</p><p>Δείτε <a class="ulink" href="http://mathworld.wolfram.com/NormalDistribution.html"
target="_top">Mathworld</a> για περισσότερες πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-GaussFunction"></a>GaussFunction</span></dt><dd><pre class="synopsis">GaussFunction
(x,sigma)</pre><p>Η συνάρτηση κανονικοποιημένης κατανομής Γκάους (η κανονική καμπύλη).</p><p>Δείτε <a
class="ulink" href="http://mathworld.wolfram.com/NormalDistribution.html" target="_top">Mathworld</a> για
περισσότερες πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-Median"></a>Median</span></dt><dd><pre class="synopsis">Median (m)</pre><p>Παραλλαγές:
<code class="function">median</code></p><p>Υπο�
�ογίζει τον μέσο ενός ολόκληρου πίνακα.</p><p>Δείτε <a class="ulink"
href="http://mathworld.wolfram.com/StatisticalMedian.html" target="_top">Mathworld</a> για περισσότερες
πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-PopulationStandardDeviation"></a>PopulationStandardDeviation</span></dt><dd><pre
class="synopsis">PopulationStandardDeviation (m)</pre><p>Παραλλαγές: <code
class="function">stdevp</code></p><p>Υπολογίζει την τυπική απόκλιση πληθυσμού ενός ολόκληρου
πίνακα.</p></dd><dt><span class="term"><a name="gel-function-RowAverage"></a>RowAverage</span></dt><dd><pre
class="synopsis">RowAverage (m)</pre><p>Παραλλαγές: <code class="function">RowMean</code></p><p>Υπολογίζει
τον μέσο όρο κάθε γραμμής σε έναν πίνακα.</p><p>Δείτε <a class="ulink" href="http://mathworld.wolfra
m.com/ArithmeticMean.html" target="_top">Mathworld</a> για περισσότερες πληροφορίες.</p></dd><dt><span
class="term"><a name="gel-function-RowMedian"></a>RowMedian</span></dt><dd><pre class="synopsis">RowMedian
(m)</pre><p>Υπολογίζει τον διάμεσο κάθε γραμμής σε έναν πίνακα και επιστρέφει ένα διάνυσμα στήλης με τους
διάμεσους.</p><p>Δείτε <a class="ulink" href="http://mathworld.wolfram.com/StatisticalMedian.html"
target="_top">Mathworld</a> για περισσότερες πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-RowPopulationStandardDeviation"></a>RowPopulationStandardDeviation</span></dt><dd><pre
class="synopsis">RowPopulationStandardDeviation (m)</pre><p>Παραλλαγές: <code
class="function">rowstdevp</code></p><p>Υπολογίζει τις τυπικές αποκλίσεις πληθυσμού γραμμών εν�
�ς πίνακα και επιστρέφει ένα κάθετο διάνυσμα.</p></dd><dt><span class="term"><a
name="gel-function-RowStandardDeviation"></a>RowStandardDeviation</span></dt><dd><pre
class="synopsis">RowStandardDeviation (m)</pre><p>Παραλλαγές: <code
class="function">rowstdev</code></p><p>Υπολογίζει τις τυπικές αποκλίσεις γραμμών ενός πίνακα και επιστρέφει
ένα κάθετο διάνυσμα.</p></dd><dt><span class="term"><a
name="gel-function-StandardDeviation"></a>StandardDeviation</span></dt><dd><pre
class="synopsis">StandardDeviation (m)</pre><p>Παραλλαγές: <code
class="function">stdev</code></p><p>Υπολογίζει την τυπική απόκλιση ενός ολόκληρου
πίνακα.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s13.html">Προ�
�γ</a> </td><td width="20%" align="center"><a accesskey="u" href="ch11.html">Πάνω</a></td><td width="40%"
align="right"> <a accesskey="n" href="ch11s15.html">Επόμενο</a></td></tr><tr><td width="40%" align="left"
valign="top">Επίλυση εξίσωσης </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top">
Πολυώνυμα</td></tr></table></div></body></html>
diff --git a/help/el/html/ch11s15.html b/help/el/html/ch11s15.html
new file mode 100644
index 0000000..ec158cf
--- /dev/null
+++ b/help/el/html/ch11s15.html
@@ -0,0 +1,5 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Πολυώνυμα</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Εγχειρίδιο Genius"><link rel="up" href="ch11.html" title="Κεφάλαιο 11. Κατάλογος συναρτήσεων της
GEL"><link rel="prev" href="ch11s14.html" title="Στατιστική"><link rel="next" href="ch11s16.html"
title="Θεωρία συνόλων"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Πολυώνυμα</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s14.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 11. Κατάλογος συναρτήσεων της
GEL</th><td width="20%" align="right"> <a accesskey="n" href="ch11s16.ht
ml">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a
name="genius-gel-function-list-polynomials"></a>Πολυώνυμα</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a name="gel-function-AddPoly"></a>AddPoly</span></dt><dd><pre
class="synopsis">AddPoly (p1,p2)</pre><p>Προσθήκη δύο πολυωνύμων (διανύσματα).</p></dd><dt><span
class="term"><a name="gel-function-DividePoly"></a>DividePoly</span></dt><dd><pre class="synopsis">DividePoly
(p,q,&r)</pre><p>Διαιρεί δύο πολυώνυμα (ως διανύσματα) χρησιμοποιώντας τη μακριά διαίρεση. Επιστρέφει το
πηλίκο των δύο πολυωνύμων. Το προαιρετικό όρισμα <code class="varname">r</code> χρησιμοποιείται για να
επιστρέψει το υπόλ�
�ιπο. Το υπόλοιπο θα έχει μικρότερο βαθμό από το <code class="varname">q</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PolynomialLongDivision" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-IsPoly"></a>IsPoly</span></dt><dd><pre
class="synopsis">IsPoly (p)</pre><p>Ελέγχει αν ένα διάνυσμα μπορεί να χρησιμοποιηθεί ως
πολυώνυμο.</p></dd><dt><span class="term"><a
name="gel-function-MultiplyPoly"></a>MultiplyPoly</span></dt><dd><pre class="synopsis">MultiplyPoly
(p1,p2)</pre><p>Πολλαπλασιάζει δύο πολυώνυμα (ως διανύσματα).</p></dd><dt><span class="term"><a
name="gel-function-NewtonsMethodPoly"></a>NewtonsMethodPoly</span></dt><dd><pre
class="synopsis">NewtonsMethodPoly (poly,guess,epsilon,maxn)</pre><p>Βρίσκει μια ρίζα ενός πολυωνύμου
χρησιμοποιώντας τη μέθοδο Νεύτωνα. Το <code class="varname">poly</code> είναι ένα πολυώνυμο ως διάνυσμα και
<code class="varname">guess</code> είναι η αρχική πρόβλεψη. Η συνάρ
τηση επιστρέφει μετά από δύο διαδοχικές τιμές που είναι μέσα στο <code class="varname">epsilon</code> μεταξύ
τους, ή μετά από <code class="varname">maxn</code> προσπάθειες, οπότε η συνάρτηση επιστρέφει <code
class="constant">null</code> που δείχνει αποτυχία.</p><p>Δείτε επίσης <a class="link"
href="ch11s13.html#gel-function-NewtonsMethod"><code
class="function">NewtonsMethod</code></a>.</p><p>Παράδειγμα εύρεσης της τετραγωνικής ρίζας του 10: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>NewtonsMethodPoly([-10,0,1],3,10^-10,100)</code></strong>
+</pre><p>Δείτε <a class="ulink" href="http://en.wikipedia.org/wiki/Newtons_method"
target="_top">Wikipedia</a> για περισσότερες πληροφορίες.</p></dd><dt><span class="term"><a
name="gel-function-Poly2ndDerivative"></a>Poly2ndDerivative</span></dt><dd><pre
class="synopsis">Poly2ndDerivative (p)</pre><p>Δίνει τη δεύτερη πολυωνυμική παράγωγο (ως
διάνυσμα).</p></dd><dt><span class="term"><a
name="gel-function-PolyDerivative"></a>PolyDerivative</span></dt><dd><pre class="synopsis">PolyDerivative
(p)</pre><p>Δίνει την πολυωνυμική παράγωγο (ως διάνυσμα).</p></dd><dt><span class="term"><a
name="gel-function-PolyToFunction"></a>PolyToFunction</span></dt><dd><pre class="synopsis">PolyToFunction
(p)</pre><p>Δημιουργεί συνάρτηση από ένα πολυώνυμο (ως διάνυσμα).</p></dd><dt><span class="term"><a
name="gel-function-PolyToString"></a>Poly
ToString</span></dt><dd><pre class="synopsis">PolyToString (p,var...)</pre><p>Δημιουργεί συμβολοσειρά από
ένα πολυώνυμο (ως διάνυσμα).</p></dd><dt><span class="term"><a
name="gel-function-SubtractPoly"></a>SubtractPoly</span></dt><dd><pre class="synopsis">SubtractPoly
(p1,p2)</pre><p>Αφαιρεί δύο πολυώνυμα (ως διανύσματα).</p></dd><dt><span class="term"><a
name="gel-function-TrimPoly"></a>TrimPoly</span></dt><dd><pre class="synopsis">TrimPoly
(p)</pre><p>Περικόπτει μηδενικά από ένα πολυώνυμο (ως διάνυσμα).</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s14.html">Προηγ</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n" href="ch11s16.html">Επόμενο<
/a></td></tr><tr><td width="40%" align="left" valign="top">Στατιστική </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top"> Θεωρία
συνόλων</td></tr></table></div></body></html>
diff --git a/help/el/html/ch11s16.html b/help/el/html/ch11s16.html
new file mode 100644
index 0000000..fca83a8
--- /dev/null
+++ b/help/el/html/ch11s16.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Θεωρία
συνόλων</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch11.html" title="Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL"><link rel="prev" href="ch11s15.html" title="Πολυώνυμα"><link rel="next"
href="ch11s17.html" title="Αντιμεταθετική άλγεβρα"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Θεωρία συνόλων</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s15.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL</th><td width="20%" align="right"> <
a accesskey="n" href="ch11s17.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-set-theory"></a>Θεωρία συνόλων</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Intersection"></a>Intersection</span></dt><dd><pre class="synopsis">Intersection
(X,Y)</pre><p>Επιστρέφει τη θεωρητική τομή συνόλων των Χ και Υ (Χ και Υ είναι διανύσματα που προσποιούνται
ότι είναι σύνολα).</p></dd><dt><span class="term"><a name="gel-function-IsIn"></a>IsIn</span></dt><dd><pre
class="synopsis">IsIn (x,X)</pre><p>Επιστρέφει <code class="constant">true</code> αν το στοιχείο x είναι στο
σύνολο Χ (όπου Χ είναι ένα διάνυσμα που προσποιείται �
�τι είναι σύνολο).</p></dd><dt><span class="term"><a
name="gel-function-IsSubset"></a>IsSubset</span></dt><dd><pre class="synopsis">IsSubset (X,
Y)</pre><p>Επιστρέφει <code class="constant">true</code> αν το Χ είναι ένα υποσύνολο του Υ (Χ και Υ είναι
διανύσματα που προσποιούνται ότι είναι σύνολα).</p></dd><dt><span class="term"><a
name="gel-function-MakeSet"></a>MakeSet</span></dt><dd><pre class="synopsis">MakeSet (X)</pre><p>Επιστρέφει
ένα διάνυσμα όπου κάθε στοιχείο του Χ εμφανίζεται μόνο μια φορά.</p></dd><dt><span class="term"><a
name="gel-function-SetMinus"></a>SetMinus</span></dt><dd><pre class="synopsis">SetMinus
(X,Y)</pre><p>Επιστρέφει τη θεωρητική διαφορά συνόλων των Χ-Υ (Χ και Υ είναι διανύσματα που προσποιούνται ότι
είναι
σύνολα).</p></dd><dt><span class="term"><a name="gel-function-Union"></a>Union</span></dt><dd><pre
class="synopsis">Union (X,Y)</pre><p>Επιστρέφει ένα μια θεωρητική ένωση συνόλου των Χ και Υ (Χ και Υ είναι
διανύσματα που προσποιούνται ότι είναι σύνολα).</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s15.html">Προηγ</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s17.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Πολυώνυμα </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right"
valign="top"> Αντιμεταθετική άλγεβρα</td></tr></table></d
iv></body></html>
diff --git a/help/el/html/ch11s17.html b/help/el/html/ch11s17.html
new file mode 100644
index 0000000..450e5b3
--- /dev/null
+++ b/help/el/html/ch11s17.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Αντιμεταθετική
άλγεβρα</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch11.html" title="Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL"><link rel="prev" href="ch11s16.html" title="Θεωρία συνόλων"><link rel="next"
href="ch11s18.html" title="Διάφορα"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Αντιμεταθετική άλγεβρα</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s16.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 11. Κατάλογος συναρτήσεων της
GEL</th><td width="20%" align
="right"> <a accesskey="n" href="ch11s18.html">Επόμενο</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-commutative-algebra"></a>Αντιμεταθετική άλγεβρα</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-MacaulayBound"></a>MacaulayBound</span></dt><dd><pre class="synopsis">MacaulayBound
(c,d)</pre><p>Για μια συνάρτηση Χίλμπερτ που είναι c για βαθμό d, με δεδομένο το πέρας Μακόλεϊ για τη
συνάρτηση Χίλμπερτ βαθμού d+1 (Ο τελεστής c^<d> από την απόδειξη Γκριν).</p><p>Version 1.0.15
onwards.</p></dd><dt><span class="term"><a
name="gel-function-MacaulayLowerOperator"></a>MacaulayLowerOperator</span></dt><dd><pre
class="synopsis">MacaulayLowerOperator (c,d)</pr
e><p>Ο τελεστής c_<d> από την απόδειξη Γκριν του θεωρήματος Μακόλεϊ.</p><p>Version 1.0.15
onwards.</p></dd><dt><span class="term"><a
name="gel-function-MacaulayRep"></a>MacaulayRep</span></dt><dd><pre class="synopsis">MacaulayRep
(c,d)</pre><p>Επιστρέφει την dστή αναπαράσταση Μακόλεϊ ενός θετικού ακεραίου c.</p><p>Version 1.0.15
onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s16.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s18.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Θεωρία συνόλων
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td widt
h="40%" align="right" valign="top"> Διάφορα</td></tr></table></div></body></html>
diff --git a/help/el/html/ch11s18.html b/help/el/html/ch11s18.html
new file mode 100644
index 0000000..8fdbe57
--- /dev/null
+++ b/help/el/html/ch11s18.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Διάφορα</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Εγχειρίδιο Genius"><link rel="up" href="ch11.html" title="Κεφάλαιο 11. Κατάλογος συναρτήσεων της
GEL"><link rel="prev" href="ch11s17.html" title="Αντιμεταθετική άλγεβρα"><link rel="next" href="ch11s19.html"
title="Συμβολικές πράξεις"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Διάφορα</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s17.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 11. Κατάλογος συναρτήσεων της
GEL</th><td width="20%" align="right"> <a accessk
ey="n" href="ch11s19.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-miscellaneous"></a>Διάφορα</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-ASCIIToString"></a>ASCIIToString</span></dt><dd><pre class="synopsis">ASCIIToString
(vec)</pre><p>Μετατρέπει ένα διάνυσμα τιμών ASCII σε συμβολοσειρά.</p></dd><dt><span class="term"><a
name="gel-function-AlphabetToString"></a>AlphabetToString</span></dt><dd><pre
class="synopsis">AlphabetToString (vec,alphabet)</pre><p>Μετατρέπει ένα διάνυσμα τιμών αλφαβήτου με βάση το 0
(θέσεις στη συμβολοσειρά αλφαβήτου) σε συμβολοσειρά.</p></dd><dt><span class="term"><a
name="gel-function-StringToASCII"></a>StringToASCII</
span></dt><dd><pre class="synopsis">StringToASCII (str)</pre><p>Μετατρέπει μια συμβολοσειρά σε διάνυσμα
τιμών ASCII.</p></dd><dt><span class="term"><a
name="gel-function-StringToAlphabet"></a>StringToAlphabet</span></dt><dd><pre
class="synopsis">StringToAlphabet (str,alphabet)</pre><p>Μετατρέπει μια συμβολοσειρά σε διάνυσμα τιμών
αλφαβήτου με βάση το 0 (θέσεις στη συμβολοσειρά αλφαβήτου), -1 για άγνωστα
γράμματα.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s17.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s19.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Αντιμ�
�ταθετική άλγεβρα </td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td
width="40%" align="right" valign="top"> Συμβολικές πράξεις</td></tr></table></div></body></html>
diff --git a/help/el/html/ch11s19.html b/help/el/html/ch11s19.html
new file mode 100644
index 0000000..303382d
--- /dev/null
+++ b/help/el/html/ch11s19.html
@@ -0,0 +1,17 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Συμβολικές
πράξεις</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch11.html" title="Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL"><link rel="prev" href="ch11s18.html" title="Διάφορα"><link rel="next"
href="ch11s20.html" title="Γραφική παράσταση"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Συμβολικές πράξεις</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s18.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL</th><td width="20%" align="right">�
�<a accesskey="n" href="ch11s20.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-symbolic"></a>Συμβολικές πράξεις</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-SymbolicDerivative"></a>SymbolicDerivative</span></dt><dd><pre
class="synopsis">SymbolicDerivative (f)</pre><p>Προσπαθεί για συμβολική παραγώγιση της συνάρτησης f, όπου f
είναι μια συνάρτηση μιας μεταβλητής.</p><p>Παραδείγματα: </p><pre class="screen"><code
class="prompt">genius></code> <strong class="userinput"><code>SymbolicDerivative(sin)</code></strong>
+= (`(x)=cos(x))
+<code class="prompt">genius></code> <strong
class="userinput"><code>SymbolicDerivative(`(x)=7*x^2)</code></strong>
+= (`(x)=(7*(2*x)))
+</pre><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicDerivativeTry"></a>SymbolicDerivativeTry</span></dt><dd><pre
class="synopsis">SymbolicDerivativeTry (f)</pre><p>Προσπαθεί να παραγωγίσει συμβολικά τη συνάρτηση f, όπου f
είναι μια συνάρτηση μιας μεταβλητής, επιστρέφει <code class="constant">null</code> αν είναι ανεπιτυχής, αλλά
είναι σιωπηλό. (Δείτε <a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicNthDerivative"></a>SymbolicNthDerivative</span></dt><dd><pre
class="synopsis">SymbolicNthDerivative (f,n)</pre><p>Προσπαθεί να παραγωγίσει συμβολικά μια συνάρτηση n
φορές. (Δείτε <a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicNthDerivativeTry"></a>SymbolicNthDerivativeTry</span></dt><dd><pre
class="synopsis">SymbolicNthDerivativeTry (f,n)</pre><p>Προσπαθεί να παραγωγίσει συμβολικά μια συνάρτηση n
φορές σιωπηρά και επιστρέφει <code class="constant">null</code> στην αποτυχία (Δείτε <a class="link"
href="ch11s19.html#gel-function-SymbolicNthDerivative"><code
class="function">SymbolicNthDerivative</code></a>)</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicTaylorApproximationFunction"></a>SymbolicTaylorApproximationFunction</span></dt><dd><pre
class="synopsis">SymbolicTaylorApproximationFunction (f,x0,n)</pre><p>Προσπαθεί να κατασκευάσει τη συνάρτηση
προσέγγισης Τέιλορ γύρω από το x0 στον nστο βαθμό. (Δείτε <a class="link"
href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s18.html">Προηγ</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s20.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Διάφορα </td><td
width="20%" align="ce
nter"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top"> Γραφική
παράσταση</td></tr></table></div></body></html>
diff --git a/help/el/html/ch11s20.html b/help/el/html/ch11s20.html
new file mode 100644
index 0000000..8f9c998
--- /dev/null
+++ b/help/el/html/ch11s20.html
@@ -0,0 +1,236 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Γραφική
παράσταση</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="ch11.html" title="Κεφάλαιο 11. Κατάλογος
συναρτήσεων της GEL"><link rel="prev" href="ch11s19.html" title="Συμβολικές πράξεις"><link rel="next"
href="ch12.html" title="Κεφάλαιο 12. Παράδειγμα προγραμμάτων στην GEL"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Γραφική παράσταση</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch11s19.html">Προηγ</a> </td><th width="60%" align="center">Κεφάλαιο 11.
Κατάλογος συνα�
�τήσεων της GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch12.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-plotting"></a>Γραφική παράσταση</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ExportPlot"></a>ExportPlot</span></dt><dd><pre class="synopsis">ExportPlot
(file,type)</pre><pre class="synopsis">ExportPlot (file)</pre><p>Εξάγει τα περιεχόμενα του παραθύρου γραφικής
παράστασης σε αρχείο. Ο τύπος είναι μια συμβολοσειρά που καθορίζει τον τύπο αρχείου για χρήση, "png", "eps",
ή "ps". Αν ο τύπος δεν ορίζεται, τότε παίρνεται η επέκταση, οπότε η επέκταση πρέπει �
�α είναι ".png", ".eps", ή ".ps".</p><p>Σημειώστε ότι τα αρχεία αντικαθίστανται χωρίς ερώτηση.</p><p>Σε
πετυχημένη εξαγωγή, επιστρέφεται αληθές. Αλλιώς, εκτυπώνεται σφάλμα και εγείρεται
εξαίρεση.</p><p>Παραδείγματα: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>ExportPlot("file.png")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>ExportPlot("/directory/file","eps")</code></strong>
+</pre><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LinePlot"></a>LinePlot</span></dt><dd><pre class="synopsis">LinePlot
(func1,func2,func3,...)</pre><pre class="synopsis">LinePlot (func1,func2,func3,x1,x2)</pre><pre
class="synopsis">LinePlot (func1,func2,func3,x1,x2,y1,y2)</pre><pre class="synopsis">LinePlot
(func1,func2,func3,[x1,x2])</pre><pre class="synopsis">LinePlot
(func1,func2,func3,[x1,x2,y1,y2])</pre><p>Σχεδιάστε μια συνάρτηση (ή αρκετές συναρτήσεις) με μια γραμμή.
Πρώτα (μέχρι 10) ορίσματα είναι συναρτήσεις, έπειτα μπορείτε προαιρετικά να ορίσετε τα όρια του παραθύρου
σχεδίασης ως <code class="varname">x1</code>, <code class="varname">x2</code>, <code
class="varname">y1</code>, <code class="varname">y2</code>. Αν τα όρια δεν ορίζονται, τότε εφαρμόζοντ�
�ι τα τρέχοντα ορισμένα όρια (Δείτε <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>) Αν τα όρια y δεν ορίζονται, τότε οι συναρτήσεις υπολογίζονται και
έπειτα χρησιμοποιούνται τα μέγιστα και ελάχιστα.</p><p>Η παράμετρος <a class="link"
href="ch11s03.html#gel-function-LinePlotDrawLegends"><code class="function">LinePlotDrawLegends</code></a>
ελέγχει τη σχεδίαση του υπομνήματος.</p><p>Παραδείγματα: </p><pre class="screen"><code
class="prompt">genius></code> <strong class="userinput"><code>LinePlot(sin,cos)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlot(`(x)=x^2,-1,1,0,1)</code></strong>
+</pre></dd><dt><span class="term"><a name="gel-function-LinePlotClear"></a>LinePlotClear</span></dt><dd><pre
class="synopsis">LinePlotClear ()</pre><p>Εμφανίζει το παράθυρο σχεδίασης γραμμής και καθαρίζει τις
συναρτήσεις και οποιαδήποτε άλλη γραμμή σχεδιάστηκε.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotCParametric"></a>LinePlotCParametric</span></dt><dd><pre
class="synopsis">LinePlotCParametric (func,...)</pre><pre class="synopsis">LinePlotCParametric
(func,t1,t2,tinc)</pre><pre class="synopsis">LinePlotCParametric
(func,t1,t2,tinc,x1,x2,y1,y2)</pre><p>Σχεδιάζει μια παραμετρική μιγαδική συνάρτηση με μια γραμμή. Πρώτα
έρχεται η συνάρτηση που επιστρέφει <code class="computeroutput">x+iy</code>, έπειτα προαιρετικά τα όρια <code
class="varname">t</code> ως
<strong class="userinput"><code>t1,t2,tinc</code></strong>, στη συνέχεια προαιρετικά τα όρια ως <strong
class="userinput"><code>x1,x2,y1,y2</code></strong>.</p><p>Αν τα όρια δεν καθορίζονται, τότε εφαρμόζονται τα
τρέχοντα όρια (Δείτε <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>). Αν δίνεται η συμβολοσειρά "fit" για τα όρια x και y, τότε τα
όρια είναι η μέγιστη έκταση του γραφήματος.</p><p>Η παράμετρος <a class="link"
href="ch11s03.html#gel-function-LinePlotDrawLegends"><code class="function">LinePlotDrawLegends</code></a>
ελέγχει τη σχεδίαση του υπομνήματος.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawLine"></a>LinePlotDrawLine</span></dt><dd><pre
class="synopsis">LinePlotDrawLine (x1,
y1,x2,y2,...)</pre><pre class="synopsis">LinePlotDrawLine (v,...)</pre><p>
+ Draw a line from <code class="varname">x1</code>,<code class="varname">y1</code> to
+ <code class="varname">x2</code>,<code class="varname">y2</code>.
+ <code class="varname">x1</code>,<code class="varname">y1</code>,
+ <code class="varname">x2</code>,<code class="varname">y2</code> can be replaced by an
+ <code class="varname">n</code> by 2 matrix for a longer polyline.
+ Alternatively the vector <code class="varname">v</code> may be a column vector of complex numbers,
+ that is an <code class="varname">n</code> by 1 matrix and each complex number is then
+ considered a point in the plane.
+ </p><p>
+ Extra parameters can be added to specify line color, thickness,
+ arrows, the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ <strong class="userinput"><code>"arrow"</code></strong>, or <strong
class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 4-vector, type of arrow, or the legend. (Arrow and window are from version 1.0.6 onwards.)
+ </p><p>
+ If the line is to be treated as a filled polygon, filled with the given color, you
+ can specify the argument <strong class="userinput"><code>"filled"</code></strong>. Since version
1.0.22 onwards.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally, since version 1.0.18, the color
+ can also be specified as a real vector specifying the red green and
+ blue components where the components are between 0 and 1, e.g. <strong
class="userinput"><code>[1.0,0.5,0.1]</code></strong>.
+ </p><p>Το παράθυρο πρέπει να δίνεται ως συνήθως σαν <strong
class="userinput"><code>[x1,x2,y1,y2]</code></strong>, ή εναλλακτικά μπορεί να δοθεί ως μια συμβολοσειρά
<strong class="userinput"><code>"fit"</code></strong> οπότε, η περιοχή x θα οριστεί ακριβώς και η περιοχή y
θα οριστεί με περιγράμματα πέντε τοις εκατό γύρω από τη γραμμή.</p><p>Η προδιαγραφή του βέλους πρέπει να
είναι <strong class="userinput"><code>"origin"</code></strong>, <strong
class="userinput"><code>"end"</code></strong>, <strong class="userinput"><code>"both"</code></strong>, ή
<strong class="userinput"><code>"none"</code></strong>.</p><p>Στο τέλος, το υπόμνημα πρέπει να είναι μια
συμβολοσειρά που μπορεί να χρησιμοποιηθεί ω�
� υπόμνημα στο γράφημα. Δηλαδή, αν εκτυπωθούν τα υπομνήματα.</p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(0,0,1,1,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;1,-1;-1,-1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;1,1],"arrow","end")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(RungeKuttaFull(`(x,y)=y,0,3,100),"color","blue","legend","The
Solution")</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>for r=0.0 to 1.0 by 0.1 do
LinePlotDrawLine([0,0;1,r],"color",[r,(1-r),0.5],"window",[0,1,0,1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;10,0;10,10;0,10],"filled","color","green")</code></strong>
+</pre><p>
+ </p><p>
+ Unlike many other functions that do not care if they take a
+ column or a row vector, if specifying points as a vector of
+ complex values, due to possible ambiguities, it must always
+ be given as a column vector.
+ </p><p>
+ Specifying <code class="varname">v</code> as a column vector of complex numbers is
+ implemented from version 1.0.22 and onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawPoints"></a>LinePlotDrawPoints</span></dt><dd><pre
class="synopsis">LinePlotDrawPoints (x,y,...)</pre><pre class="synopsis">LinePlotDrawPoints (v,...)</pre><p>
+ Draw a point at <code class="varname">x</code>,<code class="varname">y</code>.
+ The input can be an <code class="varname">n</code> by 2 matrix
+ for <code class="varname">n</code> different points. This function has essentially the same
+ input as <a class="link"
href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a>.
+ Alternatively the vector <code class="varname">v</code> may be a column vector of complex
numbers,
+ that is an <code class="varname">n</code> by 1 matrix and each complex number is then
+ considered a point in the plane.
+ </p><p>
+ Extra parameters can be added to specify color, thickness,
+ the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ or <strong class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 4-vector, or the legend.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally the color can also be specified as a real vector specifying the
red green
+ and blue components where the components are between 0 and 1.
+ </p><p>Το παράθυρο πρέπει να δίνεται ως συνήθως σαν <strong
class="userinput"><code>[x1,x2,y1,y2]</code></strong>, ή εναλλακτικά μπορεί να δοθεί ως μια συμβολοσειρά
<strong class="userinput"><code>"fit"</code></strong> οπότε, η περιοχή x θα οριστεί ακριβώς και η περιοχή y
θα οριστεί με περιγράμματα πέντε τοις εκατό γύρω από τη γραμμή.</p><p>Στο τέλος, το υπόμνημα πρέπει να είναι
μια συμβολοσειρά που μπορεί να χρησιμοποιηθεί ως υπόμνημα στο γράφημα. Δηλαδή, αν εκτυπωθούν τα
υπομνήματα.</p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(0,0,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints([0,0;1,-1;-1,-1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(RungeKuttaFull(`(x,y)=y,0,3,100),"color","blue","legend","The
Solution")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints([1;1+1i;1i;0],"thickness",5)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(ApplyOverMatrix((0:6)',`(k)=exp(k*2*pi*1i/7)),"thickness",3,"legend","The
7th roots of unity")</code></strong>
+</pre><p>
+ </p><p>
+ Unlike many other functions that do not care if they take a
+ column or a row vector, if specifying points as a vector of
+ complex values, due to possible ambiguities, it must always
+ be given as a column vector. Therefore, notice in the
+ last example the transpose of the vector <strong class="userinput"><code>0:6</code></strong>
+ to make it into a column vector.
+ </p><p>
+ Available from version 1.0.18 onwards. Specifying
+ <code class="varname">v</code> as a column vector of complex numbers is
+ implemented from version 1.0.22 and onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotMouseLocation"></a>LinePlotMouseLocation</span></dt><dd><pre
class="synopsis">LinePlotMouseLocation ()</pre><p>
+ Returns a row vector of a point on the line plot corresponding to
+ the current mouse location. If the line plot is not visible,
+ then prints an error and returns <code class="constant">null</code>.
+ In this case you should run
+ <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotClear"><code
class="function">LinePlotClear</code></a>
+ to put the graphing window into the line plot mode.
+ See also
+ <a class="link" href="ch11s20.html#gel-function-LinePlotWaitForClick"><code
class="function">LinePlotWaitForClick</code></a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotParametric"></a>LinePlotParametric</span></dt><dd><pre
class="synopsis">LinePlotParametric (xfunc,yfunc,...)</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc)</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc,x1,x2,y1,y2)</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc,[x1,x2,y1,y2])</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc,"fit")</pre><p>Σχεδιάζει μια παραμετρική συνάρτηση με μια γραμμή. Πρώτα έρχονται οι
συναρτήσεις για <code class="varname">x</code> και <code class="varname">y</code>, έπειτα προαιρετικά τα όρια
του <code class="varname">t</code> ως <strong class="userinput"><code>t1,t2,tinc</code></strong>, έπειτα
προαιρετικά τα όρια ως <strong class="userinput"><code>x1,x2,y1,y2</code
</strong>.</p><p>Αν δεν ορίζονται τα όρια x και y, τότε εφαρμόζονται τα τρέχοντα όρια (Δείτε <a
class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>). Αν δίνεται η συμβολοσειρά "fit" για τα όρια x και y, τότε τα
όρια είναι η μέγιστη έκταση του γραφήματος.</p><p>Η παράμετρος <a class="link"
href="ch11s03.html#gel-function-LinePlotDrawLegends"><code class="function">LinePlotDrawLegends</code></a>
ελέγχει τη σχεδίαση του υπομνήματος.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotWaitForClick"></a>LinePlotWaitForClick</span></dt><dd><pre
class="synopsis">LinePlotWaitForClick ()</pre><p>
+ If in line plot mode, waits for a click on the line plot window
+ and returns the location of the click as a row vector.
+ If the window is closed
+ the function returns immediately with <code class="constant">null</code>.
+ If the window is not in line plot mode, it is put in it and shown
+ if not shown.
+ See also
+ <a class="link" href="ch11s20.html#gel-function-LinePlotMouseLocation"><code
class="function">LinePlotMouseLocation</code></a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-PlotCanvasFreeze"></a>PlotCanvasFreeze</span></dt><dd><pre
class="synopsis">PlotCanvasFreeze ()</pre><p>Προσωρινό πάγωμα σχεδίασης του καμβά. Χρήσιμο αν χρειάζεστε να
σχεδιάσετε μια ομάδα στοιχείων και θέλετε να καθυστερήσετε τη σχεδίαση όλων για να αποφύγετε τρεμόσβησμα σε
μια κίνηση. Αφού έχουν σχεδιαστεί όλα θα πρέπει να καλέσετε <a class="link"
href="ch11s20.html#gel-function-PlotCanvasThaw"><code class="function">PlotCanvasThaw</code></a>.</p><p>Ο
καμβάς ξεπαγώνει πάντα μετά το τέλος οποιασδήποτε εκτέλεσης, έτσι δεν θα παραμείνει ποτέ παγωμένος. Τη στιγμή
που μια νέα γραμμή εντολών εμφανίζεται
για παράδειγμα, ο καμβάς σχεδίασης ξεπαγώνει αυτόματα. Σημειώστε επίσης ότι οι κλήσεις για πάγωμα και
ξεπάγωμα μπορούν με ασφάλεια να εντεθούν.</p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-PlotCanvasThaw"></a>PlotCanvasThaw</span></dt><dd><pre class="synopsis">PlotCanvasThaw
()</pre><p>
+ Thaw the plot canvas frozen by
+ <a class="link" href="ch11s20.html#gel-function-PlotCanvasFreeze"><code
class="function">PlotCanvasFreeze</code></a>
+ and redraw the canvas immediately. The canvas is also always thawed after end of execution
+ of any program.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-PlotWindowPresent"></a>PlotWindowPresent</span></dt><dd><pre
class="synopsis">PlotWindowPresent ()</pre><p>
+ Show and raise the plot window, creating it if necessary.
+ Normally the window is created when one of the plotting
+ functions is called, but it is not always raised if it
+ happens to be below other windows. So this function is
+ good to call in scripts where the plot window might have
+ been created before, and by now is hidden behind the
+ console or other windows.
+ </p><p>Version 1.0.19 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SlopefieldClearSolutions"></a>SlopefieldClearSolutions</span></dt><dd><pre
class="synopsis">SlopefieldClearSolutions ()</pre><p>Καθαρίζει τις σχεδιασμένες λύσεις από τη συνάρτηση <a
class="link" href="ch11s20.html#gel-function-SlopefieldDrawSolution"><code
class="function">SlopefieldDrawSolution</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SlopefieldDrawSolution"></a>SlopefieldDrawSolution</span></dt><dd><pre
class="synopsis">SlopefieldDrawSolution (x, y, dx)</pre><p>Όταν μια γραφική παράσταση πεδίου κλίσης είναι
ενεργή, σχεδιάστε μια λύση με την καθορισμένη αρχική συνθήκη. Η τυπική μέθοδος Ρούνγκε-Κούτα χρησιμοποιείται
με αύξηση <code class="varname">dx</code>. Οι λύσεις μ
ένουν στο γράφημα μέχρι να εμφανιστεί μια διαφορετική γραφική παράσταση ή μέχρι να καλέσετε <a class="link"
href="ch11s20.html#gel-function-SlopefieldClearSolutions"><code
class="function">SlopefieldClearSolutions</code></a>. Μπορείτε επίσης να χρησιμοποιήσετε τη γραφική διεπαφή
για να σχεδιάσετε λύσεις και να ορίσετε αρχικές συνθήκες με το ποντίκι.</p></dd><dt><span class="term"><a
name="gel-function-SlopefieldPlot"></a>SlopefieldPlot</span></dt><dd><pre class="synopsis">SlopefieldPlot
(func)</pre><pre class="synopsis">SlopefieldPlot (func,x1,x2,y1,y2)</pre><p>Σχεδιάστε ένα πεδίο κλίσης. Η
συνάρτηση <code class="varname">func</code> πρέπει να πάρει δύο πραγματικούς αριθμούς <code
class="varname">x</code> και <code class="v
arname">y</code>, ή έναν απλό μιγαδικό αριθμό. Προαιρετικά, μπορείτε να ορίσετε τα όρια του παραθύρου
σχεδίασης ως <code class="varname">x1</code>, <code class="varname">x2</code>, <code
class="varname">y1</code>, <code class="varname">y2</code>. Αν τα όρια δεν καθορίζονται, τότε τα τρέχοντα
ορισμένα όρια εφαρμόζονται (Δείτε <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).</p><p>Η παράμετρος <a class="link"
href="ch11s03.html#gel-function-LinePlotDrawLegends"><code class="function">LinePlotDrawLegends</code></a>
ελέγχει τη σχεδίαση του υπομνήματος.</p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SlopefieldPlot(`(x,y)=sin(x-y),-5,5,-5,5)</code></strong>
+</pre><p>
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlot"></a>SurfacePlot</span></dt><dd><pre class="synopsis">SurfacePlot
(func)</pre><pre class="synopsis">SurfacePlot (func,x1,x2,y1,y2,z1,z2)</pre><pre class="synopsis">SurfacePlot
(func,x1,x2,y1,y2)</pre><pre class="synopsis">SurfacePlot (func,[x1,x2,y1,y2,z1,z2])</pre><pre
class="synopsis">SurfacePlot (func,[x1,x2,y1,y2])</pre><p>Σχεδιάστε μια συνάρτηση επιφάνειας που παίρνει είτε
δύο ορίσματα ή έναν μιγαδικό αριθμό. Πρώτα έρχεται η συνάρτηση, έπειτα προαιρετικά τα όρια ως <code
class="varname">x1</code>, <code class="varname">x2</code>, <code class="varname">y1</code>, <code
class="varname">y2</code>, <code class="varname">z1</code>, <code class="varname">z2</code>. Αν τα όρια δεν
καθορίζονται, τότε εφαρμόζονται τα τρέχοντα ορισμ
ένα όρια (Δείτε <a class="link" href="ch11s03.html#gel-function-SurfacePlotWindow"><code
class="function">SurfacePlotWindow</code></a>). Η Genius μπορεί να σχεδιάσει μόνο μια μοναδική συνάρτηση
επιφάνειας τη φορά.</p><p>Αν τα όρια Z δεν καθορίζονται, τότε χρησιμοποιούνται τα μέγιστα και ελάχιστα της
συνάρτησης.</p><p>Παραδείγματα: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(|sin|,-1,1,-1,1,0,1.5)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(`(x,y)=x^2+y,-1,1,-1,1,-2,2)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(`(z)=|z|^2,-1,1,-1,1,0,2)</code></strong>
+</pre></dd><dt><span class="term"><a
name="gel-function-SurfacePlotClear"></a>SurfacePlotClear</span></dt><dd><pre
class="synopsis">SurfacePlotClear ()</pre><p>
+ Show the surface plot window and clear out functions and any other
+ lines that were drawn.
+ </p><p>
+ Available in version 1.0.19 and onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotData"></a>SurfacePlotData</span></dt><dd><pre class="synopsis">SurfacePlotData
(data)</pre><pre class="synopsis">SurfacePlotData (data,label)</pre><pre class="synopsis">SurfacePlotData
(data,x1,x2,y1,y2,z1,z2)</pre><pre class="synopsis">SurfacePlotData (data,label,x1,x2,y1,y2,z1,z2)</pre><pre
class="synopsis">SurfacePlotData (data,[x1,x2,y1,y2,z1,z2])</pre><pre class="synopsis">SurfacePlotData
(data,label,[x1,x2,y1,y2,z1,z2])</pre><p>
+ Plot a surface from data. The data is an n by 3 matrix whose
+ rows are the x, y and z coordinates. The data can also be
+ simply a vector whose length is a multiple of 3 and so
+ contains the triples of x, y, z. The data should contain at
+ least 3 points.
+ </p><p>Προαιρετικά μπορούμε να δώσουμε την ετικέτα και επίσης τα όρια. Αν δεν δίνονται τα όρια,
υπολογίζονται από τα δεδομένα, το <a class="link" href="ch11s03.html#gel-function-SurfacePlotWindow"><code
class="function">SurfacePlotWindow</code></a> δεν χρησιμοποιείται, αν θέλετε να το χρησιμοποιήσετε, περάστε
το ρητά. Αν δεν δίνεται η ετικέτα, τότε χρησιμοποιείται η κενή ετικέτα.</p><p>Παραδείγματα: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData([0,0,0;1,0,1;0,1,1;1,1,3])</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>SurfacePlotData(data,"My
data")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData(data,-1,1,-1,1,0,10)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData(data,SurfacePlotWindow)</code></strong>
+</pre><p>Ιδού ένα παράδειγμα πώς να σχεδιάσετε σε πολικές συντεταγμένες, ιδιαίτερα πώς να σχεδιάσετε τη
συνάρτηση <strong class="userinput"><code>-r^2 * theta</code></strong>: </p><pre class="screen"><code
class="prompt">genius></code> <strong class="userinput"><code>d:=null; for r=0 to 1 by 0.1 do for theta=0
to 2*pi by pi/5 do d=[d;[r*cos(theta),r*sin(theta),-r^2*theta]];</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>SurfacePlotData(d)</code></strong>
+</pre><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDataGrid"></a>SurfacePlotDataGrid</span></dt><dd><pre
class="synopsis">SurfacePlotDataGrid (data,[x1,x2,y1,y2])</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2,z1,z2])</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2],label)</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2,z1,z2],label)</pre><p>Σχεδιάστε μια επιφάνεια από κανονικά δεδομένα ορθογωνίου. Τα
δεδομένα δίνεται σε έναν πίνακα n επί m, όπου οι γραμμές είναι η συντεταγμένη x και οι στήλες είναι η
συντεταγμένη y. Η συντεταγμένη x διαιρείται σε ίσα n-1 υποδιαστήματα και η συντεταγμένη y διαιρείται σε ίσα
m-1 υποδιαστήματα. Τα όρια <code class="
varname">x1</code> και <code class="varname">x2</code> δίνουν το διάστημα στον άξονα x που χρησιμοποιούμε,
ενώ τα όρια <code class="varname">y1</code> και <code class="varname">y2</code> δίνουν το διάστημα στον άξονα
y που χρησιμοποιούμε. Αν τα όρια <code class="varname">z1</code> και <code class="varname">z2</code> δεν
δίνονται, υπολογίζονται από τα δεδομένα (για να είναι οι ακραίες τιμές από τα δεδομένα).</p><p>Προαιρετικά,
μπορούμε να δώσουμε την ετικέτα. Αν η ετικέτα δεν δίνεται, τότε χρησιμοποιείται η κενή ετικέτα.</p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid([1,2;3,4],[0,1,0,1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid(data,[-1,1,-1,1],"My data")</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>d:=null; for i=1 to 20 do for j=1 to
10 do d@(i,j) = (0.1*i-1)^2-(0.1*j)^2;</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid(d,[-1,1,0,1],"half a saddle")</code></strong>
+</pre><p>
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawLine"></a>SurfacePlotDrawLine</span></dt><dd><pre
class="synopsis">SurfacePlotDrawLine (x1,y1,z1,x2,y2,z2,...)</pre><pre class="synopsis">SurfacePlotDrawLine
(v,...)</pre><p>
+ Draw a line from <code class="varname">x1</code>,<code class="varname">y1</code>,<code
class="varname">z1</code> to
+ <code class="varname">x2</code>,<code class="varname">y2</code>,<code class="varname">z2</code>.
+ <code class="varname">x1</code>,<code class="varname">y1</code>,<code class="varname">z1</code>,
+ <code class="varname">x2</code>,<code class="varname">y2</code>,<code class="varname">z2</code>
can be replaced by an
+ <code class="varname">n</code> by 3 matrix for a longer polyline.
+ </p><p>
+ Extra parameters can be added to specify line color, thickness,
+ arrows, the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ or <strong class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 6-vector, or the legend.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally, since version 1.0.18, the color
+ can also be specified as a real vector specifying the red green and
+ blue components where the components are between 0 and 1, e.g. <strong
class="userinput"><code>[1.0,0.5,0.1]</code></strong>.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2,z1,z2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>Στο τέλος, το υπόμνημα πρέπει να είναι μια συμβολοσειρά που μπορεί να χρησιμοποιηθεί ως
υπόμνημα στο γράφημα. Δηλαδή, αν εκτυπωθούν τα υπομνήματα.</p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawLine(0,0,0,1,1,1,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawLine([0,0,0;1,-1,2;-1,-1,-3])</code></strong>
+</pre><p>
+ </p><p>
+ Available from version 1.0.19 onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawPoints"></a>SurfacePlotDrawPoints</span></dt><dd><pre
class="synopsis">SurfacePlotDrawPoints (x,y,z,...)</pre><pre class="synopsis">SurfacePlotDrawPoints
(v,...)</pre><p>
+ Draw a point at <code class="varname">x</code>,<code class="varname">y</code>,<code
class="varname">z</code>.
+ The input can be an <code class="varname">n</code> by 3 matrix
+ for <code class="varname">n</code> different points. This function has essentially the same
+ input as <a class="link"
href="ch11s20.html#gel-function-SurfacePlotDrawLine">SurfacePlotDrawLine</a>.
+ </p><p>
+ Extra parameters can be added to specify line color, thickness,
+ the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ or <strong class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 6-vector, or the legend.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally the color can also be specified as a real vector specifying the
red green
+ and blue components where the components are between 0 and 1.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2,z1,z2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>Στο τέλος, το υπόμνημα πρέπει να είναι μια συμβολοσειρά που μπορεί να χρησιμοποιηθεί ως
υπόμνημα στο γράφημα. Δηλαδή, αν εκτυπωθούν τα υπομνήματα.</p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawPoints(0,0,0,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawPoints([0,0,0;1,-1,2;-1,-1,1])</code></strong>
+</pre><p>
+ </p><p>
+ Available from version 1.0.19 onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-VectorfieldClearSolutions"></a>VectorfieldClearSolutions</span></dt><dd><pre
class="synopsis">VectorfieldClearSolutions ()</pre><p>Καθαρίζει τις σχεδιασμένες λύσεις από τη συνάρτηση <a
class="link" href="ch11s20.html#gel-function-VectorfieldDrawSolution"><code
class="function">VectorfieldDrawSolution</code></a>.</p><p>Version 1.0.6 onwards.</p></dd><dt><span
class="term"><a name="gel-function-VectorfieldDrawSolution"></a>VectorfieldDrawSolution</span></dt><dd><pre
class="synopsis">VectorfieldDrawSolution (x, y, dt, tlen)</pre><p>Όταν ένα πεδίο διανύσματος είναι ενεργό,
σχεδιάστε μια λύση με την καθορισμένη αρχική συνθήκη. Η τυπική μέθοδος Ρούνγκε-Κούτα χρησιμοποιείται με
αύξηση <code class="varname">dt</code> για ένα διάστημα μήκου
ς <code class="varname">tlen</code>.. Οι λύσεις μένουν στο γράφημα μέχρι να εμφανιστεί μια διαφορετική
γραφική παράσταση ή μέχρι να καλέσετε <a class="link"
href="ch11s20.html#gel-function-VectorfieldClearSolutions"><code
class="function">VectorfieldClearSolutions</code></a>. Μπορείτε επίσης να χρησιμοποιήσετε τη γραφική διεπαφή
για να σχεδιάσετε λύσεις και να ορίσετε αρχικές συνθήκες με το ποντίκι.</p><p>Version 1.0.6
onwards.</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldPlot"></a>VectorfieldPlot</span></dt><dd><pre class="synopsis">VectorfieldPlot
(funcx, funcy)</pre><pre class="synopsis">VectorfieldPlot (funcx, funcy, x1, x2, y1, y2)</pre><p>Σχεδιάστε
ένα δισδιάστατο διανυσματικό πεδίο. Η συνάρτηση <code class="va
rname">funcx</code> πρέπει να είναι η dx/dt του διανυσματικού πεδίου και η συνάρτηση <code
class="varname">funcy</code> πρέπει να είναι η dy/dt του διανυσματικού πεδίου. Οι συναρτήσεις πρέπει να
παίρνουν δύο πραγματικούς αριθμούς <code class="varname">x</code> και <code class="varname">y</code>, ή έναν
μοναδικό μιγαδικό αριθμό. Όταν η παράμετρος <a class="link"
href="ch11s03.html#gel-function-VectorfieldNormalized"><code
class="function">VectorfieldNormalized</code></a> είναι <code class="constant">true</code>, τότε το μέγεθος
των διανυσμάτων είναι κανονικοποιημένο. Δηλαδή, εμφανίζεται μόνο η κατεύθυνση και όχι το
μέγεθος.</p><p>Προαιρετικά, μπορείτε να ορίσετε τα όρ
ια του παραθύρου σχεδίασης ως <code class="varname">x1</code>, <code class="varname">x2</code>, <code
class="varname">y1</code>, <code class="varname">y2</code>. Αν δεν καθορίζονται τα όρια, τότε εφαρμόζονται τα
τρέχοντα όρια (Δείτε <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).</p><p>Η παράμετρος <a class="link"
href="ch11s03.html#gel-function-LinePlotDrawLegends"><code class="function">LinePlotDrawLegends</code></a>
ελέγχει τη σχεδίαση του υπομνήματος.</p><p>Παραδείγματα: </p><pre class="screen"><code
class="prompt">genius></code> <strong class="userinput"><code>VectorfieldPlot(`(x,y)=x^2-y, `(x,y)=y^2-x,
-1, 1, -1, 1)</code></strong>
+</pre></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s19.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch12.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Συμβολικές πράξεις
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%"
align="right" valign="top"> Κεφάλαιο 12. Παράδειγμα προγραμμάτων στην
GEL</td></tr></table></div></body></html>
diff --git a/help/el/html/ch12.html b/help/el/html/ch12.html
new file mode 100644
index 0000000..3d45208
--- /dev/null
+++ b/help/el/html/ch12.html
@@ -0,0 +1,54 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Κεφάλαιο 12.
Παράδειγμα προγραμμάτων στην GEL</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="index.html"
title="Εγχειρίδιο Genius"><link rel="prev" href="ch11s20.html" title="Γραφική παράσταση"><link rel="next"
href="ch13.html" title="Κεφάλαιο 13. Ρυθμίσεις"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Κεφάλαιο 12. Παράδειγμα προγραμμάτων στην GEL</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch11s20.html">Προηγ</a> </td><th width="60%" align="center">
</th><td width="20%" align="right"> <a ac
cesskey="n" href="ch13.html">Επόμενο</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-gel-example-programs"></a>Κεφάλαιο 12.
Παράδειγμα προγραμμάτων στην GEL</h1></div></div></div><p>Ιδού μια συνάρτηση που υπολογίζει παραγοντικά:
</p><pre class="programlisting">function f(x) = if x <= 1 then 1 else (f(x-1)*x)
+</pre><p>Με παραγραφοποίηση γίνεται: </p><pre class="programlisting">function f(x) = (
+ if x <= 1 then
+ 1
+ else
+ (f(x-1)*x)
+)
+</pre><p>Αυτή είναι η άμεση θύρα της παραγοντικής συνάρτησης από τη σελίδα εγχειριδίου <span
class="application">bc</span>. Η σύνταξη φαίνεται παρόμοια με την <span class="application">bc</span>, αλλά
διαφέρει στο ότι στην GEL η τελευταία παράσταση είναι αυτή που επιστρέφεται. Χρησιμοποιώντας τη συνάρτηση
<code class="literal">return</code>, θα πρέπει να είναι: </p><pre class="programlisting">function f(x) = (
+ if (x <= 1) then return (1);
+ return (f(x-1) * x)
+)
+</pre><p>Ο ευκολότερος τρόπος να οριστεί μια παραγοντική συνάρτηση είναι χρησιμοποιώντας τον βρόχο γινομένου
όπως ακολουθεί. Αυτό δεν είναι μόνο ο πιο σύντομη και ο γρήγορη, αλλά επίσης η πιο αναγνώσιμη έκδοση.
</p><pre class="programlisting">function f(x) = prod k=1 to x do k
+</pre><p>Ιδού ένα μεγαλύτερο παράδειγμα, αυτό βασικά ξαναορίζει την εσωτερική συνάρτηση <a class="link"
href="ch11s09.html#gel-function-ref"><code class="function">ref</code></a> για να υπολογίσει τη μορφή
κλιμακωτής γραμμής ενός πίνακα. Η συνάρτηση <code class="function">ref</code> είναι ενσωματωμένη και πολύ
γρηγορότερη, αλλά αυτό το παράδειγμα δείχνει μερικά πιο σύνθετα γνωρίσματα της GEL. </p><pre
class="programlisting"># Calculate the row-echelon form of a matrix
+function MyOwnREF(m) = (
+ if not IsMatrix(m) or not IsValueOnly(m) then
+ (error("MyOwnREF: argument not a value only matrix");bailout);
+ s := min(rows(m), columns(m));
+ i := 1;
+ d := 1;
+ while d <= s and i <= columns(m) do (
+
+ # This just makes the anchor element non-zero if at
+ # all possible
+ if m@(d,i) == 0 then (
+ j := d+1;
+ while j <= rows(m) do (
+ if m@(j,i) == 0 then
+ (j=j+1;continue);
+ a := m@(j,);
+ m@(j,) := m@(d,);
+ m@(d,) := a;
+ j := j+1;
+ break
+ )
+ );
+ if m@(d,i) == 0 then
+ (i:=i+1;continue);
+
+ # Here comes the actual zeroing of all but the anchor
+ # element rows
+ j := d+1;
+ while j <= rows(m)) do (
+ if m@(j,i) != 0 then (
+ m@(j,) := m@(j,)-(m@(j,i)/m@(d,i))*m@(d,)
+ );
+ j := j+1
+ );
+ m@(d,) := m@(d,) * (1/m@(d,i));
+ d := d+1;
+ i := i+1
+ );
+ m
+)
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch11s20.html">Προηγ</a> </td><td width="20%" align="center"> </td><td
width="40%" align="right"> <a accesskey="n" href="ch13.html">Επόμενο</a></td></tr><tr><td width="40%"
align="left" valign="top">Γραφική παράσταση </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top"> Κεφάλαιο 13.
Ρυθμίσεις</td></tr></table></div></body></html>
diff --git a/help/el/html/ch13.html b/help/el/html/ch13.html
new file mode 100644
index 0000000..92431c1
--- /dev/null
+++ b/help/el/html/ch13.html
@@ -0,0 +1,37 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Κεφάλαιο 13.
Ρυθμίσεις</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="index.html" title="Εγχειρίδιο Genius"><link
rel="prev" href="ch12.html" title="Κεφάλαιο 12. Παράδειγμα προγραμμάτων στην GEL"><link rel="next"
href="ch13s02.html" title="Ακρίβεια"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Κεφάλαιο 13. Ρυθμίσεις</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch12.html">Προηγ</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch13s02.html">Επόμενο</a></td></tr>
</table><hr></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a
name="genius-prefs"></a>Κεφάλαιο 13. Ρυθμίσεις</h1></div></div></div><div class="toc"><p><b>Πίνακας
Περιεχομένων</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch13.html#genius-prefs-output">Έξοδος</a></span></dt><dt><span class="sect1"><a
href="ch13s02.html">Ακρίβεια</a></span></dt><dt><span class="sect1"><a
href="ch13s03.html">Τερματικό</a></span></dt><dt><span class="sect1"><a
href="ch13s04.html">Μνήμη</a></span></dt></dl></div><p>Για να ρυθμίσετε το <span class="application">Εργαλείο
μαθηματικών Genius</span>, επιλέξτε <span class="guimenu">Ρυθμίσεις</span> → <span
class="guimenuitem">Προτιμήσεις</span>. Υπάρχουν αρκετές βασικές παράμετροι που παρέχονται από την
αριθμομηχανή πέρ�
� από αυτές που δίνονται από την τυπική βιβλιοθήκη. Αυτές ελέγχουν τη συμπεριφορά της αριθμομηχανής.</p><div
class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Αλλαγή ρυθμίσεων με την
GEL</h3><p>Πολλές από τις ρυθμίσεις στη Genius είναι απλά καθολικές μεταβλητές και μπορούν να υπολογιστούν
και να εκχωρηθούν με τον ίδιο τρόπο όπως οι κανονικές μεταβλητές. Δείτε <a class="xref" href="ch05s02.html"
title="Χρήση μεταβλητών">«Χρήση μεταβλητών»</a> για τον υπολογισμό και την εκχώρηση σε μεταβλητές και <a
class="xref" href="ch11s03.html" title="Παράμετροι">«Παράμετροι»</a> για έναν κατάλογο ρυθμίσεω�
� που μπορούν να τροποποιηθούν με αυτόν τον τρόπο.</p><p>Ως παράδειγμα, μπορείτε να ορίσετε τον μέγιστο
αριθμό ψηφίων σε ένα αποτέλεσμα σε 12 πληκτρολογώντας: </p><pre class="programlisting">MaxDigits = 12
+</pre></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-prefs-output"></a>Έξοδος</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Μέγιστος αριθμός ψηφίων στην έξοδο</span>
+ </span></dt><dd><p>Ο μέγιστος αριθμός ψηφίων σε ένα αποτέλεσμα (<a class="link"
href="ch11s03.html#gel-function-MaxDigits"><code class="function">MaxDigits</code></a>)</p></dd><dt><span
class="term">
+ <span class="guilabel">Αποτελέσματα ως αριθμοί κινητής υποδιαστολής</span>
+ </span></dt><dd><p>Αν τα αποτελέσματα πρέπει να εμφανίζονται πάντα ως αριθμοί κινητής υποδιαστολής (<a
class="link" href="ch11s03.html#gel-function-ResultsAsFloats"><code
class="function">ResultsAsFloats</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Αριθμοί κινητής υποδιαστολής σε επιστημονική σημειογραφία</span>
+ </span></dt><dd><p>Αν οι αριθμοί κινητής υποδιαστολής πρέπει να είναι σε επιστημονική σημειογραφία (<a
class="link" href="ch11s03.html#gel-function-ScientificNotation"><code
class="function">ScientificNotation</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Να εμφανίζονται πάντα πλήρεις παραστάσεις</span>
+ </span></dt><dd><p>Αν πρέπει να εμφανίζονται πλήρεις παραστάσεις για μη αριθμητικές τιμές επιστροφής
(μεγαλύτερες από μια γραμμή) (<a class="link" href="ch11s03.html#gel-function-FullExpressions"><code
class="function">FullExpressions</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Χρήση μικτών κλασμάτων</span>
+ </span></dt><dd><p>Αν τα κλάσματα πρέπει να εμφανίζονται ως μικτά κλάσματα όπως "1 1/3" αντί για
"4/3". (<a class="link" href="ch11s03.html#gel-function-MixedFractions"><code
class="function">MixedFractions</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Να εμφανίζεται 0.0 όταν ο αριθμός κινητής υποδιαστολής είναι μικρότερος
από 10^-x (το 0=να μην περικόπτεται ποτέ)</span>
+ </span></dt><dd><p>How to chop output. But only when other numbers nearby are large.
+ See the documentation of the parameter
+ <a class="link" href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>. </p></dd><dt><span class="term">
+ <span class="guilabel">Να περικόπτονται οι αριθμοί μόνο όταν ένας άλλος αριθμός είναι
μεγαλύτερος από 10^-x</span>
+ </span></dt><dd><p>When to chop output. This is set by the parameter <a class="link"
href="ch11s03.html#gel-function-OutputChopWhenExponent"><code
class="function">OutputChopWhenExponent</code></a>.
+ See the documentation of the parameter
+ <a class="link" href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>. </p></dd><dt><span class="term">
+ <span class="guilabel">Απομνημόνευση ρυθμίσεων εξόδου σε όλες τις συνεδρίες</span>
+ </span></dt><dd><p>Αν θα πρέπει οι ρυθμίσεις εξόδου στο <span class="guilabel">Επιλογές εξόδου
αριθμού/παράστασης</span> να απομνημονεύονται για την επόμενη συνεδρία. Δεν εφαρμόζεται στο πλαίσιο <span
class="guilabel">Επιλογές εξόδου σφάλματος/πληροφοριών</span>.</p><p>Αν δεν σημειωθεί, είτε η προεπιλογή είτε
οποιεσδήποτε προηγουμένως αποθηκευμένες ρυθμίσεις χρησιμοποιούνται κάθε φορά που η Genius ξεκινά. Σημειώστε
ότι οι ρυθμίσεις αποθηκεύονται στο τέλος της συνεδρίας, έτσι αν θέλετε να αλλάξετε τις προεπιλογές, σημειώστε
αυτό το πλαίσιο, επανεκκινήστε <span class="application"
Εργαλείο μαθηματικών Genius</span> και έπειτα αποεπιλέξτε το ξανά.</p></dd><dt><span class="term">
+ <span class="guilabel">Να εμφανίζονται τα σφάλματα σε διάλογο</span>
+ </span></dt><dd><p>Αν οριστεί τα σφάλματα θα εμφανίζονται σε έναν ξεχωριστό διάλογο, αν δεν οριστεί τα
σφάλματα θα τυπωθούν στην κονσόλα.</p></dd><dt><span class="term">
+ <span class="guilabel">Να εμφανίζονται τα μηνύματα πληροφοριών σε έναν διάλογο</span>
+ </span></dt><dd><p>Αν οριστεί τα μηνύματα πληροφοριών θα εμφανίζονται σε έναν ξεχωριστό διάλογο, αν
δεν οριστεί τα μηνύματα πληροφοριών θα τυπωθούν στην κονσόλα.</p></dd><dt><span class="term">
+ <span class="guilabel">Ο μέγιστος αριθμός σφαλμάτων που θα εμφανίζονται</span>
+ </span></dt><dd><p>Ο μέγιστος αριθμός σφαλμάτων που θα επιστρέφεται με έναν υπολογισμό (<a
class="link" href="ch11s03.html#gel-function-MaxErrors"><code class="function">MaxErrors</code></a>). Αν το
ορίσετε σε 0, τότε όλα τα σφάλματα επιστρέφονται πάντα. Συνήθως, αν κάποιος βρόχος προκαλεί πολλά σφάλματα,
τότε είναι απίθανο ότι θα μπορέσετε να πάρετε νόημα από περισσότερους εκτός από λίγους από αυτούς, έτσι
βλέποντας έναν μεγάλο κατάλογο σφαλμάτων δεν είναι συνήθως χρήσιμο.</p></dd></dl></div><p>Πέρα από αυτές τις
προτιμήσεις, υπάρχουν κάποιες προτιμήσεις που μπορούν να αλλαχθούν μόνο ορίζοντας τ
ες στην κονσόλα χώρου εργασίας. Για άλλες που μπορούν να επηρεάσουν την έξοδο δείτε <a class="xref"
href="ch11s03.html" title="Παράμετροι">«Παράμετροι»</a>.</p><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <code class="function">IntegerOutputBase</code>
+ </span></dt><dd><p>Η βάση που θα χρησιμοποιηθεί για την έξοδο ακεραίων</p></dd><dt><span class="term">
+ <code class="function">OutputStyle</code>
+ </span></dt><dd><p>A string, can be <code class="literal">"normal"</code>,
+<code class="literal">"latex"</code>, <code class="literal">"mathml"</code> or
+<code class="literal">"troff"</code> and it will affect how matrices (and perhaps other
+stuff) is printed, useful for pasting into documents. Normal style is the
+default human readable printing style of <span class="application">Genius Mathematics Tool</span>. The
other styles are for
+typesetting in LaTeX, MathML (XML), or in Troff.</p></dd></dl></div></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch12.html">Προηγ</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> <a accesskey="n" href="ch13s02.html">Επόμενο</a></td></tr><tr><td width="40%" align="left"
valign="top">Κεφάλαιο 12. Παράδειγμα προγραμμάτων στην GEL </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top">
Ακρίβεια</td></tr></table></div></body></html>
diff --git a/help/el/html/ch13s02.html b/help/el/html/ch13s02.html
new file mode 100644
index 0000000..bede500
--- /dev/null
+++ b/help/el/html/ch13s02.html
@@ -0,0 +1,5 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Ακρίβεια</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Εγχειρίδιο Genius"><link rel="up" href="ch13.html" title="Κεφάλαιο 13. Ρυθμίσεις"><link rel="prev"
href="ch13.html" title="Κεφάλαιο 13. Ρυθμίσεις"><link rel="next" href="ch13s03.html"
title="Τερματικό"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Ακρίβεια</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch13.html">Προηγ</a>
</td><th width="60%" align="center">Κεφάλαιο 13. Ρυθμίσεις</th><td width="20%" align="right"> <a
accesskey="n" href="ch13s03.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"
<div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-prefs-precision"></a>Ακρίβεια</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Ακρίβεια κινητής υποδιαστολής</span>
+ </span></dt><dd><p>Η ακρίβεια κινητής υποδιαστολής σε δυαδικά ψηφία (<a class="link"
href="ch11s03.html#gel-function-FloatPrecision"><code class="function">FloatPrecision</code></a>). Σημειώστε
ότι αλλάζοντας αυτό επηρεάζει μόνο τις νέες υπολογιζόμενες ποσότητες. Οι παλιές τιμές που αποθηκεύονται σε
μεταβλητές είναι προφανώς ακόμα στην παλιά ακρίβεια και αν θέλετε να τις έχετε πιο ακριβείς, θα πρέπει να τις
επαναϋπολογίσετε. Οι εξαιρέσεις σε αυτό είναι οι σταθερές συστήματος όπως <a class="link"
href="ch11s04.html#gel-function-pi"><code class="function">pi</code></a> ή <a class="link"
href="ch11s04.html#gel-function-e"><code class="function">e</code></a>.</p></dd><dt><span class
="term">
+ <span class="guilabel">Να απομνημονεύεται η ρύθμιση ακρίβειας σε όλες τις συνεδρίες</span>
+ </span></dt><dd><p>Αν θα πρέπει η ακρίβεια να οριστεί για να απομνημονεύεται για την επόμενη συνεδρία.
Αν δεν σημειωθεί, είτε η προεπιλεγμένη είτε οποιαδήποτε προηγουμένως αποθηκευμένη ρύθμιση θα χρησιμοποιηθεί,
κάθε φορά που ξεκινά η Genius. Σημειώστε ότι οι ρυθμίσεις αποθηκεύονται στο τέλος της συνεδρίας και έτσι αν
θέλετε να αλλάξετε την προεπιλογή σημειώστε αυτό το πλαίσιο, επανεκκινήστε τη genius και έπειτα αποεπιλέξτε
την πάλι.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13.html">Προηγ</a> </td><td width="20%" al
ign="center"><a accesskey="u" href="ch13.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch13s03.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Κεφάλαιο 13. Ρυθμίσεις
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%"
align="right" valign="top"> Τερματικό</td></tr></table></div></body></html>
diff --git a/help/el/html/ch13s03.html b/help/el/html/ch13s03.html
new file mode 100644
index 0000000..23e5954
--- /dev/null
+++ b/help/el/html/ch13s03.html
@@ -0,0 +1,9 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Τερματικό</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Εγχειρίδιο Genius"><link rel="up" href="ch13.html" title="Κεφάλαιο 13. Ρυθμίσεις"><link rel="prev"
href="ch13s02.html" title="Ακρίβεια"><link rel="next" href="ch13s04.html" title="Μνήμη"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Τερματικό</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch13s02.html">Προηγ</a> </td><th width="60%"
align="center">Κεφάλαιο 13. Ρυθμίσεις</th><td width="20%" align="right"> <a accesskey="n"
href="ch13s04.html">Επόμενο</a></td></tr></table><hr></div><div class="sect1"><div class="titlepag
e"><div><div><h2 class="title" style="clear: both"><a
name="genius-prefs-terminal"></a>Τερματικό</h2></div></div></div><p>Το τερματικό αναφέρεται στην κονσόλα στην
περιοχή εργασίας.</p><div class="variablelist"><dl class="variablelist"><dt><span class="term">
+ <span class="guilabel">Γραμμές οπισθοκύλισης</span>
+ </span></dt><dd><p>Γραμμές οπισθοκύλισης στο τερματικό.</p></dd><dt><span class="term">
+ <span class="guilabel">Γραμματοσειρά</span>
+ </span></dt><dd><p>Η γραμματοσειρά που θα χρησιμοποιηθεί στο τερματικό.</p></dd><dt><span
class="term">
+ <span class="guilabel">Μαύρο σε λευκό</span>
+ </span></dt><dd><p>Αν θα χρησιμοποιήσετε μαύρο σε λευκό στο τερματικό.</p></dd><dt><span class="term">
+ <span class="guilabel">Δρομέας που αναβοσβήνει</span>
+ </span></dt><dd><p>Αν ο δρομέας στο τερματικό πρέπει να αναβοσβήνει, όταν το τερματικό εστιάζει. Αυτό
μπορεί μερικές φορές να είναι ενοχλητικό και δημιουργεί αδρανή κυκλοφορία αν χρησιμοποιείτε τη Genius
απομακρυσμένα.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13s02.html">Προηγ</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch13.html">Πάνω</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch13s04.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top">Ακρίβεια </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right"
valign="top"> Μνήμη</td></tr></table></div>
</body></html>
diff --git a/help/el/html/ch13s04.html b/help/el/html/ch13s04.html
new file mode 100644
index 0000000..c761e01
--- /dev/null
+++ b/help/el/html/ch13s04.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Μνήμη</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Εγχειρίδιο Genius"><link rel="up" href="ch13.html" title="Κεφάλαιο 13. Ρυθμίσεις"><link rel="prev"
href="ch13s03.html" title="Τερματικό"><link rel="next" href="ch14.html" title="Κεφάλαιο 14. Περί του Εργαλείο
μαθηματικών Genius"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Μνήμη</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch13s03.html">Προηγ</a>
</td><th width="60%" align="center">Κεφάλαιο 13. Ρυθμίσεις</th><td width="20%" align="right"> <a
accesskey="n" href="ch14.html">Επόμενο</a></td></tr></ta
ble><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-prefs-memory"></a>Μνήμη</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Μέγιστος αριθμός κόμβων για κατανομή</span>
+ </span></dt><dd><p>Εσωτερικά, όλα τα δεδομένα τίθενται σε μικρούς κόμβους στη μνήμη. Αυτό δίνει ένα
όριο στον μέγιστο αριθμό κόμβων για κατανομή στους υπολογισμούς. Αυτό το όριο αποφεύγει το πρόβλημα έλλειψης
μνήμης, αν κάνετε κάτι κατά λάθος, που χρησιμοποιεί υπερβολική μνήμη, όπως η αναδρομή χωρίς τέλος. Αυτό
μπορεί να καθυστερήσει τον υπολογιστή σας και να τον δυσκολέψει ακόμα και να διακόψει το
πρόγραμμα.</p><p>Μόλις φτάσει το όριο, το <span class="application">Εργαλείο μαθηματικών Genius</span> ζητά
αν θέλετε να διακόψετε τον υπολογισμό ή αν θέλετε να συνεχ
ίσετε. Αν συνεχίσετε, δεν εφαρμόζεται όριο και είναι πιθανό στον υπολογιστής σας να λείψει μνήμη. Το όριο θα
εφαρμοστεί ξανά την επόμενη φορά που θα εκτελέσετε ένα πρόγραμμα ή μια παράσταση στην κονσόλα ανεξάρτητα από
το πώς απαντήσατε στην ερώτηση.</p><p>Ορίζοντας το όριο σε μηδέν σημαίνει ότι δεν υπάρχει όριο στο πόση μνήμη
χρησιμοποιεί η Genius.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13s03.html">Προηγ</a>
</td><td width="20%" align="center"><a accesskey="u" href="ch13.html">Πάνω</a></td><td width="40%"
align="right"> <a accesskey="n" href="ch14.html">Επόμενο</a></t
d></tr><tr><td width="40%" align="left" valign="top">Τερματικό </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top"> Κεφάλαιο 14. Περί
του <span class="application">Εργαλείο μαθηματικών Genius</span></td></tr></table></div></body></html>
diff --git a/help/el/html/ch14.html b/help/el/html/ch14.html
new file mode 100644
index 0000000..8a7f80b
--- /dev/null
+++ b/help/el/html/ch14.html
@@ -0,0 +1,13 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Κεφάλαιο 14. Περί του
Εργαλείο μαθηματικών Genius</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Εγχειρίδιο Genius"><link rel="up" href="index.html" title="Εγχειρίδιο
Genius"><link rel="prev" href="ch13s04.html" title="Μνήμη"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Κεφάλαιο 14. Περί του <span class="application">Εργαλείο
μαθηματικών Genius</span></th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch13s04.html">Προηγ</a> </td><th width="60%" align="center"> </th><td width="20%" align="right">
</td></tr></table><hr></div><div class="chapter"><div class="titlepag
e"><div><div><h1 class="title"><a name="genius-about"></a>Κεφάλαιο 14. Περί του <span
class="application">Εργαλείο μαθηματικών Genius</span></h1></div></div></div><p>Το <span
class="application">Εργαλείο μαθηματικών Genius</span> γράφτηκε από τον Jiří (George) Lebl (<code
class="email"><<a class="email" href="mailto:jirka 5z com">jirka 5z com</a>></code>). Το ιστορικό του
<span class="application">Εργαλείο μαθηματικών Genius</span> πηγαίνει πίσω στο τέλος του 1997. Ήταν το πρώτο
πρόγραμμα αριθμομηχανής για GNOME, αλλά έπειτα επεκτάθηκε πέρα από μια απλή επιτραπέζια αριθμομηχανή. Για να
βρείτε περισσότερες πληροφορίες για το <span class="application">Εργαλείο μαθηματικών Genius</span>, παρακα
λούμε επισκεφτείτε την <a class="ulink" href="http://www.jirka.org/genius.html" target="_top">ιστοσελίδα
Genius</a>.</p><p>Για να αναφέρετε ένα σφάλμα ή να κάνετε μια πρόταση σχετικά με αυτήν την εφαρμογή ή αυτό το
εγχειρίδιο, στείλτε ένα μήνυμα σε μένα (τον συγγραφέα) ή στείλτε στην ταχυδρομική λίστα (δείτε την
ιστοσελίδα).</p><p> This program is distributed under the terms of the GNU
+ General Public license as published by the Free Software
+ Foundation; either version 3 of the License, or (at your option)
+ any later version. A copy of this license can be found at this
+ <a class="ulink" href="http://www.gnu.org/copyleft/gpl.html" target="_top">link</a>, or in the file
+ COPYING included with the source code of this program. </p><p>Jiří Lebl was during various parts of
the development
+ partially supported for the work by NSF grants DMS 0900885,
+ DMS 1362337,
+ the University of Illinois at Urbana-Champaign,
+ the University of California at San Diego,
+ the University of Wisconsin-Madison, and
+ Oklahoma State University. The software has
+ been used for both teaching and research.</p></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13s04.html">Προηγ</a>
</td><td width="20%" align="center"> </td><td width="40%" align="right"> </td></tr><tr><td width="40%"
align="left" valign="top">Μνήμη </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Αρχή</a></td><td width="40%" align="right" valign="top">
</td></tr></table></div></body></html>
diff --git a/help/el/html/genius.proc b/help/el/html/genius.proc
new file mode 100644
index 0000000..e69de29
diff --git a/help/el/html/index.html b/help/el/html/index.html
new file mode 100644
index 0000000..0753826
--- /dev/null
+++ b/help/el/html/index.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Εγχειρίδιο
Genius</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><meta name="description"
content="Εγχειρίδιο για το εργαλείο μαθηματικών."><link rel="home" href="index.html" title="Εγχειρίδιο
Genius"><link rel="next" href="ch01.html" title="Κεφάλαιο 1. Εισαγωγή"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Εγχειρίδιο Genius</th></tr><tr><td width="20%"
align="left"> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch01.html">Επόμενο</a></td></tr></table><hr></div><div lang="el" class="book"><div
class="titlepage"><div><div><h1 class="title"><a name="index"></a>Εγχειρίδιο Ge
nius</h1></div><div><div class="authorgroup"><div class="author"><h3 class="author"><span
class="firstname">Jiří</span> <span class="surname">Lebl</span></h3><div class="affiliation"><span
class="orgname">Πανεπιστήμιο πολιτείας Οκλαχόμα<br></span><div class="address"><p> <code class="email"><<a
class="email" href="mailto:jirka 5z com">jirka 5z com</a>></code> </p></div></div></div><div
class="author"><h3 class="author"><span class="firstname">Kai</span> <span
class="surname">Willadsen</span></h3><div class="affiliation"><span class="orgname">Πανεπιστήμιο του
Κουινσλάντ, Αυστραλία<br></span><div class="address"><p> <code class="email"><<a class="email"
href="mailto:kaiw itee uq edu au">kaiw itee uq edu au</a>></code>
</p></div></div></div></div></div><div><p class="releaseinfo">This manual describes version 1.0.22 of Genius.
+ </p></div><div><p class="copyright">Πνευματικά Δικαιώματα © 1997-2016 Jiří (George)
Lebl</p></div><div><p class="copyright">Πνευματικά Δικαιώματα © 2004 Kai Willadsen</p></div><div><p
class="copyright">Πνευματικά Δικαιώματα © 2013 Δημήτρης Σπίγγος (dmtrs32 gmail com)</p></div><div><p
class="copyright">Πνευματικά Δικαιώματα © 2014 Μαρία Μαυρίδου (mavridou gmail com)</p></div><div><div
class="legalnotice"><a name="legalnotice"></a><p>Χορηγείται άδεια αντιγραφής, διανομής και/ή τροποποίησης του
παρόντος εγγράφου υπό τους όρους της έκδοσης 1.1 της Ελεύθερης Άδειας Τεκμηρίωσης GNU (GFDL), ή οποιασδήποτε
μεταγενέστερης έκδοσής αυτής από το Ίδρυμα Ελεύθερου Λογισμικού (FSF), χωρ
ίς αμετάβλητες ενότητες, κείμενα εμπροσθοφύλλου και κείμενα οπισθοφύλλου. Αντίγραφο της άδειας GFDL είναι
διαθέσιμο στον ακόλουθο <a class="ulink" href="ghelp:fdl" target="_top">σύνδεσμο</a>, ή στο αρχείο
COPYING-DOCS που διανέμεται μαζί με το παρόν εγχειρίδιο.</p><p>Αυτό το εγχειρίδιο αποτελεί μέρος της συλλογής
εγχειριδίων του GNOME που διανέμονται υπό τους όρους της GFDL. Αν επιθυμείτε να διανείμετε το παρόν
εγχειρίδιο ξεχωριστά από τη συλλογή, οφείλετε να προσθέσετε στο εγχειρίδιο αντίγραφο της άδειας χρήσης, όπως
προβλέπεται στην ενότητα 6 της άδειας.</p><p>Πολλές από �
�ις ονομασίες που χρησιμοποιούνται από εταιρείες για την διαφοροποίηση των προϊόντων και υπηρεσιών τους
έχουν καταχωρηθεί ως εμπορικά σήματα. Σε όποιο σημείο της τεκμηρίωσης GNOME τυχόν εμφανίζονται αυτές οι
ονομασίες, και εφόσον τα μέλη του Έργου τεκμηρίωσης GNOME έχουν λάβει γνώση αυτών των εμπορικών σημάτων, οι
ονομασίες ή τα αρχικά αυτών θα γράφονται με κεφαλαίους χαρακτήρες.</p><p>ΤΟ ΠΑΡΟΝ ΕΓΓΡΑΦΟ ΚΑΙ ΟΙ ΤΡΟΠΟΙΗΜΕΝΕΣ
ΕΚΔΟΣΕΙΣ ΑΥΤΟΥ ΠΑΡΕΧΟΝΤΑΙ ΥΠΟ ΤΟΥΣ ΟΡΟΥΣ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΑΔΕΙΑΣ ΤΕΚΜΗΡΙΩΣΗΣ GNU (GFDL) ΚΑΙ ΜΕ ΤΗΝ ΠΕΡΑΙΤΕΡΩ
ΔΙΕΥΚΡΙΝΙΣΗ ΟΤΙ: </
p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>ΤΟ ΠΑΡΟΝ ΕΓΓΡΑΦΟ
ΠΑΡΕΧΕΤΑΙ "ΩΣ ΕΧΕΙ", ΧΩΡΙΣ ΟΠΟΙΑΔΗΠΟΤΕ ΑΛΛΗ ΕΓΓΥΗΣΗ, ΕΙΤΕ ΡΗΤΗ ΕΙΤΕ ΣΙΩΠΗΡΗ, ΣΥΜΠΕΡΙΛΑΜΒΑΝΟΜΕΝΗΣ, ΧΩΡΙΣ
ΠΕΡΙΟΡΙΣΜΟ, ΤΗΣ ΕΓΓΥΗΣΗΣ ΟΤΙ ΤΟ ΕΓΓΡΑΦΟ, Ή Η ΤΡΟΠΟΠΟΙΗΜΕΝΗ ΕΚΔΟΣΗ ΑΥΤΟΥ, ΕΙΝΑΙ ΕΜΠΟΡΕΥΣΙΜΟ, ΚΑΤΑΛΛΗΛΟ ΓΙΑ
ΕΙΔΙΚΟ ΣΚΟΠΟ ΚΑΙ ΔΕΝ ΠΡΟΣΒΑΛΛΕΙ ΔΙΚΑΙΩΜΑΤΑ ΤΡΙΤΩΝ. Ο ΧΡΗΣΤΗΣ ΑΝΑΛΑΜΒΑΝΕΙ ΕΞ ΟΛΟΚΛΗΡΟΥ ΤΗΝ ΕΘΥΝΗ ΩΣ ΠΡΟΣ ΤΗΝ
ΠΟΙΟΤΗΤΑ, ΤΗΝ ΑΚΡΙΒΕΙΑ ΚΑΙ ΤΗΝ ΧΡΗΣΗ ΤΟΥ ΕΓΓΡΑΦΟΥ Ή ΤΗΣ ΤΡΟΠΟΠΟΙΗΜΕΝΗΣ ΕΚΔΟΣΗΣ ΑΥΤΟΥ. ΣΕ ΠΕΡΙΠΤΩΣΗ ΠΟΥ
ΟΠΟΙΟΔΗΠΟΤΕ ΕΓΓΡΑΦΟ Ή ΤΡΟΠΟΠΟΙΗΜΕΝΗ ΕΚΔΟΣΗ ΑΥΤΟΥ ΑΠΟΔΕΙΧ
ΘΟΥΝ ΕΛΑΤΤΩΜΑΤΙΚΑ ΚΑΘ' ΟΙΟΝΔΗΠΟΤΕ ΤΡΟΠΟ, Ο ΧΡΗΣΤΗΣ (ΚΑΙ ΟΧΙ Ο ΑΡΧΙΚΟΣ ΣΥΓΓΡΑΦΕΑΣ, ΔΗΜΙΟΥΡΓΟΣ Ή ΟΠΟΙΟΣΔΗΠΟΤΕ
ΣΥΝΤΕΛΕΣΤΗΣ) ΑΝΑΛΑΜΒΑΝΕΙ ΤΟ ΚΟΣΤΟΣ ΟΠΟΙΑΣΔΗΠΟΤΕ ΑΝΑΓΚΑΙΑΣ ΣΥΝΤΗΡΗΣΗΣ, ΕΠΙΣΚΕΥΗΣ Ή ΔΙΟΡΘΩΣΗΣ. Η ΠΑΡΟΥΣΑ
ΑΠΟΠΟΙΗΣΗ ΕΓΓΥΗΣΗΣ ΑΠΟΤΕΛΕΙ ΑΝΑΠΟΣΠΑΣΤΟ ΜΕΡΟΣ ΤΗΣ ΑΔΕΙΑΣ. ΔΕΝ ΕΠΙΤΡΕΠΕΤΑΙ ΟΥΔΕΜΙΑ ΧΡΗΣΗ ΤΟΥ ΕΓΓΡΑΦΟΥ Ή
ΤΡΟΠΟΠΟΙΗΜΕΝΩΝ ΕΚΔΟΣΕΩΝ ΑΥΤΟΥ ΣΥΜΦΩΝΑ ΜΕ ΤΟΥΣ ΟΡΟΥΣ ΤΗΣ ΠΑΡΟΥΣΑΣ, ΠΑΡΑ ΜΟΝΟ ΕΑΝ ΣΥΝΟΔΕΥΕΤΑΙ ΑΠΟ ΤΗΝ ΑΠΟΠΟΙΗΣΗ
ΕΓΓΥΗΣΗΣ, ΚΑΙ</p></li><li class="listitem"><p>Ο ΔΗΜΙΟΥΡΓΟΣ, Ο ΑΡΧΙΚΟΣ ΣΥΓΓΡΑΦΕΑΣ, ΟΙ ΣΥΝΤΕΛΕΣΤΕΣ Ή ΟΙ
ΔΙΑΝΟΜΕΙΣ ΤΟΥ ΕΓΓΡΑΦΟΥ Ή Τ�
�ΟΠΟΠΟΙΗΜΕΝΗΣ ΕΚΔΟΣΗΣ ΑΥΤΟΥ, ΚΑΘΩΣ ΚΑΙ ΟΙ ΠΡΟΜΗΘΕΥΤΕΣ ΟΠΟΙΩΝΔΗΠΟΤΕ ΕΚ ΤΩΝ ΠΡΟΑΝΑΦΕΡΟΜΕΝΩΝ ΜΕΡΩΝ, ΔΕΝ
ΕΥΘΥΝΟΝΤΑΙ ΕΝΑΝΤΙ ΟΙΟΥΔΗΠΟΤΕ, ΣΕ ΚΑΜΙΑ ΠΕΡΙΠΤΩΣΗ ΚΑΙ ΥΠΟ ΚΑΜΙΑ ΕΡΜΗΝΕΙΑ ΝΟΜΟΥ, ΕΙΤΕ ΕΞ ΑΔΙΚΟΠΡΑΞΙΑΣ
(ΣΥΜΠΕΡΙΛΑΜΒΑΝΟΜΕΝΗΣ ΤΗΣ ΑΜΕΛΕΙΑΣ) ΕΙΤΕ ΣΤΟ ΠΛΑΙΣΙΟ ΣΥΜΒΑΤΙΚΗΣ Ή ΑΛΛΗΣ ΥΠΟΧΡΕΩΣΗΣ, ΓΙΑ ΤΥΧΟΝ ΑΜΕΣΕΣ, ΕΜΜΕΣΕΣ,
ΕΙΔΙΚΕΣ, ΤΥΧΑΙΕΣ Ή ΣΥΝΕΠΑΚΟΛΟΥΘΕΣ ΖΗΜΙΕΣ ΟΠΟΙΑΣΔΗΠΟΤΕ ΜΟΡΦΗΣ, ΣΥΜΠΕΡΙΛΑΜΒΑΝΟΜΕΝΩΝ, ΧΩΡΙΣ ΠΕΡΙΟΡΙΣΜΟ, ΖΗΜΙΩΝ
ΛΟΓΩ ΑΠΩΛΕΙΑΣ ΦΗΜΗΣ ΚΑΙ ΠΕΛΑΤΕΙΑΣ, ΔΙΑΚΟΠΗΣ ΕΡΓΑΣΙΩΝ, ΔΥΣΛΕΙΤΟΥΡΓΙΑΣ Ή ΒΛΑΒΗΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ, Ή
ΚΑΘΕ ΑΛΛΗΣ �
�ΗΜΙΑΣ Ή ΑΠΩΛΕΙΑΣ ΠΟΥ ΟΦΕΙΛΕΤΑΙ Ή ΣΧΕΤΙΖΕΤΑΙ ΜΕ ΤΗΝ ΧΡΗΣΗ ΤΟΥ ΕΓΓΡΑΦΟΥ ΚΑΙ ΤΩΝ ΤΡΟΠΟΠΟΙΗΜΕΝΩΝ ΕΚΔΟΣΕΩΝ
ΑΥΤΟΥ, ΑΚΟΜΑ ΚΑΙ ΑΝ ΤΑ ΩΣ ΑΝΩ ΜΕΡΗ ΕΙΧΑΝ ΛΑΒΕΙ ΓΝΩΣΗ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΠΡΟΚΛΗΣΗΣ ΤΕΤΟΙΩΝ
ΖΗΜΙΩΝ.</p></li></ol></div></div></div><div><div class="legalnotice"><a name="idm45617557667008"></a><p
class="legalnotice-title"><b>Aνάδραση</b></p><p>
+ To report a bug or make a suggestion regarding the <span class="application">Genius Mathematics
Tool</span>
+ application or this manual, please visit the
+ <a class="ulink" href="http://www.jirka.org/genius.html" target="_top">Genius
+ Web page</a>
+ or email me at <code class="email"><<a class="email" href="mailto:jirka 5z com">jirka 5z
com</a>></code>.
+ </p></div></div><div><div class="revhistory"><table style="border-style:solid; width:100%;"
summary="ιστορικό αναθεωρήσεων"><tr><th align="left" valign="top" colspan="2"><b>Ιστορικό
Αναθεωρήσεων</b></th></tr><tr><td align="left">Αναθεώρηση 0.2</td><td align="left">September
2016</td></tr><tr><td align="left" colspan="2">
+ <p class="author">Jiri (George) Lebl <code class="email"><<a class="email"
href="mailto:jirka 5z com">jirka 5z com</a>></code></p>
+ </td></tr></table></div></div><div><div class="abstract"><p
class="title"><b>Περίληψη</b></p><p>Εγχειρίδιο για το εργαλείο
μαθηματικών.</p></div></div></div><hr></div><div class="toc"><p><b>Πίνακας Περιεχομένων</b></p><dl
class="toc"><dt><span class="chapter"><a href="ch01.html">1. Εισαγωγή</a></span></dt><dt><span
class="chapter"><a href="ch02.html">2. Ξεκίνημα</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch02.html#genius-to-start">Για να ξεκινήσετε το <span class="application">εργαλείο μαθηματικών
Genius</span></a></span></dt><dt><span class="sect1"><a href="ch02s02.html">Όταν ξεκινάτε το
Genius</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch03.html">3. Βασική
χρήση</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch03.html#genius-usage-workarea">Χρήση της
περιοχής εργασίας</a></
span></dt><dt><span class="sect1"><a href="ch03s02.html">Για να δημιουργήσετε ένα νέο
πρόγραμμα</a></span></dt><dt><span class="sect1"><a href="ch03s03.html">Για το άνοιγμα και την εκτέλεση ενός
προγράμματος</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch04.html">4. Γραφική
παράσταση</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch04.html#genius-line-plots">Γραμμικές
γραφικές παραστάσεις</a></span></dt><dt><span class="sect1"><a href="ch04s02.html">Παραμετρικές γραφικές
παραστάσεις</a></span></dt><dt><span class="sect1"><a href="ch04s03.html">Γραφικές παραστάσεις πεδίου
κλίσεων</a></span></dt><dt><span class="sect1"><a href="ch04s04.html">Γραφικές παραστάσεις διανυσματικού
πεδίου</a></span></dt><dt><span class="sect1"><a href="ch04s05
.html">Γραφικές παραστάσεις επιφάνειας</a></span></dt></dl></dd><dt><span class="chapter"><a
href="ch05.html">5. Βασικά της GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch05.html#genius-gel-values">Τιμές</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-numbers">Αριθμοί</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-booleans">Λογικές τιμές </a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-strings">Συμβολοσειρές</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-null">Null</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s02.html">Χρήση μεταβλητών</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-setting">Ορισμός μεταβλητών</a></span></dt><dt><span class="sect2"><a
href="ch05s02.html#genius-
gel-variables-built-in">Ενσωματωμένες μεταβλητές</a></span></dt><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-previous-result">Προηγούμενη μεταβλητή
αποτελέσματος</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch05s03.html">Χρησιμοποίηση
συναρτήσεων</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-defining">Ορισμός συναρτήσεων</a></span></dt><dt><span
class="sect2"><a href="ch05s03.html#genius-gel-functions-variable-argument-lists">Κατάλογοι ορισμάτων
μεταβλητής</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-passing-functions">Πέρασμα συναρτήσεων σε
συναρτήσεις</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-operations">Πράξεις σε συναρτήσεις</a></span></dt></dl></dd><dt>
<span class="sect1"><a href="ch05s04.html">Διαχωριστικό</a></span></dt><dt><span class="sect1"><a
href="ch05s05.html">Σχόλια</a></span></dt><dt><span class="sect1"><a href="ch05s06.html">Μετρικός
υπολογισμός</a></span></dt><dt><span class="sect1"><a href="ch05s07.html">Κατάλογος τελεστών
GEL</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch06.html">6. Προγραμματισμός με
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch06.html#genius-gel-conditionals">Εξαρτήσεις</a></span></dt><dt><span class="sect1"><a
href="ch06s02.html">Βρόχοι</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-while">Βρόχοι While</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-for">Βρόχοι For</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-foreach">Βρόχοι Foreach</a></span></dt><dt><s
pan class="sect2"><a href="ch06s02.html#genius-gel-loops-break-continue">Break και Continue (διακοπή και
συνέχιση)</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch06s03.html">Sums και Products
(αθροίσματα και γινόμενα)</a></span></dt><dt><span class="sect1"><a href="ch06s04.html">Τελεστές
σύγκρισης</a></span></dt><dt><span class="sect1"><a href="ch06s05.html">Καθολικές μεταβλητές και εμβέλεια
μεταβλητών</a></span></dt><dt><span class="sect1"><a href="ch06s06.html">Μεταβλητές
παραμέτρων</a></span></dt><dt><span class="sect1"><a href="ch06s07.html">Επιστροφή</a></span></dt><dt><span
class="sect1"><a href="ch06s08.html">Αναφορές</a></span></dt><dt><span class="sect1"><a
href="ch06s09.html">Lvalues (αριστερές τιμές)</a></span></dt></dl></dd><dt><span class="chapter"><a
href="ch07.html">7. Προχωρημένος π�
�ογραμματισμός με GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch07.html#genius-gel-error-handling">Χειρισμός σφάλματος</a></span></dt><dt><span class="sect1"><a
href="ch07s02.html">Σύνταξη ανωτάτου επιπέδου</a></span></dt><dt><span class="sect1"><a
href="ch07s03.html">Επιστροφή συναρτήσεων</a></span></dt><dt><span class="sect1"><a
href="ch07s04.html">Αληθείς τοπικές μεταβλητές</a></span></dt><dt><span class="sect1"><a
href="ch07s05.html">Διαδικασία έναρξης GEL</a></span></dt><dt><span class="sect1"><a
href="ch07s06.html">Φόρτωση προγραμμάτων</a></span></dt></dl></dd><dt><span class="chapter"><a
href="ch08.html">8. Πίνακες στη GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch08.html#genius-gel-matrix-support">Εισαγωγή πινάκων</a></span></dt><dt><span class="sect1"><a
href="ch08s02.html">Σ
υζυγής αντιστροφή και τελεστής αντιστροφής</a></span></dt><dt><span class="sect1"><a
href="ch08s03.html">Γραμμική Άλγεβρα</a></span></dt></dl></dd><dt><span class="chapter"><a
href="ch09.html">9. Πολυώνυμα στην GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch09.html#genius-gel-polynomials-using">Χρήση πολυωνύμων</a></span></dt></dl></dd><dt><span
class="chapter"><a href="ch10.html">10. Θεωρία συνόλων στη GEL</a></span></dt><dd><dl><dt><span
class="sect1"><a href="ch10.html#genius-gel-sets-using">Χρήση συνόλων</a></span></dt></dl></dd><dt><span
class="chapter"><a href="ch11.html">11. Κατάλογος συναρτήσεων της GEL</a></span></dt><dd><dl><dt><span
class="sect1"><a href="ch11.html#genius-gel-function-list-commands">Εντολές</a></span></dt><dt><span
class="sect1"><a href="ch11s02.html">Βασικά</a></span></dt><dt><span class="
sect1"><a href="ch11s03.html">Παράμετροι</a></span></dt><dt><span class="sect1"><a
href="ch11s04.html">Σταθερές</a></span></dt><dt><span class="sect1"><a
href="ch11s05.html">Αριθμητικό</a></span></dt><dt><span class="sect1"><a
href="ch11s06.html">Τριγωνομετρία</a></span></dt><dt><span class="sect1"><a href="ch11s07.html">Θεωρία
αριθμών</a></span></dt><dt><span class="sect1"><a href="ch11s08.html">Διαχείριση
πινάκων</a></span></dt><dt><span class="sect1"><a href="ch11s09.html">Γραμμική
Άλγεβρα</a></span></dt><dt><span class="sect1"><a href="ch11s10.html">Συνδυαστική
Ανάλυση</a></span></dt><dt><span class="sect1"><a href="ch11s11.html">Μαθηματική
Ανάλυση</a></span></dt><dt><span class="sect1"><a href="ch11s12.html">Συναρτήσεις</a></span></dt><dt><span
class="sect1"><a href="ch11s13.html">Επίλυση εξίσωσης</a></span></dt><dt><span cla
ss="sect1"><a href="ch11s14.html">Στατιστική</a></span></dt><dt><span class="sect1"><a
href="ch11s15.html">Πολυώνυμα</a></span></dt><dt><span class="sect1"><a href="ch11s16.html">Θεωρία
συνόλων</a></span></dt><dt><span class="sect1"><a href="ch11s17.html">Αντιμεταθετική
άλγεβρα</a></span></dt><dt><span class="sect1"><a href="ch11s18.html">Διάφορα</a></span></dt><dt><span
class="sect1"><a href="ch11s19.html">Συμβολικές πράξεις</a></span></dt><dt><span class="sect1"><a
href="ch11s20.html">Γραφική παράσταση</a></span></dt></dl></dd><dt><span class="chapter"><a
href="ch12.html">12. Παράδειγμα προγραμμάτων στην GEL</a></span></dt><dt><span class="chapter"><a
href="ch13.html">13. Ρυθμίσεις</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch13.html#genius-prefs-output">Έξοδος</a></span></dt><dt><span class="sect1"><a href="ch13s02.html">Ακρ
ίβεια</a></span></dt><dt><span class="sect1"><a href="ch13s03.html">Τερματικό</a></span></dt><dt><span
class="sect1"><a href="ch13s04.html">Μνήμη</a></span></dt></dl></dd><dt><span class="chapter"><a
href="ch14.html">14. Περί του <span class="application">Εργαλείο μαθηματικών
Genius</span></a></span></dt></dl></div><div class="list-of-figures"><p><b>Κατάλογος
Σχημάτων</b></p><dl><dt>2.1. <a href="ch02s02.html#mainwindow-fig">Το παράθυρο <span class="application">
Εργαλείο μαθηματικών Genius</span></a></dt><dt>4.1. <a href="ch04.html#lineplot-fig">Δημιουργία παραθύρου
γραφικής παράστασης</a></dt><dt>4.2. <a href="ch04.html#lineplot2-fig">Παράθυρο γραφικής
παράστασης</a></dt><dt>4.3. <a href="ch04s02.html#paramplot-fig">Καρτέλα παραμετρικών γραφικών
παραστάσεων</a></dt><dt>4.4. <a href="c
h04s02.html#paramplot2-fig">Παραμετρικές γραφικές παραστάσεις</a></dt><dt>4.5. <a
href="ch04s05.html#surfaceplot-fig">Γραφικές παραστάσεις επιφάνειας</a></dt></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left">
</td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch01.html">Επόμενο</a></td></tr><tr><td width="40%" align="left" valign="top"> </td><td width="20%"
align="center"> </td><td width="40%" align="right" valign="top"> Κεφάλαιο 1.
Εισαγωγή</td></tr></table></div></body></html>
diff --git a/help/es/html/ch01.html b/help/es/html/ch01.html
new file mode 100644
index 0000000..73651f4
--- /dev/null
+++ b/help/es/html/ch01.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 1.
Introducción</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="index.html" title="Manual de Genius"><link
rel="prev" href="index.html" title="Manual de Genius"><link rel="next" href="ch02.html" title="Capítulo 2.
Primeros pasos"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Capítulo
1. Introducción</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="index.html">Anterior</a>
</td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch02.html">Siguiente</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-int
roduction"></a>Capítulo 1. Introducción</h1></div></div></div><p>La <span class="application">Herramienta
matemática Genius</span> es una calculadora de uso general para usarse como una calculadora de escritorio,
una herramienta educativa para matemáticas, incluso es útil en investigaciones. El lenguaje utilizado por la
<span class="application">Herramienta matemática Genius</span> está diseñado para ser «matemático» en el
sentido en que debería ser «lo que quiere decir es lo que obtienes». Por supuesto que no es una meta
completamente alcanzable. La <span class="application">Herramienta matemática Genius</span> soporta números
racionales, enteros de precisión arbitraria y flotantes de precisión múltiple usando la librería GMP. Maneja
números complejos usando notación cartesiana. Tiene buena manipulación de vectores y matrices, y puede
manejar álgebra lineal básica. El lenguaje de programación permite funciones definidas por el usuario,
variables y
modificaciones de los parámetros.</p><p>Hay dos versiones de la <span class="application">Herramienta
matemática Genius</span>. Una es la versión gráfica para GNOME, que tiene una interfaz de tipo IDE y permite
dibujar funciones de una y dos variables. La versión de línea de comandos no necesita GNOME, pero por
supuesto no implementa ninguna característica que necesite la interfaz gráfica.</p><p>Este manual describe
principalmente la versión gráfica de la calculadora pero, por supuesto, el lenguaje es el mismo. La línea de
comandos carece de las capacidades de dibujo y de otras capacidades que necesitan la interfaz gráfica de
usuario.</p><p>Generalmente, cuando alguna característica del lenguaje (función, operador, etc...) es nueva
en versiones a la 1.0.5 en adelante, se menciona, pero en versiones anteriores a 1.0.5 debería echar un
vistazo al archivo NEWS.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%
" align="left"><a accesskey="p" href="index.html">Anterior</a> </td><td width="20%" align="center"> </td><td
width="40%" align="right"> <a accesskey="n" href="ch02.html">Siguiente</a></td></tr><tr><td width="40%"
align="left" valign="top">Manual de Genius </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top"> Capítulo 2. Primeros
pasos</td></tr></table></div></body></html>
diff --git a/help/es/html/ch02.html b/help/es/html/ch02.html
new file mode 100644
index 0000000..1bc9894
--- /dev/null
+++ b/help/es/html/ch02.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 2. Primeros
pasos</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="index.html" title="Manual de Genius"><link
rel="prev" href="ch01.html" title="Capítulo 1. Introducción"><link rel="next" href="ch02s02.html" title="Al
iniciar Genius"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Capítulo
2. Primeros pasos</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch01.html">Anterior</a>
</td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch02s02.html">Siguiente</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="geniu
s-getting-started"></a>Capítulo 2. Primeros pasos</h1></div></div></div><div class="toc"><p><b>Tabla de
contenidos</b></p><dl class="toc"><dt><span class="sect1"><a href="ch02.html#genius-to-start">Para iniciar la
<span class="application">herramienta matemática Genius</span></a></span></dt><dt><span class="sect1"><a
href="ch02s02.html">Al iniciar Genius</a></span></dt></dl></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-to-start"></a>Para iniciar
la <span class="application">herramienta matemática Genius</span></h2></div></div></div><p>Puede iniciar la
<span class="application">herramienta matemática Genius</span> de las siguientes formas:</p><div
class="variablelist"><dl class="variablelist"><dt><span class="term">Menú<span
class="guimenu">Aplicaciones</span></span></dt><dd><p>Dependiendo de su sistema operativo y de su versión, el
elemento de menú de la <span class="application">Herramienta matemática
Genius</span> puede aparecer en varios lugares diferentes. Puede estar en <span
class="guisubmenu">Educación</span>, <span class="guisubmenu">Accesorios</span>, <span
class="guisubmenu">Oficina</span>, <span class="guisubmenu">Ciencia</span>, o en un submenú similar,
dependiendo de su configuración particular. El elemento de menú que está buscando es <span
class="guimenuitem">Herramienta matemática Genius</span>. Cuando lo haya localizado, pulse en el para iniciar
la <span class="application">Herramienta matemática Genius</span>.</p></dd><dt><span class="term">Diálogo
<span class="guilabel">Ejecutar</span></span></dt><dd><p>Dependiendo de la instalación de su sistema, el
elemento del menú puede no estar disponible. si no lo está, puede abrir el diálogo «Ejecutar» y ejecutar
<span class="command"><strong>gnome-genius</strong></span>.</p></dd><dt><span class="term">Línea de
comandos</span></dt><dd><p>Para iniciar la versión de GNOME de la<span class="applicati
on">herramienta matemática Genius</span> ejecute <span class="command"><strong>gnome-genius</strong></span>
desde la línea de comandos.</p><p>Para iniciar sólo la versión de línea de comandos, ejecute el siguiente
comando: <span class="command"><strong>genius</strong></span>. Esta versión no incluye el entorno gráfico y
ciertas funcionalidades, como dibujar, no estarán disponibles.</p></dd></dl></div></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch01.html">Anterior</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> <a accesskey="n" href="ch02s02.html">Siguiente</a></td></tr><tr><td width="40%" align="left"
valign="top">Capítulo 1. Introducción </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top"> Al iniciar
Genius</td></tr></table></div></body></html>
diff --git a/help/es/html/ch02s02.html b/help/es/html/ch02s02.html
new file mode 100644
index 0000000..90b5a84
--- /dev/null
+++ b/help/es/html/ch02s02.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Al iniciar
Genius</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch02.html" title="Capítulo 2. Primeros
pasos"><link rel="prev" href="ch02.html" title="Capítulo 2. Primeros pasos"><link rel="next" href="ch03.html"
title="Capítulo 3. Uso básico"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Al iniciar Genius</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch02.html">Anterior</a> </td><th width="60%" align="center">Capítulo 2. Primeros pasos</th><td
width="20%" align="right"> <a accesskey="n" href="ch03.html">Siguiente</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-when-start"></a>Al iniciar Genius</h2></div></div></div><p>Cuando
inicia la versión de la <span class="application">herramienta matemática Genius</span> para GNOME, se muestra
la ventana que aparece en la <a class="xref" href="ch02s02.html#mainwindow-fig" title="Figura 2.1. Ventana de
la herramienta matemática Genius">Figura 2.1, “Ventana de la <span class="application">herramienta matemática
Genius</span>”</a>.</p><div class="figure"><a name="mainwindow-fig"></a><p class="title"><b>Figura 2.1.
Ventana de la <span class="application">herramienta matemática Genius</span></b></p><div
class="figure-contents"><div class="screenshot"><div class="mediaobject"><img src="figures/genius_window.png"
alt="Muestra la ventana principal Herramienta matemática Genius. Contiene barra de título, barra de menús,
barra de herramientas y área de trabajo. La barra de menú contiene los menús Archivo, Editar, Calculadora,
Ejemplos,Programas,Con
figuración, y Ayuda."></div></div></div></div><br class="figure-break"><p>La ventana de la <span
class="application">herramienta matemática Genius</span> contiene los siguientes elementos:</p><div
class="variablelist"><dl class="variablelist"><dt><span class="term">Barra de menú.</span></dt><dd><p>Los
menús de la barra de menús contienen todos los comandos que necesita para trabajar con archivos en la <span
class="application">Herramienta matemática Genius</span>. El menú <span class="guilabel">Archivo</span>
contiene elementos para cargar y guardar elementos y crear programas nuevos. El comando <span
class="guilabel">Cargar y ejecutar...</span> no abre una ventana nueva para el programa, sino que lo ejecuta
directamente. Es equivalente al comando <span class="command"><strong>load</strong></span>.</p><p>El menú
<span class="guilabel">Calculadora</span> controla el motor de la calculadora. Permite ejecutar el programa
actualmente seleccionado o interrumpir el cálc
ulo actual. También puede mirar la expresión completa del último resultado (útil si el último resultado fue
demasiado grande para ajustar a la consola), y puede mirar una lista con los valores de todas las variables
definidas por el usuario. También puede monitorizar las variables del usuario, que es especialmente útil
cuando se está ejecutando un cálculo muy largo, o para depurar un cierto programa. Finalmente, la <span
class="guilabel">Calculadora</span> permite trazar funciones usando un cuadro de diálogo amigable.</p><p>El
menú <span class="guilabel">Ejemplos</span> es una lista de programas de ejemplo o demostraciones. Si abre el
menú, cargará el ejemplo en un nuevo programa, que puede ejecutar, editar, modificar y guardar. Estos
programas deberían estar bien documentados y generalmente muestran alguna característica de <span
class="application">Herramienta matemática Genius</span> o algunos conceptos matemáticos.</p><p>El menú <span
class="guilabel">P
rogramas</span> muestra una lista de programas abiertos y le permite cambiar a uno de ellos.</p><p>Los otros
menús tienen funciones similares a las de otras aplicaciones.</p></dd><dt><span class="term">Barra de
herramientas.</span></dt><dd><p>La barra de herramientas contiene un subconjunto de comandos a los que puede
acceder desde la barra de menús.</p></dd><dt><span class="term">Área de trabajo</span></dt><dd><p>El área de
trabajo es el método primario para interactuar con la aplicación.</p><p>Inicialmente, el área de trabajo sólo
tenía la pestaña <span class="guilabel">Consola</span>, que es el principal medio de interacción con la
calculadora. Aquí puede escribir expresiones y el resultado se devuelve inmediatamente después de pulsar la
tecla «Intro».</p><p>Alternativamente, puede escribir programas más largos y éstos pueden aparecer en
pestañas separadas. Los programas son un conjunto de comandos o funciones que se pueden ejecutar a la vez sin
tener q
ue ejecutarlos desde una terminal. Los programas se pueden guardar en archivos para su posterior
recuperación.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch02.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch02.html">Subir</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch03.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Capítulo
2. Primeros pasos </td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td
width="40%" align="right" valign="top"> Capítulo 3. Uso básico</td></tr></table></div></body></html>
diff --git a/help/es/html/ch03.html b/help/es/html/ch03.html
new file mode 100644
index 0000000..c2608ff
--- /dev/null
+++ b/help/es/html/ch03.html
@@ -0,0 +1,9 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 3. Uso
básico</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="index.html" title="Manual de Genius"><link
rel="prev" href="ch02s02.html" title="Al iniciar Genius"><link rel="next" href="ch03s02.html" title="Crear un
programa nuevo"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Capítulo
3. Uso básico</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch02s02.html">Anterior</a>
</td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch03s02.html">Siguiente</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-
usage"></a>Capítulo 3. Uso básico</h1></div></div></div><div class="toc"><p><b>Tabla de
contenidos</b></p><dl class="toc"><dt><span class="sect1"><a href="ch03.html#genius-usage-workarea">Usar el
área de trabajo</a></span></dt><dt><span class="sect1"><a href="ch03s02.html">Crear un programa
nuevo</a></span></dt><dt><span class="sect1"><a href="ch03s03.html">Abrir y ejecutar un
programa</a></span></dt></dl></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-usage-workarea"></a>Usar el área de
trabajo</h2></div></div></div><p>Normalmente, interactúa con la calculadora en la pestaña <span
class="guilabel">Consola</span> del área de trabajo. Si ejecuta la versión de solo texto, entonces la consola
será el único medio disponible. Si quiere usar la <span class="application">Herramienta matemática
Genius</span> como una calculadora solamente, simplemente escriba aquí su expresión y se evaluará, mostrando
su
resultado en pantalla.</p><p>Escriba su expresión en el área de trabajo de la <span
class="guilabel">Consola</span>, pulse «Intro» y la expresión se evaluará. Las expresiones están escritas en
un lenguaje llamado GEL. Las expresiones GEL más simples parecen matemáticas. Por ejemplo </p><pre
class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>30*70 + 67^3.0 + ln(7)
* (88.8/100)</code></strong>
+</pre><p> o </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>62734 + 812634 + 77^4 mod 5</code></strong>
+</pre><p> o </p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>|
sin(37) - e^7 |</code></strong>
+</pre><p> o </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>sum n=1 to 70 do 1/n</code></strong>
+</pre><p> (El último es la suma armónica de 1 a 70)</p><p>Para obtener una lista de todas las funciones y
los comandos, escriba: </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>help</code></strong>
+</pre><p> Si quiere obtener más información sobre una función en concreto, escriba: </p><pre
class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>help
nombre_de_la_función</code></strong>
+</pre><p> Para ver este manual, escriba: </p><pre class="screen"><code class="prompt">genius>
</code><strong class="userinput"><code>manual</code></strong>
+</pre><p>Suponga que ha guardado algún comando GEL previamente como un programa en un archivo y quiere
ejecutarlo. Para cargar este programa desde el archivo <code class="filename">ruta/a/programa.gel</code>,
escriba </p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>load
ruta/a/programa.gel</code></strong>
+</pre><p> la<span class="application">Herramienta matemática Genius</span> mantiene la ruta de la carpeta
actual. Para listar los archivos de la carpeta actual, escriba <span
class="command"><strong>ls</strong></span>, para cambiar de carpeta escriba <strong
class="userinput"><code>cd carpeta</code></strong>, igual que en la línea de comandos de
UNIX.</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch02s02.html">Anterior</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch03s02.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Al iniciar Genius
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%"
align="right" valign="top"> Crear un programa nuevo</td></tr></table></div></body></html>
diff --git a/help/es/html/ch03s02.html b/help/es/html/ch03s02.html
new file mode 100644
index 0000000..933e6cb
--- /dev/null
+++ b/help/es/html/ch03s02.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Crear un programa
nuevo</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch03.html" title="Capítulo 3. Uso
básico"><link rel="prev" href="ch03.html" title="Capítulo 3. Uso básico"><link rel="next"
href="ch03s03.html" title="Abrir y ejecutar un programa"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Crear un programa nuevo</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch03.html">Anterior</a> </td><th width="60%" align="center">Capítulo 3.
Uso básico</th><td width="20%" align="right"> <a accesskey="n"
href="ch03s03.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h
2 class="title" style="clear: both"><a name="genius-usage-create-program"></a>Crear un programa
nuevo</h2></div></div></div><p>Si quiere insertar varios comando más complejos, o quizás escribir una función
complicada utilizando el lenguaje <a class="link" href="ch05.html" title="Capítulo 5. Conceptos de
GEL">GEL</a>. Puede crear un nuevo programa.</p><p>Para escribir un programa nuevo, eliga <span
class="guimenu">Archivo</span> → <span class="guimenuitem">Programa Nuevo</span>. Aparecerá una pestaña nueva
en el área de trabajo. Puede escribir un programa <a class="link" href="ch05.html" title="Capítulo 5.
Conceptos de GEL">GEL</a> en esta área de trabajo. Una vez que haya escrito su programa, puede ejecutarlo
desde <span class="guimenu">Calculadora</span> → <span class="guimenuitem">Ejecutar</span> (o el botón de la
barra de herramientas <span class="guilabel">Ejecutar</span>). Esto ejecutará su programa y mostrará
cualquier salida en la pestaña <span class=
"guilabel">Consola</span>. Ejecutar un programa es equivalente a tomar el texto del programa y escribirlo en
la consola. La única diferencia es que esta entrada se realiza independientemente de la consola y solo la
salida va hacia la consola. <span class="guimenu">Calculadora</span> → <span
class="guimenuitem">Ejecutar</span> siempre ejecutará el programa actualmente seleccionado incluso si se
encuentra en la pestaña <span class="guilabel">Consola</span>. El programa actual tiene su letra en negrita.
Para seleccionar un programa, simplemente pulse sobre su pestaña.</p><p>Para guardar el programa que acaba de
escribir, elija <span class="guimenu">Archivo</span> → <span class="guimenuitem">Guardar como...</span>. Al
igual que en otros programas puede elegir <span class="guimenu">Archivo</span> → <span
class="guimenuitem">Guardar</span> para guardar un programa que ya tenía un nombre asignado. Si tiene muchos
programas abiertos que ha editado y quiere guardarlos, pue
de hacerlo eligiendo <span class="guimenu">Archivo</span> → <span class="guimenuitem">Guardar
todo</span>.</p><p>Los programas que no han guardado los cambios todavía, tienen un símbolo «[+]» junto al
nombre de archivo. Así puede ver si el archivo en la pestaña actual y el que está guardado en el disco,
difieren en su contenido. Los programas que no se han nombrado todavía, se consideran siempre como no
guardados, por lo que no se muestra el símbolo «[+]».</p></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch03.html">Anterior</a>
</td><td width="20%" align="center"><a accesskey="u" href="ch03.html">Subir</a></td><td width="40%"
align="right"> <a accesskey="n" href="ch03s03.html">Siguiente</a></td></tr><tr><td width="40%" align="left"
valign="top">Capítulo 3. Uso básico </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%"
align="right" valign="top"> Abrir y ejecutar un programa</td></tr></table></div></body></html>
diff --git a/help/es/html/ch03s03.html b/help/es/html/ch03s03.html
new file mode 100644
index 0000000..a0e577a
--- /dev/null
+++ b/help/es/html/ch03s03.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Abrir y ejecutar un
programa</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch03.html" title="Capítulo 3. Uso
básico"><link rel="prev" href="ch03s02.html" title="Crear un programa nuevo"><link rel="next"
href="ch04.html" title="Capítulo 4. Dibujar"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Abrir y ejecutar un programa</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch03s02.html">Anterior</a> </td><th width="60%" align="center">Capítulo
3. Uso básico</th><td width="20%" align="right"> <a accesskey="n"
href="ch04.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h
2 class="title" style="clear: both"><a name="genius-usage-open-program"></a>Abrir y ejecutar un
programa</h2></div></div></div><p>Para abrir un archivo, elija <span class="guimenu">Archivo</span> → <span
class="guimenuitem">Abrir</span>. En el área de trabajo aparecerá una pestaña nueva que contiene al archivo.
Puede usarla para editarlo.</p><p>Para ejecutar un programa desde un archivo, elija <span
class="guimenu">Archivo</span> → <span class="guimenuitem">Cargar y ejecutar...</span>. Esto ejecutará el
programa sin abrir en una pestaña separada. Es equivalente al comando <span
class="command"><strong>load</strong></span>.</p><p>Si ha hecho cambios en un archivo y quiere descartarlos y
volver a la versión original del disco, puede elegir la opción de menú <span class="guimenu">Archivo</span> →
<span class="guimenuitem">Recargar desde el disco</span>. Esto es útil para experimentar con un programa y
hacer cambios temporales, ejecutar el programa, pero no hacer
que dichos cambios sean permanentes.</p></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch03s02.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch03.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch04.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Crear un programa nuevo
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%"
align="right" valign="top"> Capítulo 4. Dibujar</td></tr></table></div></body></html>
diff --git a/help/es/html/ch04.html b/help/es/html/ch04.html
new file mode 100644
index 0000000..f02965a
--- /dev/null
+++ b/help/es/html/ch04.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 4.
Dibujar</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="index.html" title="Manual de Genius"><link
rel="prev" href="ch03s03.html" title="Abrir y ejecutar un programa"><link rel="next" href="ch04s02.html"
title="Gráficos paramétricos"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Capítulo 4. Dibujar</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch03s03.html">Anterior</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch04s02.html">Siguiente</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius
-gel-plotting"></a>Capítulo 4. Dibujar</h1></div></div></div><div class="toc"><p><b>Tabla de
contenidos</b></p><dl class="toc"><dt><span class="sect1"><a href="ch04.html#genius-line-plots">Trazado de
líneas</a></span></dt><dt><span class="sect1"><a href="ch04s02.html">Gráficos
paramétricos</a></span></dt><dt><span class="sect1"><a href="ch04s03.html">Dibujos de campos de
inclinación</a></span></dt><dt><span class="sect1"><a href="ch04s04.html">Gráficos de campos de
vectores</a></span></dt><dt><span class="sect1"><a href="ch04s05.html">Gráficos de
superficie</a></span></dt></dl></div><p>El soporte de dibujo solo está disponible para la versión gráfica de
GNOME. Todo el dibujo disponible desde la interfaz gráfica está disponible en la ventana <span
class="guilabel">Crear dibujo</span>. Puede acceder a esta ventana pulsando en el botón <span
class="guilabel">Dibujo</span> de la barra de herramientas o seleccionando <span
class="guilabel">Dibujo</span> desde el men�
� <span class="guilabel">Calculadora</span>. También puede acceder a las funcionalidades de dibujo usando
las <a class="link" href="ch11s20.html" title="Dibujar">funciones de trazado</a> del lenguaje GEL. Consulte
la <a class="xref" href="ch05.html" title="Capítulo 5. Conceptos de GEL">Capítulo 5, <i>Conceptos de
GEL</i></a> para aprender a introducir expresiones que entienda Genius.</p><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-line-plots"></a>Trazado de
líneas</h2></div></div></div><p>Para crear gráficas de funciones de valores reales de una variable, abra la
ventana <span class="guilabel">Crear dibujo</span>. También puede usar la función <a class="link"
href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a> en la línea de comandos
(consulte su documentación).</p><p>Una vez que pulse el botón <span class="guilabel">Dibujo</span>, se abre
una ventana con algunas pestaña
s en ella. Se encontrará con la pestaña <span class="guilabel">Dibujo de la línea de función</span> y dentro
de ella encontrará la pestaña <span class="guilabel">Funciones / Expresiones</span>. Consulte la <a
class="xref" href="ch04.html#lineplot-fig" title="Figura 4.1. Crear una ventana de dibujo">Figura 4.1, “Crear
una ventana de dibujo”</a>.</p><div class="figure"><a name="lineplot-fig"></a><p class="title"><b>Figura 4.1.
Crear una ventana de dibujo</b></p><div class="figure-contents"><div class="screenshot"><div
class="mediaobject"><img src="figures/line_plot.png" alt="Muestra la ventana de trazado de
líneas"></div></div></div></div><br class="figure-break"><p>En los cuadros de texto escriba sólo las
expresiones donde <strong class="userinput"><code>x</code></strong> es la variable independiente. También
puede dar simplemente nombres de funciones como <strong class="userinput"><code>cos</code></strong> en lugar
de tener que escribir <strong class="userinput
"><code>cos(x)</code></strong>. Puede crear gráficas de hasta 10 funciones. Si comete un error y Genius no
puede analizar la entrada, se señalará con un icono de advertencia a la derecha del cuadro de texto donde
ocurrió el error, y se mostrará un diálogo de error. Puede cambiar el rango de las variable dependiente <code
class="varname">y</code> activando la casilla <span class="guilabel">Ajustar al eje dependiente</span>.
Pulsando el botón <span class="guilabel">Dibujar</span> se generará el gráfico mostrado en la <a class="xref"
href="ch04.html#lineplot2-fig" title="Figura 4.2. Ventana de dibujo">Figura 4.2, “Ventana de
dibujo”</a>.</p><p>Las variables se pueden renombrar al pulsar el botón <span class="guilabel">Cambiar
nombres variables...</span>, lo que es útil si quiere imprimir o guardar la figura y no quiere utilizar los
nombres predeterminados. Finalmente, puede evitar imprimir la leyenda y las etiquetas de los ejes
completamente, lo que también es
útil si está imprimiendo o guardando, cuando la leyenda podría ser confusa.</p><div class="figure"><a
name="lineplot2-fig"></a><p class="title"><b>Figura 4.2. Ventana de dibujo</b></p><div
class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/line_plot_graph.png" alt="El gráfico producido."></div></div></div></div><br
class="figure-break"><p>Desde aquí puede imprimir el dibujo, crear un PostScript encapsulado o un PNG del
dibujo, o cambiar la escala. Si el eje dependiente no se ha establecido correctamente, puede hacer que Genius
lo ajuste buscando los extremos de las funciones representadas.</p><p>Para dibujar usando la línea de
comandos, consulte la documentación de la función <a class="link"
href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a>.</p></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch03s03.
html">Anterior</a> </td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch04s02.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Abrir y ejecutar un
programa </td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td
width="40%" align="right" valign="top"> Gráficos paramétricos</td></tr></table></div></body></html>
diff --git a/help/es/html/ch04s02.html b/help/es/html/ch04s02.html
new file mode 100644
index 0000000..8b024b3
--- /dev/null
+++ b/help/es/html/ch04s02.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Gráficos
paramétricos</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch04.html" title="Capítulo 4. Dibujar"><link
rel="prev" href="ch04.html" title="Capítulo 4. Dibujar"><link rel="next" href="ch04s03.html" title="Dibujos
de campos de inclinación"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Gráficos paramétricos</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch04.html">Anterior</a> </td><th width="60%" align="center">Capítulo 4. Dibujar</th><td width="20%"
align="right"> <a accesskey="n" href="ch04s03.html">Siguiente</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="t
itle" style="clear: both"><a name="genius-parametric-plots"></a>Gráficos
paramétricos</h2></div></div></div><p>En la ventana de crear dibujo, también puede elegir la pestaña <span
class="guilabel">Paramétrico</span> para crear dibujos paramétricos bidimensionales. De este modo, puede
dibujar una única función paramétrica. Puede especificar los puntos como <code class="varname">x</code> e
<code class="varname">y</code>, o dar un número complejo único como una función de la variable <code
class="varname">t</code>. El rango de la variable <code class="varname">t</code> se da explícitamente, y la
función se simplifica de acuerdo al incremento dado. El rango <code class="varname">x</code> e <code
class="varname">y</code> se puede establecer automáticamente activando la casilla <span
class="guilabel">Ajustar al eje dependiente</span> o se puede establecer explícitamente. consulte la <a
class="xref" href="ch04s02.html#paramplot-fig" title="Figura 4.3. Pestaña dibuj
o paramétrico">Figura 4.3, “Pestaña dibujo paramétrico”</a>.</p><div class="figure"><a
name="paramplot-fig"></a><p class="title"><b>Figura 4.3. Pestaña dibujo paramétrico</b></p><div
class="figure-contents"><div class="screenshot"><div class="mediaobject"><img src="figures/parametric.png"
alt="Pestaña dibujo paramétrico en la ventana Crear dibujo."></div></div></div></div><br
class="figure-break"><p>Puede ver un ejemplo de una gráfica de una función paramétrica en la <a class="xref"
href="ch04s02.html#paramplot-fig" title="Figura 4.3. Pestaña dibujo paramétrico">Figura 4.3, “Pestaña dibujo
paramétrico”</a>. Puede realizar operaciones similares en esta gráfica, así como en la otras gráficas de
funciones lineales. Para dibujar usando la línea de comandos, consulte la documentación de las funciones <a
class="link" href="ch11s20.html#gel-function-LinePlotParametric"><code
class="function">LinePlotParametric</code></a> o <a class="link" href="ch11s20.
html#gel-function-LinePlotCParametric"><code class="function">LinePlotCParametric</code></a>.</p><div
class="figure"><a name="paramplot2-fig"></a><p class="title"><b>Figura 4.4. Gráfico paramétrico</b></p><div
class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/parametric_graph.png" alt="Gráfico paramétrico producido"></div></div></div></div><br
class="figure-break"></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch04.html">Subir</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch04s03.html">Siguiente</a></td></tr><tr><td width="40%" align="left"
valign="top">Capítulo 4. Dibujar </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top"> Dibujos de campos de
inclinación</td>
</tr></table></div></body></html>
diff --git a/help/es/html/ch04s03.html b/help/es/html/ch04s03.html
new file mode 100644
index 0000000..72290a3
--- /dev/null
+++ b/help/es/html/ch04s03.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Dibujos de campos de
inclinación</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch04.html" title="Capítulo 4. Dibujar"><link
rel="prev" href="ch04s02.html" title="Gráficos paramétricos"><link rel="next" href="ch04s04.html"
title="Gráficos de campos de vectores"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Dibujos de campos de inclinación</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch04s02.html">Anterior</a> </td><th width="60%" align="center">Capítulo
4. Dibujar</th><td width="20%" align="right"> <a accesskey="n"
href="ch04s04.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div class="titlep
age"><div><div><h2 class="title" style="clear: both"><a name="genius-slopefield-plots"></a>Dibujos de campos
de inclinación</h2></div></div></div><p>En la ventana de crear dibujo, también puede elegir la pestaña <span
class="guilabel">Campo de inclinación</span> para crear dibujos de campos de inclinación bidimensionales.
Para dibujar usando la línea de comandos, conuslte la documentación de la función <a class="link"
href="ch11s20.html#gel-function-SlopefieldPlot"><code
class="function">SlopefieldPlot</code></a>.</p><p>Cuando un campo de inclinación está activo, hay un menú
adicional disponible <span class="guilabel">Solucionador</span>, a través del cual puede abrir el cuadro de
diálogo del mismo nombre. Aquí puede tener soluciones específicas de dibujo de Genius. Puede especificar
condiciones iniciales en el diálogo, o puede pulsar directamente en el dibujo para indicar el punto inicial.
Mientras el diálogo del solucionador esté activo, la ampliación al
pulsar y arrastrar no funcionará. Si quiere ampliar usando el cursor tendrá que cerrar el diálogo
primero.</p><p>El solucionador usa el método Runge-Kutta estándar. Los gráficos se quedarán en la pantalla
hasta que los borre. El solucionador se detendrá cuando alcance el límite de la ventana de dibujo. La
ampliación no cambia los límites o los parámetros de la solución, tendrá que borrar y redibujar con los
parámetros apropiados. También puede usar la función <a class="link"
href="ch11s20.html#gel-function-SlopefieldDrawSolution"><code
class="function">SlopefieldDrawSolution</code></a> para dibujar soluciones desde la línea de comandos o
programas.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s02.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch04.html">Subir</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch04s0
4.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Gráficos paramétricos </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%" align="right"
valign="top"> Gráficos de campos de vectores</td></tr></table></div></body></html>
diff --git a/help/es/html/ch04s04.html b/help/es/html/ch04s04.html
new file mode 100644
index 0000000..1f0bba8
--- /dev/null
+++ b/help/es/html/ch04s04.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Gráficos de campos de
vectores</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch04.html" title="Capítulo 4. Dibujar"><link
rel="prev" href="ch04s03.html" title="Dibujos de campos de inclinación"><link rel="next" href="ch04s05.html"
title="Gráficos de superficie"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Gráficos de campos de vectores</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch04s03.html">Anterior</a> </td><th width="60%" align="center">Capítulo 4. Dibujar</th><td width="20%"
align="right"> <a accesskey="n" href="ch04s05.html">Siguiente</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepag
e"><div><div><h2 class="title" style="clear: both"><a name="genius-vectorfield-plots"></a>Gráficos de campos
de vectores</h2></div></div></div><p>En la ventana de crear dibujo, también puede elegir la pestaña <span
class="guilabel">Campo vectorial</span> para crear un dibujo de campos vectoriales bidimensionales. Con este
tipo de gráficos se pueden realizar operaciones similares a las que se hacen con otros gráficos de líneas.
Para dibujar usando la línea de comandos, consulte la documentación de la función <a class="link"
href="ch11s20.html#gel-function-VectorfieldPlot"><code class="function">VectorfieldPlot</code></a>.</p><p>De
manera predeterminada se muestra la dirección y la magnitud del campo vectorial. Para mostrar únicamente la
dirección y no la magnitud, normalice la longitud de las flechas habilitando la opción
pertinente.</p><p>Cuando un campo vectorial está activo, hay un menú <span class="guilabel">Resolutor</span>
adicional disponible a través d
el cuál puede abrir el diálogo del Resolutor. Aquí encontrará soluciones gráficas específicas de Genius para
las condiciones iniciales dadas. Puede especificar condiciones iniciales en el diálogo o pulsar en el dibujo
directamente para especificar el punto inicial. Mientras el diálogo del resolutor esté activa, la opción de
aumentar el gráfico pulsando y arrastrando no funcionará. Debe cerrar el diálogo primero si quiere aumentar
el gráfico con el ratón.</p><p>El resolutor usa el método estándar de Runge-Kutta. Los gráficos resultantes
permanecerán en la pantalla hasta que se limpie. Aumentar el gráfico no cambia los límites o parámetros de
las soluciones, tendrá que limpiar y redibujarlos con los parametros adecuados. También puede usar la función
<a class="link" href="ch11s20.html#gel-function-VectorfieldDrawSolution"><code
class="function">VectorfieldDrawSolution</code></a> para dibujar soluciones desde la línea de comandos o
desde programas.</p>
</div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch04s03.html">Anterior</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch04.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch04s05.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Dibujos de campos de
inclinación </td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td
width="40%" align="right" valign="top"> Gráficos de superficie</td></tr></table></div></body></html>
diff --git a/help/es/html/ch04s05.html b/help/es/html/ch04s05.html
new file mode 100644
index 0000000..fc4cb0a
--- /dev/null
+++ b/help/es/html/ch04s05.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Gráficos de
superficie</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch04.html" title="Capítulo 4. Dibujar"><link
rel="prev" href="ch04s04.html" title="Gráficos de campos de vectores"><link rel="next" href="ch05.html"
title="Capítulo 5. Conceptos de GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Gráficos de superficie</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch04s04.html">Anterior</a> </td><th width="60%" align="center">Capítulo 4. Dibujar</th><td width="20%"
align="right"> <a accesskey="n" href="ch05.html">Siguiente</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 c
lass="title" style="clear: both"><a name="genius-surface-plots"></a>Gráficos de
superficie</h2></div></div></div><p>Genius también puede dibujar superficies. Seleccione la pestaña <span
class="guilabel">Dibujar superficie</span> en el cuaderno de notas principal de la ventana <span
class="guilabel">Crear gráfico</span>. Aquí puede especificar una expresión que use o bien <code
class="varname">x</code> e <code class="varname">y</code> como variables reales independientes o bien <code
class="varname">z</code> como variable compleja (donde <code class="varname">x</code> sea la parte real de
<code class="varname">z</code> e <code class="varname">y</code> la parte imaginaria). Por ejemplo, para
dibujar los módulos de la función coseno de variable compleja puede escribir <strong
class="userinput"><code>|cos(z)|</code></strong>. Esto sería equivalente a <strong
class="userinput"><code>|cos(x+1i*y)|</code></strong>. Consulte la <a class="xref"
href="ch04s05.html#surfaceplot
-fig" title="Figura 4.5. Gráfico de superficie">Figura 4.5, “Gráfico de superficie”</a>. Para dibujar desde
la línea de comandos véase la documentación de la función <a class="link"
href="ch11s20.html#gel-function-SurfacePlot"><code class="function">SurfacePlot</code></a>.</p><p>El rango
<code class="varname">z</code> puede establecerse automáticamente al activar el cuadro de selección <span
class="guilabel">Ajustar eje dependiente</span>. Las variables se pueden renombrar al pulsar el botón <span
class="guilabel">Cambiar nombres variable...</span>, lo que es útil si quiere imprimir o guardar la figura y
no quiere utilizar los nombres predeterminados. Finalmente, puede evitar imprimir la leyenda y las etiquetas
de los ejes completamente, lo que también es útil si está imprimiendo o guardando, cuando la leyenda podría
ser confusa.</p><div class="figure"><a name="surfaceplot-fig"></a><p class="title"><b>Figura 4.5. Gráfico de
superficie</b></p><div class="f
igure-contents"><div class="screenshot"><div class="mediaobject"><img src="figures/surface_graph.png"
alt="Valor absoluto de la función coseno complejo."></div></div></div></div><br class="figure-break"><p>En el
modo de superficie, las teclas izquierda y derecha de su teclado, rotarán la vista a lo largo del eje z.
Alternativamente puede rotar en cualquier eje seleccionando <span class="guilabel">Rotar eje...</span> en el
menú <span class="guilabel">Ver</span>. El menú <span class="guilabel">Ver</span> también tiene un modo de
vista superior que permite rotar el gráfico de modo que el eje z se enfrenta directamente, es decir, vemos el
gráfico desde la parte superior y obtenemos los colores que definen los valores de la función obteniendo así
un gráfico de temperatura de la función. Finalmente pruebe <span class="guilabel">Iniciar animación de
rotación</span>, para iniciar una lenta rotación continua. Esto es especialmente bueno si se utiliza <span
class="applic
ation">Herramienta matemática Genius</span> para presentar a un público.</p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch04s04.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch04.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Gráficos de campos de
vectores </td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td
width="40%" align="right" valign="top"> Capítulo 5. Conceptos de GEL</td></tr></table></div></body></html>
diff --git a/help/es/html/ch05.html b/help/es/html/ch05.html
new file mode 100644
index 0000000..b66d17f
--- /dev/null
+++ b/help/es/html/ch05.html
@@ -0,0 +1,27 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 5. Conceptos
de GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="index.html" title="Manual de Genius"><link
rel="prev" href="ch04s05.html" title="Gráficos de superficie"><link rel="next" href="ch05s02.html"
title="Usar variables"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Capítulo 5. Conceptos de GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch04s05.html">Anterior</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch05s02.html">Siguiente</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="ge
nius-gel"></a>Capítulo 5. Conceptos de GEL</h1></div></div></div><div class="toc"><p><b>Tabla de
contenidos</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch05.html#genius-gel-values">Valores</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-numbers">Números</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-booleans">Booleanos</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-strings">Cadenas</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-null">Nulo</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s02.html">Usar variables</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-setting">Configurar variables</a></span></dt><dt><span
class="sect2"><a href="ch05s02.html#genius-gel-variables-built-in">Variables
integradas</a></span></dt><dt><span class="sect2"><a href="ch05s02.html#genius-gel-previous-result"
Resultado de la variable anterior</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s03.html">Usar funciones</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-defining">Definir funciones</a></span></dt><dt><span
class="sect2"><a href="ch05s03.html#genius-gel-functions-variable-argument-lists">Listas de argumentos de
variables</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-passing-functions">Pasar funciones a
funciones</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-operations">Operaciones con
funciones</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s04.html">Separador</a></span></dt><dt><span class="sect1"><a
href="ch05s05.html">Comentarios</a></span></dt><dt><span class="sect1"><a href="ch05s06.html">Evaluación
modular</a></span></dt><dt><span class="sect1"><a href="ch05s07.html">Lista de operadores
GEL</a></span></dt></dl></div><p>GEL si
gnifica Lenguaje de Extensión de Genius. Éste es el lenguaje que se utiliza para escribir programas para
Genius. Un programa en GEL es simplemente una expresión que se evalúa como un número, una matriz, o cualquier
objeto en GEL. Por lo tanto, la <span class="application">Herramienta matemática Genius</span> se puede
utilizar como una simple calculadora o como una herramienta de investigación teórica muy potente. La sintaxis
está pensada para suavizar lo más posible la curva de aprendizaje, especialmente para usarlo como
calculadora.</p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-values"></a>Valores</h2></div></div></div><p>Los valores en GEL pueden ser <a class="link"
href="ch05.html#genius-gel-values-numbers" title="Números">números</a>, <a class="link"
href="ch05.html#genius-gel-values-booleans" title="Booleanos">booleanos</a> o <a class="link"
href="ch05.html#genius-gel-values-strings" title="
Cadenas">cadenas</a>. GEL también trata las <a class="link" href="ch08.html" title="Capítulo 8. Matrices en
GEL">matrices</a> como valores. Los valores se pueden usar en cálculos, asignarse a variables y devolverse
desde funciones, entre otros usos.</p><div class="sect2"><div class="titlepage"><div><div><h3
class="title"><a name="genius-gel-values-numbers"></a>Números</h3></div></div></div><p>Los enteros son el
primer tipo numérico en GEL. Los enteros se escriben de forma estándar. </p><pre class="programlisting">1234
+</pre><p> Las formas hexadecimales y octales se pueden indicar mediante la notación de C. Por ejemplo:
</p><pre class="programlisting">0x123ABC
+01234
+</pre><p> O bien puede indicar los enteros en una base arbitraria usando <code
class="literal"><base>\<número></code>. Los dígitos mayores que 9 usan letras de manera similar a
la forma hexadecimal. Por ejemplo, un número en base 23 podría escribirse: </p><pre
class="programlisting">23\1234ABCD
+</pre><p>El segundo tipo numérico de GEL son los racionales. Los números racionales se obtienen dividiendo
dos enteros. De modo que se puede escribir: </p><pre class="programlisting">3/4
+</pre><p> para obtener tres cuartos. Los racionales aceptan notación fraccionaria mixta. De modo que para
obtener uno y tres décimos se podría indicar: </p><pre class="programlisting">1 3/10
+</pre><p>El siguiente tipo numérico es el de coma flotante. Estos se especifican de un modo muy similar a la
notación en C. Puedes usar <code class="literal">E</code>, <code class="literal">e</code> o <code
class="literal">@</code> como el delimitador de exponente. Tenga en cuenta que usando el delimitador de
exponente da un coma flotante incluso si no está la coma decimal en el número. Ejemplos: </p><pre
class="programlisting">1.315
+7.887e77
+7.887e-77
+.3
+0.3
+77e5
+</pre><p> Cuando Genius imprime un número en coma flotante siempre añade un <code
class="computeroutput">,0</code> incluso si el número está completo. Esto indica que los números en coma
flotante se toman como cantidades imprecisas. Cuando un numero se escribe en notación científica, siempre
será en coma flotante y, por tanto, Genius no imprime <code class="computeroutput">,0</code>.</p><p>El último
tipo de números en GEL son los números complejos. Puede escribir un número complejo como la suma de su parte
real y su parte imaginaria. Para agregar la parte imaginaria, escriba una <code class="literal">i</code>.
Aquí hay algunos ejemplo de cómo escribir números complejos: </p><pre class="programlisting">1+2i
+8.01i
+77*e^(1.3i)
+</pre><div class="important" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Importante</h3><p>Al introducir números imaginarios, deba haber un número delante de la <code
class="literal">i</code>. Si usa <code class="literal">i</code> por sí sola, Genius lo interpretará como una
referencia a la variable <code class="varname">i</code>. Si necesita referirse a <code
class="literal">i</code> por sí sola, use <code class="literal">1i</code> en su lugar.</p><p>Para usar
notación de fracciones mixtas con números imaginarios debe colocar las fracciones mixtas entre paréntesis
(ej. <strong class="userinput"><code>(1 2/5)i</code></strong>).</p></div></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-booleans"></a>Booleanos</h3></div></div></div><p>Genius también soporta valores
booleanos nativos. Las dos constantes booleanas están definidas como <code class="constant">true</code> y
<code class="constant"
false</code>; estos identificadores se pueden utilizar como cualquier otra variable. Así mismo, puede
utilizar los identificadores <code class="constant">True</code>, <code class="constant">TRUE</code>, <code
class="constant">False</code> y <code class="constant">FALSE</code> como alias de las
anteriores.</p><p>Puede usar un valor booleano o cualquier expresión que produzca un número o valor
booleano en cualquier lugar donde se espera una expresión Booleana. Si Genius necesita evaluar un valor
numérico como un valor booleano interpretará «0» como <code class="constant">false</code> y cualquier otro
valor como <code class="constant">true</code>.</p><p>Además, puede efectuar operaciones con valores
booleanos. Por ejemplo: </p><pre class="programlisting">( (1 + true) - false ) * true
+</pre><p> equivale a: </p><pre class="programlisting">( (true or true) or not false ) and true
+</pre><p> Solamente están soportadas la adición, la sustracción y la multiplicación. Si mezcla valores
numéricos con booleanos en una expresión, los valores numéricos se convertirán a booleanos como se describió
anteriormente. Esto significa que, por ejemplo: </p><pre class="programlisting">1 == true
+</pre><p> siempre se evaluará como <code class="constant">true</code> dado que «1» siempre se convertirá a
<code class="constant">true</code> antes de compararlo con <code class="constant">true</code>.</p></div><div
class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-strings"></a>Cadenas</h3></div></div></div><p>Al igual que los números y los
booleanos, las cadenas en GEL se pueden almacenar como valores dentro de variables y pasárselas a funciones.
Puede concatenar una cadena con otra cadena mediante el operador «+». Por ejemplo: </p><pre
class="programlisting">a=2+3;«El resultado es: »+a
+</pre><p> creará la cadena: </p><pre class="programlisting">El resultado es: 5
+</pre><p> Puede usar secuencias de escape como en C tales como <code class="literal">\n</code>, <code
class="literal">\t</code>, <code class="literal">\b</code>, <code class="literal">\a</code> y <code
class="literal">\r</code>. Para insertar los caracteres <code class="literal">\</code> o <code
class="literal">"</code> en una cadena puede escaparlo precediéndolo de <code class="literal">\</code>. Por
ejemplo: </p><pre class="programlisting">"Barra: \\ Comillas: \" Tabulaciones: \t1\t2\t3"
+</pre><p> dará lugar a la cadena: </p><pre class="programlisting">Barra: \ Comillas: " Tabulaciones: 1
2 3
+</pre><p>. Tenga en cuenta, sin embargo, que cuando una función devuelve una cadena, los caracteres
escapados se entrecomillan, por lo que la salida se puede usar como entrada de otra función. Si quiere
imprimir la cadena como es (sin caracteres escapados), use las funciones <a class="link"
href="ch11s02.html#gel-function-print"><code class="function">print</code></a> o <a class="link"
href="ch11s02.html#gel-function-printn"><code class="function">printn</code></a>.</p><p>Además, puede usar la
función <a class="link" href="ch11s02.html#gel-function-string"><code class="function">string</code></a> de
la biblioteca para convertir cualquier cosa en una cadena. Por ejemplo: </p><pre
class="programlisting">string(22)
+</pre><p> devolverá </p><pre class="programlisting">"22"
+</pre><p>. Las cadenas pueden compararse mediante los operadores <code class="literal">==</code> (igual),
<code class="literal">!=</code> (distinto) y <code class="literal"><=></code>
(comparación).</p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-null"></a>Nulo</h3></div></div></div><p>Existe un valor especial llamado <code
class="constant">null</code>. No se permite efectuar operaciones sobre él y no se muestra nada cuando se
devuelve este valor. Por lo tanto, <code class="constant">null</code> es útil cuando no quiera ninguna salida
de una expresión. El valor <code class="constant">null</code> puede obtenerse como una expresión al escribir
<code class="literal">.</code>, la constante <code class="constant">null</code> o nada. Nada referido a que
si termina una expresión con un separador <code class="literal">;</code>, equivale a terminar la expresión
con un separador seguido de <code class="constant">nu
ll</code>.</p><p>Ejemplo: </p><pre class="programlisting">x=5;.
+x=5;
+</pre><p>Algunas funciones devuelven <code class="constant">null</code> cuando no pueden devolver un valor o
producen algún error. También se usa <code class="constant">null</code> como un vector o matriz vacía o una
referencia vacía.</p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch04s05.html">Anterior</a> </td><td
width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch05s02.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Gráficos de
superficie </td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td
width="40%" align="right" valign="top"> Usar variables</td></tr></table></div></body></html>
diff --git a/help/es/html/ch05s02.html b/help/es/html/ch05s02.html
new file mode 100644
index 0000000..906a877
--- /dev/null
+++ b/help/es/html/ch05s02.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Usar
variables</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch05.html" title="Capítulo 5. Conceptos de
GEL"><link rel="prev" href="ch05.html" title="Capítulo 5. Conceptos de GEL"><link rel="next"
href="ch05s03.html" title="Usar funciones"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Usar variables</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch05.html">Anterior</a> </td><th width="60%" align="center">Capítulo 5. Conceptos de
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s03.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" styl
e="clear: both"><a name="genius-gel-variables"></a>Usar variables</h2></div></div></div><p>Sintaxis:
</p><pre class="programlisting">NombreVariable
+</pre><p> Ejemplo: </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>e</code></strong>
+= 2.71828182846
+</pre><p>Para evaluar una variable por sí misma, simplemente introduzca el nombre de la variable. Esto
devolverá el valor de la variable. Puede usar una variable en cualquier lugar donde pueda utilizar un número
o cadena. Además, las variables son necesarias al definir funciones que toman argumentos (consulte la <a
class="xref" href="ch05s03.html#genius-gel-functions-defining" title="Definir funciones">“Definir
funciones”</a>).</p><div class="tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Usar
completado con el tabulador</h3><p>Puede usar el completado con el tabulador para que Genius complete nombres
de las variables. Intente escribir las primeras letras del nombre de la variable y pulse <strong
class="userinput"><code>Tab</code></strong>.</p></div><div class="important" style="margin-left: 0.5in;
margin-right: 0.5in;"><h3 class="title">Los nombres de variables son sensibles a la capitalización</h3><p>Los
nombres de variables son sensibles
a la capitalización. Esto significa que las variables <code class="varname">hello</code>, <code
class="varname">HELLO</code> y <code class="varname">Hello</code> son todas diferentes.</p></div><div
class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-variables-setting"></a>Configurar variables</h3></div></div></div><p>Sintaxis: </p><pre
class="programlisting"><identifier> = <value>
+<identifier> := <value>
+</pre><p> Ejemplo: </p><pre class="programlisting">x = 3
+x := 3
+</pre><p>Para asignar un valor a una variable, use los operadores <code class="literal">=</code> o <code
class="literal">:=</code>. Estos operadores establecen el valor de la variable y devuelven el número
asignado, así puede hacer cosas como </p><pre class="programlisting">a = b = 5
+</pre><p>. Esto establecerá <code class="varname">b</code> a 5 y también <code class="varname">a</code> será
5.</p><p>Los operadores <code class="literal">=</code> y <code class="literal">:=</code> se pueden usar para
asignar variables. La diferencia entre ellos es que <code class="literal">:=</code> siempre actuará como
operador de asignación mientras que <code class="literal">=</code> se puede interpretar como prueba de
igualdad usado en un contexto donde se espera una variable booleana.</p><p>Para temas relacionados con el
ámbito de las variables, consulte la <a class="xref" href="ch06s05.html" title="Variables globales y ámbito
de variables">“Variables globales y ámbito de variables”</a>.</p></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a name="genius-gel-variables-built-in"></a>Variables
integradas</h3></div></div></div><p>GEL tiene un número de «variables» predeterminadas, tales como <code
class="varname">e</code>, <code cl
ass="varname">pi</code> o <code class="varname">GoldenRatio</code>. Éstas se usan ampliamente con su valor
predeterminado y no se pueden modificar. Existen más variables predeterminadas. Consulte la <a class="xref"
href="ch11s04.html" title="Constantes">“Constantes”</a> para obtener la lista completa. Observe que <code
class="varname">i</code> no es el valor predeterminado de la raíz cuadrada de un número negativo (el número
imaginario), y es indefinido que permite usarlo como un contador. Si quiere escribir un número imaginario,
necesita utilizar <strong class="userinput"><code>1i</code></strong>.</p></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a name="genius-gel-previous-result"></a>Resultado de la
variable anterior</h3></div></div></div><p>Las variables <code class="varname">Ans</code> y <code
class="varname">ans</code> se pueden usar para obtener el resultado de la última expresión utilizada. Por
ejemplo, si acaba de realizar u
n cálculo y quiere añadirle 389 al resultado, podría hacer lo siguiente: </p><pre
class="programlisting">Ans+389
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Subir</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05s03.html">Siguiente</a></td></tr><tr><td width="40%" align="left"
valign="top">Capítulo 5. Conceptos de GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top"> Usar
funciones</td></tr></table></div></body></html>
diff --git a/help/es/html/ch05s03.html b/help/es/html/ch05s03.html
new file mode 100644
index 0000000..b41b066
--- /dev/null
+++ b/help/es/html/ch05s03.html
@@ -0,0 +1,20 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Usar
funciones</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch05.html" title="Capítulo 5. Conceptos de
GEL"><link rel="prev" href="ch05s02.html" title="Usar variables"><link rel="next" href="ch05s04.html"
title="Separador"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Usar funciones</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s02.html">Anterior</a> </td><th width="60%" align="center">Capítulo 5. Conceptos de GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch05s04.html">Siguiente</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both
"><a name="genius-gel-functions"></a>Usar funciones</h2></div></div></div><p>Sintaxis: </p><pre
class="programlisting">NombreFuncion(argumento1, argumento2, ...)
+</pre><p> Ejemplo: </p><pre class="programlisting">Factorial(5)
+cos(2*pi)
+gcd(921,317)
+</pre><p> Para evaluar una funcion introduzca el nombre de ésta seguido de los argumentos (si si los hay)
entre paréntesis. Esto devolverá el resultado de aplicar la función a sus argumentos. El número de argumentos
es, por supuesto, diferente para cada función.</p><p>Hay muchas funciones integradas, como <a class="link"
href="ch11s06.html#gel-function-sin"><code class="function">sin</code></a>, <a class="link"
href="ch11s06.html#gel-function-cos"><code class="function">cos</code></a> y <a class="link"
href="ch11s06.html#gel-function-tan"><code class="function">tan</code></a>. Puede usar la función integrada
<a class="link" href="ch11.html#gel-command-help"><code class="function">help</code></a> para obtener una
lista de todas las funciones integradas, o consultar la <a class="xref" href="ch11.html" title="Capítulo 11.
Lista de funciones GEL">Capítulo 11, <i>Lista de funciones GEL</i></a> para obtener una lista
completa..</p><div class="tip" style="margin-left: 0.5
in; margin-right: 0.5in;"><h3 class="title">Usar completado con el tabulador</h3><p>Puede usar completado
con el tabulador para que Genius complete nombres de funciones. Pruebe a escribir las primeras letras del
nombre y pulse <strong class="userinput"><code>Tab</code></strong>.</p></div><div class="important"
style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Los nombres de las funciones son sensibles
a mayúsculas.</h3><p>Los nombres de las funciones son sensibles a la capitalización. Esto significa que las
funciones <code class="function">haceralgo</code>, <code class="function">HACERALGO</code> y <code
class="function">HacerAlgo</code> son todas diferentes entre sí.</p></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a name="genius-gel-functions-defining"></a>Definir
funciones</h3></div></div></div><p>Sintaxis: </p><pre class="programlisting">function
<identifier>(<comma separated arguments>) = <function body&
gt;
+<identifier> = (`() = <function body>)
+</pre><p> El caracter <code class="literal">`</code> es el acento invertido y significa función anónima.
Estableciéndoselo a una variable se define una función.</p><p>Una función toma cero o más argumentos
separados por comas y devuelve el resultado del cuerpo de dicha función. Definir funciones propias es
primordialmente una cuestión de conveniencia; un posible uso es tener un conjunto de funciones definidas en
archivos GEL que Genius pueda cargar para tenerlas disponibles. Ejemplo: </p><pre
class="programlisting">function addup(a,b,c) = a+b+c
+</pre><p> por lo que <strong class="userinput"><code>addup(1,4,9)</code></strong> devuelve 14.</p></div><div
class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-variable-argument-lists"></a>Listas de argumentos de
variables</h3></div></div></div><p>Si se incluye <code class="literal">...</code> después del último
argumento en la declaración de una función Genius permitirá pasar a dicha función un número de argumentos
arbitrario. Si no se pasa ningún argumento el último tendrá el valor <code class="constant">null</code>. De
lo contrario, será un vector que contiene todos los argumentos. Por ejemplo: </p><pre
class="programlisting">function f(a,b...) = b
+</pre><p> Por tanto <strong class="userinput"><code>f(1,2,3)</code></strong> devuelve <code
class="computeroutput">[2,3]</code>, mientras que <strong class="userinput"><code>f(1)</code></strong>
devuelve <code class="constant">null</code>.</p></div><div class="sect2"><div class="titlepage"><div><div><h3
class="title"><a name="genius-gel-functions-passing-functions"></a>Pasar funciones a
funciones</h3></div></div></div><p>En Genius es posible pasar una función como argumento de otra función.
Esto se puede hacer usando «nodos de funciones» o funciones anónimas.</p><p>Si no se escriben los paréntesis
después del nombre de la función, en lugar de evaluarse, la función se devolverá como un «nodo función». El
nodo función se puede pasar a como argumento a otra función. Ejemplo: </p><pre
class="programlisting">function f(a,b) = a(b)+1;
+function b(x) = x*x;
+f(b,2)
+</pre><p>Para pasar funciones que no están definidas se puede hacer uso de la función anónima (consulte la
<a class="xref" href="ch05s03.html#genius-gel-functions-defining" title="Definir funciones">“Definir
funciones”</a>). Es decir, cuando se quiere pasar una función sin dar un nombre. Sintaxis: </p><pre
class="programlisting">function(<comma separated arguments>) = <function body>
+`(<comma separated arguments>) = <function body>
+</pre><p> Ejemplo: </p><pre class="programlisting">function f(a,b) = a(b)+1;
+f(`(x) = x*x,2)
+</pre><p> Devuelve 5.</p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-operations"></a>Operaciones con funciones</h3></div></div></div><p>Algunas
funciones permiten operaciones aritméticas y algunos argumentos de función tales como <a class="link"
href="ch11s05.html#gel-function-exp"><code class="function">exp</code></a> o <a class="link"
href="ch11s05.html#gel-function-ln"><code class="function">ln</code></a>, para operar en la función. Por
ejemplo, </p><pre class="programlisting">exp(sin*cos+4)
+</pre><p> devolverá una función que toma <code class="varname">x</code> y devuelve <strong
class="userinput"><code>exp(sin(x)*cos(x)+4)</code></strong>. Esta funcionalidad es equivalente a escribir
</p><pre class="programlisting">`(x) = exp(sin(x)*cos(x)+4)
+</pre><p> Esta operación puede ser útil cuando se definen funciones rápidamente. Por ejemplo, para crear una
función llamada <code class="varname">f</code> que realice la operación arriba descrita, simplemente puede
escribir: </p><pre class="programlisting">f = exp(sin*cos+4)
+</pre><p> También se puede usar al dibujar. Por ejemplo, para dibujar el cuadrado de un seno puede utilizar:
</p><pre class="programlisting">LinePlot(sin^2)
+</pre><div class="warning" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Aviso</h3><p>No todas las funciones se pueden usar de este modo. Por ejemplo, cuando usa una
función binaria las funciones deben aceptar el mismo número de argumentos.</p></div></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch05s02.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch05.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05s04.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Usar variables
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%"
align="right" valign="top"> Separador</td></tr></table></div></body></html>
diff --git a/help/es/html/ch05s04.html b/help/es/html/ch05s04.html
new file mode 100644
index 0000000..dbd035e
--- /dev/null
+++ b/help/es/html/ch05s04.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Separador</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
de Genius"><link rel="up" href="ch05.html" title="Capítulo 5. Conceptos de GEL"><link rel="prev"
href="ch05s03.html" title="Usar funciones"><link rel="next" href="ch05s05.html"
title="Comentarios"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Separador</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s03.html">Anterior</a> </td><th width="60%" align="center">Capítulo 5. Conceptos de GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch05s05.html">Siguiente</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a nam
e="genius-gel-separator"></a>Separador</h2></div></div></div><p>GEL es más diferente que otros lenguajes a
la hora de tratar con varios comandos y funciones. En GEL puede encadenar comandos junto con un operador de
separación. Esto es, si quiere escribir más de una expresión utilice el operador <code
class="literal">;</code> después de cada expresión. Esta es una forma en la que ambas expresiones se evaluan
y se devuelve el resultado de la segunda expresión (o de la última, si hay más de dos expresiones). Suponga
que escribe la siguiente expresión: </p><pre class="programlisting">3 ; 5
+</pre><p> Esta expresión dará como resultado 5.</p><p>Esto requiere poner algunos paréntesis para evitar
ambigüedades, especialmente si el carácter <code class="literal">;</code> no es la primitiva más prioritaria.
Esto difiere ligeramente de otros lenguajes de programación donde el carácter <code class="literal">;</code>
es un finalizador de sentencias. En GEL es un operador binario. Si está familiarizado con Pascal esto debería
ser natural para usted. Sin embargo, Genius le permite simular que es un terminador si el carácter <code
class="literal">;</code> se encuentra detrás de un paréntesis o un bloque, Genius añadirá automáticamente un
nodo nulo como si hubiese escrito <strong class="userinput"><code>;null</code></strong>. Esto es útil en caso
de que no quiera devolver ningún valor o si gestiona el retorno de un modo diferente. Tenga en cuenta que es
ralentiza ligeramente el código si se ejecuta demasiado frecuentemente ya que se toma como un operador
más.</p><p>Si escribe expresiones en un programa no tiene que añadir un punto y coma. En este caso Genius
muestra el resultado de la expresión cuando se ejecuta. Sin embargo, si define una función, el cuerpo de la
función es una sola expresión.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch05s03.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch05.html">Subir</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05s05.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Usar
funciones </td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td
width="40%" align="right" valign="top"> Comentarios</td></tr></table></div></body></html>
diff --git a/help/es/html/ch05s05.html b/help/es/html/ch05s05.html
new file mode 100644
index 0000000..31a2182
--- /dev/null
+++ b/help/es/html/ch05s05.html
@@ -0,0 +1,5 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Comentarios</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manual de Genius"><link rel="up" href="ch05.html"
title="Capítulo 5. Conceptos de GEL"><link rel="prev" href="ch05s04.html" title="Separador"><link rel="next"
href="ch05s06.html" title="Evaluación modular"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Comentarios</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch05s04.html">Anterior</a> </td><th width="60%" align="center">Capítulo 5. Conceptos de
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s06.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"
<a name="genius-gel-comments"></a>Comentarios</h2></div></div></div><p>GEL es similar a otros lenguajes de
scripts en el sentido de que <code class="literal">#</code> indica un comentario, que es texto que no se
evaluará. Todo lo que vaya después de la almohadilla hasta el final de la línea se ignorará. Por ejemplo,
</p><pre class="programlisting"># Esto es un comentario
+# cada línea debe empezar por una almohadilla
+# en la siguiente línea se establece el valor de x a 123
+x=123;
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch05s04.html">Anterior</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch05.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05s06.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Separador </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%" align="right"
valign="top"> Evaluación modular</td></tr></table></div></body></html>
diff --git a/help/es/html/ch05s06.html b/help/es/html/ch05s06.html
new file mode 100644
index 0000000..eba9c94
--- /dev/null
+++ b/help/es/html/ch05s06.html
@@ -0,0 +1,8 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Evaluación
modular</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch05.html" title="Capítulo 5. Conceptos de
GEL"><link rel="prev" href="ch05s05.html" title="Comentarios"><link rel="next" href="ch05s07.html"
title="Lista de operadores GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Evaluación modular</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s05.html">Anterior</a> </td><th width="60%" align="center">Capítulo 5. Conceptos de GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch05s07.html">Siguiente</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="titl
e" style="clear: both"><a name="genius-gel-modular-evaluation"></a>Evaluación
modular</h2></div></div></div><p>Genius implementa aritmética modular. Para usarla, simplemente añada «mod
<entero>» después de la expresión. Ejemplo: <strong class="userinput"><code>2^(5!) * 3^(6!) mod
5</code></strong> Podría ser posible realizar aritmética modular trabajando con enteros y aplicando el módulo
al final con el operador <code class="literal">%</code>, que simplemente devuelve el resto, pero puede
requerir más tiempo o ser imposible cuando se trabaja con valores muy elevados. Por ejemplo <strong
class="userinput"><code>10^(10^10) % 6</code></strong> puede que no funcione (el exponente es demasiado
grande), sin embargo <strong class="userinput"><code>10^(10^10) mod 6</code></strong> es instantáneo. La
primera expresión primero intenta calcular el entero <strong
class="userinput"><code>10^(10^10)</code></strong> y luego el resto de la división por 6, mientras que la
segunda expresión calcula el módulo 6 de todo primero que nada.</p><p>Dados dos números enteros a y b,
puede calcular el inverso multiplicativo de a módulo b usando números racionales (desde luego, el inverso
debe existir). Ejemplos: </p><pre class="programlisting">10^-1 mod 101
+1/10 mod 101</pre><p> Puede obtener la evaluación modular de una matriz, calcular potencias, la matriz
inversa y dividir. Ejemplo: </p><pre class="programlisting">A = [1,2;3,4]
+B = A^-1 mod 5
+A*B mod 5</pre><p> Es la matriz identidad, pues B es la matriz inversa de A módulo 5.</p><p>Algunas
funciones como <a class="link" href="ch11s05.html#gel-function-sqrt"><code class="function">sqrt</code></a> o
<a class="link" href="ch11s05.html#gel-function-log"><code class="function">log</code></a> trabajan de una
manera diferente en modo módulo. Éstas utilizarán sus versiones discretas trabajando en el entorno de enteros
que el usuario ha seleccionado. Por ejemplo: </p><pre class="programlisting">genius> sqrt(4) mod 7
+=
+[2, 5]
+genius> 2*2 mod 7
+= 4</pre><p><code class="function">sqrt</code> devolverá todas las raíces cuadradas posibles.</p><p>No
concatene operadores mod, solo colóquelos al final del cálculo, todos los cálculos en la expresión que está a
la izquierda se llevarán a cabo bajo aritmética mod. Si coloca un operador mod dentro de un mod seguramente
obtendrá resultados inesperados. Si solo quiere aplicar mod a un único número y controlar cuándo se toma el
resto, es mejor utilizar el operador <code class="literal">%</code>. Cuando necesita concatenar varias
expresiones en una aritmética modular con diferentes divisores, lo mejor es simplemente dividir la expresión
en varias y usar variables temporales para evitar un mod dentro de un mod.</p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch05s05.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch05.html">Subir</a></td><td wi
dth="40%" align="right"> <a accesskey="n" href="ch05s07.html">Siguiente</a></td></tr><tr><td width="40%"
align="left" valign="top">Comentarios </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top"> Lista de operadores
GEL</td></tr></table></div></body></html>
diff --git a/help/es/html/ch05s07.html b/help/es/html/ch05s07.html
new file mode 100644
index 0000000..a7ed957
--- /dev/null
+++ b/help/es/html/ch05s07.html
@@ -0,0 +1,6 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Lista de operadores
GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch05.html" title="Capítulo 5. Conceptos de
GEL"><link rel="prev" href="ch05s06.html" title="Evaluación modular"><link rel="next" href="ch06.html"
title="Capítulo 6. Programar con GEL"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Lista de operadores GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch05s06.html">Anterior</a> </td><th width="60%" align="center">Capítulo
5. Conceptos de GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><di
v><h2 class="title" style="clear: both"><a name="genius-gel-operator-list"></a>Lista de operadores
GEL</h2></div></div></div><p>Todo en GEL es en realidad una expresión. Las expresiones se encadenan unas tras
otras mediante diferentes operadores. Como hemos visto, incluso el separador es un operador binario en GEL. A
continuación se muestra una lista de los operadores en GEL.</p><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><strong
class="userinput"><code>a;b</code></strong></span></dt><dd><p>El separador evalúa <code
class="varname">a</code> y <code class="varname">b</code>, pero sólo devuelve el valor de <code
class="varname">b</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a=b</code></strong></span></dt><dd><p>El operador asignación. Asigna <code
class="varname">b</code> a <code class="varname">a</code> (<code class="varname">a</code> debe ser un <a
class="link" href="ch06s09.html" title="Lvalues">lvalue</a> válido
) (tenga en cuenta que este operador puede equivaler a <code class="literal">==</code> si se usa cuando se
espera una expresión booleana)</p></dd><dt><span class="term"><strong
class="userinput"><code>a:=b</code></strong></span></dt><dd><p>El operador asignación. Asigna <code
class="varname">b</code> a <code class="varname">a</code> (<code class="varname">a</code> debe ser un <a
class="link" href="ch06s09.html" title="Lvalues">lvalue</a> válido). Se diferencia de <code
class="literal">=</code> en que nunca equivale a <code class="literal">==</code>.</p></dd><dt><span
class="term"><strong class="userinput"><code>|a|</code></strong></span></dt><dd><p>Valor absoluto. En el caso
de que la expresión sea un número complejo el resultado será su módulo (distancia desde el origen). Por
ejemplo: <strong class="userinput"><code>|3 * e^(1i*pi)|</code></strong> devuelve 3.</p><p>Consulte <a
class="ulink" href="http://mathworld.wolfram.com/AbsoluteValue.html" target="_top">Mathworl
d</a> para obtener más información.</p></dd><dt><span class="term"><strong
class="userinput"><code>a^b</code></strong></span></dt><dd><p>Exponenciación, eleva <code
class="varname">a</code> a la <code class="varname">b</code>-ésima potencia.</p></dd><dt><span
class="term"><strong class="userinput"><code>a.^b</code></strong></span></dt><dd><p>Potencia elemento a
elemento. Eleva cada elemento de una matriz <code class="varname">a</code> a la <code
class="varname">b</code>-ésima potencia. O si <code class="varname">b</code> es una matriz del mismo tamaño
que <code class="varname">a</code>, entonces realiza la operación elemento a elemento. Si <code
class="varname">a</code> es un número y <code class="varname">b</code> es una matriz entonces crea una matriz
del mismo tamaño que <code class="varname">b</code> formada por <code class="varname">a</code> elevado a
todas las diferentes potencias de <code class="varname">b</code>.</p></dd><dt><span class="term"><strong
class=
"userinput"><code>a+b</code></strong></span></dt><dd><p>Adición. Suma dos números, matrices, funciones o
cadenas. Si suma una cadena a cualquier valor el resultado es una cadena. Si uno de ellos es una matriz
cuadrada y el otro un número, el número se multiplica por la identidad de la matriz.</p></dd><dt><span
class="term"><strong class="userinput"><code>a-b</code></strong></span></dt><dd><p>Sustracción. Resta dos
números, matrices o funciones.</p></dd><dt><span class="term"><strong
class="userinput"><code>a*b</code></strong></span></dt><dd><p>Multiplicación. Es la multiplicación normal de
matrices.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.*b</code></strong></span></dt><dd><p>Multiplicación elemento a elemento si <code
class="varname">a</code> y <code class="varname">b</code> son matrices.</p></dd><dt><span
class="term"><strong class="userinput"><code>a/b</code></strong></span></dt><dd><p>División. Cuando <code
class="varname">a</code> y <co
de class="varname">b</code> son sólo números es la división normal. Cuando son matrices, esto es el
equivalente a <strong class="userinput"><code>a*b^-1</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a./b</code></strong></span></dt><dd><p>División elemento por elemento. Igual que
<strong class="userinput"><code>a/b</code></strong> para números, pero opera elemento por elemento en
matrices.</p></dd><dt><span class="term"><strong
class="userinput"><code>a\b</code></strong></span></dt><dd><p>División hacia atrás. Es lo mismo que <strong
class="userinput"><code>b/a</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.\b</code></strong></span></dt><dd><p>División hacia atrás elemento por
elemento.</p></dd><dt><span class="term"><strong
class="userinput"><code>a%b</code></strong></span></dt><dd><p>El operador mod. No activa el <a class="link"
href="ch05s06.html" title="Evaluación modular">modo modular</a> si
no que simplemente devuelve el resto de <strong
class="userinput"><code>a/b</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.%b</code></strong></span></dt><dd><p>Operador mod elemento por elemento. Devuelve
el resto de <strong class="userinput"><code>a./b</code></strong> elemento por elemento.</p></dd><dt><span
class="term"><strong class="userinput"><code>a mod b</code></strong></span></dt><dd><p>Operación de
evaluación modular. La expresión <code class="varname">a</code> se evalúa módulo <code
class="varname">b</code>. Consulte la <a class="xref" href="ch05s06.html" title="Evaluación
modular">“Evaluación modular”</a>. Algunas de las funciones y operadores se comportan de un modo distinto
cuando trabajan en módulo entero.</p></dd><dt><span class="term"><strong
class="userinput"><code>a!</code></strong></span></dt><dd><p>Operador factorial. Esto es <strong
class="userinput"><code>1*...*(n-2)*(n-1)*n</code></strong>.</p></dd><dt><sp
an class="term"><strong class="userinput"><code>a!!</code></strong></span></dt><dd><p>Operador doble
factorial. Esto es <strong class="userinput"><code>1*...*(n-4)*(n-2)*n</code></strong>.</p></dd><dt><span
class="term"><strong class="userinput"><code>a==b</code></strong></span></dt><dd><p>Operador de igualdad,
devuelve <code class="constant">true</code> o <code class="constant">false</code> dependiendo de si <code
class="varname">a</code> y <code class="varname">b</code> son iguales o no.</p></dd><dt><span
class="term"><strong class="userinput"><code>a!=b</code></strong></span></dt><dd><p>Operador de desigualdad,
devuelve <code class="constant">true</code> si <code class="varname">a</code> no es igual a <code
class="varname">b</code>; si lo es, devuelve <code class="constant">false</code>.</p></dd><dt><span
class="term"><strong class="userinput"><code>a<>b</code></strong></span></dt><dd><p>Operador distinto
alternativo devuelve <code class="constant">true</code> si <c
ode class="varname">a</code> no es igual a <code class="varname">b</code> en caso contrario devuelve <code
class="constant">false</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a<=b</code></strong></span></dt><dd><p>Operador menor o igual, devuelve <code
class="constant">true</code> si <code class="varname">a</code> es menor o igual que <code
class="varname">b</code>, si no, devuelve <code class="constant">false</code>. Esto se puede concatenar como
<strong class="userinput"><code>a <= b <= c</code></strong> (también se puede combinar con el operador
menor que).</p></dd><dt><span class="term"><strong
class="userinput"><code>a>=b</code></strong></span></dt><dd><p>Operador mayor o igual, devuelve <code
class="constant">true</code> si <code class="varname">a</code> es mayor o igual que <code
class="varname">b</code>, si no, devuelve <code class="constant">false</code>. Esto se puede concatenar como
<strong class="userinput"><code>a >= b &
gt;= c</code></strong> (también se puede combinar con el operador mayor que).</p></dd><dt><span
class="term"><strong class="userinput"><code>a<b</code></strong></span></dt><dd><p>Operador menor que,
devuelve <code class="constant">true</code> si <code class="varname">a</code> es menor o igual que <code
class="varname">b</code>, si no, devuelve <code class="constant">false</code>. Esto se puede concatenar como
<strong class="userinput"><code>a < b < c</code></strong> (también se puede combinar con el operador
menor o igual que).</p></dd><dt><span class="term"><strong
class="userinput"><code>a>b</code></strong></span></dt><dd><p>Operador mayor que, devuelve <code
class="constant">true</code> si <code class="varname">a</code> es mayor o igual que <code
class="varname">b</code>, si no, devuelve <code class="constant">false</code>. Esto se puede concatenar como
<strong class="userinput"><code>a > b > c</code></strong> (también se puede combinar con el operado
r mayor o igual que).</p></dd><dt><span class="term"><strong
class="userinput"><code>a<=>b</code></strong></span></dt><dd><p>Operador de comparación. Si <code
class="varname">a</code> es igual a <code class="varname">b</code> devuelve 0, si <code
class="varname">a</code> es menor que <code class="varname">b</code> devuelve -1 y si <code
class="varname">a</code> es mayor que <code class="varname">b</code> devuelve 1.</p></dd><dt><span
class="term"><strong class="userinput"><code>a and b</code></strong></span></dt><dd><p>AND lógico. Devuelve
cierto si <code class="varname">a</code> y <code class="varname">b</code> son ciertos; si no, devuelve falso.
Si se dan números, los números distintos de cero se consideran como «verdadero».</p></dd><dt><span
class="term"><strong class="userinput"><code>a or b</code></strong></span></dt><dd><p>OR lógico. Devuelve
verdadero si <code class="varname">a</code> o <code class="varname">b</code> son verdaderos; si no, devuelve
falso.
Si se dan números, los números distintos de cero se consideran como verdadero.</p></dd><dt><span
class="term"><strong class="userinput"><code>a xor b</code></strong></span></dt><dd><p>X-OR lógico. Devuelve
cierto si <code class="varname">a</code> o <code class="varname">b</code> son ciertos; si no, devuelve falso.
Si se dan números, los números distintos de cero se consideran como «verdadero».</p></dd><dt><span
class="term"><strong class="userinput"><code>not a</code></strong></span></dt><dd><p>NOT lódico. Devuelve la
negación lógica de <code class="varname">a</code></p></dd><dt><span class="term"><strong
class="userinput"><code>-a</code></strong></span></dt><dd><p>Operador de negación. Devuelve el negativo de un
número o una matriz (en una matriz, funciona de acuerdo al elemento).</p></dd><dt><span class="term"><strong
class="userinput"><code>&a</code></strong></span></dt><dd><p>Referencia de variables (pasar una
referencia a una variable). Consulte <a clas
s="xref" href="ch06s08.html" title="Referencias">“Referencias”</a>.</p></dd><dt><span class="term"><strong
class="userinput"><code>*a</code></strong></span></dt><dd><p>Desreferenciar una variable (para acceder a una
variable referenciada). Consulte la <a class="xref" href="ch06s08.html"
title="Referencias">“Referencias”</a>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a'</code></strong></span></dt><dd><p>Transpuesta conjugada de una matriz. Significa
que las filas y columnas se intercambian y se toman la conjugada compleja de todas las entradas. Esto es, si
el elemento i,j de <code class="varname">a</code> es x+iy, entonces el elemento j,i de <strong
class="userinput"><code>a'</code></strong> es x-iy.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.'</code></strong></span></dt><dd><p>Transpuesta de matriz, no conjuga las entradas.
Esto significa, el elemento i,j de <code class="varname">a</code> se convierte en el elemento j,i de <
strong class="userinput"><code>a.'</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,c)</code></strong></span></dt><dd><p>Devuelve el elemento en la fila <code
class="varname">b</code> y columna <code class="varname">c</code>. Si <code class="varname">b</code>, <code
class="varname">c</code> son vectores, devuelve las correspondientes filas, columnas o
submatrices.</p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,)</code></strong></span></dt><dd><p>Devuelve la fila de la matriz (o múltiples
filas si <code class="varname">b</code> es un vector).</p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,:)</code></strong></span></dt><dd><p>Igual que el anterior</p></dd><dt><span
class="term"><strong class="userinput"><code>a@(,c)</code></strong></span></dt><dd><p>Devuelve la columna de
la matriz (o columnas si <code class="varname">c</code> es un vector).</p></dd><dt><span class="term"><strong
class="userinput"><
code>a@(:,c)</code></strong></span></dt><dd><p>Igual que el anterior</p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b)</code></strong></span></dt><dd><p>Obtiene un elemento de una matriz tratándola
como vector. Recorre la matriz por filas.</p></dd><dt><span class="term"><strong
class="userinput"><code>a:b</code></strong></span></dt><dd><p>Crea un vector con valores de <code
class="varname">a</code> a <code class="varname">b</code> (o específica una región de filas o columnas para
el operador <code class="literal">@</code>). Por ejemplo para obtener las filas 2 a 4 de la matriz <code
class="varname">A</code> se podría hacer </p><pre class="programlisting">A@(2:4,)
+ </pre><p> ya que <strong class="userinput"><code>2:4</code></strong> devolverá el vector <strong
class="userinput"><code>[2,3,4]</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a:b:c</code></strong></span></dt><dd><p>Crea un vector con valores desde <code
class="varname">a</code> a <code class="varname">c</code> usando <code class="varname">b</code> como paso.
Por ejemplo: </p><pre class="programlisting">genius> 1:2:9
+=
+`[1, 3, 5, 7, 9]
+</pre><p>Cuando los números implicados son números en coma flotante, por ejemplo <strong
class="userinput"><code>1.0:0.4:3.0</code></strong>, la salida es lo que se espera a pesar de la adición de
0,4 a 1,0 cinco veces es en realidad sólo un poco más de 3,0 debido a la forma en que los números de coma
flotante se almacenan en la base 2 (no hay 0.4, el número real almacenado es sólo ligeramente más grande). La
forma en que se maneja es el mismo que en los bucles «for», «sum», y «prod». Si el final está dentro de
<strong class="userinput"><code>2^-20</code></strong> veces el tamaño de paso del punto final, se utiliza el
punto final y suponemos que no eran errores de redondeo. Esto no es perfecto, pero maneja la mayoría de los
casos. Esta comprobación se realiza sólo desde la versión 1.0.18 en adelante, así que la ejecución de su
código puede ser diferente en las versiones anteriores. Si quiere evitar este problema, utilice los números
racionales reales
, posiblemente usando el <code class="function">float</code> si quiere obtener los números de punto flotante
en el final. Por ejemplo <strong class="userinput"><code>1:2/5:3</code></strong> hace lo correcto y <strong
class="userinput"><code>float(1:2/5:3)</code></strong> incluso le da los números de punto flotante y es
ligeramente más precisa que <strong class="userinput"><code>1,0:0,4:3,0</code></strong>.</p></dd><dt><span
class="term"><strong class="userinput"><code>(a)i</code></strong></span></dt><dd><p>Crea un número imaginario
(multiplicando <code class="varname">a</code> por el imaginario). Tenga en cuenta que normalmente el
número<code class="varname">i</code> se escribe <strong class="userinput"><code>1i</code></strong>. De modo
que lo descrito arriba es equivalente a </p><pre class="programlisting">(a)*1i
+ </pre></dd><dt><span class="term"><strong
class="userinput"><code>`a</code></strong></span></dt><dd><p>Escapa un identificador de modo que no sea
evaluado. O escapa una matriz de modo que no sea expandida.</p></dd><dt><span class="term"><strong
class="userinput"><code>a swapwith b</code></strong></span></dt><dd><p>Intercambia el valor de <code
class="varname">a</code> con el valor de <code class="varname">b</code>. Actualmente no funciona con rangos
de elementos matriciales. Devuelve <code class="constant">null</code>. Está disponible desde la versión
1.0.13.</p></dd><dt><span class="term"><strong class="userinput"><code>increment
a</code></strong></span></dt><dd><p>Incrementa la variable <code class="varname">a</code> en 1. Si <code
class="varname">a</code> es una matriz entonces incrementará cada uno de los elementos. Es equivalente a
<strong class="userinput"><code>a=a+1</code></strong> pero más rápido. Devuelve <code
class="constant">null</code>. Está disponi
ble desde la versión 1.0.13.</p></dd><dt><span class="term"><strong class="userinput"><code>increment a by
b</code></strong></span></dt><dd><p>Incrementa la variable <code class="varname">a</code> en <code
class="varname">b</code>. Si <code class="varname">a</code> es una matriz, entonces incrementa cada elemento.
Es equivalente a <strong class="userinput"><code>a=a+b</code></strong>, pero más rápido. Devuelve null <code
class="constant">null</code>. Está disponible desde la versión 1.0.13.</p></dd></dl></div><div class="note"
style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Nota</h3><p>El operador @() hace el
operador «:» más útil. Con éste puede especificar regiones dentro de una matriz. De modo que a@(2:4,6)
representa las filas 2, 3 y 4 de la columna 6. O @(,1:2) devuelve las dos primeras columnas de una matriz.
Puede asignar al operador @() siempre que el valor sea una matriz cuyo tamaño coincida con el tamaño de la
región asignada o cualq
uier otro tipo de valor.</p></div><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Nota</h3><p>Los operadores de comparación (excepto el operador <=> que se comporta de un
modo normal), no son estrictamente operadores binarios, de hecho pueden agruparse de una forma matemática
estándar, por ejemplo: (1<x<=y<5) es una expresión booleana válida y significa lo que debería, es
decir, (1<x and x≤y and y<5)</p></div><div class="note" style="margin-left: 0.5in; margin-right:
0.5in;"><h3 class="title">Nota</h3><p>El operador unario «menos» opera de un modo distinto dependiendo del
lugar donde aparece. Si lo hace antes de un número su prioridad es muy alta. Si aparece delante de una
expresión tendrá menos prioridad que los operadores potencia y factorial. De este modo, por ejemplo, <strong
class="userinput"><code>-1^k</code></strong> es en realidad <strong
class="userinput"><code>(-1)^k</code></strong>, sin embargo
<strong class="userinput"><code>-foo(1)^k</code></strong> es realmente <strong
class="userinput"><code>-(foo(1)^k)</code></strong>. Por lo tanto, tenga cuidado con el uso de este operador
y si tiene alguna duda, use paréntesis.</p></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch05s06.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch05.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Evaluación modular
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%"
align="right" valign="top"> Capítulo 6. Programar con GEL</td></tr></table></div></body></html>
diff --git a/help/es/html/ch06.html b/help/es/html/ch06.html
new file mode 100644
index 0000000..c9da915
--- /dev/null
+++ b/help/es/html/ch06.html
@@ -0,0 +1,8 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 6. Programar
con GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="index.html" title="Manual de Genius"><link
rel="prev" href="ch05s07.html" title="Lista de operadores GEL"><link rel="next" href="ch06s02.html"
title="Bucles"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Capítulo
6. Programar con GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s07.html">Anterior</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch06s02.html">Siguiente</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-g
el-programming"></a>Capítulo 6. Programar con GEL</h1></div></div></div><div class="toc"><p><b>Tabla de
contenidos</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch06.html#genius-gel-conditionals">Condicionales</a></span></dt><dt><span class="sect1"><a
href="ch06s02.html">Bucles</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-while">Bucles «while»</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-for">Bucles «for»</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-foreach">Bucles «foreach»</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-break-continue">Parar y continuar</a></span></dt></dl></dd><dt><span
class="sect1"><a href="ch06s03.html">Sumas y productos</a></span></dt><dt><span class="sect1"><a
href="ch06s04.html">Operadores de comparación</a></span></dt><dt><span class="sect1"><a
href="ch06s05.html">Variables globales y ámbito de
variables</a></span></dt><dt><span class="sect1"><a href="ch06s06.html">Variables de
parámetros</a></span></dt><dt><span class="sect1"><a href="ch06s07.html">Retorno</a></span></dt><dt><span
class="sect1"><a href="ch06s08.html">Referencias</a></span></dt><dt><span class="sect1"><a
href="ch06s09.html">Lvalues</a></span></dt></dl></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a
name="genius-gel-conditionals"></a>Condicionales</h2></div></div></div><p>Sintaxis: </p><pre
class="programlisting">if <expression1> then <expression2> [else <expression3>]
+</pre><p> si se omite <code class="literal">else</code>, si la expresión <code
class="literal">expression1</code> devuelve <code class="constant">false</code> o <code
class="literal">0</code>, devolverá <code class="literal">NULL</code>.</p><p>Ejemplos: </p><pre
class="programlisting">if(a==5)then(a=a-1)
+if b<a then b=a
+if c>0 then c=c-1 else c=0
+a = ( if b>0 then b else 1 )
+</pre><p> tenga en cuenta que <code class="literal">=</code> se traducirá como <code
class="literal">==</code> si se usa dentro de una expresión <code class="literal">if</code>, por lo que
</p><pre class="programlisting">if a=5 then a=a-1
+</pre><p> se interpretará como: </p><pre class="programlisting">if a==5 then a:=a-1
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s07.html">Anterior</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch06s02.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Lista de operadores
GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%"
align="right" valign="top"> Bucles</td></tr></table></div></body></html>
diff --git a/help/es/html/ch06s02.html b/help/es/html/ch06s02.html
new file mode 100644
index 0000000..a126d9f
--- /dev/null
+++ b/help/es/html/ch06s02.html
@@ -0,0 +1,15 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Bucles</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
de Genius"><link rel="up" href="ch06.html" title="Capítulo 6. Programar con GEL"><link rel="prev"
href="ch06.html" title="Capítulo 6. Programar con GEL"><link rel="next" href="ch06s03.html" title="Sumas y
productos"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Bucles</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06.html">Anterior</a> </td><th width="60%" align="center">Capítulo 6. Programar con GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch06s03.html">Siguiente</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-loops"></a>Bucles</h2></div></div></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a name="genius-gel-loops-while"></a>Bucles
«while»</h3></div></div></div><p>Sintaxis: </p><pre class="programlisting">while <expression1> do
<expression2>
+until <expression1> do <expression2>
+do <expression2> while <expression1>
+do <expression2> until <expression1></pre><p> son similares a otros lenguajes. Sin embargo,
puesto que GEL es una única expresión que debe devolver algo, estas construcciones devolverán el resultado de
la última iteración o <code class="literal">NULL</code> si no se realiza ninguna operación. En la expresión
booleana, <code class="literal">=</code> se traduce a <code class="literal">==</code> sólo para la sentencia
<code class="literal">if</code>.</p></div><div class="sect2"><div class="titlepage"><div><div><h3
class="title"><a name="genius-gel-loops-for"></a>Bucles «for»</h3></div></div></div><p>Sintaxis: </p><pre
class="programlisting">for <identifier> = <from> to <to> do <body>
+for <identifier> = <from> to <to> by <increment> do <body></pre><p> bucle en
el que el identificador es un conjunto de todos los valores desde <code class="literal"><from></code>
hasta <code class="literal"><to></code>, opcionalmente se puede usar un incremento distinto de 1.
Dichos bucles son más rápidos, cómodos y compactos que los bucles normales descritos previamente pero menos
flexibles. El identificador se debe tratar como tal y no se puede eliminar su referencia. El valor del
identificador corresponde al último valor de éste o a <code class="literal"><from></code> si el cuerpo
del bucle no se ha evaluado todavía. Se garantiza que la variable permanezca inicializada tras el bucle, de
modo que puede usarla sin problemas. Además, <code class="literal"><from></code>, <code
class="literal"><to></code> e <code class="literal"><increment></code> no pueden ser valores
complejos. Tampoco se garantiza que
se alcance <code class="literal"><to></code>, pero sí que nunca se rebasará. El ejemplo siguiente
imprime todos los números pares desde 1 a 19: </p><pre class="programlisting">for i = 1 to 20 by 2 do print(i)
+</pre><p>Cuando uno de los valores es un número de coma flotante, la verificación final se realiza con un
paso de 2 ^-20. Es decir, incluso si se sobrestima 2 ^-20 veces el «por» por encima, todavía se ejecuta la
última iteración. De este modo </p><pre class="programlisting">for x = 0 to 1 by 0.1 do print(x)
+</pre><p> hace lo esperado aunque sumar 0,1 diez veces es algo superior a 1,0 debido a la forma en que los
números de coma flotante se almacenan en la base 2 (no hay 0,1, el número real almacenado es sólo ligeramente
más grande). Esto no es perfecto, pero funciona en la mayoría de los casos. Si quiere evitar este problema,
utilice números reales racionales, por ejemplo: </p><pre class="programlisting">for x = 0 to 1 by 1/10 do
print(x)
+</pre><p> Esta comprobación se realiza únicamente desde la versión 1.0.16 en adelante, por lo que la
ejecución del código puede variar en versiones anteriores.</p></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a name="genius-gel-loops-foreach"></a>Bucles
«foreach»</h3></div></div></div><p>Sintaxis: </p><pre class="programlisting">for <identifier> in
<matrix> do <body></pre><p> ejecuta el cuerpo del bucle para cada uno de los elementos de la
matriz recorriendo ésta fila por fila y de izquierda a derecha. Para imprimir los números 1, 2, 3 y 4 en este
orden se podría hacer lo siguiente: </p><pre class="programlisting">for n in [1,2:3,4] do print(n)
+</pre><p> Si desea recorrer las filas y columnas de una matriz puede usar las funciones RowsOf y ColumnsOf
que devuelven un vector de filas o columnas de la matriz. Por lo tanto, </p><pre class="programlisting">for n
in RowsOf ([1,2:3,4]) do print(n)
+</pre><p> imprimirá <code class="literal">[1,2]</code> y después <code
class="literal">[3,4]</code>.</p></div><div class="sect2"><div class="titlepage"><div><div><h3
class="title"><a name="genius-gel-loops-break-continue"></a>Parar y
continuar</h3></div></div></div><p>También puede utilizar los comandos <code class="literal">break</code> y
<code class="literal">continue</code> en un bucle. El comando <code class="literal">continue</code> reinicia
el bucle actual en la siguiente iteración, mientras que el comando <code class="literal">break</code> sale
del bucle actual. </p><pre class="programlisting">while(<expression1>) do (
+ if(<expression2>) break
+ else if(<expression3>) continue;
+ <expression4>
+)
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Subir</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s03.html">Siguiente</a></td></tr><tr><td width="40%" align="left"
valign="top">Capítulo 6. Programar con GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top"> Sumas y
productos</td></tr></table></div></body></html>
diff --git a/help/es/html/ch06s03.html b/help/es/html/ch06s03.html
new file mode 100644
index 0000000..a450195
--- /dev/null
+++ b/help/es/html/ch06s03.html
@@ -0,0 +1,6 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Sumas y
productos</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch06.html" title="Capítulo 6. Programar con
GEL"><link rel="prev" href="ch06s02.html" title="Bucles"><link rel="next" href="ch06s04.html"
title="Operadores de comparación"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Sumas y productos</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s02.html">Anterior</a> </td><th width="60%" align="center">Capítulo 6. Programar con GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch06s04.html">Siguiente</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" s
tyle="clear: both"><a name="genius-gel-sums-products"></a>Sumas y
productos</h2></div></div></div><p>Sintaxis: </p><pre class="programlisting">sum <identifier> =
<from> to <to> do <body>
+sum <identifier> = <from> to <to> by <increment> do <body>
+sum <identifier> in <matrix> do <body>
+prod <identifier> = <from> to <to> do <body>
+prod <identifier> = <from> to <to> by <increment> do <body>
+prod <identifier> in <matrix> do <body></pre><p> Si sustituye <code
class="literal">for</code> por <code class="literal">sum</code> o <code class="literal">prod</code>, obtendrá
una suma o un producto en lugar de un bucle <code class="literal">for</code>. En vez de el último valor del
bucle, devolverá la suma o el producto de todos los valores obtenidos respectivamente.</p><p>Si no se ejecuta
ningún comando (por ejemplo <strong class="userinput"><code>sum i=1 to 0 do ...</code></strong>), <code
class="literal">sum</code> devuelve el valor 0 y <code class="literal">prod</code> devuelve el valor 1, que
es el convenio estándar.</p><p>Para los números en coma flotante el redondeo de protección de errores se
realiza como en el bucle for. Consulte la <a class="xref" href="ch06s02.html#genius-gel-loops-for"
title="Bucles «for»">“Bucles «for»”</a>.</p></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch06s02.html">Anterior</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch06.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s04.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Bucles </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%" align="right"
valign="top"> Operadores de comparación</td></tr></table></div></body></html>
diff --git a/help/es/html/ch06s04.html b/help/es/html/ch06s04.html
new file mode 100644
index 0000000..0d37553
--- /dev/null
+++ b/help/es/html/ch06s04.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Operadores de
comparación</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch06.html" title="Capítulo 6. Programar con
GEL"><link rel="prev" href="ch06s03.html" title="Sumas y productos"><link rel="next" href="ch06s05.html"
title="Variables globales y ámbito de variables"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Operadores de comparación</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch06s03.html">Anterior</a> </td><th width="60%" align="center">Capítulo
6. Programar con GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s05.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div cla
ss="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-comparison-operators"></a>Operadores de comparación</h2></div></div></div><p>Los siguientes
operadores de comparación comunes están soportados en GEL, y tienen el significado obvio: <code
class="literal">==</code>, <code class="literal">>=</code>, <code class="literal"><=</code>, <code
class="literal">!=</code>, <code class="literal"><></code>, <code class="literal"><</code>, <code
class="literal">></code>. Éstos devuelven los valores <code class="constant">true</code> o <code
class="constant">false</code>. Los operadores <code class="literal">!=</code> y <code
class="literal"><></code> son lo mismo y significan «no es igual a». GEL también permite utilizar el
operador <code class="literal"><=></code>, que devuelve el valor -1 si el lado izquierdo es menor, 0 si
ambos lados son iguales, y 1 si el lado izquierdo es mayor.</p><p>Generalmente <code class="lite
ral">=</code> se traduce como <code class="literal">==</code> si aparece en algún lugar dónde GEL espera una
condición, como la condición «if». Por ejemplo </p><pre class="programlisting">if a=b then c
+if a==b then c
+</pre><p> son lo mismo en GEL. Sin embargo, debería utilizar <code class="literal">==</code> o <code
class="literal">:=</code> cuando se quiere comparar o asignar, respectivamente, si quiere que su código sea
fácil de leer. Además le ayuda a evitar errores.</p><p>No todos los operadores de comparación (salvo el
operador <code class="literal"><=></code>, que se comporta de manera normal), son operadores binarios
en el sentido estricto del concepto. De hecho, se pueden agrupar en el modo matemático usual, por ejemplo:
(<code class="literal">1<x<=y<5</code>) es una expresión booleana legítima que significa lo que
debería, es decir (1<x and x≤y and y<5)</p><p>Para construir expresiones lógicas utilice las palabras
<code class="literal">not</code>, <code class="literal">and</code>, <code class="literal">or</code>, <code
class="literal">xor</code>. Los operadores <code class="literal">or</code> y <code class="literal">and</code>
son especiales pues
evalúan sus argumentos de uno en uno, por lo que la técnica usual para implementar la evaluación
condicional también funciona aquí. Por ejemplo, <code class="literal">1 or a=1</code> no ejecuta el comando
<code class="literal">a=1</code>, pues el primer argumento es verdadero.</p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch06s03.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch06.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s05.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Sumas y productos
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%"
align="right" valign="top"> Variables globales y ámbito de variables</td></tr></table></div></body></html>
diff --git a/help/es/html/ch06s05.html b/help/es/html/ch06s05.html
new file mode 100644
index 0000000..09cdffd
--- /dev/null
+++ b/help/es/html/ch06s05.html
@@ -0,0 +1,18 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Variables globales y
ámbito de variables</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch06.html" title="Capítulo 6. Programar con
GEL"><link rel="prev" href="ch06s04.html" title="Operadores de comparación"><link rel="next"
href="ch06s06.html" title="Variables de parámetros"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Variables globales y ámbito de variables</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch06s04.html">Anterior</a> </td><th width="60%"
align="center">Capítulo 6. Programar con GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s06.html">Siguiente</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-variables-global"></a>Variables globales y ámbito de variables</h2></div></div></div><p>GEL
es un <a class="ulink" href="http://es.wikipedia.org/wiki/%C3%81mbito_(programaci%C3%B3n)"
target="_top">lenguaje con ámbitos dinámicos</a>. Esto se explicará más adelante. Esto significa que a las
variables ordinarias y a las funciones se les asigna un ámbito de manera dinámica. La única excepción son las
<a class="link" href="ch06s06.html" title="Variables de parámetros">variables de parámetros</a>, que siempre
son globales.</p><p>Al igual que la mayoría de los lenguajes de programación, GEL tiene diferentes tipos de
variables. Normalmente, cuando se define una variable en una función ésta es visible desde esa función y
desde todas las funciones que se llamen (todos los contextos superiores). Por ejemplo, suponga que una
función <code class="function">f</code> de
fine una variable <code class="varname">a</code> y luego llama a otra función <code
class="function">g</code>. Entonces, la función <code class="function">g</code> puede hacer referencia a la
variable <code class="varname">a</code>. Pero, una vez que la ejecución de <code class="function">f</code>
concluye, la variable <code class="varname">a</code> sale del ámbito. Por ejemplo, el siguiente código
imprime el número 5. No se puede llamar a la función <code class="function">g</code> desde el nivel más alto
(fuera de <code class="function">f</code>, dado que <code class="varname">a</code> no se habrá
definido).</p><p>Si define una variable dentro de una función, ésta anulará toda variable definida al llamar
a funciones. Por ejemplo, si modifica el código anterior y escribe: </p><pre class="programlisting">function
f() = (a:=5; g());
+function g() = print(a);
+a:=10;
+f();
+</pre><p> Este código aún imprime 5. Pero si llama a la función <code class="function">g</code> fuera de
<code class="function">f</code>, entonces se imprimirá 10. Observe que al definir <code
class="varname">a</code> como 5 dentro de <code class="function">f</code> no cambia el valor de <code
class="varname">a</code> al nivel superior (global), por lo que si verifica el valor de <code
class="varname">a</code> es aún 10.</p><p>Los argumentos de funciones son exactamente como variables
definidas dentro de la función, salvo que éstas se inicializan con el valor que se introduce en la función.
Además de esto, se les trata como a cualquier otra variable definida dentro de la función.</p><p>Las
funciones se tratan exactamente como variables. Por lo tanto, puede redefinir funciones. Normalmente, (en el
nivel superior) no puede redefinir variables y funciones protegidas. Pero localmente si lo puede hacer.
Considere la siguiente sesión: </p><pre class="screen"><code class
="prompt">genius> </code><strong class="userinput"><code>function f(x) = sin(x)^2</code></strong>
+= (`(x)=(sin(x)^2))
+<code class="prompt">genius> </code><strong class="userinput"><code>function f(x) =
sin(x)^2</code></strong>
+= (`(x)=(sin(x)^2))
+<code class="prompt">genius> </code><strong class="userinput"><code>function g(x) = ((function
sin(x)=x^10);f(x))</code></strong>
+= (`(x)=((sin:=(`(x)=(x^10)));f(x)))
+<code class="prompt">genius> </code><strong class="userinput"><code>g(10)</code></strong>
+= 1e20
+</pre><p>Las funciones definidas en el nivel superior se consideran globales. Éstas son visibles desde
cualquier parte. Como se dijo, la función <code class="function">f</code> no cambiará el valor de <code
class="varname">a</code> a 5. </p><pre class="programlisting">a=6;
+function f() = (a:=5);
+f();
+</pre><p> Sin embargo, en algunas ocasiones es necesario fijar una variable global dentro de una función.
Cuando este comportamiento es necesario, utilice la función <a class="link"
href="ch11s02.html#gel-function-set"><code class="function">set</code></a>. Si introduce una cadena o un
identificador entrecomillado a esta función, ésta fija la variable globalmente (al nivel superior). Por
ejemplo, podría utilizar </p><pre class="programlisting">set(`a,3)
+</pre><p> o </p><pre class="programlisting">set("a",3)
+</pre><p> para fijar el valor 3 en la variable <code class="varname">a</code>.</p><p>La función <code
class="function">set</code> siempre fija el nivel superior global. No existe alguna manera de definir una
variable local en alguna función desde alguna subrutina. Si se necesita hacer esto, debe utilizar
...</p><p>Consulte también las funciones <a class="link" href="ch11s02.html#gel-function-SetElement"><code
class="function">SetElement</code></a> y <a class="link" href="ch11s02.html#gel-function-SetVElement"><code
class="function">SetVElement</code></a>.</p><p>Para recapitular en un lenguaje más técnico: Genius opera con
diferentes contextos numerados. El nivel más alto es el contexto 0 (cero). Siempre que se introduce una
función , el contexto aumenta, y cuando la función devuelve su resultado el contexto disminuye. Siempre se
puede ver una función o una variable desde los contextos mayores. Cuando una variable se define en un
contexto menor, al fijar esta variabl
e se crea una nueva variable local en el contexto actual y esta variable sera visible desde los contextos
mayores.</p><p>También existen variables locales, que sólo pueden ser vistas desde el contexto actual. Cuando
se devuelven funciones por un valor se pueden referenciar variables que no son visibles desde un contexto mas
alto y esto puede ser problemático. Consulte las secciones <a class="link" href="ch07s04.html"
title="Variables locales verdaderas">Variables locales verdaderas</a> y <a class="link" href="ch07s03.html"
title="Devolver funciones">Devolver funciones</a>.</p></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch06s04.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch06.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s06.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Operadores de co
mparación </td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td
width="40%" align="right" valign="top"> Variables de parámetros</td></tr></table></div></body></html>
diff --git a/help/es/html/ch06s06.html b/help/es/html/ch06s06.html
new file mode 100644
index 0000000..f55d7c7
--- /dev/null
+++ b/help/es/html/ch06s06.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Variables de
parámetros</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch06.html" title="Capítulo 6. Programar con
GEL"><link rel="prev" href="ch06s05.html" title="Variables globales y ámbito de variables"><link rel="next"
href="ch06s07.html" title="Retorno"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Variables de parámetros</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s05.html">Anterior</a> </td><th width="60%" align="center">Capítulo 6. Programar con GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch06s07.html">Siguiente</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"
<div><div><h2 class="title" style="clear: both"><a name="genius-gel-parameters"></a>Variables de
parámetros</h2></div></div></div><p>Como se dijo, existen variables especiales llamadas parámetros. Éstas
existen en todos los ámbitos. Para declarar un parámetro llamado <code class="varname">foo</code> con valor
inicial 1, escriba </p><pre class="programlisting">parameter foo = 1
+</pre><p> A partir de ahí, <code class="varname">foo</code> es una variable estrictamente global. Si asigna
un valor a <code class="varname">foo</code> dentro de cualquier función, modificará la variable en todos los
contextos. Esto significa que las funciones no tienen una copia privada de los parámetros.</p><p>Cuando
define un parámetro utilizando la función <a class="link" href="ch11s02.html#gel-function-undefine"><code
class="function">undefine</code></a>, éste deja de ser un parámetro.</p><p>Algunos parámetros están
integrados de manera predeterminada y modifican el comportamiento de genius.</p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch06s05.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch06.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s07.html">Siguiente</a></td></tr><tr><td width="40%" align="left
" valign="top">Variables globales y ámbito de variables </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top">
Retorno</td></tr></table></div></body></html>
diff --git a/help/es/html/ch06s07.html b/help/es/html/ch06s07.html
new file mode 100644
index 0000000..8dd7ce2
--- /dev/null
+++ b/help/es/html/ch06s07.html
@@ -0,0 +1,9 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Retorno</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
de Genius"><link rel="up" href="ch06.html" title="Capítulo 6. Programar con GEL"><link rel="prev"
href="ch06s06.html" title="Variables de parámetros"><link rel="next" href="ch06s08.html"
title="Referencias"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Retorno</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s06.html">Anterior</a> </td><th width="60%" align="center">Capítulo 6. Programar con GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch06s08.html">Siguiente</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both
"><a name="genius-gel-returning"></a>Retorno</h2></div></div></div><p>Normalmente, una función se compone de
una o varias expresiones separadas con punto y coma, y se devuelve el valor de la última expresión. Esto
resulta útil en funciones sencillas, pero algunas veces no querrá que una función devuelva el resultado del
último cálculo. Podría, por ejemplo, preferir que ésta devolviera algún valor obtenido a la mitad de la
función. En este caso, puede utilizar la palabra <code class="literal">return</code>. La función <code
class="literal">return</code> toma un único valor, que es el valor que se devolverá.</p><p>Ejemplo: </p><pre
class="programlisting">function f(x) = (
+ y=1;
+ while true do (
+ if x>50 then return y;
+ y=y+1;
+ x=x+1
+ )
+)
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch06s06.html">Anterior</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch06.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s08.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Variables de
parámetros </td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td
width="40%" align="right" valign="top"> Referencias</td></tr></table></div></body></html>
diff --git a/help/es/html/ch06s08.html b/help/es/html/ch06s08.html
new file mode 100644
index 0000000..7c8b23e
--- /dev/null
+++ b/help/es/html/ch06s08.html
@@ -0,0 +1,8 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Referencias</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manual de Genius"><link rel="up" href="ch06.html"
title="Capítulo 6. Programar con GEL"><link rel="prev" href="ch06s07.html" title="Retorno"><link rel="next"
href="ch06s09.html" title="Lvalues"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Referencias</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s07.html">Anterior</a> </td><th width="60%" align="center">Capítulo 6. Programar con GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch06s09.html">Siguiente</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="ge
nius-gel-references"></a>Referencias</h2></div></div></div><p>Para algunas funciones puede ser necesario
devolver más de un valor. Esto se puede lograr al devolver un vector de valores, pero muchas veces resulta
conveniente pasar una referencia a una variable. Puede pasar una referencia a una variable a una función, y
la función fijará el valor, eliminando una referencia. Aunque éste es el principal uso de las referencias, no
es el único.</p><p>Cuando se utilizan funciones que devuelven valores a través de referencias en la lista de
argumentos, pase solo el nombre de la variable con un ampersand (&). Por ejemplo, el siguiente código
calcula el valor propio de una matriz <code class="varname">A</code> con un vector propio inicial
indeterminado <code class="varname">x</code>, y guarda el vector propio obtenido en la variable <code
class="varname">v</code>: </p><pre class="programlisting">RayleighQuotientIteration (A,x,0.001,100,&v)
+</pre><p>La manera como funcionan las referencias y la sintaxis que utilizan son similares al lenguaje C. El
operador <code class="literal">&</code> hace referencia a una variable y <code class="literal">*</code>
la elimina. Ambos pueden aplicarse sólo a un identificador, por lo que <code class="literal">**a</code> no es
una expresión legal en GEL.</p><p>Las referencias se pueden explicar mejor utilizando un ejemplo: </p><pre
class="programlisting">a=1;
+b=&a;
+*b=2;
+</pre><p> ahora <code class="varname">a</code> contiene el valor 2. También puede hacer referencia a
funciones: </p><pre class="programlisting">function f(x) = x+1;
+t=&f;
+*t(3)
+</pre><p> devuelve el valor 4.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch06s07.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch06.html">Subir</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s09.html">Siguiente</a></td></tr><tr><td width="40%" align="left"
valign="top">Retorno </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top">
Lvalues</td></tr></table></div></body></html>
diff --git a/help/es/html/ch06s09.html b/help/es/html/ch06s09.html
new file mode 100644
index 0000000..cdac922
--- /dev/null
+++ b/help/es/html/ch06s09.html
@@ -0,0 +1,5 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Lvalues</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
de Genius"><link rel="up" href="ch06.html" title="Capítulo 6. Programar con GEL"><link rel="prev"
href="ch06s08.html" title="Referencias"><link rel="next" href="ch07.html" title="Capítulo 7. Programación
avanzada con GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Lvalues</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s08.html">Anterior</a> </td><th width="60%" align="center">Capítulo 6. Programar con GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch07.html">Siguiente</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style
="clear: both"><a name="genius-gel-lvalues"></a>Lvalues</h2></div></div></div><p>Un lvalue es el lado
izquierdo the una asignación. En otras palabras, un lvalor es lo que se le asigna a algo. Algunos lvalues
válidos son: </p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><strong
class="userinput"><code>a</code></strong></span></dt><dd><p>Identificador. Aquí se asignará la variable de
nombre <code class="varname">a</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>*a</code></strong></span></dt><dd><p>Eliminar la referencia a un identificador. Esto
fijará lo que a lo que apunta la variable <code class="varname">a</code>.</p></dd><dt><span
class="term"><strong class="userinput"><code>a@(<region>)</code></strong></span></dt><dd><p>Región de
una matriz. Aquí, la región normalmente se especifica como con el operador regular @(), y puede ser un sola
entrada, o una región completa de una matriz.</p></dd></dl></div><p>Eje
mplos: </p><pre class="programlisting">a:=4
+*tmp := 89
+a@(1,1) := 5
+a@(4:8,3) := [1,2,3,4,5]'
+</pre><p> Tenga en cuenta que tanto <code class="literal">:=</code> como <code class="literal">=</code>
pueden utilizarse indistintamente, salvo que la asignación aparezca en una condición. Es por esto que siempre
es mas seguro sólo utilizar <code class="literal">:=</code> cuando se pretenda establecer una asignación y
<code class="literal">==</code> para hacer una comparación.</p></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch06s08.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch06.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Referencias </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%" align="right"
valign="top"> Capítulo 7. Programación avanzada con GEL</td></tr></table></div></bod
y></html>
diff --git a/help/es/html/ch07.html b/help/es/html/ch07.html
new file mode 100644
index 0000000..55f4e84
--- /dev/null
+++ b/help/es/html/ch07.html
@@ -0,0 +1,8 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 7.
Programación avanzada con GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Manual de Genius"><link rel="up" href="index.html" title="Manual de
Genius"><link rel="prev" href="ch06s09.html" title="Lvalues"><link rel="next" href="ch07s02.html"
title="Sintaxis de nivel superior"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Capítulo 7. Programación avanzada con GEL</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch06s09.html">Anterior</a> </td><th width="60%" align="center"> </th><td width="20%"
align="right"> <a accesskey="n" href="ch07s02.html">Siguiente</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 c
lass="title"><a name="genius-gel-programming-advanced"></a>Capítulo 7. Programación avanzada con
GEL</h1></div></div></div><div class="toc"><p><b>Tabla de contenidos</b></p><dl class="toc"><dt><span
class="sect1"><a href="ch07.html#genius-gel-error-handling">Control de errores</a></span></dt><dt><span
class="sect1"><a href="ch07s02.html">Sintaxis de nivel superior</a></span></dt><dt><span class="sect1"><a
href="ch07s03.html">Devolver funciones</a></span></dt><dt><span class="sect1"><a
href="ch07s04.html">Variables locales verdaderas</a></span></dt><dt><span class="sect1"><a
href="ch07s05.html">Procedimiento de inicio de GEL</a></span></dt><dt><span class="sect1"><a
href="ch07s06.html">Cargar programas</a></span></dt></dl></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-error-handling"></a>Control de errores</h2></div></div></div><p>Si detecta un error en su
función, puede salir de ella. Para errores normal
es, como argumentos del tipo equivocado, puede impedir que se calcule el resultado de la función al agregar
la frase <code class="literal">bailout</code>. Si algo saliera de verdad mal y quisiera interrumpir
definitivamente el cálculo en curso, puede utilizar la palabra <code
class="literal">exception</code>.</p><p>Por ejemplo, si quiere verificar argumentos en una función. Podría
utilizar el siguiente código: </p><pre class="programlisting">function f(M) = (
+ if not IsMatrix (M) then (
+ error ("M no es una matriz");
+ bailout
+ );
+ ...
+)
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s09.html">Anterior</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch07s02.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Lvalues </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%" align="right"
valign="top"> Sintaxis de nivel superior</td></tr></table></div></body></html>
diff --git a/help/es/html/ch07s02.html b/help/es/html/ch07s02.html
new file mode 100644
index 0000000..bf71fbb
--- /dev/null
+++ b/help/es/html/ch07s02.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Sintaxis de nivel
superior</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch07.html" title="Capítulo 7. Programación
avanzada con GEL"><link rel="prev" href="ch07.html" title="Capítulo 7. Programación avanzada con GEL"><link
rel="next" href="ch07s03.html" title="Devolver funciones"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Sintaxis de nivel superior</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07.html">Anterior</a> </td><th width="60%" align="center">Capítulo 7.
Programación avanzada con GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s03.html">Siguiente</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-toplevel-syntax"></a>Sintaxis de nivel superior</h2></div></div></div><p>Cuando se indroduce
una sentencia en el nivel más alto, la sintaxis es distinta a la que se utiliza cuando se introduce entre
paréntesis o dentro de una función. En el nivel más alto la tecla «Intro» tiene el mismo efecto que al
pulsarla en la línea de comandos. Piense en un programa como una secuencia de líneas introducidas en la línea
de comandos. En particular, no necesita introducir el separador al final de la línea (salvo que sea parte de
varias sentencias dentro de paréntesis).</p><p>El siguiente código, aunque funcione bien en la función, puede
producir un error al introducirlo en el nivel más alto de un programa. </p><pre class="programlisting">if
Algo() then
+ HacerAlgo()
+else
+ HacerOtraCosa()
+</pre><p>El problema es que, después que la <span class="application">Herramienta Matemática Genius</span>
ve el caracter de final de línea después de la segunda línea, la aplicación decidirá que ya se a completado
la sentencia y la ejecutará. Cuando se termine la ejecución, la <span class="application">Herramienta
Matemática Genius</span> continuará con la siguiente línea y producirá un error al leer la sentencia <code
class="literal">else</code>. Utilice paréntesis para evitar esto. La <span class="application">Herramienta
Matemática Genius</span> no estará satisfecha hasta que todos los paréntesis estén cerrados. </p><pre
class="programlisting">if Algo() then (
+ HacerAlgo()
+) else (
+ HacerOtraCosa()
+)
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch07.html">Anterior</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch07.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07s03.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Capítulo 7.
Programación avanzada con GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top"> Devolver
funciones</td></tr></table></div></body></html>
diff --git a/help/es/html/ch07s03.html b/help/es/html/ch07s03.html
new file mode 100644
index 0000000..915186e
--- /dev/null
+++ b/help/es/html/ch07s03.html
@@ -0,0 +1,27 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Devolver
funciones</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch07.html" title="Capítulo 7. Programación
avanzada con GEL"><link rel="prev" href="ch07s02.html" title="Sintaxis de nivel superior"><link rel="next"
href="ch07s04.html" title="Variables locales verdaderas"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Devolver funciones</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch07s02.html">Anterior</a> </td><th width="60%" align="center">Capítulo 7. Programación
avanzada con GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s04.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><d
iv class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-returning-functions"></a>Devolver funciones</h2></div></div></div><p>Es posible devolver
funciones como un valor. De esta manera puede construir funciones que construyan otras funciones con
propósitos específicos de acuerdo a ciertos parámetros. La parte complicada es determinar qué variables ve la
función. La manera en que esto funciona en GEL es la siguiente: cuando una función devuelve otra función,
todos los identificadores que referencia el cuerpo de la función que sale del ámbito son antepuestos al
diccionario privado de la función devuelta. Por lo tanto, la función verá todas las variables que estaban en
el ámbito cuando fue definida. Por ejemplo, la siguiente función devuelve una función que agrega 5 al valor
de su argumento: </p><pre class="programlisting">function f() = (
+ k = 5;
+ `(x) = (x+k)
+)
+</pre><p> Tenga en cuenta que la función agrega <code class="varname">k</code> a <code
class="varname">x</code>. Podría utilizar esto como sigue: </p><pre class="programlisting">g = f();
+g(5)
+</pre><p> And <strong class="userinput"><code>g(5)</code></strong> devuelve el valor 10.</p><p>Algo que
conviene tener en cuenta es que el valor de <code class="varname">k</code> que se utiliza es el que se
encuentra activo mientras <code class="function">f</code> devuelve su valor. Por ejemplo: </p><pre
class="programlisting">function f() = (
+ k := 5;
+ function r(x) = (x+k);
+ k := 10;
+ r
+)
+</pre><p> devolverá una función que añade 10 a su argumento, en lugar de 5. Esto es porque el diccionario
adicional se crea sólo cuando el contexto en el que la función se define termina, que es cuando la función
<code class="function">f</code> devuelve su valor. Esto es consistente con cómo que esperaría que la función
<code class="function">r</code> actuara dentro de la función <code class="function">f</code> según las reglas
sobre el ámbito de variables en GEL. Al diccionario adicional sólo se añaden las variables que se utilizaron
en contextos que recién terminan y que ya no existen. Las variables que se utilizan en la función que están
en contextos que se mantienen válidos funcionan de manera usual, utilizan el valor actual de la variable. La
única diferencia es entre las variables globales y las funciones. Todos los identificadores que hacen
referencia a variables globales al momento de definir la función no se agregan al diccionario privado. Esto e
s para evitar trabajo innecesario al devolver una función y rara vez será un problema. Por ejemplo, suponga
que borra «k=5» de la función <code class="function">f</code> y que, en el nivel más alto, define <code
class="varname">k</code> como 5, por ejemplo. Cuado ejecute la función <code class="function">f</code>, la
función <code class="function">r</code> no añadirá <code class="varname">k</code> al diccionario privado pues
ésta es una variable global (del nivel más alto) en el momento en que se definió <code
class="varname">r</code>.</p><p>Algunas veces es mejor tener más control sobre cómo las variables se copian
al diccionario privado. Desde la versión 1.0.7 puede especificar qué variables se copian al diccionario
privado colocando corchetes adicionales después de los argumentos con la lista de variables que se desean
copiar separadas con comas. Si hace esto, las variables se copiarán al diccionario privado en el momento que
se define la función, y no
se tocará el diccionario privado después de esto. Por ejemplo, </p><pre class="programlisting">function f()
= (
+ k := 5;
+ function r(x) [k] = (x+k);
+ k := 10;
+ r
+)
+</pre><p> devuelve una función que cuando se llama añade 5 a su argumento. La copia local de <code
class="varname">k</code> se crea cuando la función se define.</p><p>Cuando quiera que la función no tenga un
diccionario privado escriba un par de corchetes vacíos después de la lista de argumentos. Con esto no se
creará ningún diccionario privado. Hacer esto es útil para incrementar la eficiencia cuando no se necesita un
diccionario privado o cuando quiere que la función busque todas las variables cuando las ve al momento que se
la llama. Por ejemplo, suponga que quiere que la función que devuelve <code class="function">f</code> ve el
valor de <code class="varname">k</code> del nivel más alto sin importar que hay una variable con el mismo
nombre al momento de la definición. El código </p><pre class="programlisting">function f() = (
+ k := 5;
+ function r(x) [] = (x+k);
+ r
+);
+k := 10;
+g = f();
+g(10)
+</pre><p> devuelve 20 y no 15, lo que podría suceder si se hubiese añadido <code class="varname">k</code>
con valor 5 al diccionario privado.</p></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch07s02.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch07.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07s04.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Sintaxis de nivel
superior </td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td
width="40%" align="right" valign="top"> Variables locales verdaderas</td></tr></table></div></body></html>
diff --git a/help/es/html/ch07s04.html b/help/es/html/ch07s04.html
new file mode 100644
index 0000000..41d632c
--- /dev/null
+++ b/help/es/html/ch07s04.html
@@ -0,0 +1,18 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Variables locales
verdaderas</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch07.html" title="Capítulo 7. Programación
avanzada con GEL"><link rel="prev" href="ch07s03.html" title="Devolver funciones"><link rel="next"
href="ch07s05.html" title="Procedimiento de inicio de GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Variables locales verdaderas</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07s03.html">Anterior</a> </td><th width="60%" align="center">Capítulo
7. Programación avanzada con GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s05.html">Siguiente</a></td></tr></table><hr></div><div cl
ass="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-true-local-variables"></a>Variables locales verdaderas</h2></div></div></div><p>Cuando se
pasa una función a otras funciones, la manera predeterminada en que se determinan los ámbitos de las
variables puede no ser la que quiere. Por ejemplo: </p><pre class="programlisting">k := 10;
+function r(x) = (x+k);
+function f(g,x) = (
+ k := 5;
+ g(x)
+);
+f(r,1)
+</pre><p> probablemente quiere que la función <code class="function">r</code>, en el momento que pasa como
<code class="function">g</code> a la función <code class="function">f</code>, vea la variable <code
class="varname">k</code> como 10 y no 5 y que el código devuelva 11 y no 6. Sin embargo, como está escrita,
la función verá <code class="varname">k</code> con el valor 5. Existen dos maneras de resolver este problema.
Una es hacer que <code class="function">r</code> guarde <code class="varname">k</code> en un diccionario
privado utilizando la notación de corchetes. Consulte la sección <a class="link" href="ch07s03.html"
title="Devolver funciones">Devolver funciones</a>.</p><p>Pero hay otra solución. Desde la versión 1.0.7
existen variables locales verdaderas. Éstas son variables que son visibles sólo desde el contexto actual y no
desde ninguna función que se llame. Se podría definir <code class="varname">k</code> como una variable local
en la función <code
class="function">f</code>. Para hacer esto, añada la sentencia <span
class="command"><strong>local</strong></span> como la primera sentencia en la función (siempre debe de ser la
primera sentencia de la función). También puede convertir cualquier argumento en una variable local. Esto es,
</p><pre class="programlisting">function f(g,x) = (
+ local g,x,k;
+ k := 5;
+ g(x)
+);
+</pre><p> El código funcionará como se espera e imprimirá 11. Observe que la sentencia <span
class="command"><strong>local</strong></span> inicializa todas las variables que se referencian (salvo los
argumentos de funciones) como una constante <code class="constant">null</code>.</p><p>Si todas las variables
se crean localmente, puede pasar un asterisco en lugar de una lista de variables. En este caso las variables
no se inicializarán hasta que se fijen, desde luego. Entonces, la siguiente definición de <code
class="function">f</code> también funcionará: </p><pre class="programlisting">function f(g,x) = (
+ local *;
+ k := 5;
+ g(x)
+);
+</pre><p>Es bueno que todas las funciones que toman otras funciones como argumentos utilicen variables
locales. De esta manera las funciones que pasan no ven los detalles de la implementación y luego no se
confunden.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07s03.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch07.html">Subir</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch07s05.html">Siguiente</a></td></tr><tr><td width="40%" align="left"
valign="top">Devolver funciones </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top"> Procedimiento de inicio de
GEL</td></tr></table></div></body></html>
diff --git a/help/es/html/ch07s05.html b/help/es/html/ch07s05.html
new file mode 100644
index 0000000..fddfd3c
--- /dev/null
+++ b/help/es/html/ch07s05.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Procedimiento de
inicio de GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch07.html" title="Capítulo 7. Programación
avanzada con GEL"><link rel="prev" href="ch07s04.html" title="Variables locales verdaderas"><link rel="next"
href="ch07s06.html" title="Cargar programas"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Procedimiento de inicio de GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07s04.html">Anterior</a> </td><th width="60%" align="center">Capítulo
7. Programación avanzada con GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s06.html">Siguiente</a></td></tr></table><hr></div><div cl
ass="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-startup-procedure"></a>Procedimiento de inicio de GEL</h2></div></div></div><p>Primero, el
programa busca el archivo de la biblioteca instalada (la versión compilada <code
class="filename">lib.cgel</code>) en la carpeta instalada; luego, busca en la carpeta actual y finalmente
trata de cargar algún archivo no compilado llamado <code class="filename">~/.geniusinit</code>.</p><p>Si
alguna vez cambia el lugar donde está instalada la biblioteca, primero deberá compilarla con el comando <span
class="command"><strong>genius --compile loader.gel > lib.cgel</strong></span></p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch07s04.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch07.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n" href="
ch07s06.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Variables locales
verdaderas </td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td
width="40%" align="right" valign="top"> Cargar programas</td></tr></table></div></body></html>
diff --git a/help/es/html/ch07s06.html b/help/es/html/ch07s06.html
new file mode 100644
index 0000000..d6f1c72
--- /dev/null
+++ b/help/es/html/ch07s06.html
@@ -0,0 +1,5 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Cargar
programas</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch07.html" title="Capítulo 7. Programación
avanzada con GEL"><link rel="prev" href="ch07s05.html" title="Procedimiento de inicio de GEL"><link
rel="next" href="ch08.html" title="Capítulo 8. Matrices en GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Cargar programas</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch07s05.html">Anterior</a> </td><th width="60%" align="center">Capítulo 7. Programación
avanzada con GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch08.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div cla
ss="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-loading-programs"></a>Cargar programas</h2></div></div></div><p>Algunas veces tiene un
programa más largo que escribió en un archivo y quiere leer dicho archivo con la <span
class="application">herramienta matemática Genius</span>. En estas situaciones tiene dos opciones. Puede
conservar las funciones que más usa en el archivo <code class="filename">~/.geniusinit</code>. Si quiere
cargar un archivo a la mitad de una sesión (o desde otro archivo), puede escribir <span
class="command"><strong>load <list of filenames></strong></span> en la línea de comandos. Esto se tiene
que hacer desde el nivel más alto y no dentro de alguna función a algo similar, y no puede ser parte de una
expresión. También tiene una sintaxis ligeramente distinta que el resto de Genius, similar a la que se usa en
la consola. Puede escribir el nombre del archivo entre comillas. Si utiliza las comillas '' obte
ndrá exactamente la cadena que escriba, si utiliza las comillas "" no se escaparán los caracteres especiales
como se hace con las cadenas. Ejemplo: </p><pre class="programlisting">load programa1.gel programa2.gel
+load "Nombre raro de archivo con ESPACIOS.gel"
+</pre><p> Los comandos <span class="command"><strong>cd</strong></span>, <span
class="command"><strong>pwd</strong></span> y <span class="command"><strong>ls</strong></span> también están
incluídos. El comando <span class="command"><strong>cd</strong></span> toma un argumento, <span
class="command"><strong>ls</strong></span> toma una argumento que es como «glob» en la consola de Unix (puede
utilizar comodines, por ejemplo). El comando <span class="command"><strong>pwd</strong></span> no toma ningún
argumento. Por ejemplo: </p><pre class="programlisting">cd «carpeta_con_programas_gel»
+ls *.gel
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch07s05.html">Anterior</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch07.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch08.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Procedimiento de inicio
de GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%"
align="right" valign="top"> Capítulo 8. Matrices en GEL</td></tr></table></div></body></html>
diff --git a/help/es/html/ch08.html b/help/es/html/ch08.html
new file mode 100644
index 0000000..282179f
--- /dev/null
+++ b/help/es/html/ch08.html
@@ -0,0 +1,21 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 8. Matrices
en GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="index.html" title="Manual de Genius"><link
rel="prev" href="ch07s06.html" title="Cargar programas"><link rel="next" href="ch08s02.html" title="Conjugada
de la traspuesta y operador de trasposición"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Capítulo 8. Matrices en GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07s06.html">Anterior</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch08s02.html">Siguiente</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><di
v><h1 class="title"><a name="genius-gel-matrices"></a>Capítulo 8. Matrices en GEL</h1></div></div></div><div
class="toc"><p><b>Tabla de contenidos</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch08.html#genius-gel-matrix-support">Introducir matrices</a></span></dt><dt><span class="sect1"><a
href="ch08s02.html">Conjugada de la traspuesta y operador de trasposición</a></span></dt><dt><span
class="sect1"><a href="ch08s03.html">Álgebra lineal</a></span></dt></dl></div><p>Genius tiene soporte para
vectores y matrices y una biblioteca dimensionable para manipulación de matrices y funciones de álgebra
lineal.</p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-matrix-support"></a>Introducir matrices</h2></div></div></div><p>Para introducir matrices,
puede utilizar cualquiera de las dos sintaxis que siguen. Puede introducir la matriz en una línea, separando
los valores con comas y las filas con un punto y
coma. También puede introducir cada fila en una línea, separando los valores con comas. También puede
combinar los dos métodos. Para introducir una matriz de 3x3 con los números 1 a 9 podría hacer lo siguiente:
</p><pre class="programlisting">[1,2,3;4,5,6;7,8,9]
+</pre><p> o </p><pre class="programlisting">[1, 2, 3
+ 4, 5, 6
+ 7, 8, 9]
+</pre><p> No utilice «;» y «return» en la misma línea.</p><p>También puede utilizar la funcionalidad de
expandir matrices para introducir una matriz. Por ejemplo puede hacer lo siguiente: </p><pre
class="programlisting">a = [ 1, 2, 3
+ 4, 5, 6
+ 7, 8, 9]
+b = [ a, 10
+ 11, 12]
+</pre><p> y obtendrá </p><pre class="programlisting">[1, 2, 3, 10
+ 4, 5, 6, 10
+ 7, 8, 9, 10
+ 11, 11, 11, 12]
+</pre><p> Puede construir matrices con vectores y cosas parecidas de manera similar.</p><p>Otra cosa es que
se los puntos no especificados se inicialicen a 0, por lo que </p><pre class="programlisting">[1, 2, 3
+ 4, 5
+ 6]
+</pre><p> será </p><pre class="programlisting">
+[1, 2, 3
+ 4, 5, 0
+ 6, 0, 0]
+</pre><p>Cuando las matrices se evalúan y se recorre fila por fila, justo como el operador <code
class="literal">M@(j)</code> que recorre la matriz renglón por renglón.</p><div class="note"
style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Nota</h3><p>Tenga cuidado al utilizar
«return» en expresiones dentro de corchetes <code class="literal">[ ]</code>, ya que tiene un significado
ligeramente distinto en ese contexto. Comenzará una fila nueva.</p></div></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch07s06.html">Anterior</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> <a accesskey="n" href="ch08s02.html">Siguiente</a></td></tr><tr><td width="40%" align="left"
valign="top">Cargar programas </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top"> Conjugad
a de la traspuesta y operador de trasposición</td></tr></table></div></body></html>
diff --git a/help/es/html/ch08s02.html b/help/es/html/ch08s02.html
new file mode 100644
index 0000000..425111a
--- /dev/null
+++ b/help/es/html/ch08s02.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Conjugada de la
traspuesta y operador de trasposición</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manual de Genius"><link rel="up" href="ch08.html"
title="Capítulo 8. Matrices en GEL"><link rel="prev" href="ch08.html" title="Capítulo 8. Matrices en
GEL"><link rel="next" href="ch08s03.html" title="Álgebra lineal"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Conjugada de la traspuesta y operador de
trasposición</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch08.html">Anterior</a>
</td><th width="60%" align="center">Capítulo 8. Matrices en GEL</th><td width="20%" align="right"> <a
accesskey="n" href="ch08s03.html">Siguiente</a></td></tr></table><hr><
/div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-matrix-transpose"></a>Conjugada de la traspuesta y operador de
trasposición</h2></div></div></div><p>Puede calcular la matriz traspuesta conjugada de una matriz utilizando
el operador <code class="literal">'</code>. Es decir, la entrada correspondiente al renglón <code
class="varname">j</code> y la columna <code class="varname">i</code> será el complejo conjugado de la entrada
correspondiente a la fila <code class="varname">i</code> y la columna <code class="varname">j</code> de la
matriz original. Por ejemplo: </p><pre class="programlisting">[1,2,3]*[4,5,6]'
+</pre><p> Se traspone el segundo vector para que sea posible multiplicar las matrices. Si solamente quiere
trasponer la matriz sin conjugarla, utilice el operador <code class="literal">.'</code>. Por ejemplo:
</p><pre class="programlisting">[1,2,3]*[4,5,6i].'
+</pre><p>Observe que la matriz traspuesta, esto es la que se calcula utilizando el operador <code
class="literal">.'</code>, es más veloz y no crea una copia nueva de la matriz en la memoria.
Desafortunadamente, la matriz traspuesta conjugada sí crea una copia nueva. Se recomienda que siempre utilice
el operador <code class="literal">.'</code> cuando trabaje con matrices y vectores reales.</p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch08.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch08.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch08s03.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Capítulo 8. Matrices
en GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%"
align="right" valign="top"> Álgebra lineal</td></tr></table></div></body
</html>
diff --git a/help/es/html/ch08s03.html b/help/es/html/ch08s03.html
new file mode 100644
index 0000000..6aff50f
--- /dev/null
+++ b/help/es/html/ch08s03.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Álgebra
lineal</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch08.html" title="Capítulo 8. Matrices en
GEL"><link rel="prev" href="ch08s02.html" title="Conjugada de la traspuesta y operador de trasposición"><link
rel="next" href="ch09.html" title="Capítulo 9. Polinomios en GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Álgebra lineal</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch08s02.html">Anterior</a> </td><th width="60%" align="center">Capítulo 8. Matrices en
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch09.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div class="
titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-matrix-linalg"></a>Álgebra
lineal</h2></div></div></div><p>Genius implementa varias rutinas útiles para manipular álgebra lineal y
matrices. Consulte las secciones <a class="link" href="ch11s09.html" title="Álgebra lineal">álgebra
lineal</a> y <a class="link" href="ch11s08.html" title="Manipulación de matrices">manipulación de
matrices</a> de la lista de funciones GEL.</p><p>Las rutinas de álgebra lineal implementadas en GEL no
ofrecen actualmente un paquete numérico bien probado, por lo que no se deberían utilizar para cálculos
numéricos críticos. Por otro lado, Genius implementa muy bien muchas operaciones de álgebra lineal con
coeficientes racionales y enteros. Éstas son intrínsecamente exactas y, de hecho, dan resultados mucho
mejores que las rutinas comunes de doble precisión para álgebra lineal.</p><p>Por ejemplo, no tiene sentido
calcular el rango y el espacio nulo de u
na matriz en coma flotante, ya que para todos los fines prácticos, se debe tener en cuenta que la matriz
puede tener algunos errores pequeños. Es posible que se obtenga un resultado diferente al esperado. El
problema es que con una perturbación pequeña cualquier matriz es de rango completo e invertible. Sin embargo,
si la matriz se compone de números racionales, entonces el rango y el espacio nulo serán siempre
exactos.</p><p>En general, cuando Genius calcula la base de un espacio vectorial determinado (por ejemplo con
la función <a class="link" href="ch11s09.html#gel-function-NullSpace"><code
class="function">NullSpace</code></a>), se dará la base como una matriz cuyas columnas son los vectores de la
base. Es decir, cuando Genius habla de un subespacio lineal se refiere a una matriz cuyo espacio de columna
es el subespacio lineal indicado.</p><p>Cabe señalar que Genius puede recordar ciertas propiedades de una
matriz. Por ejemplo, se recordará si una matriz está
en su forma reducida por filas. Si se hacen muchas llamadas a funciones que utilizan internamente la forma
reducida por filas de una matriz, se puede reducir por filas la matriz previamente una sola vez. Las llamadas
sucesivas a la función <a class="link" href="ch11s09.html#gel-function-rref"><code
class="function">rref</code></a> se harán muy rápido.</p></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch08s02.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch08.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch09.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Conjugada de la
traspuesta y operador de trasposición </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top"> Capítulo 9. Polinomios en
GEL</td></tr></table></div></bo
dy></html>
diff --git a/help/es/html/ch09.html b/help/es/html/ch09.html
new file mode 100644
index 0000000..6913c93
--- /dev/null
+++ b/help/es/html/ch09.html
@@ -0,0 +1,7 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 9. Polinomios
en GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="index.html" title="Manual de Genius"><link
rel="prev" href="ch08s03.html" title="Álgebra lineal"><link rel="next" href="ch10.html" title="Capítulo 10.
Teoría de conjuntos en GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Capítulo 9. Polinomios en GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch08s03.html">Anterior</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch10.html">Siguiente</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="ti
tle"><a name="genius-gel-polynomials"></a>Capítulo 9. Polinomios en GEL</h1></div></div></div><div
class="toc"><p><b>Tabla de contenidos</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch09.html#genius-gel-polynomials-using">Usar polinomios</a></span></dt></dl></div><p>Actualmente,
Genius puede manipular polinomios de una variable escritos como vectores y realizar algunas operaciones
básicas con ellos. Se prevé ampliar este soporte adicional.</p><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-polynomials-using"></a>Usar polinomios</h2></div></div></div><p>Actualmente, los polinomios
de una variable son vectores horizontales con valores como nodos. La potencia del término es la posición en
el vector, con la primera posición siendo 0. Por lo tanto, </p><pre class="programlisting">[1,2,3]
+</pre><p> se traduce en un polinomio como </p><pre class="programlisting">1 + 2*x + 3*x^2
+</pre><p>Se pueden sumar, restar y multiplicar polinomios utilizando las funciones <a class="link"
href="ch11s15.html#gel-function-AddPoly"><code class="function">AddPoly</code></a>, <a class="link"
href="ch11s15.html#gel-function-SubtractPoly"><code class="function">SubtractPoly</code></a> y <a
class="link" href="ch11s15.html#gel-function-MultiplyPoly"><code class="function">MultiplyPoly</code></a>
respectivamente. Se puede imprimir un polinomio utilizando la función <a class="link"
href="ch11s15.html#gel-function-PolyToString"><code class="function">PolyToString</code></a>. Por ejemplo,
</p><pre class="programlisting">PolyToString([1,2,3],"y")
+</pre><p> devuelve </p><pre class="programlisting">3*y^2 + 2*y + 1
+</pre><p> También se puede obtener una representación funcional del polinomio de manera que puede evaluarse.
Esto se realiza utilizando <a class="link" href="ch11s15.html#gel-function-PolyToFunction"><code
class="function">PolyToFunction</code></a>, que devuelve una función anónima. </p><pre
class="programlisting">f = PolyToFunction([0,1,1])
+f(2)
+</pre><p>También es posible encontrar raíces de los polinomios de grado 1 a 4 mediante el uso de la función
<a class="link" href="ch11s13.html#gel-function-PolynomialRoots"><code
class="function">PolynomialRoots</code></a>, que llama a la función de la fórmula adecuada. Los polinomios de
grado más alto se convertirán en funciones y se resolverán numéricamente al utilizar una función como <a
class="link" href="ch11s13.html#gel-function-FindRootBisection"><code
class="function">FindRootBisection</code></a>, <a class="link"
href="ch11s13.html#gel-function-FindRootFalsePosition"><code
class="function">FindRootFalsePosition</code></a>, <a class="link"
href="ch11s13.html#gel-function-FindRootMullersMethod"><code
class="function">FindRootMullersMethod</code></a>, o <a class="link"
href="ch11s13.html#gel-function-FindRootSecant"><code
class="function">FindRootSecant</code></a>.</p><p>Consulte la <a class="xref" href="ch11s15.html"
title="Polinomios">“Polinomios”</a> en
la lista de funciones el resto de funciones que actúan sobre polinomios.</p></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch08s03.html">Anterior</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> <a accesskey="n" href="ch10.html">Siguiente</a></td></tr><tr><td width="40%" align="left"
valign="top">Álgebra lineal </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top"> Capítulo 10. Teoría de conjuntos
en GEL</td></tr></table></div></body></html>
diff --git a/help/es/html/ch10.html b/help/es/html/ch10.html
new file mode 100644
index 0000000..0513d9c
--- /dev/null
+++ b/help/es/html/ch10.html
@@ -0,0 +1,7 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 10. Teoría de
conjuntos en GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="index.html" title="Manual de Genius"><link
rel="prev" href="ch09.html" title="Capítulo 9. Polinomios en GEL"><link rel="next" href="ch11.html"
title="Capítulo 11. Lista de funciones GEL"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Capítulo 10. Teoría de conjuntos en GEL</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch09.html">Anterior</a> </td><th width="60%" align="center">
</th><td width="20%" align="right"> <a accesskey="n"
href="ch11.html">Siguiente</a></td></tr></table><hr></div><div class="chapter"><div class="titlepage
"><div><div><h1 class="title"><a name="genius-gel-settheory"></a>Capítulo 10. Teoría de conjuntos en
GEL</h1></div></div></div><div class="toc"><p><b>Tabla de contenidos</b></p><dl class="toc"><dt><span
class="sect1"><a href="ch10.html#genius-gel-sets-using">Usar conjuntos</a></span></dt></dl></div><p>Genius
incorpora un juego básico de funcionalidades teoréticas. En la actualidad, un conjunto es sólo un vector (o
una matriz). Cada objeto distinto se trata como un elemento diferente.</p><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-sets-using"></a>Usar
conjuntos</h2></div></div></div><p>Al igual que los vectores, los objetos en conjuntos pueden incluir
números, cadenas, <code class="constant">null</code>, matrices y vectores. En un futuro se plantea tener un
tipo determinado de conjuntos, en lugar de utilizar vectores. Tenga en cuenta que los números en coma
flotante son distintos de los enteros, y que pa
recen iguales. Esto significa que Genius los tratará como términos distintos, usando las constantes <code
class="constant">0</code> y <code class="constant">0.0</code>. La constante <code
class="constant">null</code> se trata como un conjunto vacío.</p><p>Para construir un conjunto fuera de un
vector, use la función <a class="link" href="ch11s16.html#gel-function-MakeSet"><code
class="function">MakeSet</code></a>.Actualmente, sólo se devolverá un nuevo vector donde cada elemento es
único. </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>MakeSet([1,2,2,3])</code></strong>
+= [1, 2, 3]
+</pre><p>Del mismo modo hay funciones que se explican por si mismas como <a class="link"
href="ch11s16.html#gel-function-Union"><code class="function">Union</code></a>, <a class="link"
href="ch11s16.html#gel-function-Intersection"><code class="function">Intersection</code></a>, <a class="link"
href="ch11s16.html#gel-function-SetMinus"><code class="function">SetMinus</code></a>. Por ejemplo: </p><pre
class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>Union([1,2,3],
[1,2,4])</code></strong>
+= [1, 2, 4, 3]
+</pre><p>. Tenga en cuenta que no se garantiza el orden en los valores que devuelve la función. Si se quiere
ordenar el vector puede usar la función <a class="link" href="ch11s08.html#gel-function-SortVector"><code
class="function">SortVector</code></a>.</p><p>Para los miembros del equipo de pruebas, hay funciones <a
class="link" href="ch11s16.html#gel-function-IsIn"><code class="function">IsIn</code></a> y <a class="link"
href="ch11s16.html#gel-function-IsSubset"><code class="function">IsSubset</code></a>, que devuelven un valor
tipo «bool». Por ejemplo: </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>IsIn (1, [0,1,2])</code></strong>
+= true
+</pre><p> La entrada <strong class="userinput"><code>IsIn(x,X)</code></strong> por supuesto es equivalente a
<strong class="userinput"><code>IsSubset([x],X)</code></strong>. Obsérvese que puesto que el conjunto vacío
es un subconjunto de cada conjunto, <strong class="userinput"><code>IsSubset(null,X)</code></strong> es
siempre «true».</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch09.html">Anterior</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch11.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Capítulo 9. Polinomios
en GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%"
align="right" valign="top"> Capítulo 11. Lista de funciones GEL</td></tr></table></div></body></html>
diff --git a/help/es/html/ch11.html b/help/es/html/ch11.html
new file mode 100644
index 0000000..4054143
--- /dev/null
+++ b/help/es/html/ch11.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 11. Lista de
funciones GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="index.html" title="Manual de Genius"><link
rel="prev" href="ch10.html" title="Capítulo 10. Teoría de conjuntos en GEL"><link rel="next"
href="ch11s02.html" title="Básico"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Capítulo 11. Lista de funciones GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch10.html">Anterior</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch11s02.html">Siguiente</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class
="title"><a name="genius-gel-function-list"></a>Capítulo 11. Lista de funciones
GEL</h1></div></div></div><div class="toc"><p><b>Tabla de contenidos</b></p><dl class="toc"><dt><span
class="sect1"><a href="ch11.html#genius-gel-function-list-commands">Comandos</a></span></dt><dt><span
class="sect1"><a href="ch11s02.html">Básico</a></span></dt><dt><span class="sect1"><a
href="ch11s03.html">Parámetros</a></span></dt><dt><span class="sect1"><a
href="ch11s04.html">Constantes</a></span></dt><dt><span class="sect1"><a
href="ch11s05.html">Numérico</a></span></dt><dt><span class="sect1"><a
href="ch11s06.html">Trigonometría</a></span></dt><dt><span class="sect1"><a href="ch11s07.html">Teoría de
números</a></span></dt><dt><span class="sect1"><a href="ch11s08.html">Manipulación de
matrices</a></span></dt><dt><span class="sect1"><a href="ch11s09.html">Álgebra
lineal</a></span></dt><dt><span class="sect1"><a href="ch11s10.html">Combinatoria</a></span></dt><dt><span
class="
sect1"><a href="ch11s11.html">Cálculo</a></span></dt><dt><span class="sect1"><a
href="ch11s12.html">Funciones</a></span></dt><dt><span class="sect1"><a href="ch11s13.html">Resolución de
ecuaciones</a></span></dt><dt><span class="sect1"><a
href="ch11s14.html">Estadísticas</a></span></dt><dt><span class="sect1"><a
href="ch11s15.html">Polinomios</a></span></dt><dt><span class="sect1"><a href="ch11s16.html">Teoría de
conjuntos</a></span></dt><dt><span class="sect1"><a href="ch11s17.html">Álgebra
conmutativa</a></span></dt><dt><span class="sect1"><a href="ch11s18.html">Miscelánea</a></span></dt><dt><span
class="sect1"><a href="ch11s19.html">Operaciones simbólicas</a></span></dt><dt><span class="sect1"><a
href="ch11s20.html">Dibujar</a></span></dt></dl></div><p>Para obtener ayuda sobre una función específica
desde la consola, escriba: </p><pre class="programlisting">help NombreFuncion
+</pre><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-commands"></a>Comandos</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a name="gel-command-help"></a>help</span></dt><dd><pre
class="synopsis">help</pre><pre class="synopsis">ayuda NombreFunción</pre><p>Imprimir ayuda (o ayuda en una
función/comando).</p></dd><dt><span class="term"><a name="gel-command-load"></a>load</span></dt><dd><pre
class="synopsis">load «archivo.gel»</pre><p>Cargar un archivo en el intérprete. El archivo se ejecutará como
si se hubiera escrito en la línea de comandos.</p></dd><dt><span class="term"><a
name="gel-command-cd"></a>cd</span></dt><dd><pre class="synopsis">cd /carpeta/nombre</pre><p>Cambiar la
carpeta de trabajo a <code class="filename">/carpeta/nombre</code>.</p></dd><dt><span class="term"><a
name="gel-command-pwd"></a>pwd</span></dt><dd><pre class="synopsis
">pwd</pre><p>Imprimir la carpeta de trabajo actual.</p></dd><dt><span class="term"><a
name="gel-command-ls"></a>ls</span></dt><dd><pre class="synopsis">ls</pre><p>Listar archivos en la carpeta
actual.</p></dd><dt><span class="term"><a name="gel-command-plugin"></a>plugin</span></dt><dd><pre
class="synopsis">plugin nombre_del_complemento</pre><p>Cargar un complemento. El complemento debe estar
instalado en el sistema en la carpeta adecuada.</p></dd></dl></div></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch10.html">Anterior</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> <a accesskey="n" href="ch11s02.html">Siguiente</a></td></tr><tr><td width="40%" align="left"
valign="top">Capítulo 10. Teoría de conjuntos en GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top"> Ba
́sico</td></tr></table></div></body></html>
diff --git a/help/es/html/ch11s02.html b/help/es/html/ch11s02.html
new file mode 100644
index 0000000..d8c2a2b
--- /dev/null
+++ b/help/es/html/ch11s02.html
@@ -0,0 +1,12 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Básico</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
de Genius"><link rel="up" href="ch11.html" title="Capítulo 11. Lista de funciones GEL"><link rel="prev"
href="ch11.html" title="Capítulo 11. Lista de funciones GEL"><link rel="next" href="ch11s03.html"
title="Parámetros"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Básico</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. Lista de funciones GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch11s03.html">Siguiente</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="titl
e" style="clear: both"><a name="genius-gel-function-list-basic"></a>Básico</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AskButtons"></a>AskButtons</span></dt><dd><pre class="synopsis">AskButtons
(consulta)</pre><pre class="synopsis">AskButtons (consulta, botón1, ...)</pre><p>Hace una pregunta y presenta
una lista de botones para el usuario o un menú de opciones en modo texto). Devuelve el índice en base a 1 de
la tecla pulsada. Esto es, devuelve 1 si se presiona la primera tecla, 2 si es la segunda, y así
sucesivamente. Si el usuario cierra la ventana (o simplemente entra en modo texto), entonces devuelve la
constante <code class="constant">null</code>. La ejecución del programa permanece bloqueada hasta que el
usuario responda.</p><p>Desde la versión 1.0.10 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-AskString"></a>AskString</span></dt><dd><pre class="synopsis">AskString (
consulta)</pre><pre class="synopsis">AskString (consulta, predeterminado)</pre><p>Hace una pregunta y deja
al usuario que introduzca una cadena que luego devuelve. Si el usuario cancela o cierra la ventana, entonces
se devuelve la constante <code class="constant">null</code>. El programa se detiene hasta que el usuario
responda. Si de forma predeterminada <code class="varname">default</code> se da, entonces se escribe de forma
automática cada vez que el usuario presiona la tecla «Intro» (desde la versión 1.0.6 en
adelante).</p></dd><dt><span class="term"><a name="gel-function-Compose"></a>Compose</span></dt><dd><pre
class="synopsis">Compose (f,g)</pre><p>Componer dos funciones y devolver una función, que es la composición
de <code class="function">f</code> y <code class="function">g</code>.</p></dd><dt><span class="term"><a
name="gel-function-ComposePower"></a>ComposePower</span></dt><dd><pre class="synopsis">ComposePower
(f,n,x)</pre><p>Compone y ejecuta una funcion c
on ella misma <code class="varname">n</code> veces, pasando <code class="varname">x</code> como argumento.
Devolviendo <code class="varname">x</code> si <code class="varname">n</code> es cero. Por ejemplo: </p><pre
class="screen"><code class="prompt">genius></code> <strong class="userinput"><code>function f(x) = x^2
;</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>ComposePower (f,3,7)</code></strong>
+= 5764801
+<code class="prompt">genius></code> <strong class="userinput"><code>f(f(f(7)))</code></strong>
+= 5764801
+</pre></dd><dt><span class="term"><a name="gel-function-Evaluate"></a>Evaluate</span></dt><dd><pre
class="synopsis">Evaluate (cadena)</pre><p>Analiza y evalúa una cadena.</p></dd><dt><span class="term"><a
name="gel-function-GetCurrentModulo"></a>GetCurrentModulo</span></dt><dd><pre
class="synopsis">GetCurrentModulo</pre><p>Obtener el módulo actual desde fuera del contexto de la función.
Esto significa que, si fuera de la función se ejecutó en módulo (utilizando <code class="literal">mod</code>)
entonces esto devuelve lo que este módulo fue. El cuerpo de la función que se llama no se ejecuta en
aritmética modular, y esta función interna hace posible hacer funciones GEL que utilizan la aritmética
modular.</p></dd><dt><span class="term"><a name="gel-function-Identity"></a>Identity</span></dt><dd><pre
class="synopsis">Identity (x)</pre><p>Función identidad, devuelve sus argumentos. Esto es equivalente a
<strong class="userinput"><code>function Identity(x)=x</code></
strong>.</p></dd><dt><span class="term"><a
name="gel-function-IntegerFromBoolean"></a>IntegerFromBoolean</span></dt><dd><pre
class="synopsis">IntegerFromBoolean (bval)</pre><p>Hacer entero (0 para <code class="constant">false</code> o
1 para <code class="constant">true</code>) desde un valor booleano. <code class="varname">bval</code> también
puede ser un número y en el caso de que el valor no sea 0 se interpretará como <code
class="constant">true</code> y si es 0 se interpretará como <code
class="constant">false</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsBoolean"></a>IsBoolean</span></dt><dd><pre class="synopsis">IsBoolean
(arg)</pre><p>Comprobar si el argumento es un booleano (y no un número).</p></dd><dt><span class="term"><a
name="gel-function-IsDefined"></a>IsDefined</span></dt><dd><pre class="synopsis">IsDefined
(id)</pre><p>Comprobar si un identificador está declarado. Pase una cadena o un identificador. Si pasa una
matriz, cada entrada se e
valuará por separado y la matriz contendrá cadenas o identificadores.</p></dd><dt><span class="term"><a
name="gel-function-IsFunction"></a>IsFunction</span></dt><dd><pre class="synopsis">IsFunction
(arg)</pre><p>Comprobar si el argumento es una función.</p></dd><dt><span class="term"><a
name="gel-function-IsFunctionOrIdentifier"></a>IsFunctionOrIdentifier</span></dt><dd><pre
class="synopsis">IsFunctionOrIdentifier (arg)</pre><p>Comprobar si el argumento es una función o un
identificador.</p></dd><dt><span class="term"><a
name="gel-function-IsFunctionRef"></a>IsFunctionRef</span></dt><dd><pre class="synopsis">IsFunctionRef
(arg)</pre><p>Comprobar si el argumento es una referencia a la función. Esto incluye las referencias a
variables.</p></dd><dt><span class="term"><a name="gel-function-IsMatrix"></a>IsMatrix</span></dt><dd><pre
class="synopsis">IsMatrix (arg)</pre><p>Comprobar si el argumento es una matriz. Si bien <code
class="constant">null</code> se considera en al
gunas ocasiones como una matriz vacía, la función <code class="function">IsMatrix</code> no considera a
<code class="constant">null</code> como una matriz.</p></dd><dt><span class="term"><a
name="gel-function-IsNull"></a>IsNull</span></dt><dd><pre class="synopsis">IsNull (arg)</pre><p>Comprobar si
el argumento es <code class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsString"></a>IsString</span></dt><dd><pre class="synopsis">IsString
(arg)</pre><p>Comprobar si el argumento es una cadena de texto.</p></dd><dt><span class="term"><a
name="gel-function-IsValue"></a>IsValue</span></dt><dd><pre class="synopsis">IsValue (arg)</pre><p>Comprobar
si el argumento es un número.</p></dd><dt><span class="term"><a
name="gel-function-Parse"></a>Parse</span></dt><dd><pre class="synopsis">Parse (cadena)</pre><p>Comprobar
pero no evaluar una cadena. Tenga en cuenta que algunos cálculos internos se realizan durante el
análisis.</p></dd><dt><span class="t
erm"><a name="gel-function-SetFunctionFlags"></a>SetFunctionFlags</span></dt><dd><pre
class="synopsis">SetFunctionFlags (id,opciones...)</pre><p>Establece opciones para una función, actualmente
<code class="literal">"PropagateMod"</code> y <code class="literal">"NoModuloArguments"</code>. Si <code
class="literal">"PropagateMod"</code> se activa, entonces el cuerpo de la función se evalúa en la aritmética
modular cuando la función se llama dentro de un bloque que se evaluó con la aritmética modular (se utilizó
<code class="literal">mod</code>). Si se activa <code class="literal">"NoModuloArguments"</code>, entonces
los argumentos de la función se evaluarán con la aritmética modular.</p></dd><dt><span class="term"><a
name="gel-function-SetHelp"></a>SetHelp</span></dt><dd><pre class="synopsis">SetHelp
(id,categoria,desc)</pre><p>Establece la categoría y la línea de descripción de la ayuda para una
función.</p></dd><dt><span class="term"><a name="gel-function-
SetHelpAlias"></a>SetHelpAlias</span></dt><dd><pre class="synopsis">SetHelpAlias
(id,alias)</pre><p>Establece un alias de ayuda.</p></dd><dt><span class="term"><a
name="gel-function-chdir"></a>chdir</span></dt><dd><pre class="synopsis">chdir (carpeta)</pre><p>Cambia la
carpeta actual, igual que <span class="command"><strong>cd</strong></span>.</p></dd><dt><span class="term"><a
name="gel-function-CurrentTime"></a>CurrentTime</span></dt><dd><pre
class="synopsis">CurrentTime</pre><p>Devuelve la hora UNIX actual con una precisión de microsegundos, como un
número en coma flotante. Esto es, devuelve el número de segundos desde el 1 de enero de 1970.</p><p>Desde la
versión 1.0.15 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-display"></a>display</span></dt><dd><pre class="synopsis">display
(cadena,expresión)</pre><p>Muestra una cadena y una expresión separadas por dos puntos.</p></dd><dt><span
class="term"><a name="gel-function-DisplayVariables"></a>Displa
yVariables</span></dt><dd><pre class="synopsis">DisplayVariables (var1,var2,...)</pre><p>Muestra la
configuración de variables. Las variables pueden ser cadenas o identificadores. Por ejemplo: </p><pre
class="programlisting">DisplayVariables(`x,`y,`z)
+ </pre><p>Si se llama sin argumentos (debería suministrar una lista vacía de argumentos) como
</p><pre class="programlisting">DisplayVariables()
+ </pre><p> entonces todas las variables se imprimirán incluyendo una lista de llamadas similar a
<span class="guilabel">Muestra variables del usuario</span> en la versión gráfica.</p><p>Desde la versión
1.0.18 en adelante.</p></dd><dt><span class="term"><a name="gel-function-error"></a>error</span></dt><dd><pre
class="synopsis">error (cadena)</pre><p>Imprime un error en el flujo de error (en la
consola).</p></dd><dt><span class="term"><a name="gel-function-exit"></a>exit</span></dt><dd><pre
class="synopsis">exit</pre><p>Aliases: <code class="function">quit</code></p><p>Sale el
programa.</p></dd><dt><span class="term"><a name="gel-function-false"></a>false</span></dt><dd><pre
class="synopsis">false</pre><p>Alias: <code class="function">False</code><code
class="function">FALSE</code></p><p>El valor booleano <code class="constant">false</code>.</p></dd><dt><span
class="term"><a name="gel-function-manual"></a>manual</span></dt><dd><pre class="synopsis">manual</pre><p>Mue
stra el manual de usuario.</p></dd><dt><span class="term"><a
name="gel-function-print"></a>print</span></dt><dd><pre class="synopsis">print (cadena)</pre><p>Imprime una
expresión y luego una nueva línea. El argumento <code class="varname">str</code> puede ser cualquier
expresión. Esto se hace dentro de una cadena antes de imprimir.</p></dd><dt><span class="term"><a
name="gel-function-printn"></a>printn</span></dt><dd><pre class="synopsis">printn (cad)</pre><p>Imprime una
expresión sin un carácter de nueva línea. El argumento <code class="varname">str</code> puede ser cualquier
expresión. Esto se hace dentro de una cadena antes de imprimir.</p></dd><dt><span class="term"><a
name="gel-function-PrintTable"></a>PrintTable</span></dt><dd><pre class="synopsis">PrintTable
(f,v)</pre><p>Imprime una tabla de valores para una función. Los valores están en el vector <code
class="varname">v</code>. Puede usar la notación de construcción de vectores como sigue: </p><pre class=
"programlisting">PrintTable (f,[0:10])
+ </pre><p> Si <code class="varname">v</code> es un entero positivo, se utilizarán todos los
elementos de la tabla de enteros desde 1 hasta v incluido.</p><p>Desde la versión 1.0.18 en
adelante.</p></dd><dt><span class="term"><a name="gel-function-protect"></a>protect</span></dt><dd><pre
class="synopsis">protect (id)</pre><p>Puede proteger una variable de ser modificada. Esto se usa en las
funciones de GEL internas para evitar que se sobreescriban accidentalmente.</p></dd><dt><span class="term"><a
name="gel-function-ProtectAll"></a>ProtectAll</span></dt><dd><pre class="synopsis">ProtectAll
()</pre><p>Protege todas la variables actuales definidas, parámetros y funciones desde que se modificaron. Se
utiliza por las funciones GEL para impedir accidentalmente que se sobrescriba. Normalmente la <span
class="application">herramienta matemática Genius</span> considera desprotegidas las variables que el usuario
definió.</p><p>Desde la versión 1.0.7 en adelante.</p></dd><dt>
<span class="term"><a name="gel-function-set"></a>set</span></dt><dd><pre class="synopsis">set
(id,val)</pre><p>Establecer una variable global. La variable <code class="varname">id</code> sólo puede ser
una cadena o un identificador. Por ejemplo: </p><pre class="programlisting">set(`x,1)
+ </pre><p> establecerá la variable global <code class="varname">x</code> a 1.</p><p>La función
devuelve el <code class="varname">val</code>, que podrá utilizarse para encadenamiento.</p></dd><dt><span
class="term"><a name="gel-function-SetElement"></a>SetElement</span></dt><dd><pre class="synopsis">SetElement
(id,row,col,val)</pre><p>Establecer un elemento de una variable global, que es una matriz. La variable <code
class="varname">id</code> puede ser una cadena o un identificador entrecomillado. Por ejemplo: </p><pre
class="programlisting">SetElement(`x,2,3,1)
+ </pre><p> establecerá el elemento de la segunda fila, tercera columna de la variable global <code
class="varname">x</code> a 1. Si no existe el nombre de la variable global, o si se configura algo que no es
una matriz, se creará una nueva matriz con el tamaño apropiado rellena con ceros.</p><p>Las variables <code
class="varname">row</code> y <code class="varname">col</code> pueden ser también rangos, y la semántica es la
mísma para las configuraciones normales de los elementos con un signo igual.</p><p>La función devuelve el
<code class="varname">val</code>, que podrá utilizarse para encadenamiento.</p><p>Disponible desde la versión
1.0.10 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-SetVElement"></a>SetVElement</span></dt><dd><pre class="synopsis">SetElement
(id,elt,val)</pre><p>Establecer un elemento de una variable global, que es un vector. La variable <code
class="varname">id</code> puede ser una cadena o un identificador entrecommillad
o. Por ejemplo: </p><pre class="programlisting">SetElement(`x,2,1)
+ </pre><p> establecerá el segundo elemento del vector variable global <code
class="varname">x</code> a 1. Si no existe el nombre de la variable global, o si está configurado para algo
distinto que no sea un vector (matriz), se creará una nueva fila del vector con valor cero y con el tamaño
apropiado.</p><p>La variable <code class="varname">elt</code> puede ser un rango, y la semánticas son la
mísmas para las configuraciones normales de los elementos con un signo igual.</p><p>La función devuelve el
<code class="varname">val</code>, que podrá utilizarse para encadenamiento.</p><p>Disponible desde la versión
1.0.10 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-string"></a>string</span></dt><dd><pre class="synopsis">string (s)</pre><p>Crear una
cadena. Esto creará una cadena desde cualquier argumento.</p></dd><dt><span class="term"><a
name="gel-function-true"></a>true</span></dt><dd><pre class="synopsis">true</pre><p>Alias: <code
class="function
">True</code><code class="function">TRUE</code></p><p>El valor booleano <code
class="constant">true</code>.</p></dd><dt><span class="term"><a
name="gel-function-undefine"></a>undefine</span></dt><dd><pre class="synopsis">undefine (id)</pre><p>Alias:
<code class="function">Undefine</code></p><p>Elimina la definición de una variable. Esto incluye variables
locales y globales, cada valor se limpia en toda su dimensión. Esta función no se usa en variables locales.
Se puede usar un vector de identificadores para eliminar la definición de varias variables a la
vez.</p></dd><dt><span class="term"><a name="gel-function-UndefineAll"></a>UndefineAll</span></dt><dd><pre
class="synopsis">UndefineAll ()</pre><p>Elimina la definición de todas las variables desprotegidas globales
(incluyendo funciones y parámetros). La <span class="application">herramienta matemática Genius</span>
considera a las variables protegidas como variables y funciones definidas por el sistema. Tenga en cuen
ta que <code class="function">UndefineAll</code> solo elimina la definición global de símbolos no locales,
por lo que se puede ejecutar desde dentro de otras funciones de manera segura.</p><p>Desde la versión 1.0.7
en adelante.</p></dd><dt><span class="term"><a
name="gel-function-unprotect"></a>unprotect</span></dt><dd><pre class="synopsis">unprotect
(id)</pre><p>Desproteger una variable de ser modificada.</p></dd><dt><span class="term"><a
name="gel-function-UserVariables"></a>UserVariables</span></dt><dd><pre class="synopsis">UserVariables
()</pre><p>Devolver un vector con todos los nombres de variables globales definidas por el usuario (sin
proteger).</p><p>Desde la versión 1.0.7 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-wait"></a>wait</span></dt><dd><pre class="synopsis">wait (secs)</pre><p>Esperar un número
específico de segundos. <code class="varname">secs</code> no puede ser negativo. Cero es aceptable y no pasa
nada en este caso, excepto
si los posibles eventos de interfaz del usuario se procesan.</p><p>Desde la versión 1.0.18, la variable
<code class="varname">secs</code> puede ser un número no entero, así <strong
class="userinput"><code>wait(0.1)</code></strong> esperará durante un periodo de una décima de
segundo.</p></dd><dt><span class="term"><a name="gel-function-version"></a>version</span></dt><dd><pre
class="synopsis">version</pre><p>Devuelve la versión de Genius como un vector horizontal de tres argumentos
en el que el primero es la versión mayor, le sigue menor versión y la revisión en último
lugar.</p></dd><dt><span class="term"><a name="gel-function-warranty"></a>warranty</span></dt><dd><pre
class="synopsis">warranty</pre><p>Da la información de garantía.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="
u" href="ch11.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s03.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Capítulo 11. Lista
de funciones GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td
width="40%" align="right" valign="top"> Parámetros</td></tr></table></div></body></html>
diff --git a/help/es/html/ch11s03.html b/help/es/html/ch11s03.html
new file mode 100644
index 0000000..8887b1b
--- /dev/null
+++ b/help/es/html/ch11s03.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Parámetros</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manual de Genius"><link rel="up" href="ch11.html"
title="Capítulo 11. Lista de funciones GEL"><link rel="prev" href="ch11s02.html" title="Básico"><link
rel="next" href="ch11s04.html" title="Constantes"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Parámetros</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s02.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. Lista de
funciones GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s04.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-function-parameters"></a>Parámetros</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ChopTolerance"></a>ChopTolerance</span></dt><dd><pre class="synopsis">ChopTolerance =
número</pre><p>Tolerancia de la función <code class="function">Chop</code></p></dd><dt><span class="term"><a
name="gel-function-ContinuousNumberOfTries"></a>ContinuousNumberOfTries</span></dt><dd><pre
class="synopsis">ContinuousNumberOfTries = número</pre><p>Iteraciones para tratar de obtener el límite de
continuidad y sus límites.</p></dd><dt><span class="term"><a
name="gel-function-ContinuousSFS"></a>ContinuousSFS</span></dt><dd><pre class="synopsis">ContinuousSFS =
número</pre><p>Número de pasos sucesivos dentro de la tolerancia para el cálculo de la
continuidad.</p></dd><dt><span class="term"><a
name="gel-function-ContinuousTolerance"></a>ContinuousTolerance</span></dt><dd><pre class="synopsis"
ContinuousTolerance = número</pre><p>Tolerancia para la continuidad de las funciones y para el cálculo del
límite.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeNumberOfTries"></a>DerivativeNumberOfTries</span></dt><dd><pre
class="synopsis">DerivativeNumberOfTries = número</pre><p>Número de iteraciones para tratar de obtener el
límite para la derivada.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeSFS"></a>DerivativeSFS</span></dt><dd><pre class="synopsis">DerivativeSFS =
número</pre><p>Número de pasos sucesivos dentro de la tolerancia para el cálculo de la
derivada.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeTolerance"></a>DerivativeTolerance</span></dt><dd><pre
class="synopsis">DerivativeTolerance = número</pre><p>Tolerancia para calcular las derivadas de las
funciones.</p></dd><dt><span class="term"><a
name="gel-function-ErrorFunctionTolerance"></a>ErrorFunctionTolerance</span></dt><dd><pre class="syno
psis">ErrorFunctionTolerance = número</pre><p>Tolerancia de <a class="link"
href="ch11s12.html#gel-function-ErrorFunction"><code
class="function">ErrorFunction</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-FloatPrecision"></a>FloatPrecision</span></dt><dd><pre class="synopsis">FloatPrecision =
número</pre><p>Precisión en coma flotante.</p></dd><dt><span class="term"><a
name="gel-function-FullExpressions"></a>FullExpressions</span></dt><dd><pre class="synopsis">FullExpressions
= booleano</pre><p>Imprimir expresiones completas, incluso si son de más de una línea.</p></dd><dt><span
class="term"><a
name="gel-function-GaussDistributionTolerance"></a>GaussDistributionTolerance</span></dt><dd><pre
class="synopsis">GaussDistributionTolerance = número</pre><p>Tolerancia de la función <a class="link"
href="ch11s14.html#gel-function-GaussDistribution"><code
class="function">GaussDistribution</code></a>.</p></dd><dt><span class="term"><a name="gel-function-I
ntegerOutputBase"></a>IntegerOutputBase</span></dt><dd><pre class="synopsis">IntegerOutputBase =
número</pre><p>Base de salida de enteros.</p></dd><dt><span class="term"><a
name="gel-function-IsPrimeMillerRabinReps"></a>IsPrimeMillerRabinReps</span></dt><dd><pre
class="synopsis">IsPrimeMillerRabinReps = número</pre><p>Número de tests de Miller-Rabin adicionales que
ejecutar sobre un número antes de declararlo primo en <a class="link"
href="ch11s07.html#gel-function-IsPrime"><code class="function">IsPrime</code></a>.</p></dd><dt><span
class="term"><a name="gel-function-LinePlotDrawLegends"></a>LinePlotDrawLegends</span></dt><dd><pre
class="synopsis">LinePlotDrawLegends = true</pre><p>Le dice a Genius cómo dibujar las leyendas para las <a
class="link" href="ch11s20.html" title="Dibujar">funciones para dibujar líneas</a> tales como <a class="link"
href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a>.</p></dd><dt><span
class="term"><a name="
gel-function-LinePlotDrawAxisLabels"></a>LinePlotDrawAxisLabels</span></dt><dd><pre
class="synopsis">LinePlotDrawAxisLabels = true</pre><p>Le dice a Genius que dibuje las etiquetas de los ejes
cuando se utilizan <a class="link" href="ch11s20.html" title="Dibujar">funciones para dibujar líneas</a> como
<a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>.</p><p>Desde la versión 1.0.16 en adelante.</p></dd><dt><span
class="term"><a name="gel-function-LinePlotVariableNames"></a>LinePlotVariableNames</span></dt><dd><pre
class="synopsis">LinePlotVariableNames = ["x","y","z","t"]</pre><p>Le dice a Genius qué nombres de variable
se usan como nombres predeterminados para <a class="link" href="ch11s20.html" title="Dibujar">funciones para
dibujar líneas</a> tales como <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a> y compañía.</p><p>Desde la versión 1.0.10 en adelante.</p></dd><
dt><span class="term"><a name="gel-function-LinePlotWindow"></a>LinePlotWindow</span></dt><dd><pre
class="synopsis">LinePlotWindow = [x1,x2,y1,y2]</pre><p>Establece los límites para las<a class="link"
href="ch11s20.html" title="Dibujar">funciones para dibujar líneas</a> tales como <a class="link"
href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a>.</p></dd><dt><span
class="term"><a name="gel-function-MaxDigits"></a>MaxDigits</span></dt><dd><pre class="synopsis">MaxDigits =
número</pre><p>Máximo de cifras que mostrar.</p></dd><dt><span class="term"><a
name="gel-function-MaxErrors"></a>MaxErrors</span></dt><dd><pre class="synopsis">MaxErrors =
número</pre><p>Máximo de errores que mostrar.</p></dd><dt><span class="term"><a
name="gel-function-MixedFractions"></a>MixedFractions</span></dt><dd><pre class="synopsis">MixedFractions =
booleano</pre><p>Si es cierto, las fracciones mixtas se imprimen.</p></dd><dt><span class="term"><a name="gel-
function-NumericalIntegralFunction"></a>NumericalIntegralFunction</span></dt><dd><pre
class="synopsis">NumericalIntegralFunction = función</pre><p>La función usada para la integración en <a
class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegralSteps"></a>NumericalIntegralSteps</span></dt><dd><pre
class="synopsis">NumericalIntegralSteps = número</pre><p>Pasos que realizar en <a class="link"
href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-OutputChopExponent"></a>OutputChopExponent</span></dt><dd><pre
class="synopsis">OutputChopExponent = número</pre><p>Cuando otro número que se imprime en el objeto (una
matriz o un valor) es mayor que 10<sup>-OutputChopWhenExponent</sup>, y el número que se imprime es menor que
10<sup>-OutputChopE
xponent</sup>, entonces se mostrará <code class="computeroutput">0.0</code> en lugar del número.</p><p>La
salida nunca se corta si <code class="function">OutputChopExponent</code> es cero. El número será un entero
positivo.</p><p>Si quiere que la salida siempre se corte según <code
class="function">OutputChopExponent</code>, configure <code class="function">OutputChopWhenExponent</code>,
para un valor mayor o igual a <code class="function">OutputChopExponent</code>.</p></dd><dt><span
class="term"><a name="gel-function-OutputChopWhenExponent"></a>OutputChopWhenExponent</span></dt><dd><pre
class="synopsis">OutputChopWhenExponent = número</pre><p>Cuando recortar la salida. Consulte <a class="link"
href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-OutputStyle"></a>OutputStyle</span></dt><dd><pre class="synopsis">OutputStyle =
cadena</pre><p>Estilo de salida, puede s
er <code class="literal">normal</code>, <code class="literal">latex</code>, <code
class="literal">mathml</code> o <code class="literal">troff</code>.</p><p>Esto afecta principalmente a cómo
las matrices y fracciones se imprimen y es útil para pegar en los documentos. Por ejemplo, puede configurarlo
en LaTeX usando: </p><pre class="programlisting">OutputStyle = "latex"
+</pre></dd><dt><span class="term"><a
name="gel-function-ResultsAsFloats"></a>ResultsAsFloats</span></dt><dd><pre class="synopsis">ResultsAsFloats
= booleano</pre><p>Convertir todos los resultados a flotantes antes de imprimir.</p></dd><dt><span
class="term"><a name="gel-function-ScientificNotation"></a>ScientificNotation</span></dt><dd><pre
class="synopsis">ScientificNotation = booleano</pre><p>Usar notación científica.</p></dd><dt><span
class="term"><a name="gel-function-SlopefieldTicks"></a>SlopefieldTicks</span></dt><dd><pre
class="synopsis">SlopefieldTicks = [vertical,horizontal]</pre><p>Establece el número de pasos verticales y
horizontales en un diagrama de pendientes. (Consulte <a class="link"
href="ch11s20.html#gel-function-SlopefieldPlot"><code
class="function">SlopefieldPlot</code></a>).</p><p>Desde la versión 1.0.10 en adelante.</p></dd><dt><span
class="term"><a name="gel-function-SumProductNumberOfTries"></a>SumProductNumberOfTries</span></dt><dd><pre
class
="synopsis">SumProductNumberOfTries = número</pre><p>Cuántas iteraciones probar para <a class="link"
href="ch11s11.html#gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a> y <a class="link"
href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SumProductSFS"></a>SumProductSFS</span></dt><dd><pre class="synopsis">SumProductSFS =
número</pre><p>La cantidad de pasos consecutivos para estar dentro de los límites para <a class="link"
href="ch11s11.html#gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a> y <a class="link"
href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SumProductTolerance"></a>SumProductTolerance</span></dt><dd><pre
class="synopsis">SumProductTolerance = número</pre><p>Tolerancia para <a class="link" href="ch11s11.html#
gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a> y <a class="link"
href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawLegends"></a>SurfacePlotDrawLegends</span></dt><dd><pre
class="synopsis">SurfacePlotDrawLegends = true</pre><p>Le dice a Genius cómo dibujar las leyendas para las <a
class="link" href="ch11s20.html" title="Dibujar">funciones de dibujado de superficie</a> tales como <a
class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>.</p><p>Desde la versión 1.0.16 en adelante.</p></dd><dt><span
class="term"><a name="gel-function-SurfacePlotVariableNames"></a>SurfacePlotVariableNames</span></dt><dd><pre
class="synopsis">SurfacePlotVariableNames = ["x","y","z"]</pre><p>Indica a Genius los nombres de variables
que se usan como nombres predeterminados para las <a class="link" href="ch11s
20.html" title="Dibujar">funciones de superficie de dibujado</a> que utiliza <a class="link"
href="ch11s20.html#gel-function-SurfacePlot"><code class="function">SurfacePlot</code></a>. Compruebe que
<code class="varname">z</code> no se refiere al eje dependiente (vertical), sino que a la variable compleja
independiente <strong class="userinput"><code>z=x+iy</code></strong>.</p><p>Desde la versión 1.0.10 en
adelante.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotWindow"></a>SurfacePlotWindow</span></dt><dd><pre
class="synopsis">SurfacePlotWindow = [x1,x2,y1,y2,z1,z2]</pre><p>Establece los límites de la superficie de
dibujado (consulte <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>).</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldNormalized"></a>VectorfieldNormalized</span></dt><dd><pre
class="synopsis">VectorfieldNormalized = true</pre><p>Indica si la longitud de las flechas tendr
á un tamaño normalizado en el trazado dentro del campo vectorial. Si es cierto, en el campo vectorial solo
aparecerá la dirección y no la magnitud. (Consulte <a class="link"
href="ch11s20.html#gel-function-VectorfieldPlot"><code
class="function">VectorfieldPlot</code></a>).</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldTicks"></a>VectorfieldTicks</span></dt><dd><pre
class="synopsis">VectorfieldTicks = [vertical,horizontal]</pre><p>Establece el número de pasos verticales y
horizontales en un gráfico de campo de vectores. (Observe <a class="link"
href="ch11s20.html#gel-function-VectorfieldPlot"><code
class="function">VectorfieldPlot</code></a>).</p><p>Desde la versión 1.0.10 en
adelante.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s02.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Subir</a></td><
td width="40%" align="right"> <a accesskey="n" href="ch11s04.html">Siguiente</a></td></tr><tr><td
width="40%" align="left" valign="top">Básico </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top">
Constantes</td></tr></table></div></body></html>
diff --git a/help/es/html/ch11s04.html b/help/es/html/ch11s04.html
new file mode 100644
index 0000000..74f5c42
--- /dev/null
+++ b/help/es/html/ch11s04.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Constantes</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manual de Genius"><link rel="up" href="ch11.html"
title="Capítulo 11. Lista de funciones GEL"><link rel="prev" href="ch11s03.html" title="Parámetros"><link
rel="next" href="ch11s05.html" title="Numérico"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Constantes</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s03.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. Lista de
funciones GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s05.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-function-list-constants"></a>Constantes</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-CatalanConstant"></a>CatalanConstant</span></dt><dd><pre
class="synopsis">CatalanConstant</pre><p>Constante de Catalan, aproximadamente 0,915... Se define para las
series donde los términos son <strong class="userinput"><code>(-1^k)/((2*k+1)^2)</code></strong>, donde <code
class="varname">k</code> tiene un rango desde 0 a infinito.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Catalan%27s_constant" target="_top">Wikipedia</a>, o <a class="ulink"
href="http://mathworld.wolfram.com/CatalansConstant.html" target="_top">la enciclopedia matemática
Mathworld</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-EulerConstant"></a>EulerConstant</span></dt><dd><pre
class="synopsis">EulerConstant</pre><p>Alias: <code class="function">gamma</c
ode></p><p>Constante gamma de Euler. También llamada constante de Euler-Mascheroni.</p><p>Consulte la <a
class="ulink" href="http://en.wikipedia.org/wiki/Euler-Mascheroni_constant" target="_top">Wikipedia</a> o <a
class="ulink" href="http://planetmath.org/MascheroniConstant" target="_top">Planetmath</a> o <a class="ulink"
href="http://mathworld.wolfram.com/Euler-MascheroniConstant.html" target="_top">Mathworld</a> para obtener
más información.</p></dd><dt><span class="term"><a
name="gel-function-GoldenRatio"></a>GoldenRatio</span></dt><dd><pre class="synopsis">GoldenRatio</pre><p>El
número áureo.</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Golden_ratio"
target="_top">Wikipedia</a> o <a class="ulink" href="http://planetmath.org/GoldenRatio"
target="_top">Planetmath</a> o <a class="ulink" href="http://mathworld.wolfram.com/GoldenRatio.html"
target="_top">Mathworld</a> para obtener más información.</p></dd><dt><span class="term"><a name="gel-f
unction-Gravity"></a>Gravity</span></dt><dd><pre class="synopsis">Gravedad</pre><p>La aceleración en caída
libre al nivel del mar en metros por segundos al cuadrado. Es la constante de gravedad estandarizada y su
valor es 9.80665. La gravedad en un desfiladero de un bosque es diferente debido principalmente a la
diferencia de altitud y al hecho de que la Tierra no es perfectamente redonda ni uniforme.</p><p>Consulte la
<a class="ulink" href="http://en.wikipedia.org/wiki/Standard_gravity" target="_top">Wikipedia</a> para
obtener más información.</p></dd><dt><span class="term"><a name="gel-function-e"></a>e</span></dt><dd><pre
class="synopsis">e</pre><p>La base del logaritmo natural. <strong class="userinput"><code>e^x</code></strong>
es la función exponencial <a class="link" href="ch11s05.html#gel-function-exp"><code
class="function">exp</code></a>. Su valor es aproximadamente 2.71828182846... Este número se llama número de
Euler, aúnque hay varios números que se lla
man también Euler. Un ejemplo es la constante gamma: <a class="link"
href="ch11s04.html#gel-function-EulerConstant"><code class="function">Constante de
Euler</code></a>.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/E_(mathematical_constant)" target="_top">Wikipedia</a> o <a class="ulink"
href="http://planetmath.org/E" target="_top">Planetmath</a> o <a class="ulink"
href="http://mathworld.wolfram.com/e.html" target="_top">Mathworld</a> para obtener más
información.</p></dd><dt><span class="term"><a name="gel-function-pi"></a>pi</span></dt><dd><pre
class="synopsis">pi</pre><p>El número pi, que es la relación de la circunferencia de un círculo con su
diámetro. Esto es aproximadamente 3,14159265359...</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Pi" target="_top">Wikipedia</a> o <a class="ulink"
href="http://planetmath.org/Pi" target="_top">Planetmath</a> o <a class="ulink"
href="http://mathworld.wolfram.com/Pi.html" targe
t="_top">Mathworld</a> para obtener más información.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s03.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s05.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Parámetros </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%" align="right"
valign="top"> Numérico</td></tr></table></div></body></html>
diff --git a/help/es/html/ch11s05.html b/help/es/html/ch11s05.html
new file mode 100644
index 0000000..0011e3e
--- /dev/null
+++ b/help/es/html/ch11s05.html
@@ -0,0 +1,23 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Numérico</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
de Genius"><link rel="up" href="ch11.html" title="Capítulo 11. Lista de funciones GEL"><link rel="prev"
href="ch11s04.html" title="Constantes"><link rel="next" href="ch11s06.html"
title="Trigonometría"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Numérico</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s04.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. Lista de funciones
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s06.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="cle
ar: both"><a name="genius-gel-function-list-numeric"></a>Numérico</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AbsoluteValue"></a>AbsoluteValue</span></dt><dd><pre class="synopsis">AbsoluteValue
(x)</pre><p>Alias: <code class="function">abs</code></p><p>Valor absoluto de un número y, si <code
class="varname">x</code> es un valor complejo, el módulo de <code class="varname">x</code>. Es decir, es la
distancia entre <code class="varname">x</code> y el origen. Esto es equivalente a <strong
class="userinput"><code>|x|</code></strong>.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Absolute_value" target="_top">Wikipedia</a>, <a class="ulink"
href="http://planetmath.org/AbsoluteValue" target="_top">Planetmath (valor absoluto)</a>, <a class="ulink"
href="http://planetmath.org/ModulusOfComplexNumber" target="_top">Planetmath (módulo)</a>, <a class="ulink"
href="http://mathworld.wolf
ram.com/AbsoluteValue.html" target="_top">Mathworld (valor absoluto)</a> o <a class="ulink"
href="http://mathworld.wolfram.com/ComplexModulus.html" target="_top">Mathworld (módulo complejo)</a> para
obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-Chop"></a>Chop</span></dt><dd><pre class="synopsis">Chop (x)</pre><p>Reemplazar números
muy pequeños por cero.</p></dd><dt><span class="term"><a
name="gel-function-ComplexConjugate"></a>ComplexConjugate</span></dt><dd><pre
class="synopsis">ComplexConjugate (z)</pre><p>Alias: <code class="function">conj</code><code
class="function">Conj</code></p><p>Calcula el conjugado complejo del número complejo <code
class="varname">z</code>. Si <code class="varname">z</code> es un vector o una matriz, se conjugan todos sus
elementos.</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Complex_conjugate"
target="_top">Wikipedia</a> para obtener más información.</p></dd><dt><span class="ter
m"><a name="gel-function-Denominator"></a>Denominator</span></dt><dd><pre class="synopsis">Denominator
(x)</pre><p>Obtener el denominador de un número racional.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Denominator" target="_top">Wikipedia</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-FractionalPart"></a>FractionalPart</span></dt><dd><pre class="synopsis">FractionalPart
(x)</pre><p>Devolver la parte fraccional de un número.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Fractional_part" target="_top">Wikipedia</a> para obtener más
información.</p></dd><dt><span class="term"><a name="gel-function-Im"></a>Im</span></dt><dd><pre
class="synopsis">Im (z)</pre><p>Alias: <code class="function">ImaginaryPart</code></p><p>Obtener la parte
imaginaria de un número complejo. Por ejemplo <strong class="userinput"><code>Re(3+4i)</code></strong>
yields 4.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Imaginary_part" target="_top">Wikipedia</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-IntegerQuotient"></a>IntegerQuotient</span></dt><dd><pre class="synopsis">IntegerQuotient
(m,n)</pre><p>División sin resto.</p></dd><dt><span class="term"><a
name="gel-function-IsComplex"></a>IsComplex</span></dt><dd><pre class="synopsis">IsComplex
(num)</pre><p>Comprueba si el argumento es un número complejo (no real). Observe que hacemos énfasis en
número no real. Es decir, <strong class="userinput"><code>IsComplex(3)</code></strong> que devuelve «false»,
mientras que <strong class="userinput"><code>IsComplex(3-1i)</code></strong> devuelve
«true».</p></dd><dt><span class="term"><a
name="gel-function-IsComplexRational"></a>IsComplexRational</span></dt><dd><pre
class="synopsis">IsComplexRational (num)</pre><p>Comprobar si el argumento es, posiblemente, un número
racional complejo. Esto es, si tanto la p
arte real como la imaginaria se dan como números racionales. Por supuesto, racional significa simplemente
que «no se almacena como un número en coma flotante».</p></dd><dt><span class="term"><a
name="gel-function-IsFloat"></a>IsFloat</span></dt><dd><pre class="synopsis">IsFloat (num)</pre><p>Comprobar
si el argumento es un número real en coma flotante (no complejo).</p></dd><dt><span class="term"><a
name="gel-function-IsGaussInteger"></a>IsGaussInteger</span></dt><dd><pre class="synopsis">IsGaussInteger
(num)</pre><p>Alias: <code class="function">IsComplexInteger</code></p><p>Comprueba si un argumento es un
posible número entero complejo. Es decir, un entero complejo es un número de la forma <strong
class="userinput"><code>n+1i*m</code></strong> donde <code class="varname">n</code> y <code
class="varname">m</code> son enteros.</p></dd><dt><span class="term"><a
name="gel-function-IsInteger"></a>IsInteger</span></dt><dd><pre class="synopsis">IsInteger (num)</pre><p>Com
probar si el argumento es un entero (no complejo).</p></dd><dt><span class="term"><a
name="gel-function-IsNonNegativeInteger"></a>IsNonNegativeInteger</span></dt><dd><pre
class="synopsis">IsNonNegativeInteger (num)</pre><p>Comprobar si el argumento es un entero real no negativo.
Esto es, cualquier número entero positivo o cero.</p></dd><dt><span class="term"><a
name="gel-function-IsPositiveInteger"></a>IsPositiveInteger</span></dt><dd><pre
class="synopsis">IsPositiveInteger (num)</pre><p>Alias: <code
class="function">IsNaturalNumber</code></p><p>Comprueba si el argumento es un entero real positivo. Tenga en
cuenta que se acepta el convenio de que 0 no es un número natural.</p></dd><dt><span class="term"><a
name="gel-function-IsRational"></a>IsRational</span></dt><dd><pre class="synopsis">IsRational
(num)</pre><p>Comprobar si el argumento es un número racional (no complejo). Por supuesto, racional significa
«no almacenado como un número en coma flotante».</p></dd><dt><s
pan class="term"><a name="gel-function-IsReal"></a>IsReal</span></dt><dd><pre class="synopsis">IsReal
(num)</pre><p>Comprobar si el argumento es un número real</p></dd><dt><span class="term"><a
name="gel-function-Numerator"></a>Numerator</span></dt><dd><pre class="synopsis">Numerator
(x)</pre><p>Obtener el numerador de un número racional.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Numerator" target="_top">Wikipedia</a> para obtener más
información.</p></dd><dt><span class="term"><a name="gel-function-Re"></a>Re</span></dt><dd><pre
class="synopsis">Re (z)</pre><p>Alias: <code class="function">RealPart</code></p><p>Obtiene la parte real de
un número complejo. Por ejemplo <strong class="userinput"><code>Re(3+4i)</code></strong> devuelve
3.</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Real_part"
target="_top">Wikipedia</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-Sign"></a>Sign
</span></dt><dd><pre class="synopsis">Sign (x)</pre><p>Alias: <code
class="function">sign</code></p><p>Devolver el signo de un número. Devuelve <code class="literal">-1</code>
si es negativo, <code class="literal">0</code> si es cero y <code class="literal">1</code> si es positivo. Si
<code class="varname">x</code> es un valor complejo <code class="function">Sign</code> devuelve su dirección
o 0.</p></dd><dt><span class="term"><a name="gel-function-ceil"></a>ceil</span></dt><dd><pre
class="synopsis">ceil (x)</pre><p>Alias: <code class="function">Ceiling</code></p><p>Obtener el menor número
entero mayor o igual a <code class="varname">n</code>. Ejemplos: </p><pre class="screen"><code
class="prompt">genius></code> <strong class="userinput"><code>ceil(1,1)</code></strong>
+= 2
+<code class="prompt">genius></code> <strong class="userinput"><code>ceil(-1,1)</code></strong>
+= -1
+</pre><p>Tenga en cuenta que los números en coma flotante se almacenan en binario y que puede que el
resultado no sea lo que espera. Por ejemplo <strong class="userinput"><code>ceil(420/4.2)</code></strong>
devuelve 101 en vez de 100. Esto sucede porque en realidad 4,2 es ligeramente menor que 4,2. Utilice la
representación racional <strong class="userinput"><code>42/10</code></strong> si quiere exactitud
aritmética.</p></dd><dt><span class="term"><a name="gel-function-exp"></a>exp</span></dt><dd><pre
class="synopsis">exp (x)</pre><p>La función exponencial. Esto es la función <strong
class="userinput"><code>e^x</code></strong> donde <code class="varname">e</code> es la <a class="link"
href="ch11s04.html#gel-function-e">base del logaritmo natural</a>.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Exponential_function" target="_top">Wikipedia</a> o <a class="ulink"
href="http://planetmath.org/LogarithmFunction" target="_top">Planetmath</a> o <a cla
ss="ulink" href="http://mathworld.wolfram.com/ExponentialFunction.html" target="_top">Mathworld</a> para
obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-float"></a>float</span></dt><dd><pre class="synopsis">float (x)</pre><p>Convertir un
número en un valor en coma flotante. Esto devuelve la representación en coma flotante del número <code
class="varname">x</code>.</p></dd><dt><span class="term"><a
name="gel-function-floor"></a>floor</span></dt><dd><pre class="synopsis">floor (x)</pre><p>Alias: <code
class="function">Floor</code></p><p>Obtener el entero más alto menor o igual que <code
class="varname">n</code>.</p></dd><dt><span class="term"><a name="gel-function-ln"></a>ln</span></dt><dd><pre
class="synopsis">ln (x)</pre><p>El logaritmo natural, logaritmo en base <code
class="varname">e</code>.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Natural_logarithm" target="_top">Wikipedia</a> o <a class="ulink"
href="http:
//planetmath.org/LogarithmFunction" target="_top">Planetmath</a> o <a class="ulink"
href="http://mathworld.wolfram.com/NaturalLogarithm.html" target="_top">Mathworld</a> para más
información.</p></dd><dt><span class="term"><a name="gel-function-log"></a>log</span></dt><dd><pre
class="synopsis">log (x)</pre><pre class="synopsis">log (x,b)</pre><p>Logaritmo de <code
class="varname">x</code> en base <code class="varname">b</code> (se llama <a class="link"
href="ch11s07.html#gel-function-DiscreteLog"><code class="function">DiscreteLog</code></a> en modo módulo),
si no se indica la base, se utiliza <a class="link" href="ch11s04.html#gel-function-e"><code
class="varname">e</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-log10"></a>log10</span></dt><dd><pre class="synopsis">log10 (x)</pre><p>Logaritmo de <code
class="varname">x</code> en base 10.</p></dd><dt><span class="term"><a
name="gel-function-log2"></a>log2</span></dt><dd><pre class="synopsis">log2 (x)</pr
e><p>Alias: <code class="function">lg</code></p><p>Logaritmo de <code class="varname">x</code> en base
2.</p></dd><dt><span class="term"><a name="gel-function-max"></a>max</span></dt><dd><pre class="synopsis">max
(a,args...)</pre><p>Alias: <code class="function">Max</code><code
class="function">Maximum</code></p><p>Devuelve el máximo de los argumentos o las matrices.</p></dd><dt><span
class="term"><a name="gel-function-min"></a>min</span></dt><dd><pre class="synopsis">min
(a,args...)</pre><p>Alias: <code class="function">Min</code><code
class="function">Minimum</code></p><p>Devuelve el mínimo de los argumentos o las matrices.</p></dd><dt><span
class="term"><a name="gel-function-rand"></a>rand</span></dt><dd><pre class="synopsis">rand
(tamaño...)</pre><p>Generar valores en coma flotante aleatorios en el rango <code
class="literal">[0,1)</code>. Si se indica «tamaño», entonces devuelve una matriz (si se especifican dos
números) o un vector (si se especifica un número
).</p></dd><dt><span class="term"><a name="gel-function-randint"></a>randint</span></dt><dd><pre
class="synopsis">randint (máx,tamaño...)</pre><p>Generar número enteros aleatorios en el rango <code
class="literal">[0,máx)</code>. Si se indica «tamaño», entonces devuelve una matriz (si se especifican dos
números) o un vector (si se especifica un número). Por ejemplo, </p><pre class="screen"><code
class="prompt">genius></code> <strong class="userinput"><code>randint(4)</code></strong>
+= 3
+<code class="prompt">genius></code> <strong class="userinput"><code>randint(4,2)</code></strong>
+=
+[0 1]
+<code class="prompt">genius></code> <strong class="userinput"><code>randint(4,2,3)</code></strong>
+=
+[2 2 1
+ 0 0 3]
+</pre></dd><dt><span class="term"><a name="gel-function-round"></a>round</span></dt><dd><pre
class="synopsis">round (x)</pre><p>Alias: <code class="function">Round</code></p><p>Redondear un
número.</p></dd><dt><span class="term"><a name="gel-function-sqrt"></a>sqrt</span></dt><dd><pre
class="synopsis">sqrt (x)</pre><p>Alias: <code class="function">SquareRoot</code></p><p>La raíz cuadrada.
Cuando se opera con «módulo», algunos enteros devolverán un valor <code class="constant">null</code> o un
vector de raíces cuadradas. Ejemplos: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>sqrt(2)</code></strong>
+= 1.41421356237
+<code class="prompt">genius></code> <strong class="userinput"><code>sqrt(-1)</code></strong>
+= 1i
+<code class="prompt">genius></code> <strong class="userinput"><code>sqrt(4) mod 7</code></strong>
+=
+[2 5]
+<code class="prompt">genius></code> <strong class="userinput"><code>2*2 mod 7</code></strong>
+= 4
+</pre><p>Consulte la <a class="ulink" href="https://en.wikipedia.org/wiki/Square_root"
target="_top">Wikipedia</a> o <a class="ulink" href="http://planetmath.org/SquareRoot"
target="_top">Planetmath</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-trunc"></a>trunc</span></dt><dd><pre class="synopsis">trunc (x)</pre><p>Alias: <code
class="function">Truncate</code><code class="function">IntegerPart</code></p><p>Truncar el número a un
entero (devolver la parte entera)</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s04.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s06.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Constantes </td><td
width="20%" align="center"><a accesskey="h" href="
index.html">Inicio</a></td><td width="40%" align="right" valign="top">
Trigonometría</td></tr></table></div></body></html>
diff --git a/help/es/html/ch11s06.html b/help/es/html/ch11s06.html
new file mode 100644
index 0000000..0d48b03
--- /dev/null
+++ b/help/es/html/ch11s06.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Trigonometría</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manual de Genius"><link rel="up" href="ch11.html"
title="Capítulo 11. Lista de funciones GEL"><link rel="prev" href="ch11s05.html" title="Numérico"><link
rel="next" href="ch11s07.html" title="Teoría de números"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Trigonometría</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s05.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. Lista de
funciones GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s07.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="t
itle" style="clear: both"><a
name="genius-gel-function-list-trigonometry"></a>Trigonometría</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-acos"></a>acos</span></dt><dd><pre class="synopsis">acos (x)</pre><p>Alias: <code
class="function">arccos</code></p><p>La función arccos (inversa del cos).</p></dd><dt><span class="term"><a
name="gel-function-acosh"></a>acosh</span></dt><dd><pre class="synopsis">acosh (x)</pre><p>Alias: <code
class="function">arccosh</code></p><p>La función arccosh (inversa del cosh).</p></dd><dt><span
class="term"><a name="gel-function-acot"></a>acot</span></dt><dd><pre class="synopsis">acot
(x)</pre><p>Alias: <code class="function">arccot</code></p><p>La función arccot (inversa de la
cot)</p></dd><dt><span class="term"><a name="gel-function-acoth"></a>acoth</span></dt><dd><pre
class="synopsis">acoth (x)</pre><p>Alias: <code class="function">arccoth</code></p><p>La función a
rccoth (inversa de la coth).</p></dd><dt><span class="term"><a
name="gel-function-acsc"></a>acsc</span></dt><dd><pre class="synopsis">acsc (x)</pre><p>Alias: <code
class="function">arccsc</code></p><p>La inversa de la función cosecante.</p></dd><dt><span class="term"><a
name="gel-function-acsch"></a>acsch</span></dt><dd><pre class="synopsis">acsch (x)</pre><p>Alias: <code
class="function">arccsch</code></p><p>La inversa de la función cosecante hiperbólica.</p></dd><dt><span
class="term"><a name="gel-function-asec"></a>asec</span></dt><dd><pre class="synopsis">asec
(x)</pre><p>Alias: <code class="function">arcsec</code></p><p>La inversa de la función
secante.</p></dd><dt><span class="term"><a name="gel-function-asech"></a>asech</span></dt><dd><pre
class="synopsis">asech (x)</pre><p>Alias: <code class="function">arcsech</code></p><p>La inversa de la
función secante hiperbólica.</p></dd><dt><span class="term"><a
name="gel-function-asin"></a>asin</span></dt><dd><pre
class="synopsis">asin (x)</pre><p>Alias: <code class="function">arcsin</code></p><p>La función arcsen
(inversa del sen).</p></dd><dt><span class="term"><a name="gel-function-asinh"></a>asinh</span></dt><dd><pre
class="synopsis">asinh (x)</pre><p>Alias: <code class="function">arcsinh</code></p><p>La función arcsenh
(inversa del senh).</p></dd><dt><span class="term"><a name="gel-function-atan"></a>atan</span></dt><dd><pre
class="synopsis">atan (x)</pre><p>Alias: <code class="function">arctan</code></p><p>Calcula la función
«arctan» (inversa de «tan»).</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Arctangent" target="_top">Wikipedia</a> o <a class="ulink"
href="http://mathworld.wolfram.com/InverseTangent.html" target="_top">Mathworld</a> para obtener más
información.</p></dd><dt><span class="term"><a name="gel-function-atanh"></a>atanh</span></dt><dd><pre
class="synopsis">atanh (x)</pre><p>Alias: <code class="function">arctanh</code></p><p>La
función arctanh (inversa de la tanh).</p></dd><dt><span class="term"><a
name="gel-function-atan2"></a>atan2</span></dt><dd><pre class="synopsis">atan2 (y, x)</pre><p>Alias: <code
class="function">arctan2</code></p><p>Calcula la función «arctan2». Si <strong
class="userinput"><code>x>0</code></strong>, entonces devuelve <strong
class="userinput"><code>atan(y/x)</code></strong>. Si <strong class="userinput"><code>x<0</code></strong>,
entonces devuelve <strong class="userinput"><code>sign(y) * (pi - atan(|y/x|)</code></strong>. Cuando <strong
class="userinput"><code>x=0</code></strong> devuelve <strong class="userinput"><code>sign(y) *
+ pi/2</code></strong>. <strong class="userinput"><code>atan2(0,0)</code></strong> devuelve 0 en
lugar de fallar.</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Atan2"
target="_top">Wikipedia</a> o <a class="ulink" href="http://mathworld.wolfram.com/InverseTangent.html"
target="_top">Mathworld</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-cos"></a>cos</span></dt><dd><pre class="synopsis">cos (x)</pre><p>Calcula la función
coseno.</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> o <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-cosh"></a>cosh</span></dt><dd><pre class="synopsis">cosh (x)</pre><p>Calcula la función
coseno hiperbólico.</p><p>Consulte la <a class="ulink" href="https://en.wikipedia.o
rg/wiki/Hyperbolic_function" target="_top">Wikipedia</a> o <a class="ulink"
href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a name="gel-function-cot"></a>cot</span></dt><dd><pre
class="synopsis">cot (x)</pre><p>La función cotangente.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Trigonometric_functions" target="_top">Wikipedia</a> o <a class="ulink"
href="http://planetmath.org/DefinitionsInTrigonometry" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a name="gel-function-coth"></a>coth</span></dt><dd><pre
class="synopsis">coth (x)</pre><p>La función cotangente hiperbólica.</p><p>Consulte la <a class="ulink"
href="https://en.wikipedia.org/wiki/Hyperbolic_function" target="_top">Wikipedia</a> o <a class="ulink"
href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a> para obtener más infor
mación.</p></dd><dt><span class="term"><a name="gel-function-csc"></a>csc</span></dt><dd><pre
class="synopsis">csc (x)</pre><p>La función cosecante.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Trigonometric_functions" target="_top">Wikipedia</a> o <a class="ulink"
href="http://planetmath.org/DefinitionsInTrigonometry" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a name="gel-function-csch"></a>csch</span></dt><dd><pre
class="synopsis">csch (x)</pre><p>La función cosecante hiperbólica.</p><p>Consulte la <a class="ulink"
href="https://en.wikipedia.org/wiki/Hyperbolic_function" target="_top">Wikipedia</a> o <a class="ulink"
href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a name="gel-function-sec"></a>sec</span></dt><dd><pre
class="synopsis">sec (x)</pre><p>La función secante.</p><p>Consulte la <a class="u
link" href="http://en.wikipedia.org/wiki/Trigonometric_functions" target="_top">Wikipedia</a> o <a
class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry" target="_top">Planetmath</a> para
obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-sech"></a>sech</span></dt><dd><pre class="synopsis">sech (x)</pre><p>La función secante
hiperbólica.</p><p>Consulte la <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> o <a class="ulink" href="http://planetmath.org/HyperbolicFunctions"
target="_top">Planetmath</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-sin"></a>sin</span></dt><dd><pre class="synopsis">sin (x)</pre><p>Calcula la función
seno.</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> o <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_t
op">Planetmath</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-sinh"></a>sinh</span></dt><dd><pre class="synopsis">sinh (x)</pre><p>Calcula la función
seno hiperbólico.</p><p>Consulte la <a class="ulink"
href="https://en.wikipedia.org/wiki/Hyperbolic_function" target="_top">Wikipedia</a> o <a class="ulink"
href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a name="gel-function-tan"></a>tan</span></dt><dd><pre
class="synopsis">tan (x)</pre><p>Calcula la función tangente.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Trigonometric_functions" target="_top">Wikipedia</a> o <a class="ulink"
href="http://planetmath.org/DefinitionsInTrigonometry" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a name="gel-function-tanh"></a>tanh</span></dt><dd><pre
class="synopsis">tanh (x)</pre
<p>La función tangente hiperbólica.</p><p>Consulte la <a class="ulink"
href="https://en.wikipedia.org/wiki/Hyperbolic_function" target="_top">Wikipedia</a> o <a class="ulink"
href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a> para obtener más
información.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s05.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Subir</a></td><td width="40%" align="right">
<a accesskey="n" href="ch11s07.html">Siguiente</a></td></tr><tr><td width="40%" align="left"
valign="top">Numérico </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top"> Teoría de
números</td></tr></table></div></body></html>
diff --git a/help/es/html/ch11s07.html b/help/es/html/ch11s07.html
new file mode 100644
index 0000000..1c4a4ad
--- /dev/null
+++ b/help/es/html/ch11s07.html
@@ -0,0 +1,8 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Teoría de
números</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch11.html" title="Capítulo 11. Lista de
funciones GEL"><link rel="prev" href="ch11s06.html" title="Trigonometría"><link rel="next"
href="ch11s08.html" title="Manipulación de matrices"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Teoría de números</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s06.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. Lista de
funciones GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s08.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage">
<div><div><h2 class="title" style="clear: both"><a name="genius-gel-function-list-number-theory"></a>Teoría
de números</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span
class="term"><a name="gel-function-AreRelativelyPrime"></a>AreRelativelyPrime</span></dt><dd><pre
class="synopsis">AreRelativelyPrime (a,b)</pre><p>¿Son los números reales <code class="varname">a</code> and
<code class="varname">b</code> primos entre sí? Devuelve <code class="constant">true</code> o <code
class="constant">false</code>.</p><p>Consulte la <a class="ulink"
href="https://en.wikipedia.org/wiki/Coprime_integers" target="_top">Wikipedia</a> o <a class="ulink"
href="http://planetmath.org/RelativelyPrime" target="_top">Planetmath</a> o <a class="ulink"
href="http://mathworld.wolfram.com/RelativelyPrime.html" target="_top">Mathworld</a> para obtener más
información.</p></dd><dt><span class="term"><a name="gel-function-BernoulliNumber"></a>BernoulliNumber</span>
</dt><dd><pre class="synopsis">BernoulliNumber (n)</pre><p>Devolver el <code class="varname">n</code>-ésimo
número de Bernoulli.</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Bernoulli_number"
target="_top">Wikipedia</a> o <a class="ulink" href="http://mathworld.wolfram.com/BernoulliNumber.html"
target="_top">Mathworld</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-ChineseRemainder"></a>ChineseRemainder</span></dt><dd><pre
class="synopsis">ChineseRemainder (a,m)</pre><p>Alias: <code class="function">CRT</code></p><p>Encontrar la
<code class="varname">x</code> que resuelve el sistema dado por el vector <code class="varname">a</code> y el
módulo de los elementos de <code class="varname">m</code>, utilizando el «teorema chino del
resto».</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Chinese_remainder_theorem"
target="_top">Wikipedia</a> o <a class="ulink" href="http://planetmath.org/C
hineseRemainderTheorem" target="_top">Planetmath</a> o <a class="ulink"
href="http://mathworld.wolfram.com/ChineseRemainderTheorem.html" target="_top">Mathworld</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-CombineFactorizations"></a>CombineFactorizations</span></dt><dd><pre
class="synopsis">CombineFactorizations (a,b)</pre><p>Dadas dos factorizaciones, dar la factorización del
producto.</p><p>Consulte la sección<a class="link"
href="ch11s07.html#gel-function-Factorize">factorizar</a>.</p></dd><dt><span class="term"><a
name="gel-function-ConvertFromBase"></a>ConvertFromBase</span></dt><dd><pre class="synopsis">ConvertFromBase
(v,b)</pre><p>Convertir un vector de valores mostrando potencias de b a un número.</p></dd><dt><span
class="term"><a name="gel-function-ConvertToBase"></a>ConvertToBase</span></dt><dd><pre
class="synopsis">ConvertToBase (n,b)</pre><p>Convertir un número en un vector de potencias para elementos en
base <co
de class="varname">b</code>.</p></dd><dt><span class="term"><a
name="gel-function-DiscreteLog"></a>DiscreteLog</span></dt><dd><pre class="synopsis">DiscreteLog
(n,b,q)</pre><p>Encontrar el logaritmo discreto de <code class="varname">n</code> en base <code
class="varname">b</code> en F<sub>q</sub>, el campo finito de orden <code class="varname">q</code>, donde
<code class="varname">q</code> es primo, utilizando el algoritmo de Silver-Pohlig-Hellman.</p><p>Consulte la
<a class="ulink" href="http://en.wikipedia.org/wiki/Discrete_logarithm" target="_top">Wikipedia</a>, <a
class="ulink" href="http://planetmath.org/DiscreteLogarithm" target="_top">Planetmath</a>, o <a class="ulink"
href="http://mathworld.wolfram.com/DiscreteLogarithm.html" target="_top">Mathworld</a> para obtener más
información.</p></dd><dt><span class="term"><a name="gel-function-Divides"></a>Divides</span></dt><dd><pre
class="synopsis">Divides (m,n)</pre><p>Comprueba la divisibilidad (si <code class="varname"
m</code> divide a <code class="varname">n</code>).</p></dd><dt><span class="term"><a
name="gel-function-EulerPhi"></a>EulerPhi</span></dt><dd><pre class="synopsis">EulerPhi
(n)</pre><p>Calcular la función phi de Euler para <code class="varname">n</code>, que es el número de
enteros entre 1 y <code class="varname">n</code> primo relativo con <code
class="varname">n</code>.</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Euler_phi"
target="_top">Wikipedia</a>, <a class="ulink" href="http://planetmath.org/EulerPhifunction"
target="_top">Planetmath</a>, o <a class="ulink" href="http://mathworld.wolfram.com/TotientFunction.html"
target="_top">Mathworld</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-ExactDivision"></a>ExactDivision</span></dt><dd><pre class="synopsis">ExactDivision
(n,d)</pre><p>Devuelve <strong class="userinput"><code>n/d</code></strong> pero solo si <code
class="varname">d</code> es divisible ent
re <code class="varname">n</code>. Si <code class="varname">d</code> no es divisible entre <code
class="varname">n</code> entonces esta función devuelve basura. Esto es mucho mas rápido para números muy
grandes que la operación <strong class="userinput"><code>n/d</code></strong>, pero sólo es útil si se sabe
que la división es exacta.</p></dd><dt><span class="term"><a
name="gel-function-Factorize"></a>Factorize</span></dt><dd><pre class="synopsis">Factorize
(n)</pre><p>Devuelve la factorización de un número como una matriz. La primera fila son los números primos en
la factorización (incluido el 1) y la segunda fila son las potencias. Por ejemplo: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>Factorize(11*11*13)</code></strong>
+=
+[1 11 13
+ 1 2 1]</pre><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Factorization"
target="_top">Wikipedia</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-Factors"></a>Factors</span></dt><dd><pre class="synopsis">Factors (n)</pre><p>Devuelve
todos los factores de <code class="varname">n</code> en un vector. Esto incluye todos los factores no primos
como buenos. Incluye 1 y el mismo número. Así por ejemplo, para imprimir todos los números perfectos
(aquellos que son sumas de sus factores) hasta el número 1000 (esto es muy ineficiente) haga </p><pre
class="programlisting">for n=1 to 1000 do (
+ if MatrixSum (Factors(n)) == 2*n then
+ print(n)
+)
+</pre></dd><dt><span class="term"><a
name="gel-function-FermatFactorization"></a>FermatFactorization</span></dt><dd><pre
class="synopsis">FermatFactorization (n,tries)</pre><p>Probar la factorización de Fermat de <code
class="varname">n</code> en <strong class="userinput"><code>(t-s)*(t+s)</code></strong>, devuelve <code
class="varname">t</code> y <code class="varname">s</code> como un vector si es posible, <code
class="constant">null</code> de otra manera <code class="varname">tries</code> especifica el número de
intentos antes de abandonar </p><p>Es una buena factorización si su número es el producto de dos factores que
están muy cerca.</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Fermat_factorization"
target="_top">Wikipedia</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-FindPrimitiveElementMod"></a>FindPrimitiveElementMod</span></dt><dd><pre
class="synopsis">FindPrimitiveElementMod (q)</pre><p>Encont
rar el primer elemento primitivo en F<sub>q</sub>, en el grupo de orden finito<code
class="varname">q</code>. Por supuesto, <code class="varname">q</code> debe de ser primo.</p></dd><dt><span
class="term"><a
name="gel-function-FindRandomPrimitiveElementMod"></a>FindRandomPrimitiveElementMod</span></dt><dd><pre
class="synopsis">FindRandomPrimitiveElementMod (q)</pre><p>Encontrar un elemento primitivo aleatorio en
F<sub>q</sub>, en el grupo de orden finito <code class="varname">q</code> (q debe de ser
primo)</p></dd><dt><span class="term"><a
name="gel-function-IndexCalculus"></a>IndexCalculus</span></dt><dd><pre class="synopsis">IndexCalculus
(n,b,q,S)</pre><p>Calcula la base del logaritmo discreto <code class="varname">b</code> de n en
F<sub>q</sub>, el grupo finito de orden <code class="varname">q</code> (<code class="varname">q</code> un
primo), utilizando el factor base <code class="varname">S</code>. <code class="varname">S</code> será una
columna de números primos y un
a segunda columna precalculada por <a class="link"
href="ch11s07.html#gel-function-IndexCalculusPrecalculation"><code
class="function">IndexCalculusPrecalculation</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-IndexCalculusPrecalculation"></a>IndexCalculusPrecalculation</span></dt><dd><pre
class="synopsis">IndexCalculusPrecalculation (b,q,S)</pre><p>Ejecuta los pasos para los cálculos previos de
<a class="link" href="ch11s07.html#gel-function-IndexCalculus"><code
class="function">IndexCalculus</code></a> para logaritmos de base <code class="varname">b</code> en
F<sub>q</sub>, del grupo finito de orden <code class="varname">q</code> (<code class="varname">q</code> un
primo), para el factor base <code class="varname">S</code> (donde <code class="varname">S</code> es una
columna de vector de primos). Los registros se calculan previamente y se devuelven en la segunda
columna.</p></dd><dt><span class="term"><a name="gel-function-IsEven"></a>IsEven</span></dt><d
d><pre class="synopsis">IsEven (n)</pre><p>Comprueba si un entero es par.</p></dd><dt><span class="term"><a
name="gel-function-IsMersennePrimeExponent"></a>IsMersennePrimeExponent</span></dt><dd><pre
class="synopsis">IsMersennePrimeExponent (p)</pre><p>Comprueba si un entero positivo <code
class="varname">p</code> es un exponente primo de Mersenne. Esto es si 2<sup>p</sup>-1 es un primo. Esto lo
hace mirando en una tabla de valores conocidos que es relativamente corta. Vea también <a class="link"
href="ch11s07.html#gel-function-MersennePrimeExponents">MersennePrimeExponents</a> y <a class="link"
href="ch11s07.html#gel-function-LucasLehmer">LucasLehmer</a>.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Mersenne_prime" target="_top">Wikipedia</a>, <a class="ulink"
href="http://planetmath.org/MersenneNumbers" target="_top">Planetmath</a>, <a class="ulink"
href="http://mathworld.wolfram.com/MersennePrime.html" target="_top">Mathworld</a> o <a class="ulin
k" href="http://www.mersenne.org/" target="_top">GIMPS</a> para obtener más información.</p></dd><dt><span
class="term"><a name="gel-function-IsNthPower"></a>IsNthPower</span></dt><dd><pre class="synopsis">IsNthPower
(m,n)</pre><p>Comprueba si un número racional <code class="varname">m</code> es una potencia <code
class="varname">n</code>-ésima perfecta. Consulte <a class="link"
href="ch11s07.html#gel-function-IsPerfectPower">IsPerfectPower</a> y <a class="link"
href="ch11s07.html#gel-function-IsPerfectSquare">IsPerfectSquare</a>.</p></dd><dt><span class="term"><a
name="gel-function-IsOdd"></a>IsOdd</span></dt><dd><pre class="synopsis">IsOdd (n)</pre><p>Comprueba su un
entero es impar.</p></dd><dt><span class="term"><a
name="gel-function-IsPerfectPower"></a>IsPerfectPower</span></dt><dd><pre class="synopsis">IsPerfectPower
(n)</pre><p>Comprobar si un entero es una potencia perfecta, a<sup>b</sup>.</p></dd><dt><span class="term"><a
name="gel-function-IsPerfectSquare"></a>
IsPerfectSquare</span></dt><dd><pre class="synopsis">IsPerfectSquare (n)</pre><p>Comprobar si un entero es
un cuadrado perfecto de un entero. El número será un entero real. Los enteros negativos, por supuesto, no son
perfectos cuadrados de enteros reales.</p></dd><dt><span class="term"><a
name="gel-function-IsPrime"></a>IsPrime</span></dt><dd><pre class="synopsis">IsPrime (n)</pre><p>Comprueba si
dos números enteros son primos, para números menores que 2.5e10 la respuesta es determinista (si la hipótesis
de Riemann es verdadera). Para números más grandes, la probabilidad de un falso positivo depende de <a
class="link" href="ch11s03.html#gel-function-IsPrimeMillerRabinReps"><code
class="function">IsPrimeMillerRabinReps</code></a>. Significa que la probabilidad de un falso positivo es 1/4
de la potencia <code class="function">IsPrimeMillerRabinReps</code>. De manera predeterminada el valor de 22
produce una probabilidad entorno a 5.7e-14.</p><p>Si se devuelve <code clas
s="constant">false</code>, puede estar seguro de que el número es un compuesto. Si quiere estar totalmente
seguro de que tiene un número primo use <a class="link"
href="ch11s07.html#gel-function-MillerRabinTestSure"><code class="function">MillerRabinTestSure</code></a>
pero esto le puede llevar mucho más tiempo.</p><p>Consulte <a class="ulink"
href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> o <a class="ulink"
href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworld</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-IsPrimitiveMod"></a>IsPrimitiveMod</span></dt><dd><pre class="synopsis">IsPrimitiveMod
(g,q)</pre><p>Comprobar si <code class="varname">g</code> es primario en F<sub>q</sub>, el grupo finito de
orden <code class="varname">q</code>, donde <code class="varname">q</code> es un primo. Si <code
class="varname">q</code> no es un primo los resultados son falsos.</p></dd><dt><span class="te
rm"><a
name="gel-function-IsPrimitiveModWithPrimeFactors"></a>IsPrimitiveModWithPrimeFactors</span></dt><dd><pre
class="synopsis">IsPrimitiveModWithPrimeFactors (g,q,f)</pre><p>Comprobar si <code class="varname">g</code>
es primario en F<sub>q</sub>, el grupo finito de orden <code class="varname">q</code>, donde <code
class="varname">q</code> es un primo y <code class="varname">f</code> es un vector de factores primos de
<code class="varname">q</code>-1. Si <code class="varname">q</code> no es primo los resultados son
falsos.</p></dd><dt><span class="term"><a
name="gel-function-IsPseudoprime"></a>IsPseudoprime</span></dt><dd><pre class="synopsis">IsPseudoprime
(n,b)</pre><p>Si <code class="varname">n</code> es pseudo-primo en base <code class="varname">b</code> pero
no un primo, esto es si <strong class="userinput"><code>b^(n-1) == 1 mod n</code></strong>. Esto llama a <a
class="link" href="ch11s07.html#gel-function-PseudoprimeTest"><code class="function">PseudoprimeTest</co
de></a></p></dd><dt><span class="term"><a
name="gel-function-IsStrongPseudoprime"></a>IsStrongPseudoprime</span></dt><dd><pre
class="synopsis">IsStrongPseudoprime (n,b)</pre><p>Compruebe si <code class="varname">n</code> es un
pseudo-primo fuerte en base <code class="varname">b</code> pero no un primo.</p></dd><dt><span
class="term"><a name="gel-function-Jacobi"></a>Jacobi</span></dt><dd><pre class="synopsis">Jacobi
(a,b)</pre><p>Alias: <code class="function">JacobiSymbol</code></p><p>Calcular el símbolo de Jacobi (a/b) (b
debe ser impar).</p></dd><dt><span class="term"><a
name="gel-function-JacobiKronecker"></a>JacobiKronecker</span></dt><dd><pre class="synopsis">JacobiKronecker
(a,b)</pre><p>Alias: <code class="function">JacobiKroneckerSymbol</code></p><p>Calcular el símbolo de Jacobi
(a/b) con extensión de Kronecker (a/2)=(2/a) cuando sea impar, o (a/2)=0 cuando sea par.</p></dd><dt><span
class="term"><a name="gel-function-LeastAbsoluteResidue"></a>LeastAbsoluteResi
due</span></dt><dd><pre class="synopsis">LeastAbsoluteResidue (a,n)</pre><p>Devuelve el resto de <code
class="varname">a</code> mod <code class="varname">n</code> con el último valor absoluto (en el intervalo
-n/2 to n/2).</p></dd><dt><span class="term"><a name="gel-function-Legendre"></a>Legendre</span></dt><dd><pre
class="synopsis">Legendre (a,p)</pre><p>Alias: <code class="function">LegendreSymbol</code></p><p>Calcular el
símbolo de Legendre (a/p).</p><p>Consulte <a class="ulink" href="http://planetmath.org/LegendreSymbol"
target="_top">Planetmath</a> o <a class="ulink" href="http://mathworld.wolfram.com/LegendreSymbol.html"
target="_top">Mathworld</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-LucasLehmer"></a>LucasLehmer</span></dt><dd><pre class="synopsis">LucasLehmer
(p)</pre><p>Compruebe si 2<sup>p</sup>-1 es un primo de Mersenne utilizando la prueba de Lucas-Lehmer.
Consulte también <a class="link" href="ch11s07.html#gel
-function-MersennePrimeExponents">MersennePrimeExponents</a> y <a class="link"
href="ch11s07.html#gel-function-IsMersennePrimeExponent">IsMersennePrimeExponent</a>.</p><p>Consulte la <a
class="ulink" href="http://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test"
target="_top">Wikipedia</a>, <a class="ulink" href="http://planetmath.org/LucasLhemer"
target="_top">Planetmath</a>, o <a class="ulink" href="http://mathworld.wolfram.com/Lucas-LehmerTest.html"
target="_top">Mathworld</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-LucasNumber"></a>LucasNumber</span></dt><dd><pre class="synopsis">LucasNumber
(n)</pre><p>Devuelve el <code class="varname">n</code>-ésimo número de Lucas.</p><p>Consulte la <a
class="ulink" href="http://en.wikipedia.org/wiki/Lucas_number" target="_top">Wikipedia</a>, <a class="ulink"
href="http://planetmath.org/LucasNumbers" target="_top">Planetmath</a>, o <a class="ulink"
href="http://mathworld.wolfra
m.com/LucasNumber.html" target="_top">Mathworld</a> para obtener más información.</p></dd><dt><span
class="term"><a name="gel-function-MaximalPrimePowerFactors"></a>MaximalPrimePowerFactors</span></dt><dd><pre
class="synopsis">MaximalPrimePowerFactors (n)</pre><p>Devuelve todos los factores primos de un
número.</p></dd><dt><span class="term"><a
name="gel-function-MersennePrimeExponents"></a>MersennePrimeExponents</span></dt><dd><pre
class="synopsis">MersennePrimeExponents</pre><p>Un vector de Mersenne de exponentes primos conocidos, esto es
una lista de enteros positivos <code class="varname">p</code> tal que 2<sup>p</sup>-1 es un primo. Consulte
también <a class="link" href="ch11s07.html#gel-function-IsMersennePrimeExponent">IsMersennePrimeExponent</a>
y <a class="link" href="ch11s07.html#gel-function-LucasLehmer">LucasLehmer</a>.</p><p>Consulte la <a
class="ulink" href="http://en.wikipedia.org/wiki/Mersenne_prime" target="_top">Wikipedia</a>, <a
class="ulink" href="ht
tp://planetmath.org/MersenneNumbers" target="_top">Planetmath</a>, <a class="ulink"
href="http://mathworld.wolfram.com/MersennePrime.html" target="_top">Mathworld</a> o <a class="ulink"
href="http://www.mersenne.org/" target="_top">GIMPS</a> para obtener más información.</p></dd><dt><span
class="term"><a name="gel-function-MillerRabinTest"></a>MillerRabinTest</span></dt><dd><pre
class="synopsis">MillerRabinTest (n,reps)</pre><p>Utiliza la prueba de números primarios Miller-Rabin de
<code class="varname">n</code>, <code class="varname">reps</code> número de veces. La probabilidad de falso
positivo es <strong class="userinput"><code>(1/4)^reps</code></strong>. Probablemente es mejor usar <a
class="link" href="ch11s07.html#gel-function-IsPrime"><code class="function">IsPrime</code></a> ya que es más
rápido y mejor sobre enteros más pequeños.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test" target="_top">Wikipedia
</a> o <a class="ulink" href="http://planetmath.org/MillerRabinPrimeTest" target="_top">Planetmath</a> o <a
class="ulink" href="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html"
target="_top">Mathworld</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-MillerRabinTestSure"></a>MillerRabinTestSure</span></dt><dd><pre
class="synopsis">MillerRabinTestSure (n)</pre><p>Utiliza la prueba Miller-Rabin de números primos de <code
class="varname">n</code> con las bases suficientes que asuman la hipótesis generalizada de Reimann, el
resultado es determinista.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test" target="_top">Wikipedia</a>, <a
class="ulink" href="http://planetmath.org/MillerRabinPrimeTest" target="_top">Planetmath</a>, o <a
class="ulink" href="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html"
target="_top">Mathworld</a> para obtener más in
formación.</p></dd><dt><span class="term"><a name="gel-function-ModInvert"></a>ModInvert</span></dt><dd><pre
class="synopsis">ModInvert (n,m)</pre><p>Devuelve el inverso de n módulo m.</p><p>Consulte <a class="ulink"
href="http://mathworld.wolfram.com/ModularInverse.html" target="_top">Mathworld</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-MoebiusMu"></a>MoebiusMu</span></dt><dd><pre class="synopsis">MoebiusMu
(n)</pre><p>Devuelve la función de Moebius «mu» de <code class="varname">n</code>. Esto es, devuelve 0 si
<code class="varname">n</code> no es un producto entre primos distintos y <strong
class="userinput"><code>(-1)^k</code></strong> si es un producto de <code class="varname">k</code> primos
distintos.</p><p>Consulte <a class="ulink" href="http://planetmath.org/MoebiusFunction"
target="_top">Planetmath</a> o <a class="ulink" href="http://mathworld.wolfram.com/MoebiusFunction.html"
target="_top">Mathworld</a> para obten
er más información.</p></dd><dt><span class="term"><a
name="gel-function-NextPrime"></a>NextPrime</span></dt><dd><pre class="synopsis">NextPrime
(n)</pre><p>Devuelve el primo menor más grande que <code class="varname">n</code>. Los primos negativos se
consideran primos y así para obtener el primo anterior, puede usar <strong
class="userinput"><code>-NextPrime(-n)</code></strong>.</p><p>Esta función utiliza las GMP <code
class="function">mpz_nextprime</code> la cual vuelve a utilizar la prueba probabilística de Miller-Rabin
(consulte también <a class="link" href="ch11s07.html#gel-function-MillerRabinTest"><code
class="function">MillerRabinTest</code></a>). La probabilidad de un falso positivo no se da, pero es lo
suficientemente baja para prácticamente todos los propósitos.</p><p>Consulte <a class="ulink"
href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> o <a class="ulink"
href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworl
d</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-PadicValuation"></a>PadicValuation</span></dt><dd><pre class="synopsis">PadicValuation
(n,p)</pre><p>Devuelve la evaluación del número «p-adic» (número de ceros que va dejando en base <code
class="varname">p</code>).</p><p>Consulte la <a class="ulink"
href="https://en.wikipedia.org/wiki/P-adic_order" target="_top">Wikipedia</a> o <a class="ulink"
href="http://planetmath.org/PAdicValuation" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a name="gel-function-PowerMod"></a>PowerMod</span></dt><dd><pre
class="synopsis">PowerMod (a,b,m)</pre><p>Calcula <strong class="userinput"><code>a^b mod m</code></strong>.
La potencia <code class="varname">b</code> de <code class="varname">a</code> módulo <code
class="varname">m</code>. No es necesario utilizar esta función ya que se utiliza automáticamente en modo
módulo. Por lo tanto <strong class
="userinput"><code>a^b mod m</code></strong> es igual de rápido.</p></dd><dt><span class="term"><a
name="gel-function-Prime"></a>Prime</span></dt><dd><pre class="synopsis">Prime (n)</pre><p>Alias: <code
class="function">prime</code></p><p>Devuelve el <code class="varname">n</code>-ésimo primo (hasta un
límite).</p><p>Consulte <a class="ulink" href="http://planetmath.org/PrimeNumber"
target="_top">Planetmath</a> o <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html"
target="_top">Mathworld</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-PrimeFactors"></a>PrimeFactors</span></dt><dd><pre class="synopsis">PrimeFactors
(n)</pre><p>Devuelve todos los factores primos de un número como un vector.</p><p>Consulte la <a
class="ulink" href="https://en.wikipedia.org/wiki/Prime_factor" target="_top">Wikipedia</a> o <a
class="ulink" href="http://mathworld.wolfram.com/PrimeFactor.html" target="_top">Mathworld</a> para obtener m
ás información.</p></dd><dt><span class="term"><a
name="gel-function-PseudoprimeTest"></a>PseudoprimeTest</span></dt><dd><pre class="synopsis">PseudoprimeTest
(n,b)</pre><p>Prueba de pseudo-primo, devuelve <code class="constant">true</code> sólo si <strong
class="userinput"><code>b^(n-1) == 1 mod n</code></strong></p><p>Consulte <a class="ulink"
href="http://planetmath.org/Pseudoprime" target="_top">Planetmath</a> o <a class="ulink"
href="http://mathworld.wolfram.com/Pseudoprime.html" target="_top">Mathworld</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-RemoveFactor"></a>RemoveFactor</span></dt><dd><pre class="synopsis">RemoveFactor
(n,m)</pre><p>Elimina todas las instancias del factor <code class="varname">m</code> desde el número <code
class="varname">n</code>. Esto es, lo divide por la potencia mas grande de <code class="varname">m</code>,
que divide <code class="varname">n</code>.</p><p>Consulte <a class="ulink" href="http:
//planetmath.org/Divisibility" target="_top">Planetmath</a> o <a class="ulink"
href="http://mathworld.wolfram.com/Factor.html" target="_top">Mathworld</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-SilverPohligHellmanWithFactorization"></a>SilverPohligHellmanWithFactorization</span></dt><dd><pre
class="synopsis">SilverPohligHellmanWithFactorization (n,b,q,f)</pre><p>Buscar el logaritmo sencillo de
<code class="varname">n</code> base <code class="varname">b</code> en F<sub>q</sub>, de grupo de orden finito
<code class="varname">q</code>, donde <code class="varname">q</code> es un primo que utiliza el algoritmo de
Silver-Pohlig-Hellman, dado <code class="varname">f</code> es la factorización de <code
class="varname">q</code>-1.</p></dd><dt><span class="term"><a
name="gel-function-SqrtModPrime"></a>SqrtModPrime</span></dt><dd><pre class="synopsis">SqrtModPrime
(n,p)</pre><p>Buscar la raíz cuadrada de <code class="varname">n</code> mó
dulo <code class="varname">p</code> (donde <code class="varname">p</code> es un primo). Se devuelve «null»
si el resto no es cuadrático.</p><p>Consulte <a class="ulink" href="http://planetmath.org/QuadraticResidue"
target="_top">Planetmath</a> o <a class="ulink" href="http://mathworld.wolfram.com/QuadraticResidue.html"
target="_top">Mathworld</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-StrongPseudoprimeTest"></a>StrongPseudoprimeTest</span></dt><dd><pre
class="synopsis">StrongPseudoprimeTest (n,b)</pre><p>Ejecutar la prueba del pseudo-primo fuerte en base <code
class="varname">b</code> de <code class="varname">n</code>.</p><p>Consulte la <a class="ulink"
href="https://en.wikipedia.org/wiki/Strong_pseudoprime" target="_top">Wikipedia</a>, <a class="ulink"
href="http://planetmath.org/StrongPseudoprime" target="_top">Planetmath</a>, o <a class="ulink"
href="http://mathworld.wolfram.com/StrongPseudoprime.html" target="_top">Mathwor
ld</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-gcd"></a>gcd</span></dt><dd><pre class="synopsis">gcd (a,args...)</pre><p>Alias: <code
class="function">GCD</code></p><p>Máximo común divisor de enteros. Puede introducir tantos enteros en la
lista de argumentos, o puede introducir un vector o una matriz de enteros. Si introduce más de una matriz del
mismo tamaño, entonces el máximo común divisor se realiza elemento a elemento.</p><p>Consulte la <a
class="ulink" href="https://en.wikipedia.org/wiki/Greatest_common_divisor" target="_top">Wikipedia</a>, <a
class="ulink" href="http://planetmath.org/GreatestCommonDivisor" target="_top">Planetmath</a>, o <a
class="ulink" href="http://mathworld.wolfram.com/GreatestCommonDivisor.html" target="_top">Mathworld</a> para
obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-lcm"></a>lcm</span></dt><dd><pre class="synopsis">lcm (a,args...)</pre><p>Alias: <code
class
="function">LCM</code></p><p>Mínimo común múltiplo de enteros. Puede introducir tantos enteros en la lista
de argumentos, o introducir un vector o matriz de enteros. Si introduce mas de una matriz del mismo tamaño,
entonces el mínimo común múltiplo se realiza elemento a elemento.</p><p>Consulte la <a class="ulink"
href="https://en.wikipedia.org/wiki/Least_common_multiple" target="_top">Wikipedia</a>, <a class="ulink"
href="http://planetmath.org/LeastCommonMultiple" target="_top">Planetmath</a>, o <a class="ulink"
href="http://mathworld.wolfram.com/LeastCommonMultiple.html" target="_top">Mathworld</a> para obtener más
información.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s06.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Subir</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s08.html">Sigui
ente</a></td></tr><tr><td width="40%" align="left" valign="top">Trigonometría </td><td width="20%"
align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%" align="right" valign="top">
Manipulación de matrices</td></tr></table></div></body></html>
diff --git a/help/es/html/ch11s08.html b/help/es/html/ch11s08.html
new file mode 100644
index 0000000..9d6f3e4
--- /dev/null
+++ b/help/es/html/ch11s08.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Manipulación de
matrices</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch11.html" title="Capítulo 11. Lista de
funciones GEL"><link rel="prev" href="ch11s07.html" title="Teoría de números"><link rel="next"
href="ch11s09.html" title="Álgebra lineal"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Manipulación de matrices</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch11s07.html">Anterior</a> </td><th width="60%" align="center">Capítulo
11. Lista de funciones GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s09.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div class="title
page"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-matrix"></a>Manipulación de matrices</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ApplyOverMatrix"></a>ApplyOverMatrix</span></dt><dd><pre class="synopsis">ApplyOverMatrix
(a,func)</pre><p>Aplicar una función sobre todos los elementos de una matriz y devolver una matriz con los
resultados.</p></dd><dt><span class="term"><a
name="gel-function-ApplyOverMatrix2"></a>ApplyOverMatrix2</span></dt><dd><pre
class="synopsis">ApplyOverMatrix2 (a,b,func)</pre><p>Aplicar una función sobre todos los elementos de dos
matrices (o un valor y una matriz) y devolver una matriz con los resultados.</p></dd><dt><span
class="term"><a name="gel-function-ColumnsOf"></a>ColumnsOf</span></dt><dd><pre class="synopsis">ColumnsOf
(M)</pre><p>Obtener las columnas de una matriz como un vector horizontal.</p></dd><dt><span class="term"><a
nam
e="gel-function-ComplementSubmatrix"></a>ComplementSubmatrix</span></dt><dd><pre
class="synopsis">ComplementSubmatrix (m,r,c)</pre><p>Eliminar filas y columnas de una
matriz.</p></dd><dt><span class="term"><a
name="gel-function-CompoundMatrix"></a>CompoundMatrix</span></dt><dd><pre class="synopsis">CompoundMatrix
(k,A)</pre><p>Calcular la k-ésima matriz compuesta de A.</p></dd><dt><span class="term"><a
name="gel-function-CountZeroColumns"></a>CountZeroColumns</span></dt><dd><pre
class="synopsis">CountZeroColumns (M)</pre><p>Contar el número de cero columnas en una matriz. Por ejemplo
una vez que su columna reduce una matriz puede usar esto para encontrar la nulidad. Consulte <a class="link"
href="ch11s09.html#gel-function-cref"><code class="function">cref</code></a> y <a class="link"
href="ch11s09.html#gel-function-Nullity"><code class="function">Nullity</code></a>.</p></dd><dt><span
class="term"><a name="gel-function-DeleteColumn"></a>DeleteColumn</span></dt><dd><pre cla
ss="synopsis">DeleteColumn (M,col)</pre><p>Eliminar una columna de una matriz.</p></dd><dt><span
class="term"><a name="gel-function-DeleteRow"></a>DeleteRow</span></dt><dd><pre class="synopsis">DeleteRow
(M,row)</pre><p>Eliminar una fila de una matriz.</p></dd><dt><span class="term"><a
name="gel-function-DiagonalOf"></a>DiagonalOf</span></dt><dd><pre class="synopsis">DiagonalOf
(M)</pre><p>Obtener las entradas diagonales de una matriz como un vector columna.</p><p>Consulte la <a
class="ulink" href="http://en.wikipedia.org/wiki/Diagonal_of_a_matrix#Matrices" target="_top">Wikipedia</a>
para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-DotProduct"></a>DotProduct</span></dt><dd><pre class="synopsis">DotProduct
(u,v)</pre><p>Obtener el producto escalar de dos vectores. Los vectores serán del mismo tamaño. Se toman no
conjugados por lo que tendrá forma bilineal incluso si se trabaja con números complejos. Esto es el producto
escalar bilineal
, no el producto escalar sesquilienal. Consulte <a class="link"
href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a> para el producto interno estándar
sesquilinear.</p><p>Consulte la <a class="ulink" href="https://en.wikipedia.org/wiki/Dot_product"
target="_top">Wikipedia</a> o <a class="ulink" href="http://planetmath.org/DotProduct"
target="_top">Planetmath</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-ExpandMatrix"></a>ExpandMatrix</span></dt><dd><pre class="synopsis">ExpandMatrix
(M)</pre><p>Expandir una matriz de la misma manera que hacemos con la entrada sin comillas de la matriz. Esto
es, se expande cualquier matriz interna como bloques. Esto es una manera de construir matrices fuera de las
mas pequeñas y se hace de manera automática en la entrada a menos que la matriz se
entrecomille.</p></dd><dt><span class="term"><a
name="gel-function-HermitianProduct"></a>HermitianProduct</span></dt><dd><pre class="syn
opsis">HermitianProduct (u,v)</pre><p>Alias: <code class="function">InnerProduct</code></p><p>Obtener el
producto de Hermitian de dos vectores. Los vectores serán del mismo tamaño. Esto es una forma «sesquilinear»
para utilizar la identidad de la matriz.</p><p>Consulte la <a class="ulink"
href="https://en.wikipedia.org/wiki/Sesquilinear_form" target="_top">Wikipedia</a> o <a class="ulink"
href="http://mathworld.wolfram.com/HermitianInnerProduct.html" target="_top">Mathworld</a> para obtener más
información.</p></dd><dt><span class="term"><a name="gel-function-I"></a>I</span></dt><dd><pre
class="synopsis">I (n)</pre><p>Alias: <code class="function">eye</code></p><p>Devolver una matriz identidad
del tamaño dado, es decir, de <code class="varname">n</code> por <code class="varname">n</code>. Si <code
class="varname">n</code> es cero, devuelve <code class="constant">null</code>.</p><p>Consulte la <a
class="ulink" href="https://en.wikipedia.org/wiki/Identity_matrix" target
="_top">Wikipedia</a> o <a class="ulink" href="http://planetmath.org/IdentityMatrix"
target="_top">Planetmath</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-IndexComplement"></a>IndexComplement</span></dt><dd><pre class="synopsis">IndexComplement
(vec,msize)</pre><p>Devuelve el complemento índice de un vector de índices. Todo en base a uno. Por ejemplo
para el vector <strong class="userinput"><code>[2,3]</code></strong> y tamaño <strong
class="userinput"><code>5</code></strong>, devolverá <strong class="userinput"><code>[1,4,5]</code></strong>.
Si <code class="varname">msize</code> es 0, siempre devolverá <code
class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsDiagonal"></a>IsDiagonal</span></dt><dd><pre class="synopsis">IsDiagonal (M)</pre><p>Es
una matriz diagonal.</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Diagonal_matrix"
target="_top">Wikipedia</a> o <a class="ul
ink" href="http://planetmath.org/DiagonalMatrix" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-IsIdentity"></a>IsIdentity</span></dt><dd><pre class="synopsis">IsIdentity
(x)</pre><p>Comprobar si una matriz es la matriz de identidad. Automáticamente devuelve <code
class="constant">false</code> si la matriz no es cuadrada. También trabaja con números, en cualquier caso
este es equivalente a <strong class="userinput"><code>x==1</code></strong>. Cuando <code
class="varname">x</code> es <code class="constant">null</code> (imaginemos que es como una matriz de 0 por
0), no se genera error y se devuelve <code class="constant">false</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsLowerTriangular"></a>IsLowerTriangular</span></dt><dd><pre
class="synopsis">IsLowerTriangular (M)</pre><p>Es una matriz triangular inferior. Esto es, todas las entradas
están por encima de la diagonal cero.</p></dd><dt><sp
an class="term"><a name="gel-function-IsMatrixInteger"></a>IsMatrixInteger</span></dt><dd><pre
class="synopsis">IsMatrixInteger (M)</pre><p>Comprobar si una matriz es una matriz de enteros (no
compleja).</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixNonnegative"></a>IsMatrixNonnegative</span></dt><dd><pre
class="synopsis">IsMatrixNonnegative (M)</pre><p>Comprobar si una matriz no es negativa, es decir, si cada
elemento no es negativo. No confunda matrices positivas con matrices semidefinidas positivas.</p><p>Consulte
la <a class="ulink" href="http://en.wikipedia.org/wiki/Positive_matrix" target="_top">Wikipedia</a> para
obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixPositive"></a>IsMatrixPositive</span></dt><dd><pre
class="synopsis">IsMatrixPositive (M)</pre><p>Comprobar si una matriz es positiva, es decir, si cada elemento
es positivo (y por lo tanto real). Individualmente, ningún elemento es 0. No confunda matrices p
ositivas con matrices definidas positivas.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Positive_matrix" target="_top">Wikipedia</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixRational"></a>IsMatrixRational</span></dt><dd><pre
class="synopsis">IsMatrixRational (M)</pre><p>Comprobar si el argumento es una matriz de números racionales
(no complejos)</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixReal"></a>IsMatrixReal</span></dt><dd><pre class="synopsis">IsMatrixReal
(M)</pre><p>Comprobar si el argumento es una matriz de números reales (no complejos).</p></dd><dt><span
class="term"><a name="gel-function-IsMatrixSquare"></a>IsMatrixSquare</span></dt><dd><pre
class="synopsis">IsMatrixSquare (M)</pre><p>Comprobar si una matriz es cuadrada, es decir, si su altura es
igual a su anchura.</p></dd><dt><span class="term"><a
name="gel-function-IsUpperTriangular"></a>IsUpperTriangular</span></dt><d
d><pre class="synopsis">IsUpperTriangular (M)</pre><p>¿Es una matriz triangular superior?. Esto se cumple si
todas las entradas por debajo de la diagonal son cero.</p></dd><dt><span class="term"><a
name="gel-function-IsValueOnly"></a>IsValueOnly</span></dt><dd><pre class="synopsis">IsValueOnly
(M)</pre><p>Comprobar si una matriz es una matriz de sólo números. Muchas funciones internas hacen esta
comprobación. Los valores pueden ser cualquier número, incluyendo números complejos.</p></dd><dt><span
class="term"><a name="gel-function-IsVector"></a>IsVector</span></dt><dd><pre class="synopsis">IsVector
(v)</pre><p>Indica si el argumento de un vector es horizontal o vertical. Genius no distingue entre una
matriz y un vector, y un vector es justo una matriz 1 por <code class="varname">n</code> o <code
class="varname">n</code> por 1.</p></dd><dt><span class="term"><a
name="gel-function-IsZero"></a>IsZero</span></dt><dd><pre class="synopsis">IsZero (x)</pre><p>Comprobar si una
matriz está compuesta toda por ceros. También trabaja con números, en cualquier caso esto es equivalente a
<strong class="userinput"><code>x==0</code></strong>. Cuando <code class="varname">x</code> es <code
class="constant">null</code> (imagine que es una matriz de 0 por 0), no se genera ningún error y devuelve
<code class="constant">true</code> que indica que la matriz está compuesta de ceros.</p></dd><dt><span
class="term"><a name="gel-function-LowerTriangular"></a>LowerTriangular</span></dt><dd><pre
class="synopsis">LowerTriangular (M)</pre><p>Devuelve una copia de la matriz <code class="varname">M</code>
con todas las entradas por encima de la diagonal establecidas a cero.</p></dd><dt><span class="term"><a
name="gel-function-MakeDiagonal"></a>MakeDiagonal</span></dt><dd><pre class="synopsis">MakeDiagonal
(v,arg...)</pre><p>Alias: <code class="function">diag</code></p><p>Hacer una matriz diagonal desde un vector.
Alternativamente puede pasarle los valores como argu
mentos para la diagonal. Así <strong class="userinput"><code>MakeDiagonal([1,2,3])</code></strong> es lo
mismo que <strong class="userinput"><code>MakeDiagonal(1,2,3)</code></strong>.</p><p>Consulte la <a
class="ulink" href="http://en.wikipedia.org/wiki/Diagonal_matrix" target="_top">Wikipedia</a> o <a
class="ulink" href="http://planetmath.org/DiagonalMatrix" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-MakeVector"></a>MakeVector</span></dt><dd><pre class="synopsis">MakeVector
(A)</pre><p>Hacer un vector columna fuera de la matriz colocando columnas una encima de la otra. Devuelve
<code class="constant">null</code> cuando se introduce <code class="constant">null</code>.</p></dd><dt><span
class="term"><a name="gel-function-MatrixProduct"></a>MatrixProduct</span></dt><dd><pre
class="synopsis">MatrixProduct (A)</pre><p>Calcular el producto de todos los elementos en una matriz o
vector. Es decir, multiplicar t
odos los elementos y devolver un número que es el producto de todos los elementos.</p></dd><dt><span
class="term"><a name="gel-function-MatrixSum"></a>MatrixSum</span></dt><dd><pre class="synopsis">MatrixSum
(A)</pre><p>Calcular la suma de todos los elementos en una matriz o vector. Es decir, sumar todos los
elementos y devolver un número que es el resultado de la suma de todos los elementos.</p></dd><dt><span
class="term"><a name="gel-function-MatrixSumSquares"></a>MatrixSumSquares</span></dt><dd><pre
class="synopsis">MatrixSumSquares (A)</pre><p>Calcular la suma de los cuadrados de todos los elementos en una
matriz o vector.</p></dd><dt><span class="term"><a
name="gel-function-NonzeroColumns"></a>NonzeroColumns</span></dt><dd><pre class="synopsis">NonzeroColumns
(M)</pre><p>Devuelve una fila vector de índices de columnas distintas de cero en la matriz <code
class="varname">M</code>.</p><p>Desde la versión 1.0.18 en adelante.</p></dd><dt><span class="term"><a
name="gel-
function-NonzeroElements"></a>NonzeroElements</span></dt><dd><pre class="synopsis">NonzeroElements
(v)</pre><p>Devuelve una fila vector de índices de elementos distintos de cero en el vector <code
class="varname">v</code>.</p><p>Desde la versión 1.0.18 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-OuterProduct"></a>OuterProduct</span></dt><dd><pre class="synopsis">OuterProduct
(u,v)</pre><p>Obtener el producto externo de dos vectores. Esto es, suponga que <code
class="varname">u</code> y <code class="varname">v</code> son vectores verticales, entonces el producto
externo es <strong class="userinput"><code>v * u.'</code></strong>.</p></dd><dt><span class="term"><a
name="gel-function-ReverseVector"></a>ReverseVector</span></dt><dd><pre class="synopsis">ReverseVector
(v)</pre><p>Invierte el orden de los elementos de un vector (devuelve <code class="constant">null</code> si
se le pasa <code class="constant">null</code>).</p></dd><dt><span class="term"><a n
ame="gel-function-RowSum"></a>RowSum</span></dt><dd><pre class="synopsis">RowSum (m)</pre><p>Calcula la suma
de cada fila de una matriz y devuelve el resultado en un vector vertical con el resultado</p></dd><dt><span
class="term"><a name="gel-function-RowSumSquares"></a>RowSumSquares</span></dt><dd><pre
class="synopsis">RowSumSquares (m)</pre><p>Calcular la suma de los cuadrados de cada fila de una matriz y
devolver una matriz columna con los resultados.</p></dd><dt><span class="term"><a
name="gel-function-RowsOf"></a>RowsOf</span></dt><dd><pre class="synopsis">RowsOf (M)</pre><p>Obtiene las
filas de una matriz como un vector vertical. Cada elemento del vector es un vector horizontal que se
corresponde con la fila de <code class="varname">M</code>. Esta función es útil si se quiere recorrer las
filas de una matriz. Por ejemplo, como en <strong class="userinput"><code>for r in RowsOf(M) do
+something(r)</code></strong>.</p></dd><dt><span class="term"><a
name="gel-function-SetMatrixSize"></a>SetMatrixSize</span></dt><dd><pre class="synopsis">SetMatrixSize
(M,filas,columnas)</pre><p>Hacer una nueva matriz del mismo tamaño que otra. Es decir, devolverá una nueva
matriz con la copia de otra. Las entradas que no caben, se recortan y el espacio adicional se rellena con
ceros. Si <code class="varname">rows</code> o <code class="varname">columns</code> son cero, entonces se
devuelve<code class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-ShuffleVector"></a>ShuffleVector</span></dt><dd><pre class="synopsis">ShuffleVector
(v)</pre><p>Mezcla los elementos en un vector. Devuelve <code class="constant">null</code> si se le pasa
<code class="constant">null</code>.</p><p>Desde la versión 1.0.13 en adelante.</p></dd><dt><span
class="term"><a name="gel-function-SortVector"></a>SortVector</span></dt><dd><pre class="synopsis">SortVector
(v)</pre
<p>Ordenar los elementos del vector en orden ascendente.</p></dd><dt><span class="term"><a
name="gel-function-StripZeroColumns"></a>StripZeroColumns</span></dt><dd><pre
class="synopsis">StripZeroColumns (M)</pre><p>Quita todas las columnas de ceros de <code
class="varname">M</code>.</p></dd><dt><span class="term"><a
name="gel-function-StripZeroRows"></a>StripZeroRows</span></dt><dd><pre class="synopsis">StripZeroRows
(M)</pre><p>Quita todas las filas de ceros de <code class="varname">M</code>.</p></dd><dt><span
class="term"><a name="gel-function-Submatrix"></a>Submatrix</span></dt><dd><pre class="synopsis">Submatrix
(m,r,c)</pre><p>Devolver columnas y filas desde una matriz. Esto es equivalente a <strong
class="userinput"><code>m@(r,c)</code></strong>. <code class="varname">r</code> y <code
class="varname">c</code> serán vectores de filas y columnas (o números sencillos si sólo se necesita una
fila o columna).</p></dd><dt><span class="term"><a name="gel-function-SwapRows
"></a>SwapRows</span></dt><dd><pre class="synopsis">SwapRows (m,fila1,fila2)</pre><p>Intercambiar dos
columnas de una matriz.</p></dd><dt><span class="term"><a
name="gel-function-UpperTriangular"></a>UpperTriangular</span></dt><dd><pre class="synopsis">UpperTriangular
(M)</pre><p>Devuelve una copia de la matriz <code class="varname">M</code> con todas las entradas por debajo
de la diagonal establecidas a cero.</p></dd><dt><span class="term"><a
name="gel-function-columns"></a>columns</span></dt><dd><pre class="synopsis">columns (M)</pre><p>Obtener el
número de columnas de una matriz.</p></dd><dt><span class="term"><a
name="gel-function-elements"></a>elements</span></dt><dd><pre class="synopsis">elements (M)</pre><p>Obtener
el número total de elementos de una matriz. Es decir, el número de columnas por el número de
filas.</p></dd><dt><span class="term"><a name="gel-function-ones"></a>ones</span></dt><dd><pre
class="synopsis">ones (filas,columnas...)</pre><p>Hacer una matr
iz rellena de unos (o un vector fila si sólo se introduce un argumento). Devuelve <code
class="constant">null</code> si cualquier fila o columna es cero.</p></dd><dt><span class="term"><a
name="gel-function-rows"></a>rows</span></dt><dd><pre class="synopsis">rows (M)</pre><p>Obtener el número de
filas de una matriz.</p></dd><dt><span class="term"><a
name="gel-function-zeros"></a>zeros</span></dt><dd><pre class="synopsis">zeros
(filas,columnas...)</pre><p>Hacer una matriz llena de ceros (o un vector fila si se introduce sólo un
argumento). Devuelve <code class="constant">null</code> si cualquier fila o columna es
cero.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s07.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Subir</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s09.html">Siguiente</a></td></tr
<tr><td width="40%" align="left" valign="top">Teoría de números </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Inicio</a></td><td width="40%" align="right" valign="top"> Álgebra
lineal</td></tr></table></div></body></html>
diff --git a/help/es/html/ch11s09.html b/help/es/html/ch11s09.html
new file mode 100644
index 0000000..98d2f2a
--- /dev/null
+++ b/help/es/html/ch11s09.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Álgebra
lineal</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch11.html" title="Capítulo 11. Lista de
funciones GEL"><link rel="prev" href="ch11s08.html" title="Manipulación de matrices"><link rel="next"
href="ch11s10.html" title="Combinatoria"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Álgebra lineal</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s08.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. Lista de
funciones GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s10.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-function-list-linear-algebra"></a>Álgebra
lineal</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AuxiliaryUnitMatrix"></a>AuxiliaryUnitMatrix</span></dt><dd><pre
class="synopsis">AuxiliaryUnitMatrix (n)</pre><p>Obtener la matriz auxiliar de tamaño <code
class="varname">n</code>. Esto es una matriz cuadrada que es toda ceros excepto la superdiagonal, que son
todos unos. Es la matriz de bloques de Jordan de un cero como valor propio.</p><p>Consulte <a class="ulink"
href="http://planetmath.org/JordanCanonicalFormTheorem" target="_top">Planetmath</a> o <a class="ulink"
href="http://mathworld.wolfram.com/JordanBlock.html" target="_top">Mathworld</a> para obtener más información
sobre la forma canónica de Jordan.</p></dd><dt><span class="term"><a
name="gel-function-BilinearForm"></a>BilinearForm</span></dt><dd><pre class="synopsis">BilinearForm (v,A,w)
</pre><p>Evaluar (v,w) con respecto a la forma bilineal dada por la matriz A.</p></dd><dt><span
class="term"><a name="gel-function-BilinearFormFunction"></a>BilinearFormFunction</span></dt><dd><pre
class="synopsis">BilinearFormFunction (A)</pre><p>Devolver una función que evalúa dos vectores con respecto
a la forma bilineal dada por A.</p></dd><dt><span class="term"><a
name="gel-function-CharacteristicPolynomial"></a>CharacteristicPolynomial</span></dt><dd><pre
class="synopsis">CharacteristicPolynomial (M)</pre><p>Alias: <code
class="function">CharPoly</code></p><p>Obtener el polinomio característico como un vector. Es decir, devuelve
los coeficientes del polinomio empezando por el término constante. Este polinomio se define por <strong
class="userinput"><code>det(M-xI)</code></strong>. Las raíces de este polinomio tienen como valor propio a
<code class="varname">M</code>. Consulte <a class="link"
href="ch11s09.html#gel-function-CharacteristicPolynomialFunction">Chara
cteristicPolynomialFunction</a>.</p><p>Consulte la <a class="ulink"
href="https://en.wikipedia.org/wiki/Characteristic_polynomial" target="_top">Wikipedia</a> o <a class="ulink"
href="http://planetmath.org/CharacteristicEquation" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-CharacteristicPolynomialFunction"></a>CharacteristicPolynomialFunction</span></dt><dd><pre
class="synopsis">CharacteristicPolynomialFunction (M)</pre><p>Obtener el polinomio característico como una
función. Es decir, el polinomio se define por <strong class="userinput"><code>det(M-xI)</code></strong>. Las
raíces de este polinomio tienen un valor propio de <code class="varname">M</code>. Consulte <a class="link"
href="ch11s09.html#gel-function-CharacteristicPolynomial">CharacteristicPolynomial</a>.</p><p>Consulte la <a
class="ulink" href="https://en.wikipedia.org/wiki/Characteristic_polynomial" target="_top">Wikipedia</a> o <a
class="u
link" href="http://planetmath.org/CharacteristicEquation" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-ColumnSpace"></a>ColumnSpace</span></dt><dd><pre class="synopsis">ColumnSpace
(M)</pre><p>Obtener una matriz base para el espacio de la columna de una matriz. Es decir, devuelve una
matriz la cual las columnas son las bases para el espacio de la columna <code class="varname">M</code>. Esto
es el espacio generado por las columnas de <code class="varname">M</code>.</p><p>Consulte la <a class="ulink"
href="https://en.wikipedia.org/wiki/Row_and_column_spaces" target="_top">Wikipedia</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-CommutationMatrix"></a>CommutationMatrix</span></dt><dd><pre
class="synopsis">CommutationMatrix (m, n)</pre><p>Devolver la matriz de conmutación <strong
class="userinput"><code>K(m,n)</code></strong> que es la única matriz <strong class="us
erinput"><code>m*n</code></strong> por <strong class="userinput"><code>m*n</code></strong> tal que <strong
class="userinput"><code>K(m,n) * MakeVector(A) = MakeVector(A.')</code></strong> para todas las matrices
<code class="varname">A</code> <code class="varname">m</code> por <code
class="varname">n</code>.</p></dd><dt><span class="term"><a
name="gel-function-CompanionMatrix"></a>CompanionMatrix</span></dt><dd><pre class="synopsis">CompanionMatrix
(p)</pre><p>Matriz acompañante de un polinomio (como vector).</p></dd><dt><span class="term"><a
name="gel-function-ConjugateTranspose"></a>ConjugateTranspose</span></dt><dd><pre
class="synopsis">ConjugateTranspose (M)</pre><p>Conjugada traspuesta de una matriz (adjunta). Es lo mismo que
el operador <strong class="userinput"><code>'</code></strong>.</p><p>Consulte la <a class="ulink"
href="https://en.wikipedia.org/wiki/Conjugate_transpose" target="_top">Wikipedia</a> o <a class="ulink"
href="http://planetmath.org/ConjugateTranspo
se" target="_top">Planetmath</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-Convolution"></a>Convolution</span></dt><dd><pre class="synopsis">Convolution
(a,b)</pre><p>Alias: <code class="function">convol</code></p><p>Calcular la convolución de dos vectores
horizontales.</p></dd><dt><span class="term"><a
name="gel-function-ConvolutionVector"></a>ConvolutionVector</span></dt><dd><pre
class="synopsis">ConvolutionVector (a,b)</pre><p>Calcular la convolución de dos vectores horizontales.
Devuelve el resultado como un vector y no se suman.</p></dd><dt><span class="term"><a
name="gel-function-CrossProduct"></a>CrossProduct</span></dt><dd><pre class="synopsis">CrossProduct
(v,w)</pre><p>Producto cruzado de dos vectores en R<sup>3</sup> como un vector columna.</p><p>Consulte la <a
class="ulink" href="https://en.wikipedia.org/wiki/Cross_product" target="_top">Wikipedia</a> para obtener más
información.</p></dd><dt><span class="term"><a n
ame="gel-function-DeterminantalDivisorsInteger"></a>DeterminantalDivisorsInteger</span></dt><dd><pre
class="synopsis">DeterminantalDivisorsInteger (M)</pre><p>Obtiene determinantes divisores de una matriz de
enteros.</p></dd><dt><span class="term"><a name="gel-function-DirectSum"></a>DirectSum</span></dt><dd><pre
class="synopsis">DirectSum (M,N...)</pre><p>Suma directa de matrices.</p><p>Consulte la <a class="ulink"
href="https://en.wikipedia.org/wiki/Matrix_addition#directsum" target="_top">Wikipedia</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-DirectSumMatrixVector"></a>DirectSumMatrixVector</span></dt><dd><pre
class="synopsis">DirectSumMatrixVector (v)</pre><p>Suma directa de un vector de matrices.</p><p>Consulte la
<a class="ulink" href="https://en.wikipedia.org/wiki/Matrix_addition#directsum" target="_top">Wikipedia</a>
para obtener más información.</p></dd><dt><span class="term"><a name="gel-function-Eigenvalues"></a>Eigenv
alues</span></dt><dd><pre class="synopsis">Eigenvalues (M)</pre><p>Alias: <code
class="function">eig</code></p><p>Obtener los valores propios de una matriz cuadrada. En la actualidad solo
funciona con matrices de tamaño 4 por 4 como máximo, o para matrices triangulares (cuyo valores propios están
en la diagonal).</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Eigenvalue"
target="_top">Wikipedia</a>, <a class="ulink" href="http://planetmath.org/Eigenvalue"
target="_top">Planetmath</a>, o <a class="ulink" href="http://mathworld.wolfram.com/Eigenvalue.html"
target="_top">Mathworld</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-Eigenvectors"></a>Eigenvectors</span></dt><dd><pre class="synopsis">Eigenvectors
(M)</pre><pre class="synopsis">Eigenvectors (M, &eigenvalues)</pre><pre class="synopsis">Eigenvectors (M,
&eigenvalues, &multiplicities)</pre><p>Obtener los autovectores de una matriz cuadrada. Op
cionalmente, obtener los autovalores y su multiplicidad algebraica. Actualmente funciona sólo para matrices
de hasta 2x2.</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Eigenvector"
target="_top">Wikipedia</a>, <a class="ulink" href="http://planetmath.org/Eigenvector"
target="_top">Planetmath</a>, o <a class="ulink" href="http://mathworld.wolfram.com/Eigenvector.html"
target="_top">Mathworld</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-GramSchmidt"></a>GramSchmidt</span></dt><dd><pre class="synopsis">GramSchmidt
(v,B...)</pre><p>Aplicar el proceso de Gram-Schmidt (a las columnas) con respecto al propio producto dado por
<code class="varname">B</code>. Si <code class="varname">B</code> no se da, entonces se utiliza el producto
Hermitiano estándar. <code class="varname">B</code> también puede ser una función sesquilineal de dos
argumentos o puede ser una matriz que devuelve una forma sesquilineal. Los vecto
res serán ortonormales con respecto a <code class="varname">B</code>.</p><p>Consulte la <a class="ulink"
href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process" target="_top">Wikipedia</a> o <a
class="ulink" href="http://planetmath.org/GramSchmidtOrthogonalization" target="_top">Planetmath</a> para
obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-HankelMatrix"></a>HankelMatrix</span></dt><dd><pre class="synopsis">HankelMatrix
(c,r)</pre><p>La matriz de Hankel es una matriz cuyas diagonales (de izquierda a derecha) son constantes. La
primera fila es <code class="varname">c</code> y la última colúmna es <code class="varname">r</code>. Se
considera que ambos argumentos son vectores y que el último elemento de la fila <code
class="varname">c</code> es el mismo que el primer elemento de la columna <code
class="varname">r</code>.</p><p>Consulte la <a class="ulink"
href="https://en.wikipedia.org/wiki/Hankel_matrix" target="_top">Wikiped
ia</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-HilbertMatrix"></a>HilbertMatrix</span></dt><dd><pre class="synopsis">HilbertMatrix
(n)</pre><p>Matriz de Hilbert de orden <code class="varname">n</code>.</p><p>Consulte la <a class="ulink"
href="https://en.wikipedia.org/wiki/Hilbert_matrix" target="_top">Wikipedia</a> o <a class="ulink"
href="http://planetmath.org/HilbertMatrix" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a name="gel-function-Image"></a>Image</span></dt><dd><pre
class="synopsis">Image (T)</pre><p>Obtener la imagen (espacio columna) de una transformación
lineal.</p><p>Consulte la <a class="ulink" href="https://en.wikipedia.org/wiki/Row_and_column_spaces"
target="_top">Wikipedia</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-InfNorm"></a>InfNorm</span></dt><dd><pre class="synopsis">InfNorm (v)</pre><p>Obtener el
operador norma d
e un vector, a veces también se denomina norma suprema o norma máxima.</p></dd><dt><span class="term"><a
name="gel-function-InvariantFactorsInteger"></a>InvariantFactorsInteger</span></dt><dd><pre
class="synopsis">InvariantFactorsInteger (M)</pre><p>Obtiene los factores invariantes de una matriz cuadrada
de enteros.</p></dd><dt><span class="term"><a
name="gel-function-InverseHilbertMatrix"></a>InverseHilbertMatrix</span></dt><dd><pre
class="synopsis">InverseHilbertMatrix (n)</pre><p>Matriz inversa de Hilbert de orden <code
class="varname">n</code>.</p><p>Consulte la <a class="ulink"
href="https://en.wikipedia.org/wiki/Hilbert_matrix" target="_top">Wikipedia</a> o <a class="ulink"
href="http://planetmath.org/HilbertMatrix" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-IsHermitian"></a>IsHermitian</span></dt><dd><pre class="synopsis">IsHermitian
(M)</pre><p>Es una matriz Hermitian. Es decir, es igual a su tr
aspuesta conjugada.</p><p>Consulte la <a class="ulink" href="https://en.wikipedia.org/wiki/Hermitian_matrix"
target="_top">Wikipedia</a> o <a class="ulink" href="http://planetmath.org/HermitianMatrix"
target="_top">Planetmath</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-IsInSubspace"></a>IsInSubspace</span></dt><dd><pre class="synopsis">IsInSubspace
(v,W)</pre><p>Comprueba si un vector está en un subespacio.</p></dd><dt><span class="term"><a
name="gel-function-IsInvertible"></a>IsInvertible</span></dt><dd><pre class="synopsis">IsInvertible
(n)</pre><p>Es una matriz (o número) invertible (La matriz de enteros es invertible si, y sólo si esta es
invertible sobre los enteros).</p></dd><dt><span class="term"><a
name="gel-function-IsInvertibleField"></a>IsInvertibleField</span></dt><dd><pre
class="synopsis">IsInvertibleField (n)</pre><p>Es una matriz (o un número) inversible sobre un
campo.</p></dd><dt><span class="term"><a name="g
el-function-IsNormal"></a>IsNormal</span></dt><dd><pre class="synopsis">IsNormal (M)</pre><p>Indica que
<code class="varname">M</code> es una matriz normal. Es decir, realiza <strong class="userinput"><code>M*M'
== M'*M</code></strong>.</p><p>Consulte <a class="ulink" href="http://planetmath.org/NormalMatrix"
target="_top">Planetmath</a> o <a class="ulink" href="http://mathworld.wolfram.com/NormalMatrix.html"
target="_top">Mathworld</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-IsPositiveDefinite"></a>IsPositiveDefinite</span></dt><dd><pre
class="synopsis">IsPositiveDefinite (M)</pre><p>Indica que <code class="varname">M</code> es una matriz
definida positiva Hermitiana. Esto es si <strong
class="userinput"><code>HermitianProduct(M*v,v)</code></strong> es siempre estrictamente positivo para
cualquier vector <code class="varname">v</code>. <code class="varname">M</code> será cuadrada y Hermitiana
para ser definida positiva. La compr
obación de que se lleva a cabo es que cada submatriz principal tiene un determinante no negativo. (Consulte
<a class="link" href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a>)</p><p>Tenga en cuenta
que algunos autores (por ejemplo Mathworld) no requieren que <code class="varname">M</code> sea Hermitiana, y
entonces la condición está en la parte real del propio producto, pero aquí no se compartirá este punto de
vista. Si quiere comprobarlo, hacer sólo la parte Hermitiana de la matriz <code class="varname">M</code> como
sigue: <strong class="userinput"><code>IsPositiveDefinite(M+M')</code></strong>.</p><p>Consulte la <a
class="ulink" href="https://en.wikipedia.org/wiki/Positive-definite_matrix" target="_top">Wikipedia</a>, <a
class="ulink" href="http://planetmath.org/PositiveDefinite" target="_top">Planetmath</a>, o <a class="ulink"
href="http://mathworld.wolfram.com/PositiveDefiniteMatrix.html" target="_top">Mathworld</a> para obtener más
informaci�
�n.</p></dd><dt><span class="term"><a
name="gel-function-IsPositiveSemidefinite"></a>IsPositiveSemidefinite</span></dt><dd><pre
class="synopsis">IsPositiveSemidefinite (M)</pre><p>Indica si <code class="varname">M</code> es una matriz
semidefinida positiva Hermitiana. Esto es si <strong
class="userinput"><code>HermitianProduct(M*v,v)</code></strong> es siempre no negativo para cualquier vector
<code class="varname">v</code>. <code class="varname">M</code> será cuadrada y Hermitiana para ser
semidefinida positiva. La comprobación que se lleva a cabo es que cada submatriz principal tenga un
determinante no negativo. (Consulte <a class="link"
href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a>)</p><p>Tenga en cuenta que algunos
autores no requieren que <code class="varname">M</code> sea Hermitiana, y entonces la condición está en la
parte real del propio producto, pero aquí no se compartirá este punto de vista. Si quiere comprobarlo, hacer
sólo la part
e Hermitiana de la matriz <code class="varname">M</code> como sigue: <strong
class="userinput"><code>IsPositiveSemidefinite(M+M')</code></strong>.</p><p>Consulte <a class="ulink"
href="http://planetmath.org/PositiveSemidefinite" target="_top">Planetmath</a> o <a class="ulink"
href="http://mathworld.wolfram.com/PositiveSemidefiniteMatrix.html" target="_top">Mathworld</a> para obtener
más información.</p></dd><dt><span class="term"><a
name="gel-function-IsSkewHermitian"></a>IsSkewHermitian</span></dt><dd><pre class="synopsis">IsSkewHermitian
(M)</pre><p>Es matriz antihermítica. Esto es, la transposición conjugada es igual al negativo de la
matriz.</p><p>Consulte <a class="ulink" href="http://planetmath.org/SkewHermitianMatrix"
target="_top">Planetmath</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-IsUnitary"></a>IsUnitary</span></dt><dd><pre class="synopsis">IsUnitary (M)</pre><p>¿Es
una matriz unitaria?. Esto es, hacer <strong cl
ass="userinput"><code>M'*M</code></strong> y <strong class="userinput"><code>M*M'</code></strong> igual a la
identidad.</p><p>Consulte <a class="ulink" href="http://planetmath.org/UnitaryTransformation"
target="_top">Planetmath</a> o <a class="ulink" href="http://mathworld.wolfram.com/UnitaryMatrix.html"
target="_top">Mathworld</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-JordanBlock"></a>JordanBlock</span></dt><dd><pre class="synopsis">JordanBlock
(n,lambda)</pre><p>Alias: <code class="function">J</code></p><p>Obtener el bloque de Jordan correspondiente
al valor propio <code class="varname">lambda</code> con multiplicidad <code
class="varname">n</code>.</p><p>Consulte <a class="ulink"
href="http://planetmath.org/JordanCanonicalFormTheorem" target="_top">Planetmath</a> o <a class="ulink"
href="http://mathworld.wolfram.com/JordanBlock.html" target="_top">Mathworld</a> para obtener más
información.</p></dd><dt><span class="term"><
a name="gel-function-Kernel"></a>Kernel</span></dt><dd><pre class="synopsis">Kernel (T)</pre><p>Obtener el
núcleo (espacio nulo) de una trasformación lineal.</p><p>(Consulte <a class="link"
href="ch11s09.html#gel-function-NullSpace">NullSpace</a>)</p></dd><dt><span class="term"><a
name="gel-function-KroneckerProduct"></a>KroneckerProduct</span></dt><dd><pre
class="synopsis">KroneckerProduct (M, N)</pre><p>Alias: <code
class="function">TensorProduct</code></p><p>Calcula el producto de Kronecker (producto tensorial en base
estándar) de dos matrices.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Kronecker_product" target="_top">Wikipedia</a>, <a class="ulink"
href="http://planetmath.org/KroneckerProduct" target="_top">Planetmath</a> o <a class="ulink"
href="http://mathworld.wolfram.com/KroneckerProduct.html" target="_top">Mathworld</a> para obtener más
información.</p><p>Desde la versión 1.0.18 en adelante.</p></dd><dt><span class="term"><a name=
"gel-function-LUDecomposition"></a>LUDecomposition</span></dt><dd><pre class="synopsis">LUDecomposition (A,
L, U)</pre><p>Obtener la descomposición de LU de <code class="varname">A</code> es decir, encontrar una
matriz triangular inferior y la matriz triangular superior cuyo producto es <code class="varname">A</code>.
Guarda el resultado en <code class="varname">L</code> y <code class="varname">U</code> que son referencias.
Devuelve <code class="constant">true</code> si se completó con éxito. Por ejemplo, suponga que «A» es una
matriz cuadrada, entonces después ejecute: </p><pre class="screen"><code class="prompt">genius></code>
<strong class="userinput"><code>LUDecomposition(A,&L,&U)</code></strong>
+</pre><p> tendrá la matriz inferior guardada en una variable llamada <code class="varname">L</code> y la
matriz superior en una variable llamada <code class="varname">U</code>.</p><p>Esto es la descomposición de
LU de una matriz también conocido como Crout y/o reducción de Cholesky. (ISBN 0-201-11577-8 pp.99-103) La
matriz triangular superior cuenta con una diagonal de valores 1 (uno). Esto no es el método de Doolittle en
las que los unos de la diagonal están sobre la matriz inferior.</p><p>No todas las matrices tienen la
descomposición de LU, por ejemplo <strong class="userinput"><code>[0,1;1,0]</code></strong> no lo hace y esta
función devuelve <code class="constant">false</code> en este caso, y establece <code class="varname">L</code>
y <code class="varname">U</code> a <code class="constant">null</code>.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/LU_decomposition" target="_top">Wikipedia</a>, <a class="ulink"
href="http://planetmath.org
/LUDecomposition" target="_top">Planetmath</a> o <a class="ulink"
href="http://mathworld.wolfram.com/LUDecomposition.html" target="_top">Mathworld</a> para obtener más
información.</p></dd><dt><span class="term"><a name="gel-function-Minor"></a>Minor</span></dt><dd><pre
class="synopsis">Minor (M,i,j)</pre><p>Obtener el menor <code class="varname">i</code>-<code
class="varname">j</code> de una matriz.</p><p>Consulte <a class="ulink" href="http://planetmath.org/Minor"
target="_top">Planetmath</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-NonPivotColumns"></a>NonPivotColumns</span></dt><dd><pre class="synopsis">NonPivotColumns
(M)</pre><p>Devolver las columnas que no son las columnas pivotes de una matriz.</p></dd><dt><span
class="term"><a name="gel-function-Norm"></a>Norm</span></dt><dd><pre class="synopsis">Norm
(v,p...)</pre><p>Alias: <code class="function">norm</code></p><p>Obtener la norma p (o 2 normas si no se
suministra p) de
un vector.</p></dd><dt><span class="term"><a
name="gel-function-NullSpace"></a>NullSpace</span></dt><dd><pre class="synopsis">NullSpace
(T)</pre><p>Obtener el espacio nulo de una matriz. Ese es el núcleo de la aplicación lineal que representa la
matriz. Esto se devuelve como una matriz cuyo espacio de columna es el espacio nulo de <code
class="varname">T</code>.</p><p>Consulte <a class="ulink" href="http://planetmath.org/Nullspace"
target="_top">Planetmath</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-Nullity"></a>Nullity</span></dt><dd><pre class="synopsis">Nullity (M)</pre><p>Alias: <code
class="function">nullity</code></p><p>Obtener la nulidad de una matriz. Es decir, devuelve la dimensión del
espacio nulo; la dimensión del núcleo de <code class="varname">M</code>.</p><p>Consulte <a class="ulink"
href="http://planetmath.org/Nullity" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term">
<a name="gel-function-OrthogonalComplement"></a>OrthogonalComplement</span></dt><dd><pre
class="synopsis">OrthogonalComplement (M)</pre><p>Obtener el complemento ortogonal del espacio de
columnas.</p></dd><dt><span class="term"><a
name="gel-function-PivotColumns"></a>PivotColumns</span></dt><dd><pre class="synopsis">PivotColumns
(M)</pre><p>Devuelve las columnas pivote de una matriz, que son columnas que tienen un 1 en la fila forma
reducida. También devuelve la fila en la que se producen.</p></dd><dt><span class="term"><a
name="gel-function-Projection"></a>Projection</span></dt><dd><pre class="synopsis">Projection
(v,W,B...)</pre><p>Proyección del vector <code class="varname">v</code> sobre el sub-espacio <code
class="varname">W</code> con respecto al propio producto dado por <code class="varname">B</code>. Si <code
class="varname">B</code> no se da, entonces se usa el producto estándar Hermitiano. <code
class="varname">B</code> puede también ser una función sesquiline
al de dos argumentos o puede ser una matriz que devuelve una forma sesquilineal.</p></dd><dt><span
class="term"><a name="gel-function-QRDecomposition"></a>QRDecomposition</span></dt><dd><pre
class="synopsis">QRDecomposition (A, Q)</pre><p>Obtener la descomposición QR de una matriz cuadrada <code
class="varname">A</code>, devuelve la matriz triangular superior <code class="varname">R</code> y establece
<code class="varname">Q</code> a la matriz ortogonal (unitaria). <code class="varname">Q</code> será una
referencia o <code class="constant">null</code> si no quiere que se devuelva ningún valor. Por ejemplo:
</p><pre class="screen"><code class="prompt">genius></code> <strong class="userinput"><code>R =
QRDecomposition(A,&Q)</code></strong>
+</pre><p> tendrá la matriz triangular superior guardada en una variable llamada <code
class="varname">R</code> y la matriz ortogonal (unitaria) guardada en <code
class="varname">Q</code>.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/QR_decomposition" target="_top">Wikipedia</a> o <a class="ulink"
href="http://planetmath.org/QRDecomposition" target="_top">Planetmath</a> o <a class="ulink"
href="http://mathworld.wolfram.com/QRDecomposition.html" target="_top">Mathworld</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-RayleighQuotient"></a>RayleighQuotient</span></dt><dd><pre
class="synopsis">RayleighQuotient (A,x)</pre><p>Devuelve el cociente de Rayleigh (también llamado el cociente
de Rayleigh-Ritz o ratio) de una matriz y un vector.</p><p>Consulte <a class="ulink"
href="http://planetmath.org/RayleighQuotient" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a name="
gel-function-RayleighQuotientIteration"></a>RayleighQuotientIteration</span></dt><dd><pre
class="synopsis">RayleighQuotientIteration (A,x,epsilon,maxiter,vecref)</pre><p>Buscar valores propios de
<code class="varname">A</code> utilizando el método de iteración de cociente de Rayleigh. <code
class="varname">x</code> es una conjetura en un vector propio que será aleatoria. Esto tendrá una parte
imaginaria no nula si es posible encontrar valores propios complejos. El código ejecutará en la mayoría de
las interacciones <code class="varname">maxiter</code> y devuelve <code class="constant">null</code> si no se
puede obtener un error de <code class="varname">epsilon</code>. <code class="varname">vecref</code> será o
bién un <code class="constant">null</code> o una referencia a una variable donde se guarde el vector
propio.</p><p>Conuslte <a class="ulink" href="http://planetmath.org/RayleighQuotient"
target="_top">Planetmath</a> para obtener más información sobre el coci
ente de Rayleigh.</p></dd><dt><span class="term"><a name="gel-function-Rank"></a>Rank</span></dt><dd><pre
class="synopsis">Rank (M)</pre><p>Alias: <code class="function">rank</code></p><p>Obtener el rango de una
matriz.</p><p>Consulte <a class="ulink" href="http://planetmath.org/SylvestersLaw"
target="_top">Planetmath</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-RosserMatrix"></a>RosserMatrix</span></dt><dd><pre class="synopsis">RosserMatrix
()</pre><p>Devolver la matriz de Rosser, que es un problemático y clásico test simétrico de valores
propios.</p></dd><dt><span class="term"><a name="gel-function-Rotation2D"></a>Rotation2D</span></dt><dd><pre
class="synopsis">Rotation2D (ángulo)</pre><p>Alias: <code
class="function">RotationMatrix</code></p><p>Devolver la matriz correspondiente a la rotación alrededor del
origen en R<sup>2</sup>.</p></dd><dt><span class="term"><a
name="gel-function-Rotation3DX"></a>Rotation3DX</span></dt><
dd><pre class="synopsis">Rotation3DX (ángulo)</pre><p>Devuelve la matriz correspondiente a la rotación
alrededor del origen en R<sup>3</sup> sobre el eje x.</p></dd><dt><span class="term"><a
name="gel-function-Rotation3DY"></a>Rotation3DY</span></dt><dd><pre class="synopsis">Rotation3DY
(ángulo)</pre><p>Devolver la matriz correspondiente a la rotación alrededor del origen en R<sup>3</sup> sobre
el eje Y.</p></dd><dt><span class="term"><a
name="gel-function-Rotation3DZ"></a>Rotation3DZ</span></dt><dd><pre class="synopsis">Rotation3DZ
(ángulo)</pre><p>Devolver la matriz correspondiente a la rotación alrededor del origen en R<sup>3</sup> sobre
el eje Z.</p></dd><dt><span class="term"><a name="gel-function-RowSpace"></a>RowSpace</span></dt><dd><pre
class="synopsis">RowSpace (M)</pre><p>Obtener una matriz base para el espacio de filas de una
matriz.</p></dd><dt><span class="term"><a
name="gel-function-SesquilinearForm"></a>SesquilinearForm</span></dt><dd><pre class="synopsi
s">SesquilinearForm (v,A,w)</pre><p>Evaluar (v,w) con respecto a la forma sesquilineal dada por la matriz
A.</p></dd><dt><span class="term"><a
name="gel-function-SesquilinearFormFunction"></a>SesquilinearFormFunction</span></dt><dd><pre
class="synopsis">SesquilinearFormFunction (A)</pre><p>Devolver una función que evalúa dos vectores con
respecto a la forma sesquilineal dada por A.</p></dd><dt><span class="term"><a
name="gel-function-SmithNormalFormField"></a>SmithNormalFormField</span></dt><dd><pre
class="synopsis">SmithNormalFormField (A)</pre><p>Devuelve la forma normal de Smith de una matriz sobre los
campos (terminará con unos en la diagonal).</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Smith_normal_form" target="_top">Wikipedia</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-SmithNormalFormInteger"></a>SmithNormalFormInteger</span></dt><dd><pre
class="synopsis">SmithNormalFormInteger (M)</pre><p>D
evuelve la forma normal de Smith para matrices cuadradas sobre enteros.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Smith_normal_form" target="_top">Wikipedia</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-SolveLinearSystem"></a>SolveLinearSystem</span></dt><dd><pre
class="synopsis">SolveLinearSystem (M,V,args...)</pre><p>Resuelve el sistema lineal Mx=V, devuelve la
solución V si hay una única solución y <code class="constant">null</code> en cualquier otro caso.
Opcionalmente, se pueden usar dos parámetros de referencia para obtener M y V reducidos.</p></dd><dt><span
class="term"><a name="gel-function-ToeplitzMatrix"></a>ToeplitzMatrix</span></dt><dd><pre
class="synopsis">ToeplitzMatrix (c, r...)</pre><p>Devuelve la matriz de Toeplitz que se construye con la
primera columna «c» y (opcionalmente) la primera fila «r». Si sólo se da la columna «c», entonces esta es
conjugada y la versión no conj
ugada la utiliza la primera fila para dar una matriz Hermitiana (si el primer elemento es
real).</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Toeplitz_matrix"
target="_top">Wikipedia</a> o <a class="ulink" href="http://planetmath.org/ToeplitzMatrix"
target="_top">Planetmath</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-Trace"></a>Trace</span></dt><dd><pre class="synopsis">Trace (M)</pre><p>Alias: <code
class="function">trace</code></p><p>Calcular la traza de una matriz. Esto es la suma de sus elementos
diagonales.</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Trace_(linear_algebra)"
target="_top">Wikipedia</a> o <a class="ulink" href="http://planetmath.org/Trace"
target="_top">Planetmath</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-Transpose"></a>Transpose</span></dt><dd><pre class="synopsis">Transpose
(M)</pre><p>Traspuesta de una matriz. E
s lo mismo que el operador <strong class="userinput"><code>.'</code></strong>.</p><p>Consulte la <a
class="ulink" href="http://en.wikipedia.org/wiki/Transpose" target="_top">Wikipedia</a> o <a class="ulink"
href="http://planetmath.org/Transpose" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-VandermondeMatrix"></a>VandermondeMatrix</span></dt><dd><pre
class="synopsis">VandermondeMatrix (v)</pre><p>Alias: <code class="function">vander</code></p><p>Devuelve la
matriz de Vandermonde.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Vandermonde_matrix" target="_top">Wikipedia</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-VectorAngle"></a>VectorAngle</span></dt><dd><pre class="synopsis">VectorAngle
(v,w,B...)</pre><p>El ángulo de dos vectores con respecto al propio producto viene dado por <code
class="varname">B</code>. Si no se da <code class="varn
ame">B</code>, entonces se usará el producto estándar Hermitiano. <code class="varname">B</code> puede ser
una función sesquilineal de dos argumentos o bien, una matriz que devuelve una forma
sesquilineal.</p></dd><dt><span class="term"><a
name="gel-function-VectorSpaceDirectSum"></a>VectorSpaceDirectSum</span></dt><dd><pre
class="synopsis">VectorSpaceDirectSum (M,N)</pre><p>Suma directa de los espacios vectoriales M y
N.</p></dd><dt><span class="term"><a
name="gel-function-VectorSubspaceIntersection"></a>VectorSubspaceIntersection</span></dt><dd><pre
class="synopsis">VectorSubspaceIntersection (M,N)</pre><p>Intersección de subespacios dados por M y
N.</p></dd><dt><span class="term"><a
name="gel-function-VectorSubspaceSum"></a>VectorSubspaceSum</span></dt><dd><pre
class="synopsis">VectorSubspaceSum (M,N)</pre><p>La suma de los espacios vectoriales M y N, esto es {w |
w=m+n, m en M, n en N}.</p></dd><dt><span class="term"><a name="gel-function-adj"></a>adj</span></dt><dd>
<pre class="synopsis">adj (m)</pre><p>Alias: <code class="function">Adjugate</code></p><p>Obtener el adjunto
clásico de una matriz.</p></dd><dt><span class="term"><a
name="gel-function-cref"></a>cref</span></dt><dd><pre class="synopsis">cref (M)</pre><p>Alias: <code
class="function">CREF</code><code class="function">ColumnReducedEchelonForm</code></p><p>Calcular la forma en
escalón reducida por columnas.</p></dd><dt><span class="term"><a
name="gel-function-det"></a>det</span></dt><dd><pre class="synopsis">det (M)</pre><p>Alias: <code
class="function">Determinant</code></p><p>Obtener el determinante de una matriz.</p><p>Consulte la <a
class="ulink" href="http://en.wikipedia.org/wiki/Determinant" target="_top">Wikipedia</a> o <a class="ulink"
href="http://planetmath.org/Determinant2" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a name="gel-function-ref"></a>ref</span></dt><dd><pre
class="synopsis">ref (M)</pre><p>Alias: <code c
lass="function">REF</code><code class="function">RowEchelonForm</code></p><p>Obtener la matriz escalonada
por fila. Es decir, aplicar la eliminación gausiana pero no hacer la reducción a <code
class="varname">M</code>. Las filas pivote están divididas para que todos los pivotes sean 1.</p><p>Consulte
la <a class="ulink" href="http://en.wikipedia.org/wiki/Row_echelon_form" target="_top">Wikipedia</a> o <a
class="ulink" href="http://planetmath.org/RowEchelonForm" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a name="gel-function-rref"></a>rref</span></dt><dd><pre
class="synopsis">rref (M)</pre><p>Alias: <code class="function">RREF</code><code
class="function">ReducedRowEchelonForm</code></p><p>Obtener la matriz escalonada reducida por filas. Es
decir, aplicar la eliminación gausiana junto con la reducción a <code
class="varname">M</code>.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Reduced_row_echelo
n_form" target="_top">Wikipedia</a> o <a class="ulink" href="http://planetmath.org/ReducedRowEchelonForm"
target="_top">Planetmath</a> para obtener más información.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s08.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s10.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Manipulación de
matrices </td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td
width="40%" align="right" valign="top"> Combinatoria</td></tr></table></div></body></html>
diff --git a/help/es/html/ch11s10.html b/help/es/html/ch11s10.html
new file mode 100644
index 0000000..a04e449
--- /dev/null
+++ b/help/es/html/ch11s10.html
@@ -0,0 +1,9 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Combinatoria</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manual de Genius"><link rel="up" href="ch11.html"
title="Capítulo 11. Lista de funciones GEL"><link rel="prev" href="ch11s09.html" title="Álgebra
lineal"><link rel="next" href="ch11s11.html" title="Cálculo"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Combinatoria</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s09.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. Lista de
funciones GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s11.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style=
"clear: both"><a name="genius-gel-function-list-combinatorics"></a>Combinatoria</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Catalan"></a>Catalan</span></dt><dd><pre class="synopsis">Catalan (n)</pre><p>Obtener el
<code class="varname">n</code>-ésimo número de Catalan.</p><p>Consulte <a class="ulink"
href="http://planetmath.org/CatalanNumbers" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-Combinations"></a>Combinations</span></dt><dd><pre class="synopsis">Combinations
(k,n)</pre><p>Obtener todas las combinaciones de «k» números desde 1 a «n» como un vector de vectores.
(Consulte <a class="link"
href="ch11s10.html#gel-function-NextCombination">NextCombination</a>)</p></dd><dt><span class="term"><a
name="gel-function-DoubleFactorial"></a>DoubleFactorial</span></dt><dd><pre class="synopsis">DoubleFactorial
(n)</pre><p>Doble factoria
l: <strong class="userinput"><code>n(n-2)(n-4)...</code></strong></p><p>Consulte <a class="ulink"
href="http://planetmath.org/DoubleFactorial" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-Factorial"></a>Factorial</span></dt><dd><pre class="synopsis">Factorial
(n)</pre><p>Factorial: <strong class="userinput"><code>n(n-1)(n-2)...</code></strong></p><p>Consulte <a
class="ulink" href="http://planetmath.org/Factorial" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-FallingFactorial"></a>FallingFactorial</span></dt><dd><pre
class="synopsis">FallingFactorial (n,k)</pre><p>Factorial descendente: <strong class="userinput"><code>(n)_k
= n(n-1)...(n-(k-1))</code></strong></p><p>Consulte la <a class="ulink"
href="http://planetmath.org/FallingFactorial" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a name="ge
l-function-Fibonacci"></a>Fibonacci</span></dt><dd><pre class="synopsis">Fibonacci (x)</pre><p>Alias: <code
class="function">fib</code></p><p>Calcular el <code class="varname">n</code>-ésimo número de Fibonacci. El
número se define recursivamente por <strong class="userinput"><code>Fibonacci(n) = Fibonacci(n-1) +
Fibonacci(n-2)</code></strong> y <strong class="userinput"><code>Fibonacci(1) = Fibonacci(2) =
1</code></strong>.</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Fibonacci_number"
target="_top">Wikipedia</a> o <a class="ulink" href="http://planetmath.org/FibonacciSequence"
target="_top">Planetmath</a> o <a class="ulink" href="http://mathworld.wolfram.com/FibonacciNumber.html"
target="_top">Mathworld</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-FrobeniusNumber"></a>FrobeniusNumber</span></dt><dd><pre class="synopsis">FrobeniusNumber
(v,arg...)</pre><p>Calcular el número de Frobenius. Calcular en n�
�mero más pequeño que no se puede dar como una combinación de entero lineal no negativo de un vector dado de
enteros no negativos. El vector se puede dar como números separados o un simple vector. Todos los números
tendrán un máximo común divisor de enteros «GCD» de 1.</p><p>Consulte la <a class="ulink"
href="http://mathworld.wolfram.com/FrobeniusNumber.html" target="_top">Mathworld</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-GaloisMatrix"></a>GaloisMatrix</span></dt><dd><pre class="synopsis">GaloisMatrix
(regla_de_combinación)</pre><p>Matriz de Galois dada una regla de combinación lineal
(a_1*x_1+...+a_n*x_n=x_(n+1)).</p></dd><dt><span class="term"><a
name="gel-function-GreedyAlgorithm"></a>GreedyAlgorithm</span></dt><dd><pre class="synopsis">GreedyAlgorithm
(n,v)</pre><p>Buscar el vector <code class="varname">c</code> de enteros no negativos de tal manera que al
realizar el producto escalar con <code class="varname"
v</code> es igual a n. Si no es posible, se devuelve <code class="constant">null</code>. <code
class="varname">v</code> estará ordenada de forma incremental y estará constituida de enteros no
negativos.</p><p>Consulte la <a class="ulink" href="http://mathworld.wolfram.com/GreedyAlgorithm.html"
target="_top">Mathworld</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-HarmonicNumber"></a>HarmonicNumber</span></dt><dd><pre class="synopsis">HarmonicNumber
(n,r)</pre><p>Alias: <code class="function">HarmonicH</code></p><p>Número harmónico, el <code
class="varname">n</code>-ésimo número harmónico de orden <code class="varname">r</code>.</p></dd><dt><span
class="term"><a name="gel-function-Hofstadter"></a>Hofstadter</span></dt><dd><pre
class="synopsis">Hofstadter (n)</pre><p>Función q(n) de Hofstadter definida por q(1)=1, q(2)=1,
q(n)=q(n-q(n-1))+q(n-q(n-2)).</p></dd><dt><span class="term"><a name="gel-function-LinearRecursiveSequenc
e"></a>LinearRecursiveSequence</span></dt><dd><pre class="synopsis">LinearRecursiveSequence
(seed_values,combining_rule,n)</pre><p>Calcular la sucesión lineal recursiva utilizando el escalamiento de
Galois.</p></dd><dt><span class="term"><a name="gel-function-Multinomial"></a>Multinomial</span></dt><dd><pre
class="synopsis">Multinomial (v,arg...)</pre><p>Calcular los coeficientes multinomiales. Toma un vector de
<code class="varname">k</code> enteros no negativos y calcula el coeficiente multinomial. Esto corresponde al
coeficiente en el polinomio homogéneo en <code class="varname">k</code> variables con las correspondientes
potencias.</p><p>La fórmula para <strong class="userinput"><code>Multinomial(a,b,c)</code></strong> se puede
escribir como: </p><pre class="programlisting">(a+b+c)! / (a!b!c!)
+</pre><p>. En otras palabras, si sólo hay dos elementos, entonces <strong
class="userinput"><code>Multinomial(a,b)</code></strong> es lo mismo que <strong
class="userinput"><code>Binomial(a+b,a)</code></strong> o <strong
class="userinput"><code>Binomial(a+b,b)</code></strong>.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Multinomial_theorem" target="_top">Wikipedia</a>, <a class="ulink"
href="http://planetmath.org/MultinomialTheorem" target="_top">Planetmath</a>, o <a class="ulink"
href="http://mathworld.wolfram.com/MultinomialCoefficient.html" target="_top">Mathworld</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-NextCombination"></a>NextCombination</span></dt><dd><pre class="synopsis">NextCombination
(v,n)</pre><p>Obtener las combinaciones que v devolverá después de su ejecución. La primera combinación será
<strong class="userinput"><code>[1:k]</code></strong>. Esta función es útil si tiene muchas c
ombinaciones que pasar y no quiere olvidarse de guardarlas todas.</p><p>Por ejemplo, con «Combinations»
normalmente escribiría un bucle como sigue: </p><pre class="screen"><strong class="userinput"><code>for n in
Combinations (4,6) do (
+ AlgunaFuncion (n)
+);</code></strong>
+</pre><p> Pero con «NextCombination» escribiría algo como lo siguiente: </p><pre class="screen"><strong
class="userinput"><code>n:=[1:4];
+do (
+ AlgunaFuncion (n)
+) while not IsNull(n:=NextCombination(n,6));</code></strong>
+</pre><p> Consulte también <a class="link"
href="ch11s10.html#gel-function-Combinations">Combinations</a>.</p></dd><dt><span class="term"><a
name="gel-function-Pascal"></a>Pascal</span></dt><dd><pre class="synopsis">Pascal (i)</pre><p>Obtener el
triángulo de Pascal como una matriz. Esto devolverá una <code class="varname">i</code>+1 por <code
class="varname">i</code>+1 la diagonal inferior de la matriz que es el triángulo de Pascal después de <code
class="varname">i</code> iteraciones.</p><p>Consulte <a class="ulink"
href="http://planetmath.org/PascalsTriangle" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-Permutations"></a>Permutations</span></dt><dd><pre class="synopsis">Permutations
(k,n)</pre><p>Obtener todas las permutaciones de <code class="varname">k</code> números desde el 1 al <code
class="varname">n</code> como un vector de vectores.</p><p>Consulte <a class="ulink"
href="http://mathworld.wolf
ram.com/Permutation.html" target="_top">Mathworld</a> o la <a class="ulink"
href="http://en.wikipedia.org/wiki/Permutation" target="_top">Wikipedia</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-RisingFactorial"></a>RisingFactorial</span></dt><dd><pre class="synopsis">RisingFactorial
(n,k)</pre><p>Alias: <code class="function">Pochhammer</code></p><p>(Puchhammer) factorial creciente: (n)_k =
n(n+1)...(n+(k-1)).</p><p>Consulte <a class="ulink" href="http://planetmath.org/RisingFactorial"
target="_top">Planetmath</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-StirlingNumberFirst"></a>StirlingNumberFirst</span></dt><dd><pre
class="synopsis">StirlingNumberFirst (n,m)</pre><p>Alias: <code
class="function">StirlingS1</code></p><p>Número de Stirling de primera clase.</p><p>Consulte <a
class="ulink" href="http://planetmath.org/StirlingNumbersOfTheFirstKind" target="_top">Planetmath</a> o <a
class="
ulink" href="http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html" target="_top">Mathworld</a>
para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-StirlingNumberSecond"></a>StirlingNumberSecond</span></dt><dd><pre
class="synopsis">StirlingNumberSecond (n,m)</pre><p>Alias: <code
class="function">StirlingS2</code></p><p>Número de Stirling de segunda clase.</p><p>Consulte <a
class="ulink" href="http://planetmath.org/StirlingNumbersSecondKind" target="_top">Planetmath</a> o <a
class="ulink" href="http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html"
target="_top">Mathworld</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-Subfactorial"></a>Subfactorial</span></dt><dd><pre class="synopsis">Subfactorial
(n)</pre><p>Subfactorial: n! times sum_{k=0}^n (-1)^k/k!.</p></dd><dt><span class="term"><a
name="gel-function-Triangular"></a>Triangular</span></dt><dd><pre class="synopsis">Triangular (
nth)</pre><p>Calcular el <code class="varname">n</code>-ésimo número triangular.</p><p>Consulte <a
class="ulink" href="http://planetmath.org/TriangularNumbers" target="_top">Planetmath</a>> para obtener
más información.</p></dd><dt><span class="term"><a name="gel-function-nCr"></a>nCr</span></dt><dd><pre
class="synopsis">nCr (n,r)</pre><p>Alias: <code class="function">Binomial</code></p><p>Calcular
combinaciones, es decir, el coeficiente del binomio. <code class="varname">n</code> puede ser cualquier
número real.</p><p>Consulte <a class="ulink" href="http://planetmath.org/Choose" target="_top">Planetmath</a>
para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-nPr"></a>nPr</span></dt><dd><pre class="synopsis">nPr (n,r)</pre><p>Calcular el número de
permutaciones de tamaño <code class="varname">r</code> de números desde el 1 al <code
class="varname">n</code>.</p><p>Consulte <a class="ulink" href="http://mathworld.wolfram.com/Permutat
ion.html" target="_top">Mathworld</a> o la <a class="ulink" href="http://en.wikipedia.org/wiki/Permutation"
target="_top">Wikipedia</a> para obtener más información.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s09.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s11.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Álgebra lineal
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%"
align="right" valign="top"> Cálculo</td></tr></table></div></body></html>
diff --git a/help/es/html/ch11s11.html b/help/es/html/ch11s11.html
new file mode 100644
index 0000000..c794ec8
--- /dev/null
+++ b/help/es/html/ch11s11.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Cálculo</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
de Genius"><link rel="up" href="ch11.html" title="Capítulo 11. Lista de funciones GEL"><link rel="prev"
href="ch11s10.html" title="Combinatoria"><link rel="next" href="ch11s12.html" title="Funciones"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Cálculo</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch11s10.html">Anterior</a> </td><th width="60%"
align="center">Capítulo 11. Lista de funciones GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s12.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: bo
th"><a name="genius-gel-function-list-calculus"></a>Cálculo</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-CompositeSimpsonsRule"></a>CompositeSimpsonsRule</span></dt><dd><pre
class="synopsis">CompositeSimpsonsRule (f,a,b,n)</pre><p>Integrar f usando la Regla Compuesta de Simpson en
el intervalo [a,b] con n subintervalos y un error de max(f'''')*h^4*(b-a)/180, n debe ser
entero.</p><p>Consulte <a class="ulink" href="http://planetmath.org/SimpsonsRule"
target="_top">Planetmath</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-CompositeSimpsonsRuleTolerance"></a>CompositeSimpsonsRuleTolerance</span></dt><dd><pre
class="synopsis">CompositeSimpsonsRuleTolerance (f,a,b,FourthDerivativeBound,Tolerance)</pre><p>Integración
de F por la Regla compuesta de Simpson en el intervalo [a,b] con el número de pasos calculado por la cuarta
derivada y la tolerancia deseada.</p><p
Consulte <a class="ulink" href="http://planetmath.org/SimpsonsRule" target="_top">Planetmath</a> para
obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-Derivative"></a>Derivative</span></dt><dd><pre class="synopsis">Derivative
(f,x0)</pre><p>Intentar calcular la derivada, primero simbólicamente y después
numéricamente.</p><p>Consulte la <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative"
target="_top">Wikipedia</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-EvenPeriodicExtension"></a>EvenPeriodicExtension</span></dt><dd><pre
class="synopsis">EvenPeriodicExtension (f,L)</pre><p>Devolver una función que es una extensión periódica
par de <code class="function">f</code> con medio periodo <code class="varname">L</code>. Esto es una
función que se define en el intervalo <strong class="userinput"><code>[0,L]</code></strong> extendido para
ser par en <strong class="userinput"><code>[-L,L]
</code></strong> y entonces extendido para ser periódico con periodo <strong
class="userinput"><code>2*L</code></strong>.</p><p>Consulte <a class="link"
href="ch11s11.html#gel-function-OddPeriodicExtension">OddPeriodicExtension</a> y <a class="link"
href="ch11s11.html#gel-function-PeriodicExtension">PeriodicExtension</a>.</p><p>Desde la versión 1.0.7 en
adelante.</p></dd><dt><span class="term"><a
name="gel-function-FourierSeriesFunction"></a>FourierSeriesFunction</span></dt><dd><pre
class="synopsis">FourierSeriesFunction (a,b,L)</pre><p>Devuelve una función que es una serie de Fourier con
coeficientes devueltos por los vectores <code class="varname">a</code> (senos) y <code
class="varname">b</code> (cosenos). Tenga en cuenta que <strong class="userinput"><code>a@(1)</code></strong>
es el coeficiente constante. Es decir, <strong class="userinput"><code>a@(n)</code></strong> se refiere al
término <strong class="userinput"><code>cos(x*(n-1)*pi/L)</code></strong>, mientras q
ue <strong class="userinput"><code>b@(n)</code></strong> se refiere al término <strong
class="userinput"><code>sin(x*n*pi/L)</code></strong>. Tanto <code class="varname">a</code> o <code
class="varname">b</code> puede ser <code class="constant">null</code>.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> o <a class="ulink"
href="http://mathworld.wolfram.com/FourierSeries.html" target="_top">Mathworld</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-InfiniteProduct"></a>InfiniteProduct</span></dt><dd><pre class="synopsis">InfiniteProduct
(func,inicio,inc)</pre><p>Intenta calcular un producto infinito para una función de un sólo
parámetro.</p></dd><dt><span class="term"><a
name="gel-function-InfiniteProduct2"></a>InfiniteProduct2</span></dt><dd><pre
class="synopsis">InfiniteProduct2 (func,arg,inicio,inc)</pre><p>Intenta calcular un producto infinito para
una función
de dos parámetros con func(arg,n)</p></dd><dt><span class="term"><a
name="gel-function-InfiniteSum"></a>InfiniteSum</span></dt><dd><pre class="synopsis">InfiniteSum
(func,inicio,inc)</pre><p>Intentar calcular una suma infinita para una función de un sólo
parámetro.</p></dd><dt><span class="term"><a
name="gel-function-InfiniteSum2"></a>InfiniteSum2</span></dt><dd><pre class="synopsis">InfiniteSum2
(func,arg,inicio,inc)</pre><p>Intenta calcular una suma infinita para una función de dos parámetros con
func(arg,n).</p></dd><dt><span class="term"><a
name="gel-function-IsContinuous"></a>IsContinuous</span></dt><dd><pre class="synopsis">IsContinuous
(f,x0)</pre><p>Comprueba si una función real es continua en x0 calculando el límite en ese
punto.</p></dd><dt><span class="term"><a
name="gel-function-IsDifferentiable"></a>IsDifferentiable</span></dt><dd><pre
class="synopsis">IsDifferentiable (f,x0)</pre><p>Comprobar la diferenciabilidad aproximando los límites
izquierdo
y derecho y comparándolos.</p></dd><dt><span class="term"><a
name="gel-function-LeftLimit"></a>LeftLimit</span></dt><dd><pre class="synopsis">LeftLimit
(f,x0)</pre><p>Calcular el límite por la izquierda de una función real en x0.</p></dd><dt><span
class="term"><a name="gel-function-Limit"></a>Limit</span></dt><dd><pre class="synopsis">Limit
(f,x0)</pre><p>Calcular el límite de una función real en x0. Intenta calcular tanto el límite por la
derecha como por la izquierda.</p></dd><dt><span class="term"><a
name="gel-function-MidpointRule"></a>MidpointRule</span></dt><dd><pre class="synopsis">MidpointRule
(f,a,b,n)</pre><p>Integración por la regla del punto medio.</p></dd><dt><span class="term"><a
name="gel-function-NumericalDerivative"></a>NumericalDerivative</span></dt><dd><pre
class="synopsis">NumericalDerivative (f,x0)</pre><p>Alias: <code
class="function">NDerivative</code></p><p>Intentar calcular la derivada numérica.</p><p>Consulte la <a
class="ulink" href
="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSeriesCoefficients"></a>NumericalFourierSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierSeriesCoefficients (f,L,N)</pre><p>Devuelve un vector de vectores <strong
class="userinput"><code>[a,b]</code></strong> donde <code class="varname">a</code> son los coeficientes
cosenos y <code class="varname">b</code> son los coeficientes senos de la serie de Fourier de <code
class="function">f</code> con medio periodo <code class="varname">L</code> (esto se define en <strong
class="userinput"><code>[-L,L]</code></strong> y extendido periódicamente) con coeficientes hasta <code
class="varname">N</code>-ésimo harmónico calculado numéricamente. Los coeficientes se calculan por la
integración numérica al usar <a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="fun
ction">NumericalIntegral</code></a>.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> o <a class="ulink"
href="http://mathworld.wolfram.com/FourierSeries.html" target="_top">Mathworld</a> para obtener más
información.</p><p>Desde la versión 1.0.7 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSeriesFunction"></a>NumericalFourierSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierSeriesFunction (f,L,N)</pre><p>Devuelve una función que es la serie de
Fourier de <code class="function">f</code> con medio periodo <code class="varname">L</code> (esto se define
en <strong class="userinput"><code>[-L,L]</code></strong> y extendido periódicamente) con coeficientes hasta
<code class="varname">N</code>-ésimo harmónico calculado numéricamente. Esto es, la serie trigonométrica real
compuesta de senos y cosenos. Los coeficientes se calculan por la integración numé
rica al utilizar <a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> o <a class="ulink"
href="http://mathworld.wolfram.com/FourierSeries.html" target="_top">Mathworld</a> para obtener más
información.</p><p>Desde la versión 1.0.7 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierCosineSeriesCoefficients"></a>NumericalFourierCosineSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierCosineSeriesCoefficients (f,L,N)</pre><p>Devuelve un vector de coeficientes
de coseno de la serie de Fourier de <code class="function">f</code> con medio periodo <code
class="varname">L</code>. Es decir, se toma <code class="function">f</code> definida en <strong
class="userinput"><code>[0,L]</code></strong> toma la extensión periódica par y calcula la serie de Fo
urier, que sólo tiene cosenos como términos. La serie se calcula hasta la <code
class="varname">N</code>-ésima harmónica. Los coeficientes se calculan por la integración numérica al
utilizar <a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>. Tenga en cuenta que <strong
class="userinput"><code>a@(1)</code></strong> es el coeficiente constante. Es decir, <strong
class="userinput"><code>a@(n)</code></strong> se refiere a el término <strong
class="userinput"><code>cos(x*(n-1)*pi/L)</code></strong>.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> o <a class="ulink"
href="http://mathworld.wolfram.com/FourierCosineSeries.html" target="_top">Mathworld</a> para obtener más
información.</p><p>Desde la versión 1.0.7 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierCosineSeriesFunction"></a>NumericalFourierCosin
eSeriesFunction</span></dt><dd><pre class="synopsis">NumericalFourierCosineSeriesFunction
(f,L,N)</pre><p>Devuelve una función que es el coseno de la serie de Fourier de <code
class="function">f</code> con medio periodo <code class="varname">L</code>. Es decir, se toma <code
class="function">f</code> definida en <strong class="userinput"><code>[0,L]</code></strong> toma la extensión
periódica par y calcula la serie de Fourier, que sólo tiene coseno como términos. La serie se calcula hasta
la <code class="varname">N</code>-ésima harmónica. Los coeficientes se calculan por la integración numérica
al utilizar <a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> o <a class="ulink"
href="http://mathworld.wolfram.com/FourierCosineSeries.html" target="_top">Mathworld</a> para obtener más
inform
ación.</p><p>Desde la versión 1.0.7 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSineSeriesCoefficients"></a>NumericalFourierSineSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierSineSeriesCoefficients (f,L,N)</pre><p>Devuelve un vector de coeficientes
de senos de la serie de Fourier de <code class="function">f</code> con medio periodo <code
class="varname">L</code>. Es decir, se toma <code class="function">f</code> definido en <strong
class="userinput"><code>[0,L]</code></strong> toma la extensión periódica impar y calcula la serie de
Fourier, que sólo tiene senos como términos. La serie se calcula hasta el <code
class="varname">N</code>-ésimo harmónico. Los coeficientes se calculan por la integración numérica al
utilizar <a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wi
ki/Fourier_series" target="_top">Wikipedia</a> o <a class="ulink"
href="http://mathworld.wolfram.com/FourierSineSeries.html" target="_top">Mathworld</a> para obtener más
información.</p><p>Desde la versión 1.0.7 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSineSeriesFunction"></a>NumericalFourierSineSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierSineSeriesFunction (f,L,N)</pre><p>Devuelve una función que es el seno de
la serie de Fourier de <code class="function">f</code> con medio periodo <code class="varname">L</code>. Es
decir, se toma <code class="function">f</code> definida en <strong
class="userinput"><code>[0,L]</code></strong> toma la extensión periódica impar y calcula ls series de
Fourier, que sólo tiene seno como términos. La serie se calcula hasta la <code class="varname">N</code>-ésima
harmónica. Los coeficientes se calculan por la integración numérica al utilizar <a class="link" href="ch11s11
.html#gel-function-NumericalIntegral"><code class="function">NumericalIntegral</code></a>.</p><p>Consulte la
<a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> o <a
class="ulink" href="http://mathworld.wolfram.com/FourierSineSeries.html" target="_top">Mathworld</a> para
obtener más información.</p><p>Desde la versión 1.0.7 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegral"></a>NumericalIntegral</span></dt><dd><pre
class="synopsis">NumericalIntegral (f,a,b)</pre><p>Integración por el conjunto de reglas en
NumericalIntegralFunction de f desde «a» a «b» usando NumericalIntegralSteps pasos.</p></dd><dt><span
class="term"><a name="gel-function-NumericalLeftDerivative"></a>NumericalLeftDerivative</span></dt><dd><pre
class="synopsis">NumericalLeftDerivative (f,x0)</pre><p>Intentar calcular la derivada numérica por la
izquierda.</p></dd><dt><span class="term"><a name="gel-function-NumericalLimi
tAtInfinity"></a>NumericalLimitAtInfinity</span></dt><dd><pre class="synopsis">NumericalLimitAtInfinity
(_f,step_fun,tolerance,successive_for_success,N)</pre><p>Intentar calcular el límite de f(step_fun(i)), para
i desde 1 hasta N.</p></dd><dt><span class="term"><a
name="gel-function-NumericalRightDerivative"></a>NumericalRightDerivative</span></dt><dd><pre
class="synopsis">NumericalRightDerivative (f,x0)</pre><p>Intentar calcular la derivada numérica por la
derecha.</p></dd><dt><span class="term"><a
name="gel-function-OddPeriodicExtension"></a>OddPeriodicExtension</span></dt><dd><pre
class="synopsis">OddPeriodicExtension (f,L)</pre><p>Devuelve una función que es la extensión periódica impar
de <code class="function">f</code> con medio periodo <code class="varname">L</code>. Esto es una función
definida en el intervalo <strong class="userinput"><code>[0,L]</code></strong> extendida para ser impar en
<strong class="userinput"><code>[-L,L]</code></strong> y entonces ex
tendida para ser periódica con periodo <strong class="userinput"><code>2*L</code></strong>.</p><p>Consulte
también <a class="link" href="ch11s11.html#gel-function-EvenPeriodicExtension">EvenPeriodicExtension</a> y <a
class="link" href="ch11s11.html#gel-function-PeriodicExtension">PeriodicExtension</a>.</p><p>Desde la versión
1.0.7 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-OneSidedFivePointFormula"></a>OneSidedFivePointFormula</span></dt><dd><pre
class="synopsis">OneSidedFivePointFormula (f,x0,h)</pre><p>Calcular la derivada de un lado usando una
fórmula de 5 puntos.</p></dd><dt><span class="term"><a
name="gel-function-OneSidedThreePointFormula"></a>OneSidedThreePointFormula</span></dt><dd><pre
class="synopsis">OneSidedThreePointFormula (f,x0,h)</pre><p>Calcular la derivada de un lado usando una
fórmula de tres puntos.</p></dd><dt><span class="term"><a
name="gel-function-PeriodicExtension"></a>PeriodicExtension</span></dt><dd><pre class="synopsi
s">PeriodicExtension (f,a,b)</pre><p>Devuelve una función que es la extensión periódica de <code
class="function">f</code> que se define en el intervalo <strong class="userinput"><code>[a,b]</code></strong>
y tiene un periodo <strong class="userinput"><code>b-a</code></strong>.</p><p>Consulte también <a
class="link" href="ch11s11.html#gel-function-OddPeriodicExtension">OddPeriodicExtension</a> y <a class="link"
href="ch11s11.html#gel-function-EvenPeriodicExtension">EvenPeriodicExtension</a>.</p><p>Desde la versión
1.0.7 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-RightLimit"></a>RightLimit</span></dt><dd><pre class="synopsis">RightLimit
(f,x0)</pre><p>Calcular el límite por la derecha de una función real en x0.</p></dd><dt><span
class="term"><a name="gel-function-TwoSidedFivePointFormula"></a>TwoSidedFivePointFormula</span></dt><dd><pre
class="synopsis">TwoSidedFivePointFormula (f,x0,h)</pre><p>Calcular la derivada de dos lados usando una fór
mula de cinco puntos.</p></dd><dt><span class="term"><a
name="gel-function-TwoSidedThreePointFormula"></a>TwoSidedThreePointFormula</span></dt><dd><pre
class="synopsis">TwoSidedThreePointFormula (f,x0,h)</pre><p>Calcular la derivada de dos lados usando una
fórmula de tres puntos.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s10.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s12.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Combinatoria
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%"
align="right" valign="top"> Funciones</td></tr></table></div></body></html>
diff --git a/help/es/html/ch11s12.html b/help/es/html/ch11s12.html
new file mode 100644
index 0000000..88a0caf
--- /dev/null
+++ b/help/es/html/ch11s12.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Funciones</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
de Genius"><link rel="up" href="ch11.html" title="Capítulo 11. Lista de funciones GEL"><link rel="prev"
href="ch11s11.html" title="Cálculo"><link rel="next" href="ch11s13.html" title="Resolución de
ecuaciones"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Funciones</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s11.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. Lista de funciones
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s13.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" st
yle="clear: both"><a name="genius-gel-function-list-functions"></a>Funciones</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Argument"></a>Argument</span></dt><dd><pre class="synopsis">Argument (z)</pre><p>Alias:
<code class="function">Arg</code><code class="function">arg</code></p><p>argumento (ángulo) de un número
complejo.</p></dd><dt><span class="term"><a name="gel-function-BesselJ0"></a>BesselJ0</span></dt><dd><pre
class="synopsis">BesselJ0 (x)</pre><p>Función de Bessel de primer tipo de orden 0. Implementada solo para
números reales.</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions"
target="_top">Wikipedia</a> para obtener más información.</p><p>Desde la versión 1.0.16 en
adelante.</p></dd><dt><span class="term"><a name="gel-function-BesselJ1"></a>BesselJ1</span></dt><dd><pre
class="synopsis">BesselJ1 (x)</pre><p>Función de Bessel de primer tipo de orde
n 1. Implementada solo para números reales.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a> para obtener más
información.</p><p>Desde la versión 1.0.16 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-BesselJn"></a>BesselJn</span></dt><dd><pre class="synopsis">BesselJn (n,x)</pre><p>Función
de Bessel de primer tipo de orden <code class="varname">n</code>. Implementada solo para números
reales.</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions"
target="_top">Wikipedia</a> para obtener más información.</p><p>Desde la versión 1.0.16 en
adelante.</p></dd><dt><span class="term"><a name="gel-function-BesselY0"></a>BesselY0</span></dt><dd><pre
class="synopsis">BesselY0 (x)</pre><p>Función de Bessel de segundo tipo de orden 0. Implementada solo para
números reales.</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions"
target="_top">Wikipedia</a> para obtener más información.</p><p>Desde la versión 1.0.16 en
adelante.</p></dd><dt><span class="term"><a name="gel-function-BesselY1"></a>BesselY1</span></dt><dd><pre
class="synopsis">BesselY1 (x)</pre><p>Función de Bessel de segunto tipo de orden 1. Implementada solo para
números reales.</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions"
target="_top">Wikipedia</a> para obtener más información.</p><p>Desde la versión 1.0.16 en
adelante.</p></dd><dt><span class="term"><a name="gel-function-BesselYn"></a>BesselYn</span></dt><dd><pre
class="synopsis">BesselYn (n,x)</pre><p>Función de Bessel de segundo tipo de orden <code
class="varname">n</code>. Implementada solo para números reales.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a> para obtener más
información.</p><p>Desde la versión 1.0.16 en adelante.</p></dd><dt><span class="ter
m"><a name="gel-function-DirichletKernel"></a>DirichletKernel</span></dt><dd><pre
class="synopsis">DirichletKernel (n,t)</pre><p>Núcleo de Dirichlet de orden <code
class="varname">n</code>.</p></dd><dt><span class="term"><a
name="gel-function-DiscreteDelta"></a>DiscreteDelta</span></dt><dd><pre class="synopsis">DiscreteDelta
(v)</pre><p>Devuelve 1 si y sólo si todos los elementos son cero.</p></dd><dt><span class="term"><a
name="gel-function-ErrorFunction"></a>ErrorFunction</span></dt><dd><pre class="synopsis">ErrorFunction
(x)</pre><p>Alias: <code class="function">erf</code></p><p>La función de error, 2/sqrt(pi) * int_0^x
e^(-t^2) dt.</p><p>Consulte la <a class="ulink" href="https://en.wikipedia.org/wiki/Error_function"
target="_top">Wikipedia</a> o <a class="ulink" href="http://planetmath.org/ErrorFunction"
target="_top">Planetmath</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-FejerKernel"></a>FejerKernel</span></dt><dd><pre c
lass="synopsis">FejerKernel (n,t)</pre><p>Núcleo de Fejer de orden <code class="varname">n</code> evaluado
en <code class="varname">t</code></p><p>Consulte <a class="ulink" href="http://planetmath.org/FejerKernel"
target="_top">Planetmath</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-GammaFunction"></a>GammaFunction</span></dt><dd><pre class="synopsis">GammaFunction
(x)</pre><p>Alias: <code class="function">Gamma</code></p><p>La función «Gamma». Actualmente sólo
implementada para valores reales.</p><p>Consulte <a class="ulink" href="http://planetmath.org/GammaFunction"
target="_top">Planetmath</a> o <a class="ulink" href="http://en.wikipedia.org/wiki/Gamma_function"
target="_top">Wikipedia</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-KroneckerDelta"></a>KroneckerDelta</span></dt><dd><pre class="synopsis">KroneckerDelta
(v)</pre><p>Devuelve 1 si y sólo si todos los elementos son igual
es.</p></dd><dt><span class="term"><a name="gel-function-LambertW"></a>LambertW</span></dt><dd><pre
class="synopsis">LambertW (x)</pre><p>La rama principal de la función de Lambert W calculada sólo para los
valores reales más grandes o iguales que <strong class="userinput"><code>-1/e</code></strong>. Es decir, que
la función <code class="function">LambertW</code> es la inversa de la expresión <strong
class="userinput"><code>x*e^x</code></strong>. Incluso para una variable real <code class="varname">x</code>
esta expresión no es uno a uno y por lo tanto tiene dos ramas más <strong
class="userinput"><code>[-1/e,0)</code></strong>. Consulte <a class="link"
href="ch11s12.html#gel-function-LambertWm1"><code class="function">LambertWm1</code></a> para otras ramas
reales.</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Lambert_W_function"
target="_top">Wikipedia</a> para más información.</p><p>Desde la versión 1.0.18 en
adelante.</p></dd><dt><span cl
ass="term"><a name="gel-function-LambertWm1"></a>LambertWm1</span></dt><dd><pre class="synopsis">LambertWm1
(x)</pre><p>La rama menos uno «-1» de la función de Lambert W calculada sólo para valores reales más grandes
o igual a <strong class="userinput"><code>-1/e</code></strong> y menor que 0. Es decir, <code
class="function">LambertWm1</code> es la segunda rama de la inversa de <strong
class="userinput"><code>x*e^x</code></strong>. Consulte <a class="link"
href="ch11s12.html#gel-function-LambertW"><code class="function">LambertW</code></a> para la rama
principal.</p><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Lambert_W_function"
target="_top">Wikipedia</a> para más información.</p></dd><dt><span class="term"><a
name="gel-function-MinimizeFunction"></a>MinimizeFunction</span></dt><dd><pre
class="synopsis">MinimizeFunction (func,x,incr)</pre><p>Buscar el primer valor donde
f(x)=0.</p></dd><dt><span class="term"><a name="gel-function-MoebiusDiskMa
pping"></a>MoebiusDiskMapping</span></dt><dd><pre class="synopsis">MoebiusDiskMapping (a,z)</pre><p>Mapa de
Moebius del disco a sí mismo mapeando a 0.</p><p>Consulte <a class="ulink"
href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-MoebiusMapping"></a>MoebiusMapping</span></dt><dd><pre class="synopsis">MoebiusMapping
(z,z2,z3,z4)</pre><p>Mapa de Moebius usando el radio cruzado z2,z3,z4 a 1,0 e infinito
respectivamente.</p><p>Consulte <a class="ulink" href="http://planetmath.org/MobiusTransformation"
target="_top">Planetmath</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToInfty"></a>MoebiusMappingInftyToInfty</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToInfty (z,z2,z3)</pre><p>Mapa de Moebius usando el radio cruzado tomando
infinito a infinito y z2,z3 a 1 y 0 respectivamente.</p><p>Consu
lte <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a> para
obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToOne"></a>MoebiusMappingInftyToOne</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToOne (z,z3,z4)</pre><p>Mapa de Moebius usando la relación cruzada
tomando de infinito a 1 y z3,z4 a 0 e infinito respectivamente.</p><p>Consulte <a class="ulink"
href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToZero"></a>MoebiusMappingInftyToZero</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToZero (z,z2,z4)</pre><p>Mapa de Moebius usando la relación cruzada
tomando de infinito a 0 y z2,z4 a 1 e infinito respectivamente.</p><p>Consulte <a class="ulink"
href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a> para o
btener más información.</p></dd><dt><span class="term"><a
name="gel-function-PoissonKernel"></a>PoissonKernel</span></dt><dd><pre class="synopsis">PoissonKernel
(r,sigma)</pre><p>El núcleo de Poisson en D(0,1) (no normalizado a 1, esto es, su integral es
2pi).</p></dd><dt><span class="term"><a
name="gel-function-PoissonKernelRadius"></a>PoissonKernelRadius</span></dt><dd><pre
class="synopsis">PoissonKernelRadius (r,sigma)</pre><p>El núcleo de Poisson en D(0,R) (no normalizado a
1).</p></dd><dt><span class="term"><a name="gel-function-RiemannZeta"></a>RiemannZeta</span></dt><dd><pre
class="synopsis">RiemannZeta (x)</pre><p>Alias: <code class="function">zeta</code></p><p>La función «zeta de
Riemann». Actualmente sólo implementada para valores reales.</p><p>Consulte <a class="ulink"
href="http://planetmath.org/RiemannZetaFunction" target="_top">Planetmath</a> o <a class="ulink"
href="http://en.wikipedia.org/wiki/Riemann_zeta_function" target="_top">Wikipedia</a> para
más información.</p></dd><dt><span class="term"><a
name="gel-function-UnitStep"></a>UnitStep</span></dt><dd><pre class="synopsis">UnitStep (x)</pre><p>La
función escalón unitario es 0 para x<0, 1 si no. Es la integral de la función delta de Dirac. También
llamada función de Heaviside.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Unit_step" target="_top">Wikipedia</a> para obtener más
información.</p></dd><dt><span class="term"><a name="gel-function-cis"></a>cis</span></dt><dd><pre
class="synopsis">cis (x)</pre><p>La función <code class="function">cis</code> es la misma que <strong
class="userinput"><code>cos(x)+1i*sin(x)</code></strong></p></dd><dt><span class="term"><a
name="gel-function-deg2rad"></a>deg2rad</span></dt><dd><pre class="synopsis">deg2rad (x)</pre><p>Convertir
grados a radianes.</p></dd><dt><span class="term"><a
name="gel-function-rad2deg"></a>rad2deg</span></dt><dd><pre class="synopsis">rad2deg (x)</pre><p>Convertir
radia
nes a grados.</p></dd><dt><span class="term"><a name="gel-function-sinc"></a>sinc</span></dt><dd><pre
class="synopsis">sinc (x)</pre><p>Calcular la función sinc no normalizada, esto es <strong
class="userinput"><code>sin(x)/x</code></strong>. Si quiere normalizar la función utilice <strong
class="userinput"><code>sinc(pi*x)</code></strong>.</p><p>Consulte la <a class="ulink"
href="http://en.wikipedia.org/wiki/Denominator" target="_top">Wikipedia</a> para obtener más
información.</p><p>Desde la versión 1.0.16 en adelante.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s11.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s13.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Cálculo </td><td
width="20%" align="center"><a a
ccesskey="h" href="index.html">Inicio</a></td><td width="40%" align="right" valign="top"> Resolución de
ecuaciones</td></tr></table></div></body></html>
diff --git a/help/es/html/ch11s13.html b/help/es/html/ch11s13.html
new file mode 100644
index 0000000..ed52d54
--- /dev/null
+++ b/help/es/html/ch11s13.html
@@ -0,0 +1,25 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Resolución de
ecuaciones</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch11.html" title="Capítulo 11. Lista de
funciones GEL"><link rel="prev" href="ch11s12.html" title="Funciones"><link rel="next" href="ch11s14.html"
title="Estadísticas"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Resolución de ecuaciones</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s12.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. Lista de funciones
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s14.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><di
v><h2 class="title" style="clear: both"><a name="genius-gel-function-list-equation-solving"></a>Resolución
de ecuaciones</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span
class="term"><a name="gel-function-CubicFormula"></a>CubicFormula</span></dt><dd><pre
class="synopsis">CubicFormula (p)</pre><p>Calcular las raíces de un polinomio cúbico (de grado 3) utilizando
la fórmula cúbica. El polinomio se dará como un vector de coeficientes. Esto es <strong
class="userinput"><code>4*x^3 + 2*x + 1</code></strong> que corresponde al vector <strong
class="userinput"><code>[1,2,0,4]</code></strong>. Devuelve un vector columna de tres soluciones. La primera
solución siempre es la real como un cúbico siempre tiene una solución real.</p><p>Consulte <a class="ulink"
href="http://planetmath.org/CubicFormula" target="_top">Planetmath</a>, <a class="ulink"
href="http://mathworld.wolfram.com/CubicFormula.html" target="_top">Mathworld</a>, o <a class="u
link" href="http://en.wikipedia.org/wiki/Cubic_equation" target="_top">Wikipedia</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-EulersMethod"></a>EulersMethod</span></dt><dd><pre class="synopsis">EulersMethod
(f,x0,y0,x1,n)</pre><p>Utilizar el método clásico de Euler para resolver numéricamente y'=f(x,y) de forma
inicial <code class="varname">x0</code>, <code class="varname">y0</code> pasan a <code
class="varname">x1</code> con <code class="varname">n</code> incrementos, devuelve <code
class="varname">y</code> junto con <code class="varname">x1</code>. Excepto que especifique explícitamente
que quiere utilizar el método clásico de Euler, piense en utilizar <a class="link"
href="ch11s13.html#gel-function-RungeKutta">RungeKutta</a> para resolver ODE.</p><p>Los sistemas se pueden
resolver teniendo a <code class="varname">y</code> como un vector (columna) en cualquier parte. Es decir,
<code class="varname">y0</code> puede ser un ve
ctor en cuyo caso <code class="varname">f</code> será un número <code class="varname">x</code> y un vector
del mismo tamaño para el segundo argumento y devolverá un vector del mismo tamaño.</p><p>Consulte <a
class="ulink" href="http://mathworld.wolfram.com/EulerForwardMethod.html" target="_top">Mathworld</a> o <a
class="ulink" href="http://en.wikipedia.org/wiki/Eulers_method" target="_top">Wikipedia</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-EulersMethodFull"></a>EulersMethodFull</span></dt><dd><pre
class="synopsis">EulersMethodFull (f,x0,y0,x1,n)</pre><p>Utilizar el método clásico de Euler para resolver
numéricamente y'=f(x,y) de forma inicial <code class="varname">x0</code>, <code class="varname">y0</code>
pasan a <code class="varname">x1</code> con <code class="varname">n</code> incrementos, devuelve una matriz
de 2 por <strong class="userinput"><code>n+1</code></strong> con los valores <code class="varname">x</code> e
<code class="varname">y</code>.Excepto que quiera utilizar explícitamente el método clásico de Euler,
utilice mejor <a class="link" href="ch11s13.html#gel-function-RungeKuttaFull">RungeKuttaFull</a> para
resolver ODE. Adecuado para enlazar con <a class="link"
href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a> o <a class="link"
href="ch11s20.html#gel-function-LinePlotDrawPoints">LinePlotDrawPoints</a>.</p><p>Ejemplo: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>line =
EulersMethodFull(`(x,y)=y,0,1.0,3.0,50);</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(line,"window","fit","color","blue","legend","Exponential
growth");</code></strong>
+</pre><p>Los sistemas se pueden resolver teniendo a <code class="varname">y</code> como un vector (columna)
en cualquier parte. Es decir, <code class="varname">y0</code> puede ser un vector en cuyo caso <code
class="varname">f</code> será un número <code class="varname">x</code> y un vector del mismo tamaño para el
segundo argumento y devolverá un vector del mismo tamaño.</p><p>La salida para un sistema es todavía una
matriz de n por 2 siendo la segunda entrada un vector. Si quiere dibujar la línea, asegúrese de utilizar fila
de vectores, y aplanar la matriz con <a class="link"
href="ch11s08.html#gel-function-ExpandMatrix">ExpandMatrix</a>, y pulse sobre las columnas de la derecha.
Ejemplo: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
EulersMethodFull(`(x,y)=[y@(2),-y@(1)],0,[1.0,1.0],10.0,500);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
ExpandMatrix(lines);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>firstline =
lines@(,[1,2]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>secondline =
lines@(,[1,3]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>LinePlotWindow =
[0,10,-2,2];</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(firstline,"color","blue","legend","First");</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(secondline,"color","red","thickness",3,"legend","Second");</code></strong>
+</pre><p>Consulte <a class="ulink" href="http://mathworld.wolfram.com/EulerForwardMethod.html"
target="_top">Mathworld</a> o <a class="ulink" href="http://en.wikipedia.org/wiki/Eulers_method"
target="_top">Wikipedia</a> para obtener más información.</p><p>Desde la versión 1.0.10 en
adelante.</p></dd><dt><span class="term"><a
name="gel-function-FindRootBisection"></a>FindRootBisection</span></dt><dd><pre
class="synopsis">FindRootBisection (f,a,b,TOL,N)</pre><p>Buscar la raíz de una función utilizando el método
de la bisección. <code class="varname">a</code> y <code class="varname">b</code> son los límites iniciales
del intervalo, <strong class="userinput"><code>f(a)</code></strong> y <strong
class="userinput"><code>f(b)</code></strong> deben tener signos opuestos. <code class="varname">TOL</code> es
la tolerancia deseada y <code class="varname">N</code> es el límite del número de iteraciones a ejecutar, 0
indica sin límites. La función devuelve un vector <strong c
lass="userinput"><code>[success,value,iteration]</code></strong>, donde <code class="varname">success</code>
un booleano que indica el éxito, <code class="varname">value</code> es el último valor calculado, e <code
class="varname">iteration</code> es el número de iteraciones realizadas.</p></dd><dt><span class="term"><a
name="gel-function-FindRootFalsePosition"></a>FindRootFalsePosition</span></dt><dd><pre
class="synopsis">FindRootFalsePosition (f,a,b,TOL,N)</pre><p>Buscar la raíz de una función utilizando el
método de la posición falsa. <code class="varname">a</code> y <code class="varname">b</code> son los valores
iniciales del intervalo, <strong class="userinput"><code>f(a)</code></strong> y <strong
class="userinput"><code>f(b)</code></strong> deben tener signos opuestos. <code class="varname">TOL</code> es
la tolerancia deseada y <code class="varname">N</code> es el límite del número de iteraciones a ejecutar, 0
indica sin límites. La función devuelve un vecto
r <strong class="userinput"><code>[success,value,iteration]</code></strong>, donde <code
class="varname">success</code> es un booleano que indica el éxito, <code class="varname">value</code> es el
último valor calculado, e <code class="varname">iteration</code> es el número de iteraciones
realizadas.</p></dd><dt><span class="term"><a
name="gel-function-FindRootMullersMethod"></a>FindRootMullersMethod</span></dt><dd><pre
class="synopsis">FindRootMullersMethod (f,x0,x1,x2,TOL,N)</pre><p>Buscar la raíz de una función utilizando el
método de Muller. <code class="varname">TOL</code> es la tolerancia deseada y <code class="varname">N</code>
es el límite del número de iteraciones a ejecutar, 0 indica sin límites. La función devuelve un vector
<strong class="userinput"><code>[success,value,iteration]</code></strong>, donde <code
class="varname">success</code> un booleano que indica el éxito, <code class="varname">value</code> es el
último valor calculado, e <code class="
varname">iteration</code> es el número de iteraciones realizadas.</p></dd><dt><span class="term"><a
name="gel-function-FindRootSecant"></a>FindRootSecant</span></dt><dd><pre class="synopsis">FindRootSecant
(f,a,b,TOL,N)</pre><p>Buscar la raíz de una función utilizando el método de la secante. <code
class="varname">a</code> y <code class="varname">b</code> son los límites iniciales del intervalo, <strong
class="userinput"><code>f(a)</code></strong> y <strong class="userinput"><code>f(b)</code></strong> deben
tener signos opuestos. <code class="varname">TOL</code> es la tolerancia deseada y <code
class="varname">N</code> es el límite del número de iteraciones a ejecutar, 0 indica sin límites. La función
devuelve un vector <strong class="userinput"><code>[success,value,iteration]</code></strong>, donde <code
class="varname">success</code> es un booleano que indica el éxito, <code class="varname">value</code> es el
último valor calculado, e <code class="varname">itera
tion</code> es el número de iteraciones realizadas.</p></dd><dt><span class="term"><a
name="gel-function-HalleysMethod"></a>HalleysMethod</span></dt><dd><pre class="synopsis">HalleysMethod
(f,df,ddf,guess,epsilon,maxn)</pre><p>Encontrar ceros utilizando el método de Halleys. Siendo <code
class="varname">f</code> la función, <code class="varname">df</code> es la derivada de <code
class="varname">f</code>, y <code class="varname">ddf</code> es la segunda derivada de <code
class="varname">f</code>. La variable <code class="varname">guess</code> es la aproximación inicial. La
función devuelve después dos valores sucesivos que están dentro de los límites que marca <code
class="varname">epsilon</code> o después de <code class="varname">maxn</code> iteraciones en cuyo caso
devuelve <code class="constant">null</code> indicando un fallo.</p><p>Consulte también <a class="link"
href="ch11s13.html#gel-function-NewtonsMethod"><code class="function">NewtonsMethod</code></a> y <a
class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>.</p><p>Ejemplo para encontrar la raíz cuadrada de 10: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>HalleysMethod(`(x)=x^2-10,`(x)=2*x,`(x)=2,3,10^-10,100)</code></strong>
+</pre><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Halley%27s_method"
target="_top">Wikipedia</a> para más información.</p><p>Desde la versión 1.0.18 en
adelante.</p></dd><dt><span class="term"><a
name="gel-function-NewtonsMethod"></a>NewtonsMethod</span></dt><dd><pre class="synopsis">NewtonsMethod
(f,df,guess,epsilon,maxn)</pre><p>Encontrar ceros utilizando el método de Newton. La variable <code
class="varname">f</code> es la función y <code class="varname">df</code> es la derivada de <code
class="varname">f</code>. La variable <code class="varname">guess</code> el supuesto inicial. La función
devuelve después dos valores sucesivos que están dentro de los límites que marca <code
class="varname">epsilon</code> o después de <code class="varname">maxn</code> iteraciones en cuyo caso
devuelve <code class="constant">null</code> indicando un fallo.</p><p>Consulte también <a class="link"
href="ch11s15.html#gel-function-NewtonsMethodPoly"><code clas
s="function">NewtonsMethodPoly</code></a> y <a class="link"
href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>.</p><p>Ejemplo para encontrar la raíz cuadrade de 10: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>NewtonsMethod(`(x)=x^2-10,`(x)=2*x,3,10^-10,100)</code></strong>
+</pre><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Newtons_method"
target="_top">Wikipedia</a> para obtener más información.</p><p>Desde la versión 1.0.18 en
adelante.</p></dd><dt><span class="term"><a
name="gel-function-PolynomialRoots"></a>PolynomialRoots</span></dt><dd><pre class="synopsis">PolynomialRoots
(p)</pre><p>Calcular las raíces de un polinomio (de grado 1 a 4) utilizando una de las fórmulas para cada
polinomio. El polinomio entregará un vector de coeficientes. Esto es <strong class="userinput"><code>4*x^3 +
2*x + 1</code></strong> que corresponde al vector <strong class="userinput"><code>[1,2,0,4]</code></strong>.
Devuelve un vector columna de las soluciones.</p><p>La función llama a <a class="link"
href="ch11s13.html#gel-function-QuadraticFormula">QuadraticFormula</a>, <a class="link"
href="ch11s13.html#gel-function-CubicFormula">CubicFormula</a>, y a <a class="link"
href="ch11s13.html#gel-function-QuarticFormula">QuarticFormula</a>
.</p></dd><dt><span class="term"><a
name="gel-function-QuadraticFormula"></a>QuadraticFormula</span></dt><dd><pre
class="synopsis">QuadraticFormula (p)</pre><p>Calcular las raíces de una polinomio cuadrático (de grado 2)
utilizando la fórmula cuadrática. El polinomio será un vector de coeficientes. Es es <strong
class="userinput"><code>3*x^2 + 2*x + 1</code></strong> que corresponde con el vector <strong
class="userinput"><code>[1,2,3]</code></strong>. Devuelve un vector columna de las dos
soluciones.</p><p>Consulte <a class="ulink" href="http://planetmath.org/QuadraticFormula"
target="_top">Planetmath</a> o <a class="ulink" href="http://mathworld.wolfram.com/QuadraticFormula.html"
target="_top">Mathworld</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-QuarticFormula"></a>QuarticFormula</span></dt><dd><pre class="synopsis">QuarticFormula
(p)</pre><p>Calcular las raíces de un polinomio cuadrático (de grado 4) utilizando la fórm
ula cuadrática. El polinomio será un vector de coeficientes. Esto es <strong class="userinput"><code>5*x^4 +
2*x + 1</code></strong> que corresponde con el vector <strong
class="userinput"><code>[1,2,0,0,5]</code></strong>. Devuelve un vector columna de las cuatro
soluciones.</p><p>Consulte <a class="ulink" href="http://planetmath.org/QuarticFormula"
target="_top">Planetmath</a>, <a class="ulink" href="http://mathworld.wolfram.com/QuarticEquation.html"
target="_top">Mathworld</a>, o <a class="ulink" href="http://en.wikipedia.org/wiki/Quartic_equation"
target="_top">Wikipedia</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-RungeKutta"></a>RungeKutta</span></dt><dd><pre class="synopsis">RungeKutta
(f,x0,y0,x1,n)</pre><p>Utilizar el método clásico no adaptativo de cuarto orden Runge-Kutta para resolver
numéricamente y'=f(x,y) que de forma inicial <code class="varname">x0</code>, <code class="varname">y0</code>
tienden a <code class=
"varname">x1</code> con <code class="varname">n</code> incrementos, devuelve <code class="varname">y</code>
en <code class="varname">x1</code>.</p><p>Los sistemas se pueden resolver teniendo a <code
class="varname">y</code> como un vector (columna) en cualquier parte. Es decir, <code
class="varname">y0</code> puede ser un vector en cuyo caso <code class="varname">f</code> será un número
<code class="varname">x</code> y un vector del mismo tamaño para el segundo argumento y devolverá un vector
del mismo tamaño.</p><p>Consulte <a class="ulink" href="http://mathworld.wolfram.com/Runge-KuttaMethod.html"
target="_top">Mathworld</a> o <a class="ulink" href="http://en.wikipedia.org/wiki/Runge-Kutta_methods"
target="_top">Wikipedia</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-RungeKuttaFull"></a>RungeKuttaFull</span></dt><dd><pre class="synopsis">RungeKuttaFull
(f,x0,y0,x1,n)</pre><p>Utilizar el método clásico no adaptativo de cuart
o orden Runge-Kutta para resolver numéricamente y'=f(x,y) que de forma inicial <code
class="varname">x0</code>, <code class="varname">y0</code> tienden a <code class="varname">x1</code> con
<code class="varname">n</code> incrementos, devuelve una matriz de 2 por <strong
class="userinput"><code>n+1</code></strong> con los valores <code class="varname">x</code> e <code
class="varname">y</code>. Adecuado para enlazar con <a class="link"
href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a> o <a class="link"
href="ch11s20.html#gel-function-LinePlotDrawPoints">LinePlotDrawPoints</a>.</p><p>Example: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>line =
RungeKuttaFull(`(x,y)=y,0,1.0,3.0,50);</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(line,"window","fit","color","blue","legend","Exponential
growth");</code></strong>
+</pre><p>Los sistemas se pueden resolver teniendo a <code class="varname">y</code> como un vector (columna)
en cualquier parte. Es decir, <code class="varname">y0</code> puede ser un vector en cuyo caso <code
class="varname">f</code> será un número <code class="varname">x</code> y un vector del mismo tamaño para el
segundo argumento y devolverá un vector del mismo tamaño.</p><p>La salida de un sistema todavía es una matriz
de n por 2 siendo la segunda entrada un vector. Si quiere dibujar la línea, asegúrese de utilizar filas de
vectores, y aplane la matriz con <a class="link"
href="ch11s08.html#gel-function-ExpandMatrix">ExpandMatrix</a>, y pulse a la derecha de las columnas.
Ejemplo: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
RungeKuttaFull(`(x,y)=[y@(2),-y@(1)],0,[1.0,1.0],10.0,100);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
ExpandMatrix(lines);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>firstline =
lines@(,[1,2]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>secondline =
lines@(,[1,3]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>LinePlotWindow =
[0,10,-2,2];</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(firstline,"color","blue","legend","First");</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(secondline,"color","red","thickness",3,"legend","Second");</code></strong>
+</pre><p>Consulte <a class="ulink" href="http://mathworld.wolfram.com/Runge-KuttaMethod.html"
target="_top">Mathworld</a> o <a class="ulink" href="http://en.wikipedia.org/wiki/Runge-Kutta_methods"
target="_top">Wikipedia</a> para obtener más información.</p><p>Desde la versión 1.0.10 en
adelante.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s12.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Subir</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s14.html">Siguiente</a></td></tr><tr><td width="40%" align="left"
valign="top">Funciones </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top">
Estadísticas</td></tr></table></div></body></html>
diff --git a/help/es/html/ch11s14.html b/help/es/html/ch11s14.html
new file mode 100644
index 0000000..aa7630e
--- /dev/null
+++ b/help/es/html/ch11s14.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Estadísticas</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manual de Genius"><link rel="up" href="ch11.html"
title="Capítulo 11. Lista de funciones GEL"><link rel="prev" href="ch11s13.html" title="Resolución de
ecuaciones"><link rel="next" href="ch11s15.html" title="Polinomios"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Estadísticas</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s13.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. Lista de
funciones GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s15.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class
="title" style="clear: both"><a
name="genius-gel-function-list-statistics"></a>Estadísticas</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Average"></a>Average</span></dt><dd><pre class="synopsis">Average (m)</pre><p>Alias: <code
class="function">average</code><code class="function">Mean</code><code
class="function">mean</code></p><p>Calcular la media de una matriz entera.</p><p>Consulte <a class="ulink"
href="http://mathworld.wolfram.com/ArithmeticMean.html" target="_top">Mathworld</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-GaussDistribution"></a>GaussDistribution</span></dt><dd><pre
class="synopsis">GaussDistribution (x,sigma)</pre><p>Integral de la función de Gauss desde 0 a <code
class="varname">x</code> (área debajo de la curva normal).</p><p>Consulte <a class="ulink"
href="http://mathworld.wolfram.com/NormalDistribution.html" target="_top">Mathworld<
/a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-GaussFunction"></a>GaussFunction</span></dt><dd><pre class="synopsis">GaussFunction
(x,sigma)</pre><p>La función de distribución Gausiana normalizada (la curva normal).</p><p>Consulte <a
class="ulink" href="http://mathworld.wolfram.com/NormalDistribution.html" target="_top">Mathworld</a> para
obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-Median"></a>Median</span></dt><dd><pre class="synopsis">Median (m)</pre><p>Alias: <code
class="function">median</code></p><p>Calcular la mediana de una matriz entera.</p><p>Consulte <a
class="ulink" href="http://mathworld.wolfram.com/StatisticalMedian.html" target="_top">Mathworld</a> para
obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-PopulationStandardDeviation"></a>PopulationStandardDeviation</span></dt><dd><pre
class="synopsis">PopulationStandardDeviation (m)</pre><p>Alias: <code
class="function">stdevp</code></p><p>Calcular la desviación de población típica de una matriz
completa.</p></dd><dt><span class="term"><a name="gel-function-RowAverage"></a>RowAverage</span></dt><dd><pre
class="synopsis">RowAverage (m)</pre><p>Alias: <code class="function">RowMean</code></p><p>Calcular la media
de cada columna de una matriz.</p><p>Consulte <a class="ulink"
href="http://mathworld.wolfram.com/ArithmeticMean.html" target="_top">Mathworld</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-RowMedian"></a>RowMedian</span></dt><dd><pre class="synopsis">RowMedian
(m)</pre><p>Calcular la mediana de cada fila en una matriz y devolver una vector columna de las
medianas.</p><p>Consulte <a class="ulink" href="http://mathworld.wolfram.com/StatisticalMedian.html"
target="_top">Mathworld</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-RowPopulationStandardDeviation"></a>RowPopulationStandard
Deviation</span></dt><dd><pre class="synopsis">RowPopulationStandardDeviation (m)</pre><p>Alias: <code
class="function">rowstdevp</code></p><p>Calcular la desviación típica de las columnas de una matriz y
devuelve una matriz columna.</p></dd><dt><span class="term"><a
name="gel-function-RowStandardDeviation"></a>RowStandardDeviation</span></dt><dd><pre
class="synopsis">RowStandardDeviation (m)</pre><p>Alias: <code
class="function">rowstdev</code></p><p>Calcular la desviación estándar de las filas de una matriz y
devuelve una matriz columna.</p></dd><dt><span class="term"><a
name="gel-function-StandardDeviation"></a>StandardDeviation</span></dt><dd><pre
class="synopsis">StandardDeviation (m)</pre><p>Alias: <code class="function">stdev</code></p><p>Calcular la
desviación estándar de una matriz entera.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s13.htm
l">Anterior</a> </td><td width="20%" align="center"><a accesskey="u" href="ch11.html">Subir</a></td><td
width="40%" align="right"> <a accesskey="n" href="ch11s15.html">Siguiente</a></td></tr><tr><td width="40%"
align="left" valign="top">Resolución de ecuaciones </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top">
Polinomios</td></tr></table></div></body></html>
diff --git a/help/es/html/ch11s15.html b/help/es/html/ch11s15.html
new file mode 100644
index 0000000..6d7c1db
--- /dev/null
+++ b/help/es/html/ch11s15.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Polinomios</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manual de Genius"><link rel="up" href="ch11.html"
title="Capítulo 11. Lista de funciones GEL"><link rel="prev" href="ch11s14.html" title="Estadísticas"><link
rel="next" href="ch11s16.html" title="Teoría de conjuntos"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Polinomios</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s14.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. Lista de
funciones GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s16.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-function-list-polynomials"></a>Polinomios</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AddPoly"></a>AddPoly</span></dt><dd><pre class="synopsis">AddPoly (p1,p2)</pre><p>Suma dos
polinomios (vectores).</p></dd><dt><span class="term"><a
name="gel-function-DividePoly"></a>DividePoly</span></dt><dd><pre class="synopsis">DividePoly
(p,q,&r)</pre><p>Dividir dos polinomios (como vectores) utilizando la división larga. Devuelve el
cociente de los dos polinomios. El argumento opcional <code class="varname">r</code> se utiliza para devolver
el residuo. El residuo tendrá el grado más bajo que <code class="varname">q</code>.</p><p>Consulte <a
class="ulink" href="http://planetmath.org/PolynomialLongDivision" target="_top">Planetmath</a> para obtener
más información.</p></dd><dt><span class="term"><a name="gel-function-IsPoly"></a>IsPoly</span></dt><dd><pre
class="syno
psis">IsPoly (p)</pre><p>Comprobar si un vector se puede usar como un polinomio.</p></dd><dt><span
class="term"><a name="gel-function-MultiplyPoly"></a>MultiplyPoly</span></dt><dd><pre
class="synopsis">MultiplyPoly (p1,p2)</pre><p>Multiplica dos polinomios (como vectores).</p></dd><dt><span
class="term"><a name="gel-function-NewtonsMethodPoly"></a>NewtonsMethodPoly</span></dt><dd><pre
class="synopsis">NewtonsMethodPoly (poly,guess,epsilon,maxn)</pre><p>Encontrar una raíz de un polinomio
utilizando el método de Newton. La variable <code class="varname">poly</code> es el polinomio en forma
vectorial y <code class="varname">guess</code> es la suposición inicial. La función devuelve después dos
valores sucesivos que están dentro de los límites que marca <code class="varname">epsilon</code> o después de
<code class="varname">maxn</code> iteraciones en cuyo caso devuelve <code class="constant">null</code>
indicando un fallo.</p><p>Consulte también <a class="link" href="ch
11s13.html#gel-function-NewtonsMethod"><code class="function">NewtonsMethod</code></a>.</p><p>Ejemplo para
encontrar la raíz cuadrada de 10: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>NewtonsMethodPoly([-10,0,1],3,10^-10,100)</code></strong>
+</pre><p>Consulte la <a class="ulink" href="http://en.wikipedia.org/wiki/Newtons_method"
target="_top">Wikipedia</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-Poly2ndDerivative"></a>Poly2ndDerivative</span></dt><dd><pre
class="synopsis">Poly2ndDerivative (p)</pre><p>Tomar la derivada segunda (como vector)
polinómico.</p></dd><dt><span class="term"><a
name="gel-function-PolyDerivative"></a>PolyDerivative</span></dt><dd><pre class="synopsis">PolyDerivative
(p)</pre><p>Tomar la derivada (como vector) polinómico.</p></dd><dt><span class="term"><a
name="gel-function-PolyToFunction"></a>PolyToFunction</span></dt><dd><pre class="synopsis">PolyToFunction
(p)</pre><p>Extraer una función de un polinomio (como vector).</p></dd><dt><span class="term"><a
name="gel-function-PolyToString"></a>PolyToString</span></dt><dd><pre class="synopsis">PolyToString
(p,var...)</pre><p>Extraer una cadena de un polinomio (como vector).</p></dd><dt><span c
lass="term"><a name="gel-function-SubtractPoly"></a>SubtractPoly</span></dt><dd><pre
class="synopsis">SubtractPoly (p1,p2)</pre><p>Restar dos polinomios (como vectores).</p></dd><dt><span
class="term"><a name="gel-function-TrimPoly"></a>TrimPoly</span></dt><dd><pre class="synopsis">TrimPoly
(p)</pre><p>Eliminar ceros de un polinomio (como vector).</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s14.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s16.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Estadísticas
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%"
align="right" valign="top"> Teoría de conjuntos</td></tr></table></div></body></html>
diff --git a/help/es/html/ch11s16.html b/help/es/html/ch11s16.html
new file mode 100644
index 0000000..28655a4
--- /dev/null
+++ b/help/es/html/ch11s16.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Teoría de
conjuntos</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch11.html" title="Capítulo 11. Lista de
funciones GEL"><link rel="prev" href="ch11s15.html" title="Polinomios"><link rel="next" href="ch11s17.html"
title="Álgebra conmutativa"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Teoría de conjuntos</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s15.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. Lista de funciones
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s17.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><
h2 class="title" style="clear: both"><a name="genius-gel-function-list-set-theory"></a>Teoría de
conjuntos</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Intersection"></a>Intersection</span></dt><dd><pre class="synopsis">Intersection
(X,Y)</pre><p>Devuelve la intersección de X e Y (X e Y son vectores que se tratan como
conjuntos).</p></dd><dt><span class="term"><a name="gel-function-IsIn"></a>IsIn</span></dt><dd><pre
class="synopsis">IsIn (x,X)</pre><p>Devuelve <code class="constant">true</code> si <code
class="literal">X</code> es un subconjunto de <code class="literal">Y</code> (<code class="literal">X</code>
e <code class="literal">Y</code> son vectores que se tratan como conjuntos).</p></dd><dt><span
class="term"><a name="gel-function-IsSubset"></a>IsSubset</span></dt><dd><pre class="synopsis">IsSubset (X,
Y)</pre><p>Devuelve <code class="constant">true</code> si <code class="literal">X</code> es
un subconjunto de <code class="literal">Y</code> (<code class="literal">X</code> e <code
class="literal">Y</code> son vectores que se tratan como conjuntos).</p></dd><dt><span class="term"><a
name="gel-function-MakeSet"></a>MakeSet</span></dt><dd><pre class="synopsis">MakeSet (X)</pre><p>Devuelve un
vector donde cada elemento de X aparece una sola vez.</p></dd><dt><span class="term"><a
name="gel-function-SetMinus"></a>SetMinus</span></dt><dd><pre class="synopsis">SetMinus
(X,Y)</pre><p>Devuelve un conjunto teorético de diferencia X-Y (X e Y son vectores que pretender ser
conjuntos).</p></dd><dt><span class="term"><a name="gel-function-Union"></a>Union</span></dt><dd><pre
class="synopsis">Union (X,Y)</pre><p>Devuelve la unión de X e Y (X e Y son vectores que se tratan como
conjuntos).</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s15.html">Anterior</a> </td><
td width="20%" align="center"><a accesskey="u" href="ch11.html">Subir</a></td><td width="40%" align="right">
<a accesskey="n" href="ch11s17.html">Siguiente</a></td></tr><tr><td width="40%" align="left"
valign="top">Polinomios </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top"> Álgebra
conmutativa</td></tr></table></div></body></html>
diff --git a/help/es/html/ch11s17.html b/help/es/html/ch11s17.html
new file mode 100644
index 0000000..6299167
--- /dev/null
+++ b/help/es/html/ch11s17.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Álgebra
conmutativa</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch11.html" title="Capítulo 11. Lista de
funciones GEL"><link rel="prev" href="ch11s16.html" title="Teoría de conjuntos"><link rel="next"
href="ch11s18.html" title="Miscelánea"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Álgebra conmutativa</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s16.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. Lista de
funciones GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s18.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><
h2 class="title" style="clear: both"><a name="genius-gel-function-list-commutative-algebra"></a>Álgebra
conmutativa</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span
class="term"><a name="gel-function-MacaulayBound"></a>MacaulayBound</span></dt><dd><pre
class="synopsis">MacaulayBound (c,d)</pre><p>Para una función de Hilbert que es c de grado d, dada la función
de Macaulay obligado por la función de Hilbert de grado d+1 (el c^<d> operador de la prueba de
Green).</p><p>Desde la versión 1.0.15 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-MacaulayLowerOperator"></a>MacaulayLowerOperator</span></dt><dd><pre
class="synopsis">MacaulayLowerOperator (c,d)</pre><p>El operador c_<d> de la prueba de Green del
teorema de Macaulay.</p><p>Desde la versión 1.0.15 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-MacaulayRep"></a>MacaulayRep</span></dt><dd><pre class="synopsis">MacaulayRep
(c,d)</pre><p>
Devolver la representación dth de Macaulay de un entero positivo c.</p><p>Desde la versión 1.0.15 en
adelante.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s16.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Subir</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s18.html">Siguiente</a></td></tr><tr><td width="40%" align="left"
valign="top">Teoría de conjuntos </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top">
Miscelánea</td></tr></table></div></body></html>
diff --git a/help/es/html/ch11s18.html b/help/es/html/ch11s18.html
new file mode 100644
index 0000000..5d75550
--- /dev/null
+++ b/help/es/html/ch11s18.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Miscelánea</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manual de Genius"><link rel="up" href="ch11.html"
title="Capítulo 11. Lista de funciones GEL"><link rel="prev" href="ch11s17.html" title="Álgebra
conmutativa"><link rel="next" href="ch11s19.html" title="Operaciones simbólicas"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Miscelánea</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch11s17.html">Anterior</a> </td><th width="60%"
align="center">Capítulo 11. Lista de funciones GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s19.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 cla
ss="title" style="clear: both"><a
name="genius-gel-function-list-miscellaneous"></a>Miscelánea</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ASCIIToString"></a>ASCIIToString</span></dt><dd><pre class="synopsis">ASCIIToString
(vec)</pre><p>Convertir un vector de valores ASCII en una cadena.</p></dd><dt><span class="term"><a
name="gel-function-AlphabetToString"></a>AlphabetToString</span></dt><dd><pre
class="synopsis">AlphabetToString (vec,alfabeto)</pre><p>Convierte un vector de valores alfabéticos basados
en 0 (posiciones en la cadena alfabeto) a una cadena.</p></dd><dt><span class="term"><a
name="gel-function-StringToASCII"></a>StringToASCII</span></dt><dd><pre class="synopsis">StringToASCII
(cad)</pre><p>Convertir una cadena a un vector de valores ASCII.</p></dd><dt><span class="term"><a
name="gel-function-StringToAlphabet"></a>StringToAlphabet</span></dt><dd><pre
class="synopsis">StringToAlphabet (
str,alfabeto)</pre><p>Convertir una cadena en un vector de valores alfabéticos basados en 0 (posiciones en
la cadena alfabeto), -1 para las letras desconocidas.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s17.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s19.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Álgebra conmutativa
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%"
align="right" valign="top"> Operaciones simbólicas</td></tr></table></div></body></html>
diff --git a/help/es/html/ch11s19.html b/help/es/html/ch11s19.html
new file mode 100644
index 0000000..de7c7f2
--- /dev/null
+++ b/help/es/html/ch11s19.html
@@ -0,0 +1,5 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Operaciones
simbólicas</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="ch11.html" title="Capítulo 11. Lista de
funciones GEL"><link rel="prev" href="ch11s18.html" title="Miscelánea"><link rel="next" href="ch11s20.html"
title="Dibujar"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Operaciones simbólicas</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s18.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. Lista de funciones
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s20.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 cla
ss="title" style="clear: both"><a name="genius-gel-function-list-symbolic"></a>Operaciones
simbólicas</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span
class="term"><a name="gel-function-SymbolicDerivative"></a>SymbolicDerivative</span></dt><dd><pre
class="synopsis">SymbolicDerivative (f)</pre><p>Intentar diferenciar simbólicamente la función «f», donde
«f» es una función de una variable.</p><p>Ejemplos: </p><pre class="screen"><code
class="prompt">genius></code> <strong class="userinput"><code>SymbolicDerivative(sin)</code></strong>
+= (`(x)=cos(x))
+<code class="prompt">genius></code> <strong
class="userinput"><code>SymbolicDerivative(`(x)=7*x^2)</code></strong>
+= (`(x)=(7*(2*x)))
+</pre><p>Consulte la <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative"
target="_top">Wikipedia</a> para obtener más información.</p></dd><dt><span class="term"><a
name="gel-function-SymbolicDerivativeTry"></a>SymbolicDerivativeTry</span></dt><dd><pre
class="synopsis">SymbolicDerivativeTry (f)</pre><p>Intentar diferenciar simbólicamente la función f, donde f
es una función de una variable, devuelve <code class="constant">null</code> si no es satisfactoria pero es
silenciosa. (Consulte <a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)</p><p>Consulte la <a class="ulink"
href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-SymbolicNthDerivative"></a>SymbolicNthDerivative</span></dt><dd><pre
class="synopsis">SymbolicNthDerivative (f,n)</pre><p>Intentar diferenciar simbólicamente una
función n veces. (Consulte <a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)</p><p>Consulte la <a class="ulink"
href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> para obtener más
información.</p></dd><dt><span class="term"><a
name="gel-function-SymbolicNthDerivativeTry"></a>SymbolicNthDerivativeTry</span></dt><dd><pre
class="synopsis">SymbolicNthDerivativeTry (f,n)</pre><p>Intentar diferenciar simbólicamente una función n
veces de manera silenciosa y devolver <code class="constant">null</code> en caso de fallo. (Consulte <a
class="link" href="ch11s19.html#gel-function-SymbolicNthDerivative"><code
class="function">SymbolicNthDerivative</code></a>)</p><p>Consulte la <a class="ulink"
href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> para obtener más
información.</p></dd><dt><span class="term"><a name="gel-function-SymbolicTaylorApproximationFunctio
n"></a>SymbolicTaylorApproximationFunction</span></dt><dd><pre
class="synopsis">SymbolicTaylorApproximationFunction (f,x0,n)</pre><p>Intenta construir la aproximación de
Taylor alrededor de x0 hasta grado n. (Consulte <a class="link"
href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s18.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s20.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Miscelánea </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%" align="right"
valign="top"> Dibujar</td></tr></table></div></body></html>
diff --git a/help/es/html/ch11s20.html b/help/es/html/ch11s20.html
new file mode 100644
index 0000000..f4a0ab1
--- /dev/null
+++ b/help/es/html/ch11s20.html
@@ -0,0 +1,35 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Dibujar</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
de Genius"><link rel="up" href="ch11.html" title="Capítulo 11. Lista de funciones GEL"><link rel="prev"
href="ch11s19.html" title="Operaciones simbólicas"><link rel="next" href="ch12.html" title="Capítulo 12.
Programas de ejemplo en GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Dibujar</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s19.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. Lista de funciones
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch12.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div>
<h2 class="title" style="clear: both"><a
name="genius-gel-function-list-plotting"></a>Dibujar</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-ExportPlot"></a>ExportPlot</span></dt><dd><pre class="synopsis">ExportPlot
(archivo,tipo)</pre><pre class="synopsis">ExportPlot (archivo)</pre><p>Exportar el contenido de la ventana de
dibujado a un archivo. El tipo es una cadena que especifica el tipo de archivo que usar, «png», «eps» o «ps».
Si no se especifica el tipo, se toma a partir de la extensión, en cuyo caso debe ser«.png», «.eps» o
«.ps».</p><p>Tenga en cuneta que los archivos se sobreescriben sin preguntar.</p><p>Al exportar
correctamente, se devuelve. Si falla algo, se muestra un error y se eleva una excepción.</p><p>Ejemplos:
</p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>ExportPlot("archivo.png")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>ExportPlot("/carpeta/archivo","eps")</code></strong>
+</pre><p>Desde la versión 1.0.16 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-LinePlot"></a>LinePlot</span></dt><dd><pre class="synopsis">LinePlot
(func1,func2,func3,...)</pre><pre class="synopsis">LinePlot (func1,func2,func3,x1,x2)</pre><pre
class="synopsis">LinePlot (func1,func2,func3,x1,x2,y1,y2)</pre><pre class="synopsis">LinePlot
(func1,func2,func3,[x1,x2])</pre><pre class="synopsis">LinePlot
(func1,func2,func3,[x1,x2,y1,y2])</pre><p>Dibujar una función (o varias funciones) con una línea. Los 10
primeros argumentos son funciones, entonces opcionalmente puede especificar los límites de las gráficas como
<code class="varname">x1</code>, <code class="varname">x2</code>, <code class="varname">y1</code>, <code
class="varname">y2</code>. Si no se especifican los límites, entonces se aplican los límites actuales
(Consulte <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>). Si no se espec
ifican los límites de y, las funciones se calculan y se usan las áreas máxima y mínima.</p><p>El parámetro
<a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a> controla el dibujado de la leyenda.</p><p>Ejemplos: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlot(sin,cos)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlot(`(x)=x^2,-1,1,0,1)</code></strong>
+</pre></dd><dt><span class="term"><a name="gel-function-LinePlotClear"></a>LinePlotClear</span></dt><dd><pre
class="synopsis">LinePlotClear ()</pre><p>Muestra la ventana de dibujo lineal y limpia las funciones y otras
líneas que se hubiesen dibujado.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotCParametric"></a>LinePlotCParametric</span></dt><dd><pre
class="synopsis">LinePlotCParametric (func,...)</pre><pre class="synopsis">LinePlotCParametric
(func,t1,t2,tinc)</pre><pre class="synopsis">LinePlotCParametric
(func,t1,t2,tinc,x1,x2,y1,y2)</pre><p>Dibujar una función valorada paramétrica compleja con una línea.
Primero vienen las funciones que devuelven <code class="computeroutput">x+iy</code>, luego, opcionalmente,
los <code class="varname">t</code> límites como <strong class="userinput"><code>t1,t2,tinc</code></strong>, y
límites como <strong class="userinput"><code>x1,x2,y1,y2</code></strong>.</p><p>Si los límites no se
especifican, entonces se aplican
las configuraciones actuales (Consulte <a class="link"
href="ch11s03.html#gel-function-LinePlotWindow"><code class="function">LinePlotWindow</code></a>). Si en
lugar de la cadena se da el valor «fit» para los límites x e y, los límites son la medida máxima de la
gráfica.</p><p>El parámetro <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a> controla el dibujado de la leyenda.</p></dd><dt><span
class="term"><a name="gel-function-LinePlotDrawLine"></a>LinePlotDrawLine</span></dt><dd><pre
class="synopsis">LinePlotDrawLine (x1,y1,x2,y2,...)</pre><pre class="synopsis">LinePlotDrawLine
(v,...)</pre><p>Dibuja una línea desde <code class="varname">x1</code>,<code class="varname">y1</code> a
<code class="varname">x2</code>,<code class="varname">y2</code>. Es posible reemplazar <code
class="varname">x1</code>,<code class="varname">y1</code>, <code class="varname">x2</code>,<code
class="varname">y2</code> p
or una matriz de <code class="varname">n</code> por 2 para obtener una curva poligonal de mayor longitud.
También el vector <code class="varname">v</code> puede ser un vector columna de números complejos, esto es
una matriz <code class="varname">n</code> por 1 y cada número complejo se considera un punto en el
plano.</p><p>Se pueden añadir parámetros adicionales para especificar el color de la línea, ancho, flechas,
ventanas de dibujado o leyendas. Puede modificarlo añadiendo un valor a <strong
class="userinput"><code>«color»</code></strong>, <strong class="userinput"><code>«ancho»</code></strong>,
<strong class="userinput"><code>«ventana»</code></strong>, <strong
class="userinput"><code>«flecha»</code></strong>, o <strong
class="userinput"><code>«leyenda»</code></strong>, y después especificar su color, la anchura, la ventana
como 4 vectores, tipo de flecha, o la leyenda. (Flecha y ventana están desde la versión 1.0.6 y
posteriores.)</p><p>Si la línea s
e considera como un polígono relleno, relleno con el color dado, se puede especificar el argumento <strong
class="userinput"><code>«llenado»</code></strong>. Desde la versión 1.0.22 en adelante.</p><p>La denominación
del color debe ser una cadena que identifique al color según el diccionario inglés que GTK reconocerá como
<strong class="userinput"><code>«red»</code></strong>, <strong
class="userinput"><code>«blue»</code></strong>, <strong class="userinput"><code>«yellow»</code></strong>,
etc... De forma alternativa el color se puede especificar en formato RGB como por ejemplo <strong
class="userinput"><code>«#rgb»</code></strong>, <strong class="userinput"><code>«#rrggbb»</code></strong>, o
<strong class="userinput"><code>«#rrrrggggbbbb»</code></strong>, donde r, g, o b son dígitos hexadecimales de
los colores rojo, verde y azul (red, green, blue) . Finalmente, desde la versión 1.0.18, los colores se
pueden especificar como vectores siendo el rojo, verd
e y azul componentes con valores que solo pueden ser 0 o 1. Por ejemplo: <strong
class="userinput"><code>[1.0,0.5,0.1]</code></strong>.</p><p>Los valores de entrada de la ventana deben ser
del tipo <strong class="userinput"><code>[x1,x2,y1,y2]</code></strong>, o bien, pueden ser una cadena <strong
class="userinput"><code>«ajuste»</code></strong>, en cualquier caso, el rango de x se establecerá con
precisión y el rango y se puede ajustar con cinco por ciento alrededor del borde de la línea.</p><p>La
especificación para la flecha debería ser <strong class="userinput"><code>«origen»</code></strong>, <strong
class="userinput"><code>«fin»</code></strong>, <strong class="userinput"><code>«ambos»</code></strong>, o
<strong class="userinput"><code>«ninguno»</code></strong>.</p><p>Finalmente, la leyenda debería ser una
cadena que se pueda utilizar como leyenda en un gráfico. Es decir, si se imprimen las
leyendas.</p><p>Ejemplos: </p><pre class="screen"><code class="p
rompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(0,0,1,1,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;1,-1;-1,-1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;1,1],"arrow","end")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(RungeKuttaFull(`(x,y)=y,0,3,100),"color","blue","legend","The
Solution")</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>for r=0.0 to 1.0 by 0.1 do
LinePlotDrawLine([0,0;1,r],"color",[r,(1-r),0.5],"window",[0,1,0,1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;10,0;10,10;0,10],"filled","color","green")</code></strong>
+</pre><p>A diferencia de muchas otras funciones que no les importa si toman una columna o un vector fila, si
se especifican puntos como un vector de valores complejos, debido a las posibles ambigüedades, es preferible
que sea un vector columna.</p><p>La especificación de <code class="varname">v</code> como un vector columna
de números complejos, se implementa desde la versión 1.0.22 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawPoints"></a>LinePlotDrawPoints</span></dt><dd><pre
class="synopsis">LinePlotDrawPoints (x,y,...)</pre><pre class="synopsis">LinePlotDrawPoints
(v,...)</pre><p>Dibuja un punto en <code class="varname">x</code>,<code class="varname">y</code>. La entrada
puede ser una matriz <code class="varname">n</code> por 2 para <code class="varname">n</code> puntos
diferentes. Esta función es esencialmente la misma entrada que <a class="link"
href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a>. De forma altern
ativa, el vector <code class="varname">v</code> puede ser un vector columna de números complejos, esto es
una matriz <code class="varname">n</code> por 1 y cada número complejo se considera un punto en el
plano.</p><p>Se pueden añadir parámetros adicionales para especificar el color, ancho, ventanas de dibujado o
leyendas. Puede modificarlo añadiendo la palabra <strong class="userinput"><code>«color»</code></strong>,
<strong class="userinput"><code>«ancho»</code></strong>, <strong
class="userinput"><code>«ventana»</code></strong>, o <strong
class="userinput"><code>«leyenda»</code></strong>, y después especificar su color, la anchura, la ventana
como 4 vectores, o la leyenda.</p><p>La denominación del color debe ser una cadena que identifique al color
según el diccionario inglés que GTK reconocerá como <strong class="userinput"><code>«red»</code></strong>,
<strong class="userinput"><code>«blue»</code></strong>, <strong class="userinput"><code>«yellow»<
/code></strong>, etc... De forma alternativa el color se puede especificar en formato RGB como por ejemplo
<strong class="userinput"><code>«#rgb»</code></strong>, <strong
class="userinput"><code>«#rrggbb»</code></strong>, o <strong
class="userinput"><code>«#rrrrggggbbbb»</code></strong>, donde r, g, o b son dígitos hexadecimales de los
colores rojo, verde y azul (red, green, blue) . Finalmente los colores se pueden especificar como vectores
siendo el rojo, verde y azul componentes con valores que solo pueden ser 0 o 1.</p><p>Los valores de entrada
de la ventana deben ser del tipo <strong class="userinput"><code>[x1,x2,y1,y2]</code></strong>, o bien,
pueden ser una cadena <strong class="userinput"><code>«ajuste»</code></strong>, en cualquier caso, el rango
de x se establecerá con precisión y el rango y se puede ajustar con cinco por ciento alrededor del borde de
la línea.</p><p>Finalmente, la leyenda debería ser una cadena que se pueda utilizar como leyenda en un
gráfico. Es decir, si se imprimen las leyendas.</p><p>Ejemplos: </p><pre class="screen"><code
class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(0,0,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints([0,0;1,-1;-1,-1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(RungeKuttaFull(`(x,y)=y,0,3,100),"color","blue","legend","The
Solution")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints([1;1+1i;1i;0],"thickness",5)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(ApplyOverMatrix((0:6)',`(k)=exp(k*2*pi*1i/7)),"thickness",3,"legend","The
7th roots of unity")</code></strong>
+</pre><p>A diferencia de muchas otras funciones que no les importa si toman una columna o un vector fila, si
se especifica los puntos como un vector de valores complejos, debido a las posibles ambigüedades, siempre
debe ser suministrado como un vector columna. Por lo tanto, la notificación en el último ejemplo la
transpuesta del vector <strong class="userinput"><code> 0: 6 userinput> para convertirlo en un vector
columna.</code></strong></p><p>Disponible desde la versión 1.0.18 en adelante. La especificación de <code
class="varname">v</code> como un vector columna de números complejos, se implementa desde la versión 1.0.22
en adelante.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotMouseLocation"></a>LinePlotMouseLocation</span></dt><dd><pre
class="synopsis">LinePlotMouseLocation ()</pre><p>Devuelve un vector fila de un punto de la línea de la
pantalla de dibujado correspondiente a la ubicación actual del ratón. Si la trama de línea no es visible,
entonces imprime un error y devuelve <code class="constant"> null constant>. En este caso se debe
ejecutar LinePlot o LinePlotClear LinePlotClear </code></p></dd><dt><span class="term"><a
name="gel-function-LinePlotParametric"></a>LinePlotParametric</span></dt><dd><pre
class="synopsis">LinePlotParametric (xfunc,yfunc,...)</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc)</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc,x1,x2,y1,y2)</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc,[x1,x2,y1,y2])</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc,"fit")</pre><p>Dibujar una función paramétrica con una línea. Primero vienen las
funciones para <code class="varname">x</code> e <code class="varname">y</code> luego opcionalmente los <code
class="varname">t</code> límites como <strong class="userinput"><code>t1,t2,tinc</code></strong>, y luego,
opcionalmente, los límites como <strong class="use
rinput"><code>x1,x2,y1,y2</code></strong>.</p><p>Si no se especifican los límites x e y, entonces se aplican
las configuraciones actuales (Consulte <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>). Si en lugar de la cadena se da el valor «fit» para los límites x
e y, los límites son la medida máxima de la gráfica.</p><p>El parámetro <a class="link"
href="ch11s03.html#gel-function-LinePlotDrawLegends"><code class="function">LinePlotDrawLegends</code></a>
controla el dibujado de la leyenda.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotWaitForClick"></a>LinePlotWaitForClick</span></dt><dd><pre
class="synopsis">LinePlotWaitForClick ()</pre><p>Si está en el modo de dibujado de lineas, espera por un clic
en la ventana de dibujado de lineas y devuelve la ubicación del clic como un vector fila. Si se cierra la
ventana de la función devuelve inmediatamente con <code class="constant">null</code
. Si la ventana no está en modo de dibujado de lineas, esta se pone de forma automática. Consulte también
<a class="link" href="ch11s20.html#gel-function-LinePlotMouseLocation"><code
class="function">LinePlotMouseLocation</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-PlotCanvasFreeze"></a>PlotCanvasFreeze</span></dt><dd><pre
class="synopsis">PlotCanvasFreeze ()</pre><p>Congela el dibujo en el lienzo de dibujado de forma temporal.
Esto es útil si necesita dibujar un grupo de elementos y quiere demorar el dibujado para no permitir el
parpadeo de una animación. Después de terminar con el dibujo debería descongelar el lienzo de dibujado
llamando a la función <a class="link" href="ch11s20.html#gel-function-PlotCanvasThaw"><code
class="function">PlotCanvasThaw</code></a>.</p><p>El lienzo está siempre desbloqueado hasta el final de
cualquier proceso, así que nunca permanece bloqueado. El momento en que se muestra una nueva línea de
comandos, por ejemp
lo, el lienzo de dibujado se descongela automáticamente. También tenga en cuenta que las llamadas a congelar
y descongelar puede anidarse de manera segura.</p><p>Desde la versión 1.0.18 en adelante.</p></dd><dt><span
class="term"><a name="gel-function-PlotCanvasThaw"></a>PlotCanvasThaw</span></dt><dd><pre
class="synopsis">PlotCanvasThaw ()</pre><p>Descongela el lienzo de dibujado congelado por la función <a
class="link" href="ch11s20.html#gel-function-PlotCanvasFreeze"><code
class="function">PlotCanvasFreeze</code></a> y volver a dibujar el lienzo inmediatamente. El lienzo también
se descongelará al finalizar la ejecución de cualquier programa.</p><p>Desde la versión 1.0.18 en
adelante.</p></dd><dt><span class="term"><a
name="gel-function-PlotWindowPresent"></a>PlotWindowPresent</span></dt><dd><pre
class="synopsis">PlotWindowPresent ()</pre><p>Muestra y eleva la ventana de dibujo, creándola si es
necesario. Normalmente, la ventana se crea cuando se invoca a una de l
as funciones de dibujo, pero no siempre la eleva si está debajo de otra ventana. Esta función es buena para
utilizar en un archivo de órdenes llamado «script» en inglés, donde la ventana de dibujo ha sido creada
anteriormente, y por ahora, oculta detrás de la consola u otras ventanas.</p><p>Desde la versión 1.0.19 en
adelante.</p></dd><dt><span class="term"><a
name="gel-function-SlopefieldClearSolutions"></a>SlopefieldClearSolutions</span></dt><dd><pre
class="synopsis">SlopefieldClearSolutions ()</pre><p>Borra las soluciones elaboradas por la función <a
class="link" href="ch11s20.html#gel-function-SlopefieldDrawSolution"><code
class="function">SlopefieldDrawSolution</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SlopefieldDrawSolution"></a>SlopefieldDrawSolution</span></dt><dd><pre
class="synopsis">SlopefieldDrawSolution (x, y, dx)</pre><p>Cuando un campo de dibujo de gráficas está activo,
dibuja una solución con las condiciones iniciales especi
ficas. El método estándar de Runge-Kutta se usa con incremento <code class="varname">dx</code>. Las
soluciones permanecen en la gráfica hasta que se muestre un dibujo diferente o se llame a <a class="link"
href="ch11s20.html#gel-function-SlopefieldClearSolutions"><code
class="function">SlopefieldClearSolutions</code></a>. También puede utilizar la interfaz gráfica para dibujar
soluciones y especificar las condiciones iniciales con el ratón.</p></dd><dt><span class="term"><a
name="gel-function-SlopefieldPlot"></a>SlopefieldPlot</span></dt><dd><pre class="synopsis">SlopefieldPlot
(func)</pre><pre class="synopsis">SlopefieldPlot (func,x1,x2,y1,y2)</pre><p>Dibujar un campo inclinado. La
función <code class="varname">func</code> tomará dos números reales <code class="varname">x</code> e <code
class="varname">y</code>, o un número complejo. De manera opcional se especificarán los límites de la ventana
de dibujo con <code class="varname">x1</code>, <code class="varname"
x2</code>, <code class="varname">y1</code>, <code class="varname">y2</code>. Si no se especifica ningún
límite, se aplicarán los que estén configurados actualmente (Consulte <a class="link"
href="ch11s03.html#gel-function-LinePlotWindow"><code class="function">LinePlotWindow</code></a>).</p><p>El
parámetro <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a> controla el dibujado de la leyenda.</p><p>Ejemplos:
</p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SlopefieldPlot(`(x,y)=sin(x-y),-5,5,-5,5)</code></strong>
+</pre></dd><dt><span class="term"><a name="gel-function-SurfacePlot"></a>SurfacePlot</span></dt><dd><pre
class="synopsis">SurfacePlot (func)</pre><pre class="synopsis">SurfacePlot (func,x1,x2,y1,y2,z1,z2)</pre><pre
class="synopsis">SurfacePlot (func,x1,x2,y1,y2)</pre><pre class="synopsis">SurfacePlot
(func,[x1,x2,y1,y2,z1,z2])</pre><pre class="synopsis">SurfacePlot (func,[x1,x2,y1,y2])</pre><p>Dibujar una
función superficial que tome entre dos argumentos o un número complejo. Primero vienen las funciones que las
limitan de forma opcional <code class="varname">x1</code>, <code class="varname">x2</code>, <code
class="varname">y1</code>, <code class="varname">y2</code>, <code class="varname">z1</code>, <code
class="varname">z2</code>. Si no se especifican los límites, entonces las configuraciones actuales se
aplicarán (Consulte <a class="link" href="ch11s03.html#gel-function-SurfacePlotWindow"><code
class="function">SurfacePlotWindow</code></a>). Genius sólo puede dibujar
una función superficial sencilla por el momento.</p><p>Si no se especifican los límites de z, se usan los
valores máximo y mínimo de la función.</p><p>Ejemplos: </p><pre class="screen"><code
class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(|sin|,-1,1,-1,1,0,1.5)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(`(x,y)=x^2+y,-1,1,-1,1,-2,2)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(`(z)=|z|^2,-1,1,-1,1,0,2)</code></strong>
+</pre></dd><dt><span class="term"><a
name="gel-function-SurfacePlotClear"></a>SurfacePlotClear</span></dt><dd><pre
class="synopsis">SurfacePlotClear ()</pre><p>Muestra la ventana de dibujo lineal y limpia las funciones y
otras líneas que se hubiesen dibujado.</p><p>Disponible en la versión 1.0.19 y posteriores.</p></dd><dt><span
class="term"><a name="gel-function-SurfacePlotData"></a>SurfacePlotData</span></dt><dd><pre
class="synopsis">SurfacePlotData (datos)</pre><pre class="synopsis">SurfacePlotData
(datos,etiqueta)</pre><pre class="synopsis">SurfacePlotData (datos,x1,x2,y1,y2,z1,z2)</pre><pre
class="synopsis">SurfacePlotData (datos,etiqueta,x1,x2,y1,y2,z1,z2)</pre><pre
class="synopsis">SurfacePlotData (datos,[x1,x2,y1,y2,z1,z2])</pre><pre class="synopsis">SurfacePlotData
(datos,etiqueta,[x1,x2,y1,y2,z1,z2])</pre><p>Dibujar una superficie a partir de los datos. Los datos son una
matriz de n x 3 cuyas filas son las coordenadas x, y, z. Los datos pueden ser un vector cuya
longitud sea múltiplo de 3 y que contenga los triples de x, y z. Los datos deben contener al menos 3
puntos.</p><p>Opcionalmente, se pueden indicar una etiqueta y los límites. Si no se indican los límites, se
calculan a partir de los datos, no se usa <a class="link"
href="ch11s03.html#gel-function-SurfacePlotWindow"><code class="function">SurfacePlotWindow</code></a> pero,
si quiere usarla, debe pasarla explícitamente. Si no se indica una etiqueta, se usa una etiqueta
vacía.</p><p>Ejemplos: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData([0,0,0;1,0,1;0,1,1;1,1,3])</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>SurfacePlotData(datos,"Mis
datos")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData(datos,-1,1,-1,1,0,10)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData(datos,SurfacePlotWindow)</code></strong>
+</pre><p>Esto es un ejemplo de cómo dibujar con coordenadas polares, en particular, cómo dibujar la función
<strong class="userinput"><code>-r^2 * theta</code></strong>: </p><pre class="screen"><code
class="prompt">genius></code> <strong class="userinput"><code>d:=null; for r=0 to 1 by 0.1 do for theta=0
to 2*pi by pi/5 do d=[d;[r*cos(theta),r*sin(theta),-r^2*theta]];</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>SurfacePlotData(d)</code></strong>
+</pre><p>Desde la versión 1.0.16 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDataGrid"></a>SurfacePlotDataGrid</span></dt><dd><pre
class="synopsis">SurfacePlotDataGrid (datos,[x1,x2,y1,y2])</pre><pre class="synopsis">SurfacePlotDataGrid
(datos,[x1,x2,y1,y2,z1,z2])</pre><pre class="synopsis">SurfacePlotDataGrid
(datos,[x1,x2,y1,y2],etiqueta)</pre><pre class="synopsis">SurfacePlotDataGrid
(datos,[x1,x2,y1,y2,z1,z2],etiqueta)</pre><p>Dibujar una superficie a partir de datos rectangulares
regulares. Los datos se dan en una matriz matriz de n x m donde las filas son la coordenada x y las columnas
son la coordenada y. La coordenada x se divide en n-1 subintervalos iguales y la coordenada y se divide en
m-1 subintervalos iguales. Los límites <code class="varname">x1</code> y <code class="varname">x2</code> dan
el intervalo en el eje x usado y los límites <code class="varname">y1</code> e <code
class="varname">y2</code> dan el intervalo en el eje
y usado. Si los límites <code class="varname">z1</code> y <code class="varname">z2</code> no se indican, se
calculan a partir de los datos (para obtener valores extremos de los datos).</p><p>Opcionalmente se puede
indicar la etiqueta; si no se indica ninguna, se unas una etiqueta vacía.</p><p>Ejemplos: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid([1,2;3,4],[0,1,0,1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid(data,[-1,1,-1,1],"My data")</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>d:=null; for i=1 to 20 do for j=1 to
10 do d@(i,j) = (0.1*i-1)^2-(0.1*j)^2;</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid(d,[-1,1,0,1],"half a saddle")</code></strong>
+</pre><p>Desde la versión 1.0.16 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawLine"></a>SurfacePlotDrawLine</span></dt><dd><pre
class="synopsis">SurfacePlotDrawLine (x1,y1,z1,x2,y2,z2,...)</pre><pre class="synopsis">SurfacePlotDrawLine
(v,...)</pre><p>Dibuja una línea desde <code class="varname">x1</code>,<code class="varname">y1</code>,<code
class="varname">z1</code> hasta <code class="varname">x2</code>,<code class="varname">y2</code>,<code
class="varname">z2</code>. <code class="varname">x1</code>,<code class="varname">y1</code>,<code
class="varname">z1</code>, <code class="varname">x2</code>,<code class="varname">y2</code>,<code
class="varname">z2</code> se puede reemplazar por una matriz de <code class="varname">n</code> por 3 para
obtener una curva poligonal de mayor longitud.</p><p>Se pueden añadir parámetros adicionales para especificar
el color de la línea, ancho, flechas, ventanas de dibujado o leyendas. Puede modificarlo a�
�adiendo un valor a <strong class="userinput"><code>«color»</code></strong>, <strong
class="userinput"><code>«ancho»</code></strong>, <strong class="userinput"><code>«ventana»</code></strong>, o
<strong class="userinput"><code>«leyenda»</code></strong>, y después especificar su color, la anchura, la
ventana como 6 vectores, o la leyenda.</p><p>La denominación del color debe ser una cadena que identifique al
color según el diccionario inglés que GTK reconocerá como <strong
class="userinput"><code>«red»</code></strong>, <strong class="userinput"><code>«blue»</code></strong>,
<strong class="userinput"><code>«yellow»</code></strong>, etc... De forma alternativa el color se puede
especificar en formato RGB como por ejemplo <strong class="userinput"><code>«#rgb»</code></strong>, <strong
class="userinput"><code>«#rrggbb»</code></strong>, o <strong
class="userinput"><code>«#rrrrggggbbbb»</code></strong>, donde r, g, o b son dígitos hexadecimales de los colo
res rojo, verde y azul (red, green, blue) . Finalmente, desde la versión 1.0.18, los colores se pueden
especificar como vectores siendo el rojo, verde y azul componentes con valores que solo pueden ser 0 o 1. Por
ejemplo: <strong class="userinput"><code>[1.0,0.5,0.1]</code></strong>.</p><p>Los valores de entrada de la
ventana deben ser del tipo <strong class="userinput"><code>[x1,x2,y1,y2,z1,z2]</code></strong>, o bien,
pueden ser una cadena <strong class="userinput"><code>«ajuste»</code></strong>, en cualquier caso, el rango
de x se establecerá con precisión y el rango y se puede ajustar con cinco por ciento alrededor del borde de
la línea.</p><p>Finalmente, la leyenda debería ser una cadena que se pueda utilizar como leyenda en un
gráfico. Es decir, si se imprimen las leyendas.</p><p>Ejemplos: </p><pre class="screen"><code
class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawLine(0,0,0,1,1,1,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawLine([0,0,0;1,-1,2;-1,-1,-3])</code></strong>
+</pre><p>Disponible desde la versión 1.0.19 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawPoints"></a>SurfacePlotDrawPoints</span></dt><dd><pre
class="synopsis">SurfacePlotDrawPoints (x,y,z,...)</pre><pre class="synopsis">SurfacePlotDrawPoints
(v,...)</pre><p>Dibuja un punto en <code class="varname">x</code>,<code class="varname">y</code>,<code
class="varname">z</code>. La entrada puede ser una <code class="varname">n</code> por 3 matriz para <code
class="varname">n</code> puntos diferentes. Esta función es esencialmente la misma entrada que <a
class="link" href="ch11s20.html#gel-function-SurfacePlotDrawLine">SurfacePlotDrawLine</a>.</p><p>Se pueden
añadir parámetros adicionales para especificar el color de la línea, ancho, ventanas de dibujado o leyendas.
Puede modificarlo añadiendo un valor a <strong class="userinput"><code>«color»</code></strong>, <strong
class="userinput"><code>«ancho»</code></strong>, <strong class="userinput
"><code>«ventana»</code></strong>,o <strong class="userinput"><code>«leyenda»</code></strong>, y después
especificar su color, la anchura, la ventana como 6 vectores, o la leyenda.</p><p>La denominación del color
debe ser una cadena que identifique al color según el diccionario inglés que GTK reconocerá como <strong
class="userinput"><code>«red»</code></strong>, <strong class="userinput"><code>«blue»</code></strong>,
<strong class="userinput"><code>«yellow»</code></strong>, etc... De forma alternativa el color se puede
especificar en formato RGB como por ejemplo <strong class="userinput"><code>«#rgb»</code></strong>, <strong
class="userinput"><code>«#rrggbb»</code></strong>, o <strong
class="userinput"><code>«#rrrrggggbbbb»</code></strong>, donde r, g, o b son dígitos hexadecimales de los
colores rojo, verde y azul (red, green, blue) . Finalmente los colores se pueden especificar como vectores
siendo el rojo, verde y azul componentes con valores que sol
o pueden ser 0 o 1.</p><p>Los valores de entrada de la ventana deben ser del tipo <strong
class="userinput"><code>[x1,x2,y1,y2,z1,z2]</code></strong>, o bien, pueden ser una cadena <strong
class="userinput"><code>«ajuste»</code></strong>, en cualquier caso, el rango de x se establecerá con
precisión y el rango y se puede ajustar con cinco por ciento alrededor del borde de la
línea.</p><p>Finalmente, la leyenda debería ser una cadena que se pueda utilizar como leyenda en un gráfico.
Es decir, si se imprimen las leyendas.</p><p>Ejemplos: </p><pre class="screen"><code
class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawPoints(0,0,0,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawPoints([0,0,0;1,-1,2;-1,-1,1])</code></strong>
+</pre><p>Disponible desde la versión 1.0.19 en adelante.</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldClearSolutions"></a>VectorfieldClearSolutions</span></dt><dd><pre
class="synopsis">VectorfieldClearSolutions ()</pre><p>Limpia las soluciones realizadas por la función <a
class="link" href="ch11s20.html#gel-function-VectorfieldDrawSolution"><code
class="function">VectorfieldDrawSolution</code></a>.</p><p>Desde la versión 1.0.16 en
adelante.</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldDrawSolution"></a>VectorfieldDrawSolution</span></dt><dd><pre
class="synopsis">VectorfieldDrawSolution (x, y, dt, tlen)</pre><p>Cuando un campo de dibujo vectorial está
activo, dibuja una solución con las condición específica inicial. El método estándar de Runge-Kutta se
utiliza con incremento <code class="varname">dt</code> para un intervalo de longitud <code
class="varname">tlen</code>. Las soluciones permanecen en la gráfica hasta que se muestr
a un dibujo diferente o hasta que se llama a <a class="link"
href="ch11s20.html#gel-function-VectorfieldClearSolutions"><code
class="function">VectorfieldClearSolutions</code></a>. Puede también utilizar la gráfica para dibujar
soluciones y especificar las condiciones iniciales con el ratón.</p><p>Desde la versión 1.0.16 en
adelante.</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldPlot"></a>VectorfieldPlot</span></dt><dd><pre class="synopsis">VectorfieldPlot
(funcx, funcy)</pre><pre class="synopsis">VectorfieldPlot (funcx, funcy, x1, x2, y1, y2)</pre><p>Dibujar un
vector bidimensional. La función <code class="varname">funcx</code> será la dx/dt del campo vectorial y la
función <code class="varname">funcy</code> la dy/dt del campo vectorial. Las funciones tomarán dos números
reales <code class="varname">x</code> e <code class="varname">y</code>, o un simple número complejo. Cuando
el parámetro <a class="link" href="ch11s03.html#gel-function-Vectorfi
eldNormalized"><code class="function">VectorfieldNormalized</code></a> es <code
class="constant">true</code>, la magnitud de los vectores se normaliza. Es decir, sólo se muestra la
dirección y no la magnitud.</p><p>De manera opcional puede especificar los límites de la ventana de dibujo
como <code class="varname">x1</code>, <code class="varname">x2</code>, <code class="varname">y1</code>, <code
class="varname">y2</code>. Si no se especifican los límites, entonces se aplicará los actuales (Consulte <a
class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).</p><p>El parámetro <a class="link"
href="ch11s03.html#gel-function-LinePlotDrawLegends"><code class="function">LinePlotDrawLegends</code></a>
controla el dibujado de la leyenda.</p><p>Ejemplos: </p><pre class="screen"><code
class="prompt">genius></code> <strong class="userinput"><code>VectorfieldPlot(`(x,y)=x^2-y, `(x,y)=y^2-x,
-1, 1, -1, 1)</code></strong>
+</pre></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s19.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Subir</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch12.html">Siguiente</a></td></tr><tr><td width="40%" align="left"
valign="top">Operaciones simbólicas </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top"> Capítulo 12. Programas de
ejemplo en GEL</td></tr></table></div></body></html>
diff --git a/help/es/html/ch12.html b/help/es/html/ch12.html
new file mode 100644
index 0000000..ac9814d
--- /dev/null
+++ b/help/es/html/ch12.html
@@ -0,0 +1,54 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 12. Programas
de ejemplo en GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="index.html" title="Manual de Genius"><link
rel="prev" href="ch11s20.html" title="Dibujar"><link rel="next" href="ch13.html" title="Capítulo 13.
Configuración"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Capítulo
12. Programas de ejemplo en GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s20.html">Anterior</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch13.html">Siguiente</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="t
itle"><a name="genius-gel-example-programs"></a>Capítulo 12. Programas de ejemplo en
GEL</h1></div></div></div><p>Esto es una función que calcula factoriales: </p><pre
class="programlisting">function f(x) = if x <= 1 then 1 else (f(x-1)*x)
+</pre><p>Con sangría se convierte: </p><pre class="programlisting">function f(x) = (
+ if x <= 1 then
+ 1
+ else
+ (f(x-1)*x)
+)
+</pre><p>Esto es un puerto directo de la función factorial desde la página principal <span
class="application">bc</span>. La sintaxis es similar a <span class="application">bc</span>, pero diferente
en que en GEL, la última expresión es la única que se devuelve. Utilizar la función <code
class="literal">return</code> en su lugar, esto será: </p><pre class="programlisting">function f(x) = (
+ if (x <= 1) then return (1);
+ return (f(x-1) * x)
+)
+</pre><p>Con mucho, la manera más fácil de definir una función factorial será usar el lazo del producto como
sigue. No es sólo la manera más corta y más rápida, sino probablemente la versión mas legible. </p><pre
class="programlisting">function f(x) = prod k=1 to x do k
+</pre><p>He aquí un ejemplo más extenso, esto básicamente redefine la función interna <a class="link"
href="ch11s09.html#gel-function-ref"><code class="function">ref</code></a> para calcular la fila escalar de
una matriz. La función <code class="function">ref</code> se construye de manera mucho más rápida, pero este
ejemplo demuestra algunas de las características más complejas de GEL. </p><pre class="programlisting">#
Calculate the row-echelon form of a matrix
+function MyOwnREF(m) = (
+ if not IsMatrix(m) or not IsValueOnly(m) then
+ (error("MyOwnREF: argument not a value only matrix");bailout);
+ s := min(rows(m), columns(m));
+ i := 1;
+ d := 1;
+ while d <= s and i <= columns(m) do (
+
+ # This just makes the anchor element non-zero if at
+ # all possible
+ if m@(d,i) == 0 then (
+ j := d+1;
+ while j <= rows(m) do (
+ if m@(j,i) == 0 then
+ (j=j+1;continue);
+ a := m@(j,);
+ m@(j,) := m@(d,);
+ m@(d,) := a;
+ j := j+1;
+ break
+ )
+ );
+ if m@(d,i) == 0 then
+ (i:=i+1;continue);
+
+ # Here comes the actual zeroing of all but the anchor
+ # element rows
+ j := d+1;
+ while j <= rows(m)) do (
+ if m@(j,i) != 0 then (
+ m@(j,) := m@(j,)-(m@(j,i)/m@(d,i))*m@(d,)
+ );
+ j := j+1
+ );
+ m@(d,) := m@(d,) * (1/m@(d,i));
+ d := d+1;
+ i := i+1
+ );
+ m
+)
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch11s20.html">Anterior</a> </td><td width="20%" align="center"> </td><td
width="40%" align="right"> <a accesskey="n" href="ch13.html">Siguiente</a></td></tr><tr><td width="40%"
align="left" valign="top">Dibujar </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top"> Capítulo 13.
Configuración</td></tr></table></div></body></html>
diff --git a/help/es/html/ch13.html b/help/es/html/ch13.html
new file mode 100644
index 0000000..3e0f1ba
--- /dev/null
+++ b/help/es/html/ch13.html
@@ -0,0 +1,28 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 13.
Configuración</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual de Genius"><link rel="up" href="index.html" title="Manual de Genius"><link
rel="prev" href="ch12.html" title="Capítulo 12. Programas de ejemplo en GEL"><link rel="next"
href="ch13s02.html" title="Precisión"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Capítulo 13. Configuración</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch12.html">Anterior</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch13s02.html">Siguiente</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 class="title"><a
name="genius-prefs"></a>Capítulo 13. Configuración</h1></div></div></div><div class="toc"><p><b>Tabla de
contenidos</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch13.html#genius-prefs-output">Salida</a></span></dt><dt><span class="sect1"><a
href="ch13s02.html">Precisión</a></span></dt><dt><span class="sect1"><a
href="ch13s03.html">Terminal</a></span></dt><dt><span class="sect1"><a
href="ch13s04.html">Memoria</a></span></dt></dl></div><p>Para configurar la <span
class="application">herramienta matemática Genius</span>, elija <span class="guimenu">Configuración</span> →
<span class="guimenuitem">Preferencias</span>. Hay varios parámetros básicos proporcionados por la
calculadora además de los proporcionados por la biblioteca estándar. Estos controlan cómo se comporta la
calculadora.</p><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Cambiar
la configuración con GEL</h3><p>Muchas de las configuraciones en Genius so
n simplemente variables globales, y que se pueden evaluar y asignar de la misma manera que las variables
normales. Consulte la <a class="xref" href="ch05s02.html" title="Usar variables">“Usar variables”</a> sobre
evaluar y asignar a variables, y la <a class="xref" href="ch11s03.html" title="Parámetros">“Parámetros”</a>
para una lista de configuraciones que se pueden modificar por este método.</p><p>Por ejemplo, puede
establecer el número máximo de dígitos en un resultado a 12 escribiendo: </p><pre
class="programlisting">MaxDigits = 12
+</pre></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-prefs-output"></a>Salida</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Número máximo de cifras que mostrar</span>
+ </span></dt><dd><p>El número máximo de dígitos en un resultado (<a class="link"
href="ch11s03.html#gel-function-MaxDigits"><code class="function">MaxDigits</code></a>)</p></dd><dt><span
class="term">
+ <span class="guilabel">Resultados como números de coma flotante</span>
+ </span></dt><dd><p>Indica si los resultados se imprimirán siempre como números flotantes (<a
class="link" href="ch11s03.html#gel-function-ResultsAsFloats"><code
class="function">ResultsAsFloats</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Números de coma flotante en notación científica</span>
+ </span></dt><dd><p>Indica si los números flotantes están en notación científica (<a class="link"
href="ch11s03.html#gel-function-ScientificNotation"><code
class="function">ScientificNotation</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Imprimir siempre expresiones completas</span>
+ </span></dt><dd><p>Indica si se imprimen expresiones completas para valores de retorno no numéricos
(más largos que una línea) (<a class="link" href="ch11s03.html#gel-function-FullExpressions"><code
class="function">FullExpressions</code></a>))</p></dd><dt><span class="term">
+ <span class="guilabel">Usar fracciones mixtas</span>
+ </span></dt><dd><p>Indica si se imprimen las fracciones como fracciones mixtas utilizando la forma «1
1/3» en vez de «4/3». (<a class="link" href="ch11s03.html#gel-function-MixedFractions"><code
class="function">MixedFractions</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Mostrar 0.0 cuando el número en coma flotante es menor que 10^-x (0=no
truncar nunca)</span>
+ </span></dt><dd><p>Indica cómo cortar la salida. Pero sólo cuando otros números pueden ser muy
grandes. Consulte la documentación del parámetro <a class="link"
href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>.</p></dd><dt><span class="term">
+ <span class="guilabel">Sólo truncar los números cuando otro número es mayor que 10^-x</span>
+ </span></dt><dd><p>Indica cuándo se corta la salida. Esto lo configura el parámetro <a class="link"
href="ch11s03.html#gel-function-OutputChopWhenExponent"><code
class="function">OutputChopWhenExponent</code></a>. Consulte la documentación del parámetro <a class="link"
href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>.</p></dd><dt><span class="term">
+ <span class="guilabel">Recordar los ajustes de salida entre sesiones</span>
+ </span></dt><dd><p>Indica si la configuración de la salida en el campo <span class="guilabel">Opciones
de salida de número/expresión</span> se recordarán para la próxima sesión. No se aplica al campo <span
class="guilabel">Opciones de salida de error/información</span>.</p><p>Si no está activada, se usará el valor
predeterminado o cualquier configuración guardada anteriormente cada vez que se inicie Genius. Tenga en
cuenta que las configuraciones se guardan al final de la sesión, así que si quiere cambiar los valores
predeterminados, active esta casilla, reinicie <span class="application">herramienta matemática Genius</span>
y entonces desactive la casilla de nuevo.</p></dd><dt><span class="term">
+ <span class="guilabel">Mostrar los errores en una ventana de diálogo</span>
+ </span></dt><dd><p>Si se activan, los errores se mostrarán en un diálogo separado, si no se activan,
los errores se imprimirán en la consola.</p></dd><dt><span class="term">
+ <span class="guilabel">Mostrar los mensajes de información en un diálogo</span>
+ </span></dt><dd><p>Si se activan los mensajes de información se mostraran en un diálogo separado, si
no se activan, los mensajes de información se imprimirán en la consola.</p></dd><dt><span class="term">
+ <span class="guilabel">Máximo de errores que mostrar</span>
+ </span></dt><dd><p>El número máximo de errores que devolver por una prueba (<a class="link"
href="ch11s03.html#gel-function-MaxErrors"><code class="function">MaxErrors</code></a>). Si lo establece a 0,
entonces todos los errores se devolverán siempre . En general, si algún bucle causa muchos errores, entonces
es poco probable que se de cuenta nada más que de unos pocos fallos, y verá una larga lista de fallos no
sirve de mucha ayuda.</p></dd></dl></div><p>Además de estas preferencias, hay algunas preferencias que se
pueden cambiar configurándolas en el área de trabajo de la consola. Para otras que puedan afectar a la salida
consulte la <a class="xref" href="ch11s03.html" title="Parámetros">“Parámetros”</a>.</p><div
class="variablelist"><dl class="variablelist"><dt><span class="term">
+ <code class="function">IntegerOutputBase</code>
+ </span></dt><dd><p>La base que se usará para mostrar enteros</p></dd><dt><span class="term">
+ <code class="function">OutputStyle</code>
+ </span></dt><dd><p>Una cadena, puede ser <code class="literal">"normal"</code>, <code
class="literal">"latex"</code>, <code class="literal">"mathml"</code> o <code class="literal">"troff"</code>
y afectará a cómo se imprimen las matrices (y quizás otras cosas), útil para pegar en documentos. El estilo
normal legible para los humanos,es el predeterminado por <span class="application">herramienta matemática
Genius</span>. Los otros estilos son para las tipografías de LaTeX, MathML (XML), o en
Troff.</p></dd></dl></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch12.html">Anterior</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch13s02.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Capítulo 12.
Programas de ejemplo en GEL </td><td width="20%" align="center"><a accesskey="h" href="inde
x.html">Inicio</a></td><td width="40%" align="right" valign="top">
Precisión</td></tr></table></div></body></html>
diff --git a/help/es/html/ch13s02.html b/help/es/html/ch13s02.html
new file mode 100644
index 0000000..e54fa7c
--- /dev/null
+++ b/help/es/html/ch13s02.html
@@ -0,0 +1,5 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Precisión</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manual de Genius"><link rel="up" href="ch13.html"
title="Capítulo 13. Configuración"><link rel="prev" href="ch13.html" title="Capítulo 13.
Configuración"><link rel="next" href="ch13s03.html" title="Terminal"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Precisión</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch13.html">Anterior</a> </td><th width="60%" align="center">Capítulo 13.
Configuración</th><td width="20%" align="right"> <a accesskey="n"
href="ch13s03.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: bo
th"><a name="genius-prefs-precision"></a>Precisión</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Precisión en coma flotante</span>
+ </span></dt><dd><p>Indica la precisión en bits de los números en coma flotante (<a class="link"
href="ch11s03.html#gel-function-FloatPrecision"><code class="function">FloatPrecision</code></a>). Tenga en
cuenta que cambiar esto, sólo afecta a las cantidades calculadas más recientes. Los valores antiguos
almacenados en variables, obviamente permanecerán en la precisión antigua y si quiere hacerlos más precisos,
tendrá que volver a calcularlos. La excepción a esto son las constantes como <a class="link"
href="ch11s04.html#gel-function-pi"><code class="function">pi</code></a> o <a class="link"
href="ch11s04.html#gel-function-e"><code class="function">e</code></a>.</p></dd><dt><span class="term">
+ <span class="guilabel">Recordar los ajustes de precisión entre sesiones</span>
+ </span></dt><dd><p>Indicar si la configuración de la precisión se recordará para la próxima sesión. Si
no está activada, la configuración predeterminada o la configuración guardada anteriormente se utilizarán
cada vez que Genius se inicie. Tenga en cuenta que las configuraciones se guardan al final de la sesión, así
que si quiere cambiar la configuración por defecto, active esta casilla, reinicie Genius y luego vuelva a
desactivarla.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch13.html">Subir</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch13s03.html">Siguiente</a></td></tr><tr><td width="40%" align="left"
valign="top">Capítulo 13. Configuración </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40
%" align="right" valign="top"> Terminal</td></tr></table></div></body></html>
diff --git a/help/es/html/ch13s03.html b/help/es/html/ch13s03.html
new file mode 100644
index 0000000..9a4d462
--- /dev/null
+++ b/help/es/html/ch13s03.html
@@ -0,0 +1,9 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Terminal</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
de Genius"><link rel="up" href="ch13.html" title="Capítulo 13. Configuración"><link rel="prev"
href="ch13s02.html" title="Precisión"><link rel="next" href="ch13s04.html" title="Memoria"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Terminal</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch13s02.html">Anterior</a> </td><th width="60%"
align="center">Capítulo 13. Configuración</th><td width="20%" align="right"> <a accesskey="n"
href="ch13s04.html">Siguiente</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius
-prefs-terminal"></a>Terminal</h2></div></div></div><p>«Terminal» se refiere a la consola en el área de
trabajo.</p><div class="variablelist"><dl class="variablelist"><dt><span class="term">
+ <span class="guilabel">Líneas de desplazamiento hacia atrás</span>
+ </span></dt><dd><p>Líneas de desfile hacia atrás en la terminal.</p></dd><dt><span class="term">
+ <span class="guilabel">Tipografía</span>
+ </span></dt><dd><p>La tipografía que usar en la terminal.</p></dd><dt><span class="term">
+ <span class="guilabel">Negro sobre blanco</span>
+ </span></dt><dd><p>Si usar blanco sobre negro en la terminal.</p></dd><dt><span class="term">
+ <span class="guilabel">Cursor parpadeante</span>
+ </span></dt><dd><p>Cuando la terminal tenga el foco, el cursor parpadeará en ella. Puede que a veces
resulte molesto y genere tráfico innecesario si ejecuta Genius remotamente.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch13s02.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch13.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch13s04.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Precisión </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%" align="right"
valign="top"> Memoria</td></tr></table></div></body></html>
diff --git a/help/es/html/ch13s04.html b/help/es/html/ch13s04.html
new file mode 100644
index 0000000..6ff897e
--- /dev/null
+++ b/help/es/html/ch13s04.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Memoria</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
de Genius"><link rel="up" href="ch13.html" title="Capítulo 13. Configuración"><link rel="prev"
href="ch13s03.html" title="Terminal"><link rel="next" href="ch14.html" title="Capítulo 14. Acerca de la
herramienta matemática Genius"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Memoria</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch13s03.html">Anterior</a> </td><th width="60%" align="center">Capítulo 13. Configuración</th><td
width="20%" align="right"> <a accesskey="n" href="ch14.html">Siguiente</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="tit
le" style="clear: both"><a name="genius-prefs-memory"></a>Memoria</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term">
+ <span class="guilabel">Número máximo de nodos que asignar</span>
+ </span></dt><dd><p>Internamente, todos los datos se ponen en pequeños nodos en la memoria. Esto da un
límite máximo de nodos reservados para el procesado. Esto evita que se quede sin memoria si comete algún
error que haga consumir al programa más memoria de lo normal, como podría ser una recursión sin fin. Esto
podría ralentizar su máquina y complicar incluso la interrupción del programa.</p><p>Una vez se ha alcanzado
el límite, la <span class="application">herramienta matemática Genius</span> preguntará si desea interrumpir
el proceso o si desea continuar. Si decide continuar, no se aplicará ningún límite y será posible que su
máquina se quede sin memoria. El límite se aplicará en la siguiente ocasión que ejecuté un programa o una
expresión en la consola sin importar la respuesta a la pregunta.</p><p>Establecer el límite a cero significa
que no hay límite en la cantidad de memoria que usa Genius.</p></dd></dl></div></div><div class="navfooter"
<hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch13s03.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch13.html">Subir</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch14.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top">Terminal </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Inicio</a></td><td width="40%" align="right"
valign="top"> Capítulo 14. Acerca de la <span class="application">herramienta matemática
Genius</span></td></tr></table></div></body></html>
diff --git a/help/es/html/ch14.html b/help/es/html/ch14.html
new file mode 100644
index 0000000..75504d2
--- /dev/null
+++ b/help/es/html/ch14.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 14. Acerca de
la herramienta matemática Genius</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manual de Genius"><link rel="up" href="index.html"
title="Manual de Genius"><link rel="prev" href="ch13s04.html" title="Memoria"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Capítulo 14. Acerca de la <span
class="application">herramienta matemática Genius</span></th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch13s04.html">Anterior</a> </td><th width="60%" align="center"> </th><td width="20%"
align="right"> </td></tr></table><hr></div><div class="chapter"><div class="titlepage"><div><div><h1
class="title"><a name="genius-about"></a>Capítulo 14. Acerca
de la <span class="application">herramienta matemática Genius</span></h1></div></div></div><p>Jiří (George)
Lebl (<code class="email"><<a class="email" href="mailto:jirka 5z com">jirka 5z com</a>></code>) ha
desarrollado la <span class="application">Herramienta matemática Genius</span>. La historia de la <span
class="application">herramienta matemática Genius</span> se remonta a 1997. Fue el primer programa
calculadora de Gnome, sin embargo evolucionó a algo más que una calculadora de escritorio. Para más
información acerca de la <span class="application">herramienta matemática Genius</span>, por favor, visite la
<a class="ulink" href="http://www.jirka.org/genius.html" target="_top">página web de Genius</a>.</p><p>Para
informar de un error o hacer una sugerencia sobre esta aplicación o sobre este manual, envíe un correo al
autor o publique un mensaje en la lista de correo (consulte la página web).</p><p>Este programa se distribuye
bajo los términos de
la Licencia Pública General GNU (GPL) tal y como fue publicada por la Free Software Foundation, en la
versión 3 ó (a su elección) cualquier versión posterior. Una copia de esta licencia puede encontrarse en
<a class="ulink" href="http://www.gnu.org/copyleft/gpl.html" target="_top">link</a>, o en el archivo COPYING
incluido con el código fuente de este programa.</p><p>Jiří Lebl recibió apoyo parcial de la NSF grant DMS
0900885, DMS 1362337,y la Universidad de Illinois en Urbana-Champaign, la Universidad de California en San
Diego, la Universidad de Wisconsin-Madison, y la Universidad del estado de Oklahoma durante el desarrollo del
proyecto. El software se ha utilizado tanto para docencia como para investigación.</p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch13s04.html">Anterior</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> </td></t
r><tr><td width="40%" align="left" valign="top">Memoria </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Inicio</a></td><td width="40%" align="right" valign="top">
</td></tr></table></div></body></html>
diff --git a/help/es/html/genius.proc b/help/es/html/genius.proc
new file mode 100644
index 0000000..e69de29
diff --git a/help/es/html/index.html b/help/es/html/index.html
new file mode 100644
index 0000000..6e5df44
--- /dev/null
+++ b/help/es/html/index.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Manual de
Genius</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><meta name="description"
content="Manual de la herramienta matemática Genius."><link rel="home" href="index.html" title="Manual de
Genius"><link rel="next" href="ch01.html" title="Capítulo 1. Introducción"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Manual de Genius</th></tr><tr><td width="20%"
align="left"> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch01.html">Siguiente</a></td></tr></table><hr></div><div lang="es" class="book"><div
class="titlepage"><div><div><h1 class="title"><a name="index"></a>Manual de Genius</h1></div><div><div
class="authorgroup"><div class="author"><h3 class="author"><sp
an class="firstname">Jiří</span> <span class="surname">Lebl</span></h3><div class="affiliation"><span
class="orgname">Universidad del estado de Oklahoma<br></span><div class="address"><p> <code
class="email"><<a class="email" href="mailto:jirka 5z com">jirka 5z com</a>></code>
</p></div></div></div><div class="author"><h3 class="author"><span class="firstname">Kai</span> <span
class="surname">Willadsen</span></h3><div class="affiliation"><span class="orgname">Universidad de
Queensland, Australia<br></span><div class="address"><p> <code class="email"><<a class="email"
href="mailto:kaiw itee uq edu au">kaiw itee uq edu au</a>></code>
</p></div></div></div></div></div><div><p class="releaseinfo">Este manual describe la versión 1.0.22 de
Genius.</p></div><div><p class="copyright">Copyright © 1997-2016 Jiří (George) Lebl</p></div><div><p
class="copyright">Copyright © 2004 Kai Willadsen</p></div><div><p class="copyright">Copyright © 2011 Daniel
Mustieles (d
aniel mustieles gmail com)</p></div><div><div class="legalnotice"><a name="legalnotice"></a><p>Se concede
permiso para copiar, distribuir o modificar este documento según las condiciones de la GNU Free
Documentation License (GFDL), Versión 1.1 o cualquier versión posterior publicada por la Free Software
Foundation sin Secciones invariantes, Textos de portada y Textos de contraportada. Encontrará una copia de
la GFDL en este <a class="ulink" href="ghelp:fdl" target="_top">enlace</a> o en el archivo COPYING-DOCS
distribuido con este manual.</p><p>Este manual es parte de la colección de manuales GNOME distribuidos bajo
la GFDL. Si quiere distribuir este manual separadamente de la colección, puede hacerlo añadiendo una copia
de la licencia al manual, tal como se describe en la sección 6 de la licencia.</p><p>Muchos de los nombres
usados por empresas para distinguir sus productos y servicios se mencionan como marcas comerciales. Donde
aparezcan dichos nombres en c
ualquier documentación GNOME, y para que los miembros del proyecto de documentación reconozcan dichas
marcas comerciales, dichos nombres se imprimen en mayúsculas o iniciales mayúsculas.</p><p>EL DOCUMENTO Y
LAS VERSIONES MODIFICADAS DEL MISMO SE PROPORCIONAN CON SUJECIÓN A LOS TÉRMINOS DE LA GFDL, QUEDANDO BIEN
ENTENDIDO, ADEMÁS, QUE: </p><div class="orderedlist"><ol class="orderedlist" type="1"><li
class="listitem"><p>EL DOCUMENTO SE ENTREGA "TAL CUAL", SIN GARANTÍA DE NINGÚN TIPO, NI EXPLÍCITA NI
IMPLÍCITA INCLUYENDO, SIN LIMITACIÓN, GARANTÍA DE QUE EL DOCUMENTO O VERSIÓN MODIFICADA DE ÉSTE CAREZCA
DE DEFECTOS EN EL MOMENTO DE SU VENTA, SEA ADECUADO A UN FIN CONCRETO O INCUMPLA ALGUNA NORMATIVA. TODO EL
RIESGO RELATIVO A LA CALIDAD, PRECISIÓN Y UTILIDAD DEL DOCUMENTO O SU VERSIÓN MODIFICADA RECAE EN USTED. SI
CUALQUIER DOCUMENTO O VERSIÓN MODIFICADA DE AQUÉL RESULTARA DEFECTUOSO EN CUALQUIER ASPECTO, USTED (Y NO EL
REDACTOR INICIAL, A
UTOR O AUTOR DE APORTACIONES) ASUMIRÁ LOS COSTES DE TODA REPARACIÓN, MANTENIMIENTO O CORRECCIÓN
NECESARIOS. ESTA EXENCIÓN DE RESPONSABILIDAD SOBRE LA GARANTÍA ES UNA PARTE ESENCIAL DE ESTA LICENCIA. NO
SE AUTORIZA EL USO DE NINGÚN DOCUMENTO NI VERSIÓN MODIFICADA DE ÉSTE POR EL PRESENTE, SALVO DENTRO DEL
CUMPLIMIENTO DE LA EXENCIÓN DE RESPONSABILIDAD;Y</p></li><li class="listitem"><p>BAJO NINGUNA CIRCUNSTANCIA
NI BAJO NINGUNA TEORÍA LEGAL, SEA POR ERROR (INCLUYENDO NEGLIGENCIA), CONTRATO O DE ALGÚN OTRO MODO, EL
AUTOR, EL ESCRITOR INICIAL, CUALQUIER CONTRIBUIDOR, O CUALQUIER DISTRIBUIDOR DEL DOCUMENTO O VERSIÓN
MODIFICADA DEL DOCUMENTO, O CUALQUIER PROVEEDOR DE CUALQUIERA DE ESAS PARTES, SERÁ RESPONSABLE ANTE NINGUNA
PERSONA POR NINGÚN DAÑO DIRECTO, INDIRECTO, ESPECIAL, INCIDENTAL O DERIVADO DE NINGÚN TIPO, INCLUYENDO,
SIN LIMITACIÓN DAÑOS POR PÉRDIDA DE MERCANCÍAS, PARO TÉCNICO, FALLO INFORMÁTICO O MAL FUNCIONAMIENTO O
CUALQUIER OT
RO POSIBLE DAÑO O PÉRDIDAS DERIVADAS O RELACIONADAS CON EL USO DEL DOCUMENTO O SUS VERSIONES MODIFICADAS,
AUNQUE DICHA PARTE HAYA SIDO INFORMADA DE LA POSIBILIDAD DE QUE SE PRODUJESEN DICHOS
DAÑOS.</p></li></ol></div></div></div><div><div class="legalnotice"><a name="idm45508419861488"></a><p
class="legalnotice-title"><b>Comentarios</b></p><p>Para informar de un fallo, o hacer alguna sugerencia sobre
la aplicación <span class="application">herramienta matemática Genius</span>, o este manual, siga las
instrucciones en la <a class="ulink" href="http://www.jirka.org/genius.html" target="_top">página web de
Genius</a> o envíe un correo electrónico a <code class="email"><<a class="email" href="mailto:jirka 5z
com">jirka 5z com</a>></code>.</p></div></div><div><div class="revhistory"><table
style="border-style:solid; width:100%;" summary="Historial de revisiones"><tr><th align="left" valign="top"
colspan="2"><b>Historial de revisiones</b></th></tr><tr><td align="l
eft">Revisión 0.2</td><td align="left">Septiembre 2016</td></tr><tr><td align="left" colspan="2">
+ <p class="author">Jiri (George) Lebl <code class="email"><<a class="email"
href="mailto:jirka 5z com">jirka 5z com</a>></code></p>
+ </td></tr></table></div></div><div><div class="abstract"><p
class="title"><b>Resumen</b></p><p>Manual de la herramienta matemática
Genius.</p></div></div></div><hr></div><div class="toc"><p><b>Tabla de contenidos</b></p><dl
class="toc"><dt><span class="chapter"><a href="ch01.html">1. Introducción</a></span></dt><dt><span
class="chapter"><a href="ch02.html">2. Primeros pasos</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch02.html#genius-to-start">Para iniciar la <span class="application">herramienta matemática
Genius</span></a></span></dt><dt><span class="sect1"><a href="ch02s02.html">Al iniciar
Genius</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch03.html">3. Uso
básico</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch03.html#genius-usage-workarea">Usar el área
de trabajo</a></span></dt><dt><span class="sect1"><a href="ch03s02.html">Crear un programa
nuevo</a></span></dt><dt><span class="sect1"><a href="ch03s03.html">Abrir y ejecuta
r un programa</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch04.html">4.
Dibujar</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch04.html#genius-line-plots">Trazado de
líneas</a></span></dt><dt><span class="sect1"><a href="ch04s02.html">Gráficos
paramétricos</a></span></dt><dt><span class="sect1"><a href="ch04s03.html">Dibujos de campos de
inclinación</a></span></dt><dt><span class="sect1"><a href="ch04s04.html">Gráficos de campos de
vectores</a></span></dt><dt><span class="sect1"><a href="ch04s05.html">Gráficos de
superficie</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch05.html">5. Conceptos de
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch05.html#genius-gel-values">Valores</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-numbers">Números</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-booleans">Booleanos</a></span></dt><dt><span class="sect2"><a hr
ef="ch05.html#genius-gel-values-strings">Cadenas</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-null">Nulo</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s02.html">Usar variables</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-setting">Configurar variables</a></span></dt><dt><span
class="sect2"><a href="ch05s02.html#genius-gel-variables-built-in">Variables
integradas</a></span></dt><dt><span class="sect2"><a href="ch05s02.html#genius-gel-previous-result">Resultado
de la variable anterior</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch05s03.html">Usar
funciones</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-defining">Definir funciones</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-variable-argument-lists">Listas de argumentos de
variables</a></span></dt><dt><span class="sect2"><a href="ch05s03.html#gen
ius-gel-functions-passing-functions">Pasar funciones a funciones</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-operations">Operaciones con
funciones</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s04.html">Separador</a></span></dt><dt><span class="sect1"><a
href="ch05s05.html">Comentarios</a></span></dt><dt><span class="sect1"><a href="ch05s06.html">Evaluación
modular</a></span></dt><dt><span class="sect1"><a href="ch05s07.html">Lista de operadores
GEL</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch06.html">6. Programar con
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch06.html#genius-gel-conditionals">Condicionales</a></span></dt><dt><span class="sect1"><a
href="ch06s02.html">Bucles</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-while">Bucles «while»</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-for">Bucles «for»</a></s
pan></dt><dt><span class="sect2"><a href="ch06s02.html#genius-gel-loops-foreach">Bucles
«foreach»</a></span></dt><dt><span class="sect2"><a href="ch06s02.html#genius-gel-loops-break-continue">Parar
y continuar</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch06s03.html">Sumas y
productos</a></span></dt><dt><span class="sect1"><a href="ch06s04.html">Operadores de
comparación</a></span></dt><dt><span class="sect1"><a href="ch06s05.html">Variables globales y ámbito de
variables</a></span></dt><dt><span class="sect1"><a href="ch06s06.html">Variables de
parámetros</a></span></dt><dt><span class="sect1"><a href="ch06s07.html">Retorno</a></span></dt><dt><span
class="sect1"><a href="ch06s08.html">Referencias</a></span></dt><dt><span class="sect1"><a
href="ch06s09.html">Lvalues</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch07.html">7.
Programación avanzada con GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch07.html#genius-gel-error-handl
ing">Control de errores</a></span></dt><dt><span class="sect1"><a href="ch07s02.html">Sintaxis de nivel
superior</a></span></dt><dt><span class="sect1"><a href="ch07s03.html">Devolver
funciones</a></span></dt><dt><span class="sect1"><a href="ch07s04.html">Variables locales
verdaderas</a></span></dt><dt><span class="sect1"><a href="ch07s05.html">Procedimiento de inicio de
GEL</a></span></dt><dt><span class="sect1"><a href="ch07s06.html">Cargar
programas</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch08.html">8. Matrices en
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch08.html#genius-gel-matrix-support">Introducir
matrices</a></span></dt><dt><span class="sect1"><a href="ch08s02.html">Conjugada de la traspuesta y operador
de trasposición</a></span></dt><dt><span class="sect1"><a href="ch08s03.html">Álgebra
lineal</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch09.html">9. Polinomios en
GEL</a></span></dt><dd><dl><dt><span class="s
ect1"><a href="ch09.html#genius-gel-polynomials-using">Usar polinomios</a></span></dt></dl></dd><dt><span
class="chapter"><a href="ch10.html">10. Teoría de conjuntos en GEL</a></span></dt><dd><dl><dt><span
class="sect1"><a href="ch10.html#genius-gel-sets-using">Usar conjuntos</a></span></dt></dl></dd><dt><span
class="chapter"><a href="ch11.html">11. Lista de funciones GEL</a></span></dt><dd><dl><dt><span
class="sect1"><a href="ch11.html#genius-gel-function-list-commands">Comandos</a></span></dt><dt><span
class="sect1"><a href="ch11s02.html">Básico</a></span></dt><dt><span class="sect1"><a
href="ch11s03.html">Parámetros</a></span></dt><dt><span class="sect1"><a
href="ch11s04.html">Constantes</a></span></dt><dt><span class="sect1"><a
href="ch11s05.html">Numérico</a></span></dt><dt><span class="sect1"><a
href="ch11s06.html">Trigonometría</a></span></dt><dt><span class="sect1"><a href="ch11s07.html">Teoría de
números</a></span></dt><dt><span class="sect1"><a href="c
h11s08.html">Manipulación de matrices</a></span></dt><dt><span class="sect1"><a
href="ch11s09.html">Álgebra lineal</a></span></dt><dt><span class="sect1"><a
href="ch11s10.html">Combinatoria</a></span></dt><dt><span class="sect1"><a
href="ch11s11.html">Cálculo</a></span></dt><dt><span class="sect1"><a
href="ch11s12.html">Funciones</a></span></dt><dt><span class="sect1"><a href="ch11s13.html">Resolución de
ecuaciones</a></span></dt><dt><span class="sect1"><a
href="ch11s14.html">Estadísticas</a></span></dt><dt><span class="sect1"><a
href="ch11s15.html">Polinomios</a></span></dt><dt><span class="sect1"><a href="ch11s16.html">Teoría de
conjuntos</a></span></dt><dt><span class="sect1"><a href="ch11s17.html">Álgebra
conmutativa</a></span></dt><dt><span class="sect1"><a href="ch11s18.html">Miscelánea</a></span></dt><dt><span
class="sect1"><a href="ch11s19.html">Operaciones simbólicas</a></span></dt><dt><span class="sect1"><a
href="ch11s20.html">Dibujar</a></span></dt
</dl></dd><dt><span class="chapter"><a href="ch12.html">12. Programas de ejemplo en
GEL</a></span></dt><dt><span class="chapter"><a href="ch13.html">13.
Configuración</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch13.html#genius-prefs-output">Salida</a></span></dt><dt><span class="sect1"><a
href="ch13s02.html">Precisión</a></span></dt><dt><span class="sect1"><a
href="ch13s03.html">Terminal</a></span></dt><dt><span class="sect1"><a
href="ch13s04.html">Memoria</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch14.html">14.
Acerca de la <span class="application">herramienta matemática Genius</span></a></span></dt></dl></div><div
class="list-of-figures"><p><b>Lista de figuras</b></p><dl><dt>2.1. <a
href="ch02s02.html#mainwindow-fig">Ventana de la <span class="application">herramienta matemática
Genius</span></a></dt><dt>4.1. <a href="ch04.html#lineplot-fig">Crear una ventana de
dibujo</a></dt><dt>4.2. <a href="ch04.html#lineplot2-fig">Ventana de dibu
jo</a></dt><dt>4.3. <a href="ch04s02.html#paramplot-fig">Pestaña dibujo paramétrico</a></dt><dt>4.4. <a
href="ch04s02.html#paramplot2-fig">Gráfico paramétrico</a></dt><dt>4.5. <a
href="ch04s05.html#surfaceplot-fig">Gráfico de superficie</a></dt></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left">
</td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch01.html">Siguiente</a></td></tr><tr><td width="40%" align="left" valign="top"> </td><td width="20%"
align="center"> </td><td width="40%" align="right" valign="top"> Capítulo 1.
Introducción</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch01.html b/help/fr/html/ch01.html
new file mode 100644
index 0000000..1c2868f
--- /dev/null
+++ b/help/fr/html/ch01.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapitre 1.
Introduction</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="index.html" title="Manuel de Genius"><link
rel="prev" href="index.html" title="Manuel de Genius"><link rel="next" href="ch02.html" title="Chapitre 2.
Premiers pas"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Chapitre
1. Introduction</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="index.html">Précédent</a>
</td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch02.html">Suivant</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-intro
duction"></a>Chapitre 1. Introduction</h1></div></div></div><p>L'application <span class="application">Outil
de maths Genius</span> est un calculateur générique qui peut être utilisé comme calculatrice de bureau, outil
éducatif en mathématiques et peut même être utile pour la recherche. Le langage utilisé dans l'<span
class="application">Outil de maths Genius</span> a été conçu pour être « mathématique » dans le sens où il
devrait être « what you mean is what you get » (« ce que vous pensez est ce que vous obtenez »). C'est bien
sûr un objectif pas complètement atteignable. L'<span class="application">Outil de maths Genius</span> peut
utiliser des rationnels, des entiers de précision arbitraire et des nombres à virgule flottante avec
différentes précisions en utilisant la bibliothèque GMP. Il prend en charge les nombres complexes en
utilisant la notation cartésienne. Il sait comment manipuler correctement les vecteurs et les matrices et
prend en charge l'algèbre linéaire élémentaire. Le langage de programmation autorise la définition de
fonctions et de variables utilisateurs et la modification de certains paramètres.</p><p>Il existe deux
versions de l'<span class="application">Outil de maths Genius</span>. L'une est la version graphique de GNOME
qui inclut une interface de style IDE et la possibilité de tracer des fonctions à une ou deux variables.
L'autre, la version en ligne de commande, n'a pas besoin de GNOME mais bien sûr, elle n'implémente aucune
fonctionnalité qui requiert l'interface graphique.</p><p>
+ Parts of this manual describe the graphical version of the calculator,
+ but the language is of course the same. The command line only version
+ lacks the graphing capabilities and all other capabilities that require
+ the graphical user interface.
+ </p><p>
+ Generally, when some feature of the language (function, operator, etc...)
+ is new in some version past 1.0.5, it is mentioned, but
+ below 1.0.5 you would have to look at the NEWS file.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="index.html">Précédent</a> </td><td width="20%" align="center"> </td><td
width="40%" align="right"> <a accesskey="n" href="ch02.html">Suivant</a></td></tr><tr><td width="40%"
align="left" valign="top">Manuel de Genius </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Chapitre 2. Premiers
pas</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch02.html b/help/fr/html/ch02.html
new file mode 100644
index 0000000..3945042
--- /dev/null
+++ b/help/fr/html/ch02.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapitre 2. Premiers
pas</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="index.html" title="Manuel de Genius"><link
rel="prev" href="ch01.html" title="Chapitre 1. Introduction"><link rel="next" href="ch02s02.html"
title="Démarrage de Genius"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Chapitre 2. Premiers pas</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch01.html">Précédent</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch02s02.html">Suivant</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="geni
us-getting-started"></a>Chapitre 2. Premiers pas</h1></div></div></div><div class="toc"><p><b>Table des
matières</b></p><dl class="toc"><dt><span class="sect1"><a href="ch02.html#genius-to-start">Lancement de
l'<span class="application">Outil de maths Genius</span></a></span></dt><dt><span class="sect1"><a
href="ch02s02.html">Démarrage de Genius</a></span></dt></dl></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-to-start"></a>Lancement de
l'<span class="application">Outil de maths Genius</span></h2></div></div></div><p>You can start <span
class="application">Genius Mathematics Tool</span> in the following ways:
+ </p><div class="variablelist"><dl class="variablelist"><dt><span class="term">Menu <span
class="guimenu">Applications</span></span></dt><dd><p>En fonction de votre système d'exploitation et de sa
version, l'élément de menu pour l'<span class="application">Outil de maths Genius</span> peut apparaître à
différents endroits. Cela peut être dans les sous-menus <span class="guisubmenu">Éducation</span>, <span
class="guisubmenu">Accessoires</span>, <span class="guisubmenu">Bureautique</span>, <span
class="guisubmenu">Science</span> ou d'autres similaires en fonction de vos réglages personnels. Le nom de
l'entrée de menu que vous recherchez est <span class="application">Outil de maths Genius</span>. Une fois
localisé, cliquez dessus pour démarrer l'<span class="application">Outil de maths
Genius</span>.</p></dd><dt><span class="term">Boîte de dialogue <span class="guilabel">Lancer une
application</span></span></dt><dd><p>Il se peut que l'entrée de menu ne soit p
as accessible pour votre système d'exploitation. Dans ce cas, vous pouvez ouvrir la boîte de dialogue <span
class="guilabel">Lancer une application</span> et saisir <span
class="command"><strong>gnome-genius</strong></span>.</p></dd><dt><span class="term">Ligne de
commande</span></dt><dd><p>Pour démarrer la version GNOME de l'<span class="application">Outil de maths
Genius</span>, saisissez <span class="command"><strong>gnome-genius</strong></span>.</p><p>Pour démarrer
seulement la version en ligne de commande, exécutez la commande <span
class="command"><strong>genius</strong></span>. Cette version ne comprend pas d'environnement graphique et
certaines fonctionnalités comme le tracé de graphiques ne sont pas
disponibles.</p></dd></dl></div></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch01.html">Précédent</a>
</td><td width="20%" align="center"> </td><td width="40%" al
ign="right"> <a accesskey="n" href="ch02s02.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Chapitre 1. Introduction </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Démarrage de
Genius</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch02s02.html b/help/fr/html/ch02s02.html
new file mode 100644
index 0000000..0bd796c
--- /dev/null
+++ b/help/fr/html/ch02s02.html
@@ -0,0 +1,32 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Démarrage de
Genius</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch02.html" title="Chapitre 2. Premiers
pas"><link rel="prev" href="ch02.html" title="Chapitre 2. Premiers pas"><link rel="next" href="ch03.html"
title="Chapitre 3. Utilisation de base"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Démarrage de Genius</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch02.html">Précédent</a> </td><th width="60%" align="center">Chapitre 2. Premiers
pas</th><td width="20%" align="right"> <a accesskey="n"
href="ch03.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 c
lass="title" style="clear: both"><a name="genius-when-start"></a>Démarrage de
Genius</h2></div></div></div><p>Lorsque vous démarrez la version GNOME de l'<span class="application">Outil
de maths Genius</span>, la fenêtre <a class="xref" href="ch02s02.html#mainwindow-fig" title="Figure 2.1.
Fenêtre de l'Outil de maths Genius">Figure 2.1, « Fenêtre de l'<span class="application">Outil de maths
Genius</span> »</a> apparaît.</p><div class="figure"><a name="mainwindow-fig"></a><p class="title"><b>Figure
2.1. Fenêtre de l'<span class="application">Outil de maths Genius</span></b></p><div
class="figure-contents"><div class="screenshot"><div class="mediaobject"><img src="figures/genius_window.png"
alt="Shows Outil de maths Genius main window. Contains titlebar, menubar, toolbar and working area. Menubar
contains Fichier, Édition, Calculatrice, Examples, Programs, Paramètres, and Aide
menus."></div></div></div></div><br class="figure-break"><p>La fenêtre de l'<span
class="application">Outil de maths Genius</span> contient les éléments suivants :</p><div
class="variablelist"><dl class="variablelist"><dt><span class="term">Barre de menus</span></dt><dd><p>Les
menus de la barre de menus contiennent toutes les commandes dont vous aurez besoin pour travailler avec les
fichiers dans l'<span class="application">Outil de maths Genius</span>. Le menu <span
class="guilabel">Fichier</span> contient les éléments pour charger et enregistrer des éléments et créer de
nouveaux programmes. La commande <span class="guilabel">Charger et exécuter...</span> n'ouvre pas de nouvelle
fenêtre pour le programme mais exécute seulement le programme directement. Elle est équivalente à la commande
<span class="command"><strong>load</strong></span>.</p><p>
+ The <span class="guilabel">Calculator</span> menu controls the
+calculator engine. It allows you to run the currently selected program or to
+interrupt the current calculation. You can also look at the full expression of
+the last answer (useful if the last answer was too large to fit onto the
+console), or you can view a listing of the values of all user defined
+variables. You can also monitor user variables, which is especially useful
+while a long calculation is running, or to debug a certain program.
+ Finally the <span class="guilabel">Calculator</span> allows plotting functions using a
user friendly dialog box.
+ </p><p>
+ The <span class="guilabel">Examples</span> menu is a list of example
+ programs or demos. If you open the menu, it will load the
+ example into a new program, which you can run, edit, modify,
+ and save. These programs should be well documented
+ and generally demonstrate either some feature of <span class="application">Genius
Mathematics Tool</span>
+ or some mathematical concept.
+ </p><p>
+ The <span class="guilabel">Programs</span> menu lists
+ the currently open programs and allows you to switch
+ between them.
+ </p><p>Les autres menus contiennent les mêmes fonctions classiques qui apparaissent dans d'autres
applications.</p></dd><dt><span class="term">Barre d'outils</span></dt><dd><p>La barre d'outils contient un
sous-ensemble des commandes accessibles à partir de la barre de menus.</p></dd><dt><span class="term">Zone de
travail</span></dt><dd><p>La zone de travail est la principale méthode d'interaction avec
l'application.</p><p>
+ The working area initially has just the <span class="guilabel">Console</span> tab, which is
+ the main way of interacting with the calculator. Here you
+ type expressions and the results are immediately returned
+ after you hit the Enter key.
+ </p><p>
+ Alternatively you can write longer programs and those can
+ appear in separate tabs. The programs are a set of commands or
+ functions that can be run all at once rather than entering them
+ at the command line. The programs can be saved in files for later
+ retrieval.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch02.html">Précédent</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch02.html">Niveau supérieur</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch03.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Chapitre 2.
Premiers pas </td><td width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td
width="40%" align="right" valign="top"> Chapitre 3. Utilisation de base</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch03.html b/help/fr/html/ch03.html
new file mode 100644
index 0000000..3c44f01
--- /dev/null
+++ b/help/fr/html/ch03.html
@@ -0,0 +1,37 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapitre 3.
Utilisation de base</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="index.html" title="Manuel de Genius"><link
rel="prev" href="ch02s02.html" title="Démarrage de Genius"><link rel="next" href="ch03s02.html"
title="Création d'un programme"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Chapitre 3. Utilisation de base</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch02s02.html">Précédent</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch03s02.html">Suivant</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="ti
tle"><a name="genius-usage"></a>Chapitre 3. Utilisation de base</h1></div></div></div><div
class="toc"><p><b>Table des matières</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch03.html#genius-usage-workarea">Utilisation de la zone de travail</a></span></dt><dt><span
class="sect1"><a href="ch03s02.html">Création d'un programme</a></span></dt><dt><span class="sect1"><a
href="ch03s03.html">Ouverture et lancement d'un programme</a></span></dt></dl></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-usage-workarea"></a>Utilisation de la zone de travail</h2></div></div></div><p>
+ Normally you interact with the calculator in the <span class="guilabel">Console</span> tab of the
+ work area. If you are running the text only version then the console
+ will be the only thing that is available to you. If you want to use
+ <span class="application">Genius Mathematics Tool</span> as a calculator only, just type in your
expression in the console, it
+ will be evaluated, and the returned value will be printed.
+ </p><p>
+ To evaluate an expression, type it into the <span class="guilabel">Console</span> work area and
press enter.
+ Expressions are written in a
+language called GEL. The most simple GEL expressions just looks like
+mathematics. For example
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>30*70 +
67^3.0 + ln(7) * (88.8/100)</code></strong>
+</pre><p>
+or
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>62734 +
812634 + 77^4 mod 5</code></strong>
+</pre><p>
+or
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>| sin(37) -
e^7 |</code></strong>
+</pre><p>
+or
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>sum n=1 to 70
do 1/n</code></strong>
+</pre><p>
+(Last is the harmonic sum from 1 to 70)
+</p><p>Pour obtenir une liste des fonctions et commandes, saisissez : </p><pre class="screen"><code
class="prompt">genius> </code><strong class="userinput"><code>help</code></strong>
+</pre><p> Si vous souhaitez obtenir plus d'aide sur une fonction précise, saisissez : </p><pre
class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>help
NomDeLaFonction</code></strong>
+</pre><p> Pour afficher ce manuel, saisissez : </p><pre class="screen"><code class="prompt">genius>
</code><strong class="userinput"><code>manual</code></strong>
+</pre><p>
+Suppose you have previously saved some GEL commands as a program to a file and
+you now want to execute them.
+To load this program from the file <code class="filename">path/to/program.gel</code>,
+type
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>load
path/to/program.gel</code></strong>
+</pre><p>
+<span class="application">Genius Mathematics Tool</span> keeps track of the current directory.
+To list files in the current directory type <span class="command"><strong>ls</strong></span>, to change
directory
+do <strong class="userinput"><code>cd directory</code></strong> as in the UNIX command shell.
+</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch02s02.html">Précédent</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch03s02.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Démarrage de Genius
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td width="40%"
align="right" valign="top"> Création d'un programme</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch03s02.html b/help/fr/html/ch03s02.html
new file mode 100644
index 0000000..38e0b06
--- /dev/null
+++ b/help/fr/html/ch03s02.html
@@ -0,0 +1,31 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Création d'un
programme</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch03.html" title="Chapitre 3. Utilisation de
base"><link rel="prev" href="ch03.html" title="Chapitre 3. Utilisation de base"><link rel="next"
href="ch03s03.html" title="Ouverture et lancement d'un programme"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Création d'un programme</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch03.html">Précédent</a> </td><th width="60%" align="center">Chapitre 3.
Utilisation de base</th><td width="20%" align="right"> <a accesskey="n"
href="ch03s03.html">Suivant</a></td></tr></table><hr></div><div class="sect1"
<div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-usage-create-program"></a>Création d'un programme</h2></div></div></div><p>
+ If you wish to enter several more complicated commands, or perhaps write a complicated
+ function using the <a class="link" href="ch05.html" title="Chapitre 5. Fondamentaux
GEL">GEL</a> language, you can create a new
+ program.
+ </p><p>
+To start writing a new program, choose
+<span class="guimenu">File</span> → <span class="guimenuitem">New
+Program</span>. A new tab will appear in the work area. You
+can write a <a class="link" href="ch05.html" title="Chapitre 5. Fondamentaux GEL">GEL</a> program in this
work area.
+Once you have written your program you can run it by
+<span class="guimenu">Calculator</span> → <span class="guimenuitem">Run</span> (or
+the <span class="guilabel">Run</span> toolbar button).
+This will execute your program and will display any output on the <span class="guilabel">Console</span> tab.
+Executing a program is equivalent of taking the text of the program and
+typing it into the console. The only difference is that this input is done
+independent of the console and just the output goes onto the console.
+<span class="guimenu">Calculator</span> → <span class="guimenuitem">Run</span>
+will always run the currently selected program even if you are on the <span class="guilabel">Console</span>
+tab. The currently selected program has its tab in bold type. To select a
+program, just click on its tab.
+ </p><p>
+To save the program you've just written, choose <span class="guimenu">File</span> → <span
class="guimenuitem">Save As...</span>.
+Similarly as in other programs you can choose
+<span class="guimenu">File</span> → <span class="guimenuitem">Save</span> to save a program that already has
+a filename attached to it. If you have many opened programs you have edited and wish to save you can also
choose
+<span class="guimenu">File</span> → <span class="guimenuitem">Save All Unsaved</span>.
+ </p><p>
+ Programs that have unsaved changes will have a "[+]" next to their filename. This way you can
see if the file
+ on disk and the currently opened tab differ in content. Programs which have not yet had a
filename associated
+ with them are always considered unsaved and no "[+]" is printed.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch03.html">Précédent</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch03.html">Niveau supérieur</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch03s03.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Chapitre
3. Utilisation de base </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Ouverture et lancement d'un
programme</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch03s03.html b/help/fr/html/ch03s03.html
new file mode 100644
index 0000000..5ced5de
--- /dev/null
+++ b/help/fr/html/ch03s03.html
@@ -0,0 +1,6 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Ouverture et lancement
d'un programme</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch03.html" title="Chapitre 3. Utilisation de
base"><link rel="prev" href="ch03s02.html" title="Création d'un programme"><link rel="next" href="ch04.html"
title="Chapitre 4. Tracé de graphiques"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Ouverture et lancement d'un programme</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch03s02.html">Précédent</a> </td><th width="60%" align="center">Chapitre
3. Utilisation de base</th><td width="20%" align="right"> <a accesskey="n"
href="ch04.html">Suivant</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-usage-open-program"></a>Ouverture et lancement d'un programme</h2></div></div></div><p>Pour
ouvrir un fichier, choisissez <span class="guimenu">Fichier</span> → <span class="guimenuitem">Ouvrir</span>.
Un nouvel onglet contenant le fichier apparaît dans la zone de travail. Vous pouvez l'utiliser pour modifier
le fichier.</p><p>Pour lancer un programme à partir d'un fichier, choisissez <span
class="guimenu">Fichier</span> → <span class="guimenuitem">Charger et exécuter...</span>. Le programme est
lancé sans être ouvert dans un onglet séparé. C'est équivalent à la commande <span
class="command"><strong>load</strong></span>.</p><p>
+ If you have made edits to a file you wish to throw away and want to reload to the version
that's on disk,
+ you can choose the
+ <span class="guimenu">File</span> → <span class="guimenuitem">Reload from Disk</span> menuitem.
This is useful for experimenting
+ with a program and making temporary edits, to run a program, but that you do not intend to keep.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch03s02.html">Précédent</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch03.html">Niveau supérieur</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch04.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Création
d'un programme </td><td width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td
width="40%" align="right" valign="top"> Chapitre 4. Tracé de graphiques</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch04.html b/help/fr/html/ch04.html
new file mode 100644
index 0000000..2471cfd
--- /dev/null
+++ b/help/fr/html/ch04.html
@@ -0,0 +1,19 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapitre 4. Tracé de
graphiques</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="index.html" title="Manuel de Genius"><link
rel="prev" href="ch03s03.html" title="Ouverture et lancement d'un programme"><link rel="next"
href="ch04s02.html" title="Courbes paramétriques"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Chapitre 4. Tracé de graphiques</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch03s03.html">Précédent</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch04s02.html">Suivant</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><
div><h1 class="title"><a name="genius-gel-plotting"></a>Chapitre 4. Tracé de
graphiques</h1></div></div></div><div class="toc"><p><b>Table des matières</b></p><dl class="toc"><dt><span
class="sect1"><a href="ch04.html#genius-line-plots">Tracé de lignes</a></span></dt><dt><span class="sect1"><a
href="ch04s02.html">Courbes paramétriques</a></span></dt><dt><span class="sect1"><a href="ch04s03.html">Champ
de directions</a></span></dt><dt><span class="sect1"><a href="ch04s04.html">Champ de
vecteurs</a></span></dt><dt><span class="sect1"><a href="ch04s05.html">Tracé de
surfaces</a></span></dt></dl></div><p>Le tracé de graphiques n'est disponible que dans la version graphique
GNOME. Tous les tracés accessibles à partir de l'interface graphique sont disponibles à partir de la fenêtre
<span class="guilabel">Création de graphiques</span>. Vous pouvez accéder à cette fenêtre, soit en cliquant
sur le bouton <span class="guilabel">Tracer</span> de la barre d'outils ou en
sélectionnant <span class="guilabel">Tracer</span> dans le menu <span class="guilabel">Calculateur</span>.
Vous pouvez également accéder aux fonctionnalités de tracer en utilisant les <a class="link"
href="ch11s20.html" title="Tracé de graphiques">fonctions de tracé</a> du langage GEL. Consultez <a
class="xref" href="ch05.html" title="Chapitre 5. Fondamentaux GEL">Chapitre 5, <i>Fondamentaux GEL</i></a>
pour apprendre comment saisir des expressions compréhensibles par Genius.</p><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-line-plots"></a>Tracé de
lignes</h2></div></div></div><p>Pour tracer des fonctions réelles d'une variable, ouvrez la fenêtre <span
class="guilabel">Création de graphiques</span>. Vous pouvez aussi utiliser la fonction <a class="link"
href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a> en ligne de commande
(consultez sa documentation).</p><p>Une fois
que vous avez cliqué sur le bouton <span class="guilabel">Tracer</span>, une fenêtre contenant des onglets
apparaît. Vous devez être dans l'onglet <span class="guilabel">Tracé de lignes</span> et dans celui-ci, vous
devez être dans l'onglet <span class="guilabel">Fonctions / Expressions</span> (consultez <a class="xref"
href="ch04.html#lineplot-fig" title="Figure 4.1. Fenêtre Création de graphiques">Figure 4.1, « Fenêtre
Création de graphiques »</a>).</p><div class="figure"><a name="lineplot-fig"></a><p class="title"><b>Figure
4.1. Fenêtre Création de graphiques</b></p><div class="figure-contents"><div class="screenshot"><div
class="mediaobject"><img src="figures/line_plot.png" alt="Affiche la fenêtre pour tracer des
graphiques."></div></div></div></div><br class="figure-break"><p>
+ Type expressions with <strong class="userinput"><code>x</code></strong> as
+ the independent variable into the textboxes. Alternatively you can give names of functions such as
+ <strong class="userinput"><code>cos</code></strong> rather then having to type <strong
class="userinput"><code>cos(x)</code></strong>.
+ You can graph up to ten functions. If you make a mistake and Genius cannot
+ parse the input it will signify this with a warning icon on the right of the text
+ input box where the error occurred, as well as giving you an error dialog.
+ You can change the ranges of the dependent and independent variables in the bottom
+ part of the dialog.
+ The <code class="varname">y</code> (dependent) range can be set automatically by turning on the <span
class="guilabel">Fit dependent axis</span>
+ checkbox.
+ The names of the variables can also be changed.
+ Pressing the <span class="guilabel">Plot</span> button produces the graph shown in <a class="xref"
href="ch04.html#lineplot2-fig" title="Figure 4.2. Fenêtre contenant une courbe">Figure 4.2, « Fenêtre
contenant une courbe »</a>.
+ </p><p>
+ The variables can be renamed by clicking the <span class="guilabel">Change variable
names...</span> button, which is useful if you wish to print or save the figure and don't want to use the
standard
+ names. Finally you can also avoid printing the legend and the axis labels completely,
+ which is also useful if printing or
+ saving, when the legend might simply be clutter.
+ </p><div class="figure"><a name="lineplot2-fig"></a><p class="title"><b>Figure 4.2. Fenêtre contenant
une courbe</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/line_plot_graph.png" alt="Le graphe produit."></div></div></div></div><br
class="figure-break"><p>À partir de là, vous pouvez imprimer le graphe, créer une version postscript
encapsulé ou PNG du graphe ou modifier le zoom. Si l'axe dépendant n'a pas été configuré correctement, Genius
peut l'avoir ajusté en cherchant les extrema des fonctions tracées.</p><p>Pour tracer à partir de la ligne de
commande, consultez la documentation de la fonction <a class="link"
href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a>.</p></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch03s03.html">Précédent</a> </td><td width="20%" align=
"center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch04s02.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Ouverture et lancement
d'un programme </td><td width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td
width="40%" align="right" valign="top"> Courbes paramétriques</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch04s02.html b/help/fr/html/ch04s02.html
new file mode 100644
index 0000000..e11498a
--- /dev/null
+++ b/help/fr/html/ch04s02.html
@@ -0,0 +1,21 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Courbes
paramétriques</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch04.html" title="Chapitre 4. Tracé de
graphiques"><link rel="prev" href="ch04.html" title="Chapitre 4. Tracé de graphiques"><link rel="next"
href="ch04s03.html" title="Champ de directions"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Courbes paramétriques</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch04.html">Précédent</a> </td><th width="60%" align="center">Chapitre 4. Tracé de
graphiques</th><td width="20%" align="right"> <a accesskey="n"
href="ch04s03.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div class="titlep
age"><div><div><h2 class="title" style="clear: both"><a name="genius-parametric-plots"></a>Courbes
paramétriques</h2></div></div></div><p>
+ In the create plot window, you can also choose the <span class="guilabel">Parametric</span> notebook
+ tab to create two dimensional parametric plots. This way you can
+ plot a single parametric function. You can either specify the
+ points as <code class="varname">x</code> and <code class="varname">y</code>, or giving a single
complex number
+ as a function of the variable <code class="varname">t</code>.
+ The range of the variable <code class="varname">t</code> is given explicitly, and the function is
sampled
+ according to the given increment.
+ The <code class="varname">x</code> and <code class="varname">y</code> range can be set
+ automatically by turning on the <span class="guilabel">Fit dependent axis</span>
+ checkbox, or it can be specified explicitly.
+ See <a class="xref" href="ch04s02.html#paramplot-fig" title="Figure 4.3. Onglet pour les courbes
paramétriques">Figure 4.3, « Onglet pour les courbes paramétriques »</a>.
+ </p><div class="figure"><a name="paramplot-fig"></a><p class="title"><b>Figure 4.3. Onglet pour les
courbes paramétriques</b></p><div class="figure-contents"><div class="screenshot"><div
class="mediaobject"><img src="figures/parametric.png" alt="Onglet pour tracer paramétrique dans la fenêtre
Création de graphiques."></div></div></div></div><br class="figure-break"><p>
+ An example of a parametric plot is given in
+ <a class="xref" href="ch04s02.html#paramplot2-fig" title="Figure 4.4. Courbe paramétrique">Figure
4.4, « Courbe paramétrique »</a>.
+ Similar operations can be
+ done on such graphs as can be done on the other line plots.
+ For plotting using the command line see the documentation of the
+ <a class="link" href="ch11s20.html#gel-function-LinePlotParametric"><code
class="function">LinePlotParametric</code></a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotCParametric"><code
class="function">LinePlotCParametric</code></a> function.
+ </p><div class="figure"><a name="paramplot2-fig"></a><p class="title"><b>Figure 4.4. Courbe
paramétrique</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/parametric_graph.png" alt="Courbe paramétrique produite"></div></div></div></div><br
class="figure-break"></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04.html">Précédent</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch04.html">Niveau supérieur</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch04s03.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Chapitre
4. Tracé de graphiques </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Champ de
directions</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch04s03.html b/help/fr/html/ch04s03.html
new file mode 100644
index 0000000..c1fb385
--- /dev/null
+++ b/help/fr/html/ch04s03.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Champ de
directions</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch04.html" title="Chapitre 4. Tracé de
graphiques"><link rel="prev" href="ch04s02.html" title="Courbes paramétriques"><link rel="next"
href="ch04s04.html" title="Champ de vecteurs"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Champ de directions</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch04s02.html">Précédent</a> </td><th width="60%" align="center">Chapitre 4. Tracé de
graphiques</th><td width="20%" align="right"> <a accesskey="n"
href="ch04s04.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div
<h2 class="title" style="clear: both"><a name="genius-slopefield-plots"></a>Champ de
directions</h2></div></div></div><p>Dans la fenêtre de création de graphiques, vous pouvez également
sélectionner l'onglet <span class="guilabel">Champ de directions</span> pour créer un graphique de champ de
directions à deux dimensions. Des opérations, similaires à celles qui peuvent être réalisées sur les tracés
de lignes, peuvent être réalisées sur des graphiques de ce type. Pour réaliser des graphiques en ligne de
commande, consultez la documentation de la fonction <a class="link"
href="ch11s20.html#gel-function-SlopefieldPlot"><code
class="function">SlopefieldPlot</code></a>.</p><p>Quand un champ de directions est actif, un menu
supplémentaire <span class="guilabel">Solveur</span> est disponible, il vous permet d'afficher la boîte de
dialogue du solveur. Dans celle-ci, vous pouvez faire tracer à Genius des solutions spécifiques pour les
conditions initiales fournie
s. Vous pouvez soit indiquer des conditions initiales spécifiques dans la boîte de dialogue ou cliquer sur
le graphique directement pour indiquer le point de départ. Tant que la boîte de dialogue du solveur est
active, la fonction de zoom par clic et déplacement ne fonctionne pas. Vous devez d'abord fermer la boîte de
dialogue si vous voulez zoomer avec votre souris.</p><p>Le solveur utilise la méthode standard de
Runge-Kutta. Les graphiques restent sur l'écran jusqu'à ce qu'ils soient effacés. Le solveur s'arrête à
chaque fois qu'il atteint les limites de la fenêtre du graphique. Le fait de zoomer ne modifie pas les
limites ou paramètres des solutions, vous devez les effacer et les redessiner avec les paramètres appropriés.
Vous pouvez utiliser la fonction <a class="link"
href="ch11s20.html#gel-function-SlopefieldDrawSolution"><code
class="function">SlopefieldDrawSolution</code></a> pour tracer les solutions à partir de la ligne de commande
ou dans des prog
rammes.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s02.html">Précédent</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch04.html">Niveau supérieur</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch04s04.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Courbes
paramétriques </td><td width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td
width="40%" align="right" valign="top"> Champ de vecteurs</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch04s04.html b/help/fr/html/ch04s04.html
new file mode 100644
index 0000000..cc7b19f
--- /dev/null
+++ b/help/fr/html/ch04s04.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Champ de
vecteurs</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch04.html" title="Chapitre 4. Tracé de
graphiques"><link rel="prev" href="ch04s03.html" title="Champ de directions"><link rel="next"
href="ch04s05.html" title="Tracé de surfaces"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Champ de vecteurs</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch04s03.html">Précédent</a> </td><th width="60%" align="center">Chapitre 4. Tracé de
graphiques</th><td width="20%" align="right"> <a accesskey="n"
href="ch04s05.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 c
lass="title" style="clear: both"><a name="genius-vectorfield-plots"></a>Champ de
vecteurs</h2></div></div></div><p>Dans la fenêtre de création de graphiques, vous pouvez également
sélectionner l'onglet <span class="guilabel">Champ de vecteurs</span> pour créer un graphique de champ de
vecteurs à deux dimensions. Des opérations, similaires à celles qui peuvent être réalisées sur les tracés de
lignes, peuvent être réalisées sur des graphiques de ce type. Pour réaliser des graphiques en ligne de
commande, consultez la documentation de la fonction <a class="link"
href="ch11s20.html#gel-function-VectorfieldPlot"><code class="function">VectorfieldPlot</code></a>.</p><p>Par
défaut, la direction et l'amplitude du champ de vecteurs sont affichées. Pour n'afficher que la direction,
cochez la case appropriée pour normaliser la longueur des flèches.</p><p>Quand un champ de vecteurs est
actif, un menu supplémentaire <span class="guilabel">Solveur</span> est disponibl
e, vous permettant d'afficher la boîte de dialogue du solveur. Dans celle-ci, vous pouvez faire tracer à
Genius des solutions spécifiques pour les conditions initiales fournies. Vous pouvez soit indiquer des
conditions initiales spécifiques dans la boîte de dialogue ou cliquer sur le graphique directement pour
indiquer le point de départ. Tant que la boîte de dialogue du solveur est active, la fonction de zoom par
clic et déplacement ne fonctionne pas. Vous devez d'abord fermer la boîte de dialogue si vous voulez zoomer
avec votre souris.</p><p>Le solveur utilise la méthode standard de Runge-Kutta. Les graphiques restent sur
l'écran jusqu'à ce qu'ils soient effacés. Le fait de zoomer ne modifie pas les limites ou paramètres des
solutions, vous devez effacer et les redessiner avec les paramètres appropriés. Vous pouvez utiliser la
fonction <a class="link" href="ch11s20.html#gel-function-VectorfieldDrawSolution"><code
class="function">VectorfieldDrawSolution</c
ode></a> pour tracer les solutions à partir de la ligne de commande ou dans des programmes.</p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch04s03.html">Précédent</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch04.html">Niveau supérieur</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch04s05.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Champ de directions
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td width="40%"
align="right" valign="top"> Tracé de surfaces</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch04s05.html b/help/fr/html/ch04s05.html
new file mode 100644
index 0000000..86494db
--- /dev/null
+++ b/help/fr/html/ch04s05.html
@@ -0,0 +1,28 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Tracé de
surfaces</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch04.html" title="Chapitre 4. Tracé de
graphiques"><link rel="prev" href="ch04s04.html" title="Champ de vecteurs"><link rel="next" href="ch05.html"
title="Chapitre 5. Fondamentaux GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Tracé de surfaces</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch04s04.html">Précédent</a> </td><th width="60%" align="center">Chapitre 4. Tracé de graphiques</th><td
width="20%" align="right"> <a accesskey="n" href="ch05.html">Suivant</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div
<h2 class="title" style="clear: both"><a name="genius-surface-plots"></a>Tracé de
surfaces</h2></div></div></div><p>
+ Genius can also plot surfaces. Select the <span class="guilabel">Surface plot</span> tab in the
+ main notebook of the <span class="guilabel">Create Plot</span> window. Here you can specify a single
+ expression that should use either <code class="varname">x</code> and <code class="varname">y</code>
as real independent variables
+ or <code class="varname">z</code> as a complex variable (where <code class="varname">x</code> is the
real part of <code class="varname">z</code> and <code class="varname">y</code> is the
+ imaginary part). For example to plot the modulus of the cosine
+ function for complex parameters,
+ you could enter <strong class="userinput"><code>|cos(z)|</code></strong>. This would be
+ equivalent to <strong class="userinput"><code>|cos(x+1i*y)|</code></strong>.
+ See <a class="xref" href="ch04s05.html#surfaceplot-fig" title="Figure 4.5. Graphique de
surface">Figure 4.5, « Graphique de surface »</a>.
+ For plotting using the command line see the documentation of the
+ <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a> function.
+ </p><p>
+ The <code class="varname">z</code> range can be set automatically by turning on the <span
class="guilabel">Fit dependent axis</span>
+ checkbox. The variables can be renamed by clicking the <span class="guilabel">Change variable
names...</span> button, which is useful if you wish to print or save the figure and don't want to use the
standard
+ names. Finally you can also avoid printing the legend, which is also useful if printing or
+ saving, when the legend might simply be clutter.
+ </p><div class="figure"><a name="surfaceplot-fig"></a><p class="title"><b>Figure 4.5. Graphique de
surface</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/surface_graph.png" alt="Module de la fonction cosinus complex."></div></div></div></div><br
class="figure-break"><p>
+ In surface mode, left and right arrow keys on your keyboard will rotate the
+ view along the z axis. Alternatively you can rotate along any axis by
+ selecting <span class="guilabel">Rotate axis...</span> in the <span
class="guilabel">View</span>
+ menu. The <span class="guilabel">View</span> menu also has a top view mode which rotates the
+ graph so that the z axis is facing straight out, that is, we view the graph from the top
+ and get essentially just the colors that define the values of the function getting a
+ temperature plot of the function. Finally you should
+ try <span class="guilabel">Start rotate animation</span>, to start a continuous slow rotation.
+ This is especially good if using <span class="application">Genius Mathematics Tool</span> to
present to an audience.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s04.html">Précédent</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch04.html">Niveau supérieur</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Champ de
vecteurs </td><td width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td
width="40%" align="right" valign="top"> Chapitre 5. Fondamentaux GEL</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch05.html b/help/fr/html/ch05.html
new file mode 100644
index 0000000..0d120cc
--- /dev/null
+++ b/help/fr/html/ch05.html
@@ -0,0 +1,82 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapitre 5.
Fondamentaux GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="index.html" title="Manuel de Genius"><link
rel="prev" href="ch04s05.html" title="Tracé de surfaces"><link rel="next" href="ch05s02.html"
title="Utilisation des variables"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Chapitre 5. Fondamentaux GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch04s05.html">Précédent</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch05s02.html">Suivant</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a
name="genius-gel"></a>Chapitre 5. Fondamentaux GEL</h1></div></div></div><div class="toc"><p><b>Table des
matières</b></p><dl class="toc"><dt><span class="sect1"><a href="ch05.html#genius-gel-values">Types de
données</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-numbers">Nombres</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-booleans">Booléens</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-strings">Chaînes de caractères</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-null">Null</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s02.html">Utilisation des variables</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-setting">Attribution de variables</a></span></dt><dt><span
class="sect2"><a href="ch05s02.html#genius-gel-variables-built-in">Variables
internes</a></span></dt><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-previous-result">Variable « Résultat précédent
»</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch05s03.html">Utilisation des
fonctions</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-defining">Définition de fonctions</a></span></dt><dt><span
class="sect2"><a href="ch05s03.html#genius-gel-functions-variable-argument-lists">Liste d'arguments
variable</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-passing-functions">Une fonction comme argument d'une autre
fonction</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-operations">Opérations sur les
fonctions</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s04.html">Séparateur</a></span></dt><dt><span class="sect1"><a
href="ch05s05.html">Commentaires</a></span></dt><dt><span class="sect1"><a href="ch05s06.html">Évaluation
modulaire</a></span></dt><dt><span cla
ss="sect1"><a href="ch05s07.html">Liste des opérateurs GEL</a></span></dt></dl></div><p>
+ GEL stands for Genius Extension Language. It is the language you use
+ to write programs in Genius. A program in GEL is simply an
+ expression that evaluates to a number, a matrix, or another object
+ in GEL.
+ <span class="application">Genius Mathematics Tool</span> can be used as a simple calculator, or as a
+ powerful theoretical research tool. The syntax is meant to
+ have as shallow of a learning curve as possible, especially for use
+ as a calculator.
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-values"></a>Types de données</h2></div></div></div><p>
+ Values in GEL can be <a class="link" href="ch05.html#genius-gel-values-numbers"
title="Nombres">numbers</a>, <a class="link" href="ch05.html#genius-gel-values-booleans"
title="Booléens">Booleans</a>, or <a class="link" href="ch05.html#genius-gel-values-strings" title="Chaînes
de caractères">strings</a>. GEL also treats
+<a class="link" href="ch08.html" title="Chapitre 8. Matrices en GEL">matrices</a> as values.
+ Values can be used in calculations, assigned to variables and returned from functions, among
other uses.
+ </p><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-numbers"></a>Nombres</h3></div></div></div><p>Les entiers sont les premiers types de
nombres GEL. Les entiers s'écrivent de façon habituelle. </p><pre class="programlisting">1234
+</pre><p> Les nombres hexadécimaux et octaux peuvent être écrit à la manière du langage C. Par exemple :
</p><pre class="programlisting">0x123ABC
+01234
+</pre><p> Vous pouvez aussi saisir des nombres dans n'importe quelle base en utilisant la notation <code
class="literal"><base>\<nombre></code>. Les chiffres plus grands que 10 utilisent des lettres
tout comme pour l'hexadécimal. Par exemple, un nombre en base 23 pourrait s'écrire : </p><pre
class="programlisting">23\1234ABCD
+</pre><p>Le deuxième type de nombres en GEL est celui des rationnels. Les rationnels sont simplement obtenus
en divisant deux entiers. Il serait donc possible d'écrire : </p><pre class="programlisting">3/4
+</pre><p> pour obtenir trois quarts. Les rationnels acceptent également la notation fractionnelle mixte,
donc afin d'obtenir un et trois dixièmes, vous pouvez écrire : </p><pre class="programlisting">1 3/10
+</pre><p>
+The next type of number is floating point. These are entered in a similar fashion to C notation. You can use
<code class="literal">E</code>, <code class="literal">e</code> or <code class="literal">@</code> as the
exponent delimiter. Note that using the exponent delimiter gives a float even if there is no decimal point in
the number. Examples:
+</p><pre class="programlisting">1.315
+7.887e77
+7.887e-77
+.3
+0.3
+77e5
+</pre><p>
+ When Genius prints a floating point number it will always append a
+ <code class="computeroutput">.0</code> even if the number is whole. This is to indicate that
+ floating point numbers are taken as imprecise quantities. When a number is written in the
+ scientific notation, it is always a floating point number and thus Genius does not
+ print the <code class="computeroutput">.0</code>.
+ </p><p>
+The final type of number in GEL is the complex numbers. You can enter a complex number as a sum of real and
imaginary parts. To add an imaginary part, append an <code class="literal">i</code>. Here are examples of
entering complex numbers:
+</p><pre class="programlisting">1+2i
+8.01i
+77*e^(1.3i)
+</pre><p>
+ </p><div class="important" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Important</h3><p>Lorsque vous saisissez des nombres imaginaires, il doit y avoir un nombre
devant le <code class="literal">i</code>. Si vous utilisez <code class="literal">i</code> tout seul, Genius
l'interprète comme une référence à la variable <code class="varname">i</code>. Si vous avez besoin de faire
référence à <code class="literal">i</code> tout seul, utilisez <code class="literal">1i</code> à la
place.</p><p>Afin de pouvoir utiliser la notation en fraction mixte avec des nombres imaginaires, vous devez
mettre la fraction mixte entre parenthèses (par exemple, <strong class="userinput"><code>(1
2/5)i</code></strong>).</p></div></div><div class="sect2"><div class="titlepage"><div><div><h3
class="title"><a name="genius-gel-values-booleans"></a>Booléens</h3></div></div></div><p>Genius prend
également en charge nativement les données booléennes. Les deux const
antes booléennes sont <code class="constant">true</code> (vrai) et <code class="constant">false</code>
(faux) ; ces identifiants peuvent être utilisés comme n'importe quelle autre variable. Vous pouvez aussi
utiliser les identifiants <code class="constant">True</code>, <code class="constant">TRUE</code>, <code
class="constant">False</code> et <code class="constant">FALSE</code> comme alias de ces précédents.</p><p>Là
où une expression booléenne est attendue, vous pouvez utiliser une grandeur booléenne ou toute expression qui
produit soit un nombre soit un booléen. Si Genius a besoin d'évaluer un nombre en tant que booléen, il
interprète 0 comme <code class="constant">false</code> et tout autre nombre comme <code
class="constant">true</code>.</p><p>Vous pouvez également faire des calculs avec des données booléennes. Par
exemple : </p><pre class="programlisting">( (1 + true) - false ) * true
+</pre><p> est identique à : </p><pre class="programlisting">( (true or true) or not false ) and true
+</pre><p> Seules l'addition, la soustraction et la multiplication sont prises en charge. Si vous mélangez
des nombres avec des booléens dans une expression alors les nombres sont convertis en booléens comme indiqué
ci-dessus. Cela signifie que, par exemple : </p><pre class="programlisting">1 == true
+</pre><p> vaut toujours <code class="constant">true</code> puisque 1 est converti en <code
class="constant">true</code> avant d'être comparé à <code class="constant">true</code>.</p></div><div
class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-strings"></a>Chaînes de caractères</h3></div></div></div><p>
+Like numbers and Booleans, strings in GEL can be stored as values inside variables and passed to functions.
You can also concatenate a string with another value using the plus operator. For example:
+</p><pre class="programlisting">a=2+3;"Le résultat est : "+a
+</pre><p>
+will create the string:
+</p><pre class="programlisting">Le résultat est : 5
+</pre><p>
+You can also use C-like escape sequences such as <code class="literal">\n</code>,<code
class="literal">\t</code>,<code class="literal">\b</code>,<code class="literal">\a</code> and <code
class="literal">\r</code>. To get a <code class="literal">\</code> or <code class="literal">"</code> into the
string you can quote it with a <code class="literal">\</code>. For example:
+</p><pre class="programlisting">"Barre oblique : \\ Guillemets : \" Tabulations : \t1\t2\t3"
+</pre><p>
+will make a string:
+</p><pre class="programlisting">Barre oblique : \ Guillemets : " Tabulations : 1 2 3
+</pre><p>
+Do note however that when a string is returned from a function, escapes are
+quoted, so that the output can be used as input. If you wish to print the
+string as it is (without escapes), use the
+<a class="link" href="ch11s02.html#gel-function-print"><code class="function">print</code></a>
+or
+<a class="link" href="ch11s02.html#gel-function-printn"><code class="function">printn</code></a> functions.
+ </p><p>
+ In addition, you can use the library function <a class="link"
href="ch11s02.html#gel-function-string"><code class="function">string</code></a> to convert anything to a
string. For example:
+</p><pre class="programlisting">string(22)
+</pre><p>
+will return
+</p><pre class="programlisting">"22"
+</pre><p>
+Strings can also be compared with <code class="literal">==</code> (equal), <code class="literal">!=</code>
(not equal) and <code class="literal"><=></code> (comparison) operators
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-null"></a>Null</h3></div></div></div><p>
+There is a special value called
+<code class="constant">null</code>. No operations can be performed on
+it, and nothing is printed when it is returned. Therefore,
+<code class="constant">null</code> is useful when you do not want output from an
+expression. The value <code class="constant">null</code> can be obtained as an expression when you
+type <code class="literal">.</code>, the constant <code class="constant">null</code> or nothing.
+By nothing we mean that if you end an expression with
+a separator <code class="literal">;</code>, it is equivalent to ending it with a
+separator followed by a <code class="constant">null</code>.
+ </p><p>Exemple : </p><pre class="programlisting">x=5;.
+x=5;
+</pre><p>Certaines fonctions renvoient <code class="constant">null</code> quand aucune valeur ne peut être
renvoyée ou quand une erreur survient. La grandeur <code class="constant">null</code> est aussi utilisée
comme vecteur ou matrice vide ou comme une référence vide.</p></div></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch04s05.html">Précédent</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> <a accesskey="n" href="ch05s02.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Tracé de surfaces </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Utilisation des
variables</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch05s02.html b/help/fr/html/ch05s02.html
new file mode 100644
index 0000000..1ce5b9f
--- /dev/null
+++ b/help/fr/html/ch05s02.html
@@ -0,0 +1,24 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Utilisation des
variables</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch05.html" title="Chapitre 5. Fondamentaux
GEL"><link rel="prev" href="ch05.html" title="Chapitre 5. Fondamentaux GEL"><link rel="next"
href="ch05s03.html" title="Utilisation des fonctions"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Utilisation des variables</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch05.html">Précédent</a> </td><th width="60%" align="center">Chapitre 5.
Fondamentaux GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s03.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div class="titlep
age"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-variables"></a>Utilisation des
variables</h2></div></div></div><p>Syntaxe : </p><pre class="programlisting">NomDeVariable
+</pre><p> Exemple : </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>e</code></strong>
+= 2.71828182846
+</pre><p>Pour évaluer une variable elle-même, il suffit de saisir le nom de la variable. Cela renvoie la
valeur de la variable. Vous pouvez utiliser une variable n'importe où, où vous utiliseriez normalement un
nombre ou une chaîne. De plus, les variables sont indispensables pour définir des fonctions qui possèdent des
arguments (consultez <a class="xref" href="ch05s03.html#genius-gel-functions-defining" title="Définition de
fonctions">la section intitulée « Définition de fonctions »</a>).</p><div class="tip" style="margin-left:
0.5in; margin-right: 0.5in;"><h3 class="title">Utilisation de la complétion à l'aide de la touche
Tab</h3><p>Vous pouvez utiliser la complétion à l'aide de la touche Tab pour que Genius complète les noms de
variable pour vous. Essayez de saisir les premières lettres du nom et appuyez sur la touche <strong
class="userinput"><code>Tab</code></strong>.</p></div><div class="important" style="margin-left: 0.5in;
margin-right: 0.5in;"><
h3 class="title">Noms de variable sensibles à la casse</h3><p>Les noms de variable sont sensibles à la
casse. Cela signifie que les variables appelées <code class="varname">bonjour</code>, <code
class="varname">BONJOUR</code> et <code class="varname">Bonjour</code> sont toutes différentes.</p></div><div
class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-variables-setting"></a>Attribution de variables</h3></div></div></div><p>Syntaxe : </p><pre
class="programlisting"><identifier> = <value>
+<identifier> := <value>
+</pre><p> Exemple: </p><pre class="programlisting">x = 3
+x := 3
+</pre><p>
+To assign a value to a variable, use the <code class="literal">=</code> or <code class="literal">:=</code>
operators. These operators set the value of the variable and return the value you set, so you can do things
like
+</p><pre class="programlisting">a = b = 5
+</pre><p>
+This will set <code class="varname">b</code> to 5 and then also set <code class="varname">a</code> to 5.
+ </p><p>Les opérateurs <code class="literal">=</code> et <code class="literal">:=</code> peuvent tous
les deux être utilisés pour définir des variables. La différence entre les deux est que l'opérateur <code
class="literal">:=</code> agit toujours comme un opérateur d'attribution alors que l'opérateur <code
class="literal">=</code> peut être interprété comme une opération de test d'égalité lorsqu'il est utilisé
dans un contexte où une expression booléenne est attendue.</p><p>
+ For more information about the scope of variables, that is when are what variables visible, see <a
class="xref" href="ch06s05.html" title="Variables globales et portée des variables">la section intitulée «
Variables globales et portée des variables »</a>.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-variables-built-in"></a>Variables internes</h3></div></div></div><p>
+GEL has a number of built-in ‘variables’, such as
+<code class="varname">e</code>, <code class="varname">pi</code> or <code class="varname">GoldenRatio</code>.
These are widely used constants with a preset value, and
+they cannot be assigned new values.
+There are a number of other built-in variables.
+See <a class="xref" href="ch11s04.html" title="Constantes">la section intitulée « Constantes »</a> for a
full list. Note that <code class="varname">i</code> is not by default
+the square root of negative one (the imaginary number), and is undefined to allow its use as a counter. If
you wish to write the imaginary number you need to
+use <strong class="userinput"><code>1i</code></strong>.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-previous-result"></a>Variable « Résultat précédent »</h3></div></div></div><p>Les variables
<code class="varname">Ans</code> et <code class="varname">ans</code> (answer : réponse) peuvent être
utilisées pour obtenir le résultat de la dernière expression. Par exemple, si vous avez fait un calcul, pour
ajouter 389 au résultat précédent vous pouvez saisir : </p><pre class="programlisting">Ans+389
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05.html">Précédent</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Niveau supérieur</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05s03.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Chapitre
5. Fondamentaux GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Utilisation des
fonctions</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch05s03.html b/help/fr/html/ch05s03.html
new file mode 100644
index 0000000..93a6cef
--- /dev/null
+++ b/help/fr/html/ch05s03.html
@@ -0,0 +1,47 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Utilisation des
fonctions</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch05.html" title="Chapitre 5. Fondamentaux
GEL"><link rel="prev" href="ch05s02.html" title="Utilisation des variables"><link rel="next"
href="ch05s04.html" title="Séparateur"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Utilisation des fonctions</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch05s02.html">Précédent</a> </td><th width="60%" align="center">Chapitre
5. Fondamentaux GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s04.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><di
v><h2 class="title" style="clear: both"><a name="genius-gel-functions"></a>Utilisation des
fonctions</h2></div></div></div><p>Syntaxe : </p><pre class="programlisting">NomDeLaFonction(argument1,
argument2, ...)
+</pre><p> Exemple : </p><pre class="programlisting">Factorial(5)
+cos(2*pi)
+gcd(921,317)
+</pre><p> Pour évaluer une fonction, saisissez le nom de la fonction, suivi par les arguments de la fonction
(s'il y en a) entre parenthèses. Cela renvoie le résultat de l'application de la fonction avec ses arguments.
Le nombre d'arguments de la fonction peut, bien sûr, être différent pour chaque fonction.</p><p>
+ There are many built-in functions, such as <a class="link"
href="ch11s06.html#gel-function-sin"><code class="function">sin</code></a>, <a class="link"
href="ch11s06.html#gel-function-cos"><code class="function">cos</code></a> and <a class="link"
href="ch11s06.html#gel-function-tan"><code class="function">tan</code></a>. You can use the <a class="link"
href="ch11.html#gel-command-help"><code class="function">help</code></a> built-in command to get a list of
available functions, or see <a class="xref" href="ch11.html" title="Chapitre 11. Liste des fonctions
GEL">Chapitre 11, <i>Liste des fonctions GEL</i></a> for a full listing.
+ </p><div class="tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Utilisation de
la complétion à l'aide de la touche Tab</h3><p>Vous pouvez utiliser la fonction de complétion à l'aide de la
touche Tab pour que Genius complète les noms de fonction pour vous. Essayez de saisir les quelques premières
lettres du nom et appuyez sur <strong class="userinput"><code>Tab</code></strong>.</p></div><div
class="important" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Noms de fonction
sensibles à la casse</h3><p>Les noms des fonctions sont sensibles à la casse. Cela signifie que les fonctions
appelées <code class="function">fairecela</code>, <code class="function">FAIRECELA</code> et <code
class="function">Fairecela</code> sont toutes différentes.</p></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a name="genius-gel-functions-defining"></a>Définition de
fonctions</h3></div></div></div><p>Syntaxe : <
/p><pre class="programlisting">function <identifier>(<comma separated arguments>) = <function
body>
+<identifier> = (`() = <function body>)
+</pre><p> Le caractère accent grave <code class="literal">`</code> indique une fonction anonyme. En
l'apposant à un nom de variable, en réalité vous définissez une fonction.</p><p>
+A function takes zero or more comma separated arguments, and returns the result of the function body.
Defining your own functions is primarily a matter of convenience; one possible use is to have sets of
functions defined in GEL files that Genius can load in order to make them available.
+Example:
+</p><pre class="programlisting">function addup(a,b,c) = a+b+c
+</pre><p>
+then <strong class="userinput"><code>addup(1,4,9)</code></strong> yields 14
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-variable-argument-lists"></a>Liste d'arguments
variable</h3></div></div></div><p>Si vous ajoutez <code class="literal">...</code> après le dernier nom
d'argument dans la déclaration de fonction alors Genius permet la transmission d'un nombre quelconque
d'arguments à la place de cet argument. Si aucun argument n'est transmis alors cet argument est défini à
<code class="constant">null</code>. Sinon, c'est un vecteur ligne contenant tous les arguments. Par exemple,
</p><pre class="programlisting">function f(a,b...) = b
+</pre><p> alors <strong class="userinput"><code>f(1,2,3)</code></strong> donne <code
class="computeroutput">[2,3]</code> tandis que <strong class="userinput"><code>f(1)</code></strong> donne
<code class="constant">null</code>.</p></div><div class="sect2"><div class="titlepage"><div><div><h3
class="title"><a name="genius-gel-functions-passing-functions"></a>Une fonction comme argument d'une autre
fonction</h3></div></div></div><p>Dans Genius, il est possible de transmettre une fonction comme argument
d'une autre fonction. Cela peut être fait en utilisant soit des « nœuds de fonction », soit des fonctions
anonymes.</p><p>Si vous ne saisissez pas les parenthèses après un nom de fonction, la fonction est renvoyée
sous la forme d'un « nœud de fonction », au lieu d'être évaluée. Le nœud de fonction peut ensuite être
transmis à une autre fonction. Par exemple : </p><pre class="programlisting">function f(a,b) = a(b)+1;
+function b(x) = x*x;
+f(b,2)
+</pre><p>
+To pass functions that are not defined,
+you can use an anonymous function (see <a class="xref" href="ch05s03.html#genius-gel-functions-defining"
title="Définition de fonctions">la section intitulée « Définition de fonctions »</a>). That is, you want to
pass a function without giving it a name.
+Syntax:
+</p><pre class="programlisting">function(<comma separated arguments>) = <function body>
+`(<comma separated arguments>) = <function body>
+</pre><p>
+Example:
+</p><pre class="programlisting">function f(a,b) = a(b)+1;
+f(`(x) = x*x,2)
+</pre><p>
+This will return 5.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-operations"></a>Opérations sur les fonctions</h3></div></div></div><p>
+ Some functions allow arithmetic operations, and some single argument functions such as <a
class="link" href="ch11s05.html#gel-function-exp"><code class="function">exp</code></a> or <a class="link"
href="ch11s05.html#gel-function-ln"><code class="function">ln</code></a>, to operate on the function. For
example,
+</p><pre class="programlisting">exp(sin*cos+4)
+</pre><p>
+will return a function that takes <code class="varname">x</code> and returns <strong
class="userinput"><code>exp(sin(x)*cos(x)+4)</code></strong>. It is functionally equivalent
+to typing
+</p><pre class="programlisting">`(x) = exp(sin(x)*cos(x)+4)
+</pre><p>
+
+This operation can be useful when quickly defining functions. For example to create a function called <code
class="varname">f</code>
+to perform the above operation, you can just type:
+</p><pre class="programlisting">f = exp(sin*cos+4)
+</pre><p>
+It can also be used in plotting. For example, to plot sin squared you can enter:
+</p><pre class="programlisting">LinePlot(sin^2)
+</pre><p>
+ </p><div class="warning" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Avertissement</h3><p>Toutes les fonctions ne peuvent pas être utilisées de cette façon. Par
exemple, lorsque vous utilisez une opération binaire, les fonctions doivent prendre le même nombre
d'arguments.</p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch05s02.html">Précédent</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch05.html">Niveau supérieur</a></td><td width="40%"
align="right"> <a accesskey="n" href="ch05s04.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Utilisation des variables </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top">
Séparateur</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch05s04.html b/help/fr/html/ch05s04.html
new file mode 100644
index 0000000..db83022
--- /dev/null
+++ b/help/fr/html/ch05s04.html
@@ -0,0 +1,28 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Séparateur</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manuel de Genius"><link rel="up" href="ch05.html"
title="Chapitre 5. Fondamentaux GEL"><link rel="prev" href="ch05s03.html" title="Utilisation des
fonctions"><link rel="next" href="ch05s05.html" title="Commentaires"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Séparateur</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch05s03.html">Précédent</a> </td><th width="60%" align="center">Chapitre
5. Fondamentaux GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s05.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="
clear: both"><a name="genius-gel-separator"></a>Séparateur</h2></div></div></div><p>
+ GEL is somewhat different from other languages in how it deals with multiple commands and
functions.
+ In GEL you must chain commands together with a separator operator.
+That is, if you want to type more than one expression you have to use
+the <code class="literal">;</code> operator in between the expressions. This is
+a way in which both expressions are evaluated and the result of the second one (or the last one
+if there is more than two expressions) is returned.
+Suppose you type the following:
+</p><pre class="programlisting">3 ; 5
+</pre><p>
+This expression will yield 5.
+ </p><p>
+This will require some parenthesizing to make it unambiguous sometimes,
+especially if the <code class="literal">;</code> is not the top most primitive. This slightly differs from
+other programming languages where the <code class="literal">;</code> is a terminator of statements, whereas
+in GEL it’s actually a binary operator. If you are familiar with pascal
+this should be second nature. However genius can let you pretend it is a
+terminator to some degree. If a <code class="literal">;</code> is found at the end of a parenthesis or a
block,
+genius will append a null to it as if you would have written
+<strong class="userinput"><code>;null</code></strong>.
+This is useful in case you do not want to return a value from say a loop,
+or if you handle the return differently. Note that it will slightly slow down
+the code if it is executed too often as there is one more operator involved.
+ </p><p>
+ If you are typing expressions in a program you do not have to add a semicolon. In this case
+ genius will simply print the return value whenever it executes the expression. However, do
note that if you are defining a
+ function, the body of the function is a single expression.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s03.html">Précédent</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Niveau supérieur</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05s05.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Utilisation des fonctions </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top">
Commentaires</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch05s05.html b/help/fr/html/ch05s05.html
new file mode 100644
index 0000000..b992e79
--- /dev/null
+++ b/help/fr/html/ch05s05.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Commentaires</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manuel de Genius"><link rel="up" href="ch05.html"
title="Chapitre 5. Fondamentaux GEL"><link rel="prev" href="ch05s04.html" title="Séparateur"><link rel="next"
href="ch05s06.html" title="Évaluation modulaire"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Commentaires</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch05s04.html">Précédent</a> </td><th width="60%" align="center">Chapitre 5. Fondamentaux
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s06.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="cle
ar: both"><a name="genius-gel-comments"></a>Commentaires</h2></div></div></div><p>
+ GEL is similar to other scripting languages in that <code class="literal">#</code> denotes
+ a comment, that is text that is not meant to be evaluated. Everything beyond the
+ pound sign till the end of line will just be ignored. For example,
+</p><pre class="programlisting"># This is just a comment
+# every line in a comment must have its own pound sign
+# in the next line we set x to the value 123
+x=123;
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s04.html">Précédent</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Niveau supérieur</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05s06.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Séparateur </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Évaluation
modulaire</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch05s06.html b/help/fr/html/ch05s06.html
new file mode 100644
index 0000000..73babe1
--- /dev/null
+++ b/help/fr/html/ch05s06.html
@@ -0,0 +1,30 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Évaluation
modulaire</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch05.html" title="Chapitre 5. Fondamentaux
GEL"><link rel="prev" href="ch05s05.html" title="Commentaires"><link rel="next" href="ch05s07.html"
title="Liste des opérateurs GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Évaluation modulaire</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s05.html">Précédent</a> </td><th width="60%" align="center">Chapitre 5. Fondamentaux GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch05s07.html">Suivant</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 c
lass="title" style="clear: both"><a name="genius-gel-modular-evaluation"></a>Évaluation
modulaire</h2></div></div></div><p>
+ Genius implements modular arithmetic.
+To use it you just add "mod <integer>" after
+the expression. Example:
+<strong class="userinput"><code>2^(5!) * 3^(6!) mod 5</code></strong>
+It could be possible to do modular arithmetic by computing with integers and then modding in the end with
+the <code class="literal">%</code> operator, which simply gives the remainder, but
+that may be time consuming if not impossible when working with larger numbers.
+For example, <strong class="userinput"><code>10^(10^10) % 6</code></strong> will simply not work (the
exponent
+will be too large), while
+<strong class="userinput"><code>10^(10^10) mod 6</code></strong> is instantaneous. The first expression
first tries to compute the integer
+<strong class="userinput"><code>10^(10^10)</code></strong> and then find remainder after division by 6,
while the second expression evaluates
+everything modulo 6 to begin with.
+ </p><p>Vous pouvez calculer l'inverse de nombres modulo des entiers juste en utilisant des nombres
rationnels (bien sûr, l'inverse doit exister). Exemples : </p><pre class="programlisting">10^-1 mod 101
+1/10 mod 101</pre><p> Vous pouvez aussi faire de l'évaluation modulaire avec des matrices y compris prendre
l'inverse, mettre à la puissance ou multiplier. Exemple : </p><pre class="programlisting">A = [1,2;3,4]
+B = A^-1 mod 5
+A*B mod 5</pre><p> Cela doit donner la matrice identité car B est l'inverse de A modulo 5.</p><p>Certaines
fonctions telles que <a class="link" href="ch11s05.html#gel-function-sqrt"><code
class="function">sqrt</code></a> ou <a class="link" href="ch11s05.html#gel-function-log"><code
class="function">log</code></a> fonctionnent différemment en mode modulaire. Elles vont alors fonctionner
comme leur version discrète travaillant avec l'ensemble des entiers que vous avez sélectionnés, par exemple,
</p><pre class="programlisting">genius> sqrt(4) mod 7
+=
+[2, 5]
+genius> 2*2 mod 7
+= 4</pre><p>La fonction <code class="function">sqrt</code> renvoie en fait toutes les racines carrées
possibles.</p><p>
+ Do not chain mod operators, simply place it at the end of the computation, all computations in
the expression on the left
+ will be carried out in mod arithmetic. If you place a mod inside
+ a mod, you will get unexpected results. If you simply want to
+ mod a single number and control exactly when remainders are
+ taken, best to use the <code class="literal">%</code> operator. When you
+ need to chain several expressions in modular arithmetic with
+ different divisors, it may be best to just split up the expression into several and use
+ temporary variables to avoid a mod inside a mod.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s05.html">Précédent</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Niveau supérieur</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05s07.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Commentaires </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Liste des opérateurs
GEL</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch05s07.html b/help/fr/html/ch05s07.html
new file mode 100644
index 0000000..d214a3b
--- /dev/null
+++ b/help/fr/html/ch05s07.html
@@ -0,0 +1,115 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Liste des opérateurs
GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch05.html" title="Chapitre 5. Fondamentaux
GEL"><link rel="prev" href="ch05s06.html" title="Évaluation modulaire"><link rel="next" href="ch06.html"
title="Chapitre 6. Programmation avec GEL"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Liste des opérateurs GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch05s06.html">Précédent</a> </td><th width="60%" align="center">Chapitre
5. Fondamentaux GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div class="titl
epage"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-operator-list"></a>Liste des
opérateurs GEL</h2></div></div></div><p>
+ Everything in GEL is really just an expression. Expressions are stringed together with
+ different operators. As we have seen, even the separator is simply a binary operator
+ in GEL. Here is a list of the operators in GEL.
+ </p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><strong
class="userinput"><code>a;b</code></strong></span></dt><dd><p>C'est le séparateur, il évalue simplement à la
fois <code class="varname">a</code> et <code class="varname">b</code> mais ne renvoie que le résultat de
<code class="varname">b</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a=b</code></strong></span></dt><dd><p>L'opérateur d'attribution. Il attribue <code
class="varname">b</code> à <code class="varname">a</code> (<code class="varname">a</code> doit être une <a
class="link" href="ch06s09.html" title="Valeurs à gauche (lvalues)">valeur à gauche</a> valide). Remarquez
que cet opérateur peut être transformé en <code class="literal">==</code> s'il est utilisé là où une
expression booléenne est attendue.</p></dd><dt><span class="term"><strong
class="userinput"><code>a:=b</code></strong></span></dt><dd><p>L'opérateur d'attribution. Il attrib
ue <code class="varname">b</code> à <code class="varname">a</code> (<code class="varname">a</code> doit être
une <a class="link" href="ch06s09.html" title="Valeurs à gauche (lvalues)">valeur à gauche</a> valide). Il
est différent de <code class="literal">=</code> car il n'est jamais transformée en <code
class="literal">==</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>|a|</code></strong></span></dt><dd><p>
+ Absolute value.
+ In case the expression is a complex number the result will be the modulus
+(distance from the origin). For example:
+<strong class="userinput"><code>|3 * e^(1i*pi)|</code></strong>
+returns 3.
+ </p><p>Consultez <a class="ulink" href="http://mathworld.wolfram.com/AbsoluteValue.html"
target="_top">Mathworld</a> pour plus d'informations.</p></dd><dt><span class="term"><strong
class="userinput"><code>a^b</code></strong></span></dt><dd><p>Exposant, met <code class="varname">a</code> à
la puissance <code class="varname">b</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.^b</code></strong></span></dt><dd><p>Exposant élément par élément. Met chaque
élément d'une matrice <code class="varname">a</code> à la puissance <code class="varname">b</code>. Si <code
class="varname">b</code> est une matrice de la même taille que <code class="varname">a</code> alors
l'opération se réalise élément par élément. Si <code class="varname">a</code> est un nombre et <code
class="varname">b</code> est une matrice alors cela crée une matrice de la même taille que <code
class="varname">b</code> contenant <code class="varname">a</code> mis à la puissan
ce de chaque élément de <code class="varname">b</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a+b</code></strong></span></dt><dd><p>
+ Addition. Adds two numbers, matrices, functions or strings. If
+ you add a string to anything the result will just be a string. If one is
+ a square matrix and the other a number, then the number is multiplied by
+ the identity matrix.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a-b</code></strong></span></dt><dd><p>Soustraction. Soustrait deux nombres, matrices
ou fonctions.</p></dd><dt><span class="term"><strong
class="userinput"><code>a*b</code></strong></span></dt><dd><p>Multiplication. C'est la multiplication
matricielle normale.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.*b</code></strong></span></dt><dd><p>Multiplication élément par élément si <code
class="varname">a</code> et <code class="varname">b</code> sont des matrices.</p></dd><dt><span
class="term"><strong class="userinput"><code>a/b</code></strong></span></dt><dd><p>
+ Division. When <code class="varname">a</code> and <code class="varname">b</code> are just
numbers
+ this is the normal division. When they are matrices, then this is
+ equivalent to <strong class="userinput"><code>a*b^-1</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a./b</code></strong></span></dt><dd><p>
+ Element by element division. Same as <strong class="userinput"><code>a/b</code></strong>
for
+ numbers, but operates element by element on matrices.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a\b</code></strong></span></dt><dd><p>Division arrière. C'est donc la même chose que
<strong class="userinput"><code>b/a</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.\b</code></strong></span></dt><dd><p>Division arrière élément par
élément.</p></dd><dt><span class="term"><strong
class="userinput"><code>a%b</code></strong></span></dt><dd><p>L'opérateur modulo. Cela n'active pas le mode
d'<a class="link" href="ch05s06.html" title="Évaluation modulaire">évaluation modulaire</a>, mais renvoie
juste le reste de <strong class="userinput"><code>a/b</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.%b</code></strong></span></dt><dd><p>L'opérateur modulo élément par élément.
Renvoie le reste après la division entière élément par élément de <strong
class="userinput"><code>a./b</code></strong>.</p></dd><dt><span class="term
"><strong class="userinput"><code>a mod b</code></strong></span></dt><dd><p>Opérateur d'évaluation
modulaire. L'expression <code class="varname">a</code> est évaluée modulo <code class="varname">b</code>.
Consultez <a class="xref" href="ch05s06.html" title="Évaluation modulaire">la section intitulée « Évaluation
modulaire »</a>. Certaines fonctions et opérateurs se comportent différemment modulo un
entier.</p></dd><dt><span class="term"><strong
class="userinput"><code>a!</code></strong></span></dt><dd><p>Opérateur factoriel. Il s'agit de <strong
class="userinput"><code>1*...*(n-2)*(n-1)*n</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a!!</code></strong></span></dt><dd><p>Opérateur double factoriel. Il s'agit de
<strong class="userinput"><code>1*...*(n-4)*(n-2)*n</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a==b</code></strong></span></dt><dd><p>
+ Equality operator.
+ Returns <code class="constant">true</code> or <code class="constant">false</code>
+ depending on <code class="varname">a</code> and <code class="varname">b</code> being equal or
not.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a!=b</code></strong></span></dt><dd><p>Opérateur inégalité, renvoie <code
class="constant">true</code> si <code class="varname">a</code> n'est pas égal à <code
class="varname">b</code> sinon renvoie <code class="constant">false</code>.</p></dd><dt><span
class="term"><strong class="userinput"><code>a<>b</code></strong></span></dt><dd><p>Autre opérateur
inégalité, renvoie <code class="constant">true</code> si <code class="varname">a</code> n'est pas égal à
<code class="varname">b</code> sinon renvoie <code class="constant">false</code>.</p></dd><dt><span
class="term"><strong class="userinput"><code>a<=b</code></strong></span></dt><dd><p>
+ Less than or equal operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> is
+ less than or equal to
+ <code class="varname">b</code> else returns <code class="constant">false</code>.
+ These can be chained as in <strong class="userinput"><code>a <= b <= c</code></strong> (can
+ also be combined with the less than operator).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a>=b</code></strong></span></dt><dd><p>
+ Greater than or equal operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> is
+ greater than or equal to
+ <code class="varname">b</code> else returns <code class="constant">false</code>.
+ These can be chained as in <strong class="userinput"><code>a >= b >= c</code></strong>
+ (can also be combine with the greater than operator).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a<b</code></strong></span></dt><dd><p>
+ Less than operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> is
+ less than
+ <code class="varname">b</code> else returns <code class="constant">false</code>.
+ These can be chained as in <strong class="userinput"><code>a < b < c</code></strong>
+ (can also be combine with the less than or equal to operator).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a>b</code></strong></span></dt><dd><p>
+ Greater than operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> is
+ greater than
+ <code class="varname">b</code> else returns <code class="constant">false</code>.
+ These can be chained as in <strong class="userinput"><code>a > b > c</code></strong>
+ (can also be combine with the greater than or equal to operator).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a<=>b</code></strong></span></dt><dd><p>Opérateur comparaison. Si <code
class="varname">a</code> est égal à <code class="varname">b</code>, cela renvoie 0, si <code
class="varname">a</code> est inférieur à <code class="varname">b</code>, cela renvoie -1 et si <code
class="varname">a </code> est supérieur à <code class="varname">b</code>, cela renvoie 1.</p></dd><dt><span
class="term"><strong class="userinput"><code>a and b</code></strong></span></dt><dd><p>
+ Logical and. Returns true if both
+ <code class="varname">a</code> and <code class="varname">b</code> are true,
+ else returns false. If given numbers, nonzero numbers
+ are treated as true.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a or
b</code></strong></span></dt><dd><p>
+ Logical or.
+ Returns true if either
+ <code class="varname">a</code> or <code class="varname">b</code> is true,
+ else returns false. If given numbers, nonzero numbers
+ are treated as true.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a xor
b</code></strong></span></dt><dd><p>
+ Logical xor.
+ Returns true exactly one of
+ <code class="varname">a</code> or <code class="varname">b</code> is true,
+ else returns false. If given numbers, nonzero numbers
+ are treated as true.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>not
a</code></strong></span></dt><dd><p>
+ Logical not. Returns the logical negation of <code class="varname">a</code>
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>-a</code></strong></span></dt><dd><p>
+ Negation operator. Returns the negative of a number or a matrix (works element-wise on a
matrix).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>&a</code></strong></span></dt><dd><p>
+ Variable referencing (to pass a reference to a variable).
+ See <a class="xref" href="ch06s08.html" title="Références">la section intitulée « Références
»</a>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>*a</code></strong></span></dt><dd><p>
+ Variable dereferencing (to access a referenced variable).
+ See <a class="xref" href="ch06s08.html" title="Références">la section intitulée « Références
»</a>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a'</code></strong></span></dt><dd><p>
+ Matrix conjugate transpose. That is, rows and columns get swapped and we take complex
conjugate of all entries. That is
+ if the i,j element of <code class="varname">a</code> is x+iy, then the j,i element of
<strong class="userinput"><code>a'</code></strong> is x-iy.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a.'</code></strong></span></dt><dd><p>
+ Matrix transpose, does not conjugate the entries. That is,
+ the i,j element of <code class="varname">a</code> becomes the j,i element of <strong
class="userinput"><code>a.'</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,c)</code></strong></span></dt><dd><p>Renvoie l'élément ligne <code
class="varname">b</code> et colonne <code class="varname">c</code> d'une matrice. Si <code
class="varname">b</code> et <code class="varname">c</code> sont des vecteurs alors cela renvoie les lignes et
les colonnes correspondantes, soit une sous-matrice.</p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,)</code></strong></span></dt><dd><p>Renvoie une ligne de matrice (ou plusieurs
lignes si <code class="varname">b</code> est un vecteur).</p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,:)</code></strong></span></dt><dd><p>Comme ci-dessus.</p></dd><dt><span
class="term"><strong class="userinput"><code>a@(,c)</code></strong></span></dt><dd><p>Renvoie une colonne de
matrice (ou des colonnes si <code class="varname">c</code> est un vecteur).</p></dd><dt><span
class="term"><strong class="userinput"
<code>a@(:,c)</code></strong></span></dt><dd><p>Comme ci-dessus.</p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b)</code></strong></span></dt><dd><p>Renvoie un élément d'une matrice en le
traitant comme un vecteur. Cela parcourt la matrice dans le sens des lignes.</p></dd><dt><span
class="term"><strong class="userinput"><code>a:b</code></strong></span></dt><dd><p>Construit un vecteur
allant de <code class="varname">a</code> à <code class="varname">b</code> (ou indique une région ligne,
colonne pour l'opérateur <code class="literal">@</code>). Par exemple pour obtenir les lignes 2 à 4 de la
matrice <code class="varname">A</code>, nous pourrions faire </p><pre class="programlisting">A@(2:4,)
+ </pre><p> puisque <strong class="userinput"><code>2:4</code></strong> renvoie un vecteur <strong
class="userinput"><code>[2,3,4]</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a:b:c</code></strong></span></dt><dd><p>Construit un vecteur allant de <code
class="varname">a</code> à <code class="varname">c</code> avec un pas de <code class="varname">b</code>. Ce
qui donne par exemple </p><pre class="programlisting">genius> 1:2:9
+=
+`[1, 3, 5, 7, 9]
+</pre><p>
+ When the numbers involved are floating point numbers, for example
+ <strong class="userinput"><code>1.0:0.4:3.0</code></strong>, the output is what is expected
+ even though adding 0.4 to 1.0 five times is actually just slightly
+ more than 3.0 due to the way that floating point numbers are
+ stored in base 2 (there is no 0.4, the actual number stored is
+ just ever so slightly bigger). The way this is handled is the
+ same as in the for, sum, and prod loops. If the end is within
+ <strong class="userinput"><code>2^-20</code></strong> times the step size of the endpoint,
+ the endpoint is used and we assume there were roundoff errors.
+ This is not perfect, but it handles the majority of the cases.
+ This check is done only from version 1.0.18 onwards, so execution
+ of your code may differ on older versions. If you want to avoid
+ dealing with this issue, use actual rational numbers, possibly
+ using the <code class="function">float</code> if you wish to get floating
+ point numbers in the end. For example
+ <strong class="userinput"><code>1:2/5:3</code></strong> does the right thing and
+ <strong class="userinput"><code>float(1:2/5:3)</code></strong> even gives you floating
+ point numbers and is ever so slightly more precise than
+ <strong class="userinput"><code>1.0:0.4:3.0</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>(a)i</code></strong></span></dt><dd><p>Crée un nombre imaginaire (multiplie <code
class="varname">a</code> par le nombre imaginaire pur). Remarquez que normalement le nombre <code
class="varname">i</code> s'écrit <strong class="userinput"><code>1i</code></strong>. Donc le nombre ci-dessus
est égal à </p><pre class="programlisting">(a)*1i
+ </pre></dd><dt><span class="term"><strong
class="userinput"><code>`a</code></strong></span></dt><dd><p>Apostropher un identifiant afin qu'il ne soit
pas évalué. Ou apostropher une matrice afin qu'elle ne soit pas étendue.</p></dd><dt><span
class="term"><strong class="userinput"><code>a swapwith b</code></strong></span></dt><dd><p>Échange la valeur
de <code class="varname">a</code> par la valeur de <code class="varname">b</code>. Pour le moment, ne
fonctionne pas sur des ensembles d'éléments de matrice. Renvoie <code class="constant">null</code>.
Disponible à partir de la version 1.0.13.</p></dd><dt><span class="term"><strong
class="userinput"><code>increment a</code></strong></span></dt><dd><p>Incrémente la variable <code
class="varname">a</code> de 1. Si <code class="varname">a</code> est une matrice alors incrémente chaque
élément. C'est équivalent à <strong class="userinput"><code>a=a+1</code></strong> mais est plus rapide.
Renvoie <code class="constant
">null</code>. Disponible à partir de la version 1.0.13.</p></dd><dt><span class="term"><strong
class="userinput"><code>increment a by b</code></strong></span></dt><dd><p>Incrémente la variable <code
class="varname">a</code> de <code class="varname">b</code>. Si <code class="varname">a</code> est une matrice
alors incrémente chaque élément. C'est équivalent à <strong class="userinput"><code>a=a+b</code></strong>
mais est plus rapide. Renvoie <code class="constant">null</code>. Disponible à partir de la version
1.0.13.</p></dd></dl></div><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Note</h3><p>L'opérateur @() rend l'opérateur : très utile. Grâce à lui, vous pouvez indiquer
des régions d'une matrice. Ainsi a@(2:4,6) sont les lignes 2,3,4 de la colonne 6 ou a@(,1:2) vous renvoie les
deux premières colonnes d'une matrice. Vous pouvez également attribuer un opérateur @() tant que la valeur de
droite est une matrice qui corr
espond en taille à la région ou si c'est n'importe quel autre type de valeur.</p></div><div class="note"
style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>
+The comparison operators (except for the <=> operator, which behaves normally), are not strictly
binary operators, they can in fact be grouped in the normal mathematical way, e.g.: (1<x<=y<5) is a
legal boolean expression and means just what it should, that is (1<x and x≤y and y<5)
+</p></div><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Note</h3><p>L'opérateur unitaire « moins » agit de manière différente en fonction de l'endroit
où il apparaît. S'il apparaît devant un nombre, il est très prioritaire, s'il apparaît devant une expression,
il est moins prioritaire que les opérateurs puissance et factoriel. Par exemple, <strong
class="userinput"><code>-1^k</code></strong> est bien <strong class="userinput"><code>(-1)^k</code></strong>,
mais <strong class="userinput"><code>-foo(1)^k</code></strong> est bien <strong
class="userinput"><code>-(foo(1)^k)</code></strong>. En conséquence, faites attention à son utilisation et,
en cas de doute, ajoutez des parenthèses.</p></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch05s06.html">Précédent</a> </td><td width="20%" align="center"><a accesskey="u" href="ch05.htm
l">Niveau supérieur</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Évaluation modulaire
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td width="40%"
align="right" valign="top"> Chapitre 6. Programmation avec GEL</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch06.html b/help/fr/html/ch06.html
new file mode 100644
index 0000000..2082736
--- /dev/null
+++ b/help/fr/html/ch06.html
@@ -0,0 +1,8 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapitre 6.
Programmation avec GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Manuel de Genius"><link rel="up" href="index.html" title="Manuel de
Genius"><link rel="prev" href="ch05s07.html" title="Liste des opérateurs GEL"><link rel="next"
href="ch06s02.html" title="Boucles"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Chapitre 6. Programmation avec GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s07.html">Précédent</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch06s02.html">Suivant</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><
a name="genius-gel-programming"></a>Chapitre 6. Programmation avec GEL</h1></div></div></div><div
class="toc"><p><b>Table des matières</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch06.html#genius-gel-conditionals">Tests</a></span></dt><dt><span class="sect1"><a
href="ch06s02.html">Boucles</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-while">Boucles tant que (while) et jusqu'à
(until)</a></span></dt><dt><span class="sect2"><a href="ch06s02.html#genius-gel-loops-for">Boucles pour
(for)</a></span></dt><dt><span class="sect2"><a href="ch06s02.html#genius-gel-loops-foreach">Boucles pour
chaque (foreach)</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-break-continue">Instructions « break » et « continue
»</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch06s03.html">Sommes et
produits</a></span></dt><dt><span class="sect1"><a href="ch06s04.html">Opérateurs de comparaison</a></s
pan></dt><dt><span class="sect1"><a href="ch06s05.html">Variables globales et portée des
variables</a></span></dt><dt><span class="sect1"><a href="ch06s06.html">Variables
paramètres</a></span></dt><dt><span class="sect1"><a href="ch06s07.html">Sortie de
fonction</a></span></dt><dt><span class="sect1"><a href="ch06s08.html">Références</a></span></dt><dt><span
class="sect1"><a href="ch06s09.html">Valeurs à gauche (lvalues)</a></span></dt></dl></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-conditionals"></a>Tests</h2></div></div></div><p>Syntaxe : </p><pre
class="programlisting">if <expression1> then <expression2> [else <expression3>]
+</pre><p> Si <code class="literal">else</code> est omis alors si l'<code class="literal">expression1</code>
donne <code class="constant">false</code> ou 0, <code class="literal">NULL</code> est renvoyé.</p><p>Exemples
: </p><pre class="programlisting">if(a==5)then(a=a-1)
+if b<a then b=a
+if c>0 then c=c-1 else c=0
+a = ( if b>0 then b else 1 )
+</pre><p> Notez que <code class="literal">=</code> est traduit en <code class="literal">==</code> s'il est
utilisé à l'intérieur de l'expression du <code class="literal">if</code>, donc </p><pre
class="programlisting">if a=5 then a=a-1
+</pre><p> est interprété comme : </p><pre class="programlisting">if a==5 then a:=a-1
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s07.html">Précédent</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch06s02.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Liste des opérateurs
GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td width="40%"
align="right" valign="top"> Boucles</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch06s02.html b/help/fr/html/ch06s02.html
new file mode 100644
index 0000000..353e528
--- /dev/null
+++ b/help/fr/html/ch06s02.html
@@ -0,0 +1,45 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Boucles</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manuel
de Genius"><link rel="up" href="ch06.html" title="Chapitre 6. Programmation avec GEL"><link rel="prev"
href="ch06.html" title="Chapitre 6. Programmation avec GEL"><link rel="next" href="ch06s03.html"
title="Sommes et produits"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Boucles</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06.html">Précédent</a> </td><th width="60%" align="center">Chapitre 6. Programmation avec GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch06s03.html">Suivant</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class=
"title" style="clear: both"><a name="genius-gel-loops"></a>Boucles</h2></div></div></div><div
class="sect2"><div class="titlepage"><div><div><h3 class="title"><a name="genius-gel-loops-while"></a>Boucles
tant que (while) et jusqu'à (until)</h3></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">while <expression1> do <expression2>
+until <expression1> do <expression2>
+do <expression2> while <expression1>
+do <expression2> until <expression1></pre><p>
+
+ These are similar to other languages. However, as in GEL it is simply an expression that must have
some return value, these
+ constructs will simply return the result of the last iteration or <code class="literal">NULL</code>
if no iteration was done. In the boolean expression, <code class="literal">=</code> is translated into <code
class="literal">==</code> just as for the <code class="literal">if</code> statement.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-for"></a>Boucles pour (for)</h3></div></div></div><p>Syntaxe : </p><pre
class="programlisting">for <identifier> = <from> to <to> do <body>
+for <identifier> = <from> to <to> by <increment> do <body></pre><p> Boucle où
l'identifiant (identifier) prend toutes les valeurs comprises entre <code class="literal"><from></code>
et <code class="literal"><to></code>, avec en option un incrément autre que 1. Elles sont plus rapides,
plus simples à utiliser et plus compactes que les boucles classiques ci-dessus mais moins flexibles.
L'identifiant doit être un identifiant et ne peut pas être un déréférencement. La valeur de l'identifiant est
la dernière valeur prise par l'identifiant ou <code class="literal"><from></code> si le contenu (body)
de la boucle n'a jamais été évalué. Vous êtes sûr que la variable est initialisée après une boucle donc vous
pouvez l'utiliser sans risque. <code class="literal"><from></code>, <code
class="literal"><to></code> et <code class="literal"><increment></code> ne doivent pas être
complexes. Il n'est pas sûr q
ue la valeur <code class="literal"><to></code> soit atteinte, mais elle n'est jamais dépassée. Par
exemple, ce qui suit affiche les nombres impairs de 1 à 19 : </p><pre class="programlisting">for i = 1 to 20
by 2 do print(i)
+</pre><p>
+ When one of the values is a floating point number, then the
+ final check is done to within 2^-20 of the step size. That is,
+ even if we overshoot by 2^-20 times the "by" above, we still execute the last
+ iteration. This way
+</p><pre class="programlisting">for x = 0 to 1 by 0.1 do print(x)
+</pre><p>
+does the expected even though adding 0.1 ten times becomes just slightly more than 1.0 due to the way that
floating point numbers
+are stored in base 2 (there is no 0.1, the actual number stored is just ever so slightly bigger). This is
not perfect but it handles
+the majority of the cases. If you want to avoid dealing with this issue, use actual rational numbers for
example:
+</p><pre class="programlisting">for x = 0 to 1 by 1/10 do print(x)
+</pre><p>
+ This check is done only from version 1.0.16 onwards, so execution of your code may differ on
older versions.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-foreach"></a>Boucles pour chaque (foreach)</h3></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">for <identifier> in <matrix> do <body></pre><p>
+
+ For each element in the matrix, going row by row from left to right we execute the
body
+ with the identifier set to the current element. To
+print numbers 1,2,3 and 4 in this order you could do:
+</p><pre class="programlisting">for n in [1,2:3,4] do print(n)
+</pre><p>
+If you wish to run through the rows and columns of a matrix, you can use
+the RowsOf and ColumnsOf functions, which return a vector of the rows or
+columns of the matrix. So,
+</p><pre class="programlisting">for n in RowsOf ([1,2:3,4]) do print(n)
+</pre><p>
+will print out [1,2] and then [3,4].
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-break-continue"></a>Instructions « break » et « continue
»</h3></div></div></div><p>Vous pouvez aussi utiliser les instructions <code class="literal">break</code> et
<code class="literal">continue</code> dans les boucles. L'instruction <code class="literal">continue</code>
reprend la boucle à sa prochaine itération alors que l'instruction <code class="literal">break</code> sort de
la boucle actuelle. </p><pre class="programlisting">while(<expression1>) do (
+ if(<expression2>) break
+ else if(<expression3>) continue;
+ <expression4>
+)
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06.html">Précédent</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Niveau supérieur</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s03.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Chapitre
6. Programmation avec GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Sommes et
produits</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch06s03.html b/help/fr/html/ch06s03.html
new file mode 100644
index 0000000..d7bc54c
--- /dev/null
+++ b/help/fr/html/ch06s03.html
@@ -0,0 +1,9 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Sommes et
produits</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch06.html" title="Chapitre 6. Programmation
avec GEL"><link rel="prev" href="ch06s02.html" title="Boucles"><link rel="next" href="ch06s04.html"
title="Opérateurs de comparaison"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Sommes et produits</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s02.html">Précédent</a> </td><th width="60%" align="center">Chapitre 6. Programmation avec
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s04.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-sums-products"></a>Sommes et
produits</h2></div></div></div><p>Syntaxe : </p><pre class="programlisting">sum <identifier> =
<from> to <to> do <body>
+sum <identifier> = <from> to <to> by <increment> do <body>
+sum <identifier> in <matrix> do <body>
+prod <identifier> = <from> to <to> do <body>
+prod <identifier> = <from> to <to> by <increment> do <body>
+prod <identifier> in <matrix> do <body></pre><p> Si vous remplacez <code
class="literal">for</code> par <code class="literal">sum</code> ou <code class="literal">prod</code> alors
vous obtenez une somme ou un produit à la place d'une boucle <code class="literal">for</code>. Au lieu de
renvoyer la dernière valeur, cela renvoie la somme ou le produit des valeurs respectivement.</p><p>Si aucun
contenu (body) est exécuté (par exemple, <strong class="userinput"><code>sum i=1 to 0 do ...</code></strong>)
alors la convention standard est que <code class="literal">sum</code> renvoie 0 et <code
class="literal">prod</code> renvoie 1.</p><p>
+ For floating point numbers the same roundoff error protection is done as in the for loop.
+ See <a class="xref" href="ch06s02.html#genius-gel-loops-for" title="Boucles pour (for)">la
section intitulée « Boucles pour (for) »</a>.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s02.html">Précédent</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Niveau supérieur</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s04.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Boucles
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td width="40%"
align="right" valign="top"> Opérateurs de comparaison</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch06s04.html b/help/fr/html/ch06s04.html
new file mode 100644
index 0000000..956280c
--- /dev/null
+++ b/help/fr/html/ch06s04.html
@@ -0,0 +1,11 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Opérateurs de
comparaison</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch06.html" title="Chapitre 6. Programmation
avec GEL"><link rel="prev" href="ch06s03.html" title="Sommes et produits"><link rel="next"
href="ch06s05.html" title="Variables globales et portée des variables"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Opérateurs de comparaison</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch06s03.html">Précédent</a> </td><th width="60%"
align="center">Chapitre 6. Programmation avec GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s05.html">Suivant</a></td></tr></table><hr></div><div class=
"sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-comparison-operators"></a>Opérateurs de comparaison</h2></div></div></div><p>Les opérateurs
de comparaison standard suivants sont pris en charge dans GEL et ont des significations évidentes : <code
class="literal">==</code>, <code class="literal">>=</code>, <code class="literal"><=</code>, <code
class="literal">!=</code>, <code class="literal"><></code>, <code class="literal"><</code>, <code
class="literal">></code>. Ils renvoient <code class="constant">true</code> ou <code
class="constant">false</code>. Les opérateurs <code class="literal">!=</code> et <code
class="literal"><></code> sont les mêmes et signifient « n'est pas égal à ». GEL comprend également
l'opérateur <code class="literal"><=></code> qui renvoie -1 si la partie de gauche est plus petite, 0
si les deux parties sont égales, 1 si la partie de gauche est plus grande.</p
<p>Normalement <code class="literal">=</code> est traduit en <code class="literal">==</code> partout où GEL
s'attend à une condition comme celle de la condition si (if). Par exemple, </p><pre
class="programlisting">if a=b then c
+if a==b then c
+</pre><p> sont identiques en GEL. Cependant vous devriez vraiment utiliser <code class="literal">==</code>
ou <code class="literal">:=</code> lorsque vous voulez respectivement comparer ou attribuer si vous voulez
éviter des erreurs et que votre code soit facile à lire.</p><p>
+ All the comparison operators (except for the
+ <code class="literal"><=></code> operator, which
+ behaves normally), are not strictly binary operators, they can in fact
+ be grouped in the normal mathematical way, e.g.:
+ (<code class="literal">1<x<=y<5</code>) is
+ a legal boolean expression and means just what it should, that is
+ (1<x and x≤y and y<5)
+ </p><p>Pour construire des expressions logiques, utilisez les mots <code class="literal">not</code>,
<code class="literal">and</code>, <code class="literal">or</code>, <code class="literal">xor</code>. Les
opérateurs <code class="literal">or</code> et <code class="literal">and</code> sont des entités spéciales car
ils évaluent leurs arguments les uns après les autres, donc les astuces classiques des évaluations
conditionnelles fonctionnent. Par exemple : <code class="literal">1 or a=1</code> n'effectue pas
l'attribution <code class="literal">a=1</code> puisque le premier argument est vrai (true).</p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch06s03.html">Précédent</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch06.html">Niveau supérieur</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s05.html">Suivant</a></td></tr><tr><td width="
40%" align="left" valign="top">Sommes et produits </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Variables globales et portée
des variables</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch06s05.html b/help/fr/html/ch06s05.html
new file mode 100644
index 0000000..408d94c
--- /dev/null
+++ b/help/fr/html/ch06s05.html
@@ -0,0 +1,48 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Variables globales et
portée des variables</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch06.html" title="Chapitre 6. Programmation
avec GEL"><link rel="prev" href="ch06s04.html" title="Opérateurs de comparaison"><link rel="next"
href="ch06s06.html" title="Variables paramètres"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Variables globales et portée des variables</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch06s04.html">Précédent</a> </td><th width="60%"
align="center">Chapitre 6. Programmation avec GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s06.html">Suivant</a></td></tr></table><
hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-variables-global"></a>Variables globales et portée des
variables</h2></div></div></div><p>GEL est un <a class="ulink"
href="http://fr.wikipedia.org/wiki/Port%C3%A9e_%28informatique%29" target="_top">langage à portée
dynamique</a>. Nous allons expliquer ce que cela signifie ci-dessous. Les variables et les fonctions normales
sont à portée dynamique. Les exceptions sont les <a class="link" href="ch06s06.html" title="Variables
paramètres">variables paramètres</a> qui sont toujours globales.</p><p>Comme la plupart des langages de
programmation, GEL possède différents types de variables. Normalement lorsqu'une variable est définie dans
une fonction, elle est visible dans cette fonction et à partir de toutes les fonctions qui sont appelées
(tous les contextes supérieurs). Par exemple, supposons qu'une fonction <code class="function">f</code>
définit
une variable <code class="varname">a</code> puis appelle la fonction <code class="function">g</code>. Alors
la fonction <code class="function">g</code> peut faire référence à <code class="varname">a</code>. Mais dès
que la fonction <code class="function">f</code> est quittée, la variable <code class="varname">a</code>
disparaît de la portée. Par exemple, le code suivant affiche 5. La fonction <code class="function">g</code>
ne peut pas être appelée à partir du niveau supérieur (en dehors de <code class="function">f</code> puisque
<code class="varname">a</code> n'est pas défini). </p><pre class="programlisting">function f() = (a:=5; g());
+function g() = print(a);
+f();
+</pre><p>Si vous définissez une variable à l'intérieur d'une fonction, elle va supplanter toutes variables
définies dans les fonctions appelantes. Par exemple, si nous modifions le code ci-dessus et écrivons :
</p><pre class="programlisting">function f() = (a:=5; g());
+function g() = print(a);
+a:=10;
+f();
+</pre><p> Ce code affiche toujours 5. Mais si vous appelez <code class="function">g</code> à l'extérieur de
<code class="function">f</code> alors la valeur 10 s'affiche. Remarquez que le fait d'initialiser <code
class="varname">a</code> à 5 à l'intérieur de <code class="function">f</code> ne modifie pas la valeur de
<code class="varname">a</code> au niveau (global) supérieur donc si vous contrôlez maintenant la valeur de
<code class="varname">a</code>, elle sera toujours de 10.</p><p>Les arguments de fonction sont exactement
comme les variables définies à l'intérieur de la fonction sauf qu'ils sont initialisés à la valeur qui a été
transmise à la fonction. En dehors de ce point, ils sont traités exactement comme toutes les autres variables
définies dans la fonction.</p><p>Les fonctions sont traitées exactement comme les variables. Par conséquent,
vous pouvez redéfinir localement les fonctions. Normalement (au niveau supérieur) vous ne pouvez pas redéfin
ir des variables et fonctions protégées mais, vous pouvez le faire localement. Considérons la session
suivante : </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>function f(x) = sin(x)^2</code></strong>
+= (`(x)=(sin(x)^2))
+<code class="prompt">genius> </code><strong class="userinput"><code>function g(x) = ((function
sin(x)=x^10);f(x))</code></strong>
+= (`(x)=((sin:=(`(x)=(x^10)));f(x)))
+<code class="prompt">genius> </code><strong class="userinput"><code>g(10)</code></strong>
+= 1e20
+</pre><p>
+ Functions and variables defined at the top level are
+ considered global. They are visible from anywhere. As we
+ said the following function <code class="function">f</code>
+ will not change the value of <code class="varname">a</code> to 5.
+</p><pre class="programlisting">a=6;
+function f() = (a:=5);
+f();
+</pre><p>
+ Sometimes, however, it is necessary to set
+a global variable from inside a function. When this behavior is needed,
+use the
+<a class="link" href="ch11s02.html#gel-function-set"><code class="function">set</code></a> function. Passing
a string or a quoted identifier to
+this function sets the variable globally (on the top level).
+For example, to set
+<code class="varname">a</code> to the value 3 you could call:
+</p><pre class="programlisting">set(`a,3)
+</pre><p>
+or:
+</p><pre class="programlisting">set("a",3)
+</pre><p>
+ </p><p>La fonction <code class="function">set</code> définit toujours au niveau global supérieur. Il
n'est pas possible de définir une variable locale dans des fonctions à partir d'un sous-programme. Si c'est
nécessaire, vous devez utiliser la transmission par référence.</p><p>
+ See also the
+ <a class="link" href="ch11s02.html#gel-function-SetElement"><code
class="function">SetElement</code></a> and
+ <a class="link" href="ch11s02.html#gel-function-SetVElement"><code
class="function">SetVElement</code></a> functions.
+ </p><p>Donc pour récapituler dans un langage plus technique : genius opère avec différents contextes
numérotés. Le niveau supérieur est le contexte 0 (zéro). À chaque fois qu'une fonction est entrée, le
contexte est augmenté et lorsqu'une fonction est quittée, le contexte est diminué. Une fonction ou une
variable est toujours visible à partir de tous les contextes de numéro plus élevé. Si une variable a été
définie dans un contexte de numéro plus bas alors attribuer une valeur à cette variable a pour effet de créer
une nouvelle variable locale dans le numéro de contexte actuel et cette variable est maintenant visible de
tous les contextes de numéro plus élevé.</p><p>
+ There are also true local variables that are not seen from
+ anywhere but the current context. Also when returning functions
+ by value it may reference variables not visible from higher context
+ and this may be a problem. See the sections
+ <a class="link" href="ch07s04.html" title="Variables locales vraies">True
+ Local Variables</a> and
+ <a class="link" href="ch07s03.html" title="Renvoi de fonction">Returning
+ Functions</a>.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s04.html">Précédent</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Niveau supérieur</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s06.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Opérateurs de comparaison </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Variables
paramètres</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch06s06.html b/help/fr/html/ch06s06.html
new file mode 100644
index 0000000..6efb94b
--- /dev/null
+++ b/help/fr/html/ch06s06.html
@@ -0,0 +1,4 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Variables
paramètres</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch06.html" title="Chapitre 6. Programmation
avec GEL"><link rel="prev" href="ch06s05.html" title="Variables globales et portée des variables"><link
rel="next" href="ch06s07.html" title="Sortie de fonction"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Variables paramètres</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch06s05.html">Précédent</a> </td><th width="60%" align="center">Chapitre 6. Programmation
avec GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s07.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><d
iv class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-parameters"></a>Variables paramètres</h2></div></div></div><p>Comme dit précédemment, il
existe des variables spéciales appelées paramètres qui existent dans toutes les portées. Pour déclarer un
paramètre appelé <code class="varname">foo</code> et initialisé à 1, écrivez </p><pre
class="programlisting">parameter foo = 1
+</pre><p> À partir de cet instant, <code class="varname">foo</code> est une variable complètement globale.
Attribuer une valeur à <code class="varname">foo</code> à l'intérieur d'une fonction, modifie la variable
dans tous les contextes, ce qui signifie que les fonctions ne possèdent pas de copie privée des
paramètres.</p><p>Si vous annulez la définition comme paramètre en utilisant la fonction <a class="link"
href="ch11s02.html#gel-function-undefine"><code class="function">undefine</code></a>, la variable cesse
d'être un paramètre.</p><p>
+ Some parameters are built-in and modify the behavior of genius.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s05.html">Précédent</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Niveau supérieur</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s07.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Variables globales et portée des variables </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Sortie de
fonction</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch06s07.html b/help/fr/html/ch06s07.html
new file mode 100644
index 0000000..5253bcd
--- /dev/null
+++ b/help/fr/html/ch06s07.html
@@ -0,0 +1,9 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Sortie de
fonction</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch06.html" title="Chapitre 6. Programmation
avec GEL"><link rel="prev" href="ch06s06.html" title="Variables paramètres"><link rel="next"
href="ch06s08.html" title="Références"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Sortie de fonction</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch06s06.html">Précédent</a> </td><th width="60%" align="center">Chapitre 6. Programmation
avec GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s08.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-returning"></a>Sortie de
fonction</h2></div></div></div><p>Normalement une fonction est une ou plusieurs expressions séparées par un
point virgule et la valeur de la dernière expression est renvoyée. C'est suffisant pour les fonctions simples
mais parfois vous ne voulez pas qu'une fonction renvoie la dernière chose calculée. Il se peut que vous
vouliez, par exemple, quitter la fonction à partir du milieu de la fonction. Dans ce cas, vous pouvez
utiliser le mot-clé <code class="literal">return</code>. <code class="literal">Return</code> prend un seul
argument qui est la valeur renvoyée.</p><p>Exemple : </p><pre class="programlisting">function f(x) = (
+ y=1;
+ while true do (
+ if x>50 then return y;
+ y=y+1;
+ x=x+1
+ )
+)
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch06s06.html">Précédent</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch06.html">Niveau supérieur</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s08.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Variables paramètres
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td width="40%"
align="right" valign="top"> Références</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch06s08.html b/help/fr/html/ch06s08.html
new file mode 100644
index 0000000..f8b4e60
--- /dev/null
+++ b/help/fr/html/ch06s08.html
@@ -0,0 +1,8 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Références</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manuel de Genius"><link rel="up" href="ch06.html"
title="Chapitre 6. Programmation avec GEL"><link rel="prev" href="ch06s07.html" title="Sortie de
fonction"><link rel="next" href="ch06s09.html" title="Valeurs à gauche (lvalues)"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Références</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch06s07.html">Précédent</a> </td><th width="60%"
align="center">Chapitre 6. Programmation avec GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s09.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2
class="title" style="clear: both"><a
name="genius-gel-references"></a>Références</h2></div></div></div><p>Il peut être nécessaire pour certaines
fonctions de renvoyer plus d'une seule valeur. C'est possible en renvoyant un vecteur de valeurs mais souvent
il est pratique d'utiliser le passage d'une référence à une variable. Vous transmettez une référence vers une
variable à une fonction et la fonction attribue des valeurs à la variable pour vous en utilisant un
déréférencement. Ce n'est pas le seul usage que vous pouvez faire du passage par référence mais c'est son
utilisation principale.</p><p>Lorsque vous utilisez des fonctions qui renvoient des valeurs à travers des
références dans sa liste d'argument, il suffit de transmettre le nom de la variable précédée d'une
esperluette. Par exemple, le code suivant calcule une valeur propre d'une matrice <code
class="varname">A</code> avec un vecteur propre initial pressenti <code class="varname">x</code> et en
registre le vecteur propre calculé dans la variable appelée <code class="varname">v</code> : </p><pre
class="programlisting">RayleighQuotientIteration (A,x,0.001,100,&v)
+</pre><p>Les détails concernant le fonctionnement des références et leur syntaxe sont similaires à ceux du
langage C. L'opérateur <code class="literal">&</code> référence une variable et <code
class="literal">*</code> la déréférence. Les deux ne peuvent s'appliquer que sur un identifiant, par
conséquent <code class="literal">**a</code> n'est pas une expression légale en GEL.</p><p>Les références
s'expliquent mieux par un exemple : </p><pre class="programlisting">a=1;
+b=&a;
+*b=2;
+</pre><p> Maintenant <code class="varname">a</code> contient 2. Vous pouvez également référencer des
fonctions : </p><pre class="programlisting">function f(x) = x+1;
+t=&f;
+*t(3)
+</pre><p> donne 4.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch06s07.html">Précédent</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch06.html">Niveau supérieur</a></td><td width="40%"
align="right"> <a accesskey="n" href="ch06s09.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Sortie de fonction </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Valeurs à gauche
(lvalues)</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch06s09.html b/help/fr/html/ch06s09.html
new file mode 100644
index 0000000..f9d777e
--- /dev/null
+++ b/help/fr/html/ch06s09.html
@@ -0,0 +1,13 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Valeurs à gauche
(lvalues)</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch06.html" title="Chapitre 6. Programmation
avec GEL"><link rel="prev" href="ch06s08.html" title="Références"><link rel="next" href="ch07.html"
title="Chapitre 7. Programmation avancée avec GEL"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Valeurs à gauche (lvalues)</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch06s08.html">Précédent</a> </td><th width="60%" align="center">Chapitre
6. Programmation avec GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07.html">Suivant</a></td></tr></table><hr></div><div class="sect1">
<div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-lvalues"></a>Valeurs à gauche (lvalues)</h2></div></div></div><p>Une valeur à gauche est la
partie à gauche d'une attribution. En d'autres mots, une valeur à gauche est la chose dans laquelle vous
attribuez quelque chose. Des valeurs à gauche valides sont : </p><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><strong
class="userinput"><code>a</code></strong></span></dt><dd><p>Identifiant. Ici nous attribuons une valeur à la
variable de nom <code class="varname">a</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>*a</code></strong></span></dt><dd><p>Déréférence un identifiant. Cela attribue une
valeur à ce que vers quoi la variable <code class="varname">a</code> pointe.</p></dd><dt><span
class="term"><strong class="userinput"><code>a@(<région>)</code></strong></span></dt><dd><p>Une région
d'une matrice. Ici la région est
indiquée normalement comme avec l'opérateur habituel @() et peut être une entrée unique ou une région
entière de la matrice.</p></dd></dl></div><p>
+Examples:
+</p><pre class="programlisting">a:=4
+*tmp := 89
+a@(1,1) := 5
+a@(4:8,3) := [1,2,3,4,5]'
+</pre><p>
+Note that both <code class="literal">:=</code> and <code class="literal">=</code> can be used
+interchangeably. Except if the assignment appears in a condition.
+It is thus always safer to just use
+<code class="literal">:=</code> when you mean assignment, and <code class="literal">==</code>
+when you mean comparison.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s08.html">Précédent</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Niveau supérieur</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch07.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Références
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td width="40%"
align="right" valign="top"> Chapitre 7. Programmation avancée avec GEL</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch07.html b/help/fr/html/ch07.html
new file mode 100644
index 0000000..f3c47d7
--- /dev/null
+++ b/help/fr/html/ch07.html
@@ -0,0 +1,8 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapitre 7.
Programmation avancée avec GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Manuel de Genius"><link rel="up" href="index.html" title="Manuel de
Genius"><link rel="prev" href="ch06s09.html" title="Valeurs à gauche (lvalues)"><link rel="next"
href="ch07s02.html" title="Syntaxe de haut-niveau"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Chapitre 7. Programmation avancée avec GEL</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch06s09.html">Précédent</a> </td><th width="60%"
align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch07s02.html">Suivant</a></td></tr></table><hr></div><div class="chapter"><div class="title
page"><div><div><h1 class="title"><a name="genius-gel-programming-advanced"></a>Chapitre 7. Programmation
avancée avec GEL</h1></div></div></div><div class="toc"><p><b>Table des matières</b></p><dl
class="toc"><dt><span class="sect1"><a href="ch07.html#genius-gel-error-handling">Gestion des
erreurs</a></span></dt><dt><span class="sect1"><a href="ch07s02.html">Syntaxe de
haut-niveau</a></span></dt><dt><span class="sect1"><a href="ch07s03.html">Renvoi de
fonction</a></span></dt><dt><span class="sect1"><a href="ch07s04.html">Variables locales
vraies</a></span></dt><dt><span class="sect1"><a href="ch07s05.html">Procédure de démarrage de
GEL</a></span></dt><dt><span class="sect1"><a href="ch07s06.html">Chargement de
programmes</a></span></dt></dl></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-error-handling"></a>Gestion des erreurs</h2></div></div></div><p>Si
vous détectez une erreur dans votre fonction,
vous pouvez la quitter rapidement (« to bail out of »). Pour les erreurs normales, telles que les mauvais
types d'arguments, vous pouvez éviter de calculer la fonction en ajoutant l'instruction <code
class="literal">bailout</code>. Si quelque chose se passe vraiment mal et que vous voulez interrompre
complètement le calcul actuel, vous pouvez utiliser l'instruction <code
class="literal">exception</code>.</p><p>Par exemple, si vous voulez vérifier les arguments de votre fonction.
Vous pouvez utiliser le code suivant. </p><pre class="programlisting">function f(M) = (
+ if not IsMatrix (M) then (
+ error ("M n'est pas une matrice !");
+ bailout
+ );
+ ...
+)
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s09.html">Précédent</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch07s02.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Valeurs à gauche
(lvalues) </td><td width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td
width="40%" align="right" valign="top"> Syntaxe de haut-niveau</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch07s02.html b/help/fr/html/ch07s02.html
new file mode 100644
index 0000000..421ce0c
--- /dev/null
+++ b/help/fr/html/ch07s02.html
@@ -0,0 +1,19 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Syntaxe de
haut-niveau</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch07.html" title="Chapitre 7. Programmation
avancée avec GEL"><link rel="prev" href="ch07.html" title="Chapitre 7. Programmation avancée avec GEL"><link
rel="next" href="ch07s03.html" title="Renvoi de fonction"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Syntaxe de haut-niveau</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07.html">Précédent</a> </td><th width="60%" align="center">Chapitre 7.
Programmation avancée avec GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s03.html">Suivant</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-toplevel-syntax"></a>Syntaxe de haut-niveau</h2></div></div></div><p>
+ The syntax is slightly different if you enter statements on
+ the top level versus when they are inside parentheses or
+ inside functions. On the top level, enter acts the same as if
+ you press return on the command line. Therefore think of programs
+ as just sequence of lines as if were entered on the command line.
+ In particular, you do not need to enter the separator at the end of the
+ line (unless it is of course part of several statements inside
+ parentheses).
+ </p><p>Le code suivant provoque une erreur lorsqu'il est saisi au niveau supérieur d'un programme
alors qu'il fonctionne très bien dans une fonction. </p><pre class="programlisting">if QuelqueChose() then
+ FaireQuelqueChose()
+else
+ FaireAutreChose()
+</pre><p>Le problème est que lorsque l'<span class="application">Outil de maths Genius</span> rencontre la
fin de la ligne après la seconde ligne, il décide que l'instruction est complète et il l'exécute. Après
l'exécution l'<span class="application">Outil de maths Genius</span> se rend à la ligne suivante, voit
l'instruction <code class="literal">else</code> et affiche une erreur de syntaxe. Pour régler ce problème,
utilisez des parenthèses. L'<span class="application">Outil de maths Genius</span> ne sera pas satisfait tant
qu'il n'aura pas trouvé que toutes les parenthèses sont fermées. </p><pre class="programlisting">if
QuelqueChose() then(
+ FaireQuelqueChose()
+) else (
+ FaireAutreChose()
+)
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch07.html">Précédent</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch07.html">Niveau supérieur</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07s03.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Chapitre 7.
Programmation avancée avec GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Renvoi de
fonction</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch07s03.html b/help/fr/html/ch07s03.html
new file mode 100644
index 0000000..256f050
--- /dev/null
+++ b/help/fr/html/ch07s03.html
@@ -0,0 +1,42 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Renvoi de
fonction</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch07.html" title="Chapitre 7. Programmation
avancée avec GEL"><link rel="prev" href="ch07s02.html" title="Syntaxe de haut-niveau"><link rel="next"
href="ch07s04.html" title="Variables locales vraies"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Renvoi de fonction</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch07s02.html">Précédent</a> </td><th width="60%" align="center">Chapitre 7. Programmation
avancée avec GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s04.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-returning-functions"></a>Renvoi de fonction</h2></div></div></div><p>Il est possible de
renvoyer des fonctions en tant que donnée. De cette manière, vous pouvez écrire une fonction qui construit
des fonctions dans un but précis en fonction de certains paramètres. Le point délicat est de savoir quelles
variables sont visibles par la fonction construite. La façon dont cela fonctionne dans GEL est que,
lorsqu'une fonction renvoie une autre fonction, tous les identifiants qui étaient référencés dans le corps de
la fonction mère, et qui deviendraient hors de portée, sont en fait ajoutés dans un dictionnaire privé de la
fonction renvoyée. Ainsi la fonction voit toutes les variables qui étaient à sa portée au moment où elle a
été définie. Par exemple, nous pouvons définir ainsi une fonction qui renvoie une fonction qui ajoute 5 à son
argument : </p><pre class="programlist
ing">function f() = (
+ k = 5;
+ `(x) = (x+k)
+)
+</pre><p> Notez que la fonction ajoute <code class="varname">k</code> à <code class="varname">x</code>. Vous
pouvez l'utiliser ainsi. </p><pre class="programlisting">g = f();
+g(5)
+</pre><p> et <strong class="userinput"><code>g(5)</code></strong> doit renvoyer 10.</p><p>Une chose à noter
est que la valeur de <code class="varname">k</code> utilisée est celle qui est en cours lorsque la fonction
<code class="function">f</code> a terminé son exécution. Par exemple : </p><pre
class="programlisting">function f() = (
+ k := 5;
+ function r(x) = (x+k);
+ k := 10;
+ r
+)
+</pre><p> renvoie une fonction qui ajoute 10 à son argument plutôt que 5. La raison est que le dictionnaire
supplémentaire est créé uniquement lorsque le contexte dans lequel la fonction a été définie, se termine,
c'est-à-dire lorsque la fonction <code class="function">f</code> renvoie. C'est cohérent avec la manière dont
on s'attend à ce que la fonction <code class="function">r</code> fonctionne à l'intérieur de la fonction
<code class="function">f</code> d'après les règles sur la portée des variables dans GEL. Les seules variables
ajoutées au dictionnaire supplémentaire sont celles qui sont présentes dans le contexte qui se termine et
n'existe plus. Les variables utilisées dans la fonction, qui sont toujours dans des contextes valides,
fonctionnent comme d'habitude, en utilisant la valeur actuelle de la variable. La seule différence, c'est
pour les variables et les fonctions globales. Tous les identifiants qui référencent des variables globales au
m
oment de la définition de la fonction ne sont pas ajoutés au dictionnaire privé. C'est pour éviter beaucoup
de travail non nécessaire lors du renvoi de fonctions et cela ne pose que rarement problème. Par exemple,
supposons que vous supprimiez le « k= 5 » de la fonction <code class="function">f</code> et qu'au niveau
supérieur vous définissiez <code class="varname">k</code> à 5 par exemple. Alors lorsque vous exécutez <code
class="function">f</code>, la fonction <code class="function">r</code> ne met pas <code
class="varname">k</code> dans le dictionnaire privé parce qu'il était global (au niveau supérieur) au moment
de la définition de <code class="function">r</code>.</p><p>Parfois il est préférable d'avoir un meilleur
contrôle sur la façon dont les variables sont copiées dans le dictionnaire privé. Depuis la version 1.0.7,
vous pouvez spécifier quelles variables sont copiées dans le dictionnaire privée en mettant des crochets
carrés supplémenta
ires après les arguments contenant la liste des variables qui seront copiées, séparées par des virgules. Si
vous faites cela alors les variables sont copiées dans le dictionnaire privé au moment de la définition de la
fonction et le dictionnaire privé n'est pas modifié ensuite. Par exemple, </p><pre
class="programlisting">function f() = (
+ k := 5;
+ function r(x) [k] = (x+k);
+ k := 10;
+ r
+)
+</pre><p> renvoie une fonction qui, lorsqu'elle est appelée, ajoute 5 à ses arguments. La copie locale de
<code class="varname">k</code> a été créée lorsque la fonction a été définie.</p><p>
+ When you want the function to not have any private dictionary
+ then put empty square brackets after the argument list. Then
+ no private dictionary will be created at all. Doing this is
+ good to increase efficiency when a private dictionary is not
+ needed or when you want the function to lookup all variables
+ as it sees them when called. For example suppose you want
+ the function returned from <code class="function">f</code> to see
+ the value of <code class="varname">k</code> from the toplevel despite
+ there being a local variable of the same name during definition.
+ So the code
+</p><pre class="programlisting">function f() = (
+ k := 5;
+ function r(x) [] = (x+k);
+ r
+);
+k := 10;
+g = f();
+g(10)
+</pre><p>
+ will return 20 and not 15, which would happen if
+ <code class="varname">k</code> with a value of 5 was added to the private
+ dictionary.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07s02.html">Précédent</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch07.html">Niveau supérieur</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch07s04.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Syntaxe
de haut-niveau </td><td width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td
width="40%" align="right" valign="top"> Variables locales vraies</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch07s04.html b/help/fr/html/ch07s04.html
new file mode 100644
index 0000000..d9c676d
--- /dev/null
+++ b/help/fr/html/ch07s04.html
@@ -0,0 +1,40 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Variables locales
vraies</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch07.html" title="Chapitre 7. Programmation
avancée avec GEL"><link rel="prev" href="ch07s03.html" title="Renvoi de fonction"><link rel="next"
href="ch07s05.html" title="Procédure de démarrage de GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Variables locales vraies</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07s03.html">Précédent</a> </td><th width="60%" align="center">Chapitre
7. Programmation avancée avec GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s05.html">Suivant</a></td></tr></table><hr></div><div clas
s="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-true-local-variables"></a>Variables locales vraies</h2></div></div></div><p>Lors de la
transmission de fonctions dans d'autres fonctions, la portée normale des variables peut être indésirable. Par
exemple : </p><pre class="programlisting">k := 10;
+function r(x) = (x+k);
+function f(g,x) = (
+ k := 5;
+ g(x)
+);
+f(r,1)
+</pre><p> vous souhaitez probablement que la fonction <code class="function">r</code> lorsqu'elle est
transmise à <code class="function">g</code> dans <code class="function">f</code>, puisse voir <code
class="varname">k</code> comme 10 plutôt que 5 afin que le code renvoie 11 et pas 6. Cependant, tel que c'est
écrit, la fonction lorsqu'elle est exécutée voit la variable <code class="varname">k</code> qui est égale à
5. Il y a deux façons de résoudre cela. L'une est que la fonction <code class="function">r</code> obtienne
<code class="varname">k</code> dans un dictionnaire privé en utilisant la notation crochet carré de la
section <a class="link" href="ch07s03.html" title="Renvoi de fonction">Renvoi de fonctions</a>.</p><p>
+ But there is another solution. Since version 1.0.7 there are
+ true local variables. These are variables that are visible only
+ from the current context and not from any called functions.
+ We could define <code class="varname">k</code> as a local variable in the
+ function <code class="function">f</code>. To do this add a
+ <span class="command"><strong>local</strong></span> statement as the first statement in the
+ function (it must always be the first statement in the function).
+ You can also make any arguments be local variables as well.
+ That is,
+</p><pre class="programlisting">function f(g,x) = (
+ local g,x,k;
+ k := 5;
+ g(x)
+);
+</pre><p>
+ Then the code will work as expected and prints out 11.
+ Note that the <span class="command"><strong>local</strong></span> statement initializes
+ all the referenced variables (except for function arguments) to
+ a <code class="constant">null</code>.
+ </p><p>
+ If all variables are to be created as locals you can just pass an
+ asterisk instead of a list of variables. In this case the variables
+ will not be initialized until they are actually set of course.
+ So the following definition of <code class="function">f</code>
+ will also work:
+</p><pre class="programlisting">function f(g,x) = (
+ local *;
+ k := 5;
+ g(x)
+);
+</pre><p>
+ </p><p>C'est une bonne pratique que toutes les fonctions qui prennent d'autres fonctions comme
argument, utilisent des variables locales. De cette manière, la fonction transmise ne voit pas les détails de
l'implémentation et n'est pas perturbée.</p></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch07s03.html">Précédent</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch07.html">Niveau supérieur</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07s05.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Renvoi de fonction
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td width="40%"
align="right" valign="top"> Procédure de démarrage de GEL</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch07s05.html b/help/fr/html/ch07s05.html
new file mode 100644
index 0000000..3ee7959
--- /dev/null
+++ b/help/fr/html/ch07s05.html
@@ -0,0 +1,4 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Procédure de démarrage
de GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch07.html" title="Chapitre 7. Programmation
avancée avec GEL"><link rel="prev" href="ch07s04.html" title="Variables locales vraies"><link rel="next"
href="ch07s06.html" title="Chargement de programmes"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Procédure de démarrage de GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07s04.html">Précédent</a> </td><th width="60%" align="center">Chapitre
7. Programmation avancée avec GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s06.html">Suivant</a></td></tr></table><hr></
div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-startup-procedure"></a>Procédure de démarrage de GEL</h2></div></div></div><p>Dans un
premier temps, le programme recherche dans le répertoire d'installation les fichiers de la bibliothèque
installés (la version compilée <code class="filename">lib.cgel</code>), puis il recherche dans le répertoire
actuel, puis il essaye de charger un fichier non compilé appelé <code
class="filename">~/.geniusinit</code>.</p><p>
+If you ever change the library in its installed place, you’ll have to
+first compile it with <span class="command"><strong>genius --compile loader.gel > lib.cgel</strong></span>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07s04.html">Précédent</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch07.html">Niveau supérieur</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch07s06.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Variables locales vraies </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Chargement de
programmes</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch07s06.html b/help/fr/html/ch07s06.html
new file mode 100644
index 0000000..e003a56
--- /dev/null
+++ b/help/fr/html/ch07s06.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chargement de
programmes</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch07.html" title="Chapitre 7. Programmation
avancée avec GEL"><link rel="prev" href="ch07s05.html" title="Procédure de démarrage de GEL"><link rel="next"
href="ch08.html" title="Chapitre 8. Matrices en GEL"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Chargement de programmes</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07s05.html">Précédent</a> </td><th width="60%" align="center">Chapitre
7. Programmation avancée avec GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch08.html">Suivant</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-loading-programs"></a>Chargement de programmes</h2></div></div></div><p>
+Sometimes you have a larger program you wrote into a file and want to read that file into <span
class="application">Genius Mathematics Tool</span>. In these situations, you have two options. You can keep
the functions you use most inside the <code class="filename">~/.geniusinit</code> file. Or if you want to
load up a file in a middle of a session (or from within another file), you can type <span
class="command"><strong>load <list of filenames></strong></span> at the prompt. This has to be done on
the top level and not inside any function or whatnot, and it cannot be part of any expression. It also has a
slightly different syntax than the rest of genius, more similar to a shell. You can enter the file in quotes.
If you use the '' quotes, you will get exactly the string that you typed, if you use the "" quotes, special
characters will be unescaped as they are for strings. Example:
+</p><pre class="programlisting">load programme1.gel programme2.gel
+load "Etrange nom de fichier avec des ESPACES.gel"
+</pre><p>
+There are also <span class="command"><strong>cd</strong></span>, <span
class="command"><strong>pwd</strong></span> and <span class="command"><strong>ls</strong></span> commands
built in. <span class="command"><strong>cd</strong></span> will take one argument, <span
class="command"><strong>ls</strong></span> will take an argument that is like the glob in the UNIX shell
(i.e., you can use wildcards). <span class="command"><strong>pwd</strong></span> takes no arguments. For
example:
+</p><pre class="programlisting">cd repertoire_contenant_des_programmes_gel
+ls *.gel
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07s05.html">Précédent</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch07.html">Niveau supérieur</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch08.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Procédure
de démarrage de GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Chapitre 8. Matrices en
GEL</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch08.html b/help/fr/html/ch08.html
new file mode 100644
index 0000000..d3e85c6
--- /dev/null
+++ b/help/fr/html/ch08.html
@@ -0,0 +1,46 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapitre 8. Matrices
en GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="index.html" title="Manuel de Genius"><link
rel="prev" href="ch07s06.html" title="Chargement de programmes"><link rel="next" href="ch08s02.html"
title="Opérateur de transposition conjuguée et de transposition"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Chapitre 8. Matrices en GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07s06.html">Précédent</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch08s02.html">Suivant</a></td></tr></table><hr></div><div
class="chapter"><div class="titl
epage"><div><div><h1 class="title"><a name="genius-gel-matrices"></a>Chapitre 8. Matrices en
GEL</h1></div></div></div><div class="toc"><p><b>Table des matières</b></p><dl class="toc"><dt><span
class="sect1"><a href="ch08.html#genius-gel-matrix-support">Saisie de matrices</a></span></dt><dt><span
class="sect1"><a href="ch08s02.html">Opérateur de transposition conjuguée et de
transposition</a></span></dt><dt><span class="sect1"><a href="ch08s03.html">Algèbre
linéaire</a></span></dt></dl></div><p>
+ Genius has support for vectors and matrices and possesses a sizable library of
+ matrix manipulation and linear algebra functions.
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-matrix-support"></a>Saisie de matrices</h2></div></div></div><p>
+To enter matrices, you can use one of the following two syntaxes. You can either enter
+the matrix on one line, separating values by commas and rows by semicolons. Or you
+can enter each row on one line, separating
+values by commas.
+You can also just combine the two methods.
+So to enter a 3x3 matrix
+of numbers 1-9 you could do
+</p><pre class="programlisting">[1,2,3;4,5,6;7,8,9]
+</pre><p>
+or
+</p><pre class="programlisting">[1, 2, 3
+ 4, 5, 6
+ 7, 8, 9]
+</pre><p>
+Do not use both ';' and return at once on the same line though.
+ </p><p>
+You can also use the matrix expansion functionality to enter matrices.
+For example you can do:
+</p><pre class="programlisting">a = [ 1, 2, 3
+ 4, 5, 6
+ 7, 8, 9]
+b = [ a, 10
+ 11, 12]
+</pre><p>
+and you should get
+</p><pre class="programlisting">[1, 2, 3, 10
+ 4, 5, 6, 10
+ 7, 8, 9, 10
+ 11, 11, 11, 12]
+</pre><p>
+similarly you can build matrices out of vectors and other stuff like that.
+ </p><p>Notez que les éléments non spécifiés sont initialisés à 0, donc </p><pre
class="programlisting">[1, 2, 3
+ 4, 5
+ 6]
+</pre><p> donne au final </p><pre class="programlisting">
+[1, 2, 3
+ 4, 5, 0
+ 6, 0, 0]
+</pre><p>
+ When matrices are evaluated, they are evaluated and traversed row-wise. This is just
+ like the <code class="literal">M@(j)</code> operator, which traverses the matrix row-wise.
+ </p><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Note</h3><p>Faites attention lorsque vous utilisez des retours à la ligne à l'intérieur des
crochets <code class="literal">[ ]</code> car ils ont une signification légèrement différente dans ce cas.
Vous commencez une nouvelle ligne.</p></div></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch07s06.html">Précédent</a> </td><td width="20%" align="center"> </td><td width="40%" align="right"> <a
accesskey="n" href="ch08s02.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Chargement de programmes </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Opérateur de transposition
conjuguée et de transposition</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch08s02.html b/help/fr/html/ch08s02.html
new file mode 100644
index 0000000..91299fa
--- /dev/null
+++ b/help/fr/html/ch08s02.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Opérateur de
transposition conjuguée et de transposition</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manuel de Genius"><link rel="up" href="ch08.html"
title="Chapitre 8. Matrices en GEL"><link rel="prev" href="ch08.html" title="Chapitre 8. Matrices en
GEL"><link rel="next" href="ch08s03.html" title="Algèbre linéaire"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Opérateur de transposition conjuguée et de
transposition</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch08.html">Précédent</a>
</td><th width="60%" align="center">Chapitre 8. Matrices en GEL</th><td width="20%" align="right"> <a
accesskey="n" href="ch08s03.html">Suivant</a></td></tr
</table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-matrix-transpose"></a>Opérateur de transposition conjuguée et de
transposition</h2></div></div></div><p>Vous pouvez obtenir la matrice transposée conjuguée grâce à
l'opérateur <code class="literal">'</code>. Cela signifie que la valeur dans la <code
class="varname">i</code>ième colonne et la <code class="varname">j</code>ième ligne est le complexe
conjugué de la valeur dans la <code class="varname">j</code>ième colonne et la <code
class="varname">i</code>ième ligne de la matrice d'origine. Dans l'exemple : </p><pre
class="programlisting">[1,2,3]*[4,5,6]'
+</pre><p> il faut transposer la deuxième matrice pour permettre la multiplication des matrices. Si vous
voulez juste transposer une matrice sans la conjuguer, vous devez utiliser l'opérateur <code
class="literal">.'</code>. Par exemple : </p><pre class="programlisting">[1,2,3]*[4,5,6i].'
+</pre><p>Remarquez que la transposée normale, c'est-à-dire l'opérateur <code class="literal">.'</code>, est
beaucoup plus rapide et ne crée pas une nouvelle copie de la matrice en mémoire. La transposition conjuguée
crée hélas une nouvelle copie. Il est recommandé de toujours utiliser l'opérateur <code
class="literal">.'</code> lorsque vous travaillez avec des matrices et des vecteurs non
complexes.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch08.html">Précédent</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch08.html">Niveau supérieur</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch08s03.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Chapitre
8. Matrices en GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Algèbre lin
éaire</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch08s03.html b/help/fr/html/ch08s03.html
new file mode 100644
index 0000000..abeff3f
--- /dev/null
+++ b/help/fr/html/ch08s03.html
@@ -0,0 +1,13 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Algèbre
linéaire</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch08.html" title="Chapitre 8. Matrices en
GEL"><link rel="prev" href="ch08s02.html" title="Opérateur de transposition conjuguée et de
transposition"><link rel="next" href="ch09.html" title="Chapitre 9. Polynômes en GEL"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Algèbre linéaire</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch08s02.html">Précédent</a> </td><th width="60%"
align="center">Chapitre 8. Matrices en GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch09.html">Suivant</a></td></tr></table><hr></div><div class="sect1">
<div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-matrix-linalg"></a>Algèbre linéaire</h2></div></div></div><p>Genius implémente beaucoup de
routines utiles d'algèbre linéraire et de manipulation de matrice. Consultez les sections <a class="link"
href="ch11s09.html" title="Algèbre linéaire">Algèbre linéaire</a> et <a class="link" href="ch11s08.html"
title="Manipulation de matrices">Manipulation de matrice</a> dans la liste des fonctions GEL.</p><p>Les
routines d'algèbre linéaire implémentées en GEL ne proviennent pas actuellement d'un paquet numérique bien
testé et ne doivent donc pas être utilisées pour des calculs numériques critiques. D'un autre côté, Genius
implémente très bien les nombreuses opérations d'algèbre linéaire avec des coefficients rationnels et
entiers. Elles sont par nature exactes et en fait vous donnent de bien meilleurs résultats que les routines
en double précision usuelles pour l'algè
bre linéaire.</p><p>Par exemple, il est vain de calculer le rang et le noyau d'une matrice réelle puisque
dans tous les cas pratiques, il faut considérer que la matrice contienne de légères erreurs. Il est possible
que vous obteniez un résultat différent de ce que vous attendiez. Le problème est qu'en faisant une légère
perturbation toute matrice est de rang complet et inversible. Cependant si la matrice est composée de nombres
rationnels alors le rang et le noyau sont toujours exactes.</p><p>
+ In general when Genius computes the basis of a certain vectorspace
+ (for example with the <a class="link" href="ch11s09.html#gel-function-NullSpace"><code
class="function">NullSpace</code></a>) it will give the basis as
+a matrix, in which the columns are the vectors of the basis. That is, when
+Genius talks of a linear subspace it means a matrix whose column space is
+the given linear subspace.
+ </p><p>
+ It should be noted that Genius can remember certain properties of a
+matrix. For example, it will remember that a matrix is in row reduced form.
+If many calls are made to functions that internally use row reduced form of
+the matrix, we can just row reduce the matrix beforehand once. Successive
+calls to <a class="link" href="ch11s09.html#gel-function-rref"><code class="function">rref</code></a> will
be very fast.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch08s02.html">Précédent</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch08.html">Niveau supérieur</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch09.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Opérateur
de transposition conjuguée et de transposition </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Chapitre 9. Polynômes en
GEL</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch09.html b/help/fr/html/ch09.html
new file mode 100644
index 0000000..50d182d
--- /dev/null
+++ b/help/fr/html/ch09.html
@@ -0,0 +1,7 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapitre 9. Polynômes
en GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="index.html" title="Manuel de Genius"><link
rel="prev" href="ch08s03.html" title="Algèbre linéaire"><link rel="next" href="ch10.html" title="Chapitre 10.
Théorie des ensembles en GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Chapitre 9. Polynômes en GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch08s03.html">Précédent</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch10.html">Suivant</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 c
lass="title"><a name="genius-gel-polynomials"></a>Chapitre 9. Polynômes en GEL</h1></div></div></div><div
class="toc"><p><b>Table des matières</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch09.html#genius-gel-polynomials-using">Utilisation des
polynômes</a></span></dt></dl></div><p>Actuellement Genius peut prendre en charge des polynômes à une
variable écrits sous la forme de vecteurs et réaliser des opérations élémentaires avec eux. Il est prévu
d'étendre cette prise en charge.</p><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-polynomials-using"></a>Utilisation des
polynômes</h2></div></div></div><p>Actuellement les polynômes à une variable sont juste des vecteurs lignes
dont les valeurs sont les coefficients. La puissance du terme est la position dans le vecteur, la première
étant 0. Ainsi, </p><pre class="programlisting">[1,2,3]
+</pre><p> représente le polynôme </p><pre class="programlisting">1 + 2*x + 3*x^2
+</pre><p>Vous pouvez ajouter, soustraire et multiplier des polynômes en utilisant respectivement les
fonctions <a class="link" href="ch11s15.html#gel-function-AddPoly"><code class="function">AddPoly</code></a>,
<a class="link" href="ch11s15.html#gel-function-SubtractPoly"><code class="function">SubtractPoly</code></a>
et <a class="link" href="ch11s15.html#gel-function-MultiplyPoly"><code
class="function">MultiplyPoly</code></a>. Vous pouvez afficher un polynôme en utilisant la fonction <a
class="link" href="ch11s15.html#gel-function-PolyToString"><code class="function">PolyToString</code></a>.
Par exemple, </p><pre class="programlisting">PolyToString([1,2,3],"y")
+</pre><p> donne </p><pre class="programlisting">3*y^2 + 2*y + 1
+</pre><p> Vous pouvez également obtenir une représentation fonctionnelle du polynôme afin de pouvoir
l'évaluer. Pour cela, utilisez <a class="link" href="ch11s15.html#gel-function-PolyToFunction"><code
class="function">PolyToFunction</code></a> qui renvoie une fonction anonyme. </p><pre
class="programlisting">f = PolyToFunction([0,1,1])
+f(2)
+</pre><p>Il est aussi possible de trouver les racines des polynômes de degré 1 à 4 en utilisant la fonction
<a class="link" href="ch11s13.html#gel-function-PolynomialRoots"><code
class="function">PolynomialRoots</code></a> qui appelle la formule appropriée. Les polynômes de degré
supérieur doit être convertis en fonctions et résolus numériquement en utilisant une fonction telle que <a
class="link" href="ch11s13.html#gel-function-FindRootBisection"><code
class="function">FindRootBisection</code></a>, <a class="link"
href="ch11s13.html#gel-function-FindRootFalsePosition"><code
class="function">FindRootFalsePosition</code></a>, <a class="link"
href="ch11s13.html#gel-function-FindRootMullersMethod"><code
class="function">FindRootMullersMethod</code></a> ou <a class="link"
href="ch11s13.html#gel-function-FindRootSecant"><code
class="function">FindRootSecant</code></a>.</p><p>Consultez <a class="xref" href="ch11s15.html"
title="Polynômes">la section intitulée « Polyn
ômes »</a> dans la liste des fonctions pour le reste des fonctions agissant sur les
polynômes.</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch08s03.html">Précédent</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch10.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Algèbre linéaire </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td width="40%" align="right"
valign="top"> Chapitre 10. Théorie des ensembles en GEL</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch10.html b/help/fr/html/ch10.html
new file mode 100644
index 0000000..d937261
--- /dev/null
+++ b/help/fr/html/ch10.html
@@ -0,0 +1,7 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapitre 10. Théorie
des ensembles en GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="index.html" title="Manuel de Genius"><link
rel="prev" href="ch09.html" title="Chapitre 9. Polynômes en GEL"><link rel="next" href="ch11.html"
title="Chapitre 11. Liste des fonctions GEL"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Chapitre 10. Théorie des ensembles en GEL</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch09.html">Précédent</a> </td><th width="60%" align="center">
</th><td width="20%" align="right"> <a accesskey="n"
href="ch11.html">Suivant</a></td></tr></table><hr></div><div class="chapter"><div class=
"titlepage"><div><div><h1 class="title"><a name="genius-gel-settheory"></a>Chapitre 10. Théorie des
ensembles en GEL</h1></div></div></div><div class="toc"><p><b>Table des matières</b></p><dl
class="toc"><dt><span class="sect1"><a href="ch10.html#genius-gel-sets-using">Utilisation des
ensembles</a></span></dt></dl></div><p>Genius possède des fonctionnalités intégrées basiques concernant la
théorie des ensembles. Actuellement un ensemble est juste un vecteur (ou une matrice). Chaque objet distinct
est traité comme un élément différent.</p><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-sets-using"></a>Utilisation des
ensembles</h2></div></div></div><p>Tout comme les vecteurs, les objets dans les ensembles peuvent comprendre
des nombres, des chaînes de caractères, <code class="constant">null</code>, des matrices et des vecteurs. Il
est prévu dans le futur d'avoir un type dédié pour les ensembles pl
utôt que d'utiliser des vecteurs. Notez que les nombres flottants sont différents des entiers, même s'ils
semblent être les mêmes. Cela signifie que Genius traite <code class="constant">0</code> et <code
class="constant">0.0</code> comme deux éléments différents. La constante <code class="constant">null</code>
est traitée comme un ensemble vide.</p><p>Pour construire un ensemble à partir d'un vecteur, utilisez la
fonction <a class="link" href="ch11s16.html#gel-function-MakeSet"><code class="function">MakeSet</code></a>.
Actuellement, cela renvoie juste un nouveau vecteur où chaque élément est unique. </p><pre
class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>MakeSet([1,2,2,3])</code></strong>
+= [1, 2, 3]
+</pre><p>De manière similaire, il existe des fonctions <a class="link"
href="ch11s16.html#gel-function-Union"><code class="function">Union</code></a>, <a class="link"
href="ch11s16.html#gel-function-Intersection"><code class="function">Intersection</code></a>, <a class="link"
href="ch11s16.html#gel-function-SetMinus"><code class="function">SetMinus</code></a> dont le but est assez
intuitif. Par exemple : </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>Union([1,2,3], [1,2,4])</code></strong>
+= [1, 2, 4, 3]
+</pre><p> Notez qu'aucun ordre n'est garanti pour les valeurs renvoyées. Si vous souhaitez trier le vecteur,
vous devez utiliser la fonction <a class="link" href="ch11s08.html#gel-function-SortVector"><code
class="function">SortVector</code></a>.</p><p>Pour tester l'appartenance, il existe les fonctions <a
class="link" href="ch11s16.html#gel-function-IsIn"><code class="function">IsIn</code></a> et <a class="link"
href="ch11s16.html#gel-function-IsSubset"><code class="function">IsSubset</code></a> qui renvoient une valeur
booléenne. Par exemple, </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>IsIn (1, [0,1,2])</code></strong>
+= true
+</pre><p> La syntaxe <strong class="userinput"><code>IsIn(x,X)</code></strong> est bien sûr équivalente à
<strong class="userinput"><code>IsSubset([x],X)</code></strong>. Notez que puisque l'ensemble vide est un
sous-ensemble de tous les ensembles, <strong class="userinput"><code>IsSubset(null,X)</code></strong> est
toujours vrai.</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch09.html">Précédent</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch11.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Chapitre 9. Polynômes en
GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td width="40%"
align="right" valign="top"> Chapitre 11. Liste des fonctions GEL</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch11.html b/help/fr/html/ch11.html
new file mode 100644
index 0000000..d6fb6f5
--- /dev/null
+++ b/help/fr/html/ch11.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapitre 11. Liste des
fonctions GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="index.html" title="Manuel de Genius"><link
rel="prev" href="ch10.html" title="Chapitre 10. Théorie des ensembles en GEL"><link rel="next"
href="ch11s02.html" title="Basique"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Chapitre 11. Liste des fonctions GEL</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch10.html">Précédent</a> </td><th width="60%" align="center"> </th><td width="20%"
align="right"> <a accesskey="n" href="ch11s02.html">Suivant</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h
1 class="title"><a name="genius-gel-function-list"></a>Chapitre 11. Liste des fonctions
GEL</h1></div></div></div><div class="toc"><p><b>Table des matières</b></p><dl class="toc"><dt><span
class="sect1"><a href="ch11.html#genius-gel-function-list-commands">Commandes</a></span></dt><dt><span
class="sect1"><a href="ch11s02.html">Basique</a></span></dt><dt><span class="sect1"><a
href="ch11s03.html">Paramètres</a></span></dt><dt><span class="sect1"><a
href="ch11s04.html">Constantes</a></span></dt><dt><span class="sect1"><a
href="ch11s05.html">Nombres</a></span></dt><dt><span class="sect1"><a
href="ch11s06.html">Trigonométrie</a></span></dt><dt><span class="sect1"><a href="ch11s07.html">Théorie des
nombres</a></span></dt><dt><span class="sect1"><a href="ch11s08.html">Manipulation de
matrices</a></span></dt><dt><span class="sect1"><a href="ch11s09.html">Algèbre
linéaire</a></span></dt><dt><span class="sect1"><a href="ch11s10.html">Combinatoire</a></span></dt><dt><span
clas
s="sect1"><a href="ch11s11.html">Analyse</a></span></dt><dt><span class="sect1"><a
href="ch11s12.html">Fonctions</a></span></dt><dt><span class="sect1"><a href="ch11s13.html">Résolution
d'équations</a></span></dt><dt><span class="sect1"><a
href="ch11s14.html">Statistiques</a></span></dt><dt><span class="sect1"><a
href="ch11s15.html">Polynômes</a></span></dt><dt><span class="sect1"><a href="ch11s16.html">Théorie des
ensembles</a></span></dt><dt><span class="sect1"><a href="ch11s17.html">Commutative
Algebra</a></span></dt><dt><span class="sect1"><a href="ch11s18.html">Divers</a></span></dt><dt><span
class="sect1"><a href="ch11s19.html">Calcul symbolique</a></span></dt><dt><span class="sect1"><a
href="ch11s20.html">Tracé de graphiques</a></span></dt></dl></div><p>Pour obtenir de l'aide sur une fonction
spécifique à partir de la console, saisissez : </p><pre class="programlisting">help NomDeLaFonction
+</pre><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-commands"></a>Commandes</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a name="gel-command-help"></a>help</span></dt><dd><pre
class="synopsis">help</pre><pre class="synopsis">help NomDeLaFonction</pre><p>Affiche l'aide (ou l'aide d'une
fonction/commande).</p></dd><dt><span class="term"><a name="gel-command-load"></a>load</span></dt><dd><pre
class="synopsis">load "fichier.gel"</pre><p>Load a file into the interpreter. The file will execute
+as if it were typed onto the command line.</p></dd><dt><span class="term"><a
name="gel-command-cd"></a>cd</span></dt><dd><pre class="synopsis">cd /nom/de/repertoire</pre><p>Change le
répertoire de travail en <code class="filename">/nom/de/repertoire</code>.</p></dd><dt><span class="term"><a
name="gel-command-pwd"></a>pwd</span></dt><dd><pre class="synopsis">pwd</pre><p>Affiche le répertoire de
travail.</p></dd><dt><span class="term"><a name="gel-command-ls"></a>ls</span></dt><dd><pre
class="synopsis">ls</pre><p>Affiche les fichiers dans le répertoire.</p></dd><dt><span class="term"><a
name="gel-command-plugin"></a>plugin</span></dt><dd><pre class="synopsis">plugin
nom_du_greffon</pre><p>Charge un greffon. Le greffon portant ce nom doit être installé sur votre système dans
le répertoire correct.</p></dd></dl></div></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch10.html">Pr�
�cédent</a> </td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch11s02.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Chapitre 10. Théorie
des ensembles en GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top">
Basique</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch11s02.html b/help/fr/html/ch11s02.html
new file mode 100644
index 0000000..e697b0e
--- /dev/null
+++ b/help/fr/html/ch11s02.html
@@ -0,0 +1,52 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Basique</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manuel
de Genius"><link rel="up" href="ch11.html" title="Chapitre 11. Liste des fonctions GEL"><link rel="prev"
href="ch11.html" title="Chapitre 11. Liste des fonctions GEL"><link rel="next" href="ch11s03.html"
title="Paramètres"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Basique</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11.html">Précédent</a> </td><th width="60%" align="center">Chapitre 11. Liste des fonctions
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s03.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="
title" style="clear: both"><a name="genius-gel-function-list-basic"></a>Basique</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AskButtons"></a>AskButtons</span></dt><dd><pre class="synopsis">AskButtons
(requête)</pre><pre class="synopsis">AskButtons (requête, bouton1, ...)</pre><p>Pose une question et présente
une liste de boutons à l'utilisateur (ou un menu d'options en mode texte). Renvoie l'indice du bouton
enfoncé, commençant à 1, c'est-à-dire renvoie 1 si le premier bouton est enfoncé, 2 si le second bouton est
enfoncé, etc. Si l'utilisateur ferme la fenêtre (ou appui sur Entrée en mode texte) alors <code
class="constant">null</code> est renvoyé. L'exécution du programme est bloqué jusqu'à ce que l'utilisateur
réponde.</p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-AskString"></a>AskString</span></dt><dd><pre class="synopsis">AskString (requête)</
pre><pre class="synopsis">AskString (requête, défaut)</pre><p>Asks a question and lets the user enter a
string, which
+it then returns. If the user cancels or closes the window, then
+<code class="constant">null</code> is returned. The execution of the program
+is blocked until the user responds. If <code class="varname">default</code> is given, then it is pre-typed
in for the user to just press enter on (version 1.0.6 onwards).</p></dd><dt><span class="term"><a
name="gel-function-Compose"></a>Compose</span></dt><dd><pre class="synopsis">Compose (f,g)</pre><p>Compose
deux fonctions et renvoie une fonction qui est la composition de <code class="function">f</code> par <code
class="function">g</code>.</p></dd><dt><span class="term"><a
name="gel-function-ComposePower"></a>ComposePower</span></dt><dd><pre class="synopsis">ComposePower
(f,n,x)</pre><p>Compose et exécute une fonction avec elle-même <code class="varname">n</code> fois en
transmettant l'argument <code class="varname">x</code>. Cela renvoie <code class="varname">x</code> si <code
class="varname">n</code> vaut 0. Exemple : </p><pre class="screen"><code class="prompt">genius></code>
<strong class="userinput"><code>function f(x) = x^2 ;</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>ComposePower (f,3,7)</code></strong>
+= 5764801
+<code class="prompt">genius></code> <strong class="userinput"><code>f(f(f(7)))</code></strong>
+= 5764801
+</pre></dd><dt><span class="term"><a name="gel-function-Evaluate"></a>Evaluate</span></dt><dd><pre
class="synopsis">Evaluate (chaîne)</pre><p>Analyse et évalue une chaîne.</p></dd><dt><span class="term"><a
name="gel-function-GetCurrentModulo"></a>GetCurrentModulo</span></dt><dd><pre
class="synopsis">GetCurrentModulo</pre><p>Obtient le modulo actuel à partir du contexte extérieur à la
fonction. C'est-à-dire, si l'extérieur de la fonction a été exécuté en mode modulo (en utilisant <code
class="literal">mod</code>) alors cela renvoie cette valeur de modulo. Normalement le corps d'une fonction
appelée n'est pas exécutée en arithmétique modulaire et cette fonction intégrée donne la possibilité aux
fonctions GEL de prendre connaissance de l'arithmétique modulaire en cours.</p></dd><dt><span class="term"><a
name="gel-function-Identity"></a>Identity</span></dt><dd><pre class="synopsis">Identity (x)</pre><p>Identity
function, returns its argument. It is equivalen
t to <strong class="userinput"><code>function Identity(x)=x</code></strong>.</p></dd><dt><span
class="term"><a name="gel-function-IntegerFromBoolean"></a>IntegerFromBoolean</span></dt><dd><pre
class="synopsis">IntegerFromBoolean (val_bool)</pre><p>Crée un entier (0 pour <code
class="constant">false</code> ou 1 pour <code class="constant">true</code>) à partir d'une valeur booléenne.
<code class="varname">val_bool</code> peut également être un nombre et dans ce cas une valeur non nulle est
interprétée comme <code class="constant">true</code> et zéro est interprété comme <code
class="constant">false</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsBoolean"></a>IsBoolean</span></dt><dd><pre class="synopsis">IsBoolean
(param)</pre><p>Vérifie que l'argument est un booléen (et pas un nombre).</p></dd><dt><span class="term"><a
name="gel-function-IsDefined"></a>IsDefined</span></dt><dd><pre class="synopsis">IsDefined
(id)</pre><p>Vérifie qu'un identifiant
est défini. Vous devez transmettre une chaîne de caractères ou un identifiant. Si vous transmettez une
matrice, chaque entrée est évaluée séparément et la matrice doit contenir des chaînes ou des
identifiants.</p></dd><dt><span class="term"><a
name="gel-function-IsFunction"></a>IsFunction</span></dt><dd><pre class="synopsis">IsFunction
(param)</pre><p>Vérifie que l'argument est une fonction.</p></dd><dt><span class="term"><a
name="gel-function-IsFunctionOrIdentifier"></a>IsFunctionOrIdentifier</span></dt><dd><pre
class="synopsis">IsFunctionOrIdentifier (param)</pre><p>Vérifie que l'argument est une fonction ou un
identificateur.</p></dd><dt><span class="term"><a
name="gel-function-IsFunctionRef"></a>IsFunctionRef</span></dt><dd><pre class="synopsis">IsFunctionRef
(param)</pre><p>Vérifie que l'argument est une référence de fonction. Cela inclut les références de
variable.</p></dd><dt><span class="term"><a name="gel-function-IsMatrix"></a>IsMatrix</span></dt><d
d><pre class="synopsis">IsMatrix (param)</pre><p>Vérifie que l'argument est une matrice. Même si <code
class="constant">null</code> est parfois considéré comme une matrice vide, la fonction <code
class="function">IsMatrix</code> ne considère pas <code class="constant">null</code> comme une
matrice.</p></dd><dt><span class="term"><a name="gel-function-IsNull"></a>IsNull</span></dt><dd><pre
class="synopsis">IsNull (param)</pre><p>Vérifie que l'argument est <code
class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsString"></a>IsString</span></dt><dd><pre class="synopsis">IsString
(param)</pre><p>Vérifie que l'argument est une chaîne de caractères.</p></dd><dt><span class="term"><a
name="gel-function-IsValue"></a>IsValue</span></dt><dd><pre class="synopsis">IsValue (param)</pre><p>Vérifie
que l'argument est un nombre.</p></dd><dt><span class="term"><a
name="gel-function-Parse"></a>Parse</span></dt><dd><pre class="synopsis">Parse (chaîn
e)</pre><p>Analyse mais n'évalue pas une chaîne de caractères. Notez que certains pré-calculs sont effectués
pendant l'étape d'évaluation.</p></dd><dt><span class="term"><a
name="gel-function-SetFunctionFlags"></a>SetFunctionFlags</span></dt><dd><pre
class="synopsis">SetFunctionFlags (id,drapeau...)</pre><p>Définit des drapeaux pour une fonction,
actuellement <code class="literal">« PropagateMod »</code> et <code class="literal">« NoModuloArguments
»</code>. Si <code class="literal">« PropagateMod »</code> est défini alors le corps de la fonction est
évalué en arithmétique modulaire lorsque la fonction est appelée à l'intérieur d'un bloc qui est évalué en
utilisant l'arithmétique modulaire (en utilisant <code class="literal">mod</code>). Si <code
class="literal">« NoModuloArguments »</code> est défini alors les arguments de la fonction ne sont jamais
évalués en arithmétique modulaire.</p></dd><dt><span class="term"><a name="gel-function-
SetHelp"></a>SetHelp</span></dt><dd><pre class="synopsis">SetHelp (id,categorie,desc)</pre><p>Définit une
catégorie et une ligne de description d'aide pour une fonction.</p></dd><dt><span class="term"><a
name="gel-function-SetHelpAlias"></a>SetHelpAlias</span></dt><dd><pre class="synopsis">SetHelpAlias
(id,alias)</pre><p>Met en place un pseudonyme pour l'aide.</p></dd><dt><span class="term"><a
name="gel-function-chdir"></a>chdir</span></dt><dd><pre class="synopsis">chdir (rep)</pre><p>Change le
répertoire actuel, tout comme la commande <span class="command"><strong>cd</strong></span>.</p></dd><dt><span
class="term"><a name="gel-function-CurrentTime"></a>CurrentTime</span></dt><dd><pre
class="synopsis">CurrentTime</pre><p>Renvoie l'heure UNIX courante avec une précision de l'ordre de la
microseconde sous forme d'un nombre à virgule flottante, c'est-à-dire le nombre de secondes écoulées depuis
le 1er janvier 1970.</p><p>Version 1.0.15 onwards.</p></dd><dt><span class="
term"><a name="gel-function-display"></a>display</span></dt><dd><pre class="synopsis">display
(chaîne,expr)</pre><p>Affiche une chaîne de caractères et une expression séparées par deux
points.</p></dd><dt><span class="term"><a
name="gel-function-DisplayVariables"></a>DisplayVariables</span></dt><dd><pre
class="synopsis">DisplayVariables (var1,var2,...)</pre><p>Display set of variables. The variables can be
given as
+ strings or identifiers. For example:
+ </p><pre class="programlisting">DisplayVariables(`x,`y,`z)
+ </pre><p>
+ </p><p>
+ If called without arguments (must supply empty argument list) as
+ </p><pre class="programlisting">DisplayVariables()
+ </pre><p>
+ then all variables are printed including a stacktrace similar to
+ <span class="guilabel">Show user variables</span> in the graphical version.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-error"></a>error</span></dt><dd><pre class="synopsis">error (chaîne)</pre><p>Affiche une
chaîne vers la sortie erreur (dans la console).</p></dd><dt><span class="term"><a
name="gel-function-exit"></a>exit</span></dt><dd><pre class="synopsis">exit</pre><p>Alias : <code
class="function">quit</code></p><p>Quitte le programme.</p></dd><dt><span class="term"><a
name="gel-function-false"></a>false</span></dt><dd><pre class="synopsis">false</pre><p>Alias : <code
class="function">False</code>, <code class="function">FALSE</code></p><p>La valeur booléenne <code
class="constant">false</code> (faux).</p></dd><dt><span class="term"><a
name="gel-function-manual"></a>manual</span></dt><dd><pre class="synopsis">manual</pre><p>Affiche le manuel
utilisateur.</p></dd><dt><span class="term"><a name="gel-function-print"></a>print</span></dt><dd><pre
class="synopsis">print (chaîne)</pre><p>Affiche une ex
pression suivie d'un retour à la ligne. L'argument <code class="varname">chaine</code> peut être n'importe
quelle expression. Elle est transformée en chaîne avant d'être affichée.</p></dd><dt><span class="term"><a
name="gel-function-printn"></a>printn</span></dt><dd><pre class="synopsis">printn (chaîne)</pre><p>Affiche
une expression non suivie d'un retour à la ligne. L'argument <code class="varname">chaine</code> peut être
n'importe quelle expression. Elle est transformée en chaîne avant d'être affichée.</p></dd><dt><span
class="term"><a name="gel-function-PrintTable"></a>PrintTable</span></dt><dd><pre class="synopsis">PrintTable
(f,v)</pre><p>Print a table of values for a function. The values are in the
+ vector <code class="varname">v</code>. You can use the vector
+ building notation as follows:
+ </p><pre class="programlisting">PrintTable (f,[0:10])
+ </pre><p>
+ If <code class="varname">v</code> is a positive integer, then the table of
+ integers from 1 up to and including v will be used.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-protect"></a>protect</span></dt><dd><pre class="synopsis">protect (id)</pre><p>Protège une
variable de la modification. C'est utilisé dans les fonctions internes de GEL pour leur éviter d'être
accidentellement écrasées.</p></dd><dt><span class="term"><a
name="gel-function-ProtectAll"></a>ProtectAll</span></dt><dd><pre class="synopsis">ProtectAll
()</pre><p>Protège toutes les variables, paramètres et fonctions actuellement définis de la modification.
C'est utilisé dans les fonctions internes de GEL pour leur éviter d'être accidentellement écrasées.
Normalement l'<span class="application">Outil de maths Genius</span> considère que les variables non
protégées sont définies par l'utilisateur.</p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-set"></a>set</span></dt><dd><pre class="synopsis">set (id,val)</pre><p>Set a global
variable. The <code
class="varname">id</code>
+ can be either a string or a quoted identifier.
+ For example:
+ </p><pre class="programlisting">set(`x,1)
+ </pre><p>
+ will set the global variable <code class="varname">x</code> to the value 1.
+ </p><p>The function returns the <code class="varname">val</code>, to be
+ usable in chaining.</p></dd><dt><span class="term"><a
name="gel-function-SetElement"></a>SetElement</span></dt><dd><pre class="synopsis">SetElement
(id,row,col,val)</pre><p>Set an element of a global variable which is a matrix.
+ The <code class="varname">id</code>
+ can be either a string or a quoted identifier.
+ For example:
+ </p><pre class="programlisting">SetElement(`x,2,3,1)
+ </pre><p>
+ will set the second row third column element of the global variable <code
class="varname">x</code> to the value 1. If no global variable of the name exists, or if it is set to
something that's not a matrix, a new zero matrix of appropriate size will be created.
+ </p><p>The <code class="varname">row</code> and <code class="varname">col</code> can also be
ranges, and the semantics are the same as for regular setting of the elements with an equals sign.
+ </p><p>The function returns the <code class="varname">val</code>, to be
+ usable in chaining.</p><p>Available from 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SetVElement"></a>SetVElement</span></dt><dd><pre class="synopsis">SetElement
(id,elt,val)</pre><p>Set an element of a global variable which is a vector.
+ The <code class="varname">id</code>
+ can be either a string or a quoted identifier.
+ For example:
+ </p><pre class="programlisting">SetElement(`x,2,1)
+ </pre><p>
+ will set the second element of the global vector variable <code class="varname">x</code> to the
value 1. If no global variable of the name exists, or if it is set to something that's not a vector
(matrix), a new zero row vector of appropriate size will be created.
+ </p><p>The <code class="varname">elt</code> can also be a range, and the semantics are the same as
for regular setting of the elements with an equals sign.
+ </p><p>The function returns the <code class="varname">val</code>, to be
+ usable in chaining.</p><p>Available from 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-string"></a>string</span></dt><dd><pre class="synopsis">string (s)</pre><p>Crée une chaîne
de caractères à partir de n'importe quel argument.</p></dd><dt><span class="term"><a
name="gel-function-true"></a>true</span></dt><dd><pre class="synopsis">true</pre><p>Alias : <code
class="function">True</code>, <code class="function">TRUE</code></p><p>La valeur booléenne <code
class="constant">true</code> (vrai).</p></dd><dt><span class="term"><a
name="gel-function-undefine"></a>undefine</span></dt><dd><pre class="synopsis">undefine (id)</pre><p>Alias :
<code class="function">Undefine</code></p><p>Annule la définition d'une variable, y compris les variables
locales et globales, toutes les valeurs dans tous les contextes sont effacées. Vous ne devriez vraiment pas
utiliser cette fonction pour des variables locales. Un vecteur d'identifiants peut également être tr
ansmis pour annuler la définition de plusieurs variables.</p></dd><dt><span class="term"><a
name="gel-function-UndefineAll"></a>UndefineAll</span></dt><dd><pre class="synopsis">UndefineAll
()</pre><p>Annule la définition de toutes les variables globales non protégées (y compris les fonctions et
les paramètres). Normalement l'<span class="application">Outil de maths Genius</span> considère que les
variables protégées sont des variables et des fonctions définies par le système. Notez que <code
class="function">UndefineAll</code> efface seulement la définition globale des symboles et pas les
définitions locales donc cela peut être utilisé à l'intérieur d'autres fonctions sans danger.</p><p>Version
1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-unprotect"></a>unprotect</span></dt><dd><pre class="synopsis">unprotect
(id)</pre><p>Annule la protection d'une variable contre sa modification.</p></dd><dt><span class="term"><a
name="gel-function-Use
rVariables"></a>UserVariables</span></dt><dd><pre class="synopsis">UserVariables ()</pre><p>Renvoie un
vecteur d'identifiants des variables globales définies par l'utilisateur (non protégées).</p><p>Version 1.0.7
onwards.</p></dd><dt><span class="term"><a name="gel-function-wait"></a>wait</span></dt><dd><pre
class="synopsis">wait (secs)</pre><p>Attend un nombre spécifié de secondes. <code class="varname">secs</code>
ne doit pas être négatif. Zéro est accepté et rien ne se passe dans ce cas mis à part, peut-être, le
traitement d'évènements de l'interface utilisateur.</p><p>Since version 1.0.18, <code
class="varname">secs</code> can be a noninteger number, so
+ <strong class="userinput"><code>wait(0.1)</code></strong> will wait for one tenth of a
second.</p></dd><dt><span class="term"><a name="gel-function-version"></a>version</span></dt><dd><pre
class="synopsis">version</pre><p>Renvoie la version de Genius sous la forme d'un vecteur horizontal à 3
valeurs : en premier la version majeure, puis la version mineure et enfin le niveau de
correction.</p></dd><dt><span class="term"><a name="gel-function-warranty"></a>warranty</span></dt><dd><pre
class="synopsis">warranty</pre><p>Renvoie les informations sur la garantie.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11.html">Précédent</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Niveau supérieur</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s03.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Cha
pitre 11. Liste des fonctions GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top">
Paramètres</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch11s03.html b/help/fr/html/ch11s03.html
new file mode 100644
index 0000000..4a77ed4
--- /dev/null
+++ b/help/fr/html/ch11s03.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Paramètres</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manuel de Genius"><link rel="up" href="ch11.html"
title="Chapitre 11. Liste des fonctions GEL"><link rel="prev" href="ch11s02.html" title="Basique"><link
rel="next" href="ch11s04.html" title="Constantes"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Paramètres</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s02.html">Précédent</a> </td><th width="60%" align="center">Chapitre 11. Liste des
fonctions GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s04.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clea
r: both"><a name="genius-gel-function-parameters"></a>Paramètres</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ChopTolerance"></a>ChopTolerance</span></dt><dd><pre class="synopsis">ChopTolerance =
nombre</pre><p>Tolérance pour la fonction <code class="function">Chop</code>.</p></dd><dt><span
class="term"><a name="gel-function-ContinuousNumberOfTries"></a>ContinuousNumberOfTries</span></dt><dd><pre
class="synopsis">ContinuousNumberOfTries = nombre</pre><p>Nombre d'itérations à essayer pour rechercher la
continuité et les limites d'une fonction.</p></dd><dt><span class="term"><a
name="gel-function-ContinuousSFS"></a>ContinuousSFS</span></dt><dd><pre class="synopsis">ContinuousSFS =
nombre</pre><p>Nombre d'étapes successives pour atteindre la tolérance pour le calcul de la
continuité.</p></dd><dt><span class="term"><a
name="gel-function-ContinuousTolerance"></a>ContinuousTolerance</span></dt><dd><pr
e class="synopsis">ContinuousTolerance = nombre</pre><p>Tolérance pour la continuité d'une fonction et pour
le calcul de la limite.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeNumberOfTries"></a>DerivativeNumberOfTries</span></dt><dd><pre
class="synopsis">DerivativeNumberOfTries = nombre</pre><p>Nombre d'itérations à essayer pour trouver la
limite pour la dérivée.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeSFS"></a>DerivativeSFS</span></dt><dd><pre class="synopsis">DerivativeSFS =
nombre</pre><p>Nombre d'étapes successives pour atteindre la tolérance pour le calcul de la
dérivée.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeTolerance"></a>DerivativeTolerance</span></dt><dd><pre
class="synopsis">DerivativeTolerance = nombre</pre><p>Tolérance pour le calcul de la dérivée des
fonctions.</p></dd><dt><span class="term"><a
name="gel-function-ErrorFunctionTolerance"></a>ErrorFunctionTolerance</span></dt><dd><pre
class="synopsis">ErrorFunctionTolerance = nombre</pre><p>Tolerance of the <a class="link"
href="ch11s12.html#gel-function-ErrorFunction"><code
class="function">ErrorFunction</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-FloatPrecision"></a>FloatPrecision</span></dt><dd><pre class="synopsis">FloatPrecision =
nombre</pre><p>Précision en virgule flottante.</p></dd><dt><span class="term"><a
name="gel-function-FullExpressions"></a>FullExpressions</span></dt><dd><pre class="synopsis">FullExpressions
= booléen</pre><p>Affiche les expressions complètes, même celles de plus d'une ligne.</p></dd><dt><span
class="term"><a
name="gel-function-GaussDistributionTolerance"></a>GaussDistributionTolerance</span></dt><dd><pre
class="synopsis">GaussDistributionTolerance = nombre</pre><p>Tolerance of the <a class="link"
href="ch11s14.html#gel-function-GaussDistribution"><code class="function">GaussDistribution</code></a>
function.</p></dd><dt><span class="term"><a name="ge
l-function-IntegerOutputBase"></a>IntegerOutputBase</span></dt><dd><pre class="synopsis">IntegerOutputBase =
nombre</pre><p>Base de sortie pour les entiers.</p></dd><dt><span class="term"><a
name="gel-function-IsPrimeMillerRabinReps"></a>IsPrimeMillerRabinReps</span></dt><dd><pre
class="synopsis">IsPrimeMillerRabinReps = nombre</pre><p>Number of extra Miller-Rabin tests to run on a
number before declaring it a prime in <a class="link" href="ch11s07.html#gel-function-IsPrime"><code
class="function">IsPrime</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawLegends"></a>LinePlotDrawLegends</span></dt><dd><pre
class="synopsis">LinePlotDrawLegends = true</pre><p>Indique à genius de tracer les légendes pour les <a
class="link" href="ch11s20.html" title="Tracé de graphiques">fonctions de tracé de graphiques</a> telles que
<a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>.</p></dd><dt><span class="term
"><a name="gel-function-LinePlotDrawAxisLabels"></a>LinePlotDrawAxisLabels</span></dt><dd><pre
class="synopsis">LinePlotDrawAxisLabels = true</pre><p>Tells genius to draw the axis labels for <a
class="link" href="ch11s20.html" title="Tracé de graphiques">line plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotVariableNames"></a>LinePlotVariableNames</span></dt><dd><pre
class="synopsis">LinePlotVariableNames = ["x","y","z","t"]</pre><p>Indique à Genius les noms des variables
utilisés pour les <a class="link" href="ch11s20.html" title="Tracé de graphiques">fonctions de tracé de
graphiques</a> telles que <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a> et autres.</p><p>Version 1.0.10 onwards.</p></dd><dt><span
class="term"><a name="gel-function-LinePlotWindow"></a>LinePlotWindow</span></dt><dd><pre
class="synopsis">LinePlotWindow = [x1,x2,y1,y2]</pre><p>Définit les limites pour les <a class="link"
href="ch11s20.html" title="Tracé de graphiques">fonctions de tracé de graphiques</a> telles que <a
class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-MaxDigits"></a>MaxDigits</span></dt><dd><pre class="synopsis">MaxDigits =
nombre</pre><p>Nombre maximum de chiffres à afficher.</p></dd><dt><span class="term"><a
name="gel-function-MaxErrors"></a>MaxErrors</span></dt><dd><pre class="synopsis">MaxErrors =
nombre</pre><p>Nombre maximum d'erreurs à afficher.</p></dd><dt><span class="term"><a
name="gel-function-MixedFractions"></a>MixedFractions</span></dt><dd><pre class="synopsis">MixedFractions =
booléen</pre><p>Si vrai, les fractions mixtes sont affichées.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegralFunction"></a>NumericalIntegralFunction</span></dt><dd><pre
class="synopsis">NumericalIntegralFunction = fonction</pre><p>The function used for numerical integration in
<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegralSteps"></a>NumericalInteg
ralSteps</span></dt><dd><pre class="synopsis">NumericalIntegralSteps = nombre</pre><p>Steps to perform in <a
class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-OutputChopExponent"></a>OutputChopExponent</span></dt><dd><pre
class="synopsis">OutputChopExponent = nombre</pre><p>Lorsqu'un autre nombre dans l'objet qui est affiché (une
matrice ou une valeur) est plus grand que 10<sup>-OutputChopWhenExponent</sup> et que le nombre actuellement
affiché est inférieur à 10<sup>-OutputChopExponent</sup> alors afficher <code
class="computeroutput">0.0</code> au lieu du nombre.</p><p>La sortie n'est jamais tronquée si <code
class="function">OutputChopExponent</code> vaut zéro. Cela doit être un nombre entier positif.</p><p>Si vous
voulez toujours que la sortie soit tronquée selon <code class="function">OutputChopExponent</code> alors
définissez <code class="fun
ction">OutputChopWhenExponent</code> à quelque chose de supérieur ou égal à <code
class="function">OutputChopExponent</code>.</p></dd><dt><span class="term"><a
name="gel-function-OutputChopWhenExponent"></a>OutputChopWhenExponent</span></dt><dd><pre
class="synopsis">OutputChopWhenExponent = nombre</pre><p>Définit quand la sortie est tronquée. Consultez <a
class="link" href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-OutputStyle"></a>OutputStyle</span></dt><dd><pre class="synopsis">OutputStyle =
chaîne</pre><p>Style des affichages, cela peut être <code class="literal">normal</code>, <code
class="literal">latex</code>, <code class="literal">mathml</code> ou <code
class="literal">troff</code>.</p><p>Cela affecte principalement la façon dont les matrices et les fractions
sont affichées et est utile pour le copier/coller vers des documents. Par exemple, vous pou
vez définir ce paramètre à « latex » par : </p><pre class="programlisting">OutputStyle = "latex"
+</pre></dd><dt><span class="term"><a
name="gel-function-ResultsAsFloats"></a>ResultsAsFloats</span></dt><dd><pre class="synopsis">ResultsAsFloats
= booléen</pre><p>Convertit tous les résultats en nombres flottants avant de les afficher.</p></dd><dt><span
class="term"><a name="gel-function-ScientificNotation"></a>ScientificNotation</span></dt><dd><pre
class="synopsis">ScientificNotation = booléen</pre><p>Utilise la notation scientifique.</p></dd><dt><span
class="term"><a name="gel-function-SlopefieldTicks"></a>SlopefieldTicks</span></dt><dd><pre
class="synopsis">SlopefieldTicks = [verticale,horizontale]</pre><p>Définit le nombre de petits traits
verticaux et horizontaux dans un graphique de champ de tangente (consultez <a class="link"
href="ch11s20.html#gel-function-SlopefieldPlot"><code
class="function">SlopefieldPlot</code></a>).</p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SumProductNumberOfTries"></a>SumProductNumberOfTries</span>
</dt><dd><pre class="synopsis">SumProductNumberOfTries = nombre</pre><p>How many iterations to try for <a
class="link" href="ch11s11.html#gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a> and
<a class="link" href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SumProductSFS"></a>SumProductSFS</span></dt><dd><pre class="synopsis">SumProductSFS =
nombre</pre><p>How many successive steps to be within tolerance for <a class="link"
href="ch11s11.html#gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a> and <a
class="link" href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SumProductTolerance"></a>SumProductTolerance</span></dt><dd><pre
class="synopsis">SumProductTolerance = nombre</pre><p>Tolerance for <a class="link" href="ch11s11.html#gel-
function-InfiniteSum"><code class="function">InfiniteSum</code></a> and <a class="link"
href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawLegends"></a>SurfacePlotDrawLegends</span></dt><dd><pre
class="synopsis">SurfacePlotDrawLegends = true</pre><p>Tells genius to draw the legends for <a class="link"
href="ch11s20.html" title="Tracé de graphiques">surface plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotVariableNames"></a>SurfacePlotVariableNames</span></dt><dd><pre
class="synopsis">SurfacePlotVariableNames = ["x","y","z"]</pre><p>Tells genius which variable names are used
as default names for <a class="link" href="ch11s20.html" title="Tracé de graphiques">surface plotting
+ functions</a> using <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>.
+ Note that the <code class="varname">z</code> does not refer to the dependent (vertical) axis, but
to the independent complex variable
+ <strong class="userinput"><code>z=x+iy</code></strong>.
+ </p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotWindow"></a>SurfacePlotWindow</span></dt><dd><pre
class="synopsis">SurfacePlotWindow = [x1,x2,y1,y2,z1,z2]</pre><p>Définit les limites pour les tracés de
surface (consultez <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>).</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldNormalized"></a>VectorfieldNormalized</span></dt><dd><pre
class="synopsis">VectorfieldNormalized = true</pre><p>Indique si les longueurs de flèches du tracé de champ
de vecteurs doivent être normalisées. Si true (vrai), les tracés de champ de vecteurs n'affichent que la
direction et pas l'amplitude (consultez <a class="link"
href="ch11s20.html#gel-function-VectorfieldPlot"><code
class="function">VectorfieldPlot</code></a>).</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldTicks"></a>VectorfieldTicks</span></dt>
<dd><pre class="synopsis">VectorfieldTicks = [verticale,horizontale]</pre><p>Définit le nombre de petits
traits verticaux et horizontaux dans un graphique de champ de vecteurs (consultez <a class="link"
href="ch11s20.html#gel-function-SlopefieldPlot"><code
class="function">VectorfieldPlot</code></a>).</p><p>Version 1.0.10 onwards.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s02.html">Précédent</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Niveau supérieur</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s04.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Basique </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td width="40%" align="right"
valign="top"> Constantes</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch11s04.html b/help/fr/html/ch11s04.html
new file mode 100644
index 0000000..86f52b8
--- /dev/null
+++ b/help/fr/html/ch11s04.html
@@ -0,0 +1,36 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Constantes</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manuel de Genius"><link rel="up" href="ch11.html"
title="Chapitre 11. Liste des fonctions GEL"><link rel="prev" href="ch11s03.html" title="Paramètres"><link
rel="next" href="ch11s05.html" title="Nombres"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Constantes</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s03.html">Précédent</a> </td><th width="60%" align="center">Chapitre 11. Liste des
fonctions GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s05.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear
: both"><a name="genius-gel-function-list-constants"></a>Constantes</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-CatalanConstant"></a>CatalanConstant</span></dt><dd><pre
class="synopsis">CatalanConstant</pre><p>Constante de Catalan, approximativement 0,915..., elle est définie
comme la série des termes <strong class="userinput"><code>(-1^k)/((2*k+1)^2)</code></strong> où <code
class="varname">k</code> va de 0 à l'infini.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Catalan%27s_constant"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/CatalansConstant.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EulerConstant"></a>EulerConstant</span></dt><dd><pre
class="synopsis">EulerConstant</pre><p>Alias : <code class="function">gamma</code></p><p>
+ Euler's constant gamma. Sometimes called the
+ Euler-Mascheroni constant.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Euler-Mascheroni_constant"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/MascheroniConstant" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Euler-MascheroniConstant.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GoldenRatio"></a>GoldenRatio</span></dt><dd><pre class="synopsis">GoldenRatio</pre><p>Le
nombre d'or.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Golden_ratio" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/GoldenRatio" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/GoldenRatio.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Gravity"></a>Gravity</span></dt><dd><pre
class="synopsis">Gravity</pre><p>Free fall acceleration at sea level in meters per second squared. This is
the standard gravity constant 9.80665. The gravity
+ in your particular neck of the woods might be different due to different altitude and the
fact that the earth is not perfectly
+ round and uniform.</p><p>Consultez <a class="ulink"
href="http://en.wikipedia.org/wiki/Standard_gravity" target="_top">Wikipedia</a> pour plus
d'informations.</p></dd><dt><span class="term"><a name="gel-function-e"></a>e</span></dt><dd><pre
class="synopsis">e</pre><p>
+ The base of the natural logarithm. <strong class="userinput"><code>e^x</code></strong>
+ is the exponential function
+ <a class="link" href="ch11s05.html#gel-function-exp"><code class="function">exp</code></a>. It
is approximately
+ 2.71828182846... This number is sometimes called Euler's number, although there are
+ several numbers that are also called Euler's. An example is the gamma constant: <a class="link"
href="ch11s04.html#gel-function-EulerConstant"><code class="function">EulerConstant</code></a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/E_(mathematical_constant)"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/E" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/e.html" target="_top">Mathworld</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-pi"></a>pi</span></dt><dd><pre
class="synopsis">pi</pre><p>Le nombre pi, c'est-à-dire le rapport de la circonférence d'un cercle sur son
diamètre. Il vaut approximativement 3.14159265359...</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Pi" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Pi" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Pi.html" target="_top">Mathworld</a> for more
information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s03.html">Précédent</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Niveau supérieur</a></td><td width="40%"
align="right"> <a accesskey="n" href="ch11s05.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Paramètres </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top">
Nombres</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch11s05.html b/help/fr/html/ch11s05.html
new file mode 100644
index 0000000..bdb77d4
--- /dev/null
+++ b/help/fr/html/ch11s05.html
@@ -0,0 +1,63 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Nombres</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manuel
de Genius"><link rel="up" href="ch11.html" title="Chapitre 11. Liste des fonctions GEL"><link rel="prev"
href="ch11s04.html" title="Constantes"><link rel="next" href="ch11s06.html"
title="Trigonométrie"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Nombres</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s04.html">Précédent</a> </td><th width="60%" align="center">Chapitre 11. Liste des fonctions
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s06.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear
: both"><a name="genius-gel-function-list-numeric"></a>Nombres</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AbsoluteValue"></a>AbsoluteValue</span></dt><dd><pre class="synopsis">AbsoluteValue
(x)</pre><p>Alias : <code class="function">abs</code></p><p>
+ Absolute value of a number and if <code class="varname">x</code> is
+ a complex value the modulus of <code class="varname">x</code>. I.e. this
+ the distance of <code class="varname">x</code> to the origin. This is equivalent
+ to <strong class="userinput"><code>|x|</code></strong>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Absolute_value" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/AbsoluteValue" target="_top">Planetmath (absolute
value)</a>,
+ <a class="ulink" href="http://planetmath.org/ModulusOfComplexNumber" target="_top">Planetmath
(modulus)</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/AbsoluteValue.html" target="_top">Mathworld
(absolute value)</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/ComplexModulus.html" target="_top">Mathworld
(complex modulus)</a>
+for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Chop"></a>Chop</span></dt><dd><pre
class="synopsis">Chop (x)</pre><p>Remplace les très petits nombres par zéro.</p></dd><dt><span
class="term"><a name="gel-function-ComplexConjugate"></a>ComplexConjugate</span></dt><dd><pre
class="synopsis">ComplexConjugate (z)</pre><p>Alias : <code class="function">conj</code> <code
class="function">Conj</code></p><p>Calcule le conjugué du nombre complexe <code class="varname">z</code>. Si
<code class="varname">z</code> est un vecteur ou une matrice, tous les éléments sont
conjugués.</p><p>Consultez <a class="ulink" href="http://fr.wikipedia.org/wiki/Conjugu%C3%A9"
target="_top">Wikipedia</a> pour plus d'informations.</p></dd><dt><span class="term"><a
name="gel-function-Denominator"></a>Denominator</span></dt><dd><pre class="synopsis">Denominator
(x)</pre><p>Renvoie le dénominateur d'un nombre rationnel.</p><p>Consultez <a class="ulink"
href="http://fr.wikipedia.org/wiki/D%C3
%A9nominateurr" target="_top">Wikipedia</a> pour plus d'informations.</p></dd><dt><span class="term"><a
name="gel-function-FractionalPart"></a>FractionalPart</span></dt><dd><pre class="synopsis">FractionalPart
(x)</pre><p>Renvoie la partie fractionnelle d'un nombre.</p><p>Consultez <a class="ulink"
href="http://fr.wikipedia.org/wiki/Partie_fractionnaire" target="_top">Wikipedia</a> pour plus
d'informations.</p></dd><dt><span class="term"><a name="gel-function-Im"></a>Im</span></dt><dd><pre
class="synopsis">Im (z)</pre><p>Alias : <code class="function">ImaginaryPart</code></p><p>Get the imaginary
part of a complex number. For example <strong class="userinput"><code>Re(3+4i)</code></strong> yields
4.</p><p>Consultez <a class="ulink" href="http://fr.wikipedia.org/wiki/Partie_imaginaire"
target="_top">Wikipedia</a> pour plus d'informations.</p></dd><dt><span class="term"><a
name="gel-function-IntegerQuotient"></a>IntegerQuotient</span></dt><dd><pre class="synopsis">IntegerQuot
ient (m,n)</pre><p>Division sans reste.</p></dd><dt><span class="term"><a
name="gel-function-IsComplex"></a>IsComplex</span></dt><dd><pre class="synopsis">IsComplex
(nbre)</pre><p>Check if argument is a complex (non-real) number. Do note that we really mean nonreal number.
That is,
+ <strong class="userinput"><code>IsComplex(3)</code></strong> yields false, while
+ <strong class="userinput"><code>IsComplex(3-1i)</code></strong> yields true.</p></dd><dt><span
class="term"><a name="gel-function-IsComplexRational"></a>IsComplexRational</span></dt><dd><pre
class="synopsis">IsComplexRational (nbre)</pre><p>Vérifie si l'argument est potentiellement un nombre
rationnel complexe. C'est-à-dire si la partie réelle et la partie imaginaire sont fournies sous la forme de
nombres rationnels. Bien sûr, rationnel signifie simplement « non enregistré comme un nombre à virgule
flottante ».</p></dd><dt><span class="term"><a name="gel-function-IsFloat"></a>IsFloat</span></dt><dd><pre
class="synopsis">IsFloat (nbre)</pre><p>Check if argument is a real floating point number
(non-complex).</p></dd><dt><span class="term"><a
name="gel-function-IsGaussInteger"></a>IsGaussInteger</span></dt><dd><pre class="synopsis">IsGaussInteger
(nbre)</pre><p>Alias : <code class="function">IsComplexInteger</code></p><p>Check if argument is a possibly
complex int
eger. That is a complex integer is a number of
+ the form <strong class="userinput"><code>n+1i*m</code></strong> where <code
class="varname">n</code> and <code class="varname">m</code>
+ are integers.</p></dd><dt><span class="term"><a
name="gel-function-IsInteger"></a>IsInteger</span></dt><dd><pre class="synopsis">IsInteger
(nbre)</pre><p>Vérifie si l'argument est un entier (non complexe).</p></dd><dt><span class="term"><a
name="gel-function-IsNonNegativeInteger"></a>IsNonNegativeInteger</span></dt><dd><pre
class="synopsis">IsNonNegativeInteger (nbre)</pre><p>Check if argument is a non-negative real integer. That
is, either a positive integer or zero.</p></dd><dt><span class="term"><a
name="gel-function-IsPositiveInteger"></a>IsPositiveInteger</span></dt><dd><pre
class="synopsis">IsPositiveInteger (nbre)</pre><p>Alias : <code
class="function">IsNaturalNumber</code></p><p>Vérifie si l'argument est un entier réel positif. Notez que par
convention 0 n'est pas un nombre naturel.</p></dd><dt><span class="term"><a
name="gel-function-IsRational"></a>IsRational</span></dt><dd><pre class="synopsis">IsRational
(nbre)</pre><p>Vérifie si l'argument est un nombr
e rationnel (non complexe). Bien sûr, rationnel signifie simplement « non enregistré comme un nombre à
virgule flottante ».</p></dd><dt><span class="term"><a
name="gel-function-IsReal"></a>IsReal</span></dt><dd><pre class="synopsis">IsReal (nbre)</pre><p>Vérifie si
l'argument est un nombre réel.</p></dd><dt><span class="term"><a
name="gel-function-Numerator"></a>Numerator</span></dt><dd><pre class="synopsis">Numerator
(x)</pre><p>Renvoie le numérateur d'un nombre rationnel.</p><p>Consultez <a class="ulink"
href="http://fr.wikipedia.org/wiki/Num%C3%A9rateur" target="_top">Wikipedia</a> pour plus
d'informations.</p></dd><dt><span class="term"><a name="gel-function-Re"></a>Re</span></dt><dd><pre
class="synopsis">Re (z)</pre><p>Alias : <code class="function">RealPart</code></p><p>Get the real part of a
complex number. For example <strong class="userinput"><code>Re(3+4i)</code></strong> yields
3.</p><p>Consultez <a class="ulink" href="http://fr.wikipedia.org/wiki/Part
ie_r%C3%A9elle" target="_top">Wikipedia</a> pour plus d'informations.</p></dd><dt><span class="term"><a
name="gel-function-Sign"></a>Sign</span></dt><dd><pre class="synopsis">Sign (x)</pre><p>Alias : <code
class="function">sign</code></p><p>Renvoie le signe d'un nombre. C'est-à-dire renvoie <code
class="literal">-1</code> si la valeur est négative, <code class="literal">0</code> si la valeur est nulle et
<code class="literal">1</code> si la valeur est positive. Si <code class="varname">x</code> est une grandeur
complexe alors <code class="function">Sign</code> renvoie la direction ou 0.</p></dd><dt><span
class="term"><a name="gel-function-ceil"></a>ceil</span></dt><dd><pre class="synopsis">ceil (x)</pre><p>Alias
: <code class="function">Ceiling</code></p><p>Get the lowest integer more than or equal to <code
class="varname">n</code>. Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>ceil(1.1)</code></strong>
+= 2
+<code class="prompt">genius></code> <strong class="userinput"><code>ceil(-1.1)</code></strong>
+= -1
+</pre><p>
+ </p><p>Note that you should be careful and notice that floating point
+ numbers are stored in binary and so may not be what you
+ expect. For example <strong class="userinput"><code>ceil(420/4.2)</code></strong>
+ returns 101 instead of the expected 100. This is because
+ 4.2 is actually very slightly less than 4.2. Use rational
+ representation <strong class="userinput"><code>42/10</code></strong> if you want
+ exact arithmetic.
+ </p></dd><dt><span class="term"><a name="gel-function-exp"></a>exp</span></dt><dd><pre
class="synopsis">exp (x)</pre><p>La fonction exponentielle. C'est la fonction <strong
class="userinput"><code>e^x</code></strong> où <code class="varname">e</code> est la <a class="link"
href="ch11s04.html#gel-function-e">base du logarithme naturel</a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Exponential_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/LogarithmFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/ExponentialFunction.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-float"></a>float</span></dt><dd><pre
class="synopsis">float (x)</pre><p>Transforme le nombre en nombre à virgule flottante. C'est-à-dire la
représentation à virgule flottante du nombre <code class="varname">x</code>.</p></dd><dt><span
class="term"><a name="gel-function-floor"></a>floor</span></dt><dd><pre class="synopsis">floor
(x)</pre><p>Alias : <code class="function">Floor</code></p><p>Renvoie le plus grand entier inférieur ou égal
à <code class="varname">n</code>.</p></dd><dt><span class="term"><a
name="gel-function-ln"></a>ln</span></dt><dd><pre class="synopsis">ln (x)</pre><p>Le logarithme naturel, le
logarithme de base <code class="varname">e</code>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Natural_logarithm"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/LogarithmFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/NaturalLogarithm.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-log"></a>log</span></dt><dd><pre
class="synopsis">log (x)</pre><pre class="synopsis">log (x,b)</pre><p>Logarithm of <code
class="varname">x</code> base <code class="varname">b</code> (calls <a class="link"
href="ch11s07.html#gel-function-DiscreteLog"><code class="function">DiscreteLog</code></a> if in modulo
mode), if base is not given, <a class="link" href="ch11s04.html#gel-function-e"><code
class="varname">e</code></a> is used.</p></dd><dt><span class="term"><a
name="gel-function-log10"></a>log10</span></dt><dd><pre class="synopsis">log10 (x)</pre><p>Logarithme base 10
de <code class="varname">x</code>.</p></dd><dt><span class="term"><a
name="gel-function-log2"></a>log2</span></dt><dd><pre class="synopsis">log2 (x)</pre><p>Alias : <code
class="function">lg</code></p><p>Logarithme base 2 de <code class="varname">x</code>.</p></dd><dt><span
class="term"><a name="gel-function-max"></a>max</span></dt><dd><pre class="s
ynopsis">max (a,params...)</pre><p>Alias : <code class="function">Max</code> <code
class="function">Maximum</code></p><p>Renvoie le maximum des arguments ou de la matrice.</p></dd><dt><span
class="term"><a name="gel-function-min"></a>min</span></dt><dd><pre class="synopsis">min
(a,params...)</pre><p>Alias : <code class="function">Min</code> <code
class="function">Minimum</code></p><p>Renvoie le minimum des arguments ou de la matrice.</p></dd><dt><span
class="term"><a name="gel-function-rand"></a>rand</span></dt><dd><pre class="synopsis">rand
(taille...)</pre><p>Génère aléatoirement des nombres flottants dans l'intervalle <code
class="literal">[0,1)</code>. Si taille est donnée alors une matrice (si deux nombres sont fournis) ou un
vecteur (si un seul est fourni) de la taille indiquée est renvoyé.</p></dd><dt><span class="term"><a
name="gel-function-randint"></a>randint</span></dt><dd><pre class="synopsis">randint
(max,taille...)</pre><p>Génère aléatoirement des
entiers dans l'intervalle <code class="literal">[0,max)</code>. Si taille est donné alors une matrice (si
deux nombres sont fournis) ou un vecteur (si un seul est fourni) de la taille indiquée est renvoyé. Par
exemple, </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>randint(4)</code></strong>
+= 3
+<code class="prompt">genius></code> <strong class="userinput"><code>randint(4,2)</code></strong>
+=
+[0 1]
+<code class="prompt">genius></code> <strong class="userinput"><code>randint(4,2,3)</code></strong>
+=
+[2 2 1
+ 0 0 3]
+</pre></dd><dt><span class="term"><a name="gel-function-round"></a>round</span></dt><dd><pre
class="synopsis">round (x)</pre><p>Alias : <code class="function">Round</code></p><p>Arrondit un
nombre.</p></dd><dt><span class="term"><a name="gel-function-sqrt"></a>sqrt</span></dt><dd><pre
class="synopsis">sqrt (x)</pre><p>Alias : <code class="function">SquareRoot</code></p><p>La racine carrée. Au
cours de calculs en mode modulaire, certains entiers renvoient soit <code class="constant">null</code> ou un
vecteur contenant les racines carrées. Exemples : </p><pre class="screen"><code
class="prompt">genius></code> <strong class="userinput"><code>sqrt(2)</code></strong>
+= 1.41421356237
+<code class="prompt">genius></code> <strong class="userinput"><code>sqrt(-1)</code></strong>
+= 1i
+<code class="prompt">genius></code> <strong class="userinput"><code>sqrt(4) mod 7</code></strong>
+=
+[2 5]
+<code class="prompt">genius></code> <strong class="userinput"><code>2*2 mod 7</code></strong>
+= 4
+</pre><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Square_root" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/SquareRoot" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-trunc"></a>trunc</span></dt><dd><pre
class="synopsis">trunc (x)</pre><p>Alias : <code class="function">Truncate</code><code
class="function">IntegerPart</code></p><p>Tronque le nombre à un entier (renvoie la partie
entière).</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s04.html">Précédent</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Niveau supérieur</a></td><td width="40%"
align="right"> <a accesskey="n" href="ch11s06.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Constantes </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top">
Trigonométrie</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch11s06.html b/help/fr/html/ch11s06.html
new file mode 100644
index 0000000..5a9eb72
--- /dev/null
+++ b/help/fr/html/ch11s06.html
@@ -0,0 +1,56 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Trigonométrie</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manuel de Genius"><link rel="up" href="ch11.html"
title="Chapitre 11. Liste des fonctions GEL"><link rel="prev" href="ch11s05.html" title="Nombres"><link
rel="next" href="ch11s07.html" title="Théorie des nombres"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Trigonométrie</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s05.html">Précédent</a> </td><th width="60%" align="center">Chapitre 11. Liste des
fonctions GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s07.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="ti
tle" style="clear: both"><a
name="genius-gel-function-list-trigonometry"></a>Trigonométrie</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-acos"></a>acos</span></dt><dd><pre class="synopsis">acos (x)</pre><p>Alias : <code
class="function">arccos</code></p><p>Fonction arccos (arc cosinus).</p></dd><dt><span class="term"><a
name="gel-function-acosh"></a>acosh</span></dt><dd><pre class="synopsis">acosh (x)</pre><p>Alias : <code
class="function">arccosh</code></p><p>Fonction arccosh (cosinus hyperbolique inverse).</p></dd><dt><span
class="term"><a name="gel-function-acot"></a>acot</span></dt><dd><pre class="synopsis">acot (x)</pre><p>Alias
: <code class="function">arccot</code></p><p>Fonction arccot (cotangente inverse).</p></dd><dt><span
class="term"><a name="gel-function-acoth"></a>acoth</span></dt><dd><pre class="synopsis">acoth
(x)</pre><p>Alias : <code class="function">arccoth</code></p><p>Fonction a
rccoth (cotangente hyperbolique inverse).</p></dd><dt><span class="term"><a
name="gel-function-acsc"></a>acsc</span></dt><dd><pre class="synopsis">acsc (x)</pre><p>Alias : <code
class="function">arccsc</code></p><p>Inverse de la fonction cosécante.</p></dd><dt><span class="term"><a
name="gel-function-acsch"></a>acsch</span></dt><dd><pre class="synopsis">acsch (x)</pre><p>Alias : <code
class="function">arccsch</code></p><p>Inverse de la fonction cosécante hyperbolique.</p></dd><dt><span
class="term"><a name="gel-function-asec"></a>asec</span></dt><dd><pre class="synopsis">asec (x)</pre><p>Alias
: <code class="function">arcsec</code></p><p>Inverse de la fonction sécante.</p></dd><dt><span
class="term"><a name="gel-function-asech"></a>asech</span></dt><dd><pre class="synopsis">asech
(x)</pre><p>Alias : <code class="function">arcsech</code></p><p>Inverse de la fontion sécante
hyperbolique.</p></dd><dt><span class="term"><a name="gel-function-asin"></a>asin</span></dt><dd
<pre class="synopsis">asin (x)</pre><p>Alias : <code class="function">arcsin</code></p><p>La fonction
arcsin (sinus inverse).</p></dd><dt><span class="term"><a
name="gel-function-asinh"></a>asinh</span></dt><dd><pre class="synopsis">asinh (x)</pre><p>Alias : <code
class="function">arcsinh</code></p><p>Fonction arcsinh (sinus hyperbolique inverse).</p></dd><dt><span
class="term"><a name="gel-function-atan"></a>atan</span></dt><dd><pre class="synopsis">atan
(x)</pre><p>Alias : <code class="function">arctan</code></p><p>Calcule la fonction arctangente (tangente
inverse).</p><p>Consultez <a class="ulink" href="http://fr.wikipedia.org/wiki/Arctangente"
target="_top">Wikipedia</a> or <a class="ulink" href="http://mathworld.wolfram.com/InverseTangent.html"
target="_top">Mathworld</a> pour plus d'informations.</p></dd><dt><span class="term"><a
name="gel-function-atanh"></a>atanh</span></dt><dd><pre class="synopsis">atanh (x)</pre><p>Alias : <code
class="function">arctanh</code>
</p><p>Fonction arctanh (tangente hyperbolique inverse).</p></dd><dt><span class="term"><a
name="gel-function-atan2"></a>atan2</span></dt><dd><pre class="synopsis">atan2 (y, x)</pre><p>Alias : <code
class="function">arctan2</code></p><p>Calculates the arctan2 function. If
+ <strong class="userinput"><code>x>0</code></strong> then it returns
+ <strong class="userinput"><code>atan(y/x)</code></strong>. If <strong
class="userinput"><code>x<0</code></strong>
+ then it returns <strong class="userinput"><code>sign(y) * (pi - atan(|y/x|)</code></strong>.
+ When <strong class="userinput"><code>x=0</code></strong> it returns <strong
class="userinput"><code>sign(y) *
+ pi/2</code></strong>. <strong class="userinput"><code>atan2(0,0)</code></strong> returns 0
+ rather than failing.
+ </p><p>Consultez <a class="ulink" href="http://fr.wikipedia.org/wiki/Atan2"
target="_top">Wikipedia</a> ou <a class="ulink" href="http://mathworld.wolfram.com/InverseTangent.html"
target="_top">Mathworld</a> pour plus d'informations.</p></dd><dt><span class="term"><a
name="gel-function-cos"></a>cos</span></dt><dd><pre class="synopsis">cos (x)</pre><p>Calcule la fonction
cosinus.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-cosh"></a>cosh</span></dt><dd><pre
class="synopsis">cosh (x)</pre><p>Calcule la fonction cosinus hyperbolique.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-cot"></a>cot</span></dt><dd><pre
class="synopsis">cot (x)</pre><p>Fonction cotangente.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-coth"></a>coth</span></dt><dd><pre
class="synopsis">coth (x)</pre><p>Fonction cotangente hyperbolique.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-csc"></a>csc</span></dt><dd><pre
class="synopsis">csc (x)</pre><p>Fonction cosécante.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-csch"></a>csch</span></dt><dd><pre
class="synopsis">csch (x)</pre><p>Fonction cosécante hyperbolique.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sec"></a>sec</span></dt><dd><pre
class="synopsis">sec (x)</pre><p>Fonction sécante.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sech"></a>sech</span></dt><dd><pre
class="synopsis">sech (x)</pre><p>Fonction sécante hyperbolique.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sin"></a>sin</span></dt><dd><pre
class="synopsis">sin (x)</pre><p>Calcule la fonction sinus.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sinh"></a>sinh</span></dt><dd><pre
class="synopsis">sinh (x)</pre><p>Calcule la fonction sinus hyperbolique.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-tan"></a>tan</span></dt><dd><pre
class="synopsis">tan (x)</pre><p>Calcule la fonction tangente.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-tanh"></a>tanh</span></dt><dd><pre
class="synopsis">tanh (x)</pre><p>Fonction tangente hyperbolique.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s05.html">Précédent</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Niveau supérieur</a></td><td width="40%"
align="right"> <a accesskey="n" href="ch11s07.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Nombres </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Théorie des
nombres</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch11s07.html b/help/fr/html/ch11s07.html
new file mode 100644
index 0000000..0fffbd5
--- /dev/null
+++ b/help/fr/html/ch11s07.html
@@ -0,0 +1,171 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Théorie des
nombres</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch11.html" title="Chapitre 11. Liste des
fonctions GEL"><link rel="prev" href="ch11s06.html" title="Trigonométrie"><link rel="next"
href="ch11s08.html" title="Manipulation de matrices"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Théorie des nombres</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s06.html">Précédent</a> </td><th width="60%" align="center">Chapitre 11. Liste des
fonctions GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s08.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage">
<div><div><h2 class="title" style="clear: both"><a name="genius-gel-function-list-number-theory"></a>Théorie
des nombres</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span
class="term"><a name="gel-function-AreRelativelyPrime"></a>AreRelativelyPrime</span></dt><dd><pre
class="synopsis">AreRelativelyPrime (a,b)</pre><p>Si les entiers <code class="varname">a</code> et <code
class="varname">b</code> sont premiers entre eux ? Renvoie <code class="constant">true</code> (vrai) ou <code
class="constant">false</code> (faux).</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Coprime_integers"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/RelativelyPrime" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/RelativelyPrime.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-BernoulliNumber"></a>BernoulliNumber</span></dt><dd><pre class="synopsis">BernoulliNumber
(n)</pre><p>Renvoie le <code class="varname">n</code>-ième nombre de Bernoulli.</p><p>Consultez <a
class="ulink" href="http://en.wikipedia.org/wiki/Bernoulli_number" target="_top">Wikipedia</a> ou <a
class="ulink" href="http://mathworld.wolfram.com/BernoulliNumber.html" target="_top">Mathworld</a> pour plus
d'informations.</p></dd><dt><span class="term"><a
name="gel-function-ChineseRemainder"></a>ChineseRemainder</span></dt><dd><pre
class="synopsis">ChineseRemainder (a,m)</pre><p>Alias : <code class="function">CRT</code></p><p>Recherche
<code class="varname">x</code> qui résout le système défini par le vecteur <code class="varname">a</code> et
modulo les éléments de <code class="varname">m</code>, en utilisant le théorème des restes chinois.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Chinese_remainder_theorem"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/ChineseRemainderTheorem"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/ChineseRemainderTheorem.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CombineFactorizations"></a>CombineFactorizations</span></dt><dd><pre
class="synopsis">CombineFactorizations (a,b)</pre><p>Étant donné deux factorisations, donne la factorisation
du produit.</p><p>Consultez <a class="link"
href="ch11s07.html#gel-function-Factorize">Factorize</a>.</p></dd><dt><span class="term"><a
name="gel-function-ConvertFromBase"></a>ConvertFromBase</span></dt><dd><pre class="synopsis">ConvertFromBase
(v,b)</pre><p>Convertit un vecteur de valeurs indiquant les puissances de b en un nombre.</p></dd><dt><span
class="term"><a name="gel-function-ConvertToBase"></a>ConvertToBase</span></dt><dd><pre
class="synopsis">ConvertToBase (n,b)</pre><p>Convertit un nombre en un vecteur contenant les puissances des
éléments dans la base <code class="varname">b</code>.</p></dd><dt><span class="term"><a
name="gel-function-DiscreteLog"></a>DiscreteLog</span></dt><dd><pre class="synopsis">DiscreteLog
(n,b,q)</pre><p>
Calcule le logarithme discret de <code class="varname">n</code> base <code class="varname">b</code> dans
F<sub>q</sub>, le corps fini d'ordre <code class="varname">q</code> où <code class="varname">q</code> est un
nombre premier, en utilisant l'algorithme de Silver-Pohlig-Hellman.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Discrete_logarithm"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/DiscreteLogarithm" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/DiscreteLogarithm.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Divides"></a>Divides</span></dt><dd><pre
class="synopsis">Divides (m,n)</pre><p>Vérifie la divisibilité (si <code class="varname">m</code> divise
<code class="varname">n</code>).</p></dd><dt><span class="term"><a
name="gel-function-EulerPhi"></a>EulerPhi</span></dt><dd><pre class="synopsis">EulerPhi (n)</pre><p>Calcule
la fonction d'Euler phi, c'est-à-dire le nombre d'entiers compris entre 1 et <code class="varname">n</code>
qui sont premiers avec <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Euler_phi" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/EulerPhifunction" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/TotientFunction.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ExactDivision"></a>ExactDivision</span></dt><dd><pre class="synopsis">ExactDivision
(n,d)</pre><p>Renvoie <strong class="userinput"><code>n/d</code></strong> mais seulement si <code
class="varname">d</code> divise <code class="varname">n</code>. Si <code class="varname">d</code> ne divise
pas <code class="varname">n</code> alors cette fonction ne renvoie rien d'utile. Cette fonction est beaucoup
plus rapide pour les très grands nombres que l'opération <strong class="userinput"><code>n/d</code></strong>,
mais bien sûr utile seulement si vous savez que la division est exacte.</p></dd><dt><span class="term"><a
name="gel-function-Factorize"></a>Factorize</span></dt><dd><pre class="synopsis">Factorize
(n)</pre><p>Renvoie la factorisation d'un nombre sous la forme d'une matrice. La première ligne contient les
nombres premiers dans la factorisation (y compris 1) et la seconde ligne sont les puissances. Par exemple :
</p>
<pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>Factorize(11*11*13)</code></strong>
+=
+[1 11 13
+ 1 2 1]</pre><p>Consultez <a class="ulink" href="http://fr.wikipedia.org/wiki/Factorisation"
target="_top">Wikipedia</a> pour plus d'informations.</p></dd><dt><span class="term"><a
name="gel-function-Factors"></a>Factors</span></dt><dd><pre class="synopsis">Factors (n)</pre><p>Renvoie tous
les facteurs de <code class="varname">n</code> dans un vecteur. Cela inclut tous les facteurs non premiers
également mais aussi 1 et le nombre lui-même. Ainsi par exemple pour afficher tous les nombres parfaits (ceux
qui sont la somme de leurs facteurs) jusqu'au nombre 1000, vous pouvez écrire (ce n'est bien sûr pas
efficace) : </p><pre class="programlisting">for n=1 to 1000 do (
+ if MatrixSum (Factors(n)) == 2*n then
+ print(n)
+)
+</pre></dd><dt><span class="term"><a
name="gel-function-FermatFactorization"></a>FermatFactorization</span></dt><dd><pre
class="synopsis">FermatFactorization (n,tentatives)</pre><p>
+ Attempt Fermat factorization of <code class="varname">n</code> into
+ <strong class="userinput"><code>(t-s)*(t+s)</code></strong>, returns <code
class="varname">t</code>
+ and <code class="varname">s</code> as a vector if possible, <code class="constant">null</code>
otherwise.
+ <code class="varname">tries</code> specifies the number of tries before
+ giving up.
+ </p><p>C'est une assez bonne factorisation si votre nombre est le produit de deux facteurs très
proches l'un de l'autre.</p><p>Consultez <a class="ulink"
href="http://fr.wikipedia.org/wiki/M%C3%A9thode_de_factorisation_de_Fermat" target="_top">Wikipedia</a> pour
plus d'informations.</p></dd><dt><span class="term"><a
name="gel-function-FindPrimitiveElementMod"></a>FindPrimitiveElementMod</span></dt><dd><pre
class="synopsis">FindPrimitiveElementMod (q)</pre><p>Cherche le premier élément primitif dans F<sub>q</sub>,
le groupe fini d'ordre <code class="varname">q</code>. Bien sûr, <code class="varname">q</code> doit être
premier.</p></dd><dt><span class="term"><a
name="gel-function-FindRandomPrimitiveElementMod"></a>FindRandomPrimitiveElementMod</span></dt><dd><pre
class="synopsis">FindRandomPrimitiveElementMod (q)</pre><p>Cherche un élément primitif au hasard dans
F<sub>q</sub>, le groupe fini d'ordre <code class="varname">q</code> (q doit être premier).</p></dd><dt>
<span class="term"><a name="gel-function-IndexCalculus"></a>IndexCalculus</span></dt><dd><pre
class="synopsis">IndexCalculus (n,b,q,S)</pre><p>Compute discrete log base <code class="varname">b</code> of
n in F<sub>q</sub>, the finite
+group of order <code class="varname">q</code> (<code class="varname">q</code> a prime), using the
+factor base <code class="varname">S</code>. <code class="varname">S</code> should be a column of
+primes possibly with second column precalculated by
+<a class="link" href="ch11s07.html#gel-function-IndexCalculusPrecalculation"><code
class="function">IndexCalculusPrecalculation</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-IndexCalculusPrecalculation"></a>IndexCalculusPrecalculation</span></dt><dd><pre
class="synopsis">IndexCalculusPrecalculation (b,q,S)</pre><p>Run the precalculation step of
+ <a class="link" href="ch11s07.html#gel-function-IndexCalculus"><code
class="function">IndexCalculus</code></a> for logarithms base <code class="varname">b</code> in
+F<sub>q</sub>, the finite group of order <code class="varname">q</code>
+(<code class="varname">q</code> a prime), for the factor base <code class="varname">S</code> (where
+<code class="varname">S</code> is a column vector of primes). The logs will be
+precalculated and returned in the second column.</p></dd><dt><span class="term"><a
name="gel-function-IsEven"></a>IsEven</span></dt><dd><pre class="synopsis">IsEven (n)</pre><p>Teste si un
entier est pair.</p></dd><dt><span class="term"><a
name="gel-function-IsMersennePrimeExponent"></a>IsMersennePrimeExponent</span></dt><dd><pre
class="synopsis">IsMersennePrimeExponent (p)</pre><p>
+ Tests if a positive integer <code class="varname">p</code> is a
+ Mersenne prime exponent. That is if
+ 2<sup>p</sup>-1 is a prime. It does this
+ by looking it up in a table of known values, which is relatively
+ short.
+ See also
+ <a class="link" href="ch11s07.html#gel-function-MersennePrimeExponents">MersennePrimeExponents</a>
+ and
+ <a class="link" href="ch11s07.html#gel-function-LucasLehmer">LucasLehmer</a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Mersenne_prime" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MersenneNumbers" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/MersennePrime.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://www.mersenne.org/" target="_top">GIMPS</a>
+ for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsNthPower"></a>IsNthPower</span></dt><dd><pre class="synopsis">IsNthPower
(m,n)</pre><p>Vérifie si un nombre rationnel <code class="varname">m</code> est une puissance <code
class="varname">n</code>-ième parfaite. Consultez aussi <a class="link"
href="ch11s07.html#gel-function-IsPerfectPower">IsPerfectPower</a> et <a class="link"
href="ch11s07.html#gel-function-IsPerfectSquare">IsPerfectSquare</a>.</p></dd><dt><span class="term"><a
name="gel-function-IsOdd"></a>IsOdd</span></dt><dd><pre class="synopsis">IsOdd (n)</pre><p>Teste si un entier
est impair.</p></dd><dt><span class="term"><a
name="gel-function-IsPerfectPower"></a>IsPerfectPower</span></dt><dd><pre class="synopsis">IsPerfectPower
(n)</pre><p>Check an integer for being any perfect power, a<sup>b</sup>.</p></dd><dt><span class="term"><a
name="gel-function-IsPerfectSquare"></a>IsPerfectSquare</span></dt><dd><pre class="synopsis">IsPerfectSquare
(n)</pre><p>Vé
rifie qu'un entier est un carré parfait d'un entier. Le nombre doit être un vrai entier. Les entiers
négatifs ne peuvent bien sûr jamais être des carrés de vrais entiers.</p></dd><dt><span class="term"><a
name="gel-function-IsPrime"></a>IsPrime</span></dt><dd><pre class="synopsis">IsPrime (n)</pre><p>Teste la
primalité des entiers ; pour les nombres inférieurs à 2,5e10 la réponse est déterministe (si l'hypothèse de
Riemann est vérifiée). Pour des nombres plus grands, la probabilité d'une erreur de détermination dépend du
paramètre <a class="link" href="ch11s03.html#gel-function-IsPrimeMillerRabinReps"><code
class="function">IsPrimeMillerRabinReps</code></a>. C'est-à-dire la probabilité d'une erreur de détermination
vaut 1/4 à la puissance <code class="function">IsPrimeMillerRabinReps</code>. La valeur par défaut de 22 mène
à une probabilité d'environ 5.7e-14.</p><p>Si <code class="constant">false</code> (faux) est renvoyé, vous
êtes sûr que le n
ombre est composé. Si vous voulez être absolument certain d'avoir un nombre premier vous pouvez utiliser la
fonction <a class="link" href="ch11s07.html#gel-function-MillerRabinTestSure"><code
class="function">MillerRabinTestSure</code></a> mais cela peut prendre beaucoup plus de temps.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsPrimitiveMod"></a>IsPrimitiveMod</span></dt><dd><pre class="synopsis">IsPrimitiveMod
(g,q)</pre><p>Vérifie que <code class="varname">g</code> est primitif dans F<sub>q</sub>, le groupe fini
d'ordre <code class="varname">q</code>, où <code class="varname">q</code> est premier. Si <code
class="varname">q</code> n'est pas premier, les résultats sont erronés.</p></dd><dt><span class="term"><a
name="gel-function-IsPrimitiveModWithPrimeFactors"></a>IsPrimitiveModWithPrimeFactors</span></dt><dd><pre
class="synopsis">IsPrimitiveModWithPrimeFactors (g,q,f)</pre><p>Vérifie que <code class="varname">g</code>
est primitif dans F<sub>q</sub>, le groupe fini d'ordre <code class="varname">q</code>, où <code
class="varname">q</code> est premier et <code class="varname">f</code> est un vecteur de facteurs premiers de
<code class="varname">q</code>-1. Si <code class="varname">q</code> n'est pas premier, les résultats sont
erron
és.</p></dd><dt><span class="term"><a
name="gel-function-IsPseudoprime"></a>IsPseudoprime</span></dt><dd><pre class="synopsis">IsPseudoprime
(n,b)</pre><p>If <code class="varname">n</code> is a pseudoprime base <code class="varname">b</code> but not
a prime,
+ that is if <strong class="userinput"><code>b^(n-1) == 1 mod n</code></strong>. This calls
the <a class="link" href="ch11s07.html#gel-function-PseudoprimeTest"><code
class="function">PseudoprimeTest</code></a></p></dd><dt><span class="term"><a
name="gel-function-IsStrongPseudoprime"></a>IsStrongPseudoprime</span></dt><dd><pre
class="synopsis">IsStrongPseudoprime (n,b)</pre><p>Teste si <code class="varname">n</code> est un nombre
pseudopremier fort en base <code class="varname">b</code> mais pas un nombre premier.</p></dd><dt><span
class="term"><a name="gel-function-Jacobi"></a>Jacobi</span></dt><dd><pre class="synopsis">Jacobi
(a,b)</pre><p>Alias : <code class="function">JacobiSymbol</code></p><p>Calcule le symbole de Jacobi (a/b) (b
doit être impair).</p></dd><dt><span class="term"><a
name="gel-function-JacobiKronecker"></a>JacobiKronecker</span></dt><dd><pre class="synopsis">JacobiKronecker
(a,b)</pre><p>Alias : <code class="function">JacobiKroneckerSymbol</code></p
<p>Calcule le symbole de Jacobi (a/b) avec l'extension de Kronecker (a/2)=(2/a) si impair, ou (a/2)=0 si
pair.</p></dd><dt><span class="term"><a
name="gel-function-LeastAbsoluteResidue"></a>LeastAbsoluteResidue</span></dt><dd><pre
class="synopsis">LeastAbsoluteResidue (a,n)</pre><p>Renvoie le résidu de <code class="varname">a</code>
modulo <code class="varname">n</code> avec la plus petite valeur absolue (entre -n/2 et
n/2).</p></dd><dt><span class="term"><a name="gel-function-Legendre"></a>Legendre</span></dt><dd><pre
class="synopsis">Legendre (a,p)</pre><p>Alias : <code class="function">LegendreSymbol</code></p><p>Calcule
le symbole de Legendre (a/p).</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/LegendreSymbol" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/LegendreSymbol.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-LucasLehmer"></a>LucasLehmer</span></dt><dd><pre class="synopsis">LucasLehmer
(p)</pre><p>Teste si 2<sup>p</sup>-1 est un nombre premier de Mersenne en utilisant le test de Lucas-Lehmer.
Consultez aussi <a class="link"
href="ch11s07.html#gel-function-MersennePrimeExponents">MersennePrimeExponents</a> et <a class="link"
href="ch11s07.html#gel-function-IsMersennePrimeExponent">IsMersennePrimeExponent</a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LucasLhemer" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/Lucas-LehmerTest.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-LucasNumber"></a>LucasNumber</span></dt><dd><pre class="synopsis">LucasNumber
(n)</pre><p>Renvoie le <code class="varname">n</code>-ième nombre de Lucas.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lucas_number" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LucasNumbers" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/LucasNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MaximalPrimePowerFactors"></a>MaximalPrimePowerFactors</span></dt><dd><pre
class="synopsis">MaximalPrimePowerFactors (n)</pre><p>Renvoie les puissances premières d'un
nombre.</p></dd><dt><span class="term"><a
name="gel-function-MersennePrimeExponents"></a>MersennePrimeExponents</span></dt><dd><pre
class="synopsis">MersennePrimeExponents</pre><p>Renvoie un vecteur de nombres premiers de Mersenne qui est
une liste d'entiers positifs <code class="varname">p</code> tels que 2<sup>p</sup>-1 est entier. Consultez
aussi <a class="link" href="ch11s07.html#gel-function-IsMersennePrimeExponent">IsMersennePrimeExponent</a> et
<a class="link" href="ch11s07.html#gel-function-LucasLehmer">LucasLehmer</a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Mersenne_prime" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MersenneNumbers" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/MersennePrime.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://www.mersenne.org/" target="_top">GIMPS</a>
+ for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MillerRabinTest"></a>MillerRabinTest</span></dt><dd><pre class="synopsis">MillerRabinTest
(n,reps)</pre><p>Utilise le test de primalité de Miller-Rabin sur <code class="varname">n</code>, en faisant
<code class="varname">reps</code> essais. La probabilité d'une erreur de détermination est <strong
class="userinput"><code>(1/4)^reps</code></strong>. Il est probablement préférable d'utiliser la fonction <a
class="link" href="ch11s07.html#gel-function-IsPrime"><code class="function">IsPrime</code></a> puisqu'elle
est plus rapide et meilleure pour les entiers les plus petits.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/MillerRabinPrimeTest" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MillerRabinTestSure"></a>MillerRabinTestSure</span></dt><dd><pre
class="synopsis">MillerRabinTestSure (n)</pre><p>
+ Use the Miller-Rabin primality test on <code class="varname">n</code> with
+ enough bases that assuming the Generalized Riemann Hypothesis the
+ result is deterministic.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MillerRabinPrimeTest" target="_top">Planetmath</a>,
or
+ <a class="ulink" href="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-ModInvert"></a>ModInvert</span></dt><dd><pre
class="synopsis">ModInvert (n,m)</pre><p>Renvoie l'inverse de n mod m.</p><p>Consultez <a class="ulink"
href="http://mathworld.wolfram.com/ModularInverse.html" target="_top">Mathworld</a> pour plus
d'informations.</p></dd><dt><span class="term"><a
name="gel-function-MoebiusMu"></a>MoebiusMu</span></dt><dd><pre class="synopsis">MoebiusMu
(n)</pre><p>Renvoie la fonction mu de Moebius évaluée dans <code class="varname">n</code>. C'est-à-dire
renvoie 0 si <code class="varname">n</code> n'est pas un produit de nombres premiers différents et <strong
class="userinput"><code>(-1)^k</code></strong> si c'est un produit de <code class="varname">k</code> nombres
premiers différents.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MoebiusFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/MoebiusFunction.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-NextPrime"></a>NextPrime</span></dt><dd><pre
class="synopsis">NextPrime (n)</pre><p>Renvoie le plus petit nombre premier supérieur à <code
class="varname">n</code>. L'opposé d'un nombre premier est considéré comme un nombre premier donc pour
obtenir le nombre premier précédent, vous pouvez utiliser <strong
class="userinput"><code>-NextPrime(-n)</code></strong>.</p><p>
+ This function uses the GMPs <code class="function">mpz_nextprime</code>,
+ which in turn uses the probabilistic Miller-Rabin test
+ (See also <a class="link" href="ch11s07.html#gel-function-MillerRabinTest"><code
class="function">MillerRabinTest</code></a>).
+ The probability
+ of false positive is not tunable, but is low enough
+ for all practical purposes.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PadicValuation"></a>PadicValuation</span></dt><dd><pre class="synopsis">PadicValuation
(n,p)</pre><p>Renvoie la valuation p-adic (nombre de zéros après la virgule en base <code
class="varname">p</code>).</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/P-adic_order" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/PAdicValuation" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-PowerMod"></a>PowerMod</span></dt><dd><pre
class="synopsis">PowerMod (a,b,m)</pre><p>
+ Compute <strong class="userinput"><code>a^b mod m</code></strong>. The
+ <code class="varname">b</code>'s power of <code class="varname">a</code> modulo
+ <code class="varname">m</code>. It is not necessary to use this function
+ as it is automatically used in modulo mode. Hence
+ <strong class="userinput"><code>a^b mod m</code></strong> is just as fast.
+ </p></dd><dt><span class="term"><a name="gel-function-Prime"></a>Prime</span></dt><dd><pre
class="synopsis">Prime (n)</pre><p>Alias : <code class="function">prime</code></p><p>Renvoie le <code
class="varname">n</code>-ième nombre premier (jusqu'à une limite) .</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PrimeFactors"></a>PrimeFactors</span></dt><dd><pre class="synopsis">PrimeFactors
(n)</pre><p>Renvoie tous les facteurs premiers d'un nombre sous la forme d'un vecteur.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Prime_factor" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeFactor.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PseudoprimeTest"></a>PseudoprimeTest</span></dt><dd><pre class="synopsis">PseudoprimeTest
(n,b)</pre><p>Test de pseudoprimalité, renvoie <code class="constant">true</code> (vrai) si et seulement si
<strong class="userinput"><code>b^(n-1) == 1 mod n</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Pseudoprime" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Pseudoprime.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RemoveFactor"></a>RemoveFactor</span></dt><dd><pre class="synopsis">RemoveFactor
(n,m)</pre><p>Supprime toutes les instances du facteur <code class="varname">m</code> dans le nombre <code
class="varname">n</code>. C'est-à-dire divise par la plus grande puissance de <code class="varname">m</code>
qui divise <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Divisibility" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Factor.html" target="_top">Mathworld</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SilverPohligHellmanWithFactorization"></a>SilverPohligHellmanWithFactorization</span></dt><dd><pre
class="synopsis">SilverPohligHellmanWithFactorization (n,b,q,f)</pre><p>Calcule le logarithme discret de
<code class="varname">n</code> base <code class="varname">b</code> dans F<sub>q</sub>, le corps fini d'ordre
<code class="varname">q</code> où <code class="varname">q</code> est un nombre premier, en utilisant
l'algorithme de Silver-Pohlig-Hellman, sachant que <code class="varname">f</code> est la factorisation de
<code class="varname">q</code>-1.</p></dd><dt><span class="term"><a
name="gel-function-SqrtModPrime"></a>SqrtModPrime</span></dt><dd><pre class="synopsis">SqrtModPrime
(n,p)</pre><p>Cherche la racine carrée de <code class="varname">n</code> modulo <code
class="varname">p</code> (où <code class="varname">p</code> est premier). <code class="constant">null</code>
est renvoyé si ce n'est pas un résidu quadra
tique.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/QuadraticResidue" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/QuadraticResidue.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-StrongPseudoprimeTest"></a>StrongPseudoprimeTest</span></dt><dd><pre
class="synopsis">StrongPseudoprimeTest (n,b)</pre><p>Lance le test de pseudo-primarité forte en base <code
class="varname">b</code> sur <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Strong_pseudoprime"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/StrongPseudoprime" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/StrongPseudoprime.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-gcd"></a>gcd</span></dt><dd><pre
class="synopsis">gcd (a,params...)</pre><p>Alias : <code class="function">GCD</code></p><p>
+ Greatest common divisor of integers. You can enter as many
+ integers as you want in the argument list, or you can give
+ a vector or a matrix of integers. If you give more than
+ one matrix of the same size then GCD is done element by
+ element.
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Greatest_common_divisor"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/GreatestCommonDivisor" target="_top">Planetmath</a>,
or
+ <a class="ulink" href="http://mathworld.wolfram.com/GreatestCommonDivisor.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-lcm"></a>lcm</span></dt><dd><pre
class="synopsis">lcm (a,params...)</pre><p>Alias : <code class="function">LCM</code></p><p>
+ Least common multiplier of integers. You can enter as many
+ integers as you want in the argument list, or you can give a
+ vector or a matrix of integers. If you give more than one
+ matrix of the same size then LCM is done element by element.
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Least_common_multiple"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LeastCommonMultiple" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/LeastCommonMultiple.html"
target="_top">Mathworld</a> for more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s06.html">Précédent</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Niveau supérieur</a></td><td width="40%"
align="right"> <a accesskey="n" href="ch11s08.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Trigonométrie </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Manipulation de
matrices</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch11s08.html b/help/fr/html/ch11s08.html
new file mode 100644
index 0000000..b95ce6c
--- /dev/null
+++ b/help/fr/html/ch11s08.html
@@ -0,0 +1,39 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Manipulation de
matrices</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch11.html" title="Chapitre 11. Liste des
fonctions GEL"><link rel="prev" href="ch11s07.html" title="Théorie des nombres"><link rel="next"
href="ch11s09.html" title="Algèbre linéaire"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Manipulation de matrices</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch11s07.html">Précédent</a> </td><th width="60%" align="center">Chapitre
11. Liste des fonctions GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s09.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div class="tit
lepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-matrix"></a>Manipulation de matrices</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ApplyOverMatrix"></a>ApplyOverMatrix</span></dt><dd><pre class="synopsis">ApplyOverMatrix
(a,fonc)</pre><p>Applique une fonction sur tous les éléments d'une matrice et renvoie une matrice de
résultats.</p></dd><dt><span class="term"><a
name="gel-function-ApplyOverMatrix2"></a>ApplyOverMatrix2</span></dt><dd><pre
class="synopsis">ApplyOverMatrix2 (a,b,fonc)</pre><p>Applique une fonction sur tous les éléments de 2
matrices (ou 1 valeur et 1 matrice) et renvoie une matrice de résultats.</p></dd><dt><span class="term"><a
name="gel-function-ColumnsOf"></a>ColumnsOf</span></dt><dd><pre class="synopsis">ColumnsOf
(M)</pre><p>Extrait les colonnes de la matrice comme un vecteur horizontal.</p></dd><dt><span class="term"><a
name="gel-func
tion-ComplementSubmatrix"></a>ComplementSubmatrix</span></dt><dd><pre class="synopsis">ComplementSubmatrix
(m,r,c)</pre><p>Supprime certaines lignes et colonnes d'une matrice.</p></dd><dt><span class="term"><a
name="gel-function-CompoundMatrix"></a>CompoundMatrix</span></dt><dd><pre class="synopsis">CompoundMatrix
(k,A)</pre><p>Calcule la k-ième matrice composée de A.</p></dd><dt><span class="term"><a
name="gel-function-CountZeroColumns"></a>CountZeroColumns</span></dt><dd><pre
class="synopsis">CountZeroColumns (M)</pre><p>
+ Count the number of zero columns in a matrix. For example
+ once your column reduce a matrix you can use this to find
+ the nullity. See <a class="link" href="ch11s09.html#gel-function-cref"><code
class="function">cref</code></a>
+ and <a class="link" href="ch11s09.html#gel-function-Nullity"><code
class="function">Nullity</code></a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-DeleteColumn"></a>DeleteColumn</span></dt><dd><pre class="synopsis">DeleteColumn
(M,col)</pre><p>Supprime une colonne d'une matrice.</p></dd><dt><span class="term"><a
name="gel-function-DeleteRow"></a>DeleteRow</span></dt><dd><pre class="synopsis">DeleteRow
(M,row)</pre><p>Supprime une ligne d'une matrice.</p></dd><dt><span class="term"><a
name="gel-function-DiagonalOf"></a>DiagonalOf</span></dt><dd><pre class="synopsis">DiagonalOf
(M)</pre><p>Extrait la diagonale de la matrice comme un vecteur colonne.</p><p>Consultez <a class="ulink"
href="http://fr.wikipedia.org/wiki/Diagonale" target="_top">Wikipedia</a> pour plus
d'informations.</p></dd><dt><span class="term"><a
name="gel-function-DotProduct"></a>DotProduct</span></dt><dd><pre class="synopsis">DotProduct
(u,v)</pre><p>Get the dot product of two vectors. The vectors must be of the
+ same size. No conjugates are taken so this is a bilinear form even if working over the
complex numbers; This is the bilinear scalar product not the sesquilinear scalar product. See <a
class="link" href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a> for the standard
sesquilinear inner product.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Dot_product" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DotProduct" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ExpandMatrix"></a>ExpandMatrix</span></dt><dd><pre class="synopsis">ExpandMatrix
(M)</pre><p>Développe une matrice exactement comme cela est fait lors de la saisie d'une matrice non précédée
d'une apostrophe. Cela signifie que toute matrice interne est développée sous la forme de blocs. C'est une
façon de construire des matrices à partir de matrices plus petites et c'est ce qui est effectué normalement
de manière automatique lors d'une saisie à moins que la matrice ne soit précédée d'une
apostrophe.</p></dd><dt><span class="term"><a
name="gel-function-HermitianProduct"></a>HermitianProduct</span></dt><dd><pre
class="synopsis">HermitianProduct (u,v)</pre><p>Alias : <code
class="function">InnerProduct</code></p><p>Renvoie le produit hermitienne de deux vecteurs. Les vecteurs
doivent avoir la même taille. C'est une forme sesquilinéaire utilisant la matrice identité.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Sesquilinear_form"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/HermitianInnerProduct.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-I"></a>I</span></dt><dd><pre
class="synopsis">I (n)</pre><p>Alias : <code class="function">eye</code></p><p>Renvoie une matrice identité
de la taille indiquée, soit une matrice de <code class="varname">n</code> par <code class="varname">n</code>.
Si <code class="varname">n</code> vaut zéro, renvoie <code class="constant">null</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Identity_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/IdentityMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IndexComplement"></a>IndexComplement</span></dt><dd><pre class="synopsis">IndexComplement
(vec,mtaille)</pre><p>Renvoie le complémentaire d'un vecteur d'indices. Le premier indice est toujours 1. Par
exemple pour le vecteur <strong class="userinput"><code>[2,3]</code></strong> et la taille <strong
class="userinput"><code>5</code></strong>, cela renvoie <strong
class="userinput"><code>[1,4,5]</code></strong>. Si <code class="varname">mtaille</code> vaut 0, cela renvoie
toujours <code class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsDiagonal"></a>IsDiagonal</span></dt><dd><pre class="synopsis">IsDiagonal
(M)</pre><p>Indique si la matrice est diagonale.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Diagonal_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/DiagonalMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsIdentity"></a>IsIdentity</span></dt><dd><pre class="synopsis">IsIdentity
(x)</pre><p>Vérifie qu'une matrice est la matrice identité. Renvoie automatiquement <code
class="constant">false</code> (faux) si la matrice n'est pas carrée. Fonctionne également avec les nombres et
dans ce cas, c'est équivalent à <strong class="userinput"><code>x==1</code></strong>. Lorsque <code
class="varname">x</code> est <code class="constant">null</code>, il est considéré comme une matrice 0 par 0,
aucune erreur n'est générée et <code class="constant">false</code> (faux) est renvoyé.</p></dd><dt><span
class="term"><a name="gel-function-IsLowerTriangular"></a>IsLowerTriangular</span></dt><dd><pre
class="synopsis">IsLowerTriangular (M)</pre><p>Indique si une matrice est triangulaire inférieure,
c'est-à-dire que toutes les valeurs au dessus de la diagonale sont nulles.</p></dd><dt><span class="term"><a
name="gel-function-IsMatr
ixInteger"></a>IsMatrixInteger</span></dt><dd><pre class="synopsis">IsMatrixInteger (M)</pre><p>Check if a
matrix is a matrix of integers (non-complex).</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixNonnegative"></a>IsMatrixNonnegative</span></dt><dd><pre
class="synopsis">IsMatrixNonnegative (M)</pre><p>Vérifie si une matrice est non négative, c'est-à-dire que
chaque élément n'est pas négatif. Ne pas confondre les matrices positives avec les matrices définies
positives.</p><p>Consultez <a class="ulink" href="http://en.wikipedia.org/wiki/Positive_matrix"
target="_top">Wikipedia</a> pour plus d'informations.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixPositive"></a>IsMatrixPositive</span></dt><dd><pre
class="synopsis">IsMatrixPositive (M)</pre><p>Vérifie si une matrice est positive, c'est-à-dire que chaque
élément est positif (et par conséquent réel), et en particulier qu'aucun élément n'est nul. Ne pas confondre
les matrices posi
tives avec les matrices définies positives</p><p>Consultez <a class="ulink"
href="http://en.wikipedia.org/wiki/Positive_matrix" target="_top">Wikipedia</a> pour plus
d'informations.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixRational"></a>IsMatrixRational</span></dt><dd><pre
class="synopsis">IsMatrixRational (M)</pre><p>Vérifie si une matrice est constituée de nombres rationnels
(non complexes).</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixReal"></a>IsMatrixReal</span></dt><dd><pre class="synopsis">IsMatrixReal
(M)</pre><p>Vérifie si une matrice est constituée de nombres réels (non complexes).</p></dd><dt><span
class="term"><a name="gel-function-IsMatrixSquare"></a>IsMatrixSquare</span></dt><dd><pre
class="synopsis">IsMatrixSquare (M)</pre><p>Vérifie si une matrice est carrée, c'est-à-dire que sa largeur
est égale à sa hauteur.</p></dd><dt><span class="term"><a
name="gel-function-IsUpperTriangular"></a>IsUpperTriangular</span></dt
<dd><pre class="synopsis">IsUpperTriangular (M)</pre><p>Is a matrix upper triangular? That is, a matrix is
upper triangular if all the entries below the diagonal are zero.</p></dd><dt><span class="term"><a
name="gel-function-IsValueOnly"></a>IsValueOnly</span></dt><dd><pre class="synopsis">IsValueOnly
(M)</pre><p>Vérifie si une matrice est une matrice de nombres seulement. Beaucoup de fonctions internes
contrôlent cela. Les valeurs peuvent être n'importe quels nombres y compris des
complexes.</p></dd><dt><span class="term"><a name="gel-function-IsVector"></a>IsVector</span></dt><dd><pre
class="synopsis">IsVector (v)</pre><p>Si l'argument est un vecteur horizontal ou vertical. Genius ne fait
pas de distinction entre une matrice et un vecteur, un vecteur est juste une matrice 1 par <code
class="varname">n</code> ou <code class="varname">n</code> par 1.</p></dd><dt><span class="term"><a
name="gel-function-IsZero"></a>IsZero</span></dt><dd><pre class="synopsis">IsZero (x)</
pre><p>Vérifie si une matrice est composée uniquement de zéros. Fonctionne également avec les nombres et
dans ce cas, c'est équivalent à <strong class="userinput"><code>x==0</code></strong>. Lorsque <code
class="varname">x</code> est <code class="constant">null</code>, il est considéré comme une matrice 0 par 0,
aucune erreur n'est générée et <code class="constant">true</code> (vrai) est renvoyé car la condition est
vide.</p></dd><dt><span class="term"><a
name="gel-function-LowerTriangular"></a>LowerTriangular</span></dt><dd><pre class="synopsis">LowerTriangular
(M)</pre><p>Renvoie une copie de la matrice <code class="varname">M</code> avec tous les éléments au dessus
de la diagonale mis à zéro.</p></dd><dt><span class="term"><a
name="gel-function-MakeDiagonal"></a>MakeDiagonal</span></dt><dd><pre class="synopsis">MakeDiagonal
(v,param...)</pre><p>Alias : <code class="function">diag</code></p><p>Make diagonal matrix from a vector.
Alternatively you can pass
+ in the values to put on the diagonal as arguments. So
+ <strong class="userinput"><code>MakeDiagonal([1,2,3])</code></strong> is the same as
+ <strong class="userinput"><code>MakeDiagonal(1,2,3)</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Diagonal_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/DiagonalMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MakeVector"></a>MakeVector</span></dt><dd><pre class="synopsis">MakeVector
(A)</pre><p>Construit un vecteur colonne à partir d'une matrice en mettant les colonnes les unes au dessus
des autres. Renvoie <code class="constant">null</code> si <code class="constant">null</code> est
fourni.</p></dd><dt><span class="term"><a
name="gel-function-MatrixProduct"></a>MatrixProduct</span></dt><dd><pre class="synopsis">MatrixProduct
(A)</pre><p>Calcule et renvoie le produit de tous les éléments d'une matrice ou d'un
vecteur.</p></dd><dt><span class="term"><a name="gel-function-MatrixSum"></a>MatrixSum</span></dt><dd><pre
class="synopsis">MatrixSum (A)</pre><p>Calcule et renvoie la somme de tous les éléments d'une matrice ou d'un
vecteur.</p></dd><dt><span class="term"><a
name="gel-function-MatrixSumSquares"></a>MatrixSumSquares</span></dt><dd><pre
class="synopsis">MatrixSumSquares (A)</pre><p>Calcule la somme du carré
de tous les éléments d'une matrice ou d'un vecteur.</p></dd><dt><span class="term"><a
name="gel-function-NonzeroColumns"></a>NonzeroColumns</span></dt><dd><pre class="synopsis">NonzeroColumns
(M)</pre><p>Returns a row vector of the indices of nonzero columns in the matrix <code
class="varname">M</code>.</p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NonzeroElements"></a>NonzeroElements</span></dt><dd><pre class="synopsis">NonzeroElements
(v)</pre><p>Returns a row vector of the indices of nonzero elements in the vector <code
class="varname">v</code>.</p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-OuterProduct"></a>OuterProduct</span></dt><dd><pre class="synopsis">OuterProduct
(u,v)</pre><p>Retourne le produit tensoriel de deux vecteurs, c'est-à-dire que si on suppose que <code
class="varname">u</code> et <code class="varname">v</code> sont des vecteurs colonnes, alors le produit
tensoriel est <strong c
lass="userinput"><code>v * u.'</code></strong>.</p></dd><dt><span class="term"><a
name="gel-function-ReverseVector"></a>ReverseVector</span></dt><dd><pre class="synopsis">ReverseVector
(v)</pre><p>Inverse l'ordre des éléments d'un vecteur. Renvoie <code class="constant">null</code> si <code
class="constant">null</code> est fourni</p></dd><dt><span class="term"><a
name="gel-function-RowSum"></a>RowSum</span></dt><dd><pre class="synopsis">RowSum (m)</pre><p>Calcule la
somme pour chaque ligne d'une matrice et renvoie un vecteur colonne contenant le résultat.</p></dd><dt><span
class="term"><a name="gel-function-RowSumSquares"></a>RowSumSquares</span></dt><dd><pre
class="synopsis">RowSumSquares (m)</pre><p>Calculate sum of squares of each row in a matrix and return a
vertical vector with the results.</p></dd><dt><span class="term"><a
name="gel-function-RowsOf"></a>RowsOf</span></dt><dd><pre class="synopsis">RowsOf (M)</pre><p>Gets the rows
of a matrix as a vertical vector. Ea
ch element
+of the vector is a horizontal vector that is the corresponding row of
+<code class="varname">M</code>. This function is useful if you wish to loop over the
+rows of a matrix. For example, as <strong class="userinput"><code>for r in RowsOf(M) do
+something(r)</code></strong>.</p></dd><dt><span class="term"><a
name="gel-function-SetMatrixSize"></a>SetMatrixSize</span></dt><dd><pre class="synopsis">SetMatrixSize
(M,lignes,colonnes)</pre><p>Make new matrix of given size from old one. That is, a new
+ matrix will be returned to which the old one is copied. Entries that
+ don't fit are clipped and extra space is filled with zeros.
+ If <code class="varname">rows</code> or <code class="varname">columns</code> are zero
+ then <code class="constant">null</code> is returned.
+ </p></dd><dt><span class="term"><a
name="gel-function-ShuffleVector"></a>ShuffleVector</span></dt><dd><pre class="synopsis">ShuffleVector
(v)</pre><p>Shuffle elements in a vector. Return <code class="constant">null</code> if given <code
class="constant">null</code>.</p><p>Version 1.0.13 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SortVector"></a>SortVector</span></dt><dd><pre class="synopsis">SortVector
(v)</pre><p>Trie les éléments d'un vecteur en ordre croissant.</p></dd><dt><span class="term"><a
name="gel-function-StripZeroColumns"></a>StripZeroColumns</span></dt><dd><pre
class="synopsis">StripZeroColumns (M)</pre><p>Élimine toutes les colonnes entièrement nulles de <code
class="varname">M</code>.</p></dd><dt><span class="term"><a
name="gel-function-StripZeroRows"></a>StripZeroRows</span></dt><dd><pre class="synopsis">StripZeroRows
(M)</pre><p>Élimine toutes les lignes entièrement nulles de <code class="varname">M</code>.</p></dd><dt><span
clas
s="term"><a name="gel-function-Submatrix"></a>Submatrix</span></dt><dd><pre class="synopsis">Submatrix
(m,r,c)</pre><p>Renvoie certaines colonnes et lignes d'une matrice. C'est équivalent à <strong
class="userinput"><code>m@(r,c)</code></strong>. <code class="varname">r</code> et <code
class="varname">c</code> doivent être des vecteurs de lignes et de colonnes (ou de simples nombres si vous
avez besoin d'une seule ligne ou colonne).</p></dd><dt><span class="term"><a
name="gel-function-SwapRows"></a>SwapRows</span></dt><dd><pre class="synopsis">SwapRows
(m,ligne1,ligne2)</pre><p>Échange deux lignes dans une matrice.</p></dd><dt><span class="term"><a
name="gel-function-UpperTriangular"></a>UpperTriangular</span></dt><dd><pre class="synopsis">UpperTriangular
(M)</pre><p>Renvoie une copie de la matrice <code class="varname">M</code> avec tous les éléments sous la
diagonale mis à zéro.</p></dd><dt><span class="term"><a name="gel-function-columns"></a>columns</span></dt><d
d><pre class="synopsis">columns (M)</pre><p>Renvoie le nombre de colonnes d'une matrice.</p></dd><dt><span
class="term"><a name="gel-function-elements"></a>elements</span></dt><dd><pre class="synopsis">elements
(M)</pre><p>Renvoie le nombre total d'éléments d'une matrice. C'est le nombre de colonnes multiplié par le
nombre de lignes.</p></dd><dt><span class="term"><a name="gel-function-ones"></a>ones</span></dt><dd><pre
class="synopsis">ones (lignes,colonnes...)</pre><p>Crée une matrice de 1 (ou un vecteur colonne si un seul
argument est donné). Renvoie <code class="constant">null</code> si ligne ou colonne est
nul.</p></dd><dt><span class="term"><a name="gel-function-rows"></a>rows</span></dt><dd><pre
class="synopsis">rows (M)</pre><p>Renvoie le nombre de lignes d'une matrice.</p></dd><dt><span
class="term"><a name="gel-function-zeros"></a>zeros</span></dt><dd><pre class="synopsis">zeros
(lignes,colonnes...)</pre><p>Crée une matrice de 0 (ou un vecteur colonne si un s
eul argument est donné). Renvoie <code class="constant">null</code> si ligne ou colonne est
nul.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s07.html">Précédent</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Niveau supérieur</a></td><td width="40%"
align="right"> <a accesskey="n" href="ch11s09.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Théorie des nombres </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Algèbre
linéaire</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch11s09.html b/help/fr/html/ch11s09.html
new file mode 100644
index 0000000..53689fa
--- /dev/null
+++ b/help/fr/html/ch11s09.html
@@ -0,0 +1,180 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Algèbre
linéaire</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch11.html" title="Chapitre 11. Liste des
fonctions GEL"><link rel="prev" href="ch11s08.html" title="Manipulation de matrices"><link rel="next"
href="ch11s10.html" title="Combinatoire"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Algèbre linéaire</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s08.html">Précédent</a> </td><th width="60%" align="center">Chapitre 11. Liste des
fonctions GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s10.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><
div><h2 class="title" style="clear: both"><a name="genius-gel-function-list-linear-algebra"></a>Algèbre
linéaire</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AuxiliaryUnitMatrix"></a>AuxiliaryUnitMatrix</span></dt><dd><pre
class="synopsis">AuxiliaryUnitMatrix (n)</pre><p>Get the auxiliary unit matrix of size <code
class="varname">n</code>. This is a square matrix with that is all zero except the
+superdiagonal being all ones. It is the Jordan block matrix of one zero eigenvalue.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/JordanCanonicalFormTheorem"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/JordanBlock.html" target="_top">Mathworld</a>
for more information on Jordan Canonical Form.
+ </p></dd><dt><span class="term"><a
name="gel-function-BilinearForm"></a>BilinearForm</span></dt><dd><pre class="synopsis">BilinearForm
(v,A,w)</pre><p>Évalue (v,w) par rapport à la forme bilinéaire donnée par la matrice A.</p></dd><dt><span
class="term"><a name="gel-function-BilinearFormFunction"></a>BilinearFormFunction</span></dt><dd><pre
class="synopsis">BilinearFormFunction (A)</pre><p>Renvoie une fonction qui évalue deux vecteurs par rapport à
la forme bilinéaire donnée par A.</p></dd><dt><span class="term"><a
name="gel-function-CharacteristicPolynomial"></a>CharacteristicPolynomial</span></dt><dd><pre
class="synopsis">CharacteristicPolynomial (M)</pre><p>Alias : <code
class="function">CharPoly</code></p><p>Renvoie le polynôme caractéristique d'un vecteur. C'est-à-dire renvoie
les coefficients du polynôme en commençant par le terme constant. Ce polynôme est défini par <strong
class="userinput"><code>det(M-xI)</code></strong>. Les racines de ce
polynôme sont les valeurs propres de <code class="varname">M</code>. Consultez également <a class="link"
href="ch11s09.html#gel-function-CharacteristicPolynomialFunction">CharacteristicPolynomialFunction</a>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Characteristic_polynomial"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/CharacteristicEquation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CharacteristicPolynomialFunction"></a>CharacteristicPolynomialFunction</span></dt><dd><pre
class="synopsis">CharacteristicPolynomialFunction (M)</pre><p>Renvoie le polynôme caractéristique d'un
vecteur sous la forme d'une fonction. Ce polynôme est défini par <strong
class="userinput"><code>det(M-xI)</code></strong>. Les racines de ce polynôme sont les valeurs propres de
<code class="varname">M</code>. Consultez également <a class="link"
href="ch11s09.html#gel-function-CharacteristicPolynomial">CharacteristicPolynomial</a>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Characteristic_polynomial"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/CharacteristicEquation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ColumnSpace"></a>ColumnSpace</span></dt><dd><pre class="synopsis">ColumnSpace
(M)</pre><p>Renvoie une matrice de base pour le sous-espace vectoriel d'une matrice. C'est-à-dire renvoie une
matrice dont les colonnes forment une base pour le sous-espace vectoriel de <code class="varname">M</code>,
donc l'espace engendré par les colonnes de <code class="varname">M</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Row_and_column_spaces"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CommutationMatrix"></a>CommutationMatrix</span></dt><dd><pre
class="synopsis">CommutationMatrix (m, n)</pre><p>Return the commutation matrix <strong
class="userinput"><code>K(m,n)</code></strong>, which is the unique <strong
class="userinput"><code>m*n</code></strong> by
+ <strong class="userinput"><code>m*n</code></strong> matrix such that <strong
class="userinput"><code>K(m,n) * MakeVector(A) = MakeVector(A.')</code></strong> for all <code
class="varname">m</code> by <code class="varname">n</code>
+ matrices <code class="varname">A</code>.</p></dd><dt><span class="term"><a
name="gel-function-CompanionMatrix"></a>CompanionMatrix</span></dt><dd><pre class="synopsis">CompanionMatrix
(p)</pre><p>Matrice compagnon d'un polynôme (comme vecteur).</p></dd><dt><span class="term"><a
name="gel-function-ConjugateTranspose"></a>ConjugateTranspose</span></dt><dd><pre
class="synopsis">ConjugateTranspose (M)</pre><p>Transposée conjuguée d'une matrice (matrice adjointe).
Identique à l'opérateur <strong class="userinput"><code>'</code></strong>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Conjugate_transpose"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/ConjugateTranspose" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Convolution"></a>Convolution</span></dt><dd><pre class="synopsis">Convolution
(a,b)</pre><p>Alias : <code class="function">convol</code></p><p>Calcule la convolution de deux vecteurs
horizontaux.</p></dd><dt><span class="term"><a
name="gel-function-ConvolutionVector"></a>ConvolutionVector</span></dt><dd><pre
class="synopsis">ConvolutionVector (a,b)</pre><p>Calcule la convolution de deux vecteurs horizontaux. Renvoie
le résultat sous la forme d'un vecteur dont les composants ne sont pas additionnées
ensemble.</p></dd><dt><span class="term"><a
name="gel-function-CrossProduct"></a>CrossProduct</span></dt><dd><pre class="synopsis">CrossProduct
(v,w)</pre><p>Produit vectoriel de deux vecteurs dans R<sup>3</sup> sous la forme d'un vecteur colonne.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Cross_product" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-DeterminantalDivisorsInteger"></a>DeterminantalDivisorsInteger</span></dt><dd><pre
class="synopsis">DeterminantalDivisorsInteger (M)</pre><p>Get the determinantal divisors of an integer
matrix.</p></dd><dt><span class="term"><a name="gel-function-DirectSum"></a>DirectSum</span></dt><dd><pre
class="synopsis">DirectSum (M,N...)</pre><p>Somme directe de matrices.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Matrix_addition#directsum"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-DirectSumMatrixVector"></a>DirectSumMatrixVector</span></dt><dd><pre
class="synopsis">DirectSumMatrixVector (v)</pre><p>Somme directe d'un vecteur de matrices.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Matrix_addition#directsum"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Eigenvalues"></a>Eigenvalues</span></dt><dd><pre class="synopsis">Eigenvalues
(M)</pre><p>Alias : <code class="function">eig</code></p><p>Renvoie les valeurs propres d'une matrice carrée.
Ne fonctionne actuellement que pour les matrices de taille inférieure ou égale à 4 par 4 ou pour les matrices
triangulaires (pour lesquelles les valeurs propres sont sur la diagonale).</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eigenvalue" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/Eigenvalue" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/Eigenvalue.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Eigenvectors"></a>Eigenvectors</span></dt><dd><pre class="synopsis">Eigenvectors
(M)</pre><pre class="synopsis">Eigenvectors (M, &valeurspropres)</pre><pre class="synopsis">Eigenvectors
(M, &valeurpropres, &multiplicités)</pre><p>Renvoie les vecteurs propres d'une matrice carrée. Il est
possible en option d'obtenir les valeurs propres ainsi que leur multiplicité algébrique. Ne fonctionne
actuellement que pour les matrices 2x2.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eigenvector" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/Eigenvector" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/Eigenvector.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GramSchmidt"></a>GramSchmidt</span></dt><dd><pre class="synopsis">GramSchmidt
(v,B...)</pre><p>Applique le procédé de Gram-Schmidt (aux colonnes) par rapport au produit scalaire donné par
<code class="varname">B</code>. Si <code class="varname">B</code> n'est pas fourni alors le produit hermitien
standard est utilisé. <code class="varname">B</code> peut être soit une forme sesquilinéaire à deux arguments
soit une matrice fournissant une forme sesquilinéaire. Les vecteurs seront orthogonaux par rapport à <code
class="varname">B</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/GramSchmidtOrthogonalization"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-HankelMatrix"></a>HankelMatrix</span></dt><dd><pre class="synopsis">HankelMatrix
(c,r)</pre><p>Hankel matrix, a matrix whose skew-diagonals are constant. <code class="varname">c</code> is
the first row and <code class="varname">r</code> is the
+ last column. It is assumed that both arguments are vectors and the last element of <code
class="varname">c</code> is the same
+ as the first element of <code class="varname">r</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hankel_matrix" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-HilbertMatrix"></a>HilbertMatrix</span></dt><dd><pre class="synopsis">HilbertMatrix
(n)</pre><p>Matrice de Hilbert d'ordre <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hilbert_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/HilbertMatrix" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-Image"></a>Image</span></dt><dd><pre
class="synopsis">Image (T)</pre><p>Renvoie l'image (espace vectoriel engendré par les colonnes) d'une
transformation linéaire.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Row_and_column_spaces"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-InfNorm"></a>InfNorm</span></dt><dd><pre
class="synopsis">InfNorm (v)</pre><p>Renvoie la norme « infini », appelée aussi norme sup, ou encore norme de
la convergence uniforme.</p></dd><dt><span class="term"><a
name="gel-function-InvariantFactorsInteger"></a>InvariantFactorsInteger</span></dt><dd><pre
class="synopsis">InvariantFactorsInteger (M)</pre><p>Get the invariant factors of a square integer
matrix.</p></dd><dt><span class="term"><a
name="gel-function-InverseHilbertMatrix"></a>InverseHilbertMatrix</span></dt><dd><pre
class="synopsis">InverseHilbertMatrix (n)</pre><p>Matrice inverse de Hilbert d'ordre <code
class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hilbert_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/HilbertMatrix" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsHermitian"></a>IsHermitian</span></dt><dd><pre class="synopsis">IsHermitian
(M)</pre><p>Indique si une matrice est hermitienne. C'est-à-dire si elle est égale à sa transposée
conjuguée.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hermitian_matrix"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HermitianMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsInSubspace"></a>IsInSubspace</span></dt><dd><pre class="synopsis">IsInSubspace
(v,W)</pre><p>Teste si un vecteur appartient à un sous-espace.</p></dd><dt><span class="term"><a
name="gel-function-IsInvertible"></a>IsInvertible</span></dt><dd><pre class="synopsis">IsInvertible
(n)</pre><p>Is a matrix (or number) invertible (Integer matrix is invertible if and only if it is invertible
over the integers).</p></dd><dt><span class="term"><a
name="gel-function-IsInvertibleField"></a>IsInvertibleField</span></dt><dd><pre
class="synopsis">IsInvertibleField (n)</pre><p>Indique si une matrice (ou un nombre) est inversible sur un
corps.</p></dd><dt><span class="term"><a name="gel-function-IsNormal"></a>IsNormal</span></dt><dd><pre
class="synopsis">IsNormal (M)</pre><p>Indique si <code class="varname">M</code> est une matrice normale,
c'est-à-dire <strong class="userinput"><code>M*M' == M'*M</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/NormalMatrix" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/NormalMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsPositiveDefinite"></a>IsPositiveDefinite</span></dt><dd><pre
class="synopsis">IsPositiveDefinite (M)</pre><p>Indique si <code class="varname">M</code> est une matrice
hermitienne définie positive. C'est-à-dire si <strong
class="userinput"><code>HermitianProduct(M*v,v)</code></strong> est toujours strictement positif pour tout
vecteur <code class="varname">v</code>. <code class="varname">M</code> doit être carré et hermitienne pour
être définie positive. Le contrôle effectué est que le déterminant de chaque sous-matrice principale n'est
pas négatif (consultez <a class="link"
href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a>).</p><p>Notez que certains auteurs
(par exemple Mathworld) n'exigent pas que <code class="varname">M</code> soit hermitienne, ainsi la condition
porte sur la partie réelle du produit scalaire mais ce n'est pas le cas de Genius. Si vous souhaitez réaliser
ce t
ype de contrôle, vérifiez seulement la partie hermitienne de la matrice <code class="varname">M</code> comme
ceci : <strong class="userinput"><code>IsPositiveDefinite(M+M')</code></strong>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Positive-definite_matrix"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/PositiveDefinite" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/PositiveDefiniteMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsPositiveSemidefinite"></a>IsPositiveSemidefinite</span></dt><dd><pre
class="synopsis">IsPositiveSemidefinite (M)</pre><p>Indique si <code class="varname">M</code> est une matrice
hermitienne semi-définie positive. C'est-à-dire si <strong
class="userinput"><code>HermitianProduct(M*v,v)</code></strong> est toujours non négatif pour tout vecteur
<code class="varname">v</code>. <code class="varname">M</code> doit être carré et hermitienne pour être
semi-définie positive. Le contrôle effectué est que le déterminant de chaque sous-matrice principale n'est
pas négatif (consultez <a class="link"
href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a>).</p><p>Notez que certains auteurs
n'exigent pas que <code class="varname">M</code> soit hermitienne, ainsi la condition porte sur la partie
réelle du produit scalaire mais ce n'est pas le cas de Genius. Si vous souhaitez réaliser ce type de co
ntrôle, vérifiez seulement la partie hermitienne de la matrice <code class="varname">M</code> comme ceci :
<strong class="userinput"><code>IsPositiveSemiDefinite(M+M')</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PositiveSemidefinite" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PositiveSemidefiniteMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsSkewHermitian"></a>IsSkewHermitian</span></dt><dd><pre class="synopsis">IsSkewHermitian
(M)</pre><p>Indique si une matrice est anti-hermitienne. C'est-à-dire si sa transposée conjuguée est égale à
l'opposée de la matrice.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SkewHermitianMatrix" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-IsUnitary"></a>IsUnitary</span></dt><dd><pre
class="synopsis">IsUnitary (M)</pre><p>Indique si une matrice est unitaire. C'est-à-dire si <strong
class="userinput"><code>M'*M</code></strong> et <strong class="userinput"><code>M*M'</code></strong> sont
égaux à l'identité.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/UnitaryTransformation" target="_top">Planetmath</a>
or
+ <a class="ulink" href="http://mathworld.wolfram.com/UnitaryMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-JordanBlock"></a>JordanBlock</span></dt><dd><pre class="synopsis">JordanBlock
(n,lambda)</pre><p>Alias : <code class="function">J</code></p><p>Renvoie le bloc de Jordan correspondant à la
valeur propre <code class="varname">lambda</code> de multiplicité <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/JordanCanonicalFormTheorem"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/JordanBlock.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Kernel"></a>Kernel</span></dt><dd><pre
class="synopsis">Kernel (T)</pre><p>Renvoie le noyau d'une transformation linéaire.</p><p>(consultez <a
class="link" href="ch11s09.html#gel-function-NullSpace">NullSpace</a>)</p></dd><dt><span class="term"><a
name="gel-function-KroneckerProduct"></a>KroneckerProduct</span></dt><dd><pre
class="synopsis">KroneckerProduct (M, N)</pre><p>Aliases: <code class="function">TensorProduct</code></p><p>
+ Compute the Kronecker product (tensor product in standard basis)
+ of two matrices.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Kronecker_product"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/KroneckerProduct" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/KroneckerProduct.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LUDecomposition"></a>LUDecomposition</span></dt><dd><pre class="synopsis">LUDecomposition
(A, L, U)</pre><p>
+ Get the LU decomposition of <code class="varname">A</code>, that is
+ find a lower triangular matrix and upper triangular
+ matrix whose product is <code class="varname">A</code>.
+ Store the result in the <code class="varname">L</code> and
+ <code class="varname">U</code>, which should be references. It returns <code
class="constant">true</code>
+ if successful.
+ For example suppose that A is a square matrix, then after running:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LUDecomposition(A,&L,&U)</code></strong>
+</pre><p>
+ You will have the lower matrix stored in a variable called
+ <code class="varname">L</code> and the upper matrix in a variable called
+ <code class="varname">U</code>.
+ </p><p>
+ This is the LU decomposition of a matrix aka Crout and/or Cholesky
+ reduction.
+ (ISBN 0-201-11577-8 pp.99-103)
+ The upper triangular matrix features a diagonal
+ of values 1 (one). This is not Doolittle's Method, which features
+ the 1's diagonal on the lower matrix.
+ </p><p>Toutes les matrices ne possèdent pas de décomposition LU, par exemple <strong
class="userinput"><code>[0,1;1,0]</code></strong> n'en a pas. Dans ce cas, cette fonction renvoie <code
class="constant">false</code> (faux) et initialise <code class="varname">L</code> et <code
class="varname">U</code> à <code class="constant">null</code>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/LU_decomposition" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LUDecomposition" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/LUDecomposition.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Minor"></a>Minor</span></dt><dd><pre
class="synopsis">Minor (M,i,j)</pre><p>Renvoie le mineur <code class="varname">i</code>-<code
class="varname">j</code> d'une matrice.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Minor" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-NonPivotColumns"></a>NonPivotColumns</span></dt><dd><pre class="synopsis">NonPivotColumns
(M)</pre><p>Renvoie les colonnes qui ne sont pas les colonnes pivot d'une matrice.</p></dd><dt><span
class="term"><a name="gel-function-Norm"></a>Norm</span></dt><dd><pre class="synopsis">Norm
(v,p...)</pre><p>Alias : <code class="function">norm</code></p><p>Renvoie la norme-p d'un vecteur (ou norme-2
si p n'est pas fourni).</p></dd><dt><span class="term"><a
name="gel-function-NullSpace"></a>NullSpace</span></dt><dd><pre class="synopsis">NullSpace
(T)</pre><p>Renvoie le noyau d'une matrice. C'est-à-dire le noyau de l'application linéaire que la matrice
représente sous la forme d'une matrice dont l'espace des colonnes est le noyau de <code
class="varname">T</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Nullspace" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-Nullity"></a>Nullity</span></dt><dd><pre
class="synopsis">Nullity (M)</pre><p>Alias : <code class="function">nullity</code></p><p>Renvoie la dimension
du noyau de la matrice <code class="varname">M</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Nullity" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-OrthogonalComplement"></a>OrthogonalComplement</span></dt><dd><pre
class="synopsis">OrthogonalComplement (M)</pre><p>Renvoie le complément orthogonal de l'espace des
colonnes.</p></dd><dt><span class="term"><a
name="gel-function-PivotColumns"></a>PivotColumns</span></dt><dd><pre class="synopsis">PivotColumns
(M)</pre><p>Return pivot columns of a matrix, that is columns that have a leading 1 in row reduced form.
Also returns the row where they occur.</p></dd><dt><span class="term"><a
name="gel-function-Projection"></a>Projection</span></dt><dd><pre class="synopsis">Projection
(v,W,B...)</pre><p>Projection du vecteur <code class="varname">v</code> sur le sous-espace <code
class="varname">W</code> par rapport au produit scalaire donné par <code class="varname">B</code>. Si <code
class="varname">B</code> n'est pas fourni alors le produit hermitien standard est utilisé. <code
class="varname">B</code> peut être s
oit une forme sesquilinéaire à deux arguments soit une matrice fournissant une forme
sesquilinéaire.</p></dd><dt><span class="term"><a
name="gel-function-QRDecomposition"></a>QRDecomposition</span></dt><dd><pre class="synopsis">QRDecomposition
(A, Q)</pre><p>Calcule la décomposition QR d'une matrice carrée <code class="varname">A</code>, renvoie la
matrice triangulaire supérieure <code class="varname">R</code> et définit <code class="varname">Q</code>
comme la matrice orthogonale (unitaire). <code class="varname">Q</code> doit être une référence. Si vous ne
voulez pas qu'elle soit renvoyée, utilisez <code class="constant">null</code>. Par exemple : </p><pre
class="screen"><code class="prompt">genius></code> <strong class="userinput"><code>R =
QRDecomposition(A,&Q)</code></strong>
+</pre><p> Vous obtenez la matrice supérieure dans une variable appelée <code class="varname">R</code> et la
matrice orthogonale (unitaire) dans <code class="varname">Q</code>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/QR_decomposition" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/QRDecomposition" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/QRDecomposition.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RayleighQuotient"></a>RayleighQuotient</span></dt><dd><pre
class="synopsis">RayleighQuotient (A,x)</pre><p>Renvoie le quotient de Rayleigh (aussi appelé le quotient ou
rapport de Rayleigh-Ritz) d'une matrice et d'un vecteur.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RayleighQuotient" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RayleighQuotientIteration"></a>RayleighQuotientIteration</span></dt><dd><pre
class="synopsis">RayleighQuotientIteration (A,x,epsilon,maxiter,vecref)</pre><p>Cherche les valeurs propres
de <code class="varname">A</code> en utilisant la méthode itérative du quotient de Rayleigh. <code
class="varname">x</code> est une valeur initiale estimée pour un vecteur propre et peut être tirée au hasard.
Si vous voulez avoir une chance de trouver des valeurs propres complexes, la partie imaginaire ne doit pas
être nulle. Le programme effectue au maximum <code class="varname">maxiter</code> itérations et renvoie <code
class="constant">null</code> s'il ne peut trouver une solution avec une précision inférieure à <code
class="varname">epsilon</code>. <code class="varname">vecref</code> doit être soit <code
class="constant">null</code> ou une référence à une variable dans laquelle le vecteur propre est enregistré.<
/p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RayleighQuotient" target="_top">Planetmath</a> for
more information on Rayleigh quotient.
+ </p></dd><dt><span class="term"><a name="gel-function-Rank"></a>Rank</span></dt><dd><pre
class="synopsis">Rank (M)</pre><p>Alias : <code class="function">rank</code></p><p>Renvoie le rang d'une
matrice.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SylvestersLaw" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RosserMatrix"></a>RosserMatrix</span></dt><dd><pre class="synopsis">RosserMatrix
()</pre><p>Returns the Rosser matrix, which is a classic symmetric eigenvalue test problem.</p></dd><dt><span
class="term"><a name="gel-function-Rotation2D"></a>Rotation2D</span></dt><dd><pre class="synopsis">Rotation2D
(angle)</pre><p>Alias : <code class="function">RotationMatrix</code></p><p>Renvoie la matrice correspondant à
la rotation centrée sur l'origine dans R<sup>2</sup>.</p></dd><dt><span class="term"><a
name="gel-function-Rotation3DX"></a>Rotation3DX</span></dt><dd><pre class="synopsis">Rotation3DX
(angle)</pre><p>Renvoie la matrice correspondant à la rotation centrée sur l'origine dans R<sup>3</sup>
autour de l'axe des x.</p></dd><dt><span class="term"><a
name="gel-function-Rotation3DY"></a>Rotation3DY</span></dt><dd><pre class="synopsis">Rotation3DY
(angle)</pre><p>Renvoie la matrice correspondant à la rotation ce
ntrée sur l'origine dans R<sup>3</sup> autour de l'axe des y.</p></dd><dt><span class="term"><a
name="gel-function-Rotation3DZ"></a>Rotation3DZ</span></dt><dd><pre class="synopsis">Rotation3DZ
(angle)</pre><p>Renvoie la matrice correspondant à la rotation centrée sur l'origine dans R<sup>3</sup>
autour de l'axe des z.</p></dd><dt><span class="term"><a
name="gel-function-RowSpace"></a>RowSpace</span></dt><dd><pre class="synopsis">RowSpace (M)</pre><p>Renvoie
une matrice de base pour l'espace vectoriel engendré par les lignes d'une matrice.</p></dd><dt><span
class="term"><a name="gel-function-SesquilinearForm"></a>SesquilinearForm</span></dt><dd><pre
class="synopsis">SesquilinearForm (v,A,w)</pre><p>Évalue (v, w) par rapport à la forme sesquilinéaire donnée
par la matrice A.</p></dd><dt><span class="term"><a
name="gel-function-SesquilinearFormFunction"></a>SesquilinearFormFunction</span></dt><dd><pre
class="synopsis">SesquilinearFormFunction (A)</pre><p>Renvoie une fon
ction qui évalue deux vecteurs par rapport à la forme sesquilinéaire donnée par A.</p></dd><dt><span
class="term"><a name="gel-function-SmithNormalFormField"></a>SmithNormalFormField</span></dt><dd><pre
class="synopsis">SmithNormalFormField (A)</pre><p>Returns the Smith normal form of a matrix over fields (will
end up with 1's on the diagonal).</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Smith_normal_form"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SmithNormalFormInteger"></a>SmithNormalFormInteger</span></dt><dd><pre
class="synopsis">SmithNormalFormInteger (M)</pre><p>Return the Smith normal form for square integer matrices
over integers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Smith_normal_form"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SolveLinearSystem"></a>SolveLinearSystem</span></dt><dd><pre
class="synopsis">SolveLinearSystem (M,V,params...)</pre><p>Résout le système linéaire Mx=V, renvoie V s'il y
a une solution unique ou <code class="constant">null</code> sinon. Deux références d'arguments
supplémentaires peuvent être utilisés pour recevoir les réductions de M et V.</p></dd><dt><span
class="term"><a name="gel-function-ToeplitzMatrix"></a>ToeplitzMatrix</span></dt><dd><pre
class="synopsis">ToeplitzMatrix (c, r...)</pre><p>Renvoie la matrice de Toeplitz construite à partir de la
première colonne c et (éventuellement) de la première ligne r. Si seule la colonne c est fournie alors elle
est conjuguée et la version non conjuguée est utilisée pour la première ligne pour fournir une matrice
hermitienne (si le premier élément est réel bien sûr).</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Toeplitz_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/ToeplitzMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Trace"></a>Trace</span></dt><dd><pre
class="synopsis">Trace (M)</pre><p>Alias : <code class="function">trace</code></p><p>Calcule la trace d'une
matrice, c'est-à-dire la somme des éléments diagonaux.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trace_(linear_algebra)"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Trace" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-Transpose"></a>Transpose</span></dt><dd><pre
class="synopsis">Transpose (M)</pre><p>Matrice transposée. C'est identique à l'opérateur <strong
class="userinput"><code>.'</code></strong></p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Transpose" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Transpose" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-VandermondeMatrix"></a>VandermondeMatrix</span></dt><dd><pre
class="synopsis">VandermondeMatrix (v)</pre><p>Alias : <code class="function">vander</code></p><p>Renvoie la
matrice de Vandermonde.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Vandermonde_matrix"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-VectorAngle"></a>VectorAngle</span></dt><dd><pre class="synopsis">VectorAngle
(v,w,B...)</pre><p>L'angle entre deux vecteurs par rapport au produit scalaire donné par <code
class="varname">B</code>. Si <code class="varname">B</code> n'est pas fourni alors le produit hermitien
standard est utilisé. <code class="varname">B</code> peut être soit une forme sesquilinéaire à deux arguments
soit une matrice fournissant une forme sesquilinéaire.</p></dd><dt><span class="term"><a
name="gel-function-VectorSpaceDirectSum"></a>VectorSpaceDirectSum</span></dt><dd><pre
class="synopsis">VectorSpaceDirectSum (M,N)</pre><p>Somme directe des espaces vectoriels M et
N.</p></dd><dt><span class="term"><a
name="gel-function-VectorSubspaceIntersection"></a>VectorSubspaceIntersection</span></dt><dd><pre
class="synopsis">VectorSubspaceIntersection (M,N)</pre><p>Intersection des sous-espaces donnés par M et
N.</p></dd><dt><span cl
ass="term"><a name="gel-function-VectorSubspaceSum"></a>VectorSubspaceSum</span></dt><dd><pre
class="synopsis">VectorSubspaceSum (M,N)</pre><p>Somme des espaces vectoriels M et N, c'est-à-dire {w |
w=m+n, m dans M, n dans N}.</p></dd><dt><span class="term"><a
name="gel-function-adj"></a>adj</span></dt><dd><pre class="synopsis">adj (m)</pre><p>Alias : <code
class="function">Adjugate</code></p><p>Renvoie la matrice adjointe d'une matrice.</p></dd><dt><span
class="term"><a name="gel-function-cref"></a>cref</span></dt><dd><pre class="synopsis">cref (M)</pre><p>Alias
: <code class="function">CREF</code><code class="function">ColumnReducedEchelonForm</code></p><p>Calcule la
forme échelonnée réduite en colonnes.</p></dd><dt><span class="term"><a
name="gel-function-det"></a>det</span></dt><dd><pre class="synopsis">det (M)</pre><p>Alias : <code
class="function">Determinant</code></p><p>Renvoie le déterminant d'une matrice.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Determinant" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Determinant2" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-ref"></a>ref</span></dt><dd><pre
class="synopsis">ref (M)</pre><p>Alias : <code class="function">REF</code><code
class="function">RowEchelonForm</code></p><p>Renvoie la matrice échelonnée en lignes (row echelon) d'une
matrice. C'est-à-dire effectue une élimination de Gauss de <code class="varname">M</code>. Les lignes de
pivot sont divisées pour que tous les pivots soient égaux à 1.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Row_echelon_form" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/RowEchelonForm" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-rref"></a>rref</span></dt><dd><pre
class="synopsis">rref (M)</pre><p>Alias : <code class="function">RREF</code><code
class="function">ReducedRowEchelonForm</code></p><p>Renvoie la matrice échelonnée réduite en lignes (reduced
row echelon) d'une matrice. C'est-à-dire effectue une élimination de Gauss-Jordan de <code
class="varname">M</code>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Reduced_row_echelon_form"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/ReducedRowEchelonForm" target="_top">Planetmath</a>
for more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s08.html">Précédent</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Niveau supérieur</a></td><td width="40%"
align="right"> <a accesskey="n" href="ch11s10.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Manipulation de matrices </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top">
Combinatoire</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch11s10.html b/help/fr/html/ch11s10.html
new file mode 100644
index 0000000..ae09b72
--- /dev/null
+++ b/help/fr/html/ch11s10.html
@@ -0,0 +1,61 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Combinatoire</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manuel de Genius"><link rel="up" href="ch11.html"
title="Chapitre 11. Liste des fonctions GEL"><link rel="prev" href="ch11s09.html" title="Algèbre
linéaire"><link rel="next" href="ch11s11.html" title="Analyse"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Combinatoire</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s09.html">Précédent</a> </td><th width="60%" align="center">Chapitre 11. Liste des
fonctions GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s11.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" s
tyle="clear: both"><a
name="genius-gel-function-list-combinatorics"></a>Combinatoire</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Catalan"></a>Catalan</span></dt><dd><pre class="synopsis">Catalan (n)</pre><p>Renvoie le
<code class="varname">n</code>-ième nombre catalan.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/CatalanNumbers" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Combinations"></a>Combinations</span></dt><dd><pre class="synopsis">Combinations
(k,n)</pre><p>Renvoie toutes les combinaisons de k nombres de 1 à n comme un vecteur de vecteurs (consultez
aussi <a class="link"
href="ch11s10.html#gel-function-NextCombination">NextCombination</a>).</p></dd><dt><span class="term"><a
name="gel-function-DoubleFactorial"></a>DoubleFactorial</span></dt><dd><pre class="synopsis">DoubleFactorial
(n)</pre><p>Double factorielle : <strong class="userinput"><code>n(n-2)(n-4)...</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/DoubleFactorial" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Factorial"></a>Factorial</span></dt><dd><pre
class="synopsis">Factorial (n)</pre><p>Factorielle : <strong
class="userinput"><code>n(n-1)(n-2)...</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Factorial" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FallingFactorial"></a>FallingFactorial</span></dt><dd><pre
class="synopsis">FallingFactorial (n,k)</pre><p>Factorielle décroissante : <strong
class="userinput"><code>(n)_k·=·n(n-1)...(n-(k-1))</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/FallingFactorial" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Fibonacci"></a>Fibonacci</span></dt><dd><pre
class="synopsis">Fibonacci (x)</pre><p>Alias : <code class="function">fib</code></p><p>Calcule le <code
class="varname">n</code>-ième nombre de Fibonacci. C'est-à-dire le nombre défini de manière récursive par
<strong class="userinput"><code>Fibonacci(n) = Fibonacci(n-1) + Fibonacci(n-2)</code></strong> et <strong
class="userinput"><code>Fibonacci(1) = Fibonacci(2) = 1</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fibonacci_number" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/FibonacciSequence" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FibonacciNumber.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FrobeniusNumber"></a>FrobeniusNumber</span></dt><dd><pre class="synopsis">FrobeniusNumber
(v,param...)</pre><p>Calcule le nombre de Frobenius. C'est-à-dire calcule le plus petit nombre qui ne peut
pas être obtenu comme une combinaison linéaire d'entiers non négatifs d'un vecteur donné d'entiers non
négatifs. Le vecteur peut être fourni sous la forme de nombre séparés ou d'un seul vecteur. Tous les nombres
fournis doivent avoir un PGCD de 1.</p><p>Consultez <a class="ulink"
href="http://mathworld.wolfram.com/FrobeniusNumber.html" target="_top">Mathworld</a> pour plus
d'informations.</p></dd><dt><span class="term"><a
name="gel-function-GaloisMatrix"></a>GaloisMatrix</span></dt><dd><pre class="synopsis">GaloisMatrix
(règle_de_combinaison)</pre><p>Galois matrix given a linear combining rule
(a_1*x_1+...+a_n*x_n=x_(n+1)).</p></dd><dt><span class="term"><a
name="gel-function-GreedyAlgorithm"></a>GreedyAlgorithm</sp
an></dt><dd><pre class="synopsis">GreedyAlgorithm (n,v)</pre><p>Trouve le vecteur <code
class="varname">c</code> d'entiers non négatifs tel que le produit scalaire par <code
class="varname">v</code> est égal à n. Si ce n'est pas possible, renvoie <code class="constant">null</code>.
<code class="varname">v</code> doit être fourni trié dans l'ordre croissant et doit être composé d'entier non
négatif.</p><p>Consultez <a class="ulink" href="http://mathworld.wolfram.com/GreedyAlgorithm.html"
target="_top">Mathworld</a> pour plus d'informations.</p></dd><dt><span class="term"><a
name="gel-function-HarmonicNumber"></a>HarmonicNumber</span></dt><dd><pre class="synopsis">HarmonicNumber
(n,r)</pre><p>Alias : <code class="function">HarmonicH</code></p><p>Nombre harmonique, le <code
class="varname">n</code>-ième nombre harmonique d'ordre <code class="varname">r</code>.</p></dd><dt><span
class="term"><a name="gel-function-Hofstadter"></a>Hofstadter</span></dt><dd><pre class="sy
nopsis">Hofstadter (n)</pre><p>Fonction de Hofstadter q(n) définie par q(1)=1, q(2)=1,
q(n)=q(n-q(n-1))+q(n-q(n-2)).</p></dd><dt><span class="term"><a
name="gel-function-LinearRecursiveSequence"></a>LinearRecursiveSequence</span></dt><dd><pre
class="synopsis">LinearRecursiveSequence (valeurs_ensemencement,règle_de_combinaison,n)</pre><p>Calcule la
relation de récurrence linéaire en utilisant l'algorithme de Galois.</p></dd><dt><span class="term"><a
name="gel-function-Multinomial"></a>Multinomial</span></dt><dd><pre class="synopsis">Multinomial
(v,param...)</pre><p>Calcule les coefficients multinomiaux. Prend un vecteur de <code
class="varname">k</code> entiers non négatifs et calcule les coefficients multinomiaux. Cela correspond aux
coefficients dans le polynôme homogène à <code class="varname">k</code> variables avec les puissances
correspondantes.</p><p>La formule pour <strong class="userinput"><code>Multinomial(a,b,c)</code></strong>
peut s'écrire sous la forme�
�:</p><pre class="programlisting">(a+b+c)! / (a!b!c!)
+</pre><p> En d'autres termes, si vous n'avez que deux éléments alors <strong
class="userinput"><code>Multinomial(a,b)</code></strong> est la même chose que <strong
class="userinput"><code>Binomial(a+b,a)</code></strong> ou <strong
class="userinput"><code>Binomial(a+b,b)</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Multinomial_theorem"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MultinomialTheorem" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/MultinomialCoefficient.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-NextCombination"></a>NextCombination</span></dt><dd><pre class="synopsis">NextCombination
(v,n)</pre><p>Calcule la combinaison qui apparaîtrait après v dans un appel à la fonction combinations, la
première combinaison devrait être <strong class="userinput"><code>[1:k]</code></strong>. Cette fonction est
utile si vous devez parcourir beaucoup de combinaisons et que vous ne voulez pas gaspiller de la mémoire pour
les enregistrer.</p><p>
+ For example with Combinations you would normally write a loop like:
+ </p><pre class="screen"><strong class="userinput"><code>for n in Combinations (4,6) do (
+ SomeFunction (n)
+);</code></strong>
+</pre><p>
+ But with NextCombination you would write something like:
+ </p><pre class="screen"><strong class="userinput"><code>n:=[1:4];
+do (
+ SomeFunction (n)
+) while not IsNull(n:=NextCombination(n,6));</code></strong>
+</pre><p>
+ See also <a class="link" href="ch11s10.html#gel-function-Combinations">Combinations</a>.
+ </p></dd><dt><span class="term"><a name="gel-function-Pascal"></a>Pascal</span></dt><dd><pre
class="synopsis">Pascal (i)</pre><p>Get the Pascal's triangle as a matrix. This will return
+ an <code class="varname">i</code>+1 by <code class="varname">i</code>+1 lower diagonal
+ matrix that is the Pascal's triangle after <code class="varname">i</code>
+ iterations.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PascalsTriangle" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Permutations"></a>Permutations</span></dt><dd><pre class="synopsis">Permutations
(k,n)</pre><p>Renvoie toutes les permutations de <code class="varname">k</code> nombres de 1 à <code
class="varname">n</code> comme un vecteur de vecteurs.</p><p>Consultez <a class="ulink"
href="http://mathworld.wolfram.com/Permutation.html" target="_top">Mathworld</a> ou <a class="ulink"
href="http://fr.wikipedia.org/wiki/Permutation" target="_top">Wikipedia</a> pour plus
d'informations.</p></dd><dt><span class="term"><a
name="gel-function-RisingFactorial"></a>RisingFactorial</span></dt><dd><pre class="synopsis">RisingFactorial
(n,k)</pre><p>Alias : <code class="function">Pochhammer</code></p><p>Factorielle croissante (Pochhammer) :
(n)_k = n(n+1)...(n+(k-1)).</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RisingFactorial" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-StirlingNumberFirst"></a>StirlingNumberFirst</span></dt><dd><pre
class="synopsis">StirlingNumberFirst (n,m)</pre><p>Alias : <code
class="function">StirlingS1</code></p><p>Nombre de Stirling du premier type.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/StirlingNumbersOfTheFirstKind"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-StirlingNumberSecond"></a>StirlingNumberSecond</span></dt><dd><pre
class="synopsis">StirlingNumberSecond (n,m)</pre><p>Alias : <code
class="function">StirlingS2</code></p><p>Nombre de Stirling du second type.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/StirlingNumbersSecondKind"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Subfactorial"></a>Subfactorial</span></dt><dd><pre class="synopsis">Subfactorial
(n)</pre><p>Subfactorial: n! times sum_{k=0}^n (-1)^k/k!.</p></dd><dt><span class="term"><a
name="gel-function-Triangular"></a>Triangular</span></dt><dd><pre class="synopsis">Triangular
(nième)</pre><p>Calcule le <code class="varname">n</code>-ième nombre triangulaire.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/TriangularNumbers" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-nCr"></a>nCr</span></dt><dd><pre
class="synopsis">nCr (n,r)</pre><p>Alias : <code class="function">Binomial</code></p><p>Calcule le nombre de
combinaisons, c'est-à-dire le coefficient binomial. <code class="varname">n</code> peut être n'importe quel
nombre réel.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Choose" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-nPr"></a>nPr</span></dt><dd><pre
class="synopsis">nPr (n,r)</pre><p>Calculate the number of permutations of size
+ <code class="varname">r</code> of numbers from 1 to <code
class="varname">n</code>.</p><p>Consultez <a class="ulink"
href="http://mathworld.wolfram.com/Permutation.html" target="_top">Mathworld</a> ou <a class="ulink"
href="http://fr.wikipedia.org/wiki/Permutation" target="_top">Wikipedia</a> pour plus
d'informations.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s09.html">Précédent</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Niveau supérieur</a></td><td width="40%"
align="right"> <a accesskey="n" href="ch11s11.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Algèbre linéaire </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top">
Analyse</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch11s11.html b/help/fr/html/ch11s11.html
new file mode 100644
index 0000000..d3c2ba5
--- /dev/null
+++ b/help/fr/html/ch11s11.html
@@ -0,0 +1,77 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Analyse</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manuel
de Genius"><link rel="up" href="ch11.html" title="Chapitre 11. Liste des fonctions GEL"><link rel="prev"
href="ch11s10.html" title="Combinatoire"><link rel="next" href="ch11s12.html" title="Fonctions"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Analyse</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch11s10.html">Précédent</a> </td><th width="60%"
align="center">Chapitre 11. Liste des fonctions GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s12.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: b
oth"><a name="genius-gel-function-list-calculus"></a>Analyse</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-CompositeSimpsonsRule"></a>CompositeSimpsonsRule</span></dt><dd><pre
class="synopsis">CompositeSimpsonsRule (f,a,b,n)</pre><p>Intégration de f par la méthode de Simpson composée
sur l'intervalle [a,b] avec n sous-intervalles avec une erreur de l'ordre max(f'''')*h^4*(b-a)/180, notez que
n doit être pair.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SimpsonsRule" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CompositeSimpsonsRuleTolerance"></a>CompositeSimpsonsRuleTolerance</span></dt><dd><pre
class="synopsis">CompositeSimpsonsRuleTolerance (f,a,b,FourthDerivativeBound,Tolerance)</pre><p>Intégration
de f par la méthode de Simpson composée sur l'intervalle [a,b] avec un nombre d'étapes calculé à l'aide de la
borne de la dérivée quatrième et la tolérance souhaitée.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SimpsonsRule" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Derivative"></a>Derivative</span></dt><dd><pre class="synopsis">Derivative
(f,x0)</pre><p>Tente de calculer la dérivée en essayant d'abord une approche symbolique puis numérique.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EvenPeriodicExtension"></a>EvenPeriodicExtension</span></dt><dd><pre
class="synopsis">EvenPeriodicExtension (f,L)</pre><p>Return a function that is the even periodic extension of
+<code class="function">f</code> with half period <code class="varname">L</code>. That
+is a function defined on the interval <strong class="userinput"><code>[0,L]</code></strong>
+extended to be even on <strong class="userinput"><code>[-L,L]</code></strong> and then
+extended to be periodic with period <strong class="userinput"><code>2*L</code></strong>.</p><p>Consultez
aussi <a class="link" href="ch11s11.html#gel-function-OddPeriodicExtension">OddPeriodicExtension</a> et <a
class="link" href="ch11s11.html#gel-function-PeriodicExtension">PeriodicExtension</a>.</p><p>Version 1.0.7
onwards.</p></dd><dt><span class="term"><a
name="gel-function-FourierSeriesFunction"></a>FourierSeriesFunction</span></dt><dd><pre
class="synopsis">FourierSeriesFunction (a,b,L)</pre><p>Return a function that is a Fourier series with the
+coefficients given by the vectors <code class="varname">a</code> (sines) and
+<code class="varname">b</code> (cosines). Note that <strong class="userinput"><code>a@(1)</code></strong> is
+the constant coefficient! That is, <strong class="userinput"><code>a@(n)</code></strong> refers to
+the term <strong class="userinput"><code>cos(x*(n-1)*pi/L)</code></strong>, while
+<strong class="userinput"><code>b@(n)</code></strong> refers to the term
+<strong class="userinput"><code>sin(x*n*pi/L)</code></strong>. Either <code class="varname">a</code>
+or <code class="varname">b</code> can be <code class="constant">null</code>.</p><p>Consultez <a
class="ulink" href="http://fr.wikipedia.org/wiki/S%C3%A9rie_de_Fourier" target="_top">Wikipedia</a> ou <a
class="ulink" href="http://mathworld.wolfram.com/FourierSeries.html" target="_top">Mathworld</a> pour plus
d'informations.</p></dd><dt><span class="term"><a
name="gel-function-InfiniteProduct"></a>InfiniteProduct</span></dt><dd><pre class="synopsis">InfiniteProduct
(fonc,début,inc)</pre><p>Essaie de calculer un produit infini pour une fonction à un seul
argument.</p></dd><dt><span class="term"><a
name="gel-function-InfiniteProduct2"></a>InfiniteProduct2</span></dt><dd><pre
class="synopsis">InfiniteProduct2 (fonc,param,début,inc)</pre><p>Essaie de calculer un produit infini pour
une fonction à double arguments avec func(arg,n).</p></dd><dt><span class="term"><a
name="gel-function-InfiniteSum"></a>InfiniteSum</span></dt><dd><pre class="synopsis">InfiniteSum
(fonc,début,inc)
</pre><p>Essaie de calculer une somme infinie pour une fonction à un seul argument.</p></dd><dt><span
class="term"><a name="gel-function-InfiniteSum2"></a>InfiniteSum2</span></dt><dd><pre
class="synopsis">InfiniteSum2 (fonc,param,début,inc)</pre><p>Essaie de calculer une somme infinie pour une
fonction à double arguments avec func(arg,n).</p></dd><dt><span class="term"><a
name="gel-function-IsContinuous"></a>IsContinuous</span></dt><dd><pre class="synopsis">IsContinuous
(f,x0)</pre><p>Essaie de voir si une fonction à valeur réelle est continue en x0 en calculant la limite en ce
point.</p></dd><dt><span class="term"><a
name="gel-function-IsDifferentiable"></a>IsDifferentiable</span></dt><dd><pre
class="synopsis">IsDifferentiable (f,x0)</pre><p>Teste de différentiabilité en approchant les limites gauche
et droite et en les comparant.</p></dd><dt><span class="term"><a
name="gel-function-LeftLimit"></a>LeftLimit</span></dt><dd><pre class="synopsis">LeftLimit (f,x0)</pre><
p>Calcule la limite gauche d'une fonction à valeurs réelles en x0.</p></dd><dt><span class="term"><a
name="gel-function-Limit"></a>Limit</span></dt><dd><pre class="synopsis">Limit (f,x0)</pre><p>Calcule la
limite d'une fonction à valeur réelle en x0. Essaie de calculer les deux limites à gauche et à
droite.</p></dd><dt><span class="term"><a
name="gel-function-MidpointRule"></a>MidpointRule</span></dt><dd><pre class="synopsis">MidpointRule
(f,a,b,n)</pre><p>Intégration par la méthode des rectangles.</p></dd><dt><span class="term"><a
name="gel-function-NumericalDerivative"></a>NumericalDerivative</span></dt><dd><pre
class="synopsis">NumericalDerivative (f,x0)</pre><p>Alias : <code
class="function">NDerivative</code></p><p>Essaie de calculer la dérivée par méthode numérique.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSeriesCoefficients"></a>NumericalFourierSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierSeriesCoefficients (f,L,N)</pre><p>Return a vector of vectors <strong
class="userinput"><code>[a,b]</code></strong>
+where <code class="varname">a</code> are the cosine coefficients and
+<code class="varname">b</code> are the sine coefficients of
+the Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code> (that is defined
+on <strong class="userinput"><code>[-L,L]</code></strong> and extended periodically) with coefficients
+up to <code class="varname">N</code>th harmonic computed numerically. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Consultez <a class="ulink"
href="http://fr.wikipedia.org/wiki/S%C3%A9rie_de_Fourier" target="_top">Wikipedia</a> ou <a class="ulink"
href="http://mathworld.wolfram.com/FourierSeries.html" target="_top">Mathworld</a> pour plus
d'informations.</p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSeriesFunction"></a>NumericalFourierSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierSeriesFunction (f,L,N)</pre><p>Return a function that is the Fourier series
of
+<code class="function">f</code> with half-period <code class="varname">L</code> (that is defined
+on <strong class="userinput"><code>[-L,L]</code></strong> and extended periodically) with coefficients
+up to <code class="varname">N</code>th harmonic computed numerically. This is the
+trigonometric real series composed of sines and cosines. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Consultez <a class="ulink"
href="http://fr.wikipedia.org/wiki/S%C3%A9rie_de_Fourier" target="_top">Wikipedia</a> ou <a class="ulink"
href="http://mathworld.wolfram.com/FourierSeries.html" target="_top">Mathworld</a> pour plus
d'informations.</p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierCosineSeriesCoefficients"></a>NumericalFourierCosineSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierCosineSeriesCoefficients (f,L,N)</pre><p>Return a vector of coefficients of
+the cosine Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code>. That is,
+we take <code class="function">f</code> defined on <strong class="userinput"><code>[0,L]</code></strong>
+take the even periodic extension and compute the Fourier series, which
+only has cosine terms. The series is computed up to the
+<code class="varname">N</code>th harmonic. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.
+Note that <strong class="userinput"><code>a@(1)</code></strong> is
+the constant coefficient! That is, <strong class="userinput"><code>a@(n)</code></strong> refers to
+the term <strong class="userinput"><code>cos(x*(n-1)*pi/L)</code></strong>.</p><p>Consultez <a class="ulink"
href="http://fr.wikipedia.org/wiki/S%C3%A9rie_de_Fourier" target="_top">Wikipedia</a> ou <a class="ulink"
href="http://mathworld.wolfram.com/FourierCosineSeries.html" target="_top">Mathworld</a> pour plus
d'informations.</p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierCosineSeriesFunction"></a>NumericalFourierCosineSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierCosineSeriesFunction (f,L,N)</pre><p>Return a function that is the cosine
Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code>. That is,
+we take <code class="function">f</code> defined on <strong class="userinput"><code>[0,L]</code></strong>
+take the even periodic extension and compute the Fourier series, which
+only has cosine terms. The series is computed up to the
+<code class="varname">N</code>th harmonic. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Consultez <a class="ulink"
href="http://fr.wikipedia.org/wiki/S%C3%A9rie_de_Fourier" target="_top">Wikipedia</a> ou <a class="ulink"
href="http://mathworld.wolfram.com/FourierCosineSeries.html" target="_top">Mathworld</a> pour plus
d'informations.</p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSineSeriesCoefficients"></a>NumericalFourierSineSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierSineSeriesCoefficients (f,L,N)</pre><p>Return a vector of coefficients of
+the sine Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code>. That is,
+we take <code class="function">f</code> defined on <strong class="userinput"><code>[0,L]</code></strong>
+take the odd periodic extension and compute the Fourier series, which
+only has sine terms. The series is computed up to the
+<code class="varname">N</code>th harmonic. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Consultez <a class="ulink"
href="http://fr.wikipedia.org/wiki/S%C3%A9rie_de_Fourier" target="_top">Wikipedia</a> ou <a class="ulink"
href="http://mathworld.wolfram.com/FourierSineSeries.html" target="_top">Mathworld</a> pour plus
d'informations.</p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSineSeriesFunction"></a>NumericalFourierSineSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierSineSeriesFunction (f,L,N)</pre><p>Return a function that is the sine
Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code>. That is,
+we take <code class="function">f</code> defined on <strong class="userinput"><code>[0,L]</code></strong>
+take the odd periodic extension and compute the Fourier series, which
+only has sine terms. The series is computed up to the
+<code class="varname">N</code>th harmonic. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Consultez <a class="ulink"
href="http://fr.wikipedia.org/wiki/S%C3%A9rie_de_Fourier" target="_top">Wikipedia</a> ou <a class="ulink"
href="http://mathworld.wolfram.com/FourierSineSeries.html" target="_top">Mathworld</a> pour plus
d'informations.</p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegral"></a>NumericalIntegral</span></dt><dd><pre
class="synopsis">NumericalIntegral (f,a,b)</pre><p>Intégration de f entre a et b, en suivant la règle définie
par <code class="varname">NumericalIntegralFunction</code> et en utilisant les <code
class="varname">NumericalIntegralSteps</code> pas.</p></dd><dt><span class="term"><a
name="gel-function-NumericalLeftDerivative"></a>NumericalLeftDerivative</span></dt><dd><pre
class="synopsis">NumericalLeftDerivative (f,x0)</pre><p>Essaie de calculer la dérivée à gauche p
ar méthode numérique.</p></dd><dt><span class="term"><a
name="gel-function-NumericalLimitAtInfinity"></a>NumericalLimitAtInfinity</span></dt><dd><pre
class="synopsis">NumericalLimitAtInfinity (_f,step_fun,tolerance,successive_for_success,N)</pre><p>Essaie de
calculer la limite de f (step_fun(i)) lorsque i va de 1 à N.</p></dd><dt><span class="term"><a
name="gel-function-NumericalRightDerivative"></a>NumericalRightDerivative</span></dt><dd><pre
class="synopsis">NumericalRightDerivative (f,x0)</pre><p>Essaie de calculer la dérivée à droite par méthode
numérique.</p></dd><dt><span class="term"><a
name="gel-function-OddPeriodicExtension"></a>OddPeriodicExtension</span></dt><dd><pre
class="synopsis">OddPeriodicExtension (f,L)</pre><p>Return a function that is the odd periodic extension of
+<code class="function">f</code> with half period <code class="varname">L</code>. That
+is a function defined on the interval <strong class="userinput"><code>[0,L]</code></strong>
+extended to be odd on <strong class="userinput"><code>[-L,L]</code></strong> and then
+extended to be periodic with period <strong class="userinput"><code>2*L</code></strong>.</p><p>Consultez
aussi <a class="link" href="ch11s11.html#gel-function-EvenPeriodicExtension">EvenPeriodicExtension</a> et <a
class="link" href="ch11s11.html#gel-function-PeriodicExtension">PeriodicExtension</a>.</p><p>Version 1.0.7
onwards.</p></dd><dt><span class="term"><a
name="gel-function-OneSidedFivePointFormula"></a>OneSidedFivePointFormula</span></dt><dd><pre
class="synopsis">OneSidedFivePointFormula (f,x0,h)</pre><p>Calcule la dérivée d'un côté en utilisant une
formule à cinq points.</p></dd><dt><span class="term"><a
name="gel-function-OneSidedThreePointFormula"></a>OneSidedThreePointFormula</span></dt><dd><pre
class="synopsis">OneSidedThreePointFormula (f,x0,h)</pre><p>Calcule la dérivée d'un côté en utilisant une
formule à trois points.</p></dd><dt><span class="term"><a
name="gel-function-PeriodicExtension"></a>PeriodicExtension</span></dt><dd><pre class="synopsis">Pe
riodicExtension (f,a,b)</pre><p>Return a function that is the periodic extension of
+<code class="function">f</code> defined on the interval <strong class="userinput"><code>[a,b]</code></strong>
+and has period <strong class="userinput"><code>b-a</code></strong>.</p><p>Consultez également <a
class="link" href="ch11s11.html#gel-function-OddPeriodicExtension">OddPeriodicExtension</a> et <a
class="link" href="ch11s11.html#gel-function-EvenPeriodicExtension">EvenPeriodicExtension</a>.</p><p>Version
1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-RightLimit"></a>RightLimit</span></dt><dd><pre class="synopsis">RightLimit
(f,x0)</pre><p>Calcule la limite à droite d'une fonction à valeurs réelles en x0.</p></dd><dt><span
class="term"><a name="gel-function-TwoSidedFivePointFormula"></a>TwoSidedFivePointFormula</span></dt><dd><pre
class="synopsis">TwoSidedFivePointFormula (f,x0,h)</pre><p>Calcule la dérivée des deux côtés en utilisant une
formule à cinq points.</p></dd><dt><span class="term"><a
name="gel-function-TwoSidedThreePointFormula"></a>TwoSidedThreePointFormula</span></dt><dd><pre
class="synopsis">TwoSidedThreePointFormula (f,x0,h)</pre><p>
Calcule la dérivée des deux côtés en utilisant une formule à trois points.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s10.html">Précédent</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Niveau supérieur</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s12.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Combinatoire </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td width="40%" align="right"
valign="top"> Fonctions</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch11s12.html b/help/fr/html/ch11s12.html
new file mode 100644
index 0000000..4ae3080
--- /dev/null
+++ b/help/fr/html/ch11s12.html
@@ -0,0 +1,75 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Fonctions</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manuel
de Genius"><link rel="up" href="ch11.html" title="Chapitre 11. Liste des fonctions GEL"><link rel="prev"
href="ch11s11.html" title="Analyse"><link rel="next" href="ch11s13.html" title="Résolution
d'équations"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Fonctions</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s11.html">Précédent</a> </td><th width="60%" align="center">Chapitre 11. Liste des fonctions
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s13.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" s
tyle="clear: both"><a name="genius-gel-function-list-functions"></a>Fonctions</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Argument"></a>Argument</span></dt><dd><pre class="synopsis">Argument (z)</pre><p>Alias :
<code class="function">Arg</code> <code class="function">arg</code></p><p>Renvoie l'argument (angle) d'un
nombre complexe.</p></dd><dt><span class="term"><a
name="gel-function-BesselJ0"></a>BesselJ0</span></dt><dd><pre class="synopsis">BesselJ0 (x)</pre><p>Bessel
function of the first kind of order 0. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselJ1"></a>BesselJ1</span></dt><dd><pre class="synopsis">BesselJ1 (x)</pre><p>Bessel
function of the first kind of order 1. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselJn"></a>BesselJn</span></dt><dd><pre class="synopsis">BesselJn (n,x)</pre><p>Bessel
function of the first kind of order <code class="varname">n</code>. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselY0"></a>BesselY0</span></dt><dd><pre class="synopsis">BesselY0 (x)</pre><p>Bessel
function of the second kind of order 0. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselY1"></a>BesselY1</span></dt><dd><pre class="synopsis">BesselY1 (x)</pre><p>Bessel
function of the second kind of order 1. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselYn"></a>BesselYn</span></dt><dd><pre class="synopsis">BesselYn (n,x)</pre><p>Bessel
function of the second kind of order <code class="varname">n</code>. Only implemented for real
numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-DirichletKernel"></a>DirichletKernel</span></dt><dd><pre class="synopsis">DirichletKernel
(n,t)</pre><p>Dirichlet kernel of order <code class="varname">n</code>.</p></dd><dt><span class="term"><a
name="gel-function-DiscreteDelta"></a>DiscreteDelta</span></dt><dd><pre class="synopsis">DiscreteDelta
(v)</pre><p>Renvoie 1 si et seulement si tous les éléments sont nuls.</p></dd><dt><span class="term"><a
name="gel-function-ErrorFunction"></a>ErrorFunction</span></dt><dd><pre class="synopsis">ErrorFunction
(x)</pre><p>Alias : <code class="function">erf</code></p><p>Fonction erreur, 2/sqrt(pi) * int_0^x e^(-t^2)
dt.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Error_function" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/ErrorFunction" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FejerKernel"></a>FejerKernel</span></dt><dd><pre class="synopsis">FejerKernel
(n,t)</pre><p>Noyau Fejer d'ordre <code class="varname">n</code> évalué en <code
class="varname">t</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/FejerKernel" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GammaFunction"></a>GammaFunction</span></dt><dd><pre class="synopsis">GammaFunction
(x)</pre><p>Alias : <code class="function">Gamma</code></p><p>La fonction Gamma. Seules les valeurs réelles
sont actuellement implémentées.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/GammaFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Gamma_function" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-KroneckerDelta"></a>KroneckerDelta</span></dt><dd><pre class="synopsis">KroneckerDelta
(v)</pre><p>Renvoie 1 si et seulement si tous les éléments sont égaux.</p></dd><dt><span class="term"><a
name="gel-function-LambertW"></a>LambertW</span></dt><dd><pre class="synopsis">LambertW (x)</pre><p>
+ The principal branch of Lambert W function computed for only
+ real values greater than or equal to <strong class="userinput"><code>-1/e</code></strong>.
+ That is, <code class="function">LambertW</code> is the inverse of
+ the expression <strong class="userinput"><code>x*e^x</code></strong>. Even for
+ real <code class="varname">x</code> this expression is not one to one and
+ therefore has two branches over <strong class="userinput"><code>[-1/e,0)</code></strong>.
+ See <a class="link" href="ch11s12.html#gel-function-LambertWm1"><code
class="function">LambertWm1</code></a> for the other real branch.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lambert_W_function"
target="_top">Wikipedia</a> for more information.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LambertWm1"></a>LambertWm1</span></dt><dd><pre class="synopsis">LambertWm1 (x)</pre><p>
+ The minus-one branch of Lambert W function computed for only
+ real values greater than or equal to <strong class="userinput"><code>-1/e</code></strong>
+ and less than 0.
+ That is, <code class="function">LambertWm1</code> is the second
+ branch of the inverse of <strong class="userinput"><code>x*e^x</code></strong>.
+ See <a class="link" href="ch11s12.html#gel-function-LambertW"><code
class="function">LambertW</code></a> for the principal branch.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lambert_W_function"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MinimizeFunction"></a>MinimizeFunction</span></dt><dd><pre
class="synopsis">MinimizeFunction (fonc,x,incr)</pre><p>Cherche la première valeur pour laquelle
f(x)=0.</p></dd><dt><span class="term"><a
name="gel-function-MoebiusDiskMapping"></a>MoebiusDiskMapping</span></dt><dd><pre
class="synopsis">MoebiusDiskMapping (a,z)</pre><p>Transformation de Möbius du disque vers lui-même en faisant
correspondre a à 0.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMapping"></a>MoebiusMapping</span></dt><dd><pre class="synopsis">MoebiusMapping
(z,z2,z3,z4)</pre><p>Transformation de Möbius utilisant le rapport croisé en prenant z2, z3, z4 à 1, 0 et
l'infini respectivement.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToInfty"></a>MoebiusMappingInftyToInfty</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToInfty (z,z2,z3)</pre><p>Transformation de Möbius utilisant le rapport
croisé en prenant l'infini à l'infini et z2, z3 à 1 et 0 respectivement.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToOne"></a>MoebiusMappingInftyToOne</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToOne (z,z3,z4)</pre><p>Transformation de Möbius utilisant le rapport
croisé en prenant l'infini à 1 et z3, z4 à 0 et l'infini respectivement.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToZero"></a>MoebiusMappingInftyToZero</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToZero (z,z2,z4)</pre><p>Transformation de Möbius utilisant le rapport
croisé en prenant l'infini à 0 et z2, z4 à 1 et l'infini respectivement.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PoissonKernel"></a>PoissonKernel</span></dt><dd><pre class="synopsis">PoissonKernel
(r,sigma)</pre><p>Le noyau de Poisson sur D(0,1) (non normalisé à 1, donc son intégrale vaut 2
pi).</p></dd><dt><span class="term"><a
name="gel-function-PoissonKernelRadius"></a>PoissonKernelRadius</span></dt><dd><pre
class="synopsis">PoissonKernelRadius (r,sigma)</pre><p>Le noyau de Poisson sur D(0,R) (non normalisé à
1).</p></dd><dt><span class="term"><a name="gel-function-RiemannZeta"></a>RiemannZeta</span></dt><dd><pre
class="synopsis">RiemannZeta (x)</pre><p>Alias : <code class="function">zeta</code></p><p>Fonction zeta de
Riemann (seules les valeurs réelles sont actuellement implémentées).</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RiemannZetaFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Riemann_zeta_function"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-UnitStep"></a>UnitStep</span></dt><dd><pre
class="synopsis">UnitStep (x)</pre><p>La fonction échelon vaut 0 pour x<0, 1 sinon. C'est l'intégrale de
la fonction delta de Dirac. Elle est aussi appelée fonction d'Heaviside.</p><p>Consultez <a class="ulink"
href="http://fr.wikipedia.org/wiki/Fonction_de_Heaviside" target="_top">Wikipedia</a> pour plus
d'informations.</p></dd><dt><span class="term"><a name="gel-function-cis"></a>cis</span></dt><dd><pre
class="synopsis">cis (x)</pre><p>La fonction <code class="function">cis</code> est la même que <strong
class="userinput"><code>cos(x)+1i*sin(x)</code></strong>.</p></dd><dt><span class="term"><a
name="gel-function-deg2rad"></a>deg2rad</span></dt><dd><pre class="synopsis">deg2rad (x)</pre><p>Convertit
les degrés en radians.</p></dd><dt><span class="term"><a
name="gel-function-rad2deg"></a>rad2deg</span></dt><dd><pre class="synopsis">rad2deg (x)</pre><p>Convertit
les radians en degrés.</p></dd><dt><span class="term"><a
name="gel-function-sinc"></a>sinc</span></dt><dd><pre class="synopsis">sinc (x)</pre><p>Calculates the
unnormalized sinc function, that is
+ <strong class="userinput"><code>sin(x)/x</code></strong>.
+ If you want the normalized function call <strong
class="userinput"><code>sinc(pi*x)</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Sinc" target="_top">Wikipedia</a> for more
information.
+ </p><p>Version 1.0.16 onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s11.html">Précédent</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Niveau supérieur</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s13.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Analyse </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td width="40%" align="right"
valign="top"> Résolution d'équations</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch11s13.html b/help/fr/html/ch11s13.html
new file mode 100644
index 0000000..2242fc6
--- /dev/null
+++ b/help/fr/html/ch11s13.html
@@ -0,0 +1,146 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Résolution
d'équations</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch11.html" title="Chapitre 11. Liste des
fonctions GEL"><link rel="prev" href="ch11s12.html" title="Fonctions"><link rel="next" href="ch11s14.html"
title="Statistiques"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Résolution d'équations</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s12.html">Précédent</a> </td><th width="60%" align="center">Chapitre 11. Liste des fonctions
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s14.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div
<h2 class="title" style="clear: both"><a name="genius-gel-function-list-equation-solving"></a>Résolution
d'équations</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span
class="term"><a name="gel-function-CubicFormula"></a>CubicFormula</span></dt><dd><pre
class="synopsis">CubicFormula (p)</pre><p>Calcule les racines d'un polynôme cubique (de degré 3) en
utilisant la formule cubique. Le polynôme doit être fourni sous la forme d'un vecteur de coefficients. Par
exemple <strong class="userinput"><code>4*x^3 + 2*x + 1</code></strong> correspond au vecteur <strong
class="userinput"><code>[1,2,0,4]</code></strong>. Renvoie un vecteur colonne contenant les trois
solutions. La première solution est toujours celle qui est réelle puisqu'un polynôme cubique possède
toujours une solution réelle.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/CubicFormula" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/CubicFormula.html"
target="_top">Mathworld</a>, or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Cubic_equation" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EulersMethod"></a>EulersMethod</span></dt><dd><pre class="synopsis">EulersMethod
(f,x0,y0,x1,n)</pre><p>
+ Use classical Euler's method to numerically solve y'=f(x,y) for
+ initial <code class="varname">x0</code>, <code class="varname">y0</code> going to
+ <code class="varname">x1</code> with <code class="varname">n</code> increments,
+ returns <code class="varname">y</code> at <code class="varname">x1</code>.
+ Unless you explicitly want to use Euler's method, you should really
+ think about using
+ <a class="link" href="ch11s13.html#gel-function-RungeKutta">RungeKutta</a>
+ for solving ODE.
+ </p><p>Les systèmes peuvent être résolus en ayant uniquement <code class="varname">y</code> sous la
forme d'un vecteur (colonne) partout. C'est-à-dire <code class="varname">y0</code> peut être un vecteur et
dans ce cas <code class="varname">f</code> doit prendre un nombre <code class="varname">x</code> et un
vecteur de la même taille comme deuxième argument et doit renvoyer un vecteur de la même taille.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/EulerForwardMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eulers_method" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EulersMethodFull"></a>EulersMethodFull</span></dt><dd><pre
class="synopsis">EulersMethodFull (f,x0,y0,x1,n)</pre><p>
+ Use classical Euler's method to numerically solve y'=f(x,y) for
+ initial <code class="varname">x0</code>, <code class="varname">y0</code> going to
+ <code class="varname">x1</code> with <code class="varname">n</code> increments,
+ returns a 2 by <strong class="userinput"><code>n+1</code></strong> matrix with the
+ <code class="varname">x</code> and <code class="varname">y</code> values.
+ Unless you explicitly want to use Euler's method, you should really
+ think about using
+ <a class="link" href="ch11s13.html#gel-function-RungeKuttaFull">RungeKuttaFull</a>
+ for solving ODE.
+ Suitable
+ for plugging into
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawPoints">LinePlotDrawPoints</a>.
+ </p><p>
+ Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>line =
EulersMethodFull(`(x,y)=y,0,1.0,3.0,50);</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(line,"window","fit","color","blue","legend","Exponential
growth");</code></strong>
+</pre><p>
+ </p><p>Les systèmes peuvent être résolus en ayant uniquement <code class="varname">y</code> sous la
forme d'un vecteur (colonne) partout. C'est-à-dire <code class="varname">y0</code> peut être un vecteur et
dans ce cas <code class="varname">f</code> doit prendre un nombre <code class="varname">x</code> et un
vecteur de la même taille comme deuxième argument et doit renvoyer un vecteur de la même taille.</p><p>
+ The output for a system is still a n by 2 matrix with the second
+ entry being a vector. If you wish to plot the line, make sure to use row vectors, and then
flatten the matrix with
+ <a class="link" href="ch11s08.html#gel-function-ExpandMatrix">ExpandMatrix</a>,
+ and pick out the right columns. Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
EulersMethodFull(`(x,y)=[y@(2),-y@(1)],0,[1.0,1.0],10.0,500);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
ExpandMatrix(lines);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>firstline =
lines@(,[1,2]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>secondline =
lines@(,[1,3]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>LinePlotWindow =
[0,10,-2,2];</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(firstline,"color","blue","legend","First");</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(secondline,"color","red","thickness",3,"legend","Second");</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/EulerForwardMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eulers_method" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-FindRootBisection"></a>FindRootBisection</span></dt><dd><pre
class="synopsis">FindRootBisection (f,a,b,TOL,N)</pre><p>Find root of a function using the bisection method.
+ <code class="varname">a</code> and <code class="varname">b</code> are the initial guess
interval,
+ <strong class="userinput"><code>f(a)</code></strong> and <strong
class="userinput"><code>f(b)</code></strong> should have opposite signs.
+ <code class="varname">TOL</code> is the desired tolerance and
+<code class="varname">N</code> is the limit on the number of iterations to run, 0 means no limit. The
function returns a vector <strong class="userinput"><code>[success,value,iteration]</code></strong>, where
<code class="varname">success</code> is a boolean indicating success, <code class="varname">value</code> is
the last value computed, and <code class="varname">iteration</code> is the number of iterations
done.</p></dd><dt><span class="term"><a
name="gel-function-FindRootFalsePosition"></a>FindRootFalsePosition</span></dt><dd><pre
class="synopsis">FindRootFalsePosition (f,a,b,TOL,N)</pre><p>Find root of a function using the method of
false position.
+ <code class="varname">a</code> and <code class="varname">b</code> are the initial guess
interval,
+ <strong class="userinput"><code>f(a)</code></strong> and <strong
class="userinput"><code>f(b)</code></strong> should have opposite signs.
+ <code class="varname">TOL</code> is the desired tolerance and
+<code class="varname">N</code> is the limit on the number of iterations to run, 0 means no limit. The
function returns a vector <strong class="userinput"><code>[success,value,iteration]</code></strong>, where
<code class="varname">success</code> is a boolean indicating success, <code class="varname">value</code> is
the last value computed, and <code class="varname">iteration</code> is the number of iterations
done.</p></dd><dt><span class="term"><a
name="gel-function-FindRootMullersMethod"></a>FindRootMullersMethod</span></dt><dd><pre
class="synopsis">FindRootMullersMethod (f,x0,x1,x2,TOL,N)</pre><p>Cherche la racine d'une fonction en
utilisant la méthode de Muller. <code class="varname">TOL</code> est la tolérance permise et <code
class="varname">N</code> est la limite du nombre d'itérations réalisées, 0 signifiant pas de limite. La
fonction renvoie un vecteur <strong class="userinput"><code>[succes,valeur,itération]</code></strong> dans
lequel <code class="varname">
succes</code> est un booléen indiquant la réussite, <code class="varname">valeur</code> est la dernière
valeur calculée et <code class="varname">itération</code> est le nombre d'itérations
réalisées.</p></dd><dt><span class="term"><a
name="gel-function-FindRootSecant"></a>FindRootSecant</span></dt><dd><pre class="synopsis">FindRootSecant
(f,a,b,TOL,N)</pre><p>Find root of a function using the secant method.
+ <code class="varname">a</code> and <code class="varname">b</code> are the initial guess
interval,
+ <strong class="userinput"><code>f(a)</code></strong> and <strong
class="userinput"><code>f(b)</code></strong> should have opposite signs.
+ <code class="varname">TOL</code> is the desired tolerance and
+<code class="varname">N</code> is the limit on the number of iterations to run, 0 means no limit. The
function returns a vector <strong class="userinput"><code>[success,value,iteration]</code></strong>, where
<code class="varname">success</code> is a boolean indicating success, <code class="varname">value</code> is
the last value computed, and <code class="varname">iteration</code> is the number of iterations
done.</p></dd><dt><span class="term"><a
name="gel-function-HalleysMethod"></a>HalleysMethod</span></dt><dd><pre class="synopsis">HalleysMethod
(f,df,ddf,guess,epsilon,maxn)</pre><p>Find zeros using Halley's method. <code class="varname">f</code> is
+ the function, <code class="varname">df</code> is the derivative of
+ <code class="varname">f</code>, and <code class="varname">ddf</code> is the second
derivative of
+ <code class="varname">f</code>. <code class="varname">guess</code> is the initial
+ guess. The function returns after two successive values are
+ within <code class="varname">epsilon</code> of each other, or after <code
class="varname">maxn</code> tries, in which case the function returns <code class="constant">null</code>
indicating failure.
+ </p><p>
+ See also <a class="link" href="ch11s13.html#gel-function-NewtonsMethod"><code
class="function">NewtonsMethod</code></a> and <a class="link"
href="ch11s19.html#gel-function-SymbolicDerivative"><code class="function">SymbolicDerivative</code></a>.
+ </p><p>
+ Example to find the square root of 10:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>HalleysMethod(`(x)=x^2-10,`(x)=2*x,`(x)=2,3,10^-10,100)</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Halley%27s_method"
target="_top">Wikipedia</a> for more information.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NewtonsMethod"></a>NewtonsMethod</span></dt><dd><pre class="synopsis">NewtonsMethod
(f,df,guess,epsilon,maxn)</pre><p>Find zeros using Newton's method. <code class="varname">f</code> is
+ the function and <code class="varname">df</code> is the derivative of
+ <code class="varname">f</code>. <code class="varname">guess</code> is the initial
+ guess. The function returns after two successive values are
+ within <code class="varname">epsilon</code> of each other, or after <code
class="varname">maxn</code> tries, in which case the function returns <code class="constant">null</code>
indicating failure.
+ </p><p>
+ See also <a class="link" href="ch11s15.html#gel-function-NewtonsMethodPoly"><code
class="function">NewtonsMethodPoly</code></a> and <a class="link"
href="ch11s19.html#gel-function-SymbolicDerivative"><code class="function">SymbolicDerivative</code></a>.
+ </p><p>
+ Example to find the square root of 10:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>NewtonsMethod(`(x)=x^2-10,`(x)=2*x,3,10^-10,100)</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Newtons_method" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-PolynomialRoots"></a>PolynomialRoots</span></dt><dd><pre class="synopsis">PolynomialRoots
(p)</pre><p>Calcule les racines d'un polynôme (de degré 1 à 4) en utilisant une des formules adaptée à ce
type de polynôme. Le polynôme doit être fourni sous la forme d'un vecteur de coefficients. Par exemple
<strong class="userinput"><code>4*x^3 + 2*x + 1</code></strong> correspond au vecteur <strong
class="userinput"><code>[1,2,0,4]</code></strong>. Renvoie un vecteur colonne contenant les
solutions.</p><p>La fonction appelle <a class="link"
href="ch11s13.html#gel-function-QuadraticFormula">QuadraticFormula</a>, <a class="link"
href="ch11s13.html#gel-function-CubicFormula">CubicFormula</a> et <a class="link"
href="ch11s13.html#gel-function-QuarticFormula">QuarticFormula</a>.</p></dd><dt><span class="term"><a
name="gel-function-QuadraticFormula"></a>QuadraticFormula</span></dt><dd><pre class=
"synopsis">QuadraticFormula (p)</pre><p>Calcule les racines d'un polynôme quadratique (de degré 2) en
utilisant la formule quadratique. Le polynôme doit être fourni sous la forme d'un vecteur de coefficients.
<strong class="userinput"><code>3*x^2 + 2*x + 1</code></strong> correspond au vecteur <strong
class="userinput"><code>[1,2,3]</code></strong>. Renvoie un vecteur colonne contenant les deux
solutions.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/QuadraticFormula" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/QuadraticFormula.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-QuarticFormula"></a>QuarticFormula</span></dt><dd><pre class="synopsis">QuarticFormula
(p)</pre><p>Calcule les racines d'un polynôme quartique (de degré 4) en utilisant la formule quartique. Le
polynôme doit être fourni sous la forme d'un vecteur de coefficients. <strong class="userinput"><code>5*x^4 +
2*x + 1</code></strong> correspond au vecteur <strong class="userinput"><code>[1,2,0,0,5]</code></strong>.
Renvoie un vecteur colonne contenant les quatre solutions.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/QuarticFormula" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/QuarticEquation.html"
target="_top">Mathworld</a>, or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Quartic_equation" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RungeKutta"></a>RungeKutta</span></dt><dd><pre class="synopsis">RungeKutta
(f,x0,y0,x1,n)</pre><p>Utilise la méthode classique non adaptative de Runge-Kutta du quatrième ordre pour
résoudre numériquement y'=f(x,y) avec les valeurs initiales <code class="varname">x0</code>, <code
class="varname">y0</code> allant vers <code class="varname">x1</code> avec <code class="varname">n</code>
incréments, renvoie <code class="varname">y</code> en <code class="varname">x1</code>.</p><p>Les systèmes
peuvent être résolus en ayant uniquement <code class="varname">y</code> sous la forme d'un vecteur (colonne)
partout. C'est-à-dire <code class="varname">y0</code> peut être un vecteur et dans ce cas <code
class="varname">f</code> doit prendre un nombre <code class="varname">x</code> et un vecteur de la même
taille comme deuxième argument et doit renvoyer un vecteur de la même taille.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/Runge-KuttaMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Runge-Kutta_methods"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RungeKuttaFull"></a>RungeKuttaFull</span></dt><dd><pre class="synopsis">RungeKuttaFull
(f,x0,y0,x1,n)</pre><p>
+ Use classical non-adaptive fourth order Runge-Kutta method to
+ numerically solve
+ y'=f(x,y) for initial <code class="varname">x0</code>, <code class="varname">y0</code>
+ going to <code class="varname">x1</code> with <code class="varname">n</code>
+ increments,
+ returns a 2 by <strong class="userinput"><code>n+1</code></strong> matrix with the
+ <code class="varname">x</code> and <code class="varname">y</code> values. Suitable
+ for plugging into
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawPoints">LinePlotDrawPoints</a>.
+ </p><p>
+ Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>line =
RungeKuttaFull(`(x,y)=y,0,1.0,3.0,50);</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(line,"window","fit","color","blue","legend","Exponential
growth");</code></strong>
+</pre><p>
+ </p><p>Les systèmes peuvent être résolus en ayant uniquement <code class="varname">y</code> sous la
forme d'un vecteur (colonne) partout. C'est-à-dire <code class="varname">y0</code> peut être un vecteur et
dans ce cas <code class="varname">f</code> doit prendre un nombre <code class="varname">x</code> et un
vecteur de la même taille comme deuxième argument et doit renvoyer un vecteur de la même taille.</p><p>
+ The output for a system is still a n by 2 matrix with the second
+ entry being a vector. If you wish to plot the line, make sure to use row vectors, and then
flatten the matrix with
+ <a class="link" href="ch11s08.html#gel-function-ExpandMatrix">ExpandMatrix</a>,
+ and pick out the right columns. Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
RungeKuttaFull(`(x,y)=[y@(2),-y@(1)],0,[1.0,1.0],10.0,100);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
ExpandMatrix(lines);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>firstline =
lines@(,[1,2]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>secondline =
lines@(,[1,3]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>LinePlotWindow =
[0,10,-2,2];</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(firstline,"color","blue","legend","First");</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(secondline,"color","red","thickness",3,"legend","Second");</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/Runge-KuttaMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Runge-Kutta_methods"
target="_top">Wikipedia</a> for more information.
+ </p><p>Version 1.0.10 onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s12.html">Précédent</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Niveau supérieur</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s14.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Fonctions </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td width="40%" align="right"
valign="top"> Statistiques</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch11s14.html b/help/fr/html/ch11s14.html
new file mode 100644
index 0000000..33d53b3
--- /dev/null
+++ b/help/fr/html/ch11s14.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Statistiques</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manuel de Genius"><link rel="up" href="ch11.html"
title="Chapitre 11. Liste des fonctions GEL"><link rel="prev" href="ch11s13.html" title="Résolution
d'équations"><link rel="next" href="ch11s15.html" title="Polynômes"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Statistiques</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s13.html">Précédent</a> </td><th width="60%" align="center">Chapitre 11. Liste des
fonctions GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s15.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class=
"title" style="clear: both"><a
name="genius-gel-function-list-statistics"></a>Statistiques</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Average"></a>Average</span></dt><dd><pre class="synopsis">Average (m)</pre><p>Alias :
<code class="function">average</code><code class="function">Mean</code><code
class="function">mean</code></p><p>Calcule la moyenne de toute une matrice.</p><p>Consultez <a class="ulink"
href="http://mathworld.wolfram.com/ArithmeticMean.html" target="_top">Mathworld</a> pour plus
d'informations.</p></dd><dt><span class="term"><a
name="gel-function-GaussDistribution"></a>GaussDistribution</span></dt><dd><pre
class="synopsis">GaussDistribution (x,sigma)</pre><p>Intégrale de la fonction de Gauss de 0 à <code
class="varname">x</code> (aire sous la courbe normale).</p><p>Consultez <a class="ulink"
href="http://mathworld.wolfram.com/NormalDistribution.html" target="_top">Mathworld</a> pour
plus d'informations.</p></dd><dt><span class="term"><a
name="gel-function-GaussFunction"></a>GaussFunction</span></dt><dd><pre class="synopsis">GaussFunction
(x,sigma)</pre><p>Fonction distribution de Gauss normalisée (courbe normale).</p><p>Consultez <a
class="ulink" href="http://mathworld.wolfram.com/NormalDistribution.html" target="_top">Mathworld</a> pour
plus d'informations.</p></dd><dt><span class="term"><a
name="gel-function-Median"></a>Median</span></dt><dd><pre class="synopsis">Median (m)</pre><p>Alias : <code
class="function">median</code></p><p>Calcule la médiane de toute une matrice.</p><p>Consultez <a
class="ulink" href="http://mathworld.wolfram.com/StatisticalMedian.html" target="_top">Mathworld</a> pour
plus d'informations.</p></dd><dt><span class="term"><a
name="gel-function-PopulationStandardDeviation"></a>PopulationStandardDeviation</span></dt><dd><pre
class="synopsis">PopulationStandardDeviation (m)</pre><p>Alias : <code class="function">stdevp</code>
</p><p>Calcule l'écart type de la population de toute une matrice.</p></dd><dt><span class="term"><a
name="gel-function-RowAverage"></a>RowAverage</span></dt><dd><pre class="synopsis">RowAverage
(m)</pre><p>Alias : <code class="function">RowMean</code></p><p>Calcule la moyenne de chaque ligne d'une
matrice.</p><p>Consultez <a class="ulink" href="http://mathworld.wolfram.com/ArithmeticMean.html"
target="_top">Mathworld</a> pour plus d'informations.</p></dd><dt><span class="term"><a
name="gel-function-RowMedian"></a>RowMedian</span></dt><dd><pre class="synopsis">RowMedian
(m)</pre><p>Calcule la médiane de chaque ligne d'une matrice et renvoie un vecteur colonne.</p><p>Consultez
<a class="ulink" href="http://mathworld.wolfram.com/StatisticalMedian.html" target="_top">Mathworld</a> pour
plus d'informations.</p></dd><dt><span class="term"><a
name="gel-function-RowPopulationStandardDeviation"></a>RowPopulationStandardDeviation</span></dt><dd><pre
class="synopsis">RowPopulationS
tandardDeviation (m)</pre><p>Alias : <code class="function">rowstdevp</code></p><p>Calcule l'écart type de
la population des lignes d'une matrice et renvoie un vecteur colonne.</p></dd><dt><span class="term"><a
name="gel-function-RowStandardDeviation"></a>RowStandardDeviation</span></dt><dd><pre
class="synopsis">RowStandardDeviation (m)</pre><p>Alias : <code
class="function">rowstdev</code></p><p>Calcule l'écart type des lignes d'une matrice et renvoie un vecteur
colonne.</p></dd><dt><span class="term"><a
name="gel-function-StandardDeviation"></a>StandardDeviation</span></dt><dd><pre
class="synopsis">StandardDeviation (m)</pre><p>Alias : <code class="function">stdev</code></p><p>Calcule
l'écart type de toute une matrice.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s13.html">Précédent</a> </td><td width="20%" align="center"><a accesskey="u" href="ch11.h
tml">Niveau supérieur</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s15.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Résolution d'équations
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td width="40%"
align="right" valign="top"> Polynômes</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch11s15.html b/help/fr/html/ch11s15.html
new file mode 100644
index 0000000..e213162
--- /dev/null
+++ b/help/fr/html/ch11s15.html
@@ -0,0 +1,17 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Polynômes</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manuel
de Genius"><link rel="up" href="ch11.html" title="Chapitre 11. Liste des fonctions GEL"><link rel="prev"
href="ch11s14.html" title="Statistiques"><link rel="next" href="ch11s16.html" title="Théorie des
ensembles"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Polynômes</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s14.html">Précédent</a> </td><th width="60%" align="center">Chapitre 11. Liste des fonctions
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s16.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="tit
le" style="clear: both"><a
name="genius-gel-function-list-polynomials"></a>Polynômes</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a name="gel-function-AddPoly"></a>AddPoly</span></dt><dd><pre
class="synopsis">AddPoly (p1,p2)</pre><p>Ajoute deux polynômes (vecteurs).</p></dd><dt><span class="term"><a
name="gel-function-DividePoly"></a>DividePoly</span></dt><dd><pre class="synopsis">DividePoly
(p,q,&r)</pre><p>Divise deux polynômes (en tant que vecteurs) en utilisant la division longue. Renvoie le
quotient des deux polynômes. L'argument optionnel <code class="varname">r</code> est utilisé pour renvoyer le
reste. Le reste a un degré plus bas que <code class="varname">q</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PolynomialLongDivision" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-IsPoly"></a>IsPoly</span></dt><dd><pre
class="synopsis">IsPoly (p)</pre><p>Vérifie qu'un vecteur est utilisable en tant que
polynôme.</p></dd><dt><span class="term"><a
name="gel-function-MultiplyPoly"></a>MultiplyPoly</span></dt><dd><pre class="synopsis">MultiplyPoly
(p1,p2)</pre><p>Multiplie deux polynômes (comme vecteurs).</p></dd><dt><span class="term"><a
name="gel-function-NewtonsMethodPoly"></a>NewtonsMethodPoly</span></dt><dd><pre
class="synopsis">NewtonsMethodPoly (poly,valeurinitiale,epsilon,maxn)</pre><p>Find a root of a polynomial
using Newton's method. <code class="varname">poly</code> is
+ the polynomial as a vector and <code class="varname">guess</code> is the initial
+ guess. The function returns after two successive values are
+ within <code class="varname">epsilon</code> of each other, or after <code
class="varname">maxn</code> tries, in which case the function returns <code class="constant">null</code>
indicating failure.
+ </p><p>
+ See also <a class="link" href="ch11s13.html#gel-function-NewtonsMethod"><code
class="function">NewtonsMethod</code></a>.
+ </p><p>
+ Example to find the square root of 10:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>NewtonsMethodPoly([-10,0,1],3,10^-10,100)</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Newtons_method" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Poly2ndDerivative"></a>Poly2ndDerivative</span></dt><dd><pre
class="synopsis">Poly2ndDerivative (p)</pre><p>Renvoie la dérivée seconde du polynôme (comme
vecteur).</p></dd><dt><span class="term"><a
name="gel-function-PolyDerivative"></a>PolyDerivative</span></dt><dd><pre class="synopsis">PolyDerivative
(p)</pre><p>Prend la dérivée du polynôme (comme vecteur).</p></dd><dt><span class="term"><a
name="gel-function-PolyToFunction"></a>PolyToFunction</span></dt><dd><pre class="synopsis">PolyToFunction
(p)</pre><p>Fabrique une fonction à partir d'un polynôme (comme vecteur).</p></dd><dt><span class="term"><a
name="gel-function-PolyToString"></a>PolyToString</span></dt><dd><pre class="synopsis">PolyToString
(p,var...)</pre><p>Fabrique une chaîne à partir d'un polynôme (comme vecteur).</p></dd><dt><span
class="term"><a name="gel-function-SubtractPoly"></a>SubtractPoly</span></dt><dd><pre
class="synopsis">SubtractPol
y (p1,p2)</pre><p>Soustrait deux polynômes (comme vecteur).</p></dd><dt><span class="term"><a
name="gel-function-TrimPoly"></a>TrimPoly</span></dt><dd><pre class="synopsis">TrimPoly (p)</pre><p>Tronque
les zéros d'un polynôme (défini comme vecteur).</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s14.html">Précédent</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Niveau supérieur</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s16.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Statistiques </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td width="40%" align="right"
valign="top"> Théorie des ensembles</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch11s16.html b/help/fr/html/ch11s16.html
new file mode 100644
index 0000000..ddd641c
--- /dev/null
+++ b/help/fr/html/ch11s16.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Théorie des
ensembles</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch11.html" title="Chapitre 11. Liste des
fonctions GEL"><link rel="prev" href="ch11s15.html" title="Polynômes"><link rel="next" href="ch11s17.html"
title="Commutative Algebra"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Théorie des ensembles</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s15.html">Précédent</a> </td><th width="60%" align="center">Chapitre 11. Liste des fonctions
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s17.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div>
<div><h2 class="title" style="clear: both"><a name="genius-gel-function-list-set-theory"></a>Théorie des
ensembles</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Intersection"></a>Intersection</span></dt><dd><pre class="synopsis">Intersection
(X,Y)</pre><p>Renvoie l'intersection, selon la théorie des ensembles, de X et Y (X et Y sont des vecteurs
supposés être des ensembles).</p></dd><dt><span class="term"><a
name="gel-function-IsIn"></a>IsIn</span></dt><dd><pre class="synopsis">IsIn (x,X)</pre><p>Renvoie <code
class="constant">true</code> (vrai) si l'élément x fait partie de l'ensemble X (où X est un vecteur supposé
être un ensemble).</p></dd><dt><span class="term"><a
name="gel-function-IsSubset"></a>IsSubset</span></dt><dd><pre class="synopsis">IsSubset (X,
Y)</pre><p>Renvoie <code class="constant">true</code> (vrai) si X est un sous-ensemble de Y (X et Y sont des
vecteurs supposés être des e
nsembles).</p></dd><dt><span class="term"><a name="gel-function-MakeSet"></a>MakeSet</span></dt><dd><pre
class="synopsis">MakeSet (X)</pre><p>Renvoie un vecteur où chaque élément de X n'apparaît qu'une seule
fois.</p></dd><dt><span class="term"><a name="gel-function-SetMinus"></a>SetMinus</span></dt><dd><pre
class="synopsis">SetMinus (X,Y)</pre><p>Renvoie la différence X-Y selon la théorie des ensembles (X et Y sont
des vecteurs supposés être des ensembles).</p></dd><dt><span class="term"><a
name="gel-function-Union"></a>Union</span></dt><dd><pre class="synopsis">Union (X,Y)</pre><p>Renvoie l'union,
selon la théorie des ensembles, de X et Y (X et Y sont des vecteurs supposés être des
ensembles).</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s15.html">Précédent</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Niveau supérieu
r</a></td><td width="40%" align="right"> <a accesskey="n" href="ch11s17.html">Suivant</a></td></tr><tr><td
width="40%" align="left" valign="top">Polynômes </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Commutative
Algebra</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch11s17.html b/help/fr/html/ch11s17.html
new file mode 100644
index 0000000..81fba47
--- /dev/null
+++ b/help/fr/html/ch11s17.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Commutative
Algebra</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch11.html" title="Chapitre 11. Liste des
fonctions GEL"><link rel="prev" href="ch11s16.html" title="Théorie des ensembles"><link rel="next"
href="ch11s18.html" title="Divers"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Commutative Algebra</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s16.html">Précédent</a> </td><th width="60%" align="center">Chapitre 11. Liste des fonctions
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s18.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h
2 class="title" style="clear: both"><a name="genius-gel-function-list-commutative-algebra"></a>Commutative
Algebra</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-MacaulayBound"></a>MacaulayBound</span></dt><dd><pre class="synopsis">MacaulayBound
(c,d)</pre><p>For a Hilbert function that is c for degree d, given the Macaulay bound for the Hilbert
function of degree d+1 (The c^<d> operator from Green's proof).</p><p>Version 1.0.15
onwards.</p></dd><dt><span class="term"><a
name="gel-function-MacaulayLowerOperator"></a>MacaulayLowerOperator</span></dt><dd><pre
class="synopsis">MacaulayLowerOperator (c,d)</pre><p>The c_<d> operator from Green's proof of
Macaulay's Theorem.</p><p>Version 1.0.15 onwards.</p></dd><dt><span class="term"><a
name="gel-function-MacaulayRep"></a>MacaulayRep</span></dt><dd><pre class="synopsis">MacaulayRep
(c,d)</pre><p>Return the dth Macaulay representation of a positive
integer c.</p><p>Version 1.0.15 onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s16.html">Précédent</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Niveau supérieur</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s18.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Théorie des ensembles
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td width="40%"
align="right" valign="top"> Divers</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch11s18.html b/help/fr/html/ch11s18.html
new file mode 100644
index 0000000..124f411
--- /dev/null
+++ b/help/fr/html/ch11s18.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Divers</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manuel
de Genius"><link rel="up" href="ch11.html" title="Chapitre 11. Liste des fonctions GEL"><link rel="prev"
href="ch11s17.html" title="Commutative Algebra"><link rel="next" href="ch11s19.html" title="Calcul
symbolique"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Divers</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s17.html">Précédent</a> </td><th width="60%" align="center">Chapitre 11. Liste des fonctions
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s19.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" st
yle="clear: both"><a name="genius-gel-function-list-miscellaneous"></a>Divers</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ASCIIToString"></a>ASCIIToString</span></dt><dd><pre class="synopsis">ASCIIToString
(vec)</pre><p>Convertit un vecteur de valeurs ASCII en chaîne.</p></dd><dt><span class="term"><a
name="gel-function-AlphabetToString"></a>AlphabetToString</span></dt><dd><pre
class="synopsis">AlphabetToString (vec,alphabet)</pre><p>Convertit un vecteur d'indices en chaîne de
caractères. Les indices correspondent à la position dans la chaîne <code class="literal">alphabet</code>, en
commençant à zéro.</p></dd><dt><span class="term"><a
name="gel-function-StringToASCII"></a>StringToASCII</span></dt><dd><pre class="synopsis">StringToASCII
(chaîne)</pre><p>Convertit une chaîne en vecteur de valeurs ASCII.</p></dd><dt><span class="term"><a
name="gel-function-StringToAlphabet"></a>StringToAlphabet
</span></dt><dd><pre class="synopsis">StringToAlphabet (chaîne,alphabet)</pre><p>Convertit une <code
class="literal">chaîne</code> de caractères en un vecteur d'indices correspondant à la position dans la
chaîne <code class="literal">alphabet</code> (en commençant à zéro). Lorsque le caractère n'est pas dans
l'<code class="literal">alphabet</code>, l'indice est -1.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s17.html">Précédent</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Niveau supérieur</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s19.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Commutative Algebra
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td width="40%"
align="right" valign="top"> Calcul symbolique</td></tr></table></di
v></body></html>
diff --git a/help/fr/html/ch11s19.html b/help/fr/html/ch11s19.html
new file mode 100644
index 0000000..e86444d
--- /dev/null
+++ b/help/fr/html/ch11s19.html
@@ -0,0 +1,19 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Calcul
symbolique</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch11.html" title="Chapitre 11. Liste des
fonctions GEL"><link rel="prev" href="ch11s18.html" title="Divers"><link rel="next" href="ch11s20.html"
title="Tracé de graphiques"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Calcul symbolique</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s18.html">Précédent</a> </td><th width="60%" align="center">Chapitre 11. Liste des fonctions
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s20.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 clas
s="title" style="clear: both"><a name="genius-gel-function-list-symbolic"></a>Calcul
symbolique</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-SymbolicDerivative"></a>SymbolicDerivative</span></dt><dd><pre
class="synopsis">SymbolicDerivative (f)</pre><p>Essaie de dériver symboliquement la fonction f, où f est une
fonction à une variable.</p><p>Exemples : </p><pre class="screen"><code class="prompt">genius></code>
<strong class="userinput"><code>SymbolicDerivative(sin)</code></strong>
+= (`(x)=cos(x))
+<code class="prompt">genius></code> <strong
class="userinput"><code>SymbolicDerivative(`(x)=7*x^2)</code></strong>
+= (`(x)=(7*(2*x)))
+</pre><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicDerivativeTry"></a>SymbolicDerivativeTry</span></dt><dd><pre
class="synopsis">SymbolicDerivativeTry (f)</pre><p>Essaie de dériver symboliquement la fonction f, où f est
une fonction à une variable, renvoie <code class="constant">null</code> en cas d'échec mais reste silencieux
(consultez <a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>).</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicNthDerivative"></a>SymbolicNthDerivative</span></dt><dd><pre
class="synopsis">SymbolicNthDerivative (f,n)</pre><p>Essaie de dériver symboliquement une fonction n fois
(consultez <a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>).</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicNthDerivativeTry"></a>SymbolicNthDerivativeTry</span></dt><dd><pre
class="synopsis">SymbolicNthDerivativeTry (f,n)</pre><p>Essaie de dériver symboliquement une fonction n fois
silencieusement et renvoie <code class="constant">null</code> en cas d'échec (consultez <a class="link"
href="ch11s19.html#gel-function-SymbolicNthDerivative"><code
class="function">SymbolicNthDerivative</code></a>).</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicTaylorApproximationFunction"></a>SymbolicTaylorApproximationFunction</span></dt><dd><pre
class="synopsis">SymbolicTaylorApproximationFunction (f,x0,n)</pre><p>Attempt to construct the Taylor
approximation function around x0 to the nth degree.
+ (See <a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s18.html">Précédent</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Niveau supérieur</a></td><td width="40%"
align="right"> <a accesskey="n" href="ch11s20.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Divers </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Tracé de
graphiques</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch11s20.html b/help/fr/html/ch11s20.html
new file mode 100644
index 0000000..2cd34e4
--- /dev/null
+++ b/help/fr/html/ch11s20.html
@@ -0,0 +1,349 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Tracé de
graphiques</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="ch11.html" title="Chapitre 11. Liste des
fonctions GEL"><link rel="prev" href="ch11s19.html" title="Calcul symbolique"><link rel="next"
href="ch12.html" title="Chapitre 12. Exemple de programmes en GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Tracé de graphiques</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s19.html">Précédent</a> </td><th width="60%" align="center">Chapitre 11. Liste des
fonctions GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch12.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div cl
ass="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-plotting"></a>Tracé de graphiques</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ExportPlot"></a>ExportPlot</span></dt><dd><pre class="synopsis">ExportPlot
(file,type)</pre><pre class="synopsis">ExportPlot (file)</pre><p>
+ Export the contents of the plotting window to a file.
+ The type is a string that specifies the file type to
+ use, "png", "eps", or "ps". If the type is not
+ specified, then it is taken to be the extension, in
+ which case the extension must be ".png", ".eps", or ".ps".
+ </p><p>
+ Note that files are overwritten without asking.
+ </p><p>
+ On successful export, true is returned. Otherwise
+ error is printed and exception is raised.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>ExportPlot("file.png")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>ExportPlot("/directory/file","eps")</code></strong>
+</pre><p>
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LinePlot"></a>LinePlot</span></dt><dd><pre class="synopsis">LinePlot
(fonc1,fonc2,fonc3,...)</pre><pre class="synopsis">LinePlot (func1,func2,func3,x1,x2)</pre><pre
class="synopsis">LinePlot (fonc1,fonc2,fonc3,x1,x2,y1,y2)</pre><pre class="synopsis">LinePlot
(func1,func2,func3,[x1,x2])</pre><pre class="synopsis">LinePlot (func1,func2,func3,[x1,x2,y1,y2])</pre><p>
+ Plot a function (or several functions) with a line.
+ First (up to 10) arguments are functions, then optionally
+ you can specify the limits of the plotting window as
+ <code class="varname">x1</code>, <code class="varname">x2</code>,
+ <code class="varname">y1</code>, <code class="varname">y2</code>. If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>)
+ If the y limits are not specified, then the functions are computed and then the maxima and minima
+ are used.
+ </p><p>Le paramètre <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a> conditionne l'affichage de la légende.</p><p>Exemples :
</p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlot(sin,cos)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlot(`(x)=x^2,-1,1,0,1)</code></strong>
+</pre></dd><dt><span class="term"><a name="gel-function-LinePlotClear"></a>LinePlotClear</span></dt><dd><pre
class="synopsis">LinePlotClear ()</pre><p>Affiche la fenêtre d'affichage du tracé et efface les courbes déjà
tracées.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotCParametric"></a>LinePlotCParametric</span></dt><dd><pre
class="synopsis">LinePlotCParametric (fonc,...)</pre><pre class="synopsis">LinePlotCParametric
(fonc,t1,t2,tinc)</pre><pre class="synopsis">LinePlotCParametric (fonc,t1,t2,tinc,x1,x2,y1,y2)</pre><p>Trace
la courbe d'une fonction paramétrique à valeurs complexes. En premier vient la fonction qui renvoie <code
class="computeroutput">x+iy</code> puis, en option, les limites de <code class="varname">t</code> sous la
forme <strong class="userinput"><code>t1,t2,tinc</code></strong> puis, en option, les limites de la fenêtre
de tracé sous la forme <strong class="userinput"><code>x1,x2,y1,y2</code></strong>.</p><p>
+ If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).
+ If instead the string "fit" is given for the x and y limits, then the limits are the maximum
extent of
+ the graph
+ </p><p>Le paramètre <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a> conditionne l'affichage de la légende.</p></dd><dt><span
class="term"><a name="gel-function-LinePlotDrawLine"></a>LinePlotDrawLine</span></dt><dd><pre
class="synopsis">LinePlotDrawLine (x1,y1,x2,y2,...)</pre><pre class="synopsis">LinePlotDrawLine
(v,...)</pre><p>
+ Draw a line from <code class="varname">x1</code>,<code class="varname">y1</code> to
+ <code class="varname">x2</code>,<code class="varname">y2</code>.
+ <code class="varname">x1</code>,<code class="varname">y1</code>,
+ <code class="varname">x2</code>,<code class="varname">y2</code> can be replaced by an
+ <code class="varname">n</code> by 2 matrix for a longer polyline.
+ Alternatively the vector <code class="varname">v</code> may be a column vector of complex numbers,
+ that is an <code class="varname">n</code> by 1 matrix and each complex number is then
+ considered a point in the plane.
+ </p><p>
+ Extra parameters can be added to specify line color, thickness,
+ arrows, the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ <strong class="userinput"><code>"arrow"</code></strong>, or <strong
class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 4-vector, type of arrow, or the legend. (Arrow and window are from version 1.0.6 onwards.)
+ </p><p>
+ If the line is to be treated as a filled polygon, filled with the given color, you
+ can specify the argument <strong class="userinput"><code>"filled"</code></strong>. Since version
1.0.22 onwards.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally, since version 1.0.18, the color
+ can also be specified as a real vector specifying the red green and
+ blue components where the components are between 0 and 1, e.g. <strong
class="userinput"><code>[1.0,0.5,0.1]</code></strong>.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>
+ Arrow specification should be
+ <strong class="userinput"><code>"origin"</code></strong>,
+ <strong class="userinput"><code>"end"</code></strong>,
+ <strong class="userinput"><code>"both"</code></strong>, or
+ <strong class="userinput"><code>"none"</code></strong>.
+ </p><p>
+ Finally, legend should be a string that can be used as the legend in the
+ graph. That is, if legends are being printed.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(0,0,1,1,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;1,-1;-1,-1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;1,1],"arrow","end")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(RungeKuttaFull(`(x,y)=y,0,3,100),"color","blue","legend","The
Solution")</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>for r=0.0 to 1.0 by 0.1 do
LinePlotDrawLine([0,0;1,r],"color",[r,(1-r),0.5],"window",[0,1,0,1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;10,0;10,10;0,10],"filled","color","green")</code></strong>
+</pre><p>
+ </p><p>
+ Unlike many other functions that do not care if they take a
+ column or a row vector, if specifying points as a vector of
+ complex values, due to possible ambiguities, it must always
+ be given as a column vector.
+ </p><p>
+ Specifying <code class="varname">v</code> as a column vector of complex numbers is
+ implemented from version 1.0.22 and onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawPoints"></a>LinePlotDrawPoints</span></dt><dd><pre
class="synopsis">LinePlotDrawPoints (x,y,...)</pre><pre class="synopsis">LinePlotDrawPoints (v,...)</pre><p>
+ Draw a point at <code class="varname">x</code>,<code class="varname">y</code>.
+ The input can be an <code class="varname">n</code> by 2 matrix
+ for <code class="varname">n</code> different points. This function has essentially the same
+ input as <a class="link"
href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a>.
+ Alternatively the vector <code class="varname">v</code> may be a column vector of complex
numbers,
+ that is an <code class="varname">n</code> by 1 matrix and each complex number is then
+ considered a point in the plane.
+ </p><p>
+ Extra parameters can be added to specify color, thickness,
+ the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ or <strong class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 4-vector, or the legend.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally the color can also be specified as a real vector specifying the
red green
+ and blue components where the components are between 0 and 1.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>
+ Finally, legend should be a string that can be used as the legend in the
+ graph. That is, if legends are being printed.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(0,0,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints([0,0;1,-1;-1,-1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(RungeKuttaFull(`(x,y)=y,0,3,100),"color","blue","legend","The
Solution")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints([1;1+1i;1i;0],"thickness",5)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(ApplyOverMatrix((0:6)',`(k)=exp(k*2*pi*1i/7)),"thickness",3,"legend","The
7th roots of unity")</code></strong>
+</pre><p>
+ </p><p>
+ Unlike many other functions that do not care if they take a
+ column or a row vector, if specifying points as a vector of
+ complex values, due to possible ambiguities, it must always
+ be given as a column vector. Therefore, notice in the
+ last example the transpose of the vector <strong class="userinput"><code>0:6</code></strong>
+ to make it into a column vector.
+ </p><p>
+ Available from version 1.0.18 onwards. Specifying
+ <code class="varname">v</code> as a column vector of complex numbers is
+ implemented from version 1.0.22 and onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotMouseLocation"></a>LinePlotMouseLocation</span></dt><dd><pre
class="synopsis">LinePlotMouseLocation ()</pre><p>
+ Returns a row vector of a point on the line plot corresponding to
+ the current mouse location. If the line plot is not visible,
+ then prints an error and returns <code class="constant">null</code>.
+ In this case you should run
+ <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotClear"><code
class="function">LinePlotClear</code></a>
+ to put the graphing window into the line plot mode.
+ See also
+ <a class="link" href="ch11s20.html#gel-function-LinePlotWaitForClick"><code
class="function">LinePlotWaitForClick</code></a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotParametric"></a>LinePlotParametric</span></dt><dd><pre
class="synopsis">LinePlotParametric (xfonc,yfonc,...)</pre><pre class="synopsis">LinePlotParametric
(xfonc,yfonc,t1,t2,tinc)</pre><pre class="synopsis">LinePlotParametric
(xfonc,yfonc,t1,t2,tinc,x1,x2,y1,y2)</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc,[x1,x2,y1,y2])</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc,"fit")</pre><p>Trace la courbe d'une fonction paramétrique. En premier viennent les
fonctions de <code class="varname">x</code> et <code class="varname">y</code> puis, en option, les limites de
<code class="varname">t</code> sous la forme <strong class="userinput"><code>t1,t2,tinc</code></strong> puis,
en option, les limites de la fenêtre de tracé sous la forme <strong
class="userinput"><code>x1,x2,y1,y2</code></strong>.</p><p>
+ If x and y limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).
+ If instead the string "fit" is given for the x and y limits, then the limits are the maximum
extent of
+ the graph
+ </p><p>Le paramètre <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a> conditionne l'affichage de la légende.</p></dd><dt><span
class="term"><a name="gel-function-LinePlotWaitForClick"></a>LinePlotWaitForClick</span></dt><dd><pre
class="synopsis">LinePlotWaitForClick ()</pre><p>
+ If in line plot mode, waits for a click on the line plot window
+ and returns the location of the click as a row vector.
+ If the window is closed
+ the function returns immediately with <code class="constant">null</code>.
+ If the window is not in line plot mode, it is put in it and shown
+ if not shown.
+ See also
+ <a class="link" href="ch11s20.html#gel-function-LinePlotMouseLocation"><code
class="function">LinePlotMouseLocation</code></a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-PlotCanvasFreeze"></a>PlotCanvasFreeze</span></dt><dd><pre
class="synopsis">PlotCanvasFreeze ()</pre><p>
+ Freeze drawing of the canvas plot temporarily. Useful if you need to draw a bunch of
elements
+ and want to delay drawing everything to avoid flicker in an animation. After everything
+ has been drawn you should call <a class="link"
href="ch11s20.html#gel-function-PlotCanvasThaw"><code class="function">PlotCanvasThaw</code></a>.
+ </p><p>
+ The canvas is always thawed after end of any execution, so it will never remain frozen.
The moment
+ a new command line is shown for example the plot canvas is thawed automatically. Also note
that
+ calls to freeze and thaw may be safely nested.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-PlotCanvasThaw"></a>PlotCanvasThaw</span></dt><dd><pre class="synopsis">PlotCanvasThaw
()</pre><p>
+ Thaw the plot canvas frozen by
+ <a class="link" href="ch11s20.html#gel-function-PlotCanvasFreeze"><code
class="function">PlotCanvasFreeze</code></a>
+ and redraw the canvas immediately. The canvas is also always thawed after end of execution
+ of any program.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-PlotWindowPresent"></a>PlotWindowPresent</span></dt><dd><pre
class="synopsis">PlotWindowPresent ()</pre><p>
+ Show and raise the plot window, creating it if necessary.
+ Normally the window is created when one of the plotting
+ functions is called, but it is not always raised if it
+ happens to be below other windows. So this function is
+ good to call in scripts where the plot window might have
+ been created before, and by now is hidden behind the
+ console or other windows.
+ </p><p>Version 1.0.19 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SlopefieldClearSolutions"></a>SlopefieldClearSolutions</span></dt><dd><pre
class="synopsis">SlopefieldClearSolutions ()</pre><p>Efface les solutions tracées par la fonction <a
class="link" href="ch11s20.html#gel-function-SlopefieldDrawSolution"><code
class="function">SlopefieldDrawSolution</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SlopefieldDrawSolution"></a>SlopefieldDrawSolution</span></dt><dd><pre
class="synopsis">SlopefieldDrawSolution (x, y, dx)</pre><p>Lorsqu'un tracé de champ de directions est actif,
dessine une solution avec les conditions initiales spécifiées. La méthode standard de Runge-Kutta est
utilisée avec l'incrément <code class="varname">dx</code>. Les solutions restent affichées sur le graphe
jusqu'à ce qu'un tracé différent soit affiché ou jusqu'à ce que vous appeliez la fonction <a class="link"
href="ch11s20.html#gel-function-S
lopefieldClearSolutions"><code class="function">SlopefieldClearSolutions</code></a>. Vous pouvez aussi
utiliser l'interface graphique pour tracer des solutions et indiquer des conditions initiales spécifiques
avec la souris.</p></dd><dt><span class="term"><a
name="gel-function-SlopefieldPlot"></a>SlopefieldPlot</span></dt><dd><pre class="synopsis">SlopefieldPlot
(fonc)</pre><pre class="synopsis">SlopefieldPlot (fonc,x1,x2,y1,y2)</pre><p>Trace un champ de directions. La
fonction <code class="varname">fonc</code> doit accepter deux nombres réels <code class="varname">x</code> et
<code class="varname">y</code> ou seulement un nombre complexe. En option, vous pouvez indiquer les limites
de la fenêtre de tracé comme <code class="varname">x1</code>, <code class="varname">x2</code>, <code
class="varname">y1</code>, <code class="varname">y2</code>. Si les limites ne sont pas indiquées alors les
limites actuellement utilisées s'appliquent (consultez <a class="link" href="ch11s0
3.html#gel-function-LinePlotWindow"><code class="function">LinePlotWindow</code></a>).</p><p>Le paramètre <a
class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a> conditionne l'affichage de la légende.</p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SlopefieldPlot(`(x,y)=sin(x-y),-5,5,-5,5)</code></strong>
+</pre><p>
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlot"></a>SurfacePlot</span></dt><dd><pre class="synopsis">SurfacePlot
(fonc)</pre><pre class="synopsis">SurfacePlot (fonc,x1,x2,y1,y2,z1,z2)</pre><pre class="synopsis">SurfacePlot
(func,x1,x2,y1,y2)</pre><pre class="synopsis">SurfacePlot (func,[x1,x2,y1,y2,z1,z2])</pre><pre
class="synopsis">SurfacePlot (func,[x1,x2,y1,y2])</pre><p>
+ Plot a surface function that takes either two arguments or a complex number. First comes the
function then optionally limits as <code class="varname">x1</code>, <code class="varname">x2</code>,
+ <code class="varname">y1</code>, <code class="varname">y2</code>,
+ <code class="varname">z1</code>, <code class="varname">z2</code>. If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-SurfacePlotWindow"><code
class="function">SurfacePlotWindow</code></a>).
+ Genius can only plot a single surface function at this time.
+ </p><p>
+ If the z limits are not specified then the maxima and minima of the function are used.
+ </p><p>Exemples : </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(|sin|,-1,1,-1,1,0,1.5)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(`(x,y)=x^2+y,-1,1,-1,1,-2,2)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(`(z)=|z|^2,-1,1,-1,1,0,2)</code></strong>
+</pre></dd><dt><span class="term"><a
name="gel-function-SurfacePlotClear"></a>SurfacePlotClear</span></dt><dd><pre
class="synopsis">SurfacePlotClear ()</pre><p>
+ Show the surface plot window and clear out functions and any other
+ lines that were drawn.
+ </p><p>
+ Available in version 1.0.19 and onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotData"></a>SurfacePlotData</span></dt><dd><pre class="synopsis">SurfacePlotData
(data)</pre><pre class="synopsis">SurfacePlotData (data,label)</pre><pre class="synopsis">SurfacePlotData
(data,x1,x2,y1,y2,z1,z2)</pre><pre class="synopsis">SurfacePlotData (data,label,x1,x2,y1,y2,z1,z2)</pre><pre
class="synopsis">SurfacePlotData (data,[x1,x2,y1,y2,z1,z2])</pre><pre class="synopsis">SurfacePlotData
(data,label,[x1,x2,y1,y2,z1,z2])</pre><p>
+ Plot a surface from data. The data is an n by 3 matrix whose
+ rows are the x, y and z coordinates. The data can also be
+ simply a vector whose length is a multiple of 3 and so
+ contains the triples of x, y, z. The data should contain at
+ least 3 points.
+ </p><p>
+ Optionally we can give the label and also optionally the
+ limits. If limits are not given, they are computed from
+ the data, <a class="link" href="ch11s03.html#gel-function-SurfacePlotWindow"><code
class="function">SurfacePlotWindow</code></a>
+ is not used, if you want to use it, pass it in explicitly.
+ If label is not given then empty label is used.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData([0,0,0;1,0,1;0,1,1;1,1,3])</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>SurfacePlotData(data,"My
data")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData(data,-1,1,-1,1,0,10)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData(data,SurfacePlotWindow)</code></strong>
+</pre><p>
+ </p><p>
+ Here's an example of how to plot in polar coordinates,
+ in particular how to plot the function
+ <strong class="userinput"><code>-r^2 * theta</code></strong>:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>d:=null; for r=0 to 1 by 0.1 do for theta=0 to 2*pi by pi/5 do
d=[d;[r*cos(theta),r*sin(theta),-r^2*theta]];</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>SurfacePlotData(d)</code></strong>
+</pre><p>
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDataGrid"></a>SurfacePlotDataGrid</span></dt><dd><pre
class="synopsis">SurfacePlotDataGrid (data,[x1,x2,y1,y2])</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2,z1,z2])</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2],label)</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2,z1,z2],label)</pre><p>
+ Plot a surface from regular rectangular data.
+ The data is given in a n by m matrix where the rows are the
+ x coordinate and the columns are the y coordinate.
+ The x coordinate is divided into equal n-1 subintervals
+ and y coordinate is divided into equal m-1 subintervals.
+ The limits <code class="varname">x1</code> and <code class="varname">x2</code>
+ give the interval on the x-axis that we use, and
+ the limits <code class="varname">y1</code> and <code class="varname">y2</code>
+ give the interval on the y-axis that we use.
+ If the limits <code class="varname">z1</code> and <code class="varname">z2</code>
+ are not given they are computed from the data (to be
+ the extreme values from the data).
+ </p><p>
+ Optionally we can give the label, if label is not given then
+ empty label is used.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid([1,2;3,4],[0,1,0,1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid(data,[-1,1,-1,1],"My data")</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>d:=null; for i=1 to 20 do for j=1 to
10 do d@(i,j) = (0.1*i-1)^2-(0.1*j)^2;</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid(d,[-1,1,0,1],"half a saddle")</code></strong>
+</pre><p>
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawLine"></a>SurfacePlotDrawLine</span></dt><dd><pre
class="synopsis">SurfacePlotDrawLine (x1,y1,z1,x2,y2,z2,...)</pre><pre class="synopsis">SurfacePlotDrawLine
(v,...)</pre><p>
+ Draw a line from <code class="varname">x1</code>,<code class="varname">y1</code>,<code
class="varname">z1</code> to
+ <code class="varname">x2</code>,<code class="varname">y2</code>,<code class="varname">z2</code>.
+ <code class="varname">x1</code>,<code class="varname">y1</code>,<code class="varname">z1</code>,
+ <code class="varname">x2</code>,<code class="varname">y2</code>,<code class="varname">z2</code>
can be replaced by an
+ <code class="varname">n</code> by 3 matrix for a longer polyline.
+ </p><p>
+ Extra parameters can be added to specify line color, thickness,
+ arrows, the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ or <strong class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 6-vector, or the legend.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally, since version 1.0.18, the color
+ can also be specified as a real vector specifying the red green and
+ blue components where the components are between 0 and 1, e.g. <strong
class="userinput"><code>[1.0,0.5,0.1]</code></strong>.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2,z1,z2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>
+ Finally, legend should be a string that can be used as the legend in the
+ graph. That is, if legends are being printed.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawLine(0,0,0,1,1,1,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawLine([0,0,0;1,-1,2;-1,-1,-3])</code></strong>
+</pre><p>
+ </p><p>
+ Available from version 1.0.19 onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawPoints"></a>SurfacePlotDrawPoints</span></dt><dd><pre
class="synopsis">SurfacePlotDrawPoints (x,y,z,...)</pre><pre class="synopsis">SurfacePlotDrawPoints
(v,...)</pre><p>
+ Draw a point at <code class="varname">x</code>,<code class="varname">y</code>,<code
class="varname">z</code>.
+ The input can be an <code class="varname">n</code> by 3 matrix
+ for <code class="varname">n</code> different points. This function has essentially the same
+ input as <a class="link"
href="ch11s20.html#gel-function-SurfacePlotDrawLine">SurfacePlotDrawLine</a>.
+ </p><p>
+ Extra parameters can be added to specify line color, thickness,
+ the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ or <strong class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 6-vector, or the legend.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally the color can also be specified as a real vector specifying the
red green
+ and blue components where the components are between 0 and 1.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2,z1,z2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>
+ Finally, legend should be a string that can be used as the legend in the
+ graph. That is, if legends are being printed.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawPoints(0,0,0,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawPoints([0,0,0;1,-1,2;-1,-1,1])</code></strong>
+</pre><p>
+ </p><p>
+ Available from version 1.0.19 onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-VectorfieldClearSolutions"></a>VectorfieldClearSolutions</span></dt><dd><pre
class="synopsis">VectorfieldClearSolutions ()</pre><p>Efface les solutions dessinées par la fonction <a
class="link" href="ch11s20.html#gel-function-VectorfieldDrawSolution"><code
class="function">VectorfieldDrawSolution</code></a>.</p><p>Version 1.0.6 onwards.</p></dd><dt><span
class="term"><a name="gel-function-VectorfieldDrawSolution"></a>VectorfieldDrawSolution</span></dt><dd><pre
class="synopsis">VectorfieldDrawSolution (x, y, dt, tlong)</pre><p>Lorsqu'un tracé de champ de vecteurs est
actif, dessine une solution avec les conditions initiales spécifiées. La méthode standard de Runge-Kutta est
utilisée avec l'incrément <code class="varname">dt</code> sur un intervalle de temps <code
class="varname">tlong</code>. Les solutions restent affichées sur le graphe jusqu'à ce qu'un tracé différent
soit affiché ou jusqu'à ce que vous a
ppeliez la fonction <a class="link" href="ch11s20.html#gel-function-SlopefieldClearSolutions"><code
class="function">VectorfieldClearSolutions</code></a>. Vous pouvez aussi utiliser l'interface graphique pour
tracer des solutions et indiquer des conditions initiales spécifiques avec la souris.</p><p>Version 1.0.6
onwards.</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldPlot"></a>VectorfieldPlot</span></dt><dd><pre class="synopsis">VectorfieldPlot
(foncx, foncy)</pre><pre class="synopsis">VectorfieldPlot (foncx, foncy, x1, x2, y1, y2)</pre><p>Trace un
champ de vecteurs à deux dimensions. La fonction <code class="varname">funcx</code> doit être la dérivée
dx/dt du champ de vecteurs et la fonction <code class="varname">funcy</code> la dérivée dy/dt du champ de
vecteurs. Les fonctions doivent accepter deux nombres réels <code class="varname">x</code> et <code
class="varname">y</code> ou seulement un nombre complexe. Lorsque le paramètre <a class="link" h
ref="ch11s03.html#gel-function-VectorfieldNormalized"><code
class="function">VectorfieldNormalized</code></a> est <code class="constant">true</code> (vrai) alors
l'amplitude des vecteurs est normalisée. Seule la direction et non pas l'amplitude est tracée.</p><p>Vous
pouvez spécifier, en option, les limites de la fenêtre de tracé sous la forme <code
class="varname">x1</code>, <code class="varname">x2</code>, <code class="varname">y1</code>, <code
class="varname">y2</code>, <code class="varname">z1</code>, <code class="varname">z2</code>. Si les limites
ne sont pas indiquées alors les limites actuellement utilisées s'appliquent (consultez <a class="link"
href="ch11s03.html#gel-function-LinePlotWindow"><code class="function">LinePlotWindow</code></a>).</p><p>Le
paramètre <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a> conditionne l'affichage de la légende.</p><p>Exemples :
</p><pre class="scre
en"><code class="prompt">genius></code> <strong class="userinput"><code>VectorfieldPlot(`(x,y)=x^2-y,
`(x,y)=y^2-x, -1, 1, -1, 1)</code></strong>
+</pre></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s19.html">Précédent</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Niveau supérieur</a></td><td width="40%"
align="right"> <a accesskey="n" href="ch12.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Calcul symbolique </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Chapitre 12. Exemple de
programmes en GEL</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch12.html b/help/fr/html/ch12.html
new file mode 100644
index 0000000..0cab517
--- /dev/null
+++ b/help/fr/html/ch12.html
@@ -0,0 +1,60 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapitre 12. Exemple
de programmes en GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="index.html" title="Manuel de Genius"><link
rel="prev" href="ch11s20.html" title="Tracé de graphiques"><link rel="next" href="ch13.html" title="Chapitre
13. Paramètres"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Chapitre
12. Exemple de programmes en GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s20.html">Précédent</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch13.html">Suivant</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><d
iv><h1 class="title"><a name="genius-gel-example-programs"></a>Chapitre 12. Exemple de programmes en
GEL</h1></div></div></div><p>Voici une fonction qui calcule des factorielles : </p><pre
class="programlisting">function f(x) = if x <= 1 then 1 else (f(x-1)*x)
+</pre><p>Avec des indentations, cela devient : </p><pre class="programlisting">function f(x) = (
+ if x <= 1 then
+ 1
+ else
+ (f(x-1)*x)
+)
+</pre><p>C'est un portage direct de la fonction factorielle de la page de manuel de <span
class="application">bc</span>. La syntaxe semble similaire à celle de <span class="application">bc</span>
mais différente par le fait que dans GEL, la dernière expression est celle qui est renvoyée. En utilisant la
fonction <code class="literal">return</code> à la place, cela donnerait : </p><pre
class="programlisting">function f(x) = (
+ if (x <= 1) then return (1);
+ return (f(x-1) * x)
+)
+</pre><p>La façon, de loin la plus facile, de définir une fonction factorielle serait d'utiliser la boucle
de produit de la manière suivante. Ce n'est pas seulement la plus courte et la plus rapide mais aussi
probablement la version la plus lisible. </p><pre class="programlisting">function f(x) = prod k=1 to x do k
+</pre><p>
+Here is a larger example, this basically redefines the internal
+<a class="link" href="ch11s09.html#gel-function-ref"><code class="function">ref</code></a> function to
calculate the row echelon form of a
+matrix. The function <code class="function">ref</code> is built in and much faster,
+but this example demonstrates some of the more complex features of GEL.
+</p><pre class="programlisting"># Calculate the row-echelon form of a matrix
+function MyOwnREF(m) = (
+ if not IsMatrix(m) or not IsValueOnly(m) then
+ (error("MyOwnREF: argument not a value only matrix");bailout);
+ s := min(rows(m), columns(m));
+ i := 1;
+ d := 1;
+ while d <= s and i <= columns(m) do (
+
+ # This just makes the anchor element non-zero if at
+ # all possible
+ if m@(d,i) == 0 then (
+ j := d+1;
+ while j <= rows(m) do (
+ if m@(j,i) == 0 then
+ (j=j+1;continue);
+ a := m@(j,);
+ m@(j,) := m@(d,);
+ m@(d,) := a;
+ j := j+1;
+ break
+ )
+ );
+ if m@(d,i) == 0 then
+ (i:=i+1;continue);
+
+ # Here comes the actual zeroing of all but the anchor
+ # element rows
+ j := d+1;
+ while j <= rows(m)) do (
+ if m@(j,i) != 0 then (
+ m@(j,) := m@(j,)-(m@(j,i)/m@(d,i))*m@(d,)
+ );
+ j := j+1
+ );
+ m@(d,) := m@(d,) * (1/m@(d,i));
+ d := d+1;
+ i := i+1
+ );
+ m
+)
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch11s20.html">Précédent</a> </td><td width="20%" align="center"> </td><td
width="40%" align="right"> <a accesskey="n" href="ch13.html">Suivant</a></td></tr><tr><td width="40%"
align="left" valign="top">Tracé de graphiques </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top"> Chapitre 13.
Paramètres</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch13.html b/help/fr/html/ch13.html
new file mode 100644
index 0000000..0d4f643
--- /dev/null
+++ b/help/fr/html/ch13.html
@@ -0,0 +1,47 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapitre 13.
Paramètres</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manuel de Genius"><link rel="up" href="index.html" title="Manuel de Genius"><link
rel="prev" href="ch12.html" title="Chapitre 12. Exemple de programmes en GEL"><link rel="next"
href="ch13s02.html" title="Précision"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Chapitre 13. Paramètres</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch12.html">Précédent</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch13s02.html">Suivant</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 class="title"><a nam
e="genius-prefs"></a>Chapitre 13. Paramètres</h1></div></div></div><div class="toc"><p><b>Table des
matières</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch13.html#genius-prefs-output">Sortie</a></span></dt><dt><span class="sect1"><a
href="ch13s02.html">Précision</a></span></dt><dt><span class="sect1"><a
href="ch13s03.html">Terminal</a></span></dt><dt><span class="sect1"><a
href="ch13s04.html">Mémoire</a></span></dt></dl></div><p>Pour configurer l'<span class="application">Outil de
maths Genius</span>, choisissez <span class="guimenu">Paramètres</span> → <span
class="guimenuitem">Préférences</span>. Il y a plusieurs paramètres de base fournis par le calculateur en
plus de ceux fournis par la bibliothèque standard. Ils contrôlent le comportement du calculateur.</p><div
class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Modifications des paramètres
avec GEL</h3><p>Beaucoup de paramètres dans Genius ne sont simplement que
des variables globales qui peuvent être évaluées et auxquelles on peut attribuer des valeurs de la même
manière que pour des variables normales. Consultez <a class="xref" href="ch05s02.html" title="Utilisation des
variables">la section intitulée « Utilisation des variables »</a> à propos de l'évaluation et <a class="xref"
href="ch11s03.html" title="Paramètres">la section intitulée « Paramètres »</a> pour une liste des réglages
qui peuvent être modifiés de cette façon.</p><p>Par exemple, vous pouvez paramétrer le nombre maximum de
chiffres pour l'affichage d'un résultat à 12 en saisissant : </p><pre class="programlisting">MaxDigits = 12
+</pre></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-prefs-output"></a>Sortie</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Nombre maximum de chiffres à afficher</span>
+ </span></dt><dd><p>The maximum digits in a result (<a class="link"
href="ch11s03.html#gel-function-MaxDigits"><code class="function">MaxDigits</code></a>)</p></dd><dt><span
class="term">
+ <span class="guilabel">Résultats en nombres flottants</span>
+ </span></dt><dd><p>If the results should be always printed as floats (<a class="link"
href="ch11s03.html#gel-function-ResultsAsFloats"><code
class="function">ResultsAsFloats</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Nombres flottants en notation scientifique</span>
+ </span></dt><dd><p>If floats should be in scientific notation (<a class="link"
href="ch11s03.html#gel-function-ScientificNotation"><code
class="function">ScientificNotation</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Toujours afficher les expressions complètes</span>
+ </span></dt><dd><p>Should we print out full expressions for non-numeric return values (longer than a
line) (<a class="link" href="ch11s03.html#gel-function-FullExpressions"><code
class="function">FullExpressions</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Utiliser les fractions mixtes</span>
+ </span></dt><dd><p>If fractions should be printed as mixed fractions such as "1 1/3" rather than
"4/3". (<a class="link" href="ch11s03.html#gel-function-MixedFractions"><code
class="function">MixedFractions</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Afficher 0.0 lorsqu'un nombre flottant est inférieur à 10^-x (0=ne jamais
arrondir)</span>
+ </span></dt><dd><p>How to chop output. But only when other numbers nearby are large.
+ See the documentation of the parameter
+ <a class="link" href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>. </p></dd><dt><span class="term">
+ <span class="guilabel">Arrondir les nombres uniquement si un autre nombre est plus grand que
10^-x</span>
+ </span></dt><dd><p>When to chop output. This is set by the parameter <a class="link"
href="ch11s03.html#gel-function-OutputChopWhenExponent"><code
class="function">OutputChopWhenExponent</code></a>.
+ See the documentation of the parameter
+ <a class="link" href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>. </p></dd><dt><span class="term">
+ <span class="guilabel">Se souvenir des paramètres de sortie d'une session à l'autre</span>
+ </span></dt><dd><p>Si les réglages concernant la sortie dans le cadre <span class="guilabel">Options
pour la sortie des nombres/expressions</span> doivent être conservés pour la session suivante. Ne s'applique
pas au cadre <span class="guilabel">Options pour la sortie erreurs/information</span>.</p><p>Si ce n'est pas
coché, les réglages précédemment enregistrés ou ceux par défaut sont utilisés à chaque lancement de Genius.
Notez que les paramètres sont enregistrés à la fin de la session donc si vous souhaitez modifier la valeur
par défaut, cochez cette case, redémarrez Genius puis décochez-la à nouveau.</p></dd><dt><span class="term">
+ <span class="guilabel">Afficher les erreurs dans une boîte de dialogue</span>
+ </span></dt><dd><p>If set the errors will be displayed in a separate dialog, if
+ unset the errors will be printed on the console.</p></dd><dt><span class="term">
+ <span class="guilabel">Afficher les messages d'informations dans une boîte de dialogue</span>
+ </span></dt><dd><p>If set the information messages will be displayed in a separate
+ dialog, if unset the information messages will be printed on the
+ console.</p></dd><dt><span class="term">
+ <span class="guilabel">Nombre maximum d'erreurs à afficher</span>
+ </span></dt><dd><p>
+ The maximum number of errors to return on one evaluation
+ (<a class="link" href="ch11s03.html#gel-function-MaxErrors"><code
class="function">MaxErrors</code></a>). If you set this to 0 then
+ all errors are always returned. Usually if some loop causes
+ many errors, then it is unlikely that you will be able to make
+ sense out of more than a few of these, so seeing a long list
+ of errors is usually not helpful.
+ </p></dd></dl></div><p>En plus de ces préférences, il existe d'autres préférences qui ne peuvent
être modifiées qu'en les paramétrant dans l'espace de la console. Pour celles qui peuvent affecter la sortie,
consultez <a class="xref" href="ch11s03.html" title="Paramètres">la section intitulée « Paramètres
»</a>.</p><div class="variablelist"><dl class="variablelist"><dt><span class="term">
+ <code class="function">IntegerOutputBase</code>
+ </span></dt><dd><p>La base utilisée pour afficher les entiers.</p></dd><dt><span class="term">
+ <code class="function">OutputStyle</code>
+ </span></dt><dd><p>A string, can be <code class="literal">"normal"</code>,
+<code class="literal">"latex"</code>, <code class="literal">"mathml"</code> or
+<code class="literal">"troff"</code> and it will affect how matrices (and perhaps other
+stuff) is printed, useful for pasting into documents. Normal style is the
+default human readable printing style of <span class="application">Genius Mathematics Tool</span>. The
other styles are for
+typesetting in LaTeX, MathML (XML), or in Troff.</p></dd></dl></div></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch12.html">Précédent</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> <a accesskey="n" href="ch13s02.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Chapitre 12. Exemple de programmes en GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top">
Précision</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch13s02.html b/help/fr/html/ch13s02.html
new file mode 100644
index 0000000..38e6ab8
--- /dev/null
+++ b/help/fr/html/ch13s02.html
@@ -0,0 +1,14 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Précision</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manuel
de Genius"><link rel="up" href="ch13.html" title="Chapitre 13. Paramètres"><link rel="prev" href="ch13.html"
title="Chapitre 13. Paramètres"><link rel="next" href="ch13s03.html" title="Terminal"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Précision</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch13.html">Précédent</a> </td><th width="60%"
align="center">Chapitre 13. Paramètres</th><td width="20%" align="right"> <a accesskey="n"
href="ch13s03.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a nam
e="genius-prefs-precision"></a>Précision</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Précision des nombres en virgule flottante</span>
+ </span></dt><dd><p>
+ The floating point precision in bits
+ (<a class="link" href="ch11s03.html#gel-function-FloatPrecision"><code
class="function">FloatPrecision</code></a>).
+ Note that changing this only affects newly computed quantities.
+ Old values stored in variables are obviously still in the old
+ precision and if you want to have them more precise you will have
+ to recompute them. Exceptions to this are the system constants
+ such as <a class="link" href="ch11s04.html#gel-function-pi"><code class="function">pi</code></a> or
+ <a class="link" href="ch11s04.html#gel-function-e"><code class="function">e</code></a>.
+ </p></dd><dt><span class="term">
+ <span class="guilabel">Se souvenir de la précision choisie d'une session à l'autre</span>
+ </span></dt><dd><p>Si le réglage de la précision doit être conservé pour la prochaine session. Si ce
n'est pas coché, le paramétrage précédemment enregistré ou celui par défaut est utilisé à chaque lancement de
Genius. Notez que les paramètres sont enregistrés à la fin de la session donc si vous souhaitez modifier la
valeur par défaut, cochez cette case, redémarrez genius puis décochez-la à
nouveau.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13.html">Précédent</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch13.html">Niveau supérieur</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch13s03.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top">Chapitre
13. Paramètres </td><td width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td
width="40%" align="right"
valign="top"> Terminal</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch13s03.html b/help/fr/html/ch13s03.html
new file mode 100644
index 0000000..24f4c4d
--- /dev/null
+++ b/help/fr/html/ch13s03.html
@@ -0,0 +1,9 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Terminal</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manuel
de Genius"><link rel="up" href="ch13.html" title="Chapitre 13. Paramètres"><link rel="prev"
href="ch13s02.html" title="Précision"><link rel="next" href="ch13s04.html" title="Mémoire"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Terminal</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch13s02.html">Précédent</a> </td><th width="60%"
align="center">Chapitre 13. Paramètres</th><td width="20%" align="right"> <a accesskey="n"
href="ch13s04.html">Suivant</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-pref
s-terminal"></a>Terminal</h2></div></div></div><p>Le terminal se réfère à la console dans la zone de
travail.</p><div class="variablelist"><dl class="variablelist"><dt><span class="term">
+ <span class="guilabel">Lignes d'historique</span>
+ </span></dt><dd><p>Nombre de lignes d'historique dans le terminal.</p></dd><dt><span class="term">
+ <span class="guilabel">Police</span>
+ </span></dt><dd><p>La police à utiliser dans le terminal.</p></dd><dt><span class="term">
+ <span class="guilabel">Noir sur blanc</span>
+ </span></dt><dd><p>Si vous utilisez du noir sur blanc dans le terminal.</p></dd><dt><span
class="term">
+ <span class="guilabel">Curseur clignotant</span>
+ </span></dt><dd><p>Si le curseur dans le terminal doit clignoter lorsque le terminal possède le focus.
Cela peut être parfois ennuyant et génère du trafic inutile si vous utilisez Genius à
distance.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13s02.html">Précédent</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch13.html">Niveau supérieur</a></td><td width="40%"
align="right"> <a accesskey="n" href="ch13s04.html">Suivant</a></td></tr><tr><td width="40%" align="left"
valign="top">Précision </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top">
Mémoire</td></tr></table></div></body></html>
diff --git a/help/fr/html/ch13s04.html b/help/fr/html/ch13s04.html
new file mode 100644
index 0000000..6a730de
--- /dev/null
+++ b/help/fr/html/ch13s04.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Mémoire</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manuel
de Genius"><link rel="up" href="ch13.html" title="Chapitre 13. Paramètres"><link rel="prev"
href="ch13s03.html" title="Terminal"><link rel="next" href="ch14.html" title="Chapitre 14. À propos de
l'Outil de maths Genius"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Mémoire</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch13s03.html">Précédent</a> </td><th width="60%" align="center">Chapitre 13. Paramètres</th><td
width="20%" align="right"> <a accesskey="n" href="ch14.html">Suivant</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style
="clear: both"><a name="genius-prefs-memory"></a>Mémoire</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Nombre maximum de nœuds à allouer</span>
+ </span></dt><dd><p>
+ Internally all data is put onto small nodes in memory. This gives
+ a limit on the maximum number of nodes to allocate for
+ computations. This limit avoids the problem of running out of memory
+ if you do something by mistake that uses too much memory, such
+ as a recursion without end. This could slow your computer and make
+ it hard to even interrupt the program.
+ </p><p>Une fois que la limite est atteinte, l'<span class="application">Outil de maths
Genius</span> vous demande si vous voulez interrompre le calcul ou si vous souhaitez continuer. Si vous
continuez, aucune limite n'est appliquée et il est possible de saturer la mémoire de l'ordinateur. La limite
s'applique à nouveau la prochaine fois que vous exécuterez un programme ou une expression dans la console
indépendamment de votre réponse précédente.</p><p>Régler la limite à zéro signifie qu'il n'y a aucune limite
sur la quantité de mémoire utilisable par Genius.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch13s03.html">Précédent</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch13.html">Niveau supérieur</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch14.html">Suivant</a></td></tr><tr><td width="40%" align="left" valig
n="top">Terminal </td><td width="20%" align="center"><a accesskey="h" href="index.html">Sommaire</a></td><td
width="40%" align="right" valign="top"> Chapitre 14. À propos de l'<span class="application">Outil de maths
Genius</span></td></tr></table></div></body></html>
diff --git a/help/fr/html/ch14.html b/help/fr/html/ch14.html
new file mode 100644
index 0000000..8a9fd8d
--- /dev/null
+++ b/help/fr/html/ch14.html
@@ -0,0 +1,13 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Chapitre 14. À propos
de l'Outil de maths Genius</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Manuel de Genius"><link rel="up" href="index.html" title="Manuel de
Genius"><link rel="prev" href="ch13s04.html" title="Mémoire"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Chapitre 14. À propos de l'<span class="application">Outil de
maths Genius</span></th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch13s04.html">Précédent</a> </td><th width="60%" align="center"> </th><td width="20%" align="right">
</td></tr></table><hr></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a
name="genius-about"></a>Chapitre 14. À propos de l
'<span class="application">Outil de maths Genius</span></h1></div></div></div><p>L'<span
class="application">Outil de maths Genius</span> a été écrit par Jiří (George) Lebl (<code
class="email"><<a class="email" href="mailto:jirka 5z com">jirka 5z com</a>></code>). L'historique de
l'<span class="application">Outil de maths Genius</span> commence à la fin de l'année 1997. C'était la
première calculatrice pour GNOME, mais il a grossi au point de devenir bien plus qu'une simple calculatrice
de bureau. Pour trouver plus d'informations à propos de l'<span class="application">Outil de maths
Genius</span>, visitez la <a class="ulink" href="http://www.jirka.org/genius.html" target="_top">page Web de
Genius</a>.</p><p>Pour rapporter une anomalie ou émettre une suggestion concernant cette application ou ce
manuel, envoyez un courriel à l'auteur ou à la liste de discussion (voir site Web).</p><p> This program is
distributed under the terms of the GNU
+ General Public license as published by the Free Software
+ Foundation; either version 3 of the License, or (at your option)
+ any later version. A copy of this license can be found at this
+ <a class="ulink" href="http://www.gnu.org/copyleft/gpl.html" target="_top">link</a>, or in the file
+ COPYING included with the source code of this program. </p><p>Jiří Lebl was during various parts of
the development
+ partially supported for the work by NSF grants DMS 0900885,
+ DMS 1362337,
+ the University of Illinois at Urbana-Champaign,
+ the University of California at San Diego,
+ the University of Wisconsin-Madison, and
+ Oklahoma State University. The software has
+ been used for both teaching and research.</p></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch13s04.html">Précédent</a> </td><td width="20%" align="center"> </td><td width="40%" align="right">
</td></tr><tr><td width="40%" align="left" valign="top">Mémoire </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Sommaire</a></td><td width="40%" align="right" valign="top">
</td></tr></table></div></body></html>
diff --git a/help/fr/html/genius.proc b/help/fr/html/genius.proc
new file mode 100644
index 0000000..e69de29
diff --git a/help/fr/html/index.html b/help/fr/html/index.html
new file mode 100644
index 0000000..621e46e
--- /dev/null
+++ b/help/fr/html/index.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Manuel de
Genius</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><meta name="description"
content="Manuel de l'Outil de maths Genius."><link rel="home" href="index.html" title="Manuel de
Genius"><link rel="next" href="ch01.html" title="Chapitre 1. Introduction"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Manuel de Genius</th></tr><tr><td width="20%"
align="left"> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch01.html">Suivant</a></td></tr></table><hr></div><div lang="fr" class="book"><div
class="titlepage"><div><div><h1 class="title"><a name="index"></a>Manuel de Genius</h1></div><div><div
class="authorgroup"><div class="author"><h3 class="author"><span class="fir
stname">Jiří</span> <span class="surname">Lebl</span></h3><div class="affiliation"><span
class="orgname">Oklahoma State University<br></span><div class="address"><p> <code class="email"><<a
class="email" href="mailto:jirka 5z com">jirka 5z com</a>></code> </p></div></div></div><div
class="author"><h3 class="author"><span class="firstname">Kai</span> <span
class="surname">Willadsen</span></h3><div class="affiliation"><span class="orgname">Université de Queensland,
Australie<br></span><div class="address"><p> <code class="email"><<a class="email" href="mailto:kaiw itee
uq edu au">kaiw itee uq edu au</a>></code> </p></div></div></div></div></div><div><p
class="releaseinfo">This manual describes version 1.0.22 of Genius.
+ </p></div><div><p class="copyright">Copyright © 1997-2016 Jiří (George) Lebl</p></div><div><p
class="copyright">Copyright © 2004 Kai Willadsen</p></div><div><p class="copyright">Copyright © 2010-11 Bruno
Brouard (annoa b gmail com)</p></div><div><p class="copyright">Copyright © 2011 Luc Pionchon (pionchon luc
gmail com)</p></div><div><div class="legalnotice"><a name="legalnotice"></a><p>Permission vous est donnée de
copier, distribuer et/ou modifier ce document selon les termes de la Licence GNU Free Documentation License,
Version 1.1 ou ultérieure publiée par la Free Software Foundation sans section inaltérable, sans texte de
première page de couverture ni texte de dernière page de couverture. Vous trouverez un exemplaire de cette
licence en suivant ce <a class="ulink" href="ghelp:fdl" target="_top">lien</a> ou dans le fichier
COPYING-DOCS fourni avec le présent manuel.</p><p>Ce manuel fait partie de la collection de manuels GNOME
distribués selon les term
es de la licence de documentation libre GNU. Si vous souhaitez distribuer ce manuel indépendamment de la
collection, vous devez joindre un exemplaire de la licence au document, comme indiqué dans la section 6 de
celle-ci.</p><p>La plupart des noms utilisés par les entreprises pour distinguer leurs produits et services
sont des marques déposées. Lorsque ces noms apparaissent dans la documentation GNOME et que les membres du
projet de Documentation GNOME sont informés de l'existence de ces marques déposées, soit ces noms entiers,
soit leur première lettre est en majuscule.</p><p>LE PRÉSENT DOCUMENT ET SES VERSIONS MODIFIÉES SONT FOURNIS
SELON LES TERMES DE LA LICENCE DE DOCUMENTATION LIBRE GNU SACHANT QUE : </p><div class="orderedlist"><ol
class="orderedlist" type="1"><li class="listitem"><p>LE PRÉSENT DOCUMENT EST FOURNI « TEL QUEL », SANS AUCUNE
GARANTIE, EXPRESSE OU IMPLICITE, Y COMPRIS, ET SANS LIMITATION, LES GARANTIES DE MARCHANDABILITÉ,
D'ADÉQUATION �
� UN OBJECTIF PARTICULIER OU DE NON INFRACTION DU DOCUMENT OU DE SA VERSION MODIFIÉE. L'UTILISATEUR ASSUME
TOUT RISQUE RELATIF À LA QUALITÉ, À LA PERTINENCE ET À LA PERFORMANCE DU DOCUMENT OU DE SA VERSION DE MISE À
JOUR. SI LE DOCUMENT OU SA VERSION MODIFIÉE S'AVÉRAIT DÉFECTUEUSE, L'UTILISATEUR (ET NON LE RÉDACTEUR
INITIAL, L'AUTEUR, NI TOUT AUTRE PARTICIPANT) ENDOSSERA LES COÛTS DE TOUTE INTERVENTION, RÉPARATION OU
CORRECTION NÉCESSAIRE. CETTE DÉNÉGATION DE RESPONSABILITÉ CONSTITUE UNE PARTIE ESSENTIELLE DE CETTE LICENCE.
AUCUNE UTILISATION DE CE DOCUMENT OU DE SA VERSION MODIFIÉE N'EST AUTORISÉE AUX TERMES DU PRÉSENT ACCORD,
EXCEPTÉ SOUS CETTE DÉNÉGATION DE RESPONSABILITÉ ; </p></li><li class="listitem"><p>EN AUCUNE CIRCONSTANCE ET
SOUS AUCUNE INTERPRÉTATION DE LA LOI, QU'IL S'AGISSE D'UN DÉLIT CIVIL (Y COMPRIS LA NÉGLIGENCE), CONTRACTUEL
OU AUTRE, L'AUTEUR, LE RÉDACTEUR INITIAL, TOUT PARTICIPANT OU TOUT DISTRIBUTEUR DE CE DOCUMENT OU DE SA V
ERSION MODIFIÉE, OU TOUT FOURNISSEUR DE L'UNE DE CES PARTIES NE POURRA ÊTRE TENU RESPONSABLE À L'ÉGARD DE
QUICONQUE POUR TOUT DOMMAGE DIRECT, INDIRECT, PARTICULIER, OU ACCIDENTEL DE TOUT TYPE Y COMPRIS, SANS
LIMITATION, LES DOMMAGES LIÉS À LA PERTE DE CLIENTÈLE, À UN ARRÊT DE TRAVAIL, À UNE DÉFAILLANCE OU UN MAUVAIS
FONCTIONNEMENT INFORMATIQUE, OU À TOUT AUTRE DOMMAGE OU PERTE LIÉE À L'UTILISATION DU DOCUMENT ET DE SES
VERSIONS MODIFIÉES, MÊME SI LADITE PARTIE A ÉTÉ INFORMÉE DE L'ÉVENTUALITÉ DE TELS
DOMMAGES.</p></li></ol></div></div></div><div><div class="legalnotice"><a name="idm46125091179904"></a><p
class="legalnotice-title"><b>Votre avis</b></p><p>
+ To report a bug or make a suggestion regarding the <span class="application">Genius Mathematics
Tool</span>
+ application or this manual, please visit the
+ <a class="ulink" href="http://www.jirka.org/genius.html" target="_top">Genius
+ Web page</a>
+ or email me at <code class="email"><<a class="email" href="mailto:jirka 5z com">jirka 5z
com</a>></code>.
+ </p></div></div><div><div class="revhistory"><table style="border-style:solid; width:100%;"
summary="Historique des versions"><tr><th align="left" valign="top" colspan="2"><b>Historique des
versions</b></th></tr><tr><td align="left">Version 0.2</td><td align="left">September 2016</td></tr><tr><td
align="left" colspan="2">
+ <p class="author">Jiri (George) Lebl <code class="email"><<a class="email"
href="mailto:jirka 5z com">jirka 5z com</a>></code></p>
+ </td></tr></table></div></div><div><div class="abstract"><p
class="title"><b>Résumé</b></p><p>Manuel de l'Outil de maths Genius.</p></div></div></div><hr></div><div
class="toc"><p><b>Table des matières</b></p><dl class="toc"><dt><span class="chapter"><a href="ch01.html">1.
Introduction</a></span></dt><dt><span class="chapter"><a href="ch02.html">2. Premiers
pas</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch02.html#genius-to-start">Lancement de l'<span
class="application">Outil de maths Genius</span></a></span></dt><dt><span class="sect1"><a
href="ch02s02.html">Démarrage de Genius</a></span></dt></dl></dd><dt><span class="chapter"><a
href="ch03.html">3. Utilisation de base</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch03.html#genius-usage-workarea">Utilisation de la zone de travail</a></span></dt><dt><span
class="sect1"><a href="ch03s02.html">Création d'un programme</a></span></dt><dt><span class="sect1"><a
href="ch03s03.html">Ouverture et lance
ment d'un programme</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch04.html">4. Tracé de
graphiques</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch04.html#genius-line-plots">Tracé de
lignes</a></span></dt><dt><span class="sect1"><a href="ch04s02.html">Courbes
paramétriques</a></span></dt><dt><span class="sect1"><a href="ch04s03.html">Champ de
directions</a></span></dt><dt><span class="sect1"><a href="ch04s04.html">Champ de
vecteurs</a></span></dt><dt><span class="sect1"><a href="ch04s05.html">Tracé de
surfaces</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch05.html">5. Fondamentaux
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch05.html#genius-gel-values">Types de
données</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-numbers">Nombres</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-booleans">Booléens</a></span></dt><dt><span class="sect2"><a href="ch05.
html#genius-gel-values-strings">Chaînes de caractères</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-null">Null</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s02.html">Utilisation des variables</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-setting">Attribution de variables</a></span></dt><dt><span
class="sect2"><a href="ch05s02.html#genius-gel-variables-built-in">Variables
internes</a></span></dt><dt><span class="sect2"><a href="ch05s02.html#genius-gel-previous-result">Variable «
Résultat précédent »</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch05s03.html">Utilisation des
fonctions</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-defining">Définition de fonctions</a></span></dt><dt><span
class="sect2"><a href="ch05s03.html#genius-gel-functions-variable-argument-lists">Liste d'arguments
variable</a></span></dt><dt><span cla
ss="sect2"><a href="ch05s03.html#genius-gel-functions-passing-functions">Une fonction comme argument d'une
autre fonction</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-operations">Opérations sur les
fonctions</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s04.html">Séparateur</a></span></dt><dt><span class="sect1"><a
href="ch05s05.html">Commentaires</a></span></dt><dt><span class="sect1"><a href="ch05s06.html">Évaluation
modulaire</a></span></dt><dt><span class="sect1"><a href="ch05s07.html">Liste des opérateurs
GEL</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch06.html">6. Programmation avec
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch06.html#genius-gel-conditionals">Tests</a></span></dt><dt><span class="sect1"><a
href="ch06s02.html">Boucles</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-while">Boucles tant que (while) et jusqu'à (until)</a></span>
</dt><dt><span class="sect2"><a href="ch06s02.html#genius-gel-loops-for">Boucles pour
(for)</a></span></dt><dt><span class="sect2"><a href="ch06s02.html#genius-gel-loops-foreach">Boucles pour
chaque (foreach)</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-break-continue">Instructions « break » et « continue
»</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch06s03.html">Sommes et
produits</a></span></dt><dt><span class="sect1"><a href="ch06s04.html">Opérateurs de
comparaison</a></span></dt><dt><span class="sect1"><a href="ch06s05.html">Variables globales et portée des
variables</a></span></dt><dt><span class="sect1"><a href="ch06s06.html">Variables
paramètres</a></span></dt><dt><span class="sect1"><a href="ch06s07.html">Sortie de
fonction</a></span></dt><dt><span class="sect1"><a href="ch06s08.html">Références</a></span></dt><dt><span
class="sect1"><a href="ch06s09.html">Valeurs à gauche (lvalues)</a></span></dt></dl></d
d><dt><span class="chapter"><a href="ch07.html">7. Programmation avancée avec
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch07.html#genius-gel-error-handling">Gestion des
erreurs</a></span></dt><dt><span class="sect1"><a href="ch07s02.html">Syntaxe de
haut-niveau</a></span></dt><dt><span class="sect1"><a href="ch07s03.html">Renvoi de
fonction</a></span></dt><dt><span class="sect1"><a href="ch07s04.html">Variables locales
vraies</a></span></dt><dt><span class="sect1"><a href="ch07s05.html">Procédure de démarrage de
GEL</a></span></dt><dt><span class="sect1"><a href="ch07s06.html">Chargement de
programmes</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch08.html">8. Matrices en
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch08.html#genius-gel-matrix-support">Saisie de
matrices</a></span></dt><dt><span class="sect1"><a href="ch08s02.html">Opérateur de transposition conjuguée
et de transposition</a></span></dt><dt><span class="sect
1"><a href="ch08s03.html">Algèbre linéaire</a></span></dt></dl></dd><dt><span class="chapter"><a
href="ch09.html">9. Polynômes en GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch09.html#genius-gel-polynomials-using">Utilisation des polynômes</a></span></dt></dl></dd><dt><span
class="chapter"><a href="ch10.html">10. Théorie des ensembles en GEL</a></span></dt><dd><dl><dt><span
class="sect1"><a href="ch10.html#genius-gel-sets-using">Utilisation des
ensembles</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch11.html">11. Liste des fonctions
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch11.html#genius-gel-function-list-commands">Commandes</a></span></dt><dt><span class="sect1"><a
href="ch11s02.html">Basique</a></span></dt><dt><span class="sect1"><a
href="ch11s03.html">Paramètres</a></span></dt><dt><span class="sect1"><a
href="ch11s04.html">Constantes</a></span></dt><dt><span class="sect1"><a
href="ch11s05.html">Nombres</a></span></
dt><dt><span class="sect1"><a href="ch11s06.html">Trigonométrie</a></span></dt><dt><span class="sect1"><a
href="ch11s07.html">Théorie des nombres</a></span></dt><dt><span class="sect1"><a
href="ch11s08.html">Manipulation de matrices</a></span></dt><dt><span class="sect1"><a
href="ch11s09.html">Algèbre linéaire</a></span></dt><dt><span class="sect1"><a
href="ch11s10.html">Combinatoire</a></span></dt><dt><span class="sect1"><a
href="ch11s11.html">Analyse</a></span></dt><dt><span class="sect1"><a
href="ch11s12.html">Fonctions</a></span></dt><dt><span class="sect1"><a href="ch11s13.html">Résolution
d'équations</a></span></dt><dt><span class="sect1"><a
href="ch11s14.html">Statistiques</a></span></dt><dt><span class="sect1"><a
href="ch11s15.html">Polynômes</a></span></dt><dt><span class="sect1"><a href="ch11s16.html">Théorie des
ensembles</a></span></dt><dt><span class="sect1"><a href="ch11s17.html">Commutative
Algebra</a></span></dt><dt><span class="sect1"><a href="ch11s1
8.html">Divers</a></span></dt><dt><span class="sect1"><a href="ch11s19.html">Calcul
symbolique</a></span></dt><dt><span class="sect1"><a href="ch11s20.html">Tracé de
graphiques</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch12.html">12. Exemple de programmes
en GEL</a></span></dt><dt><span class="chapter"><a href="ch13.html">13.
Paramètres</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch13.html#genius-prefs-output">Sortie</a></span></dt><dt><span class="sect1"><a
href="ch13s02.html">Précision</a></span></dt><dt><span class="sect1"><a
href="ch13s03.html">Terminal</a></span></dt><dt><span class="sect1"><a
href="ch13s04.html">Mémoire</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch14.html">14. À
propos de l'<span class="application">Outil de maths Genius</span></a></span></dt></dl></div><div
class="list-of-figures"><p><b>Liste des illustrations</b></p><dl><dt>2.1. <a
href="ch02s02.html#mainwindow-fig">Fenêtre de l'<span class="applic
ation">Outil de maths Genius</span></a></dt><dt>4.1. <a href="ch04.html#lineplot-fig">Fenêtre Création de
graphiques</a></dt><dt>4.2. <a href="ch04.html#lineplot2-fig">Fenêtre contenant une courbe</a></dt><dt>4.3.
<a href="ch04s02.html#paramplot-fig">Onglet pour les courbes paramétriques</a></dt><dt>4.4. <a
href="ch04s02.html#paramplot2-fig">Courbe paramétrique</a></dt><dt>4.5. <a
href="ch04s05.html#surfaceplot-fig">Graphique de surface</a></dt></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left">
</td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch01.html">Suivant</a></td></tr><tr><td width="40%" align="left" valign="top"> </td><td width="20%"
align="center"> </td><td width="40%" align="right" valign="top"> Chapitre 1.
Introduction</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch01.html b/help/pt_BR/html/ch01.html
new file mode 100644
index 0000000..c56e127
--- /dev/null
+++ b/help/pt_BR/html/ch01.html
@@ -0,0 +1,28 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 1.
Introdução</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="index.html" title="Manual do Genius"><link
rel="prev" href="index.html" title="Manual do Genius"><link rel="next" href="ch02.html" title="Capítulo 2.
Primeiros passos"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Capítulo 1. Introdução</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="index.html">Anterior</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch02.html">Próxima</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-introd
uction"></a>Capítulo 1. Introdução</h1></div></div></div><p>
+ The <span class="application">Genius Mathematics Tool</span> application is a general calculator for
use as a desktop
+ calculator, an educational tool in mathematics, and is useful even for
+ research. The language used in <span class="application">Genius Mathematics Tool</span> is designed
to be
+ ‘mathematical’ in the sense that it should be ‘what
+ you mean is what you get’. Of course that is not an
+ entirely attainable goal. <span class="application">Genius Mathematics Tool</span> features
rationals, arbitrary
+ precision integers and multiple precision floats using the GMP library.
+ It handles complex numbers using cartesian notation. It has good
+ vector and matrix manipulation and can handle basic linear algebra.
+ The programming language allows user defined functions, variables and
+ modification of parameters.
+ </p><p>
+ <span class="application">Genius Mathematics Tool</span> comes in two versions. One version is the
graphical GNOME
+ version, which features an IDE style interface and the ability
+ to plot functions of one or two variables.
+ The command line version does not require GNOME, but of course
+ does not implement any feature that requires the graphical interface.
+ </p><p>
+ Parts of this manual describe the graphical version of the calculator,
+ but the language is of course the same. The command line only version
+ lacks the graphing capabilities and all other capabilities that require
+ the graphical user interface.
+ </p><p>
+ Generally, when some feature of the language (function, operator, etc...)
+ is new in some version past 1.0.5, it is mentioned, but
+ below 1.0.5 you would have to look at the NEWS file.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="index.html">Anterior</a> </td><td width="20%" align="center"> </td><td
width="40%" align="right"> <a accesskey="n" href="ch02.html">Próxima</a></td></tr><tr><td width="40%"
align="left" valign="top">Manual do Genius </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Principal</a></td><td width="40%" align="right" valign="top"> Capítulo 2. Primeiros
passos</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch02.html b/help/pt_BR/html/ch02.html
new file mode 100644
index 0000000..6d6c9d5
--- /dev/null
+++ b/help/pt_BR/html/ch02.html
@@ -0,0 +1,26 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 2. Primeiros
passos</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="index.html" title="Manual do Genius"><link
rel="prev" href="ch01.html" title="Capítulo 1. Introdução"><link rel="next" href="ch02s02.html" title="When
You Start Genius"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Capítulo 2. Primeiros passos</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch01.html">Anterior</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch02s02.html">Próxima</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="
genius-getting-started"></a>Capítulo 2. Primeiros passos</h1></div></div></div><div
class="toc"><p><b>Índice</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch02.html#genius-to-start">To Start <span class="application">Genius Mathematics
Tool</span></a></span></dt><dt><span class="sect1"><a href="ch02s02.html">When You Start
Genius</a></span></dt></dl></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-to-start"></a>To Start <span class="application">Genius Mathematics
Tool</span></h2></div></div></div><p>You can start <span class="application">Genius Mathematics Tool</span>
in the following ways:
+ </p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><span
class="guimenu">Applications</span> menu</span></dt><dd><p>
+ Depending on your operating system and version, the
+ menu item for <span class="application">Genius Mathematics Tool</span> could appear in a number
of different
+ places. It can be in the
+ <span class="guisubmenu">Education</span>,
+ <span class="guisubmenu">Accessories</span>,
+ <span class="guisubmenu">Office</span>,
+ <span class="guisubmenu">Science</span>, or
+ similar submenu, depending on your particular setup.
+ The menu item name you are looking for is
+ <span class="guimenuitem">Genius Math Tool</span>. Once you locate
+ this menu item click on it to start <span class="application">Genius Mathematics Tool</span>.
+ </p></dd><dt><span class="term"><span class="guilabel">Run</span> dialog</span></dt><dd><p>
+ Depending on your system installation the menu item
+ may not be available. If it is not, you can open the Run dialog
+ and execute <span class="command"><strong>gnome-genius</strong></span>.
+ </p></dd><dt><span class="term">Linha de comando</span></dt><dd><p>
+ To start the GNOME version of <span class="application">Genius Mathematics Tool</span> execute
+ <span class="command"><strong>gnome-genius</strong></span> from the command line.
+ </p><p>
+ To start the command line only version,
+ execute the following command: <span class="command"><strong>genius</strong></span>.
+ This version does not include the graphical environment
+ and some functionality such as plotting will not be available.
+ </p></dd></dl></div></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch01.html">Anterior</a>
</td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch02s02.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Capítulo 1. Introdução
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td width="40%"
align="right" valign="top"> When You Start Genius</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch02s02.html b/help/pt_BR/html/ch02s02.html
new file mode 100644
index 0000000..899681e
--- /dev/null
+++ b/help/pt_BR/html/ch02s02.html
@@ -0,0 +1,43 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>When You Start
Genius</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch02.html" title="Capítulo 2. Primeiros
passos"><link rel="prev" href="ch02.html" title="Capítulo 2. Primeiros passos"><link rel="next"
href="ch03.html" title="Capítulo 3. Basic Usage"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">When You Start Genius</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch02.html">Anterior</a> </td><th width="60%" align="center">Capítulo 2. Primeiros
passos</th><td width="20%" align="right"> <a accesskey="n"
href="ch03.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 c
lass="title" style="clear: both"><a name="genius-when-start"></a>When You Start
Genius</h2></div></div></div><p>When you start the GNOME edition of
+ <span class="application">Genius Mathematics Tool</span>, the window pictured in <a class="xref"
href="ch02s02.html#mainwindow-fig" title="Figura 2.1. Genius Mathematics Tool Window">Figura 2.1, “<span
class="application">Genius Mathematics Tool</span> Window”</a> is displayed.</p><div class="figure"><a
name="mainwindow-fig"></a><p class="title"><b>Figura 2.1. <span class="application">Genius Mathematics
Tool</span> Window</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/genius_window.png" alt="Shows Ferramenta matemática Genius main window. Contains titlebar,
menubar, toolbar and working area. Menubar contains Arquivo, Editar, Calculadora, Examples, Programs,
Preferências, and Ajuda menus."></div></div></div></div><br class="figure-break"><p>The <span
class="application">Genius Mathematics Tool</span> window contains the following elements:
+ </p><div class="variablelist"><dl class="variablelist"><dt><span
class="term">Menubar.</span></dt><dd><p>The menus on the menubar contain all of the commands that you need to
work with files in <span class="application">Genius Mathematics Tool</span>.
+ The <span class="guilabel">File</span> menu contains items for loading and saving items and
creating
+ new programs. The <span class="guilabel">Load and Run...</span> command does not open a new
window for
+ the program, but just executes the program directly. It is equivalent to the <span
class="command"><strong>load</strong></span>
+ command.</p><p>
+ The <span class="guilabel">Calculator</span> menu controls the
+calculator engine. It allows you to run the currently selected program or to
+interrupt the current calculation. You can also look at the full expression of
+the last answer (useful if the last answer was too large to fit onto the
+console), or you can view a listing of the values of all user defined
+variables. You can also monitor user variables, which is especially useful
+while a long calculation is running, or to debug a certain program.
+ Finally the <span class="guilabel">Calculator</span> allows plotting functions using a
user friendly dialog box.
+ </p><p>
+ The <span class="guilabel">Examples</span> menu is a list of example
+ programs or demos. If you open the menu, it will load the
+ example into a new program, which you can run, edit, modify,
+ and save. These programs should be well documented
+ and generally demonstrate either some feature of <span class="application">Genius
Mathematics Tool</span>
+ or some mathematical concept.
+ </p><p>
+ The <span class="guilabel">Programs</span> menu lists
+ the currently open programs and allows you to switch
+ between them.
+ </p><p>
+ The other menus have same familiar functions as in other applications.
+ </p></dd><dt><span class="term">Toolbar.</span></dt><dd><p>The toolbar contains a subset of the
commands that you can access from the menubar.</p></dd><dt><span class="term">Working area</span></dt><dd><p>
+ The working area is the primary method of interacting with
+ the application.
+ </p><p>
+ The working area initially has just the <span class="guilabel">Console</span> tab, which is
+ the main way of interacting with the calculator. Here you
+ type expressions and the results are immediately returned
+ after you hit the Enter key.
+ </p><p>
+ Alternatively you can write longer programs and those can
+ appear in separate tabs. The programs are a set of commands or
+ functions that can be run all at once rather than entering them
+ at the command line. The programs can be saved in files for later
+ retrieval.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch02.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch02.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch03.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Capítulo 2.
Primeiros passos </td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td
width="40%" align="right" valign="top"> Capítulo 3. Basic Usage</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch03.html b/help/pt_BR/html/ch03.html
new file mode 100644
index 0000000..714a708
--- /dev/null
+++ b/help/pt_BR/html/ch03.html
@@ -0,0 +1,44 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 3. Basic
Usage</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="index.html" title="Manual do Genius"><link
rel="prev" href="ch02s02.html" title="When You Start Genius"><link rel="next" href="ch03s02.html" title="To
Create a New Program"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Capítulo 3. Basic Usage</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch02s02.html">Anterior</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch03s02.html">Próxima</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius
-usage"></a>Capítulo 3. Basic Usage</h1></div></div></div><div class="toc"><p><b>Índice</b></p><dl
class="toc"><dt><span class="sect1"><a href="ch03.html#genius-usage-workarea">Using the Work
Area</a></span></dt><dt><span class="sect1"><a href="ch03s02.html">To Create a New Program
</a></span></dt><dt><span class="sect1"><a href="ch03s03.html">To Open and Run a Program
</a></span></dt></dl></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-usage-workarea"></a>Using the Work Area</h2></div></div></div><p>
+ Normally you interact with the calculator in the <span class="guilabel">Console</span> tab of the
+ work area. If you are running the text only version then the console
+ will be the only thing that is available to you. If you want to use
+ <span class="application">Genius Mathematics Tool</span> as a calculator only, just type in your
expression in the console, it
+ will be evaluated, and the returned value will be printed.
+ </p><p>
+ To evaluate an expression, type it into the <span class="guilabel">Console</span> work area and
press enter.
+ Expressions are written in a
+language called GEL. The most simple GEL expressions just looks like
+mathematics. For example
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>30*70 +
67^3.0 + ln(7) * (88.8/100)</code></strong>
+</pre><p>
+or
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>62734 +
812634 + 77^4 mod 5</code></strong>
+</pre><p>
+or
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>| sin(37) -
e^7 |</code></strong>
+</pre><p>
+or
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>sum n=1 to 70
do 1/n</code></strong>
+</pre><p>
+(Last is the harmonic sum from 1 to 70)
+</p><p>
+To get a list of functions and commands, type:
+</p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>help</code></strong>
+</pre><p>
+If you wish to get more help on a specific function, type:
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>help
FunctionName</code></strong>
+</pre><p>
+To view this manual, type:
+</p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>manual</code></strong>
+</pre><p>
+</p><p>
+Suppose you have previously saved some GEL commands as a program to a file and
+you now want to execute them.
+To load this program from the file <code class="filename">path/to/program.gel</code>,
+type
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>load
path/to/program.gel</code></strong>
+</pre><p>
+<span class="application">Genius Mathematics Tool</span> keeps track of the current directory.
+To list files in the current directory type <span class="command"><strong>ls</strong></span>, to change
directory
+do <strong class="userinput"><code>cd directory</code></strong> as in the UNIX command shell.
+</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch02s02.html">Anterior</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch03s02.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">When You Start Genius
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td width="40%"
align="right" valign="top"> To Create a New Program </td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch03s02.html b/help/pt_BR/html/ch03s02.html
new file mode 100644
index 0000000..5e4356a
--- /dev/null
+++ b/help/pt_BR/html/ch03s02.html
@@ -0,0 +1,31 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>To Create a New
Program</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch03.html" title="Capítulo 3. Basic
Usage"><link rel="prev" href="ch03.html" title="Capítulo 3. Basic Usage"><link rel="next" href="ch03s03.html"
title="To Open and Run a Program"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">To Create a New Program </th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch03.html">Anterior</a> </td><th width="60%" align="center">Capítulo 3. Basic Usage</th><td width="20%"
align="right"> <a accesskey="n" href="ch03s03.html">Próxima</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 clas
s="title" style="clear: both"><a name="genius-usage-create-program"></a>To Create a New Program
</h2></div></div></div><p>
+ If you wish to enter several more complicated commands, or perhaps write a complicated
+ function using the <a class="link" href="ch05.html" title="Capítulo 5. GEL Basics">GEL</a>
language, you can create a new
+ program.
+ </p><p>
+To start writing a new program, choose
+<span class="guimenu">File</span> → <span class="guimenuitem">New
+Program</span>. A new tab will appear in the work area. You
+can write a <a class="link" href="ch05.html" title="Capítulo 5. GEL Basics">GEL</a> program in this work
area.
+Once you have written your program you can run it by
+<span class="guimenu">Calculator</span> → <span class="guimenuitem">Run</span> (or
+the <span class="guilabel">Run</span> toolbar button).
+This will execute your program and will display any output on the <span class="guilabel">Console</span> tab.
+Executing a program is equivalent of taking the text of the program and
+typing it into the console. The only difference is that this input is done
+independent of the console and just the output goes onto the console.
+<span class="guimenu">Calculator</span> → <span class="guimenuitem">Run</span>
+will always run the currently selected program even if you are on the <span class="guilabel">Console</span>
+tab. The currently selected program has its tab in bold type. To select a
+program, just click on its tab.
+ </p><p>
+To save the program you've just written, choose <span class="guimenu">File</span> → <span
class="guimenuitem">Save As...</span>.
+Similarly as in other programs you can choose
+<span class="guimenu">File</span> → <span class="guimenuitem">Save</span> to save a program that already has
+a filename attached to it. If you have many opened programs you have edited and wish to save you can also
choose
+<span class="guimenu">File</span> → <span class="guimenuitem">Save All Unsaved</span>.
+ </p><p>
+ Programs that have unsaved changes will have a "[+]" next to their filename. This way you can
see if the file
+ on disk and the currently opened tab differ in content. Programs which have not yet had a
filename associated
+ with them are always considered unsaved and no "[+]" is printed.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch03.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch03.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch03s03.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Capítulo
3. Basic Usage </td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td
width="40%" align="right" valign="top"> To Open and Run a Program </td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch03s03.html b/help/pt_BR/html/ch03s03.html
new file mode 100644
index 0000000..0f5604e
--- /dev/null
+++ b/help/pt_BR/html/ch03s03.html
@@ -0,0 +1,16 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>To Open and Run a
Program</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch03.html" title="Capítulo 3. Basic
Usage"><link rel="prev" href="ch03s02.html" title="To Create a New Program"><link rel="next" href="ch04.html"
title="Capítulo 4. Plotagem"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">To Open and Run a Program </th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch03s02.html">Anterior</a> </td><th width="60%" align="center">Capítulo 3. Basic Usage</th><td
width="20%" align="right"> <a accesskey="n" href="ch04.html">Próxima</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class
="title" style="clear: both"><a name="genius-usage-open-program"></a>To Open and Run a Program
</h2></div></div></div><p>
+To open a file, choose
+<span class="guimenu">File</span> → <span class="guimenuitem">Open</span>.
+A new tab containing the file will appear in the work area. You can use this to
+edit the file.
+ </p><p>
+To run a program from a file, choose
+<span class="guimenu">File</span> → <span class="guimenuitem">Load and
+Run...</span>. This will run the program without opening it
+in a separate tab. This is equivalent to the <span class="command"><strong>load</strong></span> command.
+ </p><p>
+ If you have made edits to a file you wish to throw away and want to reload to the version
that's on disk,
+ you can choose the
+ <span class="guimenu">File</span> → <span class="guimenuitem">Reload from Disk</span> menuitem.
This is useful for experimenting
+ with a program and making temporary edits, to run a program, but that you do not intend to keep.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch03s02.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch03.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch04.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">To Create a
New Program </td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td
width="40%" align="right" valign="top"> Capítulo 4. Plotagem</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch04.html b/help/pt_BR/html/ch04.html
new file mode 100644
index 0000000..be34699
--- /dev/null
+++ b/help/pt_BR/html/ch04.html
@@ -0,0 +1,47 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 4.
Plotagem</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="index.html" title="Manual do Genius"><link
rel="prev" href="ch03s03.html" title="To Open and Run a Program"><link rel="next" href="ch04s02.html"
title="Parametric Plots"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Capítulo 4. Plotagem</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch03s03.html">Anterior</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch04s02.html">Próxima</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-gel-plot
ting"></a>Capítulo 4. Plotagem</h1></div></div></div><div class="toc"><p><b>Índice</b></p><dl
class="toc"><dt><span class="sect1"><a href="ch04.html#genius-line-plots">Line Plots</a></span></dt><dt><span
class="sect1"><a href="ch04s02.html">Parametric Plots</a></span></dt><dt><span class="sect1"><a
href="ch04s03.html">Slopefield Plots</a></span></dt><dt><span class="sect1"><a
href="ch04s04.html">Vectorfield Plots</a></span></dt><dt><span class="sect1"><a href="ch04s05.html">Surface
Plots</a></span></dt></dl></div><p>
+ Plotting support is only available in the graphical GNOME version.
+ All plotting accessible from the graphical interface is available from
+ the <span class="guilabel">Create Plot</span> window. You can access this window by either clicking
+ on the <span class="guilabel">Plot</span> button on the toolbar or selecting <span
class="guilabel">Plot</span> from the <span class="guilabel">Calculator</span>
+ menu. You can also access the plotting functionality by using the
+ <a class="link" href="ch11s20.html" title="Plotagem">plotting
+ functions</a> of the GEL language. See
+ <a class="xref" href="ch05.html" title="Capítulo 5. GEL Basics">Capítulo 5, <i>GEL Basics</i></a> to
find out how to
+ enter expressions that Genius understands.
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-line-plots"></a>Line Plots</h2></div></div></div><p>
+ To graph real valued functions of one variable open the <span class="guilabel">Create Plot</span>
+ window. You can also use the
+ <a class="link" href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a>
function
+ on the command line (see its documentation).
+ </p><p>
+ Once you click the <span class="guilabel">Plot</span> button, a window opens up with some notebooks
in it.
+ You want to be in the <span class="guilabel">Function line plot</span> notebook
+tab, and inside you want to be on the <span class="guilabel">Functions / Expressions</span> notebook tab.
+See <a class="xref" href="ch04.html#lineplot-fig" title="Figura 4.1. Create Plot Window">Figura 4.1, “Create
Plot Window”</a>.
+ </p><div class="figure"><a name="lineplot-fig"></a><p class="title"><b>Figura 4.1. Create Plot
Window</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/line_plot.png" alt="Shows the line plotting window."></div></div></div></div><br
class="figure-break"><p>
+ Type expressions with <strong class="userinput"><code>x</code></strong> as
+ the independent variable into the textboxes. Alternatively you can give names of functions such as
+ <strong class="userinput"><code>cos</code></strong> rather then having to type <strong
class="userinput"><code>cos(x)</code></strong>.
+ You can graph up to ten functions. If you make a mistake and Genius cannot
+ parse the input it will signify this with a warning icon on the right of the text
+ input box where the error occurred, as well as giving you an error dialog.
+ You can change the ranges of the dependent and independent variables in the bottom
+ part of the dialog.
+ The <code class="varname">y</code> (dependent) range can be set automatically by turning on the <span
class="guilabel">Fit dependent axis</span>
+ checkbox.
+ The names of the variables can also be changed.
+ Pressing the <span class="guilabel">Plot</span> button produces the graph shown in <a class="xref"
href="ch04.html#lineplot2-fig" title="Figura 4.2. Janela de desenho">Figura 4.2, “Janela de desenho”</a>.
+ </p><p>
+ The variables can be renamed by clicking the <span class="guilabel">Change variable
names...</span> button, which is useful if you wish to print or save the figure and don't want to use the
standard
+ names. Finally you can also avoid printing the legend and the axis labels completely,
+ which is also useful if printing or
+ saving, when the legend might simply be clutter.
+ </p><div class="figure"><a name="lineplot2-fig"></a><p class="title"><b>Figura 4.2. Janela de
desenho</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/line_plot_graph.png" alt="The graph produced."></div></div></div></div><br
class="figure-break"><p>
+ From here you can print out the plot, create encapsulated postscript
+ or a PNG version of the plot or change the zoom. If the dependent axis was
+ not set correctly you can have Genius fit it by finding out the extrema of
+ the graphed functions.
+ </p><p>
+ For plotting using the command line see the documentation of the
+ <a class="link" href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a>
function.
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch03s03.html">Anterior</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch04s02.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">To Open and Run a
Program </td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td
width="40%" align="right" valign="top"> Parametric Plots</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch04s02.html b/help/pt_BR/html/ch04s02.html
new file mode 100644
index 0000000..9e5dd26
--- /dev/null
+++ b/help/pt_BR/html/ch04s02.html
@@ -0,0 +1,21 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Parametric
Plots</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch04.html" title="Capítulo 4. Plotagem"><link
rel="prev" href="ch04.html" title="Capítulo 4. Plotagem"><link rel="next" href="ch04s03.html"
title="Slopefield Plots"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Parametric Plots</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch04.html">Anterior</a> </td><th width="60%" align="center">Capítulo 4. Plotagem</th><td width="20%"
align="right"> <a accesskey="n" href="ch04s03.html">Próxima</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-parametric-plots"></a>Parametric Plots</h2></div></div></div><p>
+ In the create plot window, you can also choose the <span class="guilabel">Parametric</span> notebook
+ tab to create two dimensional parametric plots. This way you can
+ plot a single parametric function. You can either specify the
+ points as <code class="varname">x</code> and <code class="varname">y</code>, or giving a single
complex number
+ as a function of the variable <code class="varname">t</code>.
+ The range of the variable <code class="varname">t</code> is given explicitly, and the function is
sampled
+ according to the given increment.
+ The <code class="varname">x</code> and <code class="varname">y</code> range can be set
+ automatically by turning on the <span class="guilabel">Fit dependent axis</span>
+ checkbox, or it can be specified explicitly.
+ See <a class="xref" href="ch04s02.html#paramplot-fig" title="Figura 4.3. Parametric Plot Tab">Figura
4.3, “Parametric Plot Tab”</a>.
+ </p><div class="figure"><a name="paramplot-fig"></a><p class="title"><b>Figura 4.3. Parametric Plot
Tab</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/parametric.png" alt="Parametric plotting tab in the Criar Traço
window."></div></div></div></div><br class="figure-break"><p>
+ An example of a parametric plot is given in
+ <a class="xref" href="ch04s02.html#paramplot2-fig" title="Figura 4.4. Parametric Plot">Figura 4.4,
“Parametric Plot”</a>.
+ Similar operations can be
+ done on such graphs as can be done on the other line plots.
+ For plotting using the command line see the documentation of the
+ <a class="link" href="ch11s20.html#gel-function-LinePlotParametric"><code
class="function">LinePlotParametric</code></a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotCParametric"><code
class="function">LinePlotCParametric</code></a> function.
+ </p><div class="figure"><a name="paramplot2-fig"></a><p class="title"><b>Figura 4.4. Parametric
Plot</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/parametric_graph.png" alt="Parametric plot produced"></div></div></div></div><br
class="figure-break"></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch04.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch04s03.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Capítulo
4. Plotagem </td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td
width="40%" align="right" valign="top"> Slopefield Plots</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch04s03.html b/help/pt_BR/html/ch04s03.html
new file mode 100644
index 0000000..9aaf03a
--- /dev/null
+++ b/help/pt_BR/html/ch04s03.html
@@ -0,0 +1,23 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Slopefield
Plots</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch04.html" title="Capítulo 4. Plotagem"><link
rel="prev" href="ch04s02.html" title="Parametric Plots"><link rel="next" href="ch04s04.html"
title="Vectorfield Plots"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Slopefield Plots</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch04s02.html">Anterior</a> </td><th width="60%" align="center">Capítulo 4. Plotagem</th><td width="20%"
align="right"> <a accesskey="n" href="ch04s04.html">Próxima</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><
a name="genius-slopefield-plots"></a>Slopefield Plots</h2></div></div></div><p>
+ In the create plot window, you can also choose the <span class="guilabel">Slope field</span> notebook
+ tab to create a two dimensional slope field plot.
+ Similar operations can be
+ done on such graphs as can be done on the other line plots.
+ For plotting using the command line see the documentation of the
+ <a class="link" href="ch11s20.html#gel-function-SlopefieldPlot"><code
class="function">SlopefieldPlot</code></a> function.
+ </p><p>
+ When a slope field is active, there is an extra <span class="guilabel">Solver</span> menu available,
+ through which you can bring up the solver dialog. Here you can have Genius plot specific
+ solutions for the given initial conditions. You can either specify initial conditions in the dialog,
+ or you can click on the plot directly to specify the initial point. While the solver dialog
+ is active, the zooming by clicking and dragging does not work. You have to close the dialog first
+ if you want to zoom using the mouse.
+ </p><p>
+ The solver uses the standard Runge-Kutta method.
+ The plots will stay on the screen until cleared. The solver will stop whenever it reaches the
boundary
+ of the plot window. Zooming does not change the limits or parameters of the solutions,
+ you will have to clear and redraw them with appropriate parameters.
+ You can also use the
+ <a class="link" href="ch11s20.html#gel-function-SlopefieldDrawSolution"><code
class="function">SlopefieldDrawSolution</code></a>
+ function to draw solutions from the command line or programs.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s02.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch04.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch04s04.html">Próxima</a></td></tr><tr><td width="40%" align="left"
valign="top">Parametric Plots </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Principal</a></td><td width="40%" align="right" valign="top"> Vectorfield
Plots</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch04s04.html b/help/pt_BR/html/ch04s04.html
new file mode 100644
index 0000000..5399885
--- /dev/null
+++ b/help/pt_BR/html/ch04s04.html
@@ -0,0 +1,27 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Vectorfield
Plots</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch04.html" title="Capítulo 4. Plotagem"><link
rel="prev" href="ch04s03.html" title="Slopefield Plots"><link rel="next" href="ch04s05.html" title="Surface
Plots"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Vectorfield Plots</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch04s03.html">Anterior</a> </td><th width="60%" align="center">Capítulo 4. Plotagem</th><td width="20%"
align="right"> <a accesskey="n" href="ch04s05.html">Próxima</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-vectorfield-plots"></a>Vectorfield Plots</h2></div></div></div><p>
+ In the create plot window, you can also choose the <span class="guilabel">Vector field</span> notebook
+ tab to create a two dimensional vector field plot.
+ Similar operations can be
+ done on such graphs as can be done on the other line plots.
+ For plotting using the command line see the documentation of the
+ <a class="link" href="ch11s20.html#gel-function-VectorfieldPlot"><code
class="function">VectorfieldPlot</code></a> function.
+ </p><p>
+ By default the direction and magnitude of the vector field is shown.
+ To only show direction and not the magnitude, check the appropriate
+ checkbox to normalize the arrow lengths.
+ </p><p>
+ When a vector field is active, there is an extra <span class="guilabel">Solver</span> menu available,
+ through which you can bring up the solver dialog. Here you can have Genius plot specific
+ solutions for the given initial conditions. You can either specify initial conditions in the dialog,
+ or you can click on the plot directly to specify the initial point. While the solver dialog
+ is active, the zooming by clicking and dragging does not work. You have to close the dialog first
+ if you want to zoom using the mouse.
+ </p><p>
+ The solver uses the standard Runge-Kutta method.
+ The plots will stay on the screen until cleared.
+ Zooming does not change the limits or parameters of the solutions,
+ you will have to clear and redraw them with appropriate parameters.
+ You can also use the
+ <a class="link" href="ch11s20.html#gel-function-VectorfieldDrawSolution"><code
class="function">VectorfieldDrawSolution</code></a>
+ function to draw solutions from the command line or programs.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s03.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch04.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch04s05.html">Próxima</a></td></tr><tr><td width="40%" align="left"
valign="top">Slopefield Plots </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Principal</a></td><td width="40%" align="right" valign="top"> Surface
Plots</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch04s05.html b/help/pt_BR/html/ch04s05.html
new file mode 100644
index 0000000..330df0d
--- /dev/null
+++ b/help/pt_BR/html/ch04s05.html
@@ -0,0 +1,28 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Surface
Plots</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch04.html" title="Capítulo 4. Plotagem"><link
rel="prev" href="ch04s04.html" title="Vectorfield Plots"><link rel="next" href="ch05.html" title="Capítulo 5.
GEL Basics"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Surface
Plots</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch04s04.html">Anterior</a> </td><th
width="60%" align="center">Capítulo 4. Plotagem</th><td width="20%" align="right"> <a accesskey="n"
href="ch05.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a nam
e="genius-surface-plots"></a>Surface Plots</h2></div></div></div><p>
+ Genius can also plot surfaces. Select the <span class="guilabel">Surface plot</span> tab in the
+ main notebook of the <span class="guilabel">Create Plot</span> window. Here you can specify a single
+ expression that should use either <code class="varname">x</code> and <code class="varname">y</code>
as real independent variables
+ or <code class="varname">z</code> as a complex variable (where <code class="varname">x</code> is the
real part of <code class="varname">z</code> and <code class="varname">y</code> is the
+ imaginary part). For example to plot the modulus of the cosine
+ function for complex parameters,
+ you could enter <strong class="userinput"><code>|cos(z)|</code></strong>. This would be
+ equivalent to <strong class="userinput"><code>|cos(x+1i*y)|</code></strong>.
+ See <a class="xref" href="ch04s05.html#surfaceplot-fig" title="Figura 4.5. Surface Plot">Figura 4.5,
“Surface Plot”</a>.
+ For plotting using the command line see the documentation of the
+ <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a> function.
+ </p><p>
+ The <code class="varname">z</code> range can be set automatically by turning on the <span
class="guilabel">Fit dependent axis</span>
+ checkbox. The variables can be renamed by clicking the <span class="guilabel">Change variable
names...</span> button, which is useful if you wish to print or save the figure and don't want to use the
standard
+ names. Finally you can also avoid printing the legend, which is also useful if printing or
+ saving, when the legend might simply be clutter.
+ </p><div class="figure"><a name="surfaceplot-fig"></a><p class="title"><b>Figura 4.5. Surface
Plot</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/surface_graph.png" alt="Modulus of the complex cosine function."></div></div></div></div><br
class="figure-break"><p>
+ In surface mode, left and right arrow keys on your keyboard will rotate the
+ view along the z axis. Alternatively you can rotate along any axis by
+ selecting <span class="guilabel">Rotate axis...</span> in the <span
class="guilabel">View</span>
+ menu. The <span class="guilabel">View</span> menu also has a top view mode which rotates the
+ graph so that the z axis is facing straight out, that is, we view the graph from the top
+ and get essentially just the colors that define the values of the function getting a
+ temperature plot of the function. Finally you should
+ try <span class="guilabel">Start rotate animation</span>, to start a continuous slow rotation.
+ This is especially good if using <span class="application">Genius Mathematics Tool</span> to
present to an audience.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s04.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch04.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Vectorfield
Plots </td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td
width="40%" align="right" valign="top"> Capítulo 5. GEL Basics</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch05.html b/help/pt_BR/html/ch05.html
new file mode 100644
index 0000000..b4b8b6c
--- /dev/null
+++ b/help/pt_BR/html/ch05.html
@@ -0,0 +1,126 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 5. GEL
Basics</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="index.html" title="Manual do Genius"><link
rel="prev" href="ch04s05.html" title="Surface Plots"><link rel="next" href="ch05s02.html" title="Using
Variables"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Capítulo
5. GEL Basics</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch04s05.html">Anterior</a>
</td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch05s02.html">Próxima</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-gel"></a>Capítul
o 5. GEL Basics</h1></div></div></div><div class="toc"><p><b>Índice</b></p><dl class="toc"><dt><span
class="sect1"><a href="ch05.html#genius-gel-values">Values</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-numbers">Números</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-booleans">Booleanos</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-strings">Strings</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-null">Null</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s02.html">Using Variables</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-setting">Setting Variables</a></span></dt><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-built-in">Built-in Variables</a></span></dt><dt><span
class="sect2"><a href="ch05s02.html#genius-gel-previous-result">Previous Result Variable</a></span></dt></dl>
</dd><dt><span class="sect1"><a href="ch05s03.html">Using Functions</a></span></dt><dd><dl><dt><span
class="sect2"><a href="ch05s03.html#genius-gel-functions-defining">Defining
Functions</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-variable-argument-lists">Variable Argument
Lists</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-passing-functions">Passing Functions to
Functions</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-operations">Operations on
Functions</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s04.html">Separator</a></span></dt><dt><span class="sect1"><a
href="ch05s05.html">Comments</a></span></dt><dt><span class="sect1"><a href="ch05s06.html">Modular
Evaluation</a></span></dt><dt><span class="sect1"><a href="ch05s07.html">List of GEL
Operators</a></span></dt></dl></div><p>
+ GEL stands for Genius Extension Language. It is the language you use
+ to write programs in Genius. A program in GEL is simply an
+ expression that evaluates to a number, a matrix, or another object
+ in GEL.
+ <span class="application">Genius Mathematics Tool</span> can be used as a simple calculator, or as a
+ powerful theoretical research tool. The syntax is meant to
+ have as shallow of a learning curve as possible, especially for use
+ as a calculator.
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-values"></a>Values</h2></div></div></div><p>
+ Values in GEL can be <a class="link" href="ch05.html#genius-gel-values-numbers"
title="Números">numbers</a>, <a class="link" href="ch05.html#genius-gel-values-booleans"
title="Booleanos">Booleans</a>, or <a class="link" href="ch05.html#genius-gel-values-strings"
title="Strings">strings</a>. GEL also treats
+<a class="link" href="ch08.html" title="Capítulo 8. Matrices in GEL">matrices</a> as values.
+ Values can be used in calculations, assigned to variables and returned from functions, among
other uses.
+ </p><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-numbers"></a>Números</h3></div></div></div><p>
+Integers are the first type of number in GEL. Integers are written in the normal way.
+</p><pre class="programlisting">1234
+</pre><p>
+Hexadecimal and octal numbers can be written using C notation. For example:
+</p><pre class="programlisting">0x123ABC
+01234
+</pre><p>
+Or you can type numbers in an arbitrary base using <code class="literal"><base>\<number></code>.
Digits higher than 10 use letters in a similar way to hexadecimal. For example, a number in base 23 could be
written:
+</p><pre class="programlisting">23\1234ABCD
+</pre><p>
+ </p><p>
+The second type of GEL number is rationals. Rationals are simply achieved by dividing two integers. So one
could write:
+</p><pre class="programlisting">3/4
+</pre><p>
+to get three quarters. Rationals also accept mixed fraction notation. So in order to get one and three
tenths you could write:
+</p><pre class="programlisting">1 3/10
+</pre><p>
+ </p><p>
+The next type of number is floating point. These are entered in a similar fashion to C notation. You can use
<code class="literal">E</code>, <code class="literal">e</code> or <code class="literal">@</code> as the
exponent delimiter. Note that using the exponent delimiter gives a float even if there is no decimal point in
the number. Examples:
+</p><pre class="programlisting">1.315
+7.887e77
+7.887e-77
+.3
+0.3
+77e5
+</pre><p>
+ When Genius prints a floating point number it will always append a
+ <code class="computeroutput">.0</code> even if the number is whole. This is to indicate that
+ floating point numbers are taken as imprecise quantities. When a number is written in the
+ scientific notation, it is always a floating point number and thus Genius does not
+ print the <code class="computeroutput">.0</code>.
+ </p><p>
+The final type of number in GEL is the complex numbers. You can enter a complex number as a sum of real and
imaginary parts. To add an imaginary part, append an <code class="literal">i</code>. Here are examples of
entering complex numbers:
+</p><pre class="programlisting">1+2i
+8.01i
+77*e^(1.3i)
+</pre><p>
+ </p><div class="important" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Importante</h3><p>
+When entering imaginary numbers, a number must be in front of the <code class="literal">i</code>. If you use
<code class="literal">i</code> by itself, Genius will interpret this as referring to the variable <code
class="varname">i</code>. If you need to refer to <code class="literal">i</code> by itself, use <code
class="literal">1i</code> instead.
+ </p><p>
+In order to use mixed fraction notation with imaginary numbers you must have the mixed fraction in
parentheses. (i.e., <strong class="userinput"><code>(1 2/5)i</code></strong>)
+ </p></div></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-booleans"></a>Booleanos</h3></div></div></div><p>
+Genius also supports native Boolean values. The two Boolean constants are
+defined as <code class="constant">true</code> and <code class="constant">false</code>; these
+identifiers can be used like any other variable. You can also use the
+identifiers <code class="constant">True</code>, <code class="constant">TRUE</code>,
+<code class="constant">False</code> and <code class="constant">FALSE</code> as aliases for the
+above.
+ </p><p>
+At any place where a Boolean expression is expected, you can use a Boolean
+value or any expression that produces either a number or a Boolean. If
+Genius needs to evaluate a number as a Boolean it will interpret
+0 as <code class="constant">false</code> and any other number as
+<code class="constant">true</code>.
+ </p><p>
+In addition, you can do arithmetic with Boolean values. For example:
+</p><pre class="programlisting">( (1 + true) - false ) * true
+</pre><p>
+is the same as:
+</p><pre class="programlisting">( (true or true) or not false ) and true
+</pre><p>
+Only addition, subtraction and multiplication are supported. If you mix numbers with Booleans in an
expression then the numbers are converted to Booleans as described above. This means that, for example:
+</p><pre class="programlisting">1 == true
+</pre><p>
+always evaluates to <code class="constant">true</code> since 1 will be converted to <code
class="constant">true</code> before being compared to <code class="constant">true</code>.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-strings"></a>Strings</h3></div></div></div><p>
+Like numbers and Booleans, strings in GEL can be stored as values inside variables and passed to functions.
You can also concatenate a string with another value using the plus operator. For example:
+</p><pre class="programlisting">a=2+3;"The result is: "+a
+</pre><p>
+will create the string:
+</p><pre class="programlisting">The result is: 5
+</pre><p>
+You can also use C-like escape sequences such as <code class="literal">\n</code>,<code
class="literal">\t</code>,<code class="literal">\b</code>,<code class="literal">\a</code> and <code
class="literal">\r</code>. To get a <code class="literal">\</code> or <code class="literal">"</code> into the
string you can quote it with a <code class="literal">\</code>. For example:
+</p><pre class="programlisting">"Slash: \\ Quotes: \" Tabs: \t1\t2\t3"
+</pre><p>
+will make a string:
+</p><pre class="programlisting">Slash: \ Quotes: " Tabs: 1 2 3
+</pre><p>
+Do note however that when a string is returned from a function, escapes are
+quoted, so that the output can be used as input. If you wish to print the
+string as it is (without escapes), use the
+<a class="link" href="ch11s02.html#gel-function-print"><code class="function">print</code></a>
+or
+<a class="link" href="ch11s02.html#gel-function-printn"><code class="function">printn</code></a> functions.
+ </p><p>
+ In addition, you can use the library function <a class="link"
href="ch11s02.html#gel-function-string"><code class="function">string</code></a> to convert anything to a
string. For example:
+</p><pre class="programlisting">string(22)
+</pre><p>
+will return
+</p><pre class="programlisting">"22"
+</pre><p>
+Strings can also be compared with <code class="literal">==</code> (equal), <code class="literal">!=</code>
(not equal) and <code class="literal"><=></code> (comparison) operators
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-null"></a>Null</h3></div></div></div><p>
+There is a special value called
+<code class="constant">null</code>. No operations can be performed on
+it, and nothing is printed when it is returned. Therefore,
+<code class="constant">null</code> is useful when you do not want output from an
+expression. The value <code class="constant">null</code> can be obtained as an expression when you
+type <code class="literal">.</code>, the constant <code class="constant">null</code> or nothing.
+By nothing we mean that if you end an expression with
+a separator <code class="literal">;</code>, it is equivalent to ending it with a
+separator followed by a <code class="constant">null</code>.
+ </p><p>
+Example:
+</p><pre class="programlisting">x=5;.
+x=5;
+</pre><p>
+ </p><p>
+Some functions return <code class="constant">null</code> when no value can be returned
+or an error happened. Also <code class="constant">null</code> is used as an empty vector
+or matrix, or an empty reference.
+</p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s05.html">Anterior</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch05s02.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Surface Plots </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td width="40%" align="right"
valign="top"> Using Variables</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch05s02.html b/help/pt_BR/html/ch05s02.html
new file mode 100644
index 0000000..3f00356
--- /dev/null
+++ b/help/pt_BR/html/ch05s02.html
@@ -0,0 +1,45 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Using
Variables</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch05.html" title="Capítulo 5. GEL
Basics"><link rel="prev" href="ch05.html" title="Capítulo 5. GEL Basics"><link rel="next" href="ch05s03.html"
title="Using Functions"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Using Variables</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05.html">Anterior</a> </td><th width="60%" align="center">Capítulo 5. GEL Basics</th><td width="20%"
align="right"> <a accesskey="n" href="ch05s03.html">Próxima</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="genius-gel-variables"></a>Using Variables</h2></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">VariableName
+</pre><p>
+Example:
+</p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>e</code></strong>
+= 2.71828182846
+</pre><p>
+ </p><p>
+To evaluate a variable by itself, just enter the name of the variable. This will return the value of the
variable. You can use a variable anywhere you would normally use a number or string. In addition, variables
are necessary when defining functions that take arguments (see <a class="xref"
href="ch05s03.html#genius-gel-functions-defining" title="Defining Functions">“Defining Functions”</a>).
+ </p><div class="tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Using Tab
completion</h3><p>
+You can use Tab completion to get Genius to complete variable names for you. Try typing the first few
letters of the name and pressing <strong class="userinput"><code>Tab</code></strong>.
+ </p></div><div class="important" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Variable names are case sensitive</h3><p>
+The names of variables are case sensitive. That means that variables named <code
class="varname">hello</code>, <code class="varname">HELLO</code> and <code class="varname">Hello</code> are
all different variables.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-variables-setting"></a>Setting Variables</h3></div></div></div><p>
+Syntax:
+</p><pre class="programlisting"><identifier> = <value>
+<identifier> := <value>
+</pre><p>
+Example:
+</p><pre class="programlisting">x = 3
+x := 3
+</pre><p>
+ </p><p>
+To assign a value to a variable, use the <code class="literal">=</code> or <code class="literal">:=</code>
operators. These operators set the value of the variable and return the value you set, so you can do things
like
+</p><pre class="programlisting">a = b = 5
+</pre><p>
+This will set <code class="varname">b</code> to 5 and then also set <code class="varname">a</code> to 5.
+ </p><p>
+The <code class="literal">=</code> and <code class="literal">:=</code> operators can both be used to set
variables. The difference between them is that the <code class="literal">:=</code> operator always acts as an
assignment operator, whereas the <code class="literal">=</code> operator may be interpreted as testing for
equality when used in a context where a Boolean expression is expected.
+ </p><p>
+ For more information about the scope of variables, that is when are what variables visible, see <a
class="xref" href="ch06s05.html" title="Global Variables and Scope of Variables">“Global Variables and Scope
of Variables”</a>.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-variables-built-in"></a>Built-in Variables</h3></div></div></div><p>
+GEL has a number of built-in ‘variables’, such as
+<code class="varname">e</code>, <code class="varname">pi</code> or <code class="varname">GoldenRatio</code>.
These are widely used constants with a preset value, and
+they cannot be assigned new values.
+There are a number of other built-in variables.
+See <a class="xref" href="ch11s04.html" title="Constantes">“Constantes”</a> for a full list. Note that
<code class="varname">i</code> is not by default
+the square root of negative one (the imaginary number), and is undefined to allow its use as a counter. If
you wish to write the imaginary number you need to
+use <strong class="userinput"><code>1i</code></strong>.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-previous-result"></a>Previous Result Variable</h3></div></div></div><p>
+The <code class="varname">Ans</code> and <code class="varname">ans</code> variables can be used to get the
result of the last expression. For example, if you had performed some calculation, to add 389 to the result
you could do:
+</p><pre class="programlisting">Ans+389
+</pre><p>
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05s03.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Capítulo
5. GEL Basics </td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td
width="40%" align="right" valign="top"> Using Functions</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch05s03.html b/help/pt_BR/html/ch05s03.html
new file mode 100644
index 0000000..1804c0e
--- /dev/null
+++ b/help/pt_BR/html/ch05s03.html
@@ -0,0 +1,74 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Using
Functions</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch05.html" title="Capítulo 5. GEL
Basics"><link rel="prev" href="ch05s02.html" title="Using Variables"><link rel="next" href="ch05s04.html"
title="Separator"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Using Functions</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s02.html">Anterior</a> </td><th width="60%" align="center">Capítulo 5. GEL Basics</th><td
width="20%" align="right"> <a accesskey="n" href="ch05s04.html">Próxima</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name=
"genius-gel-functions"></a>Using Functions</h2></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">FunctionName(argument1, argument2, ...)
+</pre><p>
+Example:
+</p><pre class="programlisting">Factorial(5)
+cos(2*pi)
+gcd(921,317)
+</pre><p>
+
+To evaluate a function, enter the name of the function, followed by the arguments (if any) to the function
in parentheses. This will return the result of applying the function to its arguments. The number of
arguments to the function is, of course, different for each function.
+ </p><p>
+ There are many built-in functions, such as <a class="link"
href="ch11s06.html#gel-function-sin"><code class="function">sin</code></a>, <a class="link"
href="ch11s06.html#gel-function-cos"><code class="function">cos</code></a> and <a class="link"
href="ch11s06.html#gel-function-tan"><code class="function">tan</code></a>. You can use the <a class="link"
href="ch11.html#gel-command-help"><code class="function">help</code></a> built-in command to get a list of
available functions, or see <a class="xref" href="ch11.html" title="Capítulo 11. List of GEL
functions">Capítulo 11, <i>List of GEL functions</i></a> for a full listing.
+ </p><div class="tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Using Tab
completion</h3><p>
+You can use Tab completion to get Genius to complete function names for you. Try typing the first few
letters of the name and pressing <strong class="userinput"><code>Tab</code></strong>.
+ </p></div><div class="important" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Function names are case sensitive</h3><p>
+The names of functions are case sensitive. That means that functions named <code
class="function">dosomething</code>, <code class="function">DOSOMETHING</code> and <code
class="function">DoSomething</code> are all different functions.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-defining"></a>Defining Functions</h3></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">function <identifier>(<comma separated arguments>) =
<function body>
+<identifier> = (`() = <function body>)
+</pre><p>
+The <code class="literal">`</code> is the backquote character, and signifies an anonymous function. By
setting it to a variable name you effectively define a function.
+ </p><p>
+A function takes zero or more comma separated arguments, and returns the result of the function body.
Defining your own functions is primarily a matter of convenience; one possible use is to have sets of
functions defined in GEL files that Genius can load in order to make them available.
+Example:
+</p><pre class="programlisting">function addup(a,b,c) = a+b+c
+</pre><p>
+then <strong class="userinput"><code>addup(1,4,9)</code></strong> yields 14
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-variable-argument-lists"></a>Variable Argument Lists</h3></div></div></div><p>
+If you include <code class="literal">...</code> after the last argument name in the function declaration,
then Genius will allow any number of arguments to be passed in place of that argument. If no arguments were
passed then that argument will be set to <code class="constant">null</code>. Otherwise, it will be a
horizontal vector containing all the arguments. For example:
+</p><pre class="programlisting">function f(a,b...) = b
+</pre><p>
+Then <strong class="userinput"><code>f(1,2,3)</code></strong> yields <code
class="computeroutput">[2,3]</code>, while <strong class="userinput"><code>f(1)</code></strong> yields a
<code class="constant">null</code>.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-passing-functions"></a>Passing Functions to Functions</h3></div></div></div><p>
+In Genius, it is possible to pass a function as an argument to another function. This can be done using
either ‘function nodes’ or anonymous functions.
+ </p><p>
+If you do not enter the parentheses after a function name, instead of being evaluated, the function will
instead be returned as a ‘function node’. The function node can then be passed to another function.
+Example:
+</p><pre class="programlisting">function f(a,b) = a(b)+1;
+function b(x) = x*x;
+f(b,2)
+</pre><p>
+ </p><p>
+To pass functions that are not defined,
+you can use an anonymous function (see <a class="xref" href="ch05s03.html#genius-gel-functions-defining"
title="Defining Functions">“Defining Functions”</a>). That is, you want to pass a function without giving it
a name.
+Syntax:
+</p><pre class="programlisting">function(<comma separated arguments>) = <function body>
+`(<comma separated arguments>) = <function body>
+</pre><p>
+Example:
+</p><pre class="programlisting">function f(a,b) = a(b)+1;
+f(`(x) = x*x,2)
+</pre><p>
+This will return 5.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-operations"></a>Operations on Functions</h3></div></div></div><p>
+ Some functions allow arithmetic operations, and some single argument functions such as <a
class="link" href="ch11s05.html#gel-function-exp"><code class="function">exp</code></a> or <a class="link"
href="ch11s05.html#gel-function-ln"><code class="function">ln</code></a>, to operate on the function. For
example,
+</p><pre class="programlisting">exp(sin*cos+4)
+</pre><p>
+will return a function that takes <code class="varname">x</code> and returns <strong
class="userinput"><code>exp(sin(x)*cos(x)+4)</code></strong>. It is functionally equivalent
+to typing
+</p><pre class="programlisting">`(x) = exp(sin(x)*cos(x)+4)
+</pre><p>
+
+This operation can be useful when quickly defining functions. For example to create a function called <code
class="varname">f</code>
+to perform the above operation, you can just type:
+</p><pre class="programlisting">f = exp(sin*cos+4)
+</pre><p>
+It can also be used in plotting. For example, to plot sin squared you can enter:
+</p><pre class="programlisting">LinePlot(sin^2)
+</pre><p>
+ </p><div class="warning" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Atenção</h3><p>
+Not all functions can be used in this way. For example, when you use a binary operation the functions must
take the same number of arguments.
+ </p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch05s02.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch05.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05s04.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Using
Variables </td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td
width="40%" align="right" valign="top"> Separator</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch05s04.html b/help/pt_BR/html/ch05s04.html
new file mode 100644
index 0000000..d629cc8
--- /dev/null
+++ b/help/pt_BR/html/ch05s04.html
@@ -0,0 +1,28 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Separator</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
do Genius"><link rel="up" href="ch05.html" title="Capítulo 5. GEL Basics"><link rel="prev"
href="ch05s03.html" title="Using Functions"><link rel="next" href="ch05s05.html"
title="Comments"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Separator</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s03.html">Anterior</a> </td><th width="60%" align="center">Capítulo 5. GEL Basics</th><td
width="20%" align="right"> <a accesskey="n" href="ch05s05.html">Próxima</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-s
eparator"></a>Separator</h2></div></div></div><p>
+ GEL is somewhat different from other languages in how it deals with multiple commands and
functions.
+ In GEL you must chain commands together with a separator operator.
+That is, if you want to type more than one expression you have to use
+the <code class="literal">;</code> operator in between the expressions. This is
+a way in which both expressions are evaluated and the result of the second one (or the last one
+if there is more than two expressions) is returned.
+Suppose you type the following:
+</p><pre class="programlisting">3 ; 5
+</pre><p>
+This expression will yield 5.
+ </p><p>
+This will require some parenthesizing to make it unambiguous sometimes,
+especially if the <code class="literal">;</code> is not the top most primitive. This slightly differs from
+other programming languages where the <code class="literal">;</code> is a terminator of statements, whereas
+in GEL it’s actually a binary operator. If you are familiar with pascal
+this should be second nature. However genius can let you pretend it is a
+terminator to some degree. If a <code class="literal">;</code> is found at the end of a parenthesis or a
block,
+genius will append a null to it as if you would have written
+<strong class="userinput"><code>;null</code></strong>.
+This is useful in case you do not want to return a value from say a loop,
+or if you handle the return differently. Note that it will slightly slow down
+the code if it is executed too often as there is one more operator involved.
+ </p><p>
+ If you are typing expressions in a program you do not have to add a semicolon. In this case
+ genius will simply print the return value whenever it executes the expression. However, do
note that if you are defining a
+ function, the body of the function is a single expression.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s03.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05s05.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Using
Functions </td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td
width="40%" align="right" valign="top"> Comments</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch05s05.html b/help/pt_BR/html/ch05s05.html
new file mode 100644
index 0000000..1f1f258
--- /dev/null
+++ b/help/pt_BR/html/ch05s05.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Comments</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
do Genius"><link rel="up" href="ch05.html" title="Capítulo 5. GEL Basics"><link rel="prev"
href="ch05s04.html" title="Separator"><link rel="next" href="ch05s06.html" title="Modular
Evaluation"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Comments</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s04.html">Anterior</a> </td><th width="60%" align="center">Capítulo 5. GEL Basics</th><td
width="20%" align="right"> <a accesskey="n" href="ch05s06.html">Próxima</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-gel
-comments"></a>Comments</h2></div></div></div><p>
+ GEL is similar to other scripting languages in that <code class="literal">#</code> denotes
+ a comment, that is text that is not meant to be evaluated. Everything beyond the
+ pound sign till the end of line will just be ignored. For example,
+</p><pre class="programlisting"># This is just a comment
+# every line in a comment must have its own pound sign
+# in the next line we set x to the value 123
+x=123;
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s04.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05s06.html">Próxima</a></td></tr><tr><td width="40%" align="left"
valign="top">Separator </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Principal</a></td><td width="40%" align="right" valign="top"> Modular
Evaluation</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch05s06.html b/help/pt_BR/html/ch05s06.html
new file mode 100644
index 0000000..f4e9915
--- /dev/null
+++ b/help/pt_BR/html/ch05s06.html
@@ -0,0 +1,50 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Modular
Evaluation</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch05.html" title="Capítulo 5. GEL
Basics"><link rel="prev" href="ch05s05.html" title="Comments"><link rel="next" href="ch05s07.html"
title="List of GEL Operators"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Modular Evaluation</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s05.html">Anterior</a> </td><th width="60%" align="center">Capítulo 5. GEL Basics</th><td
width="20%" align="right"> <a accesskey="n" href="ch05s07.html">Próxima</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: bot
h"><a name="genius-gel-modular-evaluation"></a>Modular Evaluation</h2></div></div></div><p>
+ Genius implements modular arithmetic.
+To use it you just add "mod <integer>" after
+the expression. Example:
+<strong class="userinput"><code>2^(5!) * 3^(6!) mod 5</code></strong>
+It could be possible to do modular arithmetic by computing with integers and then modding in the end with
+the <code class="literal">%</code> operator, which simply gives the remainder, but
+that may be time consuming if not impossible when working with larger numbers.
+For example, <strong class="userinput"><code>10^(10^10) % 6</code></strong> will simply not work (the
exponent
+will be too large), while
+<strong class="userinput"><code>10^(10^10) mod 6</code></strong> is instantaneous. The first expression
first tries to compute the integer
+<strong class="userinput"><code>10^(10^10)</code></strong> and then find remainder after division by 6,
while the second expression evaluates
+everything modulo 6 to begin with.
+ </p><p>
+You can calculate the inverses of numbers mod some integer by just using
+rational numbers (of course the inverse has to exist).
+Examples:
+</p><pre class="programlisting">10^-1 mod 101
+1/10 mod 101</pre><p>
+You can also do modular evaluation with matrices including taking inverses,
+powers and dividing.
+Example:
+</p><pre class="programlisting">A = [1,2;3,4]
+B = A^-1 mod 5
+A*B mod 5</pre><p>
+This should yield the identity matrix as B will be the inverse of A mod 5.
+ </p><p>
+Some functions such as
+<a class="link" href="ch11s05.html#gel-function-sqrt"><code class="function">sqrt</code></a> or
+<a class="link" href="ch11s05.html#gel-function-log"><code class="function">log</code></a>
+work in a different way when in modulo mode. These will then work like their
+discrete versions working within the ring of integers you selected. For
+example:
+</p><pre class="programlisting">genius> sqrt(4) mod 7
+=
+[2, 5]
+genius> 2*2 mod 7
+= 4</pre><p>
+ <code class="function">sqrt</code> will actually return all the possible square
+ roots.
+ </p><p>
+ Do not chain mod operators, simply place it at the end of the computation, all computations in
the expression on the left
+ will be carried out in mod arithmetic. If you place a mod inside
+ a mod, you will get unexpected results. If you simply want to
+ mod a single number and control exactly when remainders are
+ taken, best to use the <code class="literal">%</code> operator. When you
+ need to chain several expressions in modular arithmetic with
+ different divisors, it may be best to just split up the expression into several and use
+ temporary variables to avoid a mod inside a mod.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s05.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05s07.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Comments
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td width="40%"
align="right" valign="top"> List of GEL Operators</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch05s07.html b/help/pt_BR/html/ch05s07.html
new file mode 100644
index 0000000..edce2a1
--- /dev/null
+++ b/help/pt_BR/html/ch05s07.html
@@ -0,0 +1,247 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>List of GEL
Operators</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch05.html" title="Capítulo 5. GEL
Basics"><link rel="prev" href="ch05s06.html" title="Modular Evaluation"><link rel="next" href="ch06.html"
title="Capítulo 6. Programming with GEL"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">List of GEL Operators</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch05s06.html">Anterior</a> </td><th width="60%" align="center">Capítulo 5. GEL
Basics</th><td width="20%" align="right"> <a accesskey="n"
href="ch06.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="ti
tle" style="clear: both"><a name="genius-gel-operator-list"></a>List of GEL
Operators</h2></div></div></div><p>
+ Everything in GEL is really just an expression. Expressions are stringed together with
+ different operators. As we have seen, even the separator is simply a binary operator
+ in GEL. Here is a list of the operators in GEL.
+ </p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><strong
class="userinput"><code>a;b</code></strong></span></dt><dd><p>
+ The separator, just evaluates both
+ <code class="varname">a</code> and
+ <code class="varname">b</code>,
+ but returns only the result of
+ <code class="varname">b</code>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a=b</code></strong></span></dt><dd><p>
+ The assignment operator. This assigns <code class="varname">b</code> to
+<code class="varname">a</code> (<code class="varname">a</code> must be a valid <a class="link"
href="ch06s09.html" title="Lvalues">lvalue</a>) (note however that this operator
+may be translated to <code class="literal">==</code> if used in a place where boolean
+expression is expected)
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a:=b</code></strong></span></dt><dd><p>
+ The assignment operator. Assigns <code class="varname">b</code> to
+<code class="varname">a</code> (<code class="varname">a</code> must be a valid <a class="link"
href="ch06s09.html" title="Lvalues">lvalue</a>). This is
+different from <code class="literal">=</code> because it never gets translated to a
+<code class="literal">==</code>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>|a|</code></strong></span></dt><dd><p>
+ Absolute value.
+ In case the expression is a complex number the result will be the modulus
+(distance from the origin). For example:
+<strong class="userinput"><code>|3 * e^(1i*pi)|</code></strong>
+returns 3.
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/AbsoluteValue.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a^b</code></strong></span></dt><dd><p>
+ Exponentiation, raises <code class="varname">a</code> to the <code class="varname">b</code>th
power.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a.^b</code></strong></span></dt><dd><p>
+ Element by element exponentiation. Raise each element of a matrix
+ <code class="varname">a</code> to the <code class="varname">b</code>th power. Or if
+ <code class="varname">b</code> is a matrix of the same size as
+ <code class="varname">a</code>, then do the operation element by element.
+ If <code class="varname">a</code> is a number and <code class="varname">b</code> is a
+ matrix then it creates matrix of the same size as
+ <code class="varname">b</code> with <code class="varname">a</code> raised to all the
+ different powers in <code class="varname">b</code>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a+b</code></strong></span></dt><dd><p>
+ Addition. Adds two numbers, matrices, functions or strings. If
+ you add a string to anything the result will just be a string. If one is
+ a square matrix and the other a number, then the number is multiplied by
+ the identity matrix.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a-b</code></strong></span></dt><dd><p>
+ Subtraction. Subtract two numbers, matrices or functions.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a*b</code></strong></span></dt><dd><p>
+ Multiplication. This is the normal matrix multiplication.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a.*b</code></strong></span></dt><dd><p>
+ Element by element multiplication if <code class="varname">a</code> and
+ <code class="varname">b</code> are matrices.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a/b</code></strong></span></dt><dd><p>
+ Division. When <code class="varname">a</code> and <code class="varname">b</code> are just
numbers
+ this is the normal division. When they are matrices, then this is
+ equivalent to <strong class="userinput"><code>a*b^-1</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a./b</code></strong></span></dt><dd><p>
+ Element by element division. Same as <strong class="userinput"><code>a/b</code></strong>
for
+ numbers, but operates element by element on matrices.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a\b</code></strong></span></dt><dd><p>
+ Back division. That is this is the same as <strong class="userinput"><code>b/a</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a.\b</code></strong></span></dt><dd><p>
+ Element by element back division.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a%b</code></strong></span></dt><dd><p>
+ The mod operator. This does not turn on the <a class="link" href="ch05s06.html" title="Modular
Evaluation">modular mode</a>, but
+ just returns the remainder of <strong class="userinput"><code>a/b</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a.%b</code></strong></span></dt><dd><p>
+ Element by element the mod operator. Returns the remainder
+ after element by element integer <strong class="userinput"><code>a./b</code></strong>.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a mod
b</code></strong></span></dt><dd><p>
+ Modular evaluation operator. The expression <code class="varname">a</code>
+ is evaluated modulo <code class="varname">b</code>. See <a class="xref" href="ch05s06.html"
title="Modular Evaluation">“Modular Evaluation”</a>.
+ Some functions and operators behave differently modulo an integer.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a!</code></strong></span></dt><dd><p>
+ Factorial operator. This is like
+ <strong class="userinput"><code>1*...*(n-2)*(n-1)*n</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a!!</code></strong></span></dt><dd><p>
+ Double factorial operator. This is like
+ <strong class="userinput"><code>1*...*(n-4)*(n-2)*n</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a==b</code></strong></span></dt><dd><p>
+ Equality operator.
+ Returns <code class="constant">true</code> or <code class="constant">false</code>
+ depending on <code class="varname">a</code> and <code class="varname">b</code> being equal or
not.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a!=b</code></strong></span></dt><dd><p>
+ Inequality operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> does not
+ equal <code class="varname">b</code> else returns <code class="constant">false</code>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a<>b</code></strong></span></dt><dd><p>
+ Alternative inequality operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> does not
+ equal <code class="varname">b</code> else returns <code class="constant">false</code>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a<=b</code></strong></span></dt><dd><p>
+ Less than or equal operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> is
+ less than or equal to
+ <code class="varname">b</code> else returns <code class="constant">false</code>.
+ These can be chained as in <strong class="userinput"><code>a <= b <= c</code></strong> (can
+ also be combined with the less than operator).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a>=b</code></strong></span></dt><dd><p>
+ Greater than or equal operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> is
+ greater than or equal to
+ <code class="varname">b</code> else returns <code class="constant">false</code>.
+ These can be chained as in <strong class="userinput"><code>a >= b >= c</code></strong>
+ (can also be combine with the greater than operator).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a<b</code></strong></span></dt><dd><p>
+ Less than operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> is
+ less than
+ <code class="varname">b</code> else returns <code class="constant">false</code>.
+ These can be chained as in <strong class="userinput"><code>a < b < c</code></strong>
+ (can also be combine with the less than or equal to operator).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a>b</code></strong></span></dt><dd><p>
+ Greater than operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> is
+ greater than
+ <code class="varname">b</code> else returns <code class="constant">false</code>.
+ These can be chained as in <strong class="userinput"><code>a > b > c</code></strong>
+ (can also be combine with the greater than or equal to operator).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a<=>b</code></strong></span></dt><dd><p>
+ Comparison operator. If <code class="varname">a</code> is equal to
+ <code class="varname">b</code> it returns 0, if <code class="varname">a</code> is less
+ than <code class="varname">b</code> it returns -1 and if
+ <code class="varname">a</code> is greater than <code class="varname">b</code> it
+ returns 1.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a and
b</code></strong></span></dt><dd><p>
+ Logical and. Returns true if both
+ <code class="varname">a</code> and <code class="varname">b</code> are true,
+ else returns false. If given numbers, nonzero numbers
+ are treated as true.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a or
b</code></strong></span></dt><dd><p>
+ Logical or.
+ Returns true if either
+ <code class="varname">a</code> or <code class="varname">b</code> is true,
+ else returns false. If given numbers, nonzero numbers
+ are treated as true.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a xor
b</code></strong></span></dt><dd><p>
+ Logical xor.
+ Returns true exactly one of
+ <code class="varname">a</code> or <code class="varname">b</code> is true,
+ else returns false. If given numbers, nonzero numbers
+ are treated as true.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>not
a</code></strong></span></dt><dd><p>
+ Logical not. Returns the logical negation of <code class="varname">a</code>
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>-a</code></strong></span></dt><dd><p>
+ Negation operator. Returns the negative of a number or a matrix (works element-wise on a
matrix).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>&a</code></strong></span></dt><dd><p>
+ Variable referencing (to pass a reference to a variable).
+ See <a class="xref" href="ch06s08.html" title="References">“References”</a>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>*a</code></strong></span></dt><dd><p>
+ Variable dereferencing (to access a referenced variable).
+ See <a class="xref" href="ch06s08.html" title="References">“References”</a>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a'</code></strong></span></dt><dd><p>
+ Matrix conjugate transpose. That is, rows and columns get swapped and we take complex
conjugate of all entries. That is
+ if the i,j element of <code class="varname">a</code> is x+iy, then the j,i element of
<strong class="userinput"><code>a'</code></strong> is x-iy.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a.'</code></strong></span></dt><dd><p>
+ Matrix transpose, does not conjugate the entries. That is,
+ the i,j element of <code class="varname">a</code> becomes the j,i element of <strong
class="userinput"><code>a.'</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,c)</code></strong></span></dt><dd><p>
+ Get element of a matrix in row <code class="varname">b</code> and column
+ <code class="varname">c</code>. If <code class="varname">b</code>,
+ <code class="varname">c</code> are vectors, then this gets the corresponding
+ rows columns or submatrices.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,)</code></strong></span></dt><dd><p>
+ Get row of a matrix (or multiple rows if <code class="varname">b</code> is a vector).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,:)</code></strong></span></dt><dd><p>
+ Same as above.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(,c)</code></strong></span></dt><dd><p>
+ Get column of a matrix (or columns if <code class="varname">c</code> is a
+ vector).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(:,c)</code></strong></span></dt><dd><p>
+ Same as above.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b)</code></strong></span></dt><dd><p>
+ Get an element from a matrix treating it as a vector. This will
+ traverse the matrix row-wise.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a:b</code></strong></span></dt><dd><p>
+ Build a vector from <code class="varname">a</code> to <code class="varname">b</code> (or
specify a row, column region for the <code class="literal">@</code> operator). For example to get rows 2 to
4 of matrix <code class="varname">A</code> we could do
+ </p><pre class="programlisting">A@(2:4,)
+ </pre><p>
+ as <strong class="userinput"><code>2:4</code></strong> will return a vector
+ <strong class="userinput"><code>[2,3,4]</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a:b:c</code></strong></span></dt><dd><p>
+ Build a vector from <code class="varname">a</code> to <code class="varname">c</code>
+ with <code class="varname">b</code> as a step. That is for example
+ </p><pre class="programlisting">genius> 1:2:9
+=
+`[1, 3, 5, 7, 9]
+</pre><p>
+ </p><p>
+ When the numbers involved are floating point numbers, for example
+ <strong class="userinput"><code>1.0:0.4:3.0</code></strong>, the output is what is expected
+ even though adding 0.4 to 1.0 five times is actually just slightly
+ more than 3.0 due to the way that floating point numbers are
+ stored in base 2 (there is no 0.4, the actual number stored is
+ just ever so slightly bigger). The way this is handled is the
+ same as in the for, sum, and prod loops. If the end is within
+ <strong class="userinput"><code>2^-20</code></strong> times the step size of the endpoint,
+ the endpoint is used and we assume there were roundoff errors.
+ This is not perfect, but it handles the majority of the cases.
+ This check is done only from version 1.0.18 onwards, so execution
+ of your code may differ on older versions. If you want to avoid
+ dealing with this issue, use actual rational numbers, possibly
+ using the <code class="function">float</code> if you wish to get floating
+ point numbers in the end. For example
+ <strong class="userinput"><code>1:2/5:3</code></strong> does the right thing and
+ <strong class="userinput"><code>float(1:2/5:3)</code></strong> even gives you floating
+ point numbers and is ever so slightly more precise than
+ <strong class="userinput"><code>1.0:0.4:3.0</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>(a)i</code></strong></span></dt><dd><p>
+ Make a imaginary number (multiply <code class="varname">a</code> by the
+ imaginary). Note that normally the number <code class="varname">i</code> is
+ written as <strong class="userinput"><code>1i</code></strong>. So the above is equal to
+ </p><pre class="programlisting">(a)*1i
+ </pre><p>
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>`a</code></strong></span></dt><dd><p>
+ Quote an identifier so that it doesn't get evaluated. Or
+ quote a matrix so that it doesn't get expanded.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a swapwith
b</code></strong></span></dt><dd><p>
+ Swap value of <code class="varname">a</code> with the value
+ of <code class="varname">b</code>. Currently does not operate
+ on ranges of matrix elements.
+ It returns <code class="constant">null</code>.
+ Available from version 1.0.13.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>increment
a</code></strong></span></dt><dd><p>
+ Increment the variable <code class="varname">a</code> by 1. If
+ <code class="varname">a</code> is a matrix, then increment each element.
+ This is equivalent to <strong class="userinput"><code>a=a+1</code></strong>, but
+ it is somewhat faster. It returns <code class="constant">null</code>.
+ Available from version 1.0.13.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>increment a by
b</code></strong></span></dt><dd><p>
+ Increment the variable <code class="varname">a</code> by <code class="varname">b</code>.
If
+ <code class="varname">a</code> is a matrix, then increment each element.
+ This is equivalent to <strong class="userinput"><code>a=a+b</code></strong>, but
+ it is somewhat faster. It returns <code class="constant">null</code>.
+ Available from version 1.0.13.
+ </p></dd></dl></div><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Nota</h3><p>
+The @() operator makes the : operator most useful. With this you can specify regions of a matrix. So that
a@(2:4,6) is the rows 2,3,4 of the column 6. Or a@(,1:2) will get you the first two columns of a matrix. You
can also assign to the @() operator, as long as the right value is a matrix that matches the region in size,
or if it is any other type of value.
+</p></div><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Nota</h3><p>
+The comparison operators (except for the <=> operator, which behaves normally), are not strictly
binary operators, they can in fact be grouped in the normal mathematical way, e.g.: (1<x<=y<5) is a
legal boolean expression and means just what it should, that is (1<x and x≤y and y<5)
+</p></div><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Nota</h3><p>
+The unitary minus operates in a different fashion depending on where it
+appears. If it appears before a number it binds very closely, if it appears in
+front of an expression it binds less than the power and factorial operators.
+So for example <strong class="userinput"><code>-1^k</code></strong> is really <strong
class="userinput"><code>(-1)^k</code></strong>,
+but <strong class="userinput"><code>-foo(1)^k</code></strong> is really <strong
class="userinput"><code>-(foo(1)^k)</code></strong>. So
+be careful how you use it and if in doubt, add parentheses.
+</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s06.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Modular
Evaluation </td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td
width="40%" align="right" valign="top"> Capítulo 6. Programming with GEL</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch06.html b/help/pt_BR/html/ch06.html
new file mode 100644
index 0000000..c6381db
--- /dev/null
+++ b/help/pt_BR/html/ch06.html
@@ -0,0 +1,19 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 6.
Programming with GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="index.html" title="Manual do Genius"><link
rel="prev" href="ch05s07.html" title="List of GEL Operators"><link rel="next" href="ch06s02.html"
title="Loops"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Capítulo
6. Programming with GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s07.html">Anterior</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch06s02.html">Próxima</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius
-gel-programming"></a>Capítulo 6. Programming with GEL</h1></div></div></div><div
class="toc"><p><b>Índice</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch06.html#genius-gel-conditionals">Conditionals</a></span></dt><dt><span class="sect1"><a
href="ch06s02.html">Loops</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-while">While Loops</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-for">For Loops</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-foreach">Foreach Loops</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-break-continue">Break and Continue</a></span></dt></dl></dd><dt><span
class="sect1"><a href="ch06s03.html">Sums and Products</a></span></dt><dt><span class="sect1"><a
href="ch06s04.html">Comparison Operators</a></span></dt><dt><span class="sect1"><a href="ch06s05.html">Global
Variables and Scope of Variables</a></span></dt><dt><s
pan class="sect1"><a href="ch06s06.html">Parameter variables</a></span></dt><dt><span class="sect1"><a
href="ch06s07.html">Returning</a></span></dt><dt><span class="sect1"><a
href="ch06s08.html">References</a></span></dt><dt><span class="sect1"><a
href="ch06s09.html">Lvalues</a></span></dt></dl></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-conditionals"></a>Conditionals</h2></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">if <expression1> then <expression2> [else <expression3>]
+</pre><p>
+If <code class="literal">else</code> is omitted, then if the <code class="literal">expression1</code> yields
<code class="constant">false</code> or 0, <code class="literal">NULL</code> is returned.
+ </p><p>
+Examples:
+</p><pre class="programlisting">if(a==5)then(a=a-1)
+if b<a then b=a
+if c>0 then c=c-1 else c=0
+a = ( if b>0 then b else 1 )
+</pre><p>
+Note that <code class="literal">=</code> will be translated to <code class="literal">==</code> if used
inside the expression for <code class="literal">if</code>, so
+</p><pre class="programlisting">if a=5 then a=a-1
+</pre><p>
+will be interpreted as:
+</p><pre class="programlisting">if a==5 then a:=a-1
+</pre><p>
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s07.html">Anterior</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch06s02.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">List of GEL Operators
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td width="40%"
align="right" valign="top"> Loops</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch06s02.html b/help/pt_BR/html/ch06s02.html
new file mode 100644
index 0000000..985d0a4
--- /dev/null
+++ b/help/pt_BR/html/ch06s02.html
@@ -0,0 +1,54 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Loops</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
do Genius"><link rel="up" href="ch06.html" title="Capítulo 6. Programming with GEL"><link rel="prev"
href="ch06.html" title="Capítulo 6. Programming with GEL"><link rel="next" href="ch06s03.html" title="Sums
and Products"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Loops</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch06.html">Anterior</a>
</td><th width="60%" align="center">Capítulo 6. Programming with GEL</th><td width="20%" align="right"> <a
accesskey="n" href="ch06s03.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="c
lear: both"><a name="genius-gel-loops"></a>Loops</h2></div></div></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a name="genius-gel-loops-while"></a>While
Loops</h3></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">while <expression1> do <expression2>
+until <expression1> do <expression2>
+do <expression2> while <expression1>
+do <expression2> until <expression1></pre><p>
+
+ These are similar to other languages. However, as in GEL it is simply an expression that must have
some return value, these
+ constructs will simply return the result of the last iteration or <code class="literal">NULL</code>
if no iteration was done. In the boolean expression, <code class="literal">=</code> is translated into <code
class="literal">==</code> just as for the <code class="literal">if</code> statement.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-for"></a>For Loops</h3></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">for <identifier> = <from> to <to> do <body>
+for <identifier> = <from> to <to> by <increment> do <body></pre><p>
+
+Loop with identifier being set to all values from <code class="literal"><from></code> to <code
class="literal"><to></code>, optionally using an increment other than 1. These are faster, nicer and
more compact than the normal loops such as above, but less flexible. The identifier must be an identifier and
can't be a dereference. The value of identifier is the last value of identifier, or <code
class="literal"><from></code> if body was never evaluated. The variable is guaranteed to be initialized
after a loop, so you can safely use it. Also the <code class="literal"><from></code>, <code
class="literal"><to></code> and <code class="literal"><increment></code> must be non complex
values. The <code class="literal"><to></code> is not guaranteed to be hit, but will never be overshot,
for example the following prints out odd numbers from 1 to 19:
+</p><pre class="programlisting">for i = 1 to 20 by 2 do print(i)
+</pre><p>
+ </p><p>
+ When one of the values is a floating point number, then the
+ final check is done to within 2^-20 of the step size. That is,
+ even if we overshoot by 2^-20 times the "by" above, we still execute the last
+ iteration. This way
+</p><pre class="programlisting">for x = 0 to 1 by 0.1 do print(x)
+</pre><p>
+does the expected even though adding 0.1 ten times becomes just slightly more than 1.0 due to the way that
floating point numbers
+are stored in base 2 (there is no 0.1, the actual number stored is just ever so slightly bigger). This is
not perfect but it handles
+the majority of the cases. If you want to avoid dealing with this issue, use actual rational numbers for
example:
+</p><pre class="programlisting">for x = 0 to 1 by 1/10 do print(x)
+</pre><p>
+ This check is done only from version 1.0.16 onwards, so execution of your code may differ on
older versions.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-foreach"></a>Foreach Loops</h3></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">for <identifier> in <matrix> do <body></pre><p>
+
+ For each element in the matrix, going row by row from left to right we execute the
body
+ with the identifier set to the current element. To
+print numbers 1,2,3 and 4 in this order you could do:
+</p><pre class="programlisting">for n in [1,2:3,4] do print(n)
+</pre><p>
+If you wish to run through the rows and columns of a matrix, you can use
+the RowsOf and ColumnsOf functions, which return a vector of the rows or
+columns of the matrix. So,
+</p><pre class="programlisting">for n in RowsOf ([1,2:3,4]) do print(n)
+</pre><p>
+will print out [1,2] and then [3,4].
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-break-continue"></a>Break and Continue</h3></div></div></div><p>
+You can also use the <code class="literal">break</code> and <code class="literal">continue</code> commands
in loops. The continue <code class="literal">continue</code> command will restart the current loop at its
next iteration, while the <code class="literal">break</code> command exits the current loop.
+</p><pre class="programlisting">while(<expression1>) do (
+ if(<expression2>) break
+ else if(<expression3>) continue;
+ <expression4>
+)
+</pre><p>
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s03.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Capítulo
6. Programming with GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Principal</a></td><td width="40%" align="right" valign="top"> Sums and
Products</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch06s03.html b/help/pt_BR/html/ch06s03.html
new file mode 100644
index 0000000..1bf58a7
--- /dev/null
+++ b/help/pt_BR/html/ch06s03.html
@@ -0,0 +1,16 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Sums and
Products</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch06.html" title="Capítulo 6. Programming
with GEL"><link rel="prev" href="ch06s02.html" title="Loops"><link rel="next" href="ch06s04.html"
title="Comparison Operators"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Sums and Products</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s02.html">Anterior</a> </td><th width="60%" align="center">Capítulo 6. Programming with GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch06s04.html">Próxima</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" sty
le="clear: both"><a name="genius-gel-sums-products"></a>Sums and Products</h2></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">sum <identifier> = <from> to <to> do <body>
+sum <identifier> = <from> to <to> by <increment> do <body>
+sum <identifier> in <matrix> do <body>
+prod <identifier> = <from> to <to> do <body>
+prod <identifier> = <from> to <to> by <increment> do <body>
+prod <identifier> in <matrix> do <body></pre><p>
+
+If you substitute <code class="literal">for</code> with <code class="literal">sum</code> or <code
class="literal">prod</code>, then you will get a sum or a product instead of a <code
class="literal">for</code> loop. Instead of returning the last value, these will return the sum or the
product of the values respectively.
+ </p><p>
+If no body is executed (for example <strong class="userinput"><code>sum i=1 to 0 do ...</code></strong>)
then <code class="literal">sum</code> returns 0 and <code class="literal">prod</code> returns 1 as is the
standard convention.
+ </p><p>
+ For floating point numbers the same roundoff error protection is done as in the for loop.
+ See <a class="xref" href="ch06s02.html#genius-gel-loops-for" title="For Loops">“For Loops”</a>.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s02.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s04.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Loops
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td width="40%"
align="right" valign="top"> Comparison Operators</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch06s04.html b/help/pt_BR/html/ch06s04.html
new file mode 100644
index 0000000..a18e2d7
--- /dev/null
+++ b/help/pt_BR/html/ch06s04.html
@@ -0,0 +1,40 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Comparison
Operators</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch06.html" title="Capítulo 6. Programming
with GEL"><link rel="prev" href="ch06s03.html" title="Sums and Products"><link rel="next" href="ch06s05.html"
title="Global Variables and Scope of Variables"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Comparison Operators</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch06s03.html">Anterior</a> </td><th width="60%" align="center">Capítulo 6. Programming
with GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s05.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div class="title
page"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-comparison-operators"></a>Comparison Operators</h2></div></div></div><p>
+ The following standard comparison operators are supported in GEL and have the obvious meaning:
+ <code class="literal">==</code>, <code class="literal">>=</code>,
+ <code class="literal"><=</code>, <code class="literal">!=</code>,
+ <code class="literal"><></code>, <code class="literal"><</code>,
+ <code class="literal">></code>. They return <code class="constant">true</code> or
+ <code class="constant">false</code>.
+ The operators
+ <code class="literal">!=</code> and <code class="literal"><></code> are the same
+ thing and mean "is not equal to".
+ GEL also supports the operator
+ <code class="literal"><=></code>, which returns -1 if left side is
+ smaller, 0 if both sides are equal, 1 if left side is larger.
+ </p><p>
+ Normally <code class="literal">=</code> is translated to <code class="literal">==</code> if
+ it happens to be somewhere where GEL is expecting a condition such as
+ in the if condition. For example
+ </p><pre class="programlisting">if a=b then c
+if a==b then c
+</pre><p>
+ are the same thing in GEL. However you should really use
+ <code class="literal">==</code> or <code class="literal">:=</code> when you want to compare
+ or assign respectively if you want your code to be easy to read and
+ to avoid mistakes.
+ </p><p>
+ All the comparison operators (except for the
+ <code class="literal"><=></code> operator, which
+ behaves normally), are not strictly binary operators, they can in fact
+ be grouped in the normal mathematical way, e.g.:
+ (<code class="literal">1<x<=y<5</code>) is
+ a legal boolean expression and means just what it should, that is
+ (1<x and x≤y and y<5)
+ </p><p>
+ To build up logical expressions use the words <code class="literal">not</code>,
+ <code class="literal">and</code>, <code class="literal">or</code>, <code class="literal">xor</code>.
+ The operators <code class="literal">or</code> and <code class="literal">and</code> are
+special beasts as they evaluate their arguments one by one, so the usual trick
+for conditional evaluation works here as well. For example, <code class="literal">1 or a=1</code> will not
set
+<code class="literal">a=1</code> since the first argument was true.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s03.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s05.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Sums and
Products </td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td
width="40%" align="right" valign="top"> Global Variables and Scope of
Variables</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch06s05.html b/help/pt_BR/html/ch06s05.html
new file mode 100644
index 0000000..7ffef75
--- /dev/null
+++ b/help/pt_BR/html/ch06s05.html
@@ -0,0 +1,113 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Global Variables and
Scope of Variables</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch06.html" title="Capítulo 6. Programming
with GEL"><link rel="prev" href="ch06s04.html" title="Comparison Operators"><link rel="next"
href="ch06s06.html" title="Parameter variables"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Global Variables and Scope of Variables</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch06s04.html">Anterior</a> </td><th width="60%"
align="center">Capítulo 6. Programming with GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s06.html">Próxima</a></td></tr></table><hr></div><div class="sec
t1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-variables-global"></a>Global Variables and Scope of Variables</h2></div></div></div><p>
+ GEL is a
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Scope_%28programming%29" target="_top">
+ dynamically scoped language</a>. We will explain what this
+ means below. That is, normal variables and functions are dynamically
+ scoped. The exception are
+ <a class="link" href="ch06s06.html" title="Parameter variables">parameter variables</a>,
+ which are always global.
+ </p><p>
+ Like most programming languages, GEL has different types
+ of variables. Normally when a variable is defined in a function,
+ it is visible from that function and from all functions that are
+ called (all higher contexts). For example, suppose a function
+ <code class="function">f</code> defines a variable <code class="varname">a</code>
+ and then calls function <code class="function">g</code>. Then
+ function <code class="function">g</code> can reference
+ <code class="varname">a</code>. But once <code class="function">f</code> returns,
+ the variable <code class="varname">a</code> goes out of scope.
+ For example, the following code will print out 5.
+ The function <code class="function">g</code> cannot be called on the
+ top level (outside <code class="function">f</code> as <code class="varname">a</code>
+ will not be defined).
+</p><pre class="programlisting">function f() = (a:=5; g());
+function g() = print(a);
+f();
+</pre><p>
+ </p><p>
+ If you define a variable inside a function it will override
+ any variables defined in calling functions. For example,
+ we modify the above code and write:
+</p><pre class="programlisting">function f() = (a:=5; g());
+function g() = print(a);
+a:=10;
+f();
+</pre><p>
+ This code will still print out 5. But if you call
+ <code class="function">g</code> outside of <code class="function">f</code> then
+ you will get a printout of 10. Note that
+ setting <code class="varname">a</code>
+ to 5 inside <code class="function">f</code> does not change
+ the value of <code class="varname">a</code> at the top (global) level,
+ so if you now check the value of <code class="varname">a</code> it will
+ still be 10.
+ </p><p>
+ Function arguments are exactly like variables defined inside
+ the function, except that they are initialized with the value
+ that was passed to the function. Other than this point, they are
+ treated just like all other variables defined inside the
+ function.
+ </p><p>
+ Functions are treated exactly like variables. Hence you can
+ locally redefine functions. Normally (on the top level) you
+ cannot redefine protected variables and functions. But locally
+ you can do this. Consider the following session:
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>function f(x)
= sin(x)^2</code></strong>
+= (`(x)=(sin(x)^2))
+<code class="prompt">genius> </code><strong class="userinput"><code>function f(x) =
sin(x)^2</code></strong>
+= (`(x)=(sin(x)^2))
+<code class="prompt">genius> </code><strong class="userinput"><code>function g(x) = ((function
sin(x)=x^10);f(x))</code></strong>
+= (`(x)=((sin:=(`(x)=(x^10)));f(x)))
+<code class="prompt">genius> </code><strong class="userinput"><code>g(10)</code></strong>
+= 1e20
+</pre><p>
+ </p><p>
+ Functions and variables defined at the top level are
+ considered global. They are visible from anywhere. As we
+ said the following function <code class="function">f</code>
+ will not change the value of <code class="varname">a</code> to 5.
+</p><pre class="programlisting">a=6;
+function f() = (a:=5);
+f();
+</pre><p>
+ Sometimes, however, it is necessary to set
+a global variable from inside a function. When this behavior is needed,
+use the
+<a class="link" href="ch11s02.html#gel-function-set"><code class="function">set</code></a> function. Passing
a string or a quoted identifier to
+this function sets the variable globally (on the top level).
+For example, to set
+<code class="varname">a</code> to the value 3 you could call:
+</p><pre class="programlisting">set(`a,3)
+</pre><p>
+or:
+</p><pre class="programlisting">set("a",3)
+</pre><p>
+ </p><p>
+ The <code class="function">set</code> function always sets the toplevel
+ global. There is no way to set a local variable in some function
+ from a subroutine. If this is required, must use passing by
+ reference.
+ </p><p>
+ See also the
+ <a class="link" href="ch11s02.html#gel-function-SetElement"><code
class="function">SetElement</code></a> and
+ <a class="link" href="ch11s02.html#gel-function-SetVElement"><code
class="function">SetVElement</code></a> functions.
+ </p><p>
+ So to recap in a more technical language: Genius operates with
+ different numbered contexts. The top level is the context 0
+ (zero). Whenever a function is entered, the context is raised,
+ and when the function returns the context is lowered. A function
+ or a variable is always visible from all higher numbered contexts.
+ When a variable was defined in a lower numbered context, then
+ setting this variable has the effect of creating a new local
+ variable in the current context number and this variable
+ will now be visible from all higher numbered contexts.
+ </p><p>
+ There are also true local variables that are not seen from
+ anywhere but the current context. Also when returning functions
+ by value it may reference variables not visible from higher context
+ and this may be a problem. See the sections
+ <a class="link" href="ch07s04.html" title="True Local Variables">True
+ Local Variables</a> and
+ <a class="link" href="ch07s03.html" title="Returning Functions">Returning
+ Functions</a>.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s04.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s06.html">Próxima</a></td></tr><tr><td width="40%" align="left"
valign="top">Comparison Operators </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Principal</a></td><td width="40%" align="right" valign="top"> Parameter
variables</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch06s06.html b/help/pt_BR/html/ch06s06.html
new file mode 100644
index 0000000..40c3d9b
--- /dev/null
+++ b/help/pt_BR/html/ch06s06.html
@@ -0,0 +1,18 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Parameter
variables</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch06.html" title="Capítulo 6. Programming
with GEL"><link rel="prev" href="ch06s05.html" title="Global Variables and Scope of Variables"><link
rel="next" href="ch06s07.html" title="Returning"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Parameter variables</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch06s05.html">Anterior</a> </td><th width="60%" align="center">Capítulo 6. Programming
with GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s07.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div
<div><h2 class="title" style="clear: both"><a name="genius-gel-parameters"></a>Parameter
variables</h2></div></div></div><p>
+ As we said before, there exist special variables called parameters
+ that exist in all scopes. To declare a parameter called
+ <code class="varname">foo</code> with the initial value 1, we write
+</p><pre class="programlisting">parameter foo = 1
+</pre><p>
+ From then on, <code class="varname">foo</code> is a strictly global variable.
+ Setting <code class="varname">foo</code> inside any function will modify the
+ variable in all contexts, that is, functions do not have a private
+ copy of parameters.
+ </p><p>
+ When you undefine a parameter using the
+ <a class="link" href="ch11s02.html#gel-function-undefine">
+ <code class="function">undefine</code></a> function, it stops being
+ a parameter.
+ </p><p>
+ Some parameters are built-in and modify the behavior of genius.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s05.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s07.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Global
Variables and Scope of Variables </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Principal</a></td><td width="40%" align="right" valign="top">
Returning</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch06s07.html b/help/pt_BR/html/ch06s07.html
new file mode 100644
index 0000000..6e26d8f
--- /dev/null
+++ b/help/pt_BR/html/ch06s07.html
@@ -0,0 +1,17 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Returning</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
do Genius"><link rel="up" href="ch06.html" title="Capítulo 6. Programming with GEL"><link rel="prev"
href="ch06s06.html" title="Parameter variables"><link rel="next" href="ch06s08.html"
title="References"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Returning</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s06.html">Anterior</a> </td><th width="60%" align="center">Capítulo 6. Programming with GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch06s08.html">Próxima</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: b
oth"><a name="genius-gel-returning"></a>Returning</h2></div></div></div><p>
+ Normally a function is one or several expressions separated by a
+semicolon, and the value of the last expression is returned. This is fine for
+simple functions, but
+sometimes you do not want a function to return the last thing calculated. You may, for example, want to
return from a middle of a function. In this case, you can use the <code class="literal">return</code>
keyword. <code class="literal">return</code> takes one argument, which is the value to be returned.
+ </p><p>
+Example:
+</p><pre class="programlisting">function f(x) = (
+ y=1;
+ while true do (
+ if x>50 then return y;
+ y=y+1;
+ x=x+1
+ )
+)
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s06.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s08.html">Próxima</a></td></tr><tr><td width="40%" align="left"
valign="top">Parameter variables </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Principal</a></td><td width="40%" align="right" valign="top">
References</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch06s08.html b/help/pt_BR/html/ch06s08.html
new file mode 100644
index 0000000..dcd3589
--- /dev/null
+++ b/help/pt_BR/html/ch06s08.html
@@ -0,0 +1,35 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>References</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manual do Genius"><link rel="up" href="ch06.html"
title="Capítulo 6. Programming with GEL"><link rel="prev" href="ch06s07.html" title="Returning"><link
rel="next" href="ch06s09.html" title="Lvalues"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">References</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch06s07.html">Anterior</a> </td><th width="60%" align="center">Capítulo 6. Programming
with GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s09.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a nam
e="genius-gel-references"></a>References</h2></div></div></div><p>
+ It may be necessary for some functions to return more than one value.
+ This may be accomplished by returning a vector of values, but many
+ times it is convenient to use passing a reference to a variable.
+ You pass a reference to a variable to a function, and the function
+ will set the variable for you using a dereference. You do not have
+ to use references only for this purpose, but this is their main use.
+ </p><p>
+ When using functions that return values through references
+ in the argument list, just pass the variable name with an ampersand.
+ For example the following code will compute an eigenvalue of a matrix
+ <code class="varname">A</code> with initial eigenvector guess
+ <code class="varname">x</code>, and store the computed eigenvector
+ into the variable named <code class="varname">v</code>:
+</p><pre class="programlisting">RayleighQuotientIteration (A,x,0.001,100,&v)
+</pre><p>
+ </p><p>
+The details of how references work and the syntax is similar to the C language.
+The operator
+<code class="literal">&</code> references a variable
+and <code class="literal">*</code> dereferences a variable. Both can only be applied to an identifier,
+so <code class="literal">**a</code> is not a legal expression in GEL.
+ </p><p>
+References are best explained by an example:
+</p><pre class="programlisting">a=1;
+b=&a;
+*b=2;
+</pre><p>
+now <code class="varname">a</code> contains 2. You can also reference functions:
+</p><pre class="programlisting">function f(x) = x+1;
+t=&f;
+*t(3)
+</pre><p>
+gives us 4.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s07.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s09.html">Próxima</a></td></tr><tr><td width="40%" align="left"
valign="top">Returning </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Principal</a></td><td width="40%" align="right" valign="top">
Lvalues</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch06s09.html b/help/pt_BR/html/ch06s09.html
new file mode 100644
index 0000000..57dad22
--- /dev/null
+++ b/help/pt_BR/html/ch06s09.html
@@ -0,0 +1,27 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Lvalues</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
do Genius"><link rel="up" href="ch06.html" title="Capítulo 6. Programming with GEL"><link rel="prev"
href="ch06s08.html" title="References"><link rel="next" href="ch07.html" title="Capítulo 7. Advanced
Programming with GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Lvalues</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s08.html">Anterior</a> </td><th width="60%" align="center">Capítulo 6. Programming with GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch07.html">Próxima</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" st
yle="clear: both"><a name="genius-gel-lvalues"></a>Lvalues</h2></div></div></div><p>
+ An lvalue is the left hand side of an assignment. In other words, an
+ lvalue is what you assign something to. Valid lvalues are:
+</p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><strong
class="userinput"><code>a</code></strong></span></dt><dd><p>
+ Identifier. Here we would be setting the variable of name
+ <code class="varname">a</code>.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>*a</code></strong></span></dt><dd><p>
+ Dereference of an identifier. This will set whatever variable
+ <code class="varname">a</code> points to.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(<region>)</code></strong></span></dt><dd><p>
+ A region of a matrix. Here the region is specified normally as with
+ the regular @() operator, and can be a single entry, or an entire
+ region of the matrix.
+ </p></dd></dl></div><p>
+ </p><p>
+Examples:
+</p><pre class="programlisting">a:=4
+*tmp := 89
+a@(1,1) := 5
+a@(4:8,3) := [1,2,3,4,5]'
+</pre><p>
+Note that both <code class="literal">:=</code> and <code class="literal">=</code> can be used
+interchangeably. Except if the assignment appears in a condition.
+It is thus always safer to just use
+<code class="literal">:=</code> when you mean assignment, and <code class="literal">==</code>
+when you mean comparison.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s08.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch07.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">References
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td width="40%"
align="right" valign="top"> Capítulo 7. Advanced Programming with GEL</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch07.html b/help/pt_BR/html/ch07.html
new file mode 100644
index 0000000..2ab92f5
--- /dev/null
+++ b/help/pt_BR/html/ch07.html
@@ -0,0 +1,18 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 7. Advanced
Programming with GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="index.html" title="Manual do Genius"><link
rel="prev" href="ch06s09.html" title="Lvalues"><link rel="next" href="ch07s02.html" title="Toplevel
Syntax"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Capítulo
7. Advanced Programming with GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s09.html">Anterior</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch07s02.html">Próxima</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><
a name="genius-gel-programming-advanced"></a>Capítulo 7. Advanced Programming with
GEL</h1></div></div></div><div class="toc"><p><b>Índice</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch07.html#genius-gel-error-handling">Error Handling</a></span></dt><dt><span class="sect1"><a
href="ch07s02.html">Toplevel Syntax</a></span></dt><dt><span class="sect1"><a href="ch07s03.html">Returning
Functions</a></span></dt><dt><span class="sect1"><a href="ch07s04.html">True Local
Variables</a></span></dt><dt><span class="sect1"><a href="ch07s05.html">GEL Startup
Procedure</a></span></dt><dt><span class="sect1"><a href="ch07s06.html">Loading
Programs</a></span></dt></dl></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-error-handling"></a>Error Handling</h2></div></div></div><p>
+If you detect an error in your function, you can bail out of it. For normal
+errors, such as wrong types of arguments, you can fail to compute the function
+by adding the statement <code class="literal">bailout</code>. If something went
+really wrong and you want to completely kill the current computation, you can
+use <code class="literal">exception</code>.
+ </p><p>
+ For example if you want to check for arguments in your function. You
+could use the following code.
+</p><pre class="programlisting">function f(M) = (
+ if not IsMatrix (M) then (
+ error ("M not a matrix!");
+ bailout
+ );
+ ...
+)
+</pre><p>
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s09.html">Anterior</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch07s02.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Lvalues </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td width="40%" align="right"
valign="top"> Toplevel Syntax</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch07s02.html b/help/pt_BR/html/ch07s02.html
new file mode 100644
index 0000000..6157ab4
--- /dev/null
+++ b/help/pt_BR/html/ch07s02.html
@@ -0,0 +1,32 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Toplevel
Syntax</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch07.html" title="Capítulo 7. Advanced
Programming with GEL"><link rel="prev" href="ch07.html" title="Capítulo 7. Advanced Programming with
GEL"><link rel="next" href="ch07s03.html" title="Returning Functions"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Toplevel Syntax</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07.html">Anterior</a> </td><th width="60%" align="center">Capítulo 7.
Advanced Programming with GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s03.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div class
="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-toplevel-syntax"></a>Toplevel Syntax</h2></div></div></div><p>
+ The syntax is slightly different if you enter statements on
+ the top level versus when they are inside parentheses or
+ inside functions. On the top level, enter acts the same as if
+ you press return on the command line. Therefore think of programs
+ as just sequence of lines as if were entered on the command line.
+ In particular, you do not need to enter the separator at the end of the
+ line (unless it is of course part of several statements inside
+ parentheses).
+ </p><p>
+ The following code will produce an error when entered on the top
+ level of a program, while it will work just fine in a function.
+</p><pre class="programlisting">if Something() then
+ DoSomething()
+else
+ DoSomethingElse()
+</pre><p>
+ </p><p>
+ The problem is that after <span class="application">Genius Mathematics Tool</span> sees the end of
line after the
+ second line, it will decide that we have whole statement and
+ it will execute it. After the execution is done, <span class="application">Genius Mathematics
Tool</span> will
+ go on to the next
+ line, it will see <code class="literal">else</code>, and it will produce
+ a parsing error. To fix this, use parentheses. <span class="application">Genius Mathematics
Tool</span> will not
+ be satisfied until it has found that all parentheses are closed.
+</p><pre class="programlisting">if Something() then (
+ DoSomething()
+) else (
+ DoSomethingElse()
+)
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch07.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch07s03.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Capítulo
7. Advanced Programming with GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Principal</a></td><td width="40%" align="right" valign="top"> Returning
Functions</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch07s03.html b/help/pt_BR/html/ch07s03.html
new file mode 100644
index 0000000..2a7c16a
--- /dev/null
+++ b/help/pt_BR/html/ch07s03.html
@@ -0,0 +1,102 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Returning
Functions</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch07.html" title="Capítulo 7. Advanced
Programming with GEL"><link rel="prev" href="ch07s02.html" title="Toplevel Syntax"><link rel="next"
href="ch07s04.html" title="True Local Variables"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Returning Functions</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch07s02.html">Anterior</a> </td><th width="60%" align="center">Capítulo 7. Advanced
Programming with GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s04.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"
<div><div><h2 class="title" style="clear: both"><a name="genius-gel-returning-functions"></a>Returning
Functions</h2></div></div></div><p>
+ It is possible to return functions as value. This way you can
+ build functions that construct special purpose functions according
+ to some parameters. The tricky bit is what variables does the
+ function see. The way this works in GEL is that when a function
+ returns another function, all identifiers referenced in the
+ function body that went out of scope
+ are prepended a private dictionary of the returned
+ function. So the function will see all variables that were in
+ scope
+ when it was defined. For example, we define a function that
+ returns a function that adds 5 to its argument.
+</p><pre class="programlisting">function f() = (
+ k = 5;
+ `(x) = (x+k)
+)
+</pre><p>
+ Notice that the function adds <code class="varname">k</code> to
+ <code class="varname">x</code>. You could use this as follows.
+</p><pre class="programlisting">g = f();
+g(5)
+</pre><p>
+ And <strong class="userinput"><code>g(5)</code></strong> should return 10.
+ </p><p>
+ One thing to note is that the value of <code class="varname">k</code>
+ that is used is the one that's in effect when the
+ <code class="function">f</code> returns. For example:
+</p><pre class="programlisting">function f() = (
+ k := 5;
+ function r(x) = (x+k);
+ k := 10;
+ r
+)
+</pre><p>
+ will return a function that adds 10 to its argument rather than
+ 5. This is because the extra dictionary is created only when
+ the context
+ in which the function was defined ends, which is when the function
+ <code class="function">f</code> returns. This is consistent with how you
+ would expect the function <code class="function">r</code> to work inside
+ the function <code class="function">f</code> according to the rules of
+ scope of variables in GEL. Only those variables are added to the
+ extra dictionary that are in the context that just ended and
+ no longer exists. Variables
+ used in the function that are in still valid contexts will work
+ as usual, using the current value of the variable.
+ The only difference is with global variables and functions.
+ All identifiers that referenced global variables at time of
+ the function definition are not added to the private dictionary.
+ This is to avoid much unnecessary work when returning functions
+ and would rarely be a problem. For example, suppose that you
+ delete the "k=5" from the function <code class="function">f</code>,
+ and at the top level you define <code class="varname">k</code> to be
+ say 5. Then when you run <code class="function">f</code>, the function
+ <code class="function">r</code> will not put <code class="varname">k</code> into
+ the private dictionary because it was global (toplevel)
+ at the time of definition of <code class="function">r</code>.
+ </p><p>
+ Sometimes it is better to have more control over how variables
+ are copied into the private dictionary. Since version 1.0.7,
+ you can specify which
+ variables are copied into the private dictionary by putting
+ extra square brackets after the arguments with the list of
+ variables to be copied separated by commas.
+ If you do this, then variables are
+ copied into the private dictionary at time of the function
+ definition, and the private dictionary is not touched afterwards.
+ For example
+</p><pre class="programlisting">function f() = (
+ k := 5;
+ function r(x) [k] = (x+k);
+ k := 10;
+ r
+)
+</pre><p>
+ will return a function that when called will add 5 to its
+ argument. The local copy of <code class="varname">k</code> was created
+ when the function was defined.
+ </p><p>
+ When you want the function to not have any private dictionary
+ then put empty square brackets after the argument list. Then
+ no private dictionary will be created at all. Doing this is
+ good to increase efficiency when a private dictionary is not
+ needed or when you want the function to lookup all variables
+ as it sees them when called. For example suppose you want
+ the function returned from <code class="function">f</code> to see
+ the value of <code class="varname">k</code> from the toplevel despite
+ there being a local variable of the same name during definition.
+ So the code
+</p><pre class="programlisting">function f() = (
+ k := 5;
+ function r(x) [] = (x+k);
+ r
+);
+k := 10;
+g = f();
+g(10)
+</pre><p>
+ will return 20 and not 15, which would happen if
+ <code class="varname">k</code> with a value of 5 was added to the private
+ dictionary.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07s02.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch07.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch07s04.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Toplevel
Syntax </td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td
width="40%" align="right" valign="top"> True Local Variables</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch07s04.html b/help/pt_BR/html/ch07s04.html
new file mode 100644
index 0000000..ba54d85
--- /dev/null
+++ b/help/pt_BR/html/ch07s04.html
@@ -0,0 +1,58 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>True Local
Variables</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch07.html" title="Capítulo 7. Advanced
Programming with GEL"><link rel="prev" href="ch07s03.html" title="Returning Functions"><link rel="next"
href="ch07s05.html" title="GEL Startup Procedure"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">True Local Variables</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch07s03.html">Anterior</a> </td><th width="60%" align="center">Capítulo 7. Advanced
Programming with GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s05.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div class="tit
lepage"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-true-local-variables"></a>True
Local Variables</h2></div></div></div><p>
+ When passing functions into other functions, the normal scoping of
+ variables might be undesired. For example:
+</p><pre class="programlisting">k := 10;
+function r(x) = (x+k);
+function f(g,x) = (
+ k := 5;
+ g(x)
+);
+f(r,1)
+</pre><p>
+ you probably want the function <code class="function">r</code>
+ when passed as <code class="function">g</code> into <code class="function">f</code>
+ to see <code class="varname">k</code> as 10 rather than 5, so that
+ the code returns 11 and not 6. However, as written, the function
+ when executed will see the <code class="varname">k</code> that is
+ equal to 5. There are two ways to solve this. One would be
+ to have <code class="function">r</code> get <code class="varname">k</code> in a
+ private dictionary using the square bracket notation section
+ <a class="link" href="ch07s03.html" title="Returning Functions">Returning
+ Functions</a>.
+ </p><p>
+ But there is another solution. Since version 1.0.7 there are
+ true local variables. These are variables that are visible only
+ from the current context and not from any called functions.
+ We could define <code class="varname">k</code> as a local variable in the
+ function <code class="function">f</code>. To do this add a
+ <span class="command"><strong>local</strong></span> statement as the first statement in the
+ function (it must always be the first statement in the function).
+ You can also make any arguments be local variables as well.
+ That is,
+</p><pre class="programlisting">function f(g,x) = (
+ local g,x,k;
+ k := 5;
+ g(x)
+);
+</pre><p>
+ Then the code will work as expected and prints out 11.
+ Note that the <span class="command"><strong>local</strong></span> statement initializes
+ all the referenced variables (except for function arguments) to
+ a <code class="constant">null</code>.
+ </p><p>
+ If all variables are to be created as locals you can just pass an
+ asterisk instead of a list of variables. In this case the variables
+ will not be initialized until they are actually set of course.
+ So the following definition of <code class="function">f</code>
+ will also work:
+</p><pre class="programlisting">function f(g,x) = (
+ local *;
+ k := 5;
+ g(x)
+);
+</pre><p>
+ </p><p>
+ It is good practice that all functions that take other functions
+ as arguments use local variables. This way the passed function
+ does not see implementation details and get confused.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07s03.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch07.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch07s05.html">Próxima</a></td></tr><tr><td width="40%" align="left"
valign="top">Returning Functions </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Principal</a></td><td width="40%" align="right" valign="top"> GEL Startup
Procedure</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch07s05.html b/help/pt_BR/html/ch07s05.html
new file mode 100644
index 0000000..5dcaf68
--- /dev/null
+++ b/help/pt_BR/html/ch07s05.html
@@ -0,0 +1,7 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>GEL Startup
Procedure</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch07.html" title="Capítulo 7. Advanced
Programming with GEL"><link rel="prev" href="ch07s04.html" title="True Local Variables"><link rel="next"
href="ch07s06.html" title="Loading Programs"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">GEL Startup Procedure</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch07s04.html">Anterior</a> </td><th width="60%" align="center">Capítulo 7. Advanced
Programming with GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s06.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div class="title
page"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-startup-procedure"></a>GEL Startup
Procedure</h2></div></div></div><p>
+First the program looks for the installed library file (the compiled version <code
class="filename">lib.cgel</code>) in the installed directory, then it looks into the current directory, and
then it tries to load an uncompiled file called
+<code class="filename">~/.geniusinit</code>.
+ </p><p>
+If you ever change the library in its installed place, you’ll have to
+first compile it with <span class="command"><strong>genius --compile loader.gel > lib.cgel</strong></span>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07s04.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch07.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch07s06.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">True
Local Variables </td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td
width="40%" align="right" valign="top"> Loading Programs</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch07s06.html b/help/pt_BR/html/ch07s06.html
new file mode 100644
index 0000000..74938ac
--- /dev/null
+++ b/help/pt_BR/html/ch07s06.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Loading
Programs</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch07.html" title="Capítulo 7. Advanced
Programming with GEL"><link rel="prev" href="ch07s05.html" title="GEL Startup Procedure"><link rel="next"
href="ch08.html" title="Capítulo 8. Matrices in GEL"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Loading Programs</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch07s05.html">Anterior</a> </td><th width="60%" align="center">Capítulo 7. Advanced
Programming with GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch08.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div class="titlepag
e"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-loading-programs"></a>Loading
Programs</h2></div></div></div><p>
+Sometimes you have a larger program you wrote into a file and want to read that file into <span
class="application">Genius Mathematics Tool</span>. In these situations, you have two options. You can keep
the functions you use most inside the <code class="filename">~/.geniusinit</code> file. Or if you want to
load up a file in a middle of a session (or from within another file), you can type <span
class="command"><strong>load <list of filenames></strong></span> at the prompt. This has to be done on
the top level and not inside any function or whatnot, and it cannot be part of any expression. It also has a
slightly different syntax than the rest of genius, more similar to a shell. You can enter the file in quotes.
If you use the '' quotes, you will get exactly the string that you typed, if you use the "" quotes, special
characters will be unescaped as they are for strings. Example:
+</p><pre class="programlisting">load program1.gel program2.gel
+load "Weird File Name With SPACES.gel"
+</pre><p>
+There are also <span class="command"><strong>cd</strong></span>, <span
class="command"><strong>pwd</strong></span> and <span class="command"><strong>ls</strong></span> commands
built in. <span class="command"><strong>cd</strong></span> will take one argument, <span
class="command"><strong>ls</strong></span> will take an argument that is like the glob in the UNIX shell
(i.e., you can use wildcards). <span class="command"><strong>pwd</strong></span> takes no arguments. For
example:
+</p><pre class="programlisting">cd directory_with_gel_programs
+ls *.gel
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07s05.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch07.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch08.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">GEL Startup
Procedure </td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td
width="40%" align="right" valign="top"> Capítulo 8. Matrices in GEL</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch08.html b/help/pt_BR/html/ch08.html
new file mode 100644
index 0000000..bd104af
--- /dev/null
+++ b/help/pt_BR/html/ch08.html
@@ -0,0 +1,55 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 8. Matrices
in GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="index.html" title="Manual do Genius"><link
rel="prev" href="ch07s06.html" title="Loading Programs"><link rel="next" href="ch08s02.html" title="Conjugate
Transpose and Transpose Operator"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Capítulo 8. Matrices in GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch07s06.html">Anterior</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch08s02.html">Próxima</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="
title"><a name="genius-gel-matrices"></a>Capítulo 8. Matrices in GEL</h1></div></div></div><div
class="toc"><p><b>Índice</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch08.html#genius-gel-matrix-support">Entering Matrices</a></span></dt><dt><span class="sect1"><a
href="ch08s02.html">Conjugate Transpose and Transpose Operator</a></span></dt><dt><span class="sect1"><a
href="ch08s03.html">Álgebra linear</a></span></dt></dl></div><p>
+ Genius has support for vectors and matrices and possesses a sizable library of
+ matrix manipulation and linear algebra functions.
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-matrix-support"></a>Entering Matrices</h2></div></div></div><p>
+To enter matrices, you can use one of the following two syntaxes. You can either enter
+the matrix on one line, separating values by commas and rows by semicolons. Or you
+can enter each row on one line, separating
+values by commas.
+You can also just combine the two methods.
+So to enter a 3x3 matrix
+of numbers 1-9 you could do
+</p><pre class="programlisting">[1,2,3;4,5,6;7,8,9]
+</pre><p>
+or
+</p><pre class="programlisting">[1, 2, 3
+ 4, 5, 6
+ 7, 8, 9]
+</pre><p>
+Do not use both ';' and return at once on the same line though.
+ </p><p>
+You can also use the matrix expansion functionality to enter matrices.
+For example you can do:
+</p><pre class="programlisting">a = [ 1, 2, 3
+ 4, 5, 6
+ 7, 8, 9]
+b = [ a, 10
+ 11, 12]
+</pre><p>
+and you should get
+</p><pre class="programlisting">[1, 2, 3, 10
+ 4, 5, 6, 10
+ 7, 8, 9, 10
+ 11, 11, 11, 12]
+</pre><p>
+similarly you can build matrices out of vectors and other stuff like that.
+ </p><p>
+Another thing is that non-specified spots are initialized to 0, so
+</p><pre class="programlisting">[1, 2, 3
+ 4, 5
+ 6]
+</pre><p>
+will end up being
+</p><pre class="programlisting">
+[1, 2, 3
+ 4, 5, 0
+ 6, 0, 0]
+</pre><p>
+ </p><p>
+ When matrices are evaluated, they are evaluated and traversed row-wise. This is just
+ like the <code class="literal">M@(j)</code> operator, which traverses the matrix row-wise.
+ </p><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Nota</h3><p>
+Be careful about using returns for expressions inside the
+<code class="literal">[ ]</code> brackets, as they have a slightly different meaning
+there. You will start a new row.
+ </p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch07s06.html">Anterior</a> </td><td
width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch08s02.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Loading Programs
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td width="40%"
align="right" valign="top"> Conjugate Transpose and Transpose Operator</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch08s02.html b/help/pt_BR/html/ch08s02.html
new file mode 100644
index 0000000..d6c48bf
--- /dev/null
+++ b/help/pt_BR/html/ch08s02.html
@@ -0,0 +1,21 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Conjugate Transpose
and Transpose Operator</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Manual do Genius"><link rel="up" href="ch08.html" title="Capítulo 8.
Matrices in GEL"><link rel="prev" href="ch08.html" title="Capítulo 8. Matrices in GEL"><link rel="next"
href="ch08s03.html" title="Álgebra linear"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Conjugate Transpose and Transpose Operator</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch08.html">Anterior</a> </td><th width="60%"
align="center">Capítulo 8. Matrices in GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch08s03.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><d
iv class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-matrix-transpose"></a>Conjugate Transpose and Transpose Operator</h2></div></div></div><p>
+You can conjugate transpose a matrix by using the <code class="literal">'</code> operator. That is
+the entry in the
+<code class="varname">i</code>th column and the <code class="varname">j</code>th row will be
+the complex conjugate of the entry in the
+<code class="varname">j</code>th column and the <code class="varname">i</code>th row of the original matrix.
+ For example:
+</p><pre class="programlisting">[1,2,3]*[4,5,6]'
+</pre><p>
+We transpose the second vector to make matrix multiplication possible.
+If you just want to transpose a matrix without conjugating it, you would
+use the <code class="literal">.'</code> operator. For example:
+</p><pre class="programlisting">[1,2,3]*[4,5,6i].'
+</pre><p>
+ </p><p>
+ Note that normal transpose, that is the <code class="literal">.'</code> operator, is much faster
+ and will not create a new copy of the matrix in memory. The conjugate transpose does
+ create a new copy unfortunately.
+ It is recommended to always use the <code class="literal">.'</code> operator when working with real
+ matrices and vectors.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch08.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch08.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch08s03.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Capítulo
8. Matrices in GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Principal</a></td><td width="40%" align="right" valign="top"> Álgebra
linear</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch08s03.html b/help/pt_BR/html/ch08s03.html
new file mode 100644
index 0000000..cb67cdf
--- /dev/null
+++ b/help/pt_BR/html/ch08s03.html
@@ -0,0 +1,32 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Álgebra
linear</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch08.html" title="Capítulo 8. Matrices in
GEL"><link rel="prev" href="ch08s02.html" title="Conjugate Transpose and Transpose Operator"><link rel="next"
href="ch09.html" title="Capítulo 9. Polynomials in GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Álgebra linear</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch08s02.html">Anterior</a> </td><th width="60%" align="center">Capítulo 8. Matrices in
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch09.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><di
v><div><h2 class="title" style="clear: both"><a name="genius-gel-matrix-linalg"></a>Álgebra
linear</h2></div></div></div><p>
+ Genius implements many useful linear algebra and matrix manipulation
+routines. See the <a class="link" href="ch11s09.html" title="Álgebra linear">Linear Algebra</a> and
+<a class="link" href="ch11s08.html" title="Manipulação de matrizes">Matrix Manipulation</a>
+sections of the GEL function listing.
+ </p><p>
+ The linear algebra routines implemented in GEL do not currently come
+from a well tested numerical package, and thus should not be used for critical
+numerical computation. On the other hand, Genius implements very well many
+linear algebra operations with rational and integer coefficients. These are
+inherently exact and in fact will give you much better results than common
+double precision routines for linear algebra.
+ </p><p>
+ For example, it is pointless to compute the rank and nullspace of a
+floating point matrix since for all practical purposes, we need to consider the
+matrix as having some slight errors. You are likely to get a different result
+than you expect. The problem is that under a small perturbation every matrix
+is of full rank and invertible. If the matrix however is of rational numbers,
+then the rank and nullspace are always exact.
+ </p><p>
+ In general when Genius computes the basis of a certain vectorspace
+ (for example with the <a class="link" href="ch11s09.html#gel-function-NullSpace"><code
class="function">NullSpace</code></a>) it will give the basis as
+a matrix, in which the columns are the vectors of the basis. That is, when
+Genius talks of a linear subspace it means a matrix whose column space is
+the given linear subspace.
+ </p><p>
+ It should be noted that Genius can remember certain properties of a
+matrix. For example, it will remember that a matrix is in row reduced form.
+If many calls are made to functions that internally use row reduced form of
+the matrix, we can just row reduce the matrix beforehand once. Successive
+calls to <a class="link" href="ch11s09.html#gel-function-rref"><code class="function">rref</code></a> will
be very fast.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch08s02.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch08.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch09.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Conjugate
Transpose and Transpose Operator </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Principal</a></td><td width="40%" align="right" valign="top"> Capítulo 9. Polynomials in
GEL</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch09.html b/help/pt_BR/html/ch09.html
new file mode 100644
index 0000000..e4a79ee
--- /dev/null
+++ b/help/pt_BR/html/ch09.html
@@ -0,0 +1,51 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 9.
Polynomials in GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="index.html" title="Manual do Genius"><link
rel="prev" href="ch08s03.html" title="Álgebra linear"><link rel="next" href="ch10.html" title="Capítulo 10.
Set Theory in GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Capítulo 9. Polynomials in GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch08s03.html">Anterior</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch10.html">Próxima</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a na
me="genius-gel-polynomials"></a>Capítulo 9. Polynomials in GEL</h1></div></div></div><div
class="toc"><p><b>Índice</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch09.html#genius-gel-polynomials-using">Using Polynomials</a></span></dt></dl></div><p>
+ Currently Genius can handle polynomials of one variable written out
+ as vectors, and do some basic operations with these. It is planned to
+ expand this support further.
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-polynomials-using"></a>Using Polynomials</h2></div></div></div><p>
+Currently
+polynomials in one variable are just horizontal vectors with value only nodes.
+The power of the term is the position in the vector, with the first position
+being 0. So,
+</p><pre class="programlisting">[1,2,3]
+</pre><p>
+translates to a polynomial of
+</p><pre class="programlisting">1 + 2*x + 3*x^2
+</pre><p>
+ </p><p>
+You can add, subtract and multiply polynomials using the
+<a class="link" href="ch11s15.html#gel-function-AddPoly"><code class="function">AddPoly</code></a>,
+<a class="link" href="ch11s15.html#gel-function-SubtractPoly"><code
class="function">SubtractPoly</code></a>, and
+<a class="link" href="ch11s15.html#gel-function-MultiplyPoly"><code class="function">MultiplyPoly</code></a>
functions respectively.
+You can print a polynomial using the
+<a class="link" href="ch11s15.html#gel-function-PolyToString"><code class="function">PolyToString</code></a>
+function.
+For example,
+</p><pre class="programlisting">PolyToString([1,2,3],"y")
+</pre><p>
+gives
+</p><pre class="programlisting">3*y^2 + 2*y + 1
+</pre><p>
+You can also get a function representation of the polynomial so that you can
+evaluate it. This is done by using
+<a class="link" href="ch11s15.html#gel-function-PolyToFunction"><code
class="function">PolyToFunction</code></a>,
+which
+returns an anonymous function.
+</p><pre class="programlisting">f = PolyToFunction([0,1,1])
+f(2)
+</pre><p>
+ </p><p>
+ It is also possible to find roots of polynomials of degrees 1 through 4 by using the
+function
+<a class="link" href="ch11s13.html#gel-function-PolynomialRoots"><code
class="function">PolynomialRoots</code></a>,
+which calls the appropriate formula function. Higher degree polynomials must be converted to
+functions and solved
+numerically using a function such as
+<a class="link" href="ch11s13.html#gel-function-FindRootBisection"><code
class="function">FindRootBisection</code></a>,
+<a class="link" href="ch11s13.html#gel-function-FindRootFalsePosition"><code
class="function">FindRootFalsePosition</code></a>,
+<a class="link" href="ch11s13.html#gel-function-FindRootMullersMethod"><code
class="function">FindRootMullersMethod</code></a>, or
+<a class="link" href="ch11s13.html#gel-function-FindRootSecant"><code
class="function">FindRootSecant</code></a>.
+ </p><p>
+See <a class="xref" href="ch11s15.html" title="Polinômios">“Polinômios”</a> in the function list
+for the rest of functions acting on polynomials.
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch08s03.html">Anterior</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch10.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Álgebra linear </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td width="40%" align="right"
valign="top"> Capítulo 10. Set Theory in GEL</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch10.html b/help/pt_BR/html/ch10.html
new file mode 100644
index 0000000..04d4d7e
--- /dev/null
+++ b/help/pt_BR/html/ch10.html
@@ -0,0 +1,41 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 10. Set
Theory in GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="index.html" title="Manual do Genius"><link
rel="prev" href="ch09.html" title="Capítulo 9. Polynomials in GEL"><link rel="next" href="ch11.html"
title="Capítulo 11. List of GEL functions"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Capítulo 10. Set Theory in GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch09.html">Anterior</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch11.html">Próxima</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 class
="title"><a name="genius-gel-settheory"></a>Capítulo 10. Set Theory in GEL</h1></div></div></div><div
class="toc"><p><b>Índice</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch10.html#genius-gel-sets-using">Using Sets</a></span></dt></dl></div><p>
+ Genius has some basic set theoretic functionality built in. Currently a set is
+ just a vector (or a matrix). Every distinct object is treated as a different element.
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-sets-using"></a>Using Sets</h2></div></div></div><p>
+ Just like vectors, objects
+ in sets can include numbers, strings, <code class="constant">null</code>, matrices and vectors. It is
+ planned in the future to have a dedicated type for sets, rather than using vectors.
+ Note that floating point numbers are distinct from integers, even if they appear the same.
+ That is, Genius will treat <code class="constant">0</code> and <code class="constant">0.0</code>
+ as two distinct elements. The <code class="constant">null</code> is treated as an empty set.
+ </p><p>
+ To build a set out of a vector, use the
+ <a class="link" href="ch11s16.html#gel-function-MakeSet"><code class="function">MakeSet</code></a>
function.
+ Currently, it will just return a new vector where every element is unique.
+</p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>MakeSet([1,2,2,3])</code></strong>
+= [1, 2, 3]
+</pre><p>
+</p><p>
+ Similarly there are functions
+ <a class="link" href="ch11s16.html#gel-function-Union"><code class="function">Union</code></a>,
+ <a class="link" href="ch11s16.html#gel-function-Intersection"><code
class="function">Intersection</code></a>,
+ <a class="link" href="ch11s16.html#gel-function-SetMinus"><code class="function">SetMinus</code></a>,
which
+ are rather self explanatory. For example:
+</p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>Union([1,2,3], [1,2,4])</code></strong>
+= [1, 2, 4, 3]
+</pre><p>
+ Note that no order is guaranteed for the return values. If you wish to sort the vector you
+should use the
+ <a class="link" href="ch11s08.html#gel-function-SortVector"><code
class="function">SortVector</code></a> function.
+ </p><p>
+ For testing membership, there are functions
+ <a class="link" href="ch11s16.html#gel-function-IsIn"><code class="function">IsIn</code></a> and
+ <a class="link" href="ch11s16.html#gel-function-IsSubset"><code class="function">IsSubset</code></a>,
+ which return a boolean value. For example:
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>IsIn (1,
[0,1,2])</code></strong>
+= true
+</pre><p>
+ The input <strong class="userinput"><code>IsIn(x,X)</code></strong> is of course equivalent to
+ <strong class="userinput"><code>IsSubset([x],X)</code></strong>. Note that since the empty set is a
subset
+ of every set, <strong class="userinput"><code>IsSubset(null,X)</code></strong> is always true.
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch09.html">Anterior</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch11.html">Próxima</a></td></tr><tr><td
width="40%" align="left" valign="top">Capítulo 9. Polynomials in GEL </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Principal</a></td><td width="40%" align="right" valign="top"> Capítulo 11.
List of GEL functions</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch11.html b/help/pt_BR/html/ch11.html
new file mode 100644
index 0000000..dd3a38a
--- /dev/null
+++ b/help/pt_BR/html/ch11.html
@@ -0,0 +1,7 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 11. List of
GEL functions</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="index.html" title="Manual do Genius"><link
rel="prev" href="ch10.html" title="Capítulo 10. Set Theory in GEL"><link rel="next" href="ch11s02.html"
title="Básico"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Capítulo
11. List of GEL functions</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch10.html">Anterior</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch11s02.html">Próxima</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a na
me="genius-gel-function-list"></a>Capítulo 11. List of GEL functions</h1></div></div></div><div
class="toc"><p><b>Índice</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch11.html#genius-gel-function-list-commands">Comandos</a></span></dt><dt><span class="sect1"><a
href="ch11s02.html">Básico</a></span></dt><dt><span class="sect1"><a
href="ch11s03.html">Parâmetros</a></span></dt><dt><span class="sect1"><a
href="ch11s04.html">Constantes</a></span></dt><dt><span class="sect1"><a
href="ch11s05.html">Numérico</a></span></dt><dt><span class="sect1"><a
href="ch11s06.html">Trigonometria</a></span></dt><dt><span class="sect1"><a href="ch11s07.html">Teoria dos
números</a></span></dt><dt><span class="sect1"><a href="ch11s08.html">Manipulação de
matrizes</a></span></dt><dt><span class="sect1"><a href="ch11s09.html">Álgebra
linear</a></span></dt><dt><span class="sect1"><a href="ch11s10.html">Combinatória</a></span></dt><dt><span
class="sect1"><a href="ch11s11.html">Cálc
ulo</a></span></dt><dt><span class="sect1"><a href="ch11s12.html">Funções</a></span></dt><dt><span
class="sect1"><a href="ch11s13.html">Solução de equações</a></span></dt><dt><span class="sect1"><a
href="ch11s14.html">Estatística</a></span></dt><dt><span class="sect1"><a
href="ch11s15.html">Polinômios</a></span></dt><dt><span class="sect1"><a href="ch11s16.html">Teoria dos
conjuntos</a></span></dt><dt><span class="sect1"><a href="ch11s17.html">Álgebra
comutativa</a></span></dt><dt><span class="sect1"><a href="ch11s18.html">Miscelânea</a></span></dt><dt><span
class="sect1"><a href="ch11s19.html">Operações simbólicas</a></span></dt><dt><span class="sect1"><a
href="ch11s20.html">Plotagem</a></span></dt></dl></div><p>
+To get help on a specific function from the console type:
+</p><pre class="programlisting">help FunctionName
+</pre><p>
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-commands"></a>Comandos</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a name="gel-command-help"></a>help</span></dt><dd><pre
class="synopsis">help</pre><pre class="synopsis">help FunctionName</pre><p>Print help (or help on a
function/command).</p></dd><dt><span class="term"><a name="gel-command-load"></a>load</span></dt><dd><pre
class="synopsis">load "file.gel"</pre><p>Load a file into the interpreter. The file will execute
+as if it were typed onto the command line.</p></dd><dt><span class="term"><a
name="gel-command-cd"></a>cd</span></dt><dd><pre class="synopsis">cd /directory/name</pre><p>Change working
directory to <code class="filename">/directory/name</code>.</p></dd><dt><span class="term"><a
name="gel-command-pwd"></a>pwd</span></dt><dd><pre class="synopsis">pwd</pre><p>Print the current working
directory.</p></dd><dt><span class="term"><a name="gel-command-ls"></a>ls</span></dt><dd><pre
class="synopsis">ls</pre><p>List files in the current directory.</p></dd><dt><span class="term"><a
name="gel-command-plugin"></a>plugin</span></dt><dd><pre class="synopsis">plugin plugin_name</pre><p>Load a
plugin. Plugin of that name must be installed on the system
+in the proper directory.</p></dd></dl></div></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch10.html">Anterior</a>
</td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch11s02.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Capítulo 10. Set
Theory in GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td
width="40%" align="right" valign="top"> Básico</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch11s02.html b/help/pt_BR/html/ch11s02.html
new file mode 100644
index 0000000..2a76ba4
--- /dev/null
+++ b/help/pt_BR/html/ch11s02.html
@@ -0,0 +1,101 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Básico</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
do Genius"><link rel="up" href="ch11.html" title="Capítulo 11. List of GEL functions"><link rel="prev"
href="ch11.html" title="Capítulo 11. List of GEL functions"><link rel="next" href="ch11s03.html"
title="Parâmetros"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Básico</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. List of GEL functions</th><td
width="20%" align="right"> <a accesskey="n" href="ch11s03.html">Próxima</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" styl
e="clear: both"><a name="genius-gel-function-list-basic"></a>Básico</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AskButtons"></a>AskButtons</span></dt><dd><pre class="synopsis">AskButtons
(query)</pre><pre class="synopsis">AskButtons (query, button1, ...)</pre><p>Asks a question and presents a
list of buttons to the user (or
+a menu of options in text mode). Returns the 1-based index of the button
+pressed. That is, returns 1 if the first button was pressed, 2 if the second
+button was pressed, and so on. If the user closes the window (or simply hits
+enter in text mode), then <code class="constant">null</code> is returned. The execution
+of the program is blocked until the user responds.</p><p>Version 1.0.10 onwards.</p></dd><dt><span
class="term"><a name="gel-function-AskString"></a>AskString</span></dt><dd><pre class="synopsis">AskString
(query)</pre><pre class="synopsis">AskString (query, default)</pre><p>Asks a question and lets the user enter
a string, which
+it then returns. If the user cancels or closes the window, then
+<code class="constant">null</code> is returned. The execution of the program
+is blocked until the user responds. If <code class="varname">default</code> is given, then it is pre-typed
in for the user to just press enter on (version 1.0.6 onwards).</p></dd><dt><span class="term"><a
name="gel-function-Compose"></a>Compose</span></dt><dd><pre class="synopsis">Compose (f,g)</pre><p>Compose
two functions and return a function that is the composition of <code class="function">f</code> and <code
class="function">g</code>.</p></dd><dt><span class="term"><a
name="gel-function-ComposePower"></a>ComposePower</span></dt><dd><pre class="synopsis">ComposePower
(f,n,x)</pre><p>Compose and execute a function with itself <code class="varname">n</code> times, passing
<code class="varname">x</code> as argument. Returning <code class="varname">x</code> if
+<code class="varname">n</code> equals 0.
+ Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>function f(x) = x^2 ;</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>ComposePower (f,3,7)</code></strong>
+= 5764801
+<code class="prompt">genius></code> <strong class="userinput"><code>f(f(f(7)))</code></strong>
+= 5764801
+</pre><p>
+ </p></dd><dt><span class="term"><a name="gel-function-Evaluate"></a>Evaluate</span></dt><dd><pre
class="synopsis">Evaluate (str)</pre><p>Parses and evaluates a string.</p></dd><dt><span class="term"><a
name="gel-function-GetCurrentModulo"></a>GetCurrentModulo</span></dt><dd><pre
class="synopsis">GetCurrentModulo</pre><p>Get current modulo from the context outside the function. That is,
if outside of
+the function was executed in modulo (using <code class="literal">mod</code>) then this returns what
+this modulo was. Normally the body of the function called is not executed in modular arithmetic,
+and this builtin function makes it possible to make GEL functions aware of modular
arithmetic.</p></dd><dt><span class="term"><a name="gel-function-Identity"></a>Identity</span></dt><dd><pre
class="synopsis">Identity (x)</pre><p>Identity function, returns its argument. It is equivalent to <strong
class="userinput"><code>function Identity(x)=x</code></strong>.</p></dd><dt><span class="term"><a
name="gel-function-IntegerFromBoolean"></a>IntegerFromBoolean</span></dt><dd><pre
class="synopsis">IntegerFromBoolean (bval)</pre><p>
+ Make integer (0 for <code class="constant">false</code> or 1 for
+ <code class="constant">true</code>) from a boolean value.
+ <code class="varname">bval</code> can also be a number in which case a
+ non-zero value will be interpreted as <code class="constant">true</code> and
+ zero will be interpreted as <code class="constant">false</code>.
+ </p></dd><dt><span class="term"><a name="gel-function-IsBoolean"></a>IsBoolean</span></dt><dd><pre
class="synopsis">IsBoolean (arg)</pre><p>Check if argument is a boolean (and not a number).</p></dd><dt><span
class="term"><a name="gel-function-IsDefined"></a>IsDefined</span></dt><dd><pre class="synopsis">IsDefined
(id)</pre><p>Check if an id is defined. You should pass a string or
+ and identifier. If you pass a matrix, each entry will be
+ evaluated separately and the matrix should contain strings
+ or identifiers.</p></dd><dt><span class="term"><a
name="gel-function-IsFunction"></a>IsFunction</span></dt><dd><pre class="synopsis">IsFunction
(arg)</pre><p>Check if argument is a function.</p></dd><dt><span class="term"><a
name="gel-function-IsFunctionOrIdentifier"></a>IsFunctionOrIdentifier</span></dt><dd><pre
class="synopsis">IsFunctionOrIdentifier (arg)</pre><p>Check if argument is a function or an
identifier.</p></dd><dt><span class="term"><a
name="gel-function-IsFunctionRef"></a>IsFunctionRef</span></dt><dd><pre class="synopsis">IsFunctionRef
(arg)</pre><p>Check if argument is a function reference. This includes variable
+references.</p></dd><dt><span class="term"><a name="gel-function-IsMatrix"></a>IsMatrix</span></dt><dd><pre
class="synopsis">IsMatrix (arg)</pre><p>Check if argument is a matrix. Even though <code
class="constant">null</code> is
+sometimes considered an empty matrix, the function <code class="function">IsMatrix</code> does
+not consider <code class="constant">null</code> a matrix.</p></dd><dt><span class="term"><a
name="gel-function-IsNull"></a>IsNull</span></dt><dd><pre class="synopsis">IsNull (arg)</pre><p>Check if
argument is a <code class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsString"></a>IsString</span></dt><dd><pre class="synopsis">IsString (arg)</pre><p>Check
if argument is a text string.</p></dd><dt><span class="term"><a
name="gel-function-IsValue"></a>IsValue</span></dt><dd><pre class="synopsis">IsValue (arg)</pre><p>Check if
argument is a number.</p></dd><dt><span class="term"><a
name="gel-function-Parse"></a>Parse</span></dt><dd><pre class="synopsis">Parse (str)</pre><p>Parses but does
not evaluate a string. Note that certain
+ pre-computation is done during the parsing stage.</p></dd><dt><span class="term"><a
name="gel-function-SetFunctionFlags"></a>SetFunctionFlags</span></dt><dd><pre
class="synopsis">SetFunctionFlags (id,flags...)</pre><p>Set flags for a function, currently <code
class="literal">"PropagateMod"</code> and <code class="literal">"NoModuloArguments"</code>.
+If <code class="literal">"PropagateMod"</code> is set, then the body of the function is evaluated in modular
arithmetic when the function
+is called inside a block that was evaluated using modular arithmetic (using <code
class="literal">mod</code>). If
+<code class="literal">"NoModuloArguments"</code>, then the arguments of the function are never evaluated
using modular arithmetic.
+ </p></dd><dt><span class="term"><a name="gel-function-SetHelp"></a>SetHelp</span></dt><dd><pre
class="synopsis">SetHelp (id,category,desc)</pre><p>Set the category and help description line for a
function.</p></dd><dt><span class="term"><a
name="gel-function-SetHelpAlias"></a>SetHelpAlias</span></dt><dd><pre class="synopsis">SetHelpAlias
(id,alias)</pre><p>Sets up a help alias.</p></dd><dt><span class="term"><a
name="gel-function-chdir"></a>chdir</span></dt><dd><pre class="synopsis">chdir (dir)</pre><p>Changes current
directory, same as the <span class="command"><strong>cd</strong></span>.</p></dd><dt><span class="term"><a
name="gel-function-CurrentTime"></a>CurrentTime</span></dt><dd><pre
class="synopsis">CurrentTime</pre><p>Returns the current UNIX time with microsecond precision as a floating
point number. That is, returns the number of seconds since January 1st 1970.</p><p>Version 1.0.15
onwards.</p></dd><dt><span class="term"><a name="gel-function-display"></a>display
</span></dt><dd><pre class="synopsis">display (str,expr)</pre><p>Display a string and an expression with a
colon to separate them.</p></dd><dt><span class="term"><a
name="gel-function-DisplayVariables"></a>DisplayVariables</span></dt><dd><pre
class="synopsis">DisplayVariables (var1,var2,...)</pre><p>Display set of variables. The variables can be
given as
+ strings or identifiers. For example:
+ </p><pre class="programlisting">DisplayVariables(`x,`y,`z)
+ </pre><p>
+ </p><p>
+ If called without arguments (must supply empty argument list) as
+ </p><pre class="programlisting">DisplayVariables()
+ </pre><p>
+ then all variables are printed including a stacktrace similar to
+ <span class="guilabel">Show user variables</span> in the graphical version.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-error"></a>error</span></dt><dd><pre class="synopsis">error (str)</pre><p>Prints a string
to the error stream (onto the console).</p></dd><dt><span class="term"><a
name="gel-function-exit"></a>exit</span></dt><dd><pre class="synopsis">exit</pre><p>Aliases: <code
class="function">quit</code></p><p>Exits the program.</p></dd><dt><span class="term"><a
name="gel-function-false"></a>false</span></dt><dd><pre class="synopsis">false</pre><p>Aliases: <code
class="function">False</code> <code class="function">FALSE</code></p><p>The <code
class="constant">false</code> boolean value.</p></dd><dt><span class="term"><a
name="gel-function-manual"></a>manual</span></dt><dd><pre class="synopsis">manual</pre><p>Displays the user
manual.</p></dd><dt><span class="term"><a name="gel-function-print"></a>print</span></dt><dd><pre
class="synopsis">print (str)</pre><p>Prints an expression and then print a newline
. The argument <code class="varname">str</code> can be any expression. It is
+made into a string before being printed.</p></dd><dt><span class="term"><a
name="gel-function-printn"></a>printn</span></dt><dd><pre class="synopsis">printn (str)</pre><p>Prints an
expression without a trailing newline. The argument <code class="varname">str</code> can be any expression.
It is
+made into a string before being printed.</p></dd><dt><span class="term"><a
name="gel-function-PrintTable"></a>PrintTable</span></dt><dd><pre class="synopsis">PrintTable
(f,v)</pre><p>Print a table of values for a function. The values are in the
+ vector <code class="varname">v</code>. You can use the vector
+ building notation as follows:
+ </p><pre class="programlisting">PrintTable (f,[0:10])
+ </pre><p>
+ If <code class="varname">v</code> is a positive integer, then the table of
+ integers from 1 up to and including v will be used.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-protect"></a>protect</span></dt><dd><pre class="synopsis">protect (id)</pre><p>Protect a
variable from being modified. This is used on the internal GEL functions to
+avoid them being accidentally overridden.</p></dd><dt><span class="term"><a
name="gel-function-ProtectAll"></a>ProtectAll</span></dt><dd><pre class="synopsis">ProtectAll
()</pre><p>Protect all currently defined variables, parameters and
+functions from being modified. This is used on the internal GEL functions to
+avoid them being accidentally overridden. Normally <span class="application">Genius Mathematics Tool</span>
considers
+unprotected variables as user defined.</p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-set"></a>set</span></dt><dd><pre class="synopsis">set (id,val)</pre><p>Set a global
variable. The <code class="varname">id</code>
+ can be either a string or a quoted identifier.
+ For example:
+ </p><pre class="programlisting">set(`x,1)
+ </pre><p>
+ will set the global variable <code class="varname">x</code> to the value 1.
+ </p><p>The function returns the <code class="varname">val</code>, to be
+ usable in chaining.</p></dd><dt><span class="term"><a
name="gel-function-SetElement"></a>SetElement</span></dt><dd><pre class="synopsis">SetElement
(id,row,col,val)</pre><p>Set an element of a global variable which is a matrix.
+ The <code class="varname">id</code>
+ can be either a string or a quoted identifier.
+ For example:
+ </p><pre class="programlisting">SetElement(`x,2,3,1)
+ </pre><p>
+ will set the second row third column element of the global variable <code
class="varname">x</code> to the value 1. If no global variable of the name exists, or if it is set to
something that's not a matrix, a new zero matrix of appropriate size will be created.
+ </p><p>The <code class="varname">row</code> and <code class="varname">col</code> can also be
ranges, and the semantics are the same as for regular setting of the elements with an equals sign.
+ </p><p>The function returns the <code class="varname">val</code>, to be
+ usable in chaining.</p><p>Available from 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SetVElement"></a>SetVElement</span></dt><dd><pre class="synopsis">SetElement
(id,elt,val)</pre><p>Set an element of a global variable which is a vector.
+ The <code class="varname">id</code>
+ can be either a string or a quoted identifier.
+ For example:
+ </p><pre class="programlisting">SetElement(`x,2,1)
+ </pre><p>
+ will set the second element of the global vector variable <code class="varname">x</code> to the
value 1. If no global variable of the name exists, or if it is set to something that's not a vector
(matrix), a new zero row vector of appropriate size will be created.
+ </p><p>The <code class="varname">elt</code> can also be a range, and the semantics are the same as
for regular setting of the elements with an equals sign.
+ </p><p>The function returns the <code class="varname">val</code>, to be
+ usable in chaining.</p><p>Available from 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-string"></a>string</span></dt><dd><pre class="synopsis">string (s)</pre><p>Make a string.
This will make a string out of any argument.</p></dd><dt><span class="term"><a
name="gel-function-true"></a>true</span></dt><dd><pre class="synopsis">true</pre><p>Aliases: <code
class="function">True</code> <code class="function">TRUE</code></p><p>The <code class="constant">true</code>
boolean value.</p></dd><dt><span class="term"><a
name="gel-function-undefine"></a>undefine</span></dt><dd><pre class="synopsis">undefine (id)</pre><p>Alias:
<code class="function">Undefine</code></p><p>Undefine a variable. This includes locals and globals,
+ every value on all context levels is wiped. This function
+ should really not be used on local variables. A vector of
+ identifiers can also be passed to undefine several variables.
+ </p></dd><dt><span class="term"><a
name="gel-function-UndefineAll"></a>UndefineAll</span></dt><dd><pre class="synopsis">UndefineAll
()</pre><p>Undefine all unprotected global variables
+ (including functions and parameters). Normally <span class="application">Genius Mathematics
Tool</span>
+ considers protected variables as system defined functions
+ and variables. Note that <code class="function">UndefineAll</code>
+ only removes the global definition of symbols not local ones,
+ so that it may be run from inside other functions safely.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-unprotect"></a>unprotect</span></dt><dd><pre class="synopsis">unprotect
(id)</pre><p>Unprotect a variable from being modified.</p></dd><dt><span class="term"><a
name="gel-function-UserVariables"></a>UserVariables</span></dt><dd><pre class="synopsis">UserVariables
()</pre><p>Return a vector of identifiers of
+ user defined (unprotected) global variables.</p><p>Version 1.0.7 onwards.</p></dd><dt><span
class="term"><a name="gel-function-wait"></a>wait</span></dt><dd><pre class="synopsis">wait
(secs)</pre><p>Waits a specified number of seconds. <code class="varname">secs</code>
+must be non-negative. Zero is accepted and nothing happens in this case,
+except possibly user interface events are processed.</p><p>Since version 1.0.18, <code
class="varname">secs</code> can be a noninteger number, so
+ <strong class="userinput"><code>wait(0.1)</code></strong> will wait for one tenth of a
second.</p></dd><dt><span class="term"><a name="gel-function-version"></a>version</span></dt><dd><pre
class="synopsis">version</pre><p>Returns the version of Genius as a horizontal 3-vector with
+ major version first, then minor version and finally the patch level.</p></dd><dt><span
class="term"><a name="gel-function-warranty"></a>warranty</span></dt><dd><pre
class="synopsis">warranty</pre><p>Gives the warranty information.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Acima</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s03.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Capítulo 11. List of
GEL functions </td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td
width="40%" align="right" valign="top"> Parâmetros</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch11s03.html b/help/pt_BR/html/ch11s03.html
new file mode 100644
index 0000000..5bc71ba
--- /dev/null
+++ b/help/pt_BR/html/ch11s03.html
@@ -0,0 +1,46 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Parâmetros</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manual do Genius"><link rel="up" href="ch11.html"
title="Capítulo 11. List of GEL functions"><link rel="prev" href="ch11s02.html" title="Básico"><link
rel="next" href="ch11s04.html" title="Constantes"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Parâmetros</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s02.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. List of GEL
functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s04.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"
<a name="genius-gel-function-parameters"></a>Parâmetros</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-ChopTolerance"></a>ChopTolerance</span></dt><dd><pre class="synopsis">ChopTolerance =
number</pre><p>Tolerance of the <code class="function">Chop</code> function.</p></dd><dt><span
class="term"><a name="gel-function-ContinuousNumberOfTries"></a>ContinuousNumberOfTries</span></dt><dd><pre
class="synopsis">ContinuousNumberOfTries = number</pre><p>How many iterations to try to find the limit for
continuity and limits.</p></dd><dt><span class="term"><a
name="gel-function-ContinuousSFS"></a>ContinuousSFS</span></dt><dd><pre class="synopsis">ContinuousSFS =
number</pre><p>How many successive steps to be within tolerance for calculation of
continuity.</p></dd><dt><span class="term"><a
name="gel-function-ContinuousTolerance"></a>ContinuousTolerance</span></dt><dd><pre
class="synopsis">ContinuousTolerance = num
ber</pre><p>Tolerance for continuity of functions and for calculating the limit.</p></dd><dt><span
class="term"><a name="gel-function-DerivativeNumberOfTries"></a>DerivativeNumberOfTries</span></dt><dd><pre
class="synopsis">DerivativeNumberOfTries = number</pre><p>How many iterations to try to find the limit for
derivative.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeSFS"></a>DerivativeSFS</span></dt><dd><pre class="synopsis">DerivativeSFS =
number</pre><p>How many successive steps to be within tolerance for calculation of
derivative.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeTolerance"></a>DerivativeTolerance</span></dt><dd><pre
class="synopsis">DerivativeTolerance = number</pre><p>Tolerance for calculating the derivatives of
functions.</p></dd><dt><span class="term"><a
name="gel-function-ErrorFunctionTolerance"></a>ErrorFunctionTolerance</span></dt><dd><pre
class="synopsis">ErrorFunctionTolerance = number</pre><p>Tolerance of the <a
class="link" href="ch11s12.html#gel-function-ErrorFunction"><code
class="function">ErrorFunction</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-FloatPrecision"></a>FloatPrecision</span></dt><dd><pre class="synopsis">FloatPrecision =
number</pre><p>Floating point precision.</p></dd><dt><span class="term"><a
name="gel-function-FullExpressions"></a>FullExpressions</span></dt><dd><pre class="synopsis">FullExpressions
= boolean</pre><p>Print full expressions, even if more than a line.</p></dd><dt><span class="term"><a
name="gel-function-GaussDistributionTolerance"></a>GaussDistributionTolerance</span></dt><dd><pre
class="synopsis">GaussDistributionTolerance = number</pre><p>Tolerance of the <a class="link"
href="ch11s14.html#gel-function-GaussDistribution"><code class="function">GaussDistribution</code></a>
function.</p></dd><dt><span class="term"><a
name="gel-function-IntegerOutputBase"></a>IntegerOutputBase</span></dt><dd><pre
class="synopsis">IntegerOutputBas
e = number</pre><p>Integer output base.</p></dd><dt><span class="term"><a
name="gel-function-IsPrimeMillerRabinReps"></a>IsPrimeMillerRabinReps</span></dt><dd><pre
class="synopsis">IsPrimeMillerRabinReps = number</pre><p>Number of extra Miller-Rabin tests to run on a
number before declaring it a prime in <a class="link" href="ch11s07.html#gel-function-IsPrime"><code
class="function">IsPrime</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawLegends"></a>LinePlotDrawLegends</span></dt><dd><pre
class="synopsis">LinePlotDrawLegends = true</pre><p>Tells genius to draw the legends for <a class="link"
href="ch11s20.html" title="Plotagem">line plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawAxisLabels"></a>LinePlotDrawAxisLabels</span></dt><dd><pre
class="synopsis">LinePlotDrawAxisLabels = true</pre><p>Tells genius to draw the axis labels for <a
class="link" href="ch11s20.html" title="Plotagem">line plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotVariableNames"></a>LinePlotVariableNames</span></dt><dd><pre
class="synopsis">LinePlotVariableNames = ["x","y","z","t"]</pre><p>Tells genius which variable names are used
as default names for <a class="link" href="ch11s20.html" title="Plotagem">line plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a> and friends.
+ </p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotWindow"></a>LinePlotWindow</span></dt><dd><pre class="synopsis">LinePlotWindow =
[x1,x2,y1,y2]</pre><p>Sets the limits for <a class="link" href="ch11s20.html" title="Plotagem">line plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>.
+ </p></dd><dt><span class="term"><a name="gel-function-MaxDigits"></a>MaxDigits</span></dt><dd><pre
class="synopsis">MaxDigits = number</pre><p>Maximum digits to display.</p></dd><dt><span class="term"><a
name="gel-function-MaxErrors"></a>MaxErrors</span></dt><dd><pre class="synopsis">MaxErrors =
number</pre><p>Maximum errors to display.</p></dd><dt><span class="term"><a
name="gel-function-MixedFractions"></a>MixedFractions</span></dt><dd><pre class="synopsis">MixedFractions =
boolean</pre><p>If true, mixed fractions are printed.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegralFunction"></a>NumericalIntegralFunction</span></dt><dd><pre
class="synopsis">NumericalIntegralFunction = function</pre><p>The function used for numerical integration in
<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegralSteps"></a>Nume
ricalIntegralSteps</span></dt><dd><pre class="synopsis">NumericalIntegralSteps = number</pre><p>Steps to
perform in <a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-OutputChopExponent"></a>OutputChopExponent</span></dt><dd><pre
class="synopsis">OutputChopExponent = number</pre><p>When another number in the object being printed (a
matrix or a
+value) is greater than
+10<sup>-OutputChopWhenExponent</sup>, and
+the number being printed is less than
+10<sup>-OutputChopExponent</sup>, then
+display <code class="computeroutput">0.0</code> instead of the number.
+</p><p>
+Output is never chopped if <code class="function">OutputChopExponent</code> is zero.
+It must be a non-negative integer.
+</p><p>
+If you want output always chopped according to
+<code class="function">OutputChopExponent</code>, then set
+<code class="function">OutputChopWhenExponent</code>, to something
+greater than or equal to
+<code class="function">OutputChopExponent</code>.
+</p></dd><dt><span class="term"><a
name="gel-function-OutputChopWhenExponent"></a>OutputChopWhenExponent</span></dt><dd><pre
class="synopsis">OutputChopWhenExponent = number</pre><p>When to chop output. See
+ <a class="link" href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>.
+</p></dd><dt><span class="term"><a name="gel-function-OutputStyle"></a>OutputStyle</span></dt><dd><pre
class="synopsis">OutputStyle = string</pre><p>
+ Output style, this can be <code class="literal">normal</code>, <code
class="literal">latex</code>, <code class="literal">mathml</code> or <code class="literal">troff</code>.
+ </p><p>
+ This affects mostly how matrices and fractions are printed out and
+ is useful for pasting into documents. For example you can set this
+ to the latex by:
+ </p><pre class="programlisting">OutputStyle = "latex"
+</pre><p>
+ </p></dd><dt><span class="term"><a
name="gel-function-ResultsAsFloats"></a>ResultsAsFloats</span></dt><dd><pre class="synopsis">ResultsAsFloats
= boolean</pre><p>Convert all results to floats before printing.</p></dd><dt><span class="term"><a
name="gel-function-ScientificNotation"></a>ScientificNotation</span></dt><dd><pre
class="synopsis">ScientificNotation = boolean</pre><p>Use scientific notation.</p></dd><dt><span
class="term"><a name="gel-function-SlopefieldTicks"></a>SlopefieldTicks</span></dt><dd><pre
class="synopsis">SlopefieldTicks = [vertical,horizontal]</pre><p>Sets the number of vertical and horizontal
ticks in a
+slopefield plot. (See <a class="link" href="ch11s20.html#gel-function-SlopefieldPlot"><code
class="function">SlopefieldPlot</code></a>).
+ </p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SumProductNumberOfTries"></a>SumProductNumberOfTries</span></dt><dd><pre
class="synopsis">SumProductNumberOfTries = number</pre><p>How many iterations to try for <a class="link"
href="ch11s11.html#gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a> and <a
class="link" href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SumProductSFS"></a>SumProductSFS</span></dt><dd><pre class="synopsis">SumProductSFS =
number</pre><p>How many successive steps to be within tolerance for <a class="link"
href="ch11s11.html#gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a> and <a
class="link" href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SumProductTolerance
"></a>SumProductTolerance</span></dt><dd><pre class="synopsis">SumProductTolerance =
number</pre><p>Tolerance for <a class="link" href="ch11s11.html#gel-function-InfiniteSum"><code
class="function">InfiniteSum</code></a> and <a class="link"
href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawLegends"></a>SurfacePlotDrawLegends</span></dt><dd><pre
class="synopsis">SurfacePlotDrawLegends = true</pre><p>Tells genius to draw the legends for <a class="link"
href="ch11s20.html" title="Plotagem">surface plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotVariableNames"></a>SurfacePlotVariableNames</span></dt><dd><pre
class="synopsis">SurfacePlotVariableNames = ["x","y","z"]</pre><p>Tells genius which variable names are used
as default names for <a class="link" href="ch11s20.html" title="Plotagem">surface plotting
+ functions</a> using <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>.
+ Note that the <code class="varname">z</code> does not refer to the dependent (vertical) axis, but
to the independent complex variable
+ <strong class="userinput"><code>z=x+iy</code></strong>.
+ </p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotWindow"></a>SurfacePlotWindow</span></dt><dd><pre
class="synopsis">SurfacePlotWindow = [x1,x2,y1,y2,z1,z2]</pre><p>Sets the limits for surface plotting (See <a
class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>).</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldNormalized"></a>VectorfieldNormalized</span></dt><dd><pre
class="synopsis">VectorfieldNormalized = true</pre><p>Should the vectorfield plotting have normalized arrow
length. If true, vector fields will only show direction
+ and not magnitude. (See <a class="link" href="ch11s20.html#gel-function-VectorfieldPlot"><code
class="function">VectorfieldPlot</code></a>).
+ </p></dd><dt><span class="term"><a
name="gel-function-VectorfieldTicks"></a>VectorfieldTicks</span></dt><dd><pre
class="synopsis">VectorfieldTicks = [vertical,horizontal]</pre><p>Sets the number of vertical and horizontal
ticks in a
+vectorfield plot. (See <a class="link" href="ch11s20.html#gel-function-VectorfieldPlot"><code
class="function">VectorfieldPlot</code></a>).
+ </p><p>Version 1.0.10 onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s02.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Acima</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s04.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Básico </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td width="40%" align="right"
valign="top"> Constantes</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch11s04.html b/help/pt_BR/html/ch11s04.html
new file mode 100644
index 0000000..0b2903a
--- /dev/null
+++ b/help/pt_BR/html/ch11s04.html
@@ -0,0 +1,44 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Constantes</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manual do Genius"><link rel="up" href="ch11.html"
title="Capítulo 11. List of GEL functions"><link rel="prev" href="ch11s03.html" title="Parâmetros"><link
rel="next" href="ch11s05.html" title="Numérico"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Constantes</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s03.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. List of GEL
functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s05.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both
"><a name="genius-gel-function-list-constants"></a>Constantes</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-CatalanConstant"></a>CatalanConstant</span></dt><dd><pre
class="synopsis">CatalanConstant</pre><p>
+ Catalan's Constant, approximately 0.915... It is defined to be the series where terms are
<strong class="userinput"><code>(-1^k)/((2*k+1)^2)</code></strong>, where <code class="varname">k</code>
ranges from 0 to infinity.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Catalan%27s_constant"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/CatalansConstant.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EulerConstant"></a>EulerConstant</span></dt><dd><pre
class="synopsis">EulerConstant</pre><p>Aliases: <code class="function">gamma</code></p><p>
+ Euler's constant gamma. Sometimes called the
+ Euler-Mascheroni constant.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Euler-Mascheroni_constant"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/MascheroniConstant" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Euler-MascheroniConstant.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GoldenRatio"></a>GoldenRatio</span></dt><dd><pre class="synopsis">GoldenRatio</pre><p>The
Golden Ratio.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Golden_ratio" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/GoldenRatio" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/GoldenRatio.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Gravity"></a>Gravity</span></dt><dd><pre
class="synopsis">Gravity</pre><p>Free fall acceleration at sea level in meters per second squared. This is
the standard gravity constant 9.80665. The gravity
+ in your particular neck of the woods might be different due to different altitude and the
fact that the earth is not perfectly
+ round and uniform.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Standard_gravity" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-e"></a>e</span></dt><dd><pre
class="synopsis">e</pre><p>
+ The base of the natural logarithm. <strong class="userinput"><code>e^x</code></strong>
+ is the exponential function
+ <a class="link" href="ch11s05.html#gel-function-exp"><code class="function">exp</code></a>. It
is approximately
+ 2.71828182846... This number is sometimes called Euler's number, although there are
+ several numbers that are also called Euler's. An example is the gamma constant: <a class="link"
href="ch11s04.html#gel-function-EulerConstant"><code class="function">EulerConstant</code></a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/E_(mathematical_constant)"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/E" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/e.html" target="_top">Mathworld</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-pi"></a>pi</span></dt><dd><pre
class="synopsis">pi</pre><p>
+ The number pi, that is the ratio of a circle's circumference
+ to its diameter. This is approximately 3.14159265359...
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Pi" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Pi" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Pi.html" target="_top">Mathworld</a> for more
information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s03.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s05.html">Próxima</a></td></tr><tr><td width="40%" align="left"
valign="top">Parâmetros </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Principal</a></td><td width="40%" align="right" valign="top">
Numérico</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch11s05.html b/help/pt_BR/html/ch11s05.html
new file mode 100644
index 0000000..fc6a047
--- /dev/null
+++ b/help/pt_BR/html/ch11s05.html
@@ -0,0 +1,103 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Numérico</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
do Genius"><link rel="up" href="ch11.html" title="Capítulo 11. List of GEL functions"><link rel="prev"
href="ch11s04.html" title="Constantes"><link rel="next" href="ch11s06.html"
title="Trigonometria"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Numérico</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s04.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. List of GEL
functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s06.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: bot
h"><a name="genius-gel-function-list-numeric"></a>Numérico</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AbsoluteValue"></a>AbsoluteValue</span></dt><dd><pre class="synopsis">AbsoluteValue
(x)</pre><p>Aliases: <code class="function">abs</code></p><p>
+ Absolute value of a number and if <code class="varname">x</code> is
+ a complex value the modulus of <code class="varname">x</code>. I.e. this
+ the distance of <code class="varname">x</code> to the origin. This is equivalent
+ to <strong class="userinput"><code>|x|</code></strong>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Absolute_value" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/AbsoluteValue" target="_top">Planetmath (absolute
value)</a>,
+ <a class="ulink" href="http://planetmath.org/ModulusOfComplexNumber" target="_top">Planetmath
(modulus)</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/AbsoluteValue.html" target="_top">Mathworld
(absolute value)</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/ComplexModulus.html" target="_top">Mathworld
(complex modulus)</a>
+for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Chop"></a>Chop</span></dt><dd><pre
class="synopsis">Chop (x)</pre><p>Replace very small number with zero.</p></dd><dt><span class="term"><a
name="gel-function-ComplexConjugate"></a>ComplexConjugate</span></dt><dd><pre
class="synopsis">ComplexConjugate (z)</pre><p>Aliases: <code class="function">conj</code> <code
class="function">Conj</code></p><p>Calculates the complex conjugate of the complex number <code
class="varname">z</code>. If <code class="varname">z</code> is a vector or matrix,
+all its elements are conjugated.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Complex_conjugate"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Denominator"></a>Denominator</span></dt><dd><pre class="synopsis">Denominator
(x)</pre><p>Get the denominator of a rational number.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Denominator" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FractionalPart"></a>FractionalPart</span></dt><dd><pre class="synopsis">FractionalPart
(x)</pre><p>Return the fractional part of a number.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fractional_part" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Im"></a>Im</span></dt><dd><pre
class="synopsis">Im (z)</pre><p>Aliases: <code class="function">ImaginaryPart</code></p><p>Get the imaginary
part of a complex number. For example <strong class="userinput"><code>Re(3+4i)</code></strong> yields
4.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Imaginary_part" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IntegerQuotient"></a>IntegerQuotient</span></dt><dd><pre class="synopsis">IntegerQuotient
(m,n)</pre><p>Division without remainder.</p></dd><dt><span class="term"><a
name="gel-function-IsComplex"></a>IsComplex</span></dt><dd><pre class="synopsis">IsComplex
(num)</pre><p>Check if argument is a complex (non-real) number. Do note that we really mean nonreal number.
That is,
+ <strong class="userinput"><code>IsComplex(3)</code></strong> yields false, while
+ <strong class="userinput"><code>IsComplex(3-1i)</code></strong> yields true.</p></dd><dt><span
class="term"><a name="gel-function-IsComplexRational"></a>IsComplexRational</span></dt><dd><pre
class="synopsis">IsComplexRational (num)</pre><p>Check if argument is a possibly complex rational number.
That is, if both real and imaginary parts are
+ given as rational numbers. Of course rational simply means "not stored as a floating point
number."</p></dd><dt><span class="term"><a name="gel-function-IsFloat"></a>IsFloat</span></dt><dd><pre
class="synopsis">IsFloat (num)</pre><p>Check if argument is a real floating point number
(non-complex).</p></dd><dt><span class="term"><a
name="gel-function-IsGaussInteger"></a>IsGaussInteger</span></dt><dd><pre class="synopsis">IsGaussInteger
(num)</pre><p>Aliases: <code class="function">IsComplexInteger</code></p><p>Check if argument is a possibly
complex integer. That is a complex integer is a number of
+ the form <strong class="userinput"><code>n+1i*m</code></strong> where <code
class="varname">n</code> and <code class="varname">m</code>
+ are integers.</p></dd><dt><span class="term"><a
name="gel-function-IsInteger"></a>IsInteger</span></dt><dd><pre class="synopsis">IsInteger
(num)</pre><p>Check if argument is an integer (non-complex).</p></dd><dt><span class="term"><a
name="gel-function-IsNonNegativeInteger"></a>IsNonNegativeInteger</span></dt><dd><pre
class="synopsis">IsNonNegativeInteger (num)</pre><p>Check if argument is a non-negative real integer. That
is, either a positive integer or zero.</p></dd><dt><span class="term"><a
name="gel-function-IsPositiveInteger"></a>IsPositiveInteger</span></dt><dd><pre
class="synopsis">IsPositiveInteger (num)</pre><p>Aliases: <code
class="function">IsNaturalNumber</code></p><p>Check if argument is a positive real integer. Note that
+we accept the convention that 0 is not a natural number.</p></dd><dt><span class="term"><a
name="gel-function-IsRational"></a>IsRational</span></dt><dd><pre class="synopsis">IsRational
(num)</pre><p>Check if argument is a rational number (non-complex). Of course rational simply means "not
stored as a floating point number."</p></dd><dt><span class="term"><a
name="gel-function-IsReal"></a>IsReal</span></dt><dd><pre class="synopsis">IsReal (num)</pre><p>Check if
argument is a real number.</p></dd><dt><span class="term"><a
name="gel-function-Numerator"></a>Numerator</span></dt><dd><pre class="synopsis">Numerator (x)</pre><p>Get
the numerator of a rational number.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Numerator" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Re"></a>Re</span></dt><dd><pre
class="synopsis">Re (z)</pre><p>Aliases: <code class="function">RealPart</code></p><p>Get the real part of a
complex number. For example <strong class="userinput"><code>Re(3+4i)</code></strong> yields 3.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Real_part" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Sign"></a>Sign</span></dt><dd><pre
class="synopsis">Sign (x)</pre><p>Aliases: <code class="function">sign</code></p><p>Return the sign of a
number. That is returns
+<code class="literal">-1</code> if value is negative,
+<code class="literal">0</code> if value is zero and
+<code class="literal">1</code> if value is positive. If <code class="varname">x</code> is a complex
+value then <code class="function">Sign</code> returns the direction or 0.
+ </p></dd><dt><span class="term"><a name="gel-function-ceil"></a>ceil</span></dt><dd><pre
class="synopsis">ceil (x)</pre><p>Aliases: <code class="function">Ceiling</code></p><p>Get the lowest integer
more than or equal to <code class="varname">n</code>. Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>ceil(1.1)</code></strong>
+= 2
+<code class="prompt">genius></code> <strong class="userinput"><code>ceil(-1.1)</code></strong>
+= -1
+</pre><p>
+ </p><p>Note that you should be careful and notice that floating point
+ numbers are stored in binary and so may not be what you
+ expect. For example <strong class="userinput"><code>ceil(420/4.2)</code></strong>
+ returns 101 instead of the expected 100. This is because
+ 4.2 is actually very slightly less than 4.2. Use rational
+ representation <strong class="userinput"><code>42/10</code></strong> if you want
+ exact arithmetic.
+ </p></dd><dt><span class="term"><a name="gel-function-exp"></a>exp</span></dt><dd><pre
class="synopsis">exp (x)</pre><p>
+ The exponential function. This is the function
+ <strong class="userinput"><code>e^x</code></strong> where <code class="varname">e</code>
+ is the <a class="link" href="ch11s04.html#gel-function-e">base of the natural
+ logarithm</a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Exponential_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/LogarithmFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/ExponentialFunction.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-float"></a>float</span></dt><dd><pre
class="synopsis">float (x)</pre><p>Make number a floating point value. That is returns the floating point
representation of the number <code class="varname">x</code>.</p></dd><dt><span class="term"><a
name="gel-function-floor"></a>floor</span></dt><dd><pre class="synopsis">floor (x)</pre><p>Aliases: <code
class="function">Floor</code></p><p>Get the highest integer less than or equal to <code
class="varname">n</code>.</p></dd><dt><span class="term"><a name="gel-function-ln"></a>ln</span></dt><dd><pre
class="synopsis">ln (x)</pre><p>The natural logarithm, the logarithm to base <code
class="varname">e</code>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Natural_logarithm"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/LogarithmFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/NaturalLogarithm.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-log"></a>log</span></dt><dd><pre
class="synopsis">log (x)</pre><pre class="synopsis">log (x,b)</pre><p>Logarithm of <code
class="varname">x</code> base <code class="varname">b</code> (calls <a class="link"
href="ch11s07.html#gel-function-DiscreteLog"><code class="function">DiscreteLog</code></a> if in modulo
mode), if base is not given, <a class="link" href="ch11s04.html#gel-function-e"><code
class="varname">e</code></a> is used.</p></dd><dt><span class="term"><a
name="gel-function-log10"></a>log10</span></dt><dd><pre class="synopsis">log10 (x)</pre><p>Logarithm of <code
class="varname">x</code> base 10.</p></dd><dt><span class="term"><a
name="gel-function-log2"></a>log2</span></dt><dd><pre class="synopsis">log2 (x)</pre><p>Aliases: <code
class="function">lg</code></p><p>Logarithm of <code class="varname">x</code> base 2.</p></dd><dt><span
class="term"><a name="gel-function-max"></a>max</span></dt><dd><pre class="synop
sis">max (a,args...)</pre><p>Aliases: <code class="function">Max</code> <code
class="function">Maximum</code></p><p>Returns the maximum of arguments or matrix.</p></dd><dt><span
class="term"><a name="gel-function-min"></a>min</span></dt><dd><pre class="synopsis">min
(a,args...)</pre><p>Aliases: <code class="function">Min</code> <code
class="function">Minimum</code></p><p>Returns the minimum of arguments or matrix.</p></dd><dt><span
class="term"><a name="gel-function-rand"></a>rand</span></dt><dd><pre class="synopsis">rand
(size...)</pre><p>Generate random float in the range <code class="literal">[0,1)</code>.
+If size is given then a matrix (if two numbers are specified) or vector (if one
+number is specified) of the given size returned.</p></dd><dt><span class="term"><a
name="gel-function-randint"></a>randint</span></dt><dd><pre class="synopsis">randint
(max,size...)</pre><p>Generate random integer in the range
+<code class="literal">[0,max)</code>.
+If size is given then a matrix (if two numbers are specified) or vector (if one
+number is specified) of the given size returned. For example,
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>randint(4)</code></strong>
+= 3
+<code class="prompt">genius></code> <strong class="userinput"><code>randint(4,2)</code></strong>
+=
+[0 1]
+<code class="prompt">genius></code> <strong class="userinput"><code>randint(4,2,3)</code></strong>
+=
+[2 2 1
+ 0 0 3]
+</pre><p>
+ </p></dd><dt><span class="term"><a name="gel-function-round"></a>round</span></dt><dd><pre
class="synopsis">round (x)</pre><p>Aliases: <code class="function">Round</code></p><p>Round a
number.</p></dd><dt><span class="term"><a name="gel-function-sqrt"></a>sqrt</span></dt><dd><pre
class="synopsis">sqrt (x)</pre><p>Aliases: <code class="function">SquareRoot</code></p><p>The square root.
When operating modulo some integer will return either a <code class="constant">null</code> or a vector of the
square roots. Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>sqrt(2)</code></strong>
+= 1.41421356237
+<code class="prompt">genius></code> <strong class="userinput"><code>sqrt(-1)</code></strong>
+= 1i
+<code class="prompt">genius></code> <strong class="userinput"><code>sqrt(4) mod 7</code></strong>
+=
+[2 5]
+<code class="prompt">genius></code> <strong class="userinput"><code>2*2 mod 7</code></strong>
+= 4
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Square_root" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/SquareRoot" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-trunc"></a>trunc</span></dt><dd><pre
class="synopsis">trunc (x)</pre><p>Aliases: <code class="function">Truncate</code> <code
class="function">IntegerPart</code></p><p>Truncate number to an integer (return the integer
part).</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s04.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s06.html">Próxima</a></td></tr><tr><td width="40%" align="left"
valign="top">Constantes </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Principal</a></td><td width="40%" align="right" valign="top">
Trigonometria</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch11s06.html b/help/pt_BR/html/ch11s06.html
new file mode 100644
index 0000000..2ad026f
--- /dev/null
+++ b/help/pt_BR/html/ch11s06.html
@@ -0,0 +1,64 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Trigonometria</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manual do Genius"><link rel="up" href="ch11.html"
title="Capítulo 11. List of GEL functions"><link rel="prev" href="ch11s05.html" title="Numérico"><link
rel="next" href="ch11s07.html" title="Teoria dos números"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Trigonometria</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s05.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. List of GEL
functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s07.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" styl
e="clear: both"><a name="genius-gel-function-list-trigonometry"></a>Trigonometria</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-acos"></a>acos</span></dt><dd><pre class="synopsis">acos (x)</pre><p>Aliases: <code
class="function">arccos</code></p><p>The arccos (inverse cos) function.</p></dd><dt><span class="term"><a
name="gel-function-acosh"></a>acosh</span></dt><dd><pre class="synopsis">acosh (x)</pre><p>Aliases: <code
class="function">arccosh</code></p><p>The arccosh (inverse cosh) function.</p></dd><dt><span class="term"><a
name="gel-function-acot"></a>acot</span></dt><dd><pre class="synopsis">acot (x)</pre><p>Aliases: <code
class="function">arccot</code></p><p>The arccot (inverse cot) function.</p></dd><dt><span class="term"><a
name="gel-function-acoth"></a>acoth</span></dt><dd><pre class="synopsis">acoth (x)</pre><p>Aliases: <code
class="function">arccoth</code></p><p>The arccoth (inverse coth) func
tion.</p></dd><dt><span class="term"><a name="gel-function-acsc"></a>acsc</span></dt><dd><pre
class="synopsis">acsc (x)</pre><p>Aliases: <code class="function">arccsc</code></p><p>The inverse cosecant
function.</p></dd><dt><span class="term"><a name="gel-function-acsch"></a>acsch</span></dt><dd><pre
class="synopsis">acsch (x)</pre><p>Aliases: <code class="function">arccsch</code></p><p>The inverse
hyperbolic cosecant function.</p></dd><dt><span class="term"><a
name="gel-function-asec"></a>asec</span></dt><dd><pre class="synopsis">asec (x)</pre><p>Aliases: <code
class="function">arcsec</code></p><p>The inverse secant function.</p></dd><dt><span class="term"><a
name="gel-function-asech"></a>asech</span></dt><dd><pre class="synopsis">asech (x)</pre><p>Aliases: <code
class="function">arcsech</code></p><p>The inverse hyperbolic secant function.</p></dd><dt><span
class="term"><a name="gel-function-asin"></a>asin</span></dt><dd><pre class="synopsis">asin
(x)</pre><p>Aliases: <code
class="function">arcsin</code></p><p>The arcsin (inverse sin) function.</p></dd><dt><span class="term"><a
name="gel-function-asinh"></a>asinh</span></dt><dd><pre class="synopsis">asinh (x)</pre><p>Aliases: <code
class="function">arcsinh</code></p><p>The arcsinh (inverse sinh) function.</p></dd><dt><span class="term"><a
name="gel-function-atan"></a>atan</span></dt><dd><pre class="synopsis">atan (x)</pre><p>Aliases: <code
class="function">arctan</code></p><p>Calculates the arctan (inverse tan) function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Arctangent" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/InverseTangent.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-atanh"></a>atanh</span></dt><dd><pre
class="synopsis">atanh (x)</pre><p>Aliases: <code class="function">arctanh</code></p><p>The arctanh (inverse
tanh) function.</p></dd><dt><span class="term"><a name="gel-function-atan2"></a>atan2</span></dt><dd><pre
class="synopsis">atan2 (y, x)</pre><p>Aliases: <code class="function">arctan2</code></p><p>Calculates the
arctan2 function. If
+ <strong class="userinput"><code>x>0</code></strong> then it returns
+ <strong class="userinput"><code>atan(y/x)</code></strong>. If <strong
class="userinput"><code>x<0</code></strong>
+ then it returns <strong class="userinput"><code>sign(y) * (pi - atan(|y/x|)</code></strong>.
+ When <strong class="userinput"><code>x=0</code></strong> it returns <strong
class="userinput"><code>sign(y) *
+ pi/2</code></strong>. <strong class="userinput"><code>atan2(0,0)</code></strong> returns 0
+ rather than failing.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Atan2" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/InverseTangent.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-cos"></a>cos</span></dt><dd><pre
class="synopsis">cos (x)</pre><p>Calculates the cosine function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-cosh"></a>cosh</span></dt><dd><pre
class="synopsis">cosh (x)</pre><p>Calculates the hyperbolic cosine function.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-cot"></a>cot</span></dt><dd><pre
class="synopsis">cot (x)</pre><p>The cotangent function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-coth"></a>coth</span></dt><dd><pre
class="synopsis">coth (x)</pre><p>The hyperbolic cotangent function.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-csc"></a>csc</span></dt><dd><pre
class="synopsis">csc (x)</pre><p>The cosecant function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-csch"></a>csch</span></dt><dd><pre
class="synopsis">csch (x)</pre><p>The hyperbolic cosecant function.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sec"></a>sec</span></dt><dd><pre
class="synopsis">sec (x)</pre><p>The secant function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sech"></a>sech</span></dt><dd><pre
class="synopsis">sech (x)</pre><p>The hyperbolic secant function.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sin"></a>sin</span></dt><dd><pre
class="synopsis">sin (x)</pre><p>Calculates the sine function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sinh"></a>sinh</span></dt><dd><pre
class="synopsis">sinh (x)</pre><p>Calculates the hyperbolic sine function.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-tan"></a>tan</span></dt><dd><pre
class="synopsis">tan (x)</pre><p>Calculates the tan function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-tanh"></a>tanh</span></dt><dd><pre
class="synopsis">tanh (x)</pre><p>The hyperbolic tangent function.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s05.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s07.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Numérico
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td width="40%"
align="right" valign="top"> Teoria dos números</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch11s07.html b/help/pt_BR/html/ch11s07.html
new file mode 100644
index 0000000..b7c17af
--- /dev/null
+++ b/help/pt_BR/html/ch11s07.html
@@ -0,0 +1,284 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Teoria dos
números</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch11.html" title="Capítulo 11. List of GEL
functions"><link rel="prev" href="ch11s06.html" title="Trigonometria"><link rel="next" href="ch11s08.html"
title="Manipulação de matrizes"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Teoria dos números</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s06.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. List of GEL
functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s08.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div>
<h2 class="title" style="clear: both"><a name="genius-gel-function-list-number-theory"></a>Teoria dos
números</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AreRelativelyPrime"></a>AreRelativelyPrime</span></dt><dd><pre
class="synopsis">AreRelativelyPrime (a,b)</pre><p>
+ Are the real integers <code class="varname">a</code> and <code class="varname">b</code>
relatively prime?
+ Returns <code class="constant">true</code> or <code class="constant">false</code>.
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Coprime_integers"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/RelativelyPrime" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/RelativelyPrime.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-BernoulliNumber"></a>BernoulliNumber</span></dt><dd><pre class="synopsis">BernoulliNumber
(n)</pre><p>Return the <code class="varname">n</code>th Bernoulli number.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bernoulli_number" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://mathworld.wolfram.com/BernoulliNumber.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ChineseRemainder"></a>ChineseRemainder</span></dt><dd><pre
class="synopsis">ChineseRemainder (a,m)</pre><p>Aliases: <code class="function">CRT</code></p><p>Find the
<code class="varname">x</code> that solves the system given by
+ the vector <code class="varname">a</code> and modulo the elements of
+ <code class="varname">m</code>, using the Chinese Remainder Theorem.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Chinese_remainder_theorem"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/ChineseRemainderTheorem"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/ChineseRemainderTheorem.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CombineFactorizations"></a>CombineFactorizations</span></dt><dd><pre
class="synopsis">CombineFactorizations (a,b)</pre><p>Given two factorizations, give the factorization of the
+ product.</p><p>See <a class="link"
href="ch11s07.html#gel-function-Factorize">Factorize</a>.</p></dd><dt><span class="term"><a
name="gel-function-ConvertFromBase"></a>ConvertFromBase</span></dt><dd><pre class="synopsis">ConvertFromBase
(v,b)</pre><p>Convert a vector of values indicating powers of b to a number.</p></dd><dt><span
class="term"><a name="gel-function-ConvertToBase"></a>ConvertToBase</span></dt><dd><pre
class="synopsis">ConvertToBase (n,b)</pre><p>Convert a number to a vector of powers for elements in base
<code class="varname">b</code>.</p></dd><dt><span class="term"><a
name="gel-function-DiscreteLog"></a>DiscreteLog</span></dt><dd><pre class="synopsis">DiscreteLog
(n,b,q)</pre><p>Find discrete log of <code class="varname">n</code> base <code class="varname">b</code> in
+ F<sub>q</sub>, the finite field of order <code class="varname">q</code>, where <code
class="varname">q</code>
+ is a prime, using the Silver-Pohlig-Hellman algorithm.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Discrete_logarithm"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/DiscreteLogarithm" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/DiscreteLogarithm.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Divides"></a>Divides</span></dt><dd><pre
class="synopsis">Divides (m,n)</pre><p>Checks divisibility (if <code class="varname">m</code> divides <code
class="varname">n</code>).</p></dd><dt><span class="term"><a
name="gel-function-EulerPhi"></a>EulerPhi</span></dt><dd><pre class="synopsis">EulerPhi (n)</pre><p>
+ Compute the Euler phi function for <code class="varname">n</code>, that is
+ the number of integers between 1 and <code class="varname">n</code>
+ relatively prime to <code class="varname">n</code>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Euler_phi" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/EulerPhifunction" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/TotientFunction.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ExactDivision"></a>ExactDivision</span></dt><dd><pre class="synopsis">ExactDivision
(n,d)</pre><p>
+ Return <strong class="userinput"><code>n/d</code></strong> but only if <code
class="varname">d</code>
+ divides <code class="varname">n</code>. If <code class="varname">d</code>
+ does not divide <code class="varname">n</code> then this function returns
+ garbage. This is a lot faster for very large numbers
+ than the operation <strong class="userinput"><code>n/d</code></strong>, but of course only
+ useful if you know that the division is exact.
+ </p></dd><dt><span class="term"><a name="gel-function-Factorize"></a>Factorize</span></dt><dd><pre
class="synopsis">Factorize (n)</pre><p>
+ Return factorization of a number as a matrix. The first
+ row is the primes in the factorization (including 1) and the
+ second row are the powers. So for example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>Factorize(11*11*13)</code></strong>
+=
+[1 11 13
+ 1 2 1]</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Factorization" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Factors"></a>Factors</span></dt><dd><pre
class="synopsis">Factors (n)</pre><p>
+ Return all factors of <code class="varname">n</code> in a vector. This
+ includes all the non-prime factors as well. It includes 1 and the
+ number itself. So for example to print all the perfect numbers
+ (those that are sums of their factors) up to the number 1000 you
+ could do (this is of course very inefficient)
+ </p><pre class="programlisting">for n=1 to 1000 do (
+ if MatrixSum (Factors(n)) == 2*n then
+ print(n)
+)
+</pre><p>
+ </p></dd><dt><span class="term"><a
name="gel-function-FermatFactorization"></a>FermatFactorization</span></dt><dd><pre
class="synopsis">FermatFactorization (n,tries)</pre><p>
+ Attempt Fermat factorization of <code class="varname">n</code> into
+ <strong class="userinput"><code>(t-s)*(t+s)</code></strong>, returns <code
class="varname">t</code>
+ and <code class="varname">s</code> as a vector if possible, <code class="constant">null</code>
otherwise.
+ <code class="varname">tries</code> specifies the number of tries before
+ giving up.
+ </p><p>
+ This is a fairly good factorization if your number is the product
+ of two factors that are very close to each other.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fermat_factorization"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FindPrimitiveElementMod"></a>FindPrimitiveElementMod</span></dt><dd><pre
class="synopsis">FindPrimitiveElementMod (q)</pre><p>Find the first primitive element in F<sub>q</sub>, the
finite
+group of order <code class="varname">q</code>. Of course <code class="varname">q</code> must be a
prime.</p></dd><dt><span class="term"><a
name="gel-function-FindRandomPrimitiveElementMod"></a>FindRandomPrimitiveElementMod</span></dt><dd><pre
class="synopsis">FindRandomPrimitiveElementMod (q)</pre><p>Find a random primitive element in F<sub>q</sub>,
the finite
+group of order <code class="varname">q</code> (q must be a prime).</p></dd><dt><span class="term"><a
name="gel-function-IndexCalculus"></a>IndexCalculus</span></dt><dd><pre class="synopsis">IndexCalculus
(n,b,q,S)</pre><p>Compute discrete log base <code class="varname">b</code> of n in F<sub>q</sub>, the finite
+group of order <code class="varname">q</code> (<code class="varname">q</code> a prime), using the
+factor base <code class="varname">S</code>. <code class="varname">S</code> should be a column of
+primes possibly with second column precalculated by
+<a class="link" href="ch11s07.html#gel-function-IndexCalculusPrecalculation"><code
class="function">IndexCalculusPrecalculation</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-IndexCalculusPrecalculation"></a>IndexCalculusPrecalculation</span></dt><dd><pre
class="synopsis">IndexCalculusPrecalculation (b,q,S)</pre><p>Run the precalculation step of
+ <a class="link" href="ch11s07.html#gel-function-IndexCalculus"><code
class="function">IndexCalculus</code></a> for logarithms base <code class="varname">b</code> in
+F<sub>q</sub>, the finite group of order <code class="varname">q</code>
+(<code class="varname">q</code> a prime), for the factor base <code class="varname">S</code> (where
+<code class="varname">S</code> is a column vector of primes). The logs will be
+precalculated and returned in the second column.</p></dd><dt><span class="term"><a
name="gel-function-IsEven"></a>IsEven</span></dt><dd><pre class="synopsis">IsEven (n)</pre><p>Tests if an
integer is even.</p></dd><dt><span class="term"><a
name="gel-function-IsMersennePrimeExponent"></a>IsMersennePrimeExponent</span></dt><dd><pre
class="synopsis">IsMersennePrimeExponent (p)</pre><p>
+ Tests if a positive integer <code class="varname">p</code> is a
+ Mersenne prime exponent. That is if
+ 2<sup>p</sup>-1 is a prime. It does this
+ by looking it up in a table of known values, which is relatively
+ short.
+ See also
+ <a class="link" href="ch11s07.html#gel-function-MersennePrimeExponents">MersennePrimeExponents</a>
+ and
+ <a class="link" href="ch11s07.html#gel-function-LucasLehmer">LucasLehmer</a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Mersenne_prime" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MersenneNumbers" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/MersennePrime.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://www.mersenne.org/" target="_top">GIMPS</a>
+ for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsNthPower"></a>IsNthPower</span></dt><dd><pre class="synopsis">IsNthPower (m,n)</pre><p>
+ Tests if a rational number <code class="varname">m</code> is a perfect
+ <code class="varname">n</code>th power. See also
+ <a class="link" href="ch11s07.html#gel-function-IsPerfectPower">IsPerfectPower</a>
+ and
+ <a class="link" href="ch11s07.html#gel-function-IsPerfectSquare">IsPerfectSquare</a>.
+ </p></dd><dt><span class="term"><a name="gel-function-IsOdd"></a>IsOdd</span></dt><dd><pre
class="synopsis">IsOdd (n)</pre><p>Tests if an integer is odd.</p></dd><dt><span class="term"><a
name="gel-function-IsPerfectPower"></a>IsPerfectPower</span></dt><dd><pre class="synopsis">IsPerfectPower
(n)</pre><p>Check an integer for being any perfect power, a<sup>b</sup>.</p></dd><dt><span class="term"><a
name="gel-function-IsPerfectSquare"></a>IsPerfectSquare</span></dt><dd><pre class="synopsis">IsPerfectSquare
(n)</pre><p>
+ Check an integer for being a perfect square of an integer. The number must
+ be a real integer. Negative integers are of course never perfect
+ squares of real integers.
+ </p></dd><dt><span class="term"><a name="gel-function-IsPrime"></a>IsPrime</span></dt><dd><pre
class="synopsis">IsPrime (n)</pre><p>
+ Tests primality of integers, for numbers less than 2.5e10 the
+ answer is deterministic (if Riemann hypothesis is true). For
+ numbers larger, the probability of a false positive
+ depends on
+ <a class="link" href="ch11s03.html#gel-function-IsPrimeMillerRabinReps">
+ <code class="function">IsPrimeMillerRabinReps</code></a>. That
+ is the probability of false positive is 1/4 to the power
+ <code class="function">IsPrimeMillerRabinReps</code>. The default
+ value of 22 yields a probability of about 5.7e-14.
+ </p><p>
+ If <code class="constant">false</code> is returned, you can be sure that
+ the number is a composite. If you want to be absolutely sure
+ that you have a prime you can use
+ <a class="link" href="ch11s07.html#gel-function-MillerRabinTestSure">
+ <code class="function">MillerRabinTestSure</code></a> but it may take
+ a lot longer.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsPrimitiveMod"></a>IsPrimitiveMod</span></dt><dd><pre class="synopsis">IsPrimitiveMod
(g,q)</pre><p>Check if <code class="varname">g</code> is primitive in F<sub>q</sub>, the finite
+group of order <code class="varname">q</code>, where <code class="varname">q</code> is a prime. If <code
class="varname">q</code> is not prime results are bogus.</p></dd><dt><span class="term"><a
name="gel-function-IsPrimitiveModWithPrimeFactors"></a>IsPrimitiveModWithPrimeFactors</span></dt><dd><pre
class="synopsis">IsPrimitiveModWithPrimeFactors (g,q,f)</pre><p>Check if <code class="varname">g</code> is
primitive in F<sub>q</sub>, the finite
+group of order <code class="varname">q</code>, where <code class="varname">q</code> is a prime and
+<code class="varname">f</code> is a vector of prime factors of <code class="varname">q</code>-1.
+If <code class="varname">q</code> is not prime results are bogus.</p></dd><dt><span class="term"><a
name="gel-function-IsPseudoprime"></a>IsPseudoprime</span></dt><dd><pre class="synopsis">IsPseudoprime
(n,b)</pre><p>If <code class="varname">n</code> is a pseudoprime base <code class="varname">b</code> but not
a prime,
+ that is if <strong class="userinput"><code>b^(n-1) == 1 mod n</code></strong>. This calls
the <a class="link" href="ch11s07.html#gel-function-PseudoprimeTest"><code
class="function">PseudoprimeTest</code></a></p></dd><dt><span class="term"><a
name="gel-function-IsStrongPseudoprime"></a>IsStrongPseudoprime</span></dt><dd><pre
class="synopsis">IsStrongPseudoprime (n,b)</pre><p>Test if <code class="varname">n</code> is a strong
pseudoprime to base <code class="varname">b</code> but not a prime.</p></dd><dt><span class="term"><a
name="gel-function-Jacobi"></a>Jacobi</span></dt><dd><pre class="synopsis">Jacobi (a,b)</pre><p>Aliases:
<code class="function">JacobiSymbol</code></p><p>Calculate the Jacobi symbol (a/b) (b should be
odd).</p></dd><dt><span class="term"><a
name="gel-function-JacobiKronecker"></a>JacobiKronecker</span></dt><dd><pre class="synopsis">JacobiKronecker
(a,b)</pre><p>Aliases: <code class="function">JacobiKroneckerSymbol</code></p><p>Calculate the Jacobi s
ymbol (a/b) with the Kronecker extension (a/2)=(2/a) when a odd, or (a/2)=0 when a even.</p></dd><dt><span
class="term"><a name="gel-function-LeastAbsoluteResidue"></a>LeastAbsoluteResidue</span></dt><dd><pre
class="synopsis">LeastAbsoluteResidue (a,n)</pre><p>Return the residue of <code class="varname">a</code> mod
<code class="varname">n</code> with the least absolute value (in the interval -n/2 to n/2).</p></dd><dt><span
class="term"><a name="gel-function-Legendre"></a>Legendre</span></dt><dd><pre class="synopsis">Legendre
(a,p)</pre><p>Aliases: <code class="function">LegendreSymbol</code></p><p>Calculate the Legendre symbol
(a/p).</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/LegendreSymbol" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/LegendreSymbol.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-LucasLehmer"></a>LucasLehmer</span></dt><dd><pre class="synopsis">LucasLehmer
(p)</pre><p>Test if 2<sup>p</sup>-1 is a Mersenne prime using the Lucas-Lehmer test.
+ See also
+ <a class="link" href="ch11s07.html#gel-function-MersennePrimeExponents">MersennePrimeExponents</a>
+ and
+ <a class="link"
href="ch11s07.html#gel-function-IsMersennePrimeExponent">IsMersennePrimeExponent</a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LucasLhemer" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/Lucas-LehmerTest.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-LucasNumber"></a>LucasNumber</span></dt><dd><pre class="synopsis">LucasNumber
(n)</pre><p>Returns the <code class="varname">n</code>th Lucas number.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lucas_number" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LucasNumbers" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/LucasNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MaximalPrimePowerFactors"></a>MaximalPrimePowerFactors</span></dt><dd><pre
class="synopsis">MaximalPrimePowerFactors (n)</pre><p>Return all maximal prime power factors of a
number.</p></dd><dt><span class="term"><a
name="gel-function-MersennePrimeExponents"></a>MersennePrimeExponents</span></dt><dd><pre
class="synopsis">MersennePrimeExponents</pre><p>
+ A vector of known Mersenne prime exponents, that is
+ a list of positive integers
+ <code class="varname">p</code> such that
+ 2<sup>p</sup>-1 is a prime.
+ See also
+ <a class="link"
href="ch11s07.html#gel-function-IsMersennePrimeExponent">IsMersennePrimeExponent</a>
+ and
+ <a class="link" href="ch11s07.html#gel-function-LucasLehmer">LucasLehmer</a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Mersenne_prime" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MersenneNumbers" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/MersennePrime.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://www.mersenne.org/" target="_top">GIMPS</a>
+ for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MillerRabinTest"></a>MillerRabinTest</span></dt><dd><pre class="synopsis">MillerRabinTest
(n,reps)</pre><p>
+ Use the Miller-Rabin primality test on <code class="varname">n</code>,
+ <code class="varname">reps</code> number of times. The probability of false
+ positive is <strong class="userinput"><code>(1/4)^reps</code></strong>. It is probably
+ usually better to use
+ <a class="link" href="ch11s07.html#gel-function-IsPrime">
+ <code class="function">IsPrime</code></a> since that is faster and
+ better on smaller integers.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/MillerRabinPrimeTest" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MillerRabinTestSure"></a>MillerRabinTestSure</span></dt><dd><pre
class="synopsis">MillerRabinTestSure (n)</pre><p>
+ Use the Miller-Rabin primality test on <code class="varname">n</code> with
+ enough bases that assuming the Generalized Riemann Hypothesis the
+ result is deterministic.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MillerRabinPrimeTest" target="_top">Planetmath</a>,
or
+ <a class="ulink" href="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-ModInvert"></a>ModInvert</span></dt><dd><pre
class="synopsis">ModInvert (n,m)</pre><p>Returns inverse of n mod m.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/ModularInverse.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-MoebiusMu"></a>MoebiusMu</span></dt><dd><pre
class="synopsis">MoebiusMu (n)</pre><p>
+ Return the Moebius mu function evaluated in <code class="varname">n</code>.
+ That is, it returns 0 if <code class="varname">n</code> is not a product
+ of distinct primes and <strong class="userinput"><code>(-1)^k</code></strong> if it is
+ a product of <code class="varname">k</code> distinct primes.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MoebiusFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/MoebiusFunction.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-NextPrime"></a>NextPrime</span></dt><dd><pre
class="synopsis">NextPrime (n)</pre><p>
+ Returns the least prime greater than <code class="varname">n</code>.
+ Negatives of primes are considered prime and so to get the
+ previous prime you can use <strong class="userinput"><code>-NextPrime(-n)</code></strong>.
+ </p><p>
+ This function uses the GMPs <code class="function">mpz_nextprime</code>,
+ which in turn uses the probabilistic Miller-Rabin test
+ (See also <a class="link" href="ch11s07.html#gel-function-MillerRabinTest"><code
class="function">MillerRabinTest</code></a>).
+ The probability
+ of false positive is not tunable, but is low enough
+ for all practical purposes.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PadicValuation"></a>PadicValuation</span></dt><dd><pre class="synopsis">PadicValuation
(n,p)</pre><p>Returns the p-adic valuation (number of trailing zeros in base <code
class="varname">p</code>).</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/P-adic_order" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/PAdicValuation" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-PowerMod"></a>PowerMod</span></dt><dd><pre
class="synopsis">PowerMod (a,b,m)</pre><p>
+ Compute <strong class="userinput"><code>a^b mod m</code></strong>. The
+ <code class="varname">b</code>'s power of <code class="varname">a</code> modulo
+ <code class="varname">m</code>. It is not necessary to use this function
+ as it is automatically used in modulo mode. Hence
+ <strong class="userinput"><code>a^b mod m</code></strong> is just as fast.
+ </p></dd><dt><span class="term"><a name="gel-function-Prime"></a>Prime</span></dt><dd><pre
class="synopsis">Prime (n)</pre><p>Aliases: <code class="function">prime</code></p><p>Return the <code
class="varname">n</code>th prime (up to a limit).</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PrimeFactors"></a>PrimeFactors</span></dt><dd><pre class="synopsis">PrimeFactors
(n)</pre><p>Return all prime factors of a number as a vector.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Prime_factor" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeFactor.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PseudoprimeTest"></a>PseudoprimeTest</span></dt><dd><pre class="synopsis">PseudoprimeTest
(n,b)</pre><p>Pseudoprime test, returns <code class="constant">true</code> if and only if
+ <strong class="userinput"><code>b^(n-1) == 1 mod n</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Pseudoprime" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Pseudoprime.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RemoveFactor"></a>RemoveFactor</span></dt><dd><pre class="synopsis">RemoveFactor
(n,m)</pre><p>Removes all instances of the factor <code class="varname">m</code> from the number <code
class="varname">n</code>. That is divides by the largest power of <code class="varname">m</code>, that
divides <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Divisibility" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Factor.html" target="_top">Mathworld</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SilverPohligHellmanWithFactorization"></a>SilverPohligHellmanWithFactorization</span></dt><dd><pre
class="synopsis">SilverPohligHellmanWithFactorization (n,b,q,f)</pre><p>Find discrete log of <code
class="varname">n</code> base <code class="varname">b</code> in F<sub>q</sub>, the finite group of order
<code class="varname">q</code>, where <code class="varname">q</code> is a prime using the
Silver-Pohlig-Hellman algorithm, given <code class="varname">f</code> being the factorization of <code
class="varname">q</code>-1.</p></dd><dt><span class="term"><a
name="gel-function-SqrtModPrime"></a>SqrtModPrime</span></dt><dd><pre class="synopsis">SqrtModPrime
(n,p)</pre><p>Find square root of <code class="varname">n</code> modulo <code class="varname">p</code> (where
<code class="varname">p</code> is a prime). Null is returned if not a quadratic residue.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/QuadraticResidue" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/QuadraticResidue.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-StrongPseudoprimeTest"></a>StrongPseudoprimeTest</span></dt><dd><pre
class="synopsis">StrongPseudoprimeTest (n,b)</pre><p>Run the strong pseudoprime test base <code
class="varname">b</code> on <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Strong_pseudoprime"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/StrongPseudoprime" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/StrongPseudoprime.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-gcd"></a>gcd</span></dt><dd><pre
class="synopsis">gcd (a,args...)</pre><p>Aliases: <code class="function">GCD</code></p><p>
+ Greatest common divisor of integers. You can enter as many
+ integers as you want in the argument list, or you can give
+ a vector or a matrix of integers. If you give more than
+ one matrix of the same size then GCD is done element by
+ element.
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Greatest_common_divisor"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/GreatestCommonDivisor" target="_top">Planetmath</a>,
or
+ <a class="ulink" href="http://mathworld.wolfram.com/GreatestCommonDivisor.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-lcm"></a>lcm</span></dt><dd><pre
class="synopsis">lcm (a,args...)</pre><p>Aliases: <code class="function">LCM</code></p><p>
+ Least common multiplier of integers. You can enter as many
+ integers as you want in the argument list, or you can give a
+ vector or a matrix of integers. If you give more than one
+ matrix of the same size then LCM is done element by element.
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Least_common_multiple"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LeastCommonMultiple" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/LeastCommonMultiple.html"
target="_top">Mathworld</a> for more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s06.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s08.html">Próxima</a></td></tr><tr><td width="40%" align="left"
valign="top">Trigonometria </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Principal</a></td><td width="40%" align="right" valign="top"> Manipulação de
matrizes</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch11s08.html b/help/pt_BR/html/ch11s08.html
new file mode 100644
index 0000000..76a9802
--- /dev/null
+++ b/help/pt_BR/html/ch11s08.html
@@ -0,0 +1,92 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Manipulação de
matrizes</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch11.html" title="Capítulo 11. List of GEL
functions"><link rel="prev" href="ch11s07.html" title="Teoria dos números"><link rel="next"
href="ch11s09.html" title="Álgebra linear"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Manipulação de matrizes</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch11s07.html">Anterior</a> </td><th width="60%" align="center">Capítulo
11. List of GEL functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s09.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><d
iv><div><h2 class="title" style="clear: both"><a name="genius-gel-function-list-matrix"></a>Manipulação de
matrizes</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ApplyOverMatrix"></a>ApplyOverMatrix</span></dt><dd><pre class="synopsis">ApplyOverMatrix
(a,func)</pre><p>Apply a function over all entries of a matrix and return a matrix of the
results.</p></dd><dt><span class="term"><a
name="gel-function-ApplyOverMatrix2"></a>ApplyOverMatrix2</span></dt><dd><pre
class="synopsis">ApplyOverMatrix2 (a,b,func)</pre><p>Apply a function over all entries of 2 matrices (or 1
value and 1 matrix) and return a matrix of the results.</p></dd><dt><span class="term"><a
name="gel-function-ColumnsOf"></a>ColumnsOf</span></dt><dd><pre class="synopsis">ColumnsOf (M)</pre><p>Gets
the columns of a matrix as a horizontal vector.</p></dd><dt><span class="term"><a
name="gel-function-ComplementSubmatrix"></a>ComplementSubmatrix</
span></dt><dd><pre class="synopsis">ComplementSubmatrix (m,r,c)</pre><p>Remove column(s) and row(s) from a
matrix.</p></dd><dt><span class="term"><a
name="gel-function-CompoundMatrix"></a>CompoundMatrix</span></dt><dd><pre class="synopsis">CompoundMatrix
(k,A)</pre><p>Calculate the kth compound matrix of A.</p></dd><dt><span class="term"><a
name="gel-function-CountZeroColumns"></a>CountZeroColumns</span></dt><dd><pre
class="synopsis">CountZeroColumns (M)</pre><p>
+ Count the number of zero columns in a matrix. For example
+ once your column reduce a matrix you can use this to find
+ the nullity. See <a class="link" href="ch11s09.html#gel-function-cref"><code
class="function">cref</code></a>
+ and <a class="link" href="ch11s09.html#gel-function-Nullity"><code
class="function">Nullity</code></a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-DeleteColumn"></a>DeleteColumn</span></dt><dd><pre class="synopsis">DeleteColumn
(M,col)</pre><p>Delete a column of a matrix.</p></dd><dt><span class="term"><a
name="gel-function-DeleteRow"></a>DeleteRow</span></dt><dd><pre class="synopsis">DeleteRow
(M,row)</pre><p>Delete a row of a matrix.</p></dd><dt><span class="term"><a
name="gel-function-DiagonalOf"></a>DiagonalOf</span></dt><dd><pre class="synopsis">DiagonalOf
(M)</pre><p>Gets the diagonal entries of a matrix as a column vector.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Diagonal_of_a_matrix#Matrices"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-DotProduct"></a>DotProduct</span></dt><dd><pre class="synopsis">DotProduct
(u,v)</pre><p>Get the dot product of two vectors. The vectors must be of the
+ same size. No conjugates are taken so this is a bilinear form even if working over the
complex numbers; This is the bilinear scalar product not the sesquilinear scalar product. See <a
class="link" href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a> for the standard
sesquilinear inner product.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Dot_product" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DotProduct" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ExpandMatrix"></a>ExpandMatrix</span></dt><dd><pre class="synopsis">ExpandMatrix
(M)</pre><p>
+ Expands a matrix just like we do on unquoted matrix input.
+ That is we expand any internal matrices as blocks. This is
+ a way to construct matrices out of smaller ones and this is
+ normally done automatically on input unless the matrix is quoted.
+ </p></dd><dt><span class="term"><a
name="gel-function-HermitianProduct"></a>HermitianProduct</span></dt><dd><pre
class="synopsis">HermitianProduct (u,v)</pre><p>Aliases: <code class="function">InnerProduct</code></p><p>Get
the Hermitian product of two vectors. The vectors must be of the same size. This is a sesquilinear form
using the identity matrix.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Sesquilinear_form"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/HermitianInnerProduct.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-I"></a>I</span></dt><dd><pre
class="synopsis">I (n)</pre><p>Aliases: <code class="function">eye</code></p><p>Return an identity matrix of
a given size, that is <code class="varname">n</code> by <code class="varname">n</code>. If <code
class="varname">n</code> is zero, returns <code class="constant">null</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Identity_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/IdentityMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IndexComplement"></a>IndexComplement</span></dt><dd><pre class="synopsis">IndexComplement
(vec,msize)</pre><p>Return the index complement of a vector of indexes. Everything is one based. For
example for vector <strong class="userinput"><code>[2,3]</code></strong> and size
+<strong class="userinput"><code>5</code></strong>, we return <strong
class="userinput"><code>[1,4,5]</code></strong>. If
+<code class="varname">msize</code> is 0, we always return <code
class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsDiagonal"></a>IsDiagonal</span></dt><dd><pre class="synopsis">IsDiagonal (M)</pre><p>É
uma matriz diagonal.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Diagonal_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/DiagonalMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsIdentity"></a>IsIdentity</span></dt><dd><pre class="synopsis">IsIdentity
(x)</pre><p>Check if a matrix is the identity matrix. Automatically returns <code
class="constant">false</code>
+ if the matrix is not square. Also works on numbers, in which
+ case it is equivalent to <strong class="userinput"><code>x==1</code></strong>. When <code
class="varname">x</code> is
+ <code class="constant">null</code> (we could think of that as a 0 by 0 matrix),
+ no error is generated and <code class="constant">false</code> is returned.</p></dd><dt><span
class="term"><a name="gel-function-IsLowerTriangular"></a>IsLowerTriangular</span></dt><dd><pre
class="synopsis">IsLowerTriangular (M)</pre><p>Is a matrix lower triangular. That is, are all the entries
above the diagonal zero.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixInteger"></a>IsMatrixInteger</span></dt><dd><pre class="synopsis">IsMatrixInteger
(M)</pre><p>Check if a matrix is a matrix of integers (non-complex).</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixNonnegative"></a>IsMatrixNonnegative</span></dt><dd><pre
class="synopsis">IsMatrixNonnegative (M)</pre><p>Check if a matrix is non-negative, that is if each element
is non-negative.
+ Do not confuse positive matrices with positive semi-definite matrices.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Positive_matrix" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsMatrixPositive"></a>IsMatrixPositive</span></dt><dd><pre
class="synopsis">IsMatrixPositive (M)</pre><p>Check if a matrix is positive, that is if each element is
+positive (and hence real). In particular, no element is 0. Do not confuse
+positive matrices with positive definite matrices.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Positive_matrix" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsMatrixRational"></a>IsMatrixRational</span></dt><dd><pre
class="synopsis">IsMatrixRational (M)</pre><p>Check if a matrix is a matrix of rational (non-complex)
+numbers.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixReal"></a>IsMatrixReal</span></dt><dd><pre class="synopsis">IsMatrixReal
(M)</pre><p>Check if a matrix is a matrix of real (non-complex) numbers.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixSquare"></a>IsMatrixSquare</span></dt><dd><pre class="synopsis">IsMatrixSquare
(M)</pre><p>
+ Check if a matrix is square, that is its width is equal to
+ its height.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsUpperTriangular"></a>IsUpperTriangular</span></dt><dd><pre
class="synopsis">IsUpperTriangular (M)</pre><p>Is a matrix upper triangular? That is, a matrix is upper
triangular if all the entries below the diagonal are zero.</p></dd><dt><span class="term"><a
name="gel-function-IsValueOnly"></a>IsValueOnly</span></dt><dd><pre class="synopsis">IsValueOnly
(M)</pre><p>Check if a matrix is a matrix of numbers only. Many internal
+functions make this check. Values can be any number including complex numbers.</p></dd><dt><span
class="term"><a name="gel-function-IsVector"></a>IsVector</span></dt><dd><pre class="synopsis">IsVector
(v)</pre><p>
+ Is argument a horizontal or a vertical vector. Genius does
+ not distinguish between a matrix and a vector and a vector
+ is just a 1 by <code class="varname">n</code> or <code class="varname">n</code> by 1 matrix.
+ </p></dd><dt><span class="term"><a name="gel-function-IsZero"></a>IsZero</span></dt><dd><pre
class="synopsis">IsZero (x)</pre><p>Check if a matrix is composed of all zeros. Also works on numbers, in
which
+ case it is equivalent to <strong class="userinput"><code>x==0</code></strong>. When <code
class="varname">x</code> is
+ <code class="constant">null</code> (we could think of that as a 0 by 0 matrix),
+ no error is generated and <code class="constant">true</code> is returned as the condition is
+ vacuous.
+ </p></dd><dt><span class="term"><a
name="gel-function-LowerTriangular"></a>LowerTriangular</span></dt><dd><pre class="synopsis">LowerTriangular
(M)</pre><p>Returns a copy of the matrix <code class="varname">M</code> with all the entries above the
diagonal set to zero.</p></dd><dt><span class="term"><a
name="gel-function-MakeDiagonal"></a>MakeDiagonal</span></dt><dd><pre class="synopsis">MakeDiagonal
(v,arg...)</pre><p>Aliases: <code class="function">diag</code></p><p>Make diagonal matrix from a vector.
Alternatively you can pass
+ in the values to put on the diagonal as arguments. So
+ <strong class="userinput"><code>MakeDiagonal([1,2,3])</code></strong> is the same as
+ <strong class="userinput"><code>MakeDiagonal(1,2,3)</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Diagonal_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/DiagonalMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MakeVector"></a>MakeVector</span></dt><dd><pre class="synopsis">MakeVector
(A)</pre><p>Make column vector out of matrix by putting columns above
+ each other. Returns <code class="constant">null</code> when given <code
class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-MatrixProduct"></a>MatrixProduct</span></dt><dd><pre class="synopsis">MatrixProduct
(A)</pre><p>
+ Calculate the product of all elements in a matrix or vector.
+ That is we multiply all the elements and return a number that
+ is the product of all the elements.
+ </p></dd><dt><span class="term"><a name="gel-function-MatrixSum"></a>MatrixSum</span></dt><dd><pre
class="synopsis">MatrixSum (A)</pre><p>
+ Calculate the sum of all elements in a matrix or vector. That is
+ we add all the elements and return a number that is the
+ sum of all the elements.
+ </p></dd><dt><span class="term"><a
name="gel-function-MatrixSumSquares"></a>MatrixSumSquares</span></dt><dd><pre
class="synopsis">MatrixSumSquares (A)</pre><p>Calculate the sum of squares of all elements in a matrix
+ or vector.</p></dd><dt><span class="term"><a
name="gel-function-NonzeroColumns"></a>NonzeroColumns</span></dt><dd><pre class="synopsis">NonzeroColumns
(M)</pre><p>Returns a row vector of the indices of nonzero columns in the matrix <code
class="varname">M</code>.</p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NonzeroElements"></a>NonzeroElements</span></dt><dd><pre class="synopsis">NonzeroElements
(v)</pre><p>Returns a row vector of the indices of nonzero elements in the vector <code
class="varname">v</code>.</p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-OuterProduct"></a>OuterProduct</span></dt><dd><pre class="synopsis">OuterProduct
(u,v)</pre><p>Get the outer product of two vectors. That is, suppose that
+<code class="varname">u</code> and <code class="varname">v</code> are vertical vectors, then
+the outer product is <strong class="userinput"><code>v * u.'</code></strong>.</p></dd><dt><span
class="term"><a name="gel-function-ReverseVector"></a>ReverseVector</span></dt><dd><pre
class="synopsis">ReverseVector (v)</pre><p>Reverse elements in a vector. Return <code
class="constant">null</code> if given <code class="constant">null</code></p></dd><dt><span class="term"><a
name="gel-function-RowSum"></a>RowSum</span></dt><dd><pre class="synopsis">RowSum (m)</pre><p>Calculate sum
of each row in a matrix and return a vertical
+vector with the result.</p></dd><dt><span class="term"><a
name="gel-function-RowSumSquares"></a>RowSumSquares</span></dt><dd><pre class="synopsis">RowSumSquares
(m)</pre><p>Calculate sum of squares of each row in a matrix and return a vertical vector with the
results.</p></dd><dt><span class="term"><a name="gel-function-RowsOf"></a>RowsOf</span></dt><dd><pre
class="synopsis">RowsOf (M)</pre><p>Gets the rows of a matrix as a vertical vector. Each element
+of the vector is a horizontal vector that is the corresponding row of
+<code class="varname">M</code>. This function is useful if you wish to loop over the
+rows of a matrix. For example, as <strong class="userinput"><code>for r in RowsOf(M) do
+something(r)</code></strong>.</p></dd><dt><span class="term"><a
name="gel-function-SetMatrixSize"></a>SetMatrixSize</span></dt><dd><pre class="synopsis">SetMatrixSize
(M,rows,columns)</pre><p>Make new matrix of given size from old one. That is, a new
+ matrix will be returned to which the old one is copied. Entries that
+ don't fit are clipped and extra space is filled with zeros.
+ If <code class="varname">rows</code> or <code class="varname">columns</code> are zero
+ then <code class="constant">null</code> is returned.
+ </p></dd><dt><span class="term"><a
name="gel-function-ShuffleVector"></a>ShuffleVector</span></dt><dd><pre class="synopsis">ShuffleVector
(v)</pre><p>Shuffle elements in a vector. Return <code class="constant">null</code> if given <code
class="constant">null</code>.</p><p>Version 1.0.13 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SortVector"></a>SortVector</span></dt><dd><pre class="synopsis">SortVector
(v)</pre><p>Sort vector elements in an increasing order.</p></dd><dt><span class="term"><a
name="gel-function-StripZeroColumns"></a>StripZeroColumns</span></dt><dd><pre
class="synopsis">StripZeroColumns (M)</pre><p>Removes any all-zero columns of <code
class="varname">M</code>.</p></dd><dt><span class="term"><a
name="gel-function-StripZeroRows"></a>StripZeroRows</span></dt><dd><pre class="synopsis">StripZeroRows
(M)</pre><p>Removes any all-zero rows of <code class="varname">M</code>.</p></dd><dt><span class="term"><a
name="gel-function-Submatrix"></a>Sub
matrix</span></dt><dd><pre class="synopsis">Submatrix (m,r,c)</pre><p>Return column(s) and row(s) from a
matrix. This is
+just equivalent to <strong class="userinput"><code>m@(r,c)</code></strong>. <code class="varname">r</code>
+and <code class="varname">c</code> should be vectors of rows and columns (or single numbers if only one row
or column is needed).</p></dd><dt><span class="term"><a
name="gel-function-SwapRows"></a>SwapRows</span></dt><dd><pre class="synopsis">SwapRows
(m,row1,row2)</pre><p>Swap two rows in a matrix.</p></dd><dt><span class="term"><a
name="gel-function-UpperTriangular"></a>UpperTriangular</span></dt><dd><pre class="synopsis">UpperTriangular
(M)</pre><p>Returns a copy of the matrix <code class="varname">M</code> with all the entries below the
diagonal set to zero.</p></dd><dt><span class="term"><a
name="gel-function-columns"></a>columns</span></dt><dd><pre class="synopsis">columns (M)</pre><p>Get the
number of columns of a matrix.</p></dd><dt><span class="term"><a
name="gel-function-elements"></a>elements</span></dt><dd><pre class="synopsis">elements (M)</pre><p>Get the
total number of elements of a matrix. This is the
+number of columns times the number of rows.</p></dd><dt><span class="term"><a
name="gel-function-ones"></a>ones</span></dt><dd><pre class="synopsis">ones (rows,columns...)</pre><p>Make an
matrix of all ones (or a row vector if only one argument is given). Returns <code
class="constant">null</code> if either rows or columns are zero.</p></dd><dt><span class="term"><a
name="gel-function-rows"></a>rows</span></dt><dd><pre class="synopsis">rows (M)</pre><p>Get the number of
rows of a matrix.</p></dd><dt><span class="term"><a name="gel-function-zeros"></a>zeros</span></dt><dd><pre
class="synopsis">zeros (rows,columns...)</pre><p>Make a matrix of all zeros (or a row vector if only one
argument is given). Returns <code class="constant">null</code> if either rows or columns are
zero.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s07.html">Anterior</a> </td><td width="
20%" align="center"><a accesskey="u" href="ch11.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s09.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Teoria
dos números </td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td
width="40%" align="right" valign="top"> Álgebra linear</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch11s09.html b/help/pt_BR/html/ch11s09.html
new file mode 100644
index 0000000..109accb
--- /dev/null
+++ b/help/pt_BR/html/ch11s09.html
@@ -0,0 +1,285 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Álgebra
linear</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch11.html" title="Capítulo 11. List of GEL
functions"><link rel="prev" href="ch11s08.html" title="Manipulação de matrizes"><link rel="next"
href="ch11s10.html" title="Combinatória"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Álgebra linear</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s08.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. List of GEL
functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s10.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 clas
s="title" style="clear: both"><a name="genius-gel-function-list-linear-algebra"></a>Álgebra
linear</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AuxiliaryUnitMatrix"></a>AuxiliaryUnitMatrix</span></dt><dd><pre
class="synopsis">AuxiliaryUnitMatrix (n)</pre><p>Get the auxiliary unit matrix of size <code
class="varname">n</code>. This is a square matrix with that is all zero except the
+superdiagonal being all ones. It is the Jordan block matrix of one zero eigenvalue.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/JordanCanonicalFormTheorem"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/JordanBlock.html" target="_top">Mathworld</a>
for more information on Jordan Canonical Form.
+ </p></dd><dt><span class="term"><a
name="gel-function-BilinearForm"></a>BilinearForm</span></dt><dd><pre class="synopsis">BilinearForm
(v,A,w)</pre><p>Evaluate (v,w) with respect to the bilinear form given by the matrix A.</p></dd><dt><span
class="term"><a name="gel-function-BilinearFormFunction"></a>BilinearFormFunction</span></dt><dd><pre
class="synopsis">BilinearFormFunction (A)</pre><p>Return a function that evaluates two vectors with respect
to the bilinear form given by A.</p></dd><dt><span class="term"><a
name="gel-function-CharacteristicPolynomial"></a>CharacteristicPolynomial</span></dt><dd><pre
class="synopsis">CharacteristicPolynomial (M)</pre><p>Aliases: <code
class="function">CharPoly</code></p><p>Get the characteristic polynomial as a vector. That is, return
+the coefficients of the polynomial starting with the constant term. This is
+the polynomial defined by <strong class="userinput"><code>det(M-xI)</code></strong>. The roots of this
+polynomial are the eigenvalues of <code class="varname">M</code>.
+See also <a class="link"
href="ch11s09.html#gel-function-CharacteristicPolynomialFunction">CharacteristicPolynomialFunction</a>.
+</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Characteristic_polynomial"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/CharacteristicEquation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CharacteristicPolynomialFunction"></a>CharacteristicPolynomialFunction</span></dt><dd><pre
class="synopsis">CharacteristicPolynomialFunction (M)</pre><p>Get the characteristic polynomial as a
function. This is
+the polynomial defined by <strong class="userinput"><code>det(M-xI)</code></strong>. The roots of this
+polynomial are the eigenvalues of <code class="varname">M</code>.
+See also <a class="link"
href="ch11s09.html#gel-function-CharacteristicPolynomial">CharacteristicPolynomial</a>.
+</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Characteristic_polynomial"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/CharacteristicEquation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ColumnSpace"></a>ColumnSpace</span></dt><dd><pre class="synopsis">ColumnSpace
(M)</pre><p>Get a basis matrix for the columnspace of a matrix. That is,
+return a matrix whose columns are the basis for the column space of
+<code class="varname">M</code>. That is the space spanned by the columns of
+<code class="varname">M</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Row_and_column_spaces"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CommutationMatrix"></a>CommutationMatrix</span></dt><dd><pre
class="synopsis">CommutationMatrix (m, n)</pre><p>Return the commutation matrix <strong
class="userinput"><code>K(m,n)</code></strong>, which is the unique <strong
class="userinput"><code>m*n</code></strong> by
+ <strong class="userinput"><code>m*n</code></strong> matrix such that <strong
class="userinput"><code>K(m,n) * MakeVector(A) = MakeVector(A.')</code></strong> for all <code
class="varname">m</code> by <code class="varname">n</code>
+ matrices <code class="varname">A</code>.</p></dd><dt><span class="term"><a
name="gel-function-CompanionMatrix"></a>CompanionMatrix</span></dt><dd><pre class="synopsis">CompanionMatrix
(p)</pre><p>Companion matrix of a polynomial (as vector).</p></dd><dt><span class="term"><a
name="gel-function-ConjugateTranspose"></a>ConjugateTranspose</span></dt><dd><pre
class="synopsis">ConjugateTranspose (M)</pre><p>Conjugate transpose of a matrix (adjoint). This is the
+ same as the <strong class="userinput"><code>'</code></strong> operator.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Conjugate_transpose"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/ConjugateTranspose" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Convolution"></a>Convolution</span></dt><dd><pre class="synopsis">Convolution
(a,b)</pre><p>Aliases: <code class="function">convol</code></p><p>Calculate convolution of two horizontal
vectors.</p></dd><dt><span class="term"><a
name="gel-function-ConvolutionVector"></a>ConvolutionVector</span></dt><dd><pre
class="synopsis">ConvolutionVector (a,b)</pre><p>Calculate convolution of two horizontal vectors. Return
+result as a vector and not added together.</p></dd><dt><span class="term"><a
name="gel-function-CrossProduct"></a>CrossProduct</span></dt><dd><pre class="synopsis">CrossProduct
(v,w)</pre><p>CrossProduct of two vectors in R<sup>3</sup> as
+ a column vector.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Cross_product" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-DeterminantalDivisorsInteger"></a>DeterminantalDivisorsInteger</span></dt><dd><pre
class="synopsis">DeterminantalDivisorsInteger (M)</pre><p>Get the determinantal divisors of an integer
matrix.</p></dd><dt><span class="term"><a name="gel-function-DirectSum"></a>DirectSum</span></dt><dd><pre
class="synopsis">DirectSum (M,N...)</pre><p>Direct sum of matrices.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Matrix_addition#directsum"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-DirectSumMatrixVector"></a>DirectSumMatrixVector</span></dt><dd><pre
class="synopsis">DirectSumMatrixVector (v)</pre><p>Direct sum of a vector of matrices.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Matrix_addition#directsum"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Eigenvalues"></a>Eigenvalues</span></dt><dd><pre class="synopsis">Eigenvalues
(M)</pre><p>Aliases: <code class="function">eig</code></p><p>Get the eigenvalues of a square matrix.
+ Currently only works for matrices of size up to 4 by 4, or for
+ triangular matrices (for which the eigenvalues are on the
+ diagonal).
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eigenvalue" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/Eigenvalue" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/Eigenvalue.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Eigenvectors"></a>Eigenvectors</span></dt><dd><pre class="synopsis">Eigenvectors
(M)</pre><pre class="synopsis">Eigenvectors (M, &eigenvalues)</pre><pre class="synopsis">Eigenvectors (M,
&eigenvalues, &multiplicities)</pre><p>Get the eigenvectors of a square matrix. Optionally get also
+the eigenvalues and their algebraic multiplicities.
+ Currently only works for matrices of size up to 2 by 2.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eigenvector" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/Eigenvector" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/Eigenvector.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GramSchmidt"></a>GramSchmidt</span></dt><dd><pre class="synopsis">GramSchmidt
(v,B...)</pre><p>Apply the Gram-Schmidt process (to the columns) with respect to
+inner product given by <code class="varname">B</code>. If <code class="varname">B</code> is not
+given then the standard Hermitian product is used. <code class="varname">B</code> can
+either be a sesquilinear function of two arguments or it can be a matrix giving
+a sesquilinear form. The vectors will be made orthonormal with respect to
+<code class="varname">B</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/GramSchmidtOrthogonalization"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-HankelMatrix"></a>HankelMatrix</span></dt><dd><pre class="synopsis">HankelMatrix
(c,r)</pre><p>Hankel matrix, a matrix whose skew-diagonals are constant. <code class="varname">c</code> is
the first row and <code class="varname">r</code> is the
+ last column. It is assumed that both arguments are vectors and the last element of <code
class="varname">c</code> is the same
+ as the first element of <code class="varname">r</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hankel_matrix" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-HilbertMatrix"></a>HilbertMatrix</span></dt><dd><pre class="synopsis">HilbertMatrix
(n)</pre><p>Hilbert matrix of order <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hilbert_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/HilbertMatrix" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-Image"></a>Image</span></dt><dd><pre
class="synopsis">Image (T)</pre><p>Get the image (columnspace) of a linear transform.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Row_and_column_spaces"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-InfNorm"></a>InfNorm</span></dt><dd><pre
class="synopsis">InfNorm (v)</pre><p>Get the Inf Norm of a vector, sometimes called the sup norm or the max
norm.</p></dd><dt><span class="term"><a
name="gel-function-InvariantFactorsInteger"></a>InvariantFactorsInteger</span></dt><dd><pre
class="synopsis">InvariantFactorsInteger (M)</pre><p>Get the invariant factors of a square integer
matrix.</p></dd><dt><span class="term"><a
name="gel-function-InverseHilbertMatrix"></a>InverseHilbertMatrix</span></dt><dd><pre
class="synopsis">InverseHilbertMatrix (n)</pre><p>Inverse Hilbert matrix of order <code
class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hilbert_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/HilbertMatrix" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsHermitian"></a>IsHermitian</span></dt><dd><pre class="synopsis">IsHermitian
(M)</pre><p>Is a matrix Hermitian. That is, is it equal to its conjugate transpose.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hermitian_matrix"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HermitianMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsInSubspace"></a>IsInSubspace</span></dt><dd><pre class="synopsis">IsInSubspace
(v,W)</pre><p>Test if a vector is in a subspace.</p></dd><dt><span class="term"><a
name="gel-function-IsInvertible"></a>IsInvertible</span></dt><dd><pre class="synopsis">IsInvertible
(n)</pre><p>Is a matrix (or number) invertible (Integer matrix is invertible if and only if it is invertible
over the integers).</p></dd><dt><span class="term"><a
name="gel-function-IsInvertibleField"></a>IsInvertibleField</span></dt><dd><pre
class="synopsis">IsInvertibleField (n)</pre><p>Is a matrix (or number) invertible over a
field.</p></dd><dt><span class="term"><a name="gel-function-IsNormal"></a>IsNormal</span></dt><dd><pre
class="synopsis">IsNormal (M)</pre><p>Is <code class="varname">M</code> a normal matrix. That is,
+ does <strong class="userinput"><code>M*M' == M'*M</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/NormalMatrix" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/NormalMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsPositiveDefinite"></a>IsPositiveDefinite</span></dt><dd><pre
class="synopsis">IsPositiveDefinite (M)</pre><p>Is <code class="varname">M</code> a Hermitian positive
definite matrix. That is if
+<strong class="userinput"><code>HermitianProduct(M*v,v)</code></strong> is always strictly positive for
+any vector <code class="varname">v</code>.
+<code class="varname">M</code> must be square and Hermitian to be positive definite.
+The check that is performed is that every principal submatrix has a non-negative
+determinant.
+(See <a class="link" href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a>)</p><p>
+ Note that some authors (for example Mathworld) do not require that
+ <code class="varname">M</code> be Hermitian, and then the condition is
+ on the real part of the inner product, but we do not take this
+ view. If you wish to perform this check, just check the
+ Hermitian part of the matrix <code class="varname">M</code> as follows:
+ <strong class="userinput"><code>IsPositiveDefinite(M+M')</code></strong>.
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Positive-definite_matrix"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/PositiveDefinite" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/PositiveDefiniteMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsPositiveSemidefinite"></a>IsPositiveSemidefinite</span></dt><dd><pre
class="synopsis">IsPositiveSemidefinite (M)</pre><p>Is <code class="varname">M</code> a Hermitian positive
semidefinite matrix. That is if
+<strong class="userinput"><code>HermitianProduct(M*v,v)</code></strong> is always non-negative for
+any vector <code class="varname">v</code>.
+<code class="varname">M</code> must be square and Hermitian to be positive semidefinite.
+The check that is performed is that every principal submatrix has a non-negative
+determinant.
+(See <a class="link" href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a>)</p><p>
+ Note that some authors do not require that
+ <code class="varname">M</code> be Hermitian, and then the condition is
+ on the real part of the inner product, but we do not take this
+ view. If you wish to perform this check, just check the
+ Hermitian part of the matrix <code class="varname">M</code> as follows:
+ <strong class="userinput"><code>IsPositiveSemidefinite(M+M')</code></strong>.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PositiveSemidefinite" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PositiveSemidefiniteMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsSkewHermitian"></a>IsSkewHermitian</span></dt><dd><pre class="synopsis">IsSkewHermitian
(M)</pre><p>Is a matrix skew-Hermitian. That is, is the conjugate transpose equal to negative of the
matrix.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SkewHermitianMatrix" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-IsUnitary"></a>IsUnitary</span></dt><dd><pre
class="synopsis">IsUnitary (M)</pre><p>Is a matrix unitary? That is, does
+ <strong class="userinput"><code>M'*M</code></strong> and <strong
class="userinput"><code>M*M'</code></strong>
+ equal the identity.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/UnitaryTransformation" target="_top">Planetmath</a>
or
+ <a class="ulink" href="http://mathworld.wolfram.com/UnitaryMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-JordanBlock"></a>JordanBlock</span></dt><dd><pre class="synopsis">JordanBlock
(n,lambda)</pre><p>Aliases: <code class="function">J</code></p><p>Get the Jordan block corresponding to the
eigenvalue
+ <code class="varname">lambda</code> with multiplicity <code class="varname">n</code>.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/JordanCanonicalFormTheorem"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/JordanBlock.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Kernel"></a>Kernel</span></dt><dd><pre
class="synopsis">Kernel (T)</pre><p>Get the kernel (nullspace) of a linear transform.</p><p>
+ (See <a class="link" href="ch11s09.html#gel-function-NullSpace">NullSpace</a>)
+ </p></dd><dt><span class="term"><a
name="gel-function-KroneckerProduct"></a>KroneckerProduct</span></dt><dd><pre
class="synopsis">KroneckerProduct (M, N)</pre><p>Aliases: <code class="function">TensorProduct</code></p><p>
+ Compute the Kronecker product (tensor product in standard basis)
+ of two matrices.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Kronecker_product"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/KroneckerProduct" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/KroneckerProduct.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LUDecomposition"></a>LUDecomposition</span></dt><dd><pre class="synopsis">LUDecomposition
(A, L, U)</pre><p>
+ Get the LU decomposition of <code class="varname">A</code>, that is
+ find a lower triangular matrix and upper triangular
+ matrix whose product is <code class="varname">A</code>.
+ Store the result in the <code class="varname">L</code> and
+ <code class="varname">U</code>, which should be references. It returns <code
class="constant">true</code>
+ if successful.
+ For example suppose that A is a square matrix, then after running:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LUDecomposition(A,&L,&U)</code></strong>
+</pre><p>
+ You will have the lower matrix stored in a variable called
+ <code class="varname">L</code> and the upper matrix in a variable called
+ <code class="varname">U</code>.
+ </p><p>
+ This is the LU decomposition of a matrix aka Crout and/or Cholesky
+ reduction.
+ (ISBN 0-201-11577-8 pp.99-103)
+ The upper triangular matrix features a diagonal
+ of values 1 (one). This is not Doolittle's Method, which features
+ the 1's diagonal on the lower matrix.
+ </p><p>
+ Not all matrices have LU decompositions, for example
+ <strong class="userinput"><code>[0,1;1,0]</code></strong> does not and this function returns
+ <code class="constant">false</code> in this case and sets <code class="varname">L</code>
+ and <code class="varname">U</code> to <code class="constant">null</code>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/LU_decomposition" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LUDecomposition" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/LUDecomposition.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Minor"></a>Minor</span></dt><dd><pre
class="synopsis">Minor (M,i,j)</pre><p>Get the <code class="varname">i</code>-<code class="varname">j</code>
minor of a matrix.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Minor" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-NonPivotColumns"></a>NonPivotColumns</span></dt><dd><pre class="synopsis">NonPivotColumns
(M)</pre><p>Return the columns that are not the pivot columns of a matrix.</p></dd><dt><span class="term"><a
name="gel-function-Norm"></a>Norm</span></dt><dd><pre class="synopsis">Norm (v,p...)</pre><p>Aliases: <code
class="function">norm</code></p><p>Get the p Norm (or 2 Norm if no p is supplied) of a
vector.</p></dd><dt><span class="term"><a name="gel-function-NullSpace"></a>NullSpace</span></dt><dd><pre
class="synopsis">NullSpace (T)</pre><p>Get the nullspace of a matrix. That is the kernel of the
+ linear mapping that the matrix represents. This is returned
+ as a matrix whose column space is the nullspace of
+ <code class="varname">T</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Nullspace" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-Nullity"></a>Nullity</span></dt><dd><pre
class="synopsis">Nullity (M)</pre><p>Aliases: <code class="function">nullity</code></p><p>Get the nullity of
a matrix. That is, return the dimension of
+the nullspace; the dimension of the kernel of <code class="varname">M</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Nullity" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-OrthogonalComplement"></a>OrthogonalComplement</span></dt><dd><pre
class="synopsis">OrthogonalComplement (M)</pre><p>Get the orthogonal complement of the
columnspace.</p></dd><dt><span class="term"><a
name="gel-function-PivotColumns"></a>PivotColumns</span></dt><dd><pre class="synopsis">PivotColumns
(M)</pre><p>Return pivot columns of a matrix, that is columns that have a leading 1 in row reduced form.
Also returns the row where they occur.</p></dd><dt><span class="term"><a
name="gel-function-Projection"></a>Projection</span></dt><dd><pre class="synopsis">Projection
(v,W,B...)</pre><p>Projection of vector <code class="varname">v</code> onto subspace
+<code class="varname">W</code> with respect to inner product given by
+<code class="varname">B</code>. If <code class="varname">B</code> is not given then the standard
+Hermitian product is used. <code class="varname">B</code> can either be a sesquilinear
+function of two arguments or it can be a matrix giving a sesquilinear form.
+ </p></dd><dt><span class="term"><a
name="gel-function-QRDecomposition"></a>QRDecomposition</span></dt><dd><pre class="synopsis">QRDecomposition
(A, Q)</pre><p>
+ Get the QR decomposition of a square matrix <code class="varname">A</code>,
+ returns the upper triangular matrix <code class="varname">R</code>
+ and sets <code class="varname">Q</code> to the orthogonal (unitary) matrix.
+ <code class="varname">Q</code> should be a reference or <code class="constant">null</code> if you
don't
+ want any return.
+ For example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong class="userinput"><code>R
= QRDecomposition(A,&Q)</code></strong>
+</pre><p>
+ You will have the upper triangular matrix stored in
+ a variable called
+ <code class="varname">R</code> and the orthogonal (unitary) matrix stored in
+ <code class="varname">Q</code>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/QR_decomposition" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/QRDecomposition" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/QRDecomposition.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RayleighQuotient"></a>RayleighQuotient</span></dt><dd><pre
class="synopsis">RayleighQuotient (A,x)</pre><p>Return the Rayleigh quotient (also called the Rayleigh-Ritz
quotient or ratio) of a matrix and a vector.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RayleighQuotient" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RayleighQuotientIteration"></a>RayleighQuotientIteration</span></dt><dd><pre
class="synopsis">RayleighQuotientIteration (A,x,epsilon,maxiter,vecref)</pre><p>Find eigenvalues of <code
class="varname">A</code> using the Rayleigh
+ quotient iteration method. <code class="varname">x</code> is a guess
+ at a eigenvector and could be random. It should have
+ nonzero imaginary part if it will have any chance at finding
+ complex eigenvalues. The code will run at most
+ <code class="varname">maxiter</code> iterations and return <code class="constant">null</code>
+ if we cannot get within an error of <code class="varname">epsilon</code>.
+ <code class="varname">vecref</code> should either be <code class="constant">null</code> or a
reference
+ to a variable where the eigenvector should be stored.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RayleighQuotient" target="_top">Planetmath</a> for
more information on Rayleigh quotient.
+ </p></dd><dt><span class="term"><a name="gel-function-Rank"></a>Rank</span></dt><dd><pre
class="synopsis">Rank (M)</pre><p>Aliases: <code class="function">rank</code></p><p>Get the rank of a
matrix.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SylvestersLaw" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RosserMatrix"></a>RosserMatrix</span></dt><dd><pre class="synopsis">RosserMatrix
()</pre><p>Returns the Rosser matrix, which is a classic symmetric eigenvalue test problem.</p></dd><dt><span
class="term"><a name="gel-function-Rotation2D"></a>Rotation2D</span></dt><dd><pre class="synopsis">Rotation2D
(angle)</pre><p>Aliases: <code class="function">RotationMatrix</code></p><p>Return the matrix corresponding
to rotation around origin in R<sup>2</sup>.</p></dd><dt><span class="term"><a
name="gel-function-Rotation3DX"></a>Rotation3DX</span></dt><dd><pre class="synopsis">Rotation3DX
(angle)</pre><p>Return the matrix corresponding to rotation around origin in R<sup>3</sup> about the
x-axis.</p></dd><dt><span class="term"><a name="gel-function-Rotation3DY"></a>Rotation3DY</span></dt><dd><pre
class="synopsis">Rotation3DY (angle)</pre><p>Return the matrix corresponding to rotation around origin in
R<sup>3</sup> about the
y-axis.</p></dd><dt><span class="term"><a
name="gel-function-Rotation3DZ"></a>Rotation3DZ</span></dt><dd><pre class="synopsis">Rotation3DZ
(angle)</pre><p>Return the matrix corresponding to rotation around origin in R<sup>3</sup> about the
z-axis.</p></dd><dt><span class="term"><a name="gel-function-RowSpace"></a>RowSpace</span></dt><dd><pre
class="synopsis">RowSpace (M)</pre><p>Get a basis matrix for the rowspace of a matrix.</p></dd><dt><span
class="term"><a name="gel-function-SesquilinearForm"></a>SesquilinearForm</span></dt><dd><pre
class="synopsis">SesquilinearForm (v,A,w)</pre><p>Evaluate (v,w) with respect to the sesquilinear form given
by the matrix A.</p></dd><dt><span class="term"><a
name="gel-function-SesquilinearFormFunction"></a>SesquilinearFormFunction</span></dt><dd><pre
class="synopsis">SesquilinearFormFunction (A)</pre><p>Return a function that evaluates two vectors with
respect to the sesquilinear form given by A.</p></dd><dt><span class="term"><a name="gel
-function-SmithNormalFormField"></a>SmithNormalFormField</span></dt><dd><pre
class="synopsis">SmithNormalFormField (A)</pre><p>Returns the Smith normal form of a matrix over fields (will
end up with 1's on the diagonal).</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Smith_normal_form"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SmithNormalFormInteger"></a>SmithNormalFormInteger</span></dt><dd><pre
class="synopsis">SmithNormalFormInteger (M)</pre><p>Return the Smith normal form for square integer matrices
over integers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Smith_normal_form"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SolveLinearSystem"></a>SolveLinearSystem</span></dt><dd><pre
class="synopsis">SolveLinearSystem (M,V,args...)</pre><p>Solve linear system Mx=V, return solution V if there
is a unique solution, <code class="constant">null</code> otherwise. Extra two reference parameters can
optionally be used to get the reduced M and V.</p></dd><dt><span class="term"><a
name="gel-function-ToeplitzMatrix"></a>ToeplitzMatrix</span></dt><dd><pre class="synopsis">ToeplitzMatrix (c,
r...)</pre><p>Return the Toeplitz matrix constructed given the first column c
+and (optionally) the first row r. If only the column c is given then it is
+conjugated and the nonconjugated version is used for the first row to give a
+Hermitian matrix (if the first element is real of course).</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Toeplitz_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/ToeplitzMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Trace"></a>Trace</span></dt><dd><pre
class="synopsis">Trace (M)</pre><p>Aliases: <code class="function">trace</code></p><p>Calculate the trace of
a matrix. That is the sum of the diagonal elements.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trace_(linear_algebra)"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Trace" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-Transpose"></a>Transpose</span></dt><dd><pre
class="synopsis">Transpose (M)</pre><p>Transpose of a matrix. This is the same as the
+ <strong class="userinput"><code>.'</code></strong> operator.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Transpose" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Transpose" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-VandermondeMatrix"></a>VandermondeMatrix</span></dt><dd><pre
class="synopsis">VandermondeMatrix (v)</pre><p>Aliases: <code class="function">vander</code></p><p>Return the
Vandermonde matrix.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Vandermonde_matrix"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-VectorAngle"></a>VectorAngle</span></dt><dd><pre class="synopsis">VectorAngle
(v,w,B...)</pre><p>The angle of two vectors with respect to inner product given by
+<code class="varname">B</code>. If <code class="varname">B</code> is not given then the standard
+Hermitian product is used. <code class="varname">B</code> can either be a sesquilinear
+function of two arguments or it can be a matrix giving a sesquilinear form.
+</p></dd><dt><span class="term"><a
name="gel-function-VectorSpaceDirectSum"></a>VectorSpaceDirectSum</span></dt><dd><pre
class="synopsis">VectorSpaceDirectSum (M,N)</pre><p>The direct sum of the vector spaces M and
N.</p></dd><dt><span class="term"><a
name="gel-function-VectorSubspaceIntersection"></a>VectorSubspaceIntersection</span></dt><dd><pre
class="synopsis">VectorSubspaceIntersection (M,N)</pre><p>Intersection of the subspaces given by M and
N.</p></dd><dt><span class="term"><a
name="gel-function-VectorSubspaceSum"></a>VectorSubspaceSum</span></dt><dd><pre
class="synopsis">VectorSubspaceSum (M,N)</pre><p>The sum of the vector spaces M and N, that is {w | w=m+n, m
in M, n in N}.</p></dd><dt><span class="term"><a name="gel-function-adj"></a>adj</span></dt><dd><pre
class="synopsis">adj (m)</pre><p>Aliases: <code class="function">Adjugate</code></p><p>Get the classical
adjoint (adjugate) of a matrix.</p></dd><dt><span class="term"><a name="gel-function-cref"></a>cref</spa
n></dt><dd><pre class="synopsis">cref (M)</pre><p>Aliases: <code class="function">CREF</code> <code
class="function">ColumnReducedEchelonForm</code></p><p>Compute the Column Reduced Echelon
Form.</p></dd><dt><span class="term"><a name="gel-function-det"></a>det</span></dt><dd><pre
class="synopsis">det (M)</pre><p>Aliases: <code class="function">Determinant</code></p><p>Get the determinant
of a matrix.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Determinant" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Determinant2" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-ref"></a>ref</span></dt><dd><pre
class="synopsis">ref (M)</pre><p>Aliases: <code class="function">REF</code> <code
class="function">RowEchelonForm</code></p><p>Get the row echelon form of a matrix. That is, apply gaussian
+elimination but not backaddition to <code class="varname">M</code>. The pivot rows are
+divided to make all pivots 1.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Row_echelon_form" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/RowEchelonForm" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-rref"></a>rref</span></dt><dd><pre
class="synopsis">rref (M)</pre><p>Aliases: <code class="function">RREF</code> <code
class="function">ReducedRowEchelonForm</code></p><p>Get the reduced row echelon form of a matrix. That is,
apply gaussian elimination together with backaddition to <code class="varname">M</code>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Reduced_row_echelon_form"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/ReducedRowEchelonForm" target="_top">Planetmath</a>
for more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s08.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s10.html">Próxima</a></td></tr><tr><td width="40%" align="left"
valign="top">Manipulação de matrizes </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Principal</a></td><td width="40%" align="right" valign="top">
Combinatória</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch11s10.html b/help/pt_BR/html/ch11s10.html
new file mode 100644
index 0000000..1ecad7b
--- /dev/null
+++ b/help/pt_BR/html/ch11s10.html
@@ -0,0 +1,113 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Combinatória</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manual do Genius"><link rel="up" href="ch11.html"
title="Capítulo 11. List of GEL functions"><link rel="prev" href="ch11s09.html" title="Álgebra linear"><link
rel="next" href="ch11s11.html" title="Cálculo"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Combinatória</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s09.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. List of GEL
functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s11.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="cl
ear: both"><a name="genius-gel-function-list-combinatorics"></a>Combinatória</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Catalan"></a>Catalan</span></dt><dd><pre class="synopsis">Catalan (n)</pre><p>Get <code
class="varname">n</code>th Catalan number.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/CatalanNumbers" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Combinations"></a>Combinations</span></dt><dd><pre class="synopsis">Combinations
(k,n)</pre><p>Get all combinations of k numbers from 1 to n as a vector of vectors.
+ (See also <a class="link" href="ch11s10.html#gel-function-NextCombination">NextCombination</a>)
+</p></dd><dt><span class="term"><a
name="gel-function-DoubleFactorial"></a>DoubleFactorial</span></dt><dd><pre class="synopsis">DoubleFactorial
(n)</pre><p>Double factorial: <strong class="userinput"><code>n(n-2)(n-4)...</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/DoubleFactorial" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Factorial"></a>Factorial</span></dt><dd><pre
class="synopsis">Factorial (n)</pre><p>Factorial: <strong
class="userinput"><code>n(n-1)(n-2)...</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Factorial" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FallingFactorial"></a>FallingFactorial</span></dt><dd><pre
class="synopsis">FallingFactorial (n,k)</pre><p>Falling factorial: <strong class="userinput"><code>(n)_k =
n(n-1)...(n-(k-1))</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/FallingFactorial" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Fibonacci"></a>Fibonacci</span></dt><dd><pre
class="synopsis">Fibonacci (x)</pre><p>Aliases: <code class="function">fib</code></p><p>
+ Calculate <code class="varname">n</code>th Fibonacci number. That
+ is the number defined recursively by
+ <strong class="userinput"><code>Fibonacci(n) = Fibonacci(n-1) + Fibonacci(n-2)</code></strong>
+ and
+ <strong class="userinput"><code>Fibonacci(1) = Fibonacci(2) = 1</code></strong>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fibonacci_number" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/FibonacciSequence" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FibonacciNumber.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FrobeniusNumber"></a>FrobeniusNumber</span></dt><dd><pre class="synopsis">FrobeniusNumber
(v,arg...)</pre><p>
+ Calculate the Frobenius number. That is calculate smallest
+ number that cannot be given as a non-negative integer linear
+ combination of a given vector of non-negative integers.
+ The vector can be given as separate numbers or a single vector.
+ All the numbers given should have GCD of 1.
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/FrobeniusNumber.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GaloisMatrix"></a>GaloisMatrix</span></dt><dd><pre class="synopsis">GaloisMatrix
(combining_rule)</pre><p>Galois matrix given a linear combining rule
(a_1*x_1+...+a_n*x_n=x_(n+1)).</p></dd><dt><span class="term"><a
name="gel-function-GreedyAlgorithm"></a>GreedyAlgorithm</span></dt><dd><pre class="synopsis">GreedyAlgorithm
(n,v)</pre><p>
+ Find the vector <code class="varname">c</code> of non-negative integers
+ such that taking the dot product with <code class="varname">v</code> is
+ equal to n. If not possible returns <code class="constant">null</code>. <code
class="varname">v</code>
+ should be given sorted in increasing order and should consist
+ of non-negative integers.
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/GreedyAlgorithm.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-HarmonicNumber"></a>HarmonicNumber</span></dt><dd><pre class="synopsis">HarmonicNumber
(n,r)</pre><p>Aliases: <code class="function">HarmonicH</code></p><p>Harmonic Number, the <code
class="varname">n</code>th harmonic number of order <code class="varname">r</code>.</p></dd><dt><span
class="term"><a name="gel-function-Hofstadter"></a>Hofstadter</span></dt><dd><pre class="synopsis">Hofstadter
(n)</pre><p>Hofstadter's function q(n) defined by q(1)=1, q(2)=1,
q(n)=q(n-q(n-1))+q(n-q(n-2)).</p></dd><dt><span class="term"><a
name="gel-function-LinearRecursiveSequence"></a>LinearRecursiveSequence</span></dt><dd><pre
class="synopsis">LinearRecursiveSequence (seed_values,combining_rule,n)</pre><p>Compute linear recursive
sequence using Galois stepping.</p></dd><dt><span class="term"><a
name="gel-function-Multinomial"></a>Multinomial</span></dt><dd><pre class="synopsis">Multinomial
(v,arg...)</pre><p>Calculate multinomial coeffi
cients. Takes a vector of
+ <code class="varname">k</code>
+ non-negative integers and computes the multinomial coefficient.
+ This corresponds to the coefficient in the homogeneous polynomial
+ in <code class="varname">k</code> variables with the corresponding powers.
+ </p><p>
+ The formula for <strong class="userinput"><code>Multinomial(a,b,c)</code></strong>
+ can be written as:
+</p><pre class="programlisting">(a+b+c)! / (a!b!c!)
+</pre><p>
+ In other words, if we would have only two elements, then
+<strong class="userinput"><code>Multinomial(a,b)</code></strong> is the same thing as
+<strong class="userinput"><code>Binomial(a+b,a)</code></strong> or
+<strong class="userinput"><code>Binomial(a+b,b)</code></strong>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Multinomial_theorem"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MultinomialTheorem" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/MultinomialCoefficient.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-NextCombination"></a>NextCombination</span></dt><dd><pre class="synopsis">NextCombination
(v,n)</pre><p>Get combination that would come after v in call to
+combinations, first combination should be <strong class="userinput"><code>[1:k]</code></strong>. This
+function is useful if you have many combinations to go through and you don't
+want to waste memory to store them all.
+ </p><p>
+ For example with Combinations you would normally write a loop like:
+ </p><pre class="screen"><strong class="userinput"><code>for n in Combinations (4,6) do (
+ SomeFunction (n)
+);</code></strong>
+</pre><p>
+ But with NextCombination you would write something like:
+ </p><pre class="screen"><strong class="userinput"><code>n:=[1:4];
+do (
+ SomeFunction (n)
+) while not IsNull(n:=NextCombination(n,6));</code></strong>
+</pre><p>
+ See also <a class="link" href="ch11s10.html#gel-function-Combinations">Combinations</a>.
+ </p></dd><dt><span class="term"><a name="gel-function-Pascal"></a>Pascal</span></dt><dd><pre
class="synopsis">Pascal (i)</pre><p>Get the Pascal's triangle as a matrix. This will return
+ an <code class="varname">i</code>+1 by <code class="varname">i</code>+1 lower diagonal
+ matrix that is the Pascal's triangle after <code class="varname">i</code>
+ iterations.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PascalsTriangle" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Permutations"></a>Permutations</span></dt><dd><pre class="synopsis">Permutations
(k,n)</pre><p>Get all permutations of <code class="varname">k</code> numbers from 1 to <code
class="varname">n</code> as a vector of vectors.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/Permutation.html" target="_top">Mathworld</a>
or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Permutation" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RisingFactorial"></a>RisingFactorial</span></dt><dd><pre class="synopsis">RisingFactorial
(n,k)</pre><p>Aliases: <code class="function">Pochhammer</code></p><p>(Pochhammer) Rising factorial: (n)_k =
n(n+1)...(n+(k-1)).</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RisingFactorial" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-StirlingNumberFirst"></a>StirlingNumberFirst</span></dt><dd><pre
class="synopsis">StirlingNumberFirst (n,m)</pre><p>Aliases: <code
class="function">StirlingS1</code></p><p>Stirling number of the first kind.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/StirlingNumbersOfTheFirstKind"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-StirlingNumberSecond"></a>StirlingNumberSecond</span></dt><dd><pre
class="synopsis">StirlingNumberSecond (n,m)</pre><p>Aliases: <code
class="function">StirlingS2</code></p><p>Stirling number of the second kind.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/StirlingNumbersSecondKind"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Subfactorial"></a>Subfactorial</span></dt><dd><pre class="synopsis">Subfactorial
(n)</pre><p>Subfactorial: n! times sum_{k=0}^n (-1)^k/k!.</p></dd><dt><span class="term"><a
name="gel-function-Triangular"></a>Triangular</span></dt><dd><pre class="synopsis">Triangular
(nth)</pre><p>Calculate the <code class="varname">n</code>th triangular number.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/TriangularNumbers" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-nCr"></a>nCr</span></dt><dd><pre
class="synopsis">nCr (n,r)</pre><p>Aliases: <code class="function">Binomial</code></p><p>Calculate
combinations, that is, the binomial coefficient.
+ <code class="varname">n</code> can be any real number.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Choose" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-nPr"></a>nPr</span></dt><dd><pre
class="synopsis">nPr (n,r)</pre><p>Calculate the number of permutations of size
+ <code class="varname">r</code> of numbers from 1 to <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/Permutation.html" target="_top">Mathworld</a>
or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Permutation" target="_top">Wikipedia</a> for
more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s09.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s11.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Álgebra
linear </td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td
width="40%" align="right" valign="top"> Cálculo</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch11s11.html b/help/pt_BR/html/ch11s11.html
new file mode 100644
index 0000000..230b77d
--- /dev/null
+++ b/help/pt_BR/html/ch11s11.html
@@ -0,0 +1,120 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Cálculo</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
do Genius"><link rel="up" href="ch11.html" title="Capítulo 11. List of GEL functions"><link rel="prev"
href="ch11s10.html" title="Combinatória"><link rel="next" href="ch11s12.html" title="Funções"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Cálculo</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch11s10.html">Anterior</a> </td><th width="60%"
align="center">Capítulo 11. List of GEL functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s12.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="genius-gel-function-list-calculus"></a>Cálculo</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-CompositeSimpsonsRule"></a>CompositeSimpsonsRule</span></dt><dd><pre
class="synopsis">CompositeSimpsonsRule (f,a,b,n)</pre><p>Integration of f by Composite Simpson's Rule on the
interval [a,b] with n subintervals with error of max(f'''')*h^4*(b-a)/180, note that n should be even.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SimpsonsRule" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CompositeSimpsonsRuleTolerance"></a>CompositeSimpsonsRuleTolerance</span></dt><dd><pre
class="synopsis">CompositeSimpsonsRuleTolerance (f,a,b,FourthDerivativeBound,Tolerance)</pre><p>Integration
of f by Composite Simpson's Rule on the interval [a,b] with the number of steps calculated by the fourth
derivative bound and the desired tolerance.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SimpsonsRule" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Derivative"></a>Derivative</span></dt><dd><pre class="synopsis">Derivative
(f,x0)</pre><p>Attempt to calculate derivative by trying first symbolically and then numerically.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EvenPeriodicExtension"></a>EvenPeriodicExtension</span></dt><dd><pre
class="synopsis">EvenPeriodicExtension (f,L)</pre><p>Return a function that is the even periodic extension of
+<code class="function">f</code> with half period <code class="varname">L</code>. That
+is a function defined on the interval <strong class="userinput"><code>[0,L]</code></strong>
+extended to be even on <strong class="userinput"><code>[-L,L]</code></strong> and then
+extended to be periodic with period <strong class="userinput"><code>2*L</code></strong>.</p><p>
+ See also
+ <a class="link" href="ch11s11.html#gel-function-OddPeriodicExtension">OddPeriodicExtension</a>
+ and
+ <a class="link" href="ch11s11.html#gel-function-PeriodicExtension">PeriodicExtension</a>.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-FourierSeriesFunction"></a>FourierSeriesFunction</span></dt><dd><pre
class="synopsis">FourierSeriesFunction (a,b,L)</pre><p>Return a function that is a Fourier series with the
+coefficients given by the vectors <code class="varname">a</code> (sines) and
+<code class="varname">b</code> (cosines). Note that <strong class="userinput"><code>a@(1)</code></strong> is
+the constant coefficient! That is, <strong class="userinput"><code>a@(n)</code></strong> refers to
+the term <strong class="userinput"><code>cos(x*(n-1)*pi/L)</code></strong>, while
+<strong class="userinput"><code>b@(n)</code></strong> refers to the term
+<strong class="userinput"><code>sin(x*n*pi/L)</code></strong>. Either <code class="varname">a</code>
+or <code class="varname">b</code> can be <code class="constant">null</code>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierSeries.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-InfiniteProduct"></a>InfiniteProduct</span></dt><dd><pre class="synopsis">InfiniteProduct
(func,start,inc)</pre><p>Try to calculate an infinite product for a single parameter
function.</p></dd><dt><span class="term"><a
name="gel-function-InfiniteProduct2"></a>InfiniteProduct2</span></dt><dd><pre
class="synopsis">InfiniteProduct2 (func,arg,start,inc)</pre><p>Try to calculate an infinite product for a
double parameter function with func(arg,n).</p></dd><dt><span class="term"><a
name="gel-function-InfiniteSum"></a>InfiniteSum</span></dt><dd><pre class="synopsis">InfiniteSum
(func,start,inc)</pre><p>Try to calculate an infinite sum for a single parameter function.</p></dd><dt><span
class="term"><a name="gel-function-InfiniteSum2"></a>InfiniteSum2</span></dt><dd><pre
class="synopsis">InfiniteSum2 (func,arg,start,inc)</pre><p>Try to calculate an infinite sum for a double
parameter function with func(arg,n).</p></dd><d
t><span class="term"><a name="gel-function-IsContinuous"></a>IsContinuous</span></dt><dd><pre
class="synopsis">IsContinuous (f,x0)</pre><p>Try and see if a real-valued function is continuous at x0 by
calculating the limit there.</p></dd><dt><span class="term"><a
name="gel-function-IsDifferentiable"></a>IsDifferentiable</span></dt><dd><pre
class="synopsis">IsDifferentiable (f,x0)</pre><p>Test for differentiability by approximating the left and
right limits and comparing.</p></dd><dt><span class="term"><a
name="gel-function-LeftLimit"></a>LeftLimit</span></dt><dd><pre class="synopsis">LeftLimit
(f,x0)</pre><p>Calculate the left limit of a real-valued function at x0.</p></dd><dt><span class="term"><a
name="gel-function-Limit"></a>Limit</span></dt><dd><pre class="synopsis">Limit (f,x0)</pre><p>Calculate the
limit of a real-valued function at x0. Tries to calculate both left and right limits.</p></dd><dt><span
class="term"><a name="gel-function-MidpointRule"></a>MidpointRule</sp
an></dt><dd><pre class="synopsis">MidpointRule (f,a,b,n)</pre><p>Integration by midpoint
rule.</p></dd><dt><span class="term"><a
name="gel-function-NumericalDerivative"></a>NumericalDerivative</span></dt><dd><pre
class="synopsis">NumericalDerivative (f,x0)</pre><p>Aliases: <code
class="function">NDerivative</code></p><p>Attempt to calculate numerical derivative.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSeriesCoefficients"></a>NumericalFourierSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierSeriesCoefficients (f,L,N)</pre><p>Return a vector of vectors <strong
class="userinput"><code>[a,b]</code></strong>
+where <code class="varname">a</code> are the cosine coefficients and
+<code class="varname">b</code> are the sine coefficients of
+the Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code> (that is defined
+on <strong class="userinput"><code>[-L,L]</code></strong> and extended periodically) with coefficients
+up to <code class="varname">N</code>th harmonic computed numerically. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSeriesFunction"></a>NumericalFourierSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierSeriesFunction (f,L,N)</pre><p>Return a function that is the Fourier series
of
+<code class="function">f</code> with half-period <code class="varname">L</code> (that is defined
+on <strong class="userinput"><code>[-L,L]</code></strong> and extended periodically) with coefficients
+up to <code class="varname">N</code>th harmonic computed numerically. This is the
+trigonometric real series composed of sines and cosines. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierCosineSeriesCoefficients"></a>NumericalFourierCosineSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierCosineSeriesCoefficients (f,L,N)</pre><p>Return a vector of coefficients of
+the cosine Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code>. That is,
+we take <code class="function">f</code> defined on <strong class="userinput"><code>[0,L]</code></strong>
+take the even periodic extension and compute the Fourier series, which
+only has cosine terms. The series is computed up to the
+<code class="varname">N</code>th harmonic. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.
+Note that <strong class="userinput"><code>a@(1)</code></strong> is
+the constant coefficient! That is, <strong class="userinput"><code>a@(n)</code></strong> refers to
+the term <strong class="userinput"><code>cos(x*(n-1)*pi/L)</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierCosineSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierCosineSeriesFunction"></a>NumericalFourierCosineSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierCosineSeriesFunction (f,L,N)</pre><p>Return a function that is the cosine
Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code>. That is,
+we take <code class="function">f</code> defined on <strong class="userinput"><code>[0,L]</code></strong>
+take the even periodic extension and compute the Fourier series, which
+only has cosine terms. The series is computed up to the
+<code class="varname">N</code>th harmonic. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierCosineSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSineSeriesCoefficients"></a>NumericalFourierSineSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierSineSeriesCoefficients (f,L,N)</pre><p>Return a vector of coefficients of
+the sine Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code>. That is,
+we take <code class="function">f</code> defined on <strong class="userinput"><code>[0,L]</code></strong>
+take the odd periodic extension and compute the Fourier series, which
+only has sine terms. The series is computed up to the
+<code class="varname">N</code>th harmonic. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierSineSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSineSeriesFunction"></a>NumericalFourierSineSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierSineSeriesFunction (f,L,N)</pre><p>Return a function that is the sine
Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code>. That is,
+we take <code class="function">f</code> defined on <strong class="userinput"><code>[0,L]</code></strong>
+take the odd periodic extension and compute the Fourier series, which
+only has sine terms. The series is computed up to the
+<code class="varname">N</code>th harmonic. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierSineSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegral"></a>NumericalIntegral</span></dt><dd><pre
class="synopsis">NumericalIntegral (f,a,b)</pre><p>Integration by rule set in NumericalIntegralFunction of f
from a to b using NumericalIntegralSteps steps.</p></dd><dt><span class="term"><a
name="gel-function-NumericalLeftDerivative"></a>NumericalLeftDerivative</span></dt><dd><pre
class="synopsis">NumericalLeftDerivative (f,x0)</pre><p>Attempt to calculate numerical left
derivative.</p></dd><dt><span class="term"><a
name="gel-function-NumericalLimitAtInfinity"></a>NumericalLimitAtInfinity</span></dt><dd><pre
class="synopsis">NumericalLimitAtInfinity (_f,step_fun,tolerance,successive_for_success,N)</pre><p>Attempt to
calculate the limit of f(step_fun(i)) as i goes from 1 to N.</p></dd><dt><span class="term"><a
name="gel-function-NumericalRightDerivative"></a>NumericalRightDerivative</span></dt><dd><pre
class="synopsis">Nume
ricalRightDerivative (f,x0)</pre><p>Attempt to calculate numerical right derivative.</p></dd><dt><span
class="term"><a name="gel-function-OddPeriodicExtension"></a>OddPeriodicExtension</span></dt><dd><pre
class="synopsis">OddPeriodicExtension (f,L)</pre><p>Return a function that is the odd periodic extension of
+<code class="function">f</code> with half period <code class="varname">L</code>. That
+is a function defined on the interval <strong class="userinput"><code>[0,L]</code></strong>
+extended to be odd on <strong class="userinput"><code>[-L,L]</code></strong> and then
+extended to be periodic with period <strong class="userinput"><code>2*L</code></strong>.</p><p>
+ See also
+ <a class="link" href="ch11s11.html#gel-function-EvenPeriodicExtension">EvenPeriodicExtension</a>
+ and
+ <a class="link" href="ch11s11.html#gel-function-PeriodicExtension">PeriodicExtension</a>.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-OneSidedFivePointFormula"></a>OneSidedFivePointFormula</span></dt><dd><pre
class="synopsis">OneSidedFivePointFormula (f,x0,h)</pre><p>Compute one-sided derivative using five point
formula.</p></dd><dt><span class="term"><a
name="gel-function-OneSidedThreePointFormula"></a>OneSidedThreePointFormula</span></dt><dd><pre
class="synopsis">OneSidedThreePointFormula (f,x0,h)</pre><p>Compute one-sided derivative using three-point
formula.</p></dd><dt><span class="term"><a
name="gel-function-PeriodicExtension"></a>PeriodicExtension</span></dt><dd><pre
class="synopsis">PeriodicExtension (f,a,b)</pre><p>Return a function that is the periodic extension of
+<code class="function">f</code> defined on the interval <strong class="userinput"><code>[a,b]</code></strong>
+and has period <strong class="userinput"><code>b-a</code></strong>.</p><p>
+ See also
+ <a class="link" href="ch11s11.html#gel-function-OddPeriodicExtension">OddPeriodicExtension</a>
+ and
+ <a class="link" href="ch11s11.html#gel-function-EvenPeriodicExtension">EvenPeriodicExtension</a>.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-RightLimit"></a>RightLimit</span></dt><dd><pre class="synopsis">RightLimit
(f,x0)</pre><p>Calculate the right limit of a real-valued function at x0.</p></dd><dt><span class="term"><a
name="gel-function-TwoSidedFivePointFormula"></a>TwoSidedFivePointFormula</span></dt><dd><pre
class="synopsis">TwoSidedFivePointFormula (f,x0,h)</pre><p>Compute two-sided derivative using five-point
formula.</p></dd><dt><span class="term"><a
name="gel-function-TwoSidedThreePointFormula"></a>TwoSidedThreePointFormula</span></dt><dd><pre
class="synopsis">TwoSidedThreePointFormula (f,x0,h)</pre><p>Compute two-sided derivative using three-point
formula.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s10.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Acima</a></t
d><td width="40%" align="right"> <a accesskey="n" href="ch11s12.html">Próxima</a></td></tr><tr><td
width="40%" align="left" valign="top">Combinatória </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Principal</a></td><td width="40%" align="right" valign="top">
Funções</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch11s12.html b/help/pt_BR/html/ch11s12.html
new file mode 100644
index 0000000..e4d704c
--- /dev/null
+++ b/help/pt_BR/html/ch11s12.html
@@ -0,0 +1,82 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Funções</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
do Genius"><link rel="up" href="ch11.html" title="Capítulo 11. List of GEL functions"><link rel="prev"
href="ch11s11.html" title="Cálculo"><link rel="next" href="ch11s13.html" title="Solução de
equações"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Funções</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s11.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. List of GEL
functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s13.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="cl
ear: both"><a name="genius-gel-function-list-functions"></a>Funções</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Argument"></a>Argument</span></dt><dd><pre class="synopsis">Argument (z)</pre><p>Aliases:
<code class="function">Arg</code> <code class="function">arg</code></p><p>argument (angle) of complex
number.</p></dd><dt><span class="term"><a name="gel-function-BesselJ0"></a>BesselJ0</span></dt><dd><pre
class="synopsis">BesselJ0 (x)</pre><p>Bessel function of the first kind of order 0. Only implemented for
real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselJ1"></a>BesselJ1</span></dt><dd><pre class="synopsis">BesselJ1 (x)</pre><p>Bessel
function of the first kind of order 1. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselJn"></a>BesselJn</span></dt><dd><pre class="synopsis">BesselJn (n,x)</pre><p>Bessel
function of the first kind of order <code class="varname">n</code>. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselY0"></a>BesselY0</span></dt><dd><pre class="synopsis">BesselY0 (x)</pre><p>Bessel
function of the second kind of order 0. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselY1"></a>BesselY1</span></dt><dd><pre class="synopsis">BesselY1 (x)</pre><p>Bessel
function of the second kind of order 1. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselYn"></a>BesselYn</span></dt><dd><pre class="synopsis">BesselYn (n,x)</pre><p>Bessel
function of the second kind of order <code class="varname">n</code>. Only implemented for real
numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-DirichletKernel"></a>DirichletKernel</span></dt><dd><pre class="synopsis">DirichletKernel
(n,t)</pre><p>Dirichlet kernel of order <code class="varname">n</code>.</p></dd><dt><span class="term"><a
name="gel-function-DiscreteDelta"></a>DiscreteDelta</span></dt><dd><pre class="synopsis">DiscreteDelta
(v)</pre><p>Returns 1 if and only if all elements are zero.</p></dd><dt><span class="term"><a
name="gel-function-ErrorFunction"></a>ErrorFunction</span></dt><dd><pre class="synopsis">ErrorFunction
(x)</pre><p>Aliases: <code class="function">erf</code></p><p>The error function, 2/sqrt(pi) * int_0^x
e^(-t^2) dt.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Error_function" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/ErrorFunction" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FejerKernel"></a>FejerKernel</span></dt><dd><pre class="synopsis">FejerKernel
(n,t)</pre><p>Fejer kernel of order <code class="varname">n</code> evaluated at
+ <code class="varname">t</code></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/FejerKernel" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GammaFunction"></a>GammaFunction</span></dt><dd><pre class="synopsis">GammaFunction
(x)</pre><p>Aliases: <code class="function">Gamma</code></p><p>The Gamma function. Currently only
implemented for real values.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/GammaFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Gamma_function" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-KroneckerDelta"></a>KroneckerDelta</span></dt><dd><pre class="synopsis">KroneckerDelta
(v)</pre><p>Returns 1 if and only if all elements are equal.</p></dd><dt><span class="term"><a
name="gel-function-LambertW"></a>LambertW</span></dt><dd><pre class="synopsis">LambertW (x)</pre><p>
+ The principal branch of Lambert W function computed for only
+ real values greater than or equal to <strong class="userinput"><code>-1/e</code></strong>.
+ That is, <code class="function">LambertW</code> is the inverse of
+ the expression <strong class="userinput"><code>x*e^x</code></strong>. Even for
+ real <code class="varname">x</code> this expression is not one to one and
+ therefore has two branches over <strong class="userinput"><code>[-1/e,0)</code></strong>.
+ See <a class="link" href="ch11s12.html#gel-function-LambertWm1"><code
class="function">LambertWm1</code></a> for the other real branch.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lambert_W_function"
target="_top">Wikipedia</a> for more information.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LambertWm1"></a>LambertWm1</span></dt><dd><pre class="synopsis">LambertWm1 (x)</pre><p>
+ The minus-one branch of Lambert W function computed for only
+ real values greater than or equal to <strong class="userinput"><code>-1/e</code></strong>
+ and less than 0.
+ That is, <code class="function">LambertWm1</code> is the second
+ branch of the inverse of <strong class="userinput"><code>x*e^x</code></strong>.
+ See <a class="link" href="ch11s12.html#gel-function-LambertW"><code
class="function">LambertW</code></a> for the principal branch.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lambert_W_function"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MinimizeFunction"></a>MinimizeFunction</span></dt><dd><pre
class="synopsis">MinimizeFunction (func,x,incr)</pre><p>Find the first value where f(x)=0.</p></dd><dt><span
class="term"><a name="gel-function-MoebiusDiskMapping"></a>MoebiusDiskMapping</span></dt><dd><pre
class="synopsis">MoebiusDiskMapping (a,z)</pre><p>Moebius mapping of the disk to itself mapping a to 0.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMapping"></a>MoebiusMapping</span></dt><dd><pre class="synopsis">MoebiusMapping
(z,z2,z3,z4)</pre><p>Moebius mapping using the cross ratio taking z2,z3,z4 to 1,0, and infinity
respectively.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToInfty"></a>MoebiusMappingInftyToInfty</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToInfty (z,z2,z3)</pre><p>Moebius mapping using the cross ratio taking
infinity to infinity and z2,z3 to 1 and 0 respectively.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToOne"></a>MoebiusMappingInftyToOne</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToOne (z,z3,z4)</pre><p>Moebius mapping using the cross ratio taking
infinity to 1 and z3,z4 to 0 and infinity respectively.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToZero"></a>MoebiusMappingInftyToZero</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToZero (z,z2,z4)</pre><p>Moebius mapping using the cross ratio taking
infinity to 0 and z2,z4 to 1 and infinity respectively.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PoissonKernel"></a>PoissonKernel</span></dt><dd><pre class="synopsis">PoissonKernel
(r,sigma)</pre><p>Poisson kernel on D(0,1) (not normalized to 1, that is integral of this is
2pi).</p></dd><dt><span class="term"><a
name="gel-function-PoissonKernelRadius"></a>PoissonKernelRadius</span></dt><dd><pre
class="synopsis">PoissonKernelRadius (r,sigma)</pre><p>Poisson kernel on D(0,R) (not normalized to
1).</p></dd><dt><span class="term"><a name="gel-function-RiemannZeta"></a>RiemannZeta</span></dt><dd><pre
class="synopsis">RiemannZeta (x)</pre><p>Aliases: <code class="function">zeta</code></p><p>The Riemann zeta
function. Currently only implemented for real values.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RiemannZetaFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Riemann_zeta_function"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-UnitStep"></a>UnitStep</span></dt><dd><pre
class="synopsis">UnitStep (x)</pre><p>The unit step function is 0 for x<0, 1 otherwise. This is the
integral of the Dirac Delta function. Also called the Heaviside function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Unit_step" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-cis"></a>cis</span></dt><dd><pre
class="synopsis">cis (x)</pre><p>
+ The <code class="function">cis</code> function, that is the same as
+ <strong class="userinput"><code>cos(x)+1i*sin(x)</code></strong>
+ </p></dd><dt><span class="term"><a name="gel-function-deg2rad"></a>deg2rad</span></dt><dd><pre
class="synopsis">deg2rad (x)</pre><p>Convert degrees to radians.</p></dd><dt><span class="term"><a
name="gel-function-rad2deg"></a>rad2deg</span></dt><dd><pre class="synopsis">rad2deg (x)</pre><p>Convert
radians to degrees.</p></dd><dt><span class="term"><a name="gel-function-sinc"></a>sinc</span></dt><dd><pre
class="synopsis">sinc (x)</pre><p>Calculates the unnormalized sinc function, that is
+ <strong class="userinput"><code>sin(x)/x</code></strong>.
+ If you want the normalized function call <strong
class="userinput"><code>sinc(pi*x)</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Sinc" target="_top">Wikipedia</a> for more
information.
+ </p><p>Version 1.0.16 onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s11.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Acima</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s13.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Cálculo </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td width="40%" align="right"
valign="top"> Solução de equações</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch11s13.html b/help/pt_BR/html/ch11s13.html
new file mode 100644
index 0000000..7fb41e5
--- /dev/null
+++ b/help/pt_BR/html/ch11s13.html
@@ -0,0 +1,213 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Solução de
equações</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch11.html" title="Capítulo 11. List of GEL
functions"><link rel="prev" href="ch11s12.html" title="Funções"><link rel="next" href="ch11s14.html"
title="Estatística"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Solução de equações</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s12.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. List of GEL
functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s14.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class
="title" style="clear: both"><a name="genius-gel-function-list-equation-solving"></a>Solução de
equações</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-CubicFormula"></a>CubicFormula</span></dt><dd><pre class="synopsis">CubicFormula
(p)</pre><p>
+ Compute roots of a cubic (degree 3) polynomial using the
+ cubic formula. The polynomial should be given as a
+ vector of coefficients. That is
+ <strong class="userinput"><code>4*x^3 + 2*x + 1</code></strong> corresponds to the vector
+ <strong class="userinput"><code>[1,2,0,4]</code></strong>.
+ Returns a column vector of the three solutions. The first solution is always
+ the real one as a cubic always has one real solution.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/CubicFormula" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/CubicFormula.html"
target="_top">Mathworld</a>, or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Cubic_equation" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EulersMethod"></a>EulersMethod</span></dt><dd><pre class="synopsis">EulersMethod
(f,x0,y0,x1,n)</pre><p>
+ Use classical Euler's method to numerically solve y'=f(x,y) for
+ initial <code class="varname">x0</code>, <code class="varname">y0</code> going to
+ <code class="varname">x1</code> with <code class="varname">n</code> increments,
+ returns <code class="varname">y</code> at <code class="varname">x1</code>.
+ Unless you explicitly want to use Euler's method, you should really
+ think about using
+ <a class="link" href="ch11s13.html#gel-function-RungeKutta">RungeKutta</a>
+ for solving ODE.
+ </p><p>
+ Systems can be solved by just having <code class="varname">y</code> be a
+ (column) vector everywhere. That is, <code class="varname">y0</code> can
+ be a vector in which case <code class="varname">f</code> should take a number
+ <code class="varname">x</code> and a vector of the same size for the second
+ argument and should return a vector of the same size.
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/EulerForwardMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eulers_method" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EulersMethodFull"></a>EulersMethodFull</span></dt><dd><pre
class="synopsis">EulersMethodFull (f,x0,y0,x1,n)</pre><p>
+ Use classical Euler's method to numerically solve y'=f(x,y) for
+ initial <code class="varname">x0</code>, <code class="varname">y0</code> going to
+ <code class="varname">x1</code> with <code class="varname">n</code> increments,
+ returns a 2 by <strong class="userinput"><code>n+1</code></strong> matrix with the
+ <code class="varname">x</code> and <code class="varname">y</code> values.
+ Unless you explicitly want to use Euler's method, you should really
+ think about using
+ <a class="link" href="ch11s13.html#gel-function-RungeKuttaFull">RungeKuttaFull</a>
+ for solving ODE.
+ Suitable
+ for plugging into
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawPoints">LinePlotDrawPoints</a>.
+ </p><p>
+ Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>line =
EulersMethodFull(`(x,y)=y,0,1.0,3.0,50);</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(line,"window","fit","color","blue","legend","Exponential
growth");</code></strong>
+</pre><p>
+ </p><p>
+ Systems can be solved by just having <code class="varname">y</code> be a
+ (column) vector everywhere. That is, <code class="varname">y0</code> can
+ be a vector in which case <code class="varname">f</code> should take a number
+ <code class="varname">x</code> and a vector of the same size for the second
+ argument and should return a vector of the same size.
+ </p><p>
+ The output for a system is still a n by 2 matrix with the second
+ entry being a vector. If you wish to plot the line, make sure to use row vectors, and then
flatten the matrix with
+ <a class="link" href="ch11s08.html#gel-function-ExpandMatrix">ExpandMatrix</a>,
+ and pick out the right columns. Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
EulersMethodFull(`(x,y)=[y@(2),-y@(1)],0,[1.0,1.0],10.0,500);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
ExpandMatrix(lines);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>firstline =
lines@(,[1,2]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>secondline =
lines@(,[1,3]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>LinePlotWindow =
[0,10,-2,2];</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(firstline,"color","blue","legend","First");</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(secondline,"color","red","thickness",3,"legend","Second");</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/EulerForwardMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eulers_method" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-FindRootBisection"></a>FindRootBisection</span></dt><dd><pre
class="synopsis">FindRootBisection (f,a,b,TOL,N)</pre><p>Find root of a function using the bisection method.
+ <code class="varname">a</code> and <code class="varname">b</code> are the initial guess
interval,
+ <strong class="userinput"><code>f(a)</code></strong> and <strong
class="userinput"><code>f(b)</code></strong> should have opposite signs.
+ <code class="varname">TOL</code> is the desired tolerance and
+<code class="varname">N</code> is the limit on the number of iterations to run, 0 means no limit. The
function returns a vector <strong class="userinput"><code>[success,value,iteration]</code></strong>, where
<code class="varname">success</code> is a boolean indicating success, <code class="varname">value</code> is
the last value computed, and <code class="varname">iteration</code> is the number of iterations
done.</p></dd><dt><span class="term"><a
name="gel-function-FindRootFalsePosition"></a>FindRootFalsePosition</span></dt><dd><pre
class="synopsis">FindRootFalsePosition (f,a,b,TOL,N)</pre><p>Find root of a function using the method of
false position.
+ <code class="varname">a</code> and <code class="varname">b</code> are the initial guess
interval,
+ <strong class="userinput"><code>f(a)</code></strong> and <strong
class="userinput"><code>f(b)</code></strong> should have opposite signs.
+ <code class="varname">TOL</code> is the desired tolerance and
+<code class="varname">N</code> is the limit on the number of iterations to run, 0 means no limit. The
function returns a vector <strong class="userinput"><code>[success,value,iteration]</code></strong>, where
<code class="varname">success</code> is a boolean indicating success, <code class="varname">value</code> is
the last value computed, and <code class="varname">iteration</code> is the number of iterations
done.</p></dd><dt><span class="term"><a
name="gel-function-FindRootMullersMethod"></a>FindRootMullersMethod</span></dt><dd><pre
class="synopsis">FindRootMullersMethod (f,x0,x1,x2,TOL,N)</pre><p>Find root of a function using the Muller's
method.
+ <code class="varname">TOL</code> is the desired tolerance and
+<code class="varname">N</code> is the limit on the number of iterations to run, 0 means no limit. The
function returns a vector <strong class="userinput"><code>[success,value,iteration]</code></strong>, where
<code class="varname">success</code> is a boolean indicating success, <code class="varname">value</code> is
the last value computed, and <code class="varname">iteration</code> is the number of iterations
done.</p></dd><dt><span class="term"><a
name="gel-function-FindRootSecant"></a>FindRootSecant</span></dt><dd><pre class="synopsis">FindRootSecant
(f,a,b,TOL,N)</pre><p>Find root of a function using the secant method.
+ <code class="varname">a</code> and <code class="varname">b</code> are the initial guess
interval,
+ <strong class="userinput"><code>f(a)</code></strong> and <strong
class="userinput"><code>f(b)</code></strong> should have opposite signs.
+ <code class="varname">TOL</code> is the desired tolerance and
+<code class="varname">N</code> is the limit on the number of iterations to run, 0 means no limit. The
function returns a vector <strong class="userinput"><code>[success,value,iteration]</code></strong>, where
<code class="varname">success</code> is a boolean indicating success, <code class="varname">value</code> is
the last value computed, and <code class="varname">iteration</code> is the number of iterations
done.</p></dd><dt><span class="term"><a
name="gel-function-HalleysMethod"></a>HalleysMethod</span></dt><dd><pre class="synopsis">HalleysMethod
(f,df,ddf,guess,epsilon,maxn)</pre><p>Find zeros using Halley's method. <code class="varname">f</code> is
+ the function, <code class="varname">df</code> is the derivative of
+ <code class="varname">f</code>, and <code class="varname">ddf</code> is the second
derivative of
+ <code class="varname">f</code>. <code class="varname">guess</code> is the initial
+ guess. The function returns after two successive values are
+ within <code class="varname">epsilon</code> of each other, or after <code
class="varname">maxn</code> tries, in which case the function returns <code class="constant">null</code>
indicating failure.
+ </p><p>
+ See also <a class="link" href="ch11s13.html#gel-function-NewtonsMethod"><code
class="function">NewtonsMethod</code></a> and <a class="link"
href="ch11s19.html#gel-function-SymbolicDerivative"><code class="function">SymbolicDerivative</code></a>.
+ </p><p>
+ Example to find the square root of 10:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>HalleysMethod(`(x)=x^2-10,`(x)=2*x,`(x)=2,3,10^-10,100)</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Halley%27s_method"
target="_top">Wikipedia</a> for more information.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NewtonsMethod"></a>NewtonsMethod</span></dt><dd><pre class="synopsis">NewtonsMethod
(f,df,guess,epsilon,maxn)</pre><p>Find zeros using Newton's method. <code class="varname">f</code> is
+ the function and <code class="varname">df</code> is the derivative of
+ <code class="varname">f</code>. <code class="varname">guess</code> is the initial
+ guess. The function returns after two successive values are
+ within <code class="varname">epsilon</code> of each other, or after <code
class="varname">maxn</code> tries, in which case the function returns <code class="constant">null</code>
indicating failure.
+ </p><p>
+ See also <a class="link" href="ch11s15.html#gel-function-NewtonsMethodPoly"><code
class="function">NewtonsMethodPoly</code></a> and <a class="link"
href="ch11s19.html#gel-function-SymbolicDerivative"><code class="function">SymbolicDerivative</code></a>.
+ </p><p>
+ Example to find the square root of 10:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>NewtonsMethod(`(x)=x^2-10,`(x)=2*x,3,10^-10,100)</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Newtons_method" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-PolynomialRoots"></a>PolynomialRoots</span></dt><dd><pre class="synopsis">PolynomialRoots
(p)</pre><p>
+ Compute roots of a polynomial (degrees 1 through 4)
+ using one of the formulas for such polynomials.
+ The polynomial should be given as a
+ vector of coefficients. That is
+ <strong class="userinput"><code>4*x^3 + 2*x + 1</code></strong> corresponds to the vector
+ <strong class="userinput"><code>[1,2,0,4]</code></strong>.
+ Returns a column vector of the solutions.
+ </p><p>
+ The function calls
+ <a class="link" href="ch11s13.html#gel-function-QuadraticFormula">QuadraticFormula</a>,
+ <a class="link" href="ch11s13.html#gel-function-CubicFormula">CubicFormula</a>, and
+ <a class="link" href="ch11s13.html#gel-function-QuarticFormula">QuarticFormula</a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-QuadraticFormula"></a>QuadraticFormula</span></dt><dd><pre
class="synopsis">QuadraticFormula (p)</pre><p>
+ Compute roots of a quadratic (degree 2) polynomial using the
+ quadratic formula. The polynomial should be given as a
+ vector of coefficients. That is
+ <strong class="userinput"><code>3*x^2 + 2*x + 1</code></strong> corresponds to the vector
+ <strong class="userinput"><code>[1,2,3]</code></strong>.
+ Returns a column vector of the two solutions.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/QuadraticFormula" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/QuadraticFormula.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-QuarticFormula"></a>QuarticFormula</span></dt><dd><pre class="synopsis">QuarticFormula
(p)</pre><p>
+ Compute roots of a quartic (degree 4) polynomial using the
+ quartic formula. The polynomial should be given as a
+ vector of coefficients. That is
+ <strong class="userinput"><code>5*x^4 + 2*x + 1</code></strong> corresponds to the vector
+ <strong class="userinput"><code>[1,2,0,0,5]</code></strong>.
+ Returns a column vector of the four solutions.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/QuarticFormula" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/QuarticEquation.html"
target="_top">Mathworld</a>, or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Quartic_equation" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RungeKutta"></a>RungeKutta</span></dt><dd><pre class="synopsis">RungeKutta
(f,x0,y0,x1,n)</pre><p>
+ Use classical non-adaptive fourth order Runge-Kutta method to
+ numerically solve
+ y'=f(x,y) for initial <code class="varname">x0</code>, <code class="varname">y0</code>
+ going to <code class="varname">x1</code> with <code class="varname">n</code>
+ increments, returns <code class="varname">y</code> at <code class="varname">x1</code>.
+ </p><p>
+ Systems can be solved by just having <code class="varname">y</code> be a
+ (column) vector everywhere. That is, <code class="varname">y0</code> can
+ be a vector in which case <code class="varname">f</code> should take a number
+ <code class="varname">x</code> and a vector of the same size for the second
+ argument and should return a vector of the same size.
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/Runge-KuttaMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Runge-Kutta_methods"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RungeKuttaFull"></a>RungeKuttaFull</span></dt><dd><pre class="synopsis">RungeKuttaFull
(f,x0,y0,x1,n)</pre><p>
+ Use classical non-adaptive fourth order Runge-Kutta method to
+ numerically solve
+ y'=f(x,y) for initial <code class="varname">x0</code>, <code class="varname">y0</code>
+ going to <code class="varname">x1</code> with <code class="varname">n</code>
+ increments,
+ returns a 2 by <strong class="userinput"><code>n+1</code></strong> matrix with the
+ <code class="varname">x</code> and <code class="varname">y</code> values. Suitable
+ for plugging into
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawPoints">LinePlotDrawPoints</a>.
+ </p><p>
+ Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>line =
RungeKuttaFull(`(x,y)=y,0,1.0,3.0,50);</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(line,"window","fit","color","blue","legend","Exponential
growth");</code></strong>
+</pre><p>
+ </p><p>
+ Systems can be solved by just having <code class="varname">y</code> be a
+ (column) vector everywhere. That is, <code class="varname">y0</code> can
+ be a vector in which case <code class="varname">f</code> should take a number
+ <code class="varname">x</code> and a vector of the same size for the second
+ argument and should return a vector of the same size.
+ </p><p>
+ The output for a system is still a n by 2 matrix with the second
+ entry being a vector. If you wish to plot the line, make sure to use row vectors, and then
flatten the matrix with
+ <a class="link" href="ch11s08.html#gel-function-ExpandMatrix">ExpandMatrix</a>,
+ and pick out the right columns. Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
RungeKuttaFull(`(x,y)=[y@(2),-y@(1)],0,[1.0,1.0],10.0,100);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
ExpandMatrix(lines);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>firstline =
lines@(,[1,2]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>secondline =
lines@(,[1,3]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>LinePlotWindow =
[0,10,-2,2];</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(firstline,"color","blue","legend","First");</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(secondline,"color","red","thickness",3,"legend","Second");</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/Runge-KuttaMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Runge-Kutta_methods"
target="_top">Wikipedia</a> for more information.
+ </p><p>Version 1.0.10 onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s12.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Acima</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s14.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Funções </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td width="40%" align="right"
valign="top"> Estatística</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch11s14.html b/help/pt_BR/html/ch11s14.html
new file mode 100644
index 0000000..c8aec9a
--- /dev/null
+++ b/help/pt_BR/html/ch11s14.html
@@ -0,0 +1,20 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Estatística</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manual do Genius"><link rel="up" href="ch11.html"
title="Capítulo 11. List of GEL functions"><link rel="prev" href="ch11s13.html" title="Solução de
equações"><link rel="next" href="ch11s15.html" title="Polinômios"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Estatística</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s13.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. List of GEL
functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s15.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-function-list-statistics"></a>Estatística</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Average"></a>Average</span></dt><dd><pre class="synopsis">Average (m)</pre><p>Aliases:
<code class="function">average</code> <code class="function">Mean</code> <code
class="function">mean</code></p><p>Calculate average of an entire matrix.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/ArithmeticMean.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GaussDistribution"></a>GaussDistribution</span></dt><dd><pre
class="synopsis">GaussDistribution (x,sigma)</pre><p>Integral of the GaussFunction from 0 to <code
class="varname">x</code> (area under the normal curve).</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/NormalDistribution.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GaussFunction"></a>GaussFunction</span></dt><dd><pre class="synopsis">GaussFunction
(x,sigma)</pre><p>The normalized Gauss distribution function (the normal curve).</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/NormalDistribution.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Median"></a>Median</span></dt><dd><pre
class="synopsis">Median (m)</pre><p>Aliases: <code class="function">median</code></p><p>Calculate median of
an entire matrix.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/StatisticalMedian.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PopulationStandardDeviation"></a>PopulationStandardDeviation</span></dt><dd><pre
class="synopsis">PopulationStandardDeviation (m)</pre><p>Aliases: <code
class="function">stdevp</code></p><p>Calculate the population standard deviation of a whole
matrix.</p></dd><dt><span class="term"><a name="gel-function-RowAverage"></a>RowAverage</span></dt><dd><pre
class="synopsis">RowAverage (m)</pre><p>Aliases: <code class="function">RowMean</code></p><p>Calculate
average of each row in a matrix.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/ArithmeticMean.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-RowMedian"></a>RowMedian</span></dt><dd><pre
class="synopsis">RowMedian (m)</pre><p>Calculate median of each row in a matrix and return a column
+ vector of the medians.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/StatisticalMedian.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RowPopulationStandardDeviation"></a>RowPopulationStandardDeviation</span></dt><dd><pre
class="synopsis">RowPopulationStandardDeviation (m)</pre><p>Aliases: <code
class="function">rowstdevp</code></p><p>Calculate the population standard deviations of rows of a matrix and
return a vertical vector.</p></dd><dt><span class="term"><a
name="gel-function-RowStandardDeviation"></a>RowStandardDeviation</span></dt><dd><pre
class="synopsis">RowStandardDeviation (m)</pre><p>Aliases: <code
class="function">rowstdev</code></p><p>Calculate the standard deviations of rows of a matrix and return a
vertical vector.</p></dd><dt><span class="term"><a
name="gel-function-StandardDeviation"></a>StandardDeviation</span></dt><dd><pre
class="synopsis">StandardDeviation (m)</pre><p>Aliases: <code class="function">stdev</code></p><p>Calculate
the standard deviation of a whole matrix.</p></dd></dl></div></div><div class="navfooter"><hr><table widt
h="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s13.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Acima</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s15.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Solução de equações
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td width="40%"
align="right" valign="top"> Polinômios</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch11s15.html b/help/pt_BR/html/ch11s15.html
new file mode 100644
index 0000000..24fd4fe
--- /dev/null
+++ b/help/pt_BR/html/ch11s15.html
@@ -0,0 +1,21 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Polinômios</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manual do Genius"><link rel="up" href="ch11.html"
title="Capítulo 11. List of GEL functions"><link rel="prev" href="ch11s14.html" title="Estatística"><link
rel="next" href="ch11s16.html" title="Teoria dos conjuntos"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Polinômios</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s14.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. List of GEL
functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s16.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" styl
e="clear: both"><a name="genius-gel-function-list-polynomials"></a>Polinômios</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AddPoly"></a>AddPoly</span></dt><dd><pre class="synopsis">AddPoly (p1,p2)</pre><p>Add two
polynomials (vectors).</p></dd><dt><span class="term"><a
name="gel-function-DividePoly"></a>DividePoly</span></dt><dd><pre class="synopsis">DividePoly
(p,q,&r)</pre><p>Divide two polynomials (as vectors) using long division.
+ Returns the quotient
+ of the two polynomials. The optional argument <code class="varname">r</code>
+ is used to return the remainder. The remainder will have lower
+ degree than <code class="varname">q</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PolynomialLongDivision" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-IsPoly"></a>IsPoly</span></dt><dd><pre
class="synopsis">IsPoly (p)</pre><p>Check if a vector is usable as a polynomial.</p></dd><dt><span
class="term"><a name="gel-function-MultiplyPoly"></a>MultiplyPoly</span></dt><dd><pre
class="synopsis">MultiplyPoly (p1,p2)</pre><p>Multiply two polynomials (as vectors).</p></dd><dt><span
class="term"><a name="gel-function-NewtonsMethodPoly"></a>NewtonsMethodPoly</span></dt><dd><pre
class="synopsis">NewtonsMethodPoly (poly,guess,epsilon,maxn)</pre><p>Find a root of a polynomial using
Newton's method. <code class="varname">poly</code> is
+ the polynomial as a vector and <code class="varname">guess</code> is the initial
+ guess. The function returns after two successive values are
+ within <code class="varname">epsilon</code> of each other, or after <code
class="varname">maxn</code> tries, in which case the function returns <code class="constant">null</code>
indicating failure.
+ </p><p>
+ See also <a class="link" href="ch11s13.html#gel-function-NewtonsMethod"><code
class="function">NewtonsMethod</code></a>.
+ </p><p>
+ Example to find the square root of 10:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>NewtonsMethodPoly([-10,0,1],3,10^-10,100)</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Newtons_method" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Poly2ndDerivative"></a>Poly2ndDerivative</span></dt><dd><pre
class="synopsis">Poly2ndDerivative (p)</pre><p>Take second polynomial (as vector)
derivative.</p></dd><dt><span class="term"><a
name="gel-function-PolyDerivative"></a>PolyDerivative</span></dt><dd><pre class="synopsis">PolyDerivative
(p)</pre><p>Take polynomial (as vector) derivative.</p></dd><dt><span class="term"><a
name="gel-function-PolyToFunction"></a>PolyToFunction</span></dt><dd><pre class="synopsis">PolyToFunction
(p)</pre><p>Make function out of a polynomial (as vector).</p></dd><dt><span class="term"><a
name="gel-function-PolyToString"></a>PolyToString</span></dt><dd><pre class="synopsis">PolyToString
(p,var...)</pre><p>Make string out of a polynomial (as vector).</p></dd><dt><span class="term"><a
name="gel-function-SubtractPoly"></a>SubtractPoly</span></dt><dd><pre class="synopsis">SubtractPoly
(p1,p2)</pre><p>Subtract two polynomials (as vectors).
</p></dd><dt><span class="term"><a name="gel-function-TrimPoly"></a>TrimPoly</span></dt><dd><pre
class="synopsis">TrimPoly (p)</pre><p>Trim zeros from a polynomial (as vector).</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s14.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Acima</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s16.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Estatística </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td width="40%" align="right"
valign="top"> Teoria dos conjuntos</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch11s16.html b/help/pt_BR/html/ch11s16.html
new file mode 100644
index 0000000..03ed329
--- /dev/null
+++ b/help/pt_BR/html/ch11s16.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Teoria dos
conjuntos</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch11.html" title="Capítulo 11. List of GEL
functions"><link rel="prev" href="ch11s15.html" title="Polinômios"><link rel="next" href="ch11s17.html"
title="Álgebra comutativa"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Teoria dos conjuntos</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s15.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. List of GEL
functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s17.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 cl
ass="title" style="clear: both"><a name="genius-gel-function-list-set-theory"></a>Teoria dos
conjuntos</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Intersection"></a>Intersection</span></dt><dd><pre class="synopsis">Intersection
(X,Y)</pre><p>Returns a set theoretic intersection of X and Y (X and Y are vectors pretending to be
sets).</p></dd><dt><span class="term"><a name="gel-function-IsIn"></a>IsIn</span></dt><dd><pre
class="synopsis">IsIn (x,X)</pre><p>Returns <code class="constant">true</code> if the element x is in the set
X (where X is a vector pretending to be a set).</p></dd><dt><span class="term"><a
name="gel-function-IsSubset"></a>IsSubset</span></dt><dd><pre class="synopsis">IsSubset (X,
Y)</pre><p>Returns <code class="constant">true</code> if X is a subset of Y (X and Y are vectors pretending
to be sets).</p></dd><dt><span class="term"><a name="gel-function-MakeSet"></a>MakeSet</span></dt><d
d><pre class="synopsis">MakeSet (X)</pre><p>Returns a vector where every element of X appears only
once.</p></dd><dt><span class="term"><a name="gel-function-SetMinus"></a>SetMinus</span></dt><dd><pre
class="synopsis">SetMinus (X,Y)</pre><p>Returns a set theoretic difference X-Y (X and Y are vectors
pretending to be sets).</p></dd><dt><span class="term"><a
name="gel-function-Union"></a>Union</span></dt><dd><pre class="synopsis">Union (X,Y)</pre><p>Returns a set
theoretic union of X and Y (X and Y are vectors pretending to be sets).</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s15.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Acima</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s17.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Polinômios </td><td
width="20%" align="cente
r"><a accesskey="h" href="index.html">Principal</a></td><td width="40%" align="right" valign="top"> Álgebra
comutativa</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch11s17.html b/help/pt_BR/html/ch11s17.html
new file mode 100644
index 0000000..9666b52
--- /dev/null
+++ b/help/pt_BR/html/ch11s17.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Álgebra
comutativa</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch11.html" title="Capítulo 11. List of GEL
functions"><link rel="prev" href="ch11s16.html" title="Teoria dos conjuntos"><link rel="next"
href="ch11s18.html" title="Miscelânea"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Álgebra comutativa</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s16.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. List of GEL
functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s18.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 cla
ss="title" style="clear: both"><a name="genius-gel-function-list-commutative-algebra"></a>Álgebra
comutativa</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-MacaulayBound"></a>MacaulayBound</span></dt><dd><pre class="synopsis">MacaulayBound
(c,d)</pre><p>For a Hilbert function that is c for degree d, given the Macaulay bound for the Hilbert
function of degree d+1 (The c^<d> operator from Green's proof).</p><p>Version 1.0.15
onwards.</p></dd><dt><span class="term"><a
name="gel-function-MacaulayLowerOperator"></a>MacaulayLowerOperator</span></dt><dd><pre
class="synopsis">MacaulayLowerOperator (c,d)</pre><p>The c_<d> operator from Green's proof of
Macaulay's Theorem.</p><p>Version 1.0.15 onwards.</p></dd><dt><span class="term"><a
name="gel-function-MacaulayRep"></a>MacaulayRep</span></dt><dd><pre class="synopsis">MacaulayRep
(c,d)</pre><p>Return the dth Macaulay representation of a positive integ
er c.</p><p>Version 1.0.15 onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s16.html">Anterior</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Acima</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s18.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Teoria dos conjuntos
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td width="40%"
align="right" valign="top"> Miscelânea</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch11s18.html b/help/pt_BR/html/ch11s18.html
new file mode 100644
index 0000000..03c6e95
--- /dev/null
+++ b/help/pt_BR/html/ch11s18.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Miscelânea</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Manual do Genius"><link rel="up" href="ch11.html"
title="Capítulo 11. List of GEL functions"><link rel="prev" href="ch11s17.html" title="Álgebra
comutativa"><link rel="next" href="ch11s19.html" title="Operações simbólicas"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Miscelânea</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch11s17.html">Anterior</a> </td><th width="60%" align="center">Capítulo
11. List of GEL functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s19.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="t
itle" style="clear: both"><a
name="genius-gel-function-list-miscellaneous"></a>Miscelânea</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ASCIIToString"></a>ASCIIToString</span></dt><dd><pre class="synopsis">ASCIIToString
(vec)</pre><p>Convert a vector of ASCII values to a string.</p></dd><dt><span class="term"><a
name="gel-function-AlphabetToString"></a>AlphabetToString</span></dt><dd><pre
class="synopsis">AlphabetToString (vec,alphabet)</pre><p>Convert a vector of 0-based alphabet values
(positions in the alphabet string) to a string.</p></dd><dt><span class="term"><a
name="gel-function-StringToASCII"></a>StringToASCII</span></dt><dd><pre class="synopsis">StringToASCII
(str)</pre><p>Convert a string to a vector of ASCII values.</p></dd><dt><span class="term"><a
name="gel-function-StringToAlphabet"></a>StringToAlphabet</span></dt><dd><pre
class="synopsis">StringToAlphabet (str,alphabet)</pre><p>Convert a
string to a vector of 0-based alphabet values (positions in the alphabet string), -1's for unknown
letters.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s17.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s19.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Álgebra
comutativa </td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td
width="40%" align="right" valign="top"> Operações simbólicas</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch11s19.html b/help/pt_BR/html/ch11s19.html
new file mode 100644
index 0000000..a64a9dc
--- /dev/null
+++ b/help/pt_BR/html/ch11s19.html
@@ -0,0 +1,28 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Operações
simbólicas</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="ch11.html" title="Capítulo 11. List of GEL
functions"><link rel="prev" href="ch11s18.html" title="Miscelânea"><link rel="next" href="ch11s20.html"
title="Plotagem"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Operações simbólicas</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s18.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. List of GEL
functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s20.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="
title" style="clear: both"><a name="genius-gel-function-list-symbolic"></a>Operações
simbólicas</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-SymbolicDerivative"></a>SymbolicDerivative</span></dt><dd><pre
class="synopsis">SymbolicDerivative (f)</pre><p>Tenta simbolicamente derivar a função f, onde f é uma função
de uma variável.</p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SymbolicDerivative(sin)</code></strong>
+= (`(x)=cos(x))
+<code class="prompt">genius></code> <strong
class="userinput"><code>SymbolicDerivative(`(x)=7*x^2)</code></strong>
+= (`(x)=(7*(2*x)))
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicDerivativeTry"></a>SymbolicDerivativeTry</span></dt><dd><pre
class="synopsis">SymbolicDerivativeTry (f)</pre><p>Attempt to symbolically differentiate the function f,
where f is a function of one variable, returns <code class="constant">null</code> if unsuccessful but is
silent.
+ (See <a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicNthDerivative"></a>SymbolicNthDerivative</span></dt><dd><pre
class="synopsis">SymbolicNthDerivative (f,n)</pre><p>Attempt to symbolically differentiate a function n times.
+ (See <a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicNthDerivativeTry"></a>SymbolicNthDerivativeTry</span></dt><dd><pre
class="synopsis">SymbolicNthDerivativeTry (f,n)</pre><p>Attempt to symbolically differentiate a function n
times quietly and return <code class="constant">null</code> on failure
+ (See <a class="link" href="ch11s19.html#gel-function-SymbolicNthDerivative"><code
class="function">SymbolicNthDerivative</code></a>)
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicTaylorApproximationFunction"></a>SymbolicTaylorApproximationFunction</span></dt><dd><pre
class="synopsis">SymbolicTaylorApproximationFunction (f,x0,n)</pre><p>Attempt to construct the Taylor
approximation function around x0 to the nth degree.
+ (See <a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s18.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s20.html">Próxima</a></td></tr><tr><td width="40%" align="left"
valign="top">Miscelânea </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Principal</a></td><td width="40%" align="right" valign="top">
Plotagem</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch11s20.html b/help/pt_BR/html/ch11s20.html
new file mode 100644
index 0000000..2b5ea88
--- /dev/null
+++ b/help/pt_BR/html/ch11s20.html
@@ -0,0 +1,445 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Plotagem</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
do Genius"><link rel="up" href="ch11.html" title="Capítulo 11. List of GEL functions"><link rel="prev"
href="ch11s19.html" title="Operações simbólicas"><link rel="next" href="ch12.html" title="Capítulo 12.
Example Programs in GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Plotagem</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s19.html">Anterior</a> </td><th width="60%" align="center">Capítulo 11. List of GEL
functions</th><td width="20%" align="right"> <a accesskey="n"
href="ch12.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 cl
ass="title" style="clear: both"><a
name="genius-gel-function-list-plotting"></a>Plotagem</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-ExportPlot"></a>ExportPlot</span></dt><dd><pre class="synopsis">ExportPlot
(file,type)</pre><pre class="synopsis">ExportPlot (file)</pre><p>
+ Export the contents of the plotting window to a file.
+ The type is a string that specifies the file type to
+ use, "png", "eps", or "ps". If the type is not
+ specified, then it is taken to be the extension, in
+ which case the extension must be ".png", ".eps", or ".ps".
+ </p><p>
+ Note that files are overwritten without asking.
+ </p><p>
+ On successful export, true is returned. Otherwise
+ error is printed and exception is raised.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>ExportPlot("file.png")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>ExportPlot("/directory/file","eps")</code></strong>
+</pre><p>
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LinePlot"></a>LinePlot</span></dt><dd><pre class="synopsis">LinePlot
(func1,func2,func3,...)</pre><pre class="synopsis">LinePlot (func1,func2,func3,x1,x2)</pre><pre
class="synopsis">LinePlot (func1,func2,func3,x1,x2,y1,y2)</pre><pre class="synopsis">LinePlot
(func1,func2,func3,[x1,x2])</pre><pre class="synopsis">LinePlot (func1,func2,func3,[x1,x2,y1,y2])</pre><p>
+ Plot a function (or several functions) with a line.
+ First (up to 10) arguments are functions, then optionally
+ you can specify the limits of the plotting window as
+ <code class="varname">x1</code>, <code class="varname">x2</code>,
+ <code class="varname">y1</code>, <code class="varname">y2</code>. If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>)
+ If the y limits are not specified, then the functions are computed and then the maxima and minima
+ are used.
+ </p><p>
+ The parameter
+ <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a>
+ controls the drawing of the legend.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlot(sin,cos)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlot(`(x)=x^2,-1,1,0,1)</code></strong>
+</pre><p>
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotClear"></a>LinePlotClear</span></dt><dd><pre class="synopsis">LinePlotClear
()</pre><p>
+ Show the line plot window and clear out functions and any other
+ lines that were drawn.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotCParametric"></a>LinePlotCParametric</span></dt><dd><pre
class="synopsis">LinePlotCParametric (func,...)</pre><pre class="synopsis">LinePlotCParametric
(func,t1,t2,tinc)</pre><pre class="synopsis">LinePlotCParametric (func,t1,t2,tinc,x1,x2,y1,y2)</pre><p>
+ Plot a parametric complex valued function with a line. First comes
+the function that returns <code class="computeroutput">x+iy</code>,
+then optionally the <code class="varname">t</code> limits as <strong
class="userinput"><code>t1,t2,tinc</code></strong>, then
+optionally the limits as <strong class="userinput"><code>x1,x2,y1,y2</code></strong>.
+ </p><p>
+ If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).
+ If instead the string "fit" is given for the x and y limits, then the limits are the maximum
extent of
+ the graph
+ </p><p>
+ The parameter
+ <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a>
+ controls the drawing of the legend.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawLine"></a>LinePlotDrawLine</span></dt><dd><pre
class="synopsis">LinePlotDrawLine (x1,y1,x2,y2,...)</pre><pre class="synopsis">LinePlotDrawLine
(v,...)</pre><p>
+ Draw a line from <code class="varname">x1</code>,<code class="varname">y1</code> to
+ <code class="varname">x2</code>,<code class="varname">y2</code>.
+ <code class="varname">x1</code>,<code class="varname">y1</code>,
+ <code class="varname">x2</code>,<code class="varname">y2</code> can be replaced by an
+ <code class="varname">n</code> by 2 matrix for a longer polyline.
+ Alternatively the vector <code class="varname">v</code> may be a column vector of complex numbers,
+ that is an <code class="varname">n</code> by 1 matrix and each complex number is then
+ considered a point in the plane.
+ </p><p>
+ Extra parameters can be added to specify line color, thickness,
+ arrows, the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ <strong class="userinput"><code>"arrow"</code></strong>, or <strong
class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 4-vector, type of arrow, or the legend. (Arrow and window are from version 1.0.6 onwards.)
+ </p><p>
+ If the line is to be treated as a filled polygon, filled with the given color, you
+ can specify the argument <strong class="userinput"><code>"filled"</code></strong>. Since version
1.0.22 onwards.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally, since version 1.0.18, the color
+ can also be specified as a real vector specifying the red green and
+ blue components where the components are between 0 and 1, e.g. <strong
class="userinput"><code>[1.0,0.5,0.1]</code></strong>.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>
+ Arrow specification should be
+ <strong class="userinput"><code>"origin"</code></strong>,
+ <strong class="userinput"><code>"end"</code></strong>,
+ <strong class="userinput"><code>"both"</code></strong>, or
+ <strong class="userinput"><code>"none"</code></strong>.
+ </p><p>
+ Finally, legend should be a string that can be used as the legend in the
+ graph. That is, if legends are being printed.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(0,0,1,1,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;1,-1;-1,-1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;1,1],"arrow","end")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(RungeKuttaFull(`(x,y)=y,0,3,100),"color","blue","legend","The
Solution")</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>for r=0.0 to 1.0 by 0.1 do
LinePlotDrawLine([0,0;1,r],"color",[r,(1-r),0.5],"window",[0,1,0,1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;10,0;10,10;0,10],"filled","color","green")</code></strong>
+</pre><p>
+ </p><p>
+ Unlike many other functions that do not care if they take a
+ column or a row vector, if specifying points as a vector of
+ complex values, due to possible ambiguities, it must always
+ be given as a column vector.
+ </p><p>
+ Specifying <code class="varname">v</code> as a column vector of complex numbers is
+ implemented from version 1.0.22 and onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawPoints"></a>LinePlotDrawPoints</span></dt><dd><pre
class="synopsis">LinePlotDrawPoints (x,y,...)</pre><pre class="synopsis">LinePlotDrawPoints (v,...)</pre><p>
+ Draw a point at <code class="varname">x</code>,<code class="varname">y</code>.
+ The input can be an <code class="varname">n</code> by 2 matrix
+ for <code class="varname">n</code> different points. This function has essentially the same
+ input as <a class="link"
href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a>.
+ Alternatively the vector <code class="varname">v</code> may be a column vector of complex
numbers,
+ that is an <code class="varname">n</code> by 1 matrix and each complex number is then
+ considered a point in the plane.
+ </p><p>
+ Extra parameters can be added to specify color, thickness,
+ the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ or <strong class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 4-vector, or the legend.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally the color can also be specified as a real vector specifying the
red green
+ and blue components where the components are between 0 and 1.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>
+ Finally, legend should be a string that can be used as the legend in the
+ graph. That is, if legends are being printed.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(0,0,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints([0,0;1,-1;-1,-1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(RungeKuttaFull(`(x,y)=y,0,3,100),"color","blue","legend","The
Solution")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints([1;1+1i;1i;0],"thickness",5)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(ApplyOverMatrix((0:6)',`(k)=exp(k*2*pi*1i/7)),"thickness",3,"legend","The
7th roots of unity")</code></strong>
+</pre><p>
+ </p><p>
+ Unlike many other functions that do not care if they take a
+ column or a row vector, if specifying points as a vector of
+ complex values, due to possible ambiguities, it must always
+ be given as a column vector. Therefore, notice in the
+ last example the transpose of the vector <strong class="userinput"><code>0:6</code></strong>
+ to make it into a column vector.
+ </p><p>
+ Available from version 1.0.18 onwards. Specifying
+ <code class="varname">v</code> as a column vector of complex numbers is
+ implemented from version 1.0.22 and onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotMouseLocation"></a>LinePlotMouseLocation</span></dt><dd><pre
class="synopsis">LinePlotMouseLocation ()</pre><p>
+ Returns a row vector of a point on the line plot corresponding to
+ the current mouse location. If the line plot is not visible,
+ then prints an error and returns <code class="constant">null</code>.
+ In this case you should run
+ <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotClear"><code
class="function">LinePlotClear</code></a>
+ to put the graphing window into the line plot mode.
+ See also
+ <a class="link" href="ch11s20.html#gel-function-LinePlotWaitForClick"><code
class="function">LinePlotWaitForClick</code></a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotParametric"></a>LinePlotParametric</span></dt><dd><pre
class="synopsis">LinePlotParametric (xfunc,yfunc,...)</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc)</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc,x1,x2,y1,y2)</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc,[x1,x2,y1,y2])</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc,"fit")</pre><p>
+ Plot a parametric function with a line. First come the functions
+for <code class="varname">x</code> and <code class="varname">y</code> then optionally the <code
class="varname">t</code> limits as <strong class="userinput"><code>t1,t2,tinc</code></strong>, then
optionally the
+limits as <strong class="userinput"><code>x1,x2,y1,y2</code></strong>.
+ </p><p>
+ If x and y limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).
+ If instead the string "fit" is given for the x and y limits, then the limits are the maximum
extent of
+ the graph
+ </p><p>
+ The parameter
+ <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a>
+ controls the drawing of the legend.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotWaitForClick"></a>LinePlotWaitForClick</span></dt><dd><pre
class="synopsis">LinePlotWaitForClick ()</pre><p>
+ If in line plot mode, waits for a click on the line plot window
+ and returns the location of the click as a row vector.
+ If the window is closed
+ the function returns immediately with <code class="constant">null</code>.
+ If the window is not in line plot mode, it is put in it and shown
+ if not shown.
+ See also
+ <a class="link" href="ch11s20.html#gel-function-LinePlotMouseLocation"><code
class="function">LinePlotMouseLocation</code></a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-PlotCanvasFreeze"></a>PlotCanvasFreeze</span></dt><dd><pre
class="synopsis">PlotCanvasFreeze ()</pre><p>
+ Freeze drawing of the canvas plot temporarily. Useful if you need to draw a bunch of
elements
+ and want to delay drawing everything to avoid flicker in an animation. After everything
+ has been drawn you should call <a class="link"
href="ch11s20.html#gel-function-PlotCanvasThaw"><code class="function">PlotCanvasThaw</code></a>.
+ </p><p>
+ The canvas is always thawed after end of any execution, so it will never remain frozen.
The moment
+ a new command line is shown for example the plot canvas is thawed automatically. Also note
that
+ calls to freeze and thaw may be safely nested.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-PlotCanvasThaw"></a>PlotCanvasThaw</span></dt><dd><pre class="synopsis">PlotCanvasThaw
()</pre><p>
+ Thaw the plot canvas frozen by
+ <a class="link" href="ch11s20.html#gel-function-PlotCanvasFreeze"><code
class="function">PlotCanvasFreeze</code></a>
+ and redraw the canvas immediately. The canvas is also always thawed after end of execution
+ of any program.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-PlotWindowPresent"></a>PlotWindowPresent</span></dt><dd><pre
class="synopsis">PlotWindowPresent ()</pre><p>
+ Show and raise the plot window, creating it if necessary.
+ Normally the window is created when one of the plotting
+ functions is called, but it is not always raised if it
+ happens to be below other windows. So this function is
+ good to call in scripts where the plot window might have
+ been created before, and by now is hidden behind the
+ console or other windows.
+ </p><p>Version 1.0.19 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SlopefieldClearSolutions"></a>SlopefieldClearSolutions</span></dt><dd><pre
class="synopsis">SlopefieldClearSolutions ()</pre><p>
+ Clears the solutions drawn by the
+ <a class="link" href="ch11s20.html#gel-function-SlopefieldDrawSolution"><code
class="function">SlopefieldDrawSolution</code></a>
+ function.
+ </p></dd><dt><span class="term"><a
name="gel-function-SlopefieldDrawSolution"></a>SlopefieldDrawSolution</span></dt><dd><pre
class="synopsis">SlopefieldDrawSolution (x, y, dx)</pre><p>
+ When a slope field plot is active, draw a solution with
+ the specified initial condition. The standard
+ Runge-Kutta method is used with increment <code class="varname">dx</code>.
+ Solutions stay on the graph until a different plot is shown or until
+ you call
+ <a class="link" href="ch11s20.html#gel-function-SlopefieldClearSolutions"><code
class="function">SlopefieldClearSolutions</code></a>.
+ You can also use the graphical interface to draw solutions and specify
+ initial conditions with the mouse.
+ </p></dd><dt><span class="term"><a
name="gel-function-SlopefieldPlot"></a>SlopefieldPlot</span></dt><dd><pre class="synopsis">SlopefieldPlot
(func)</pre><pre class="synopsis">SlopefieldPlot (func,x1,x2,y1,y2)</pre><p>
+ Plot a slope field. The function <code class="varname">func</code>
+ should take two real numbers <code class="varname">x</code>
+ and <code class="varname">y</code>, or a single complex
+ number.
+ Optionally you can specify the limits of the plotting window as
+ <code class="varname">x1</code>, <code class="varname">x2</code>,
+ <code class="varname">y1</code>, <code class="varname">y2</code>. If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).
+ </p><p>
+ The parameter
+ <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a>
+ controls the drawing of the legend.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SlopefieldPlot(`(x,y)=sin(x-y),-5,5,-5,5)</code></strong>
+</pre><p>
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlot"></a>SurfacePlot</span></dt><dd><pre class="synopsis">SurfacePlot
(func)</pre><pre class="synopsis">SurfacePlot (func,x1,x2,y1,y2,z1,z2)</pre><pre class="synopsis">SurfacePlot
(func,x1,x2,y1,y2)</pre><pre class="synopsis">SurfacePlot (func,[x1,x2,y1,y2,z1,z2])</pre><pre
class="synopsis">SurfacePlot (func,[x1,x2,y1,y2])</pre><p>
+ Plot a surface function that takes either two arguments or a complex number. First comes the
function then optionally limits as <code class="varname">x1</code>, <code class="varname">x2</code>,
+ <code class="varname">y1</code>, <code class="varname">y2</code>,
+ <code class="varname">z1</code>, <code class="varname">z2</code>. If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-SurfacePlotWindow"><code
class="function">SurfacePlotWindow</code></a>).
+ Genius can only plot a single surface function at this time.
+ </p><p>
+ If the z limits are not specified then the maxima and minima of the function are used.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(|sin|,-1,1,-1,1,0,1.5)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(`(x,y)=x^2+y,-1,1,-1,1,-2,2)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(`(z)=|z|^2,-1,1,-1,1,0,2)</code></strong>
+</pre><p>
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotClear"></a>SurfacePlotClear</span></dt><dd><pre
class="synopsis">SurfacePlotClear ()</pre><p>
+ Show the surface plot window and clear out functions and any other
+ lines that were drawn.
+ </p><p>
+ Available in version 1.0.19 and onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotData"></a>SurfacePlotData</span></dt><dd><pre class="synopsis">SurfacePlotData
(data)</pre><pre class="synopsis">SurfacePlotData (data,label)</pre><pre class="synopsis">SurfacePlotData
(data,x1,x2,y1,y2,z1,z2)</pre><pre class="synopsis">SurfacePlotData (data,label,x1,x2,y1,y2,z1,z2)</pre><pre
class="synopsis">SurfacePlotData (data,[x1,x2,y1,y2,z1,z2])</pre><pre class="synopsis">SurfacePlotData
(data,label,[x1,x2,y1,y2,z1,z2])</pre><p>
+ Plot a surface from data. The data is an n by 3 matrix whose
+ rows are the x, y and z coordinates. The data can also be
+ simply a vector whose length is a multiple of 3 and so
+ contains the triples of x, y, z. The data should contain at
+ least 3 points.
+ </p><p>
+ Optionally we can give the label and also optionally the
+ limits. If limits are not given, they are computed from
+ the data, <a class="link" href="ch11s03.html#gel-function-SurfacePlotWindow"><code
class="function">SurfacePlotWindow</code></a>
+ is not used, if you want to use it, pass it in explicitly.
+ If label is not given then empty label is used.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData([0,0,0;1,0,1;0,1,1;1,1,3])</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>SurfacePlotData(data,"My
data")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData(data,-1,1,-1,1,0,10)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData(data,SurfacePlotWindow)</code></strong>
+</pre><p>
+ </p><p>
+ Here's an example of how to plot in polar coordinates,
+ in particular how to plot the function
+ <strong class="userinput"><code>-r^2 * theta</code></strong>:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>d:=null; for r=0 to 1 by 0.1 do for theta=0 to 2*pi by pi/5 do
d=[d;[r*cos(theta),r*sin(theta),-r^2*theta]];</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>SurfacePlotData(d)</code></strong>
+</pre><p>
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDataGrid"></a>SurfacePlotDataGrid</span></dt><dd><pre
class="synopsis">SurfacePlotDataGrid (data,[x1,x2,y1,y2])</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2,z1,z2])</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2],label)</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2,z1,z2],label)</pre><p>
+ Plot a surface from regular rectangular data.
+ The data is given in a n by m matrix where the rows are the
+ x coordinate and the columns are the y coordinate.
+ The x coordinate is divided into equal n-1 subintervals
+ and y coordinate is divided into equal m-1 subintervals.
+ The limits <code class="varname">x1</code> and <code class="varname">x2</code>
+ give the interval on the x-axis that we use, and
+ the limits <code class="varname">y1</code> and <code class="varname">y2</code>
+ give the interval on the y-axis that we use.
+ If the limits <code class="varname">z1</code> and <code class="varname">z2</code>
+ are not given they are computed from the data (to be
+ the extreme values from the data).
+ </p><p>
+ Optionally we can give the label, if label is not given then
+ empty label is used.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid([1,2;3,4],[0,1,0,1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid(data,[-1,1,-1,1],"My data")</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>d:=null; for i=1 to 20 do for j=1 to
10 do d@(i,j) = (0.1*i-1)^2-(0.1*j)^2;</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid(d,[-1,1,0,1],"half a saddle")</code></strong>
+</pre><p>
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawLine"></a>SurfacePlotDrawLine</span></dt><dd><pre
class="synopsis">SurfacePlotDrawLine (x1,y1,z1,x2,y2,z2,...)</pre><pre class="synopsis">SurfacePlotDrawLine
(v,...)</pre><p>
+ Draw a line from <code class="varname">x1</code>,<code class="varname">y1</code>,<code
class="varname">z1</code> to
+ <code class="varname">x2</code>,<code class="varname">y2</code>,<code class="varname">z2</code>.
+ <code class="varname">x1</code>,<code class="varname">y1</code>,<code class="varname">z1</code>,
+ <code class="varname">x2</code>,<code class="varname">y2</code>,<code class="varname">z2</code>
can be replaced by an
+ <code class="varname">n</code> by 3 matrix for a longer polyline.
+ </p><p>
+ Extra parameters can be added to specify line color, thickness,
+ arrows, the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ or <strong class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 6-vector, or the legend.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally, since version 1.0.18, the color
+ can also be specified as a real vector specifying the red green and
+ blue components where the components are between 0 and 1, e.g. <strong
class="userinput"><code>[1.0,0.5,0.1]</code></strong>.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2,z1,z2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>
+ Finally, legend should be a string that can be used as the legend in the
+ graph. That is, if legends are being printed.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawLine(0,0,0,1,1,1,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawLine([0,0,0;1,-1,2;-1,-1,-3])</code></strong>
+</pre><p>
+ </p><p>
+ Available from version 1.0.19 onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawPoints"></a>SurfacePlotDrawPoints</span></dt><dd><pre
class="synopsis">SurfacePlotDrawPoints (x,y,z,...)</pre><pre class="synopsis">SurfacePlotDrawPoints
(v,...)</pre><p>
+ Draw a point at <code class="varname">x</code>,<code class="varname">y</code>,<code
class="varname">z</code>.
+ The input can be an <code class="varname">n</code> by 3 matrix
+ for <code class="varname">n</code> different points. This function has essentially the same
+ input as <a class="link"
href="ch11s20.html#gel-function-SurfacePlotDrawLine">SurfacePlotDrawLine</a>.
+ </p><p>
+ Extra parameters can be added to specify line color, thickness,
+ the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ or <strong class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 6-vector, or the legend.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally the color can also be specified as a real vector specifying the
red green
+ and blue components where the components are between 0 and 1.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2,z1,z2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>
+ Finally, legend should be a string that can be used as the legend in the
+ graph. That is, if legends are being printed.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawPoints(0,0,0,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawPoints([0,0,0;1,-1,2;-1,-1,1])</code></strong>
+</pre><p>
+ </p><p>
+ Available from version 1.0.19 onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-VectorfieldClearSolutions"></a>VectorfieldClearSolutions</span></dt><dd><pre
class="synopsis">VectorfieldClearSolutions ()</pre><p>
+ Clears the solutions drawn by the
+ <a class="link" href="ch11s20.html#gel-function-VectorfieldDrawSolution"><code
class="function">VectorfieldDrawSolution</code></a>
+ function.
+ </p><p>Version 1.0.6 onwards.</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldDrawSolution"></a>VectorfieldDrawSolution</span></dt><dd><pre
class="synopsis">VectorfieldDrawSolution (x, y, dt, tlen)</pre><p>
+ When a vector field plot is active, draw a solution with
+ the specified initial condition. The standard
+ Runge-Kutta method is used with increment <code class="varname">dt</code>
+ for an interval of length <code class="varname">tlen</code>.
+ Solutions stay on the graph until a different plot is shown or until
+ you call
+ <a class="link" href="ch11s20.html#gel-function-VectorfieldClearSolutions"><code
class="function">VectorfieldClearSolutions</code></a>.
+ You can also use the graphical interface to draw solutions and specify
+ initial conditions with the mouse.
+ </p><p>Version 1.0.6 onwards.</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldPlot"></a>VectorfieldPlot</span></dt><dd><pre class="synopsis">VectorfieldPlot
(funcx, funcy)</pre><pre class="synopsis">VectorfieldPlot (funcx, funcy, x1, x2, y1, y2)</pre><p>
+ Plot a two dimensional vector field. The function
+ <code class="varname">funcx</code>
+ should be the dx/dt of the vectorfield and the function
+ <code class="varname">funcy</code> should be the dy/dt of the vectorfield.
+ The functions
+ should take two real numbers <code class="varname">x</code>
+ and <code class="varname">y</code>, or a single complex
+ number. When the parameter
+ <a class="link" href="ch11s03.html#gel-function-VectorfieldNormalized"><code
class="function">VectorfieldNormalized</code></a>
+ is <code class="constant">true</code>, then the magnitude of the vectors is normalized. That is,
only
+ the direction and not the magnitude is shown.
+ </p><p>
+ Optionally you can specify the limits of the plotting window as
+ <code class="varname">x1</code>, <code class="varname">x2</code>,
+ <code class="varname">y1</code>, <code class="varname">y2</code>. If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).
+ </p><p>
+ The parameter
+ <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a>
+ controls the drawing of the legend.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>VectorfieldPlot(`(x,y)=x^2-y, `(x,y)=y^2-x, -1, 1, -1, 1)</code></strong>
+</pre><p>
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s19.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch12.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Operações
simbólicas </td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td
width="40%" align="right" valign="top"> Capítulo 12. Example Programs in
GEL</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch12.html b/help/pt_BR/html/ch12.html
new file mode 100644
index 0000000..b1d7545
--- /dev/null
+++ b/help/pt_BR/html/ch12.html
@@ -0,0 +1,74 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 12. Example
Programs in GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="index.html" title="Manual do Genius"><link
rel="prev" href="ch11s20.html" title="Plotagem"><link rel="next" href="ch13.html" title="Capítulo 13.
Preferências"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Capítulo
12. Example Programs in GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s20.html">Anterior</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch13.html">Próxima</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a n
ame="genius-gel-example-programs"></a>Capítulo 12. Example Programs in GEL</h1></div></div></div><p>
+Here is a function that calculates factorials:
+</p><pre class="programlisting">function f(x) = if x <= 1 then 1 else (f(x-1)*x)
+</pre><p>
+ </p><p>
+With indentation it becomes:
+</p><pre class="programlisting">function f(x) = (
+ if x <= 1 then
+ 1
+ else
+ (f(x-1)*x)
+)
+</pre><p>
+ </p><p>
+This is a direct port of the factorial function from the <span class="application">bc</span> manpage. The
syntax seems similar to <span class="application">bc</span>, but different in that in GEL, the last
expression is the one that is returned. Using the <code class="literal">return</code> function instead, it
would be:
+</p><pre class="programlisting">function f(x) = (
+ if (x <= 1) then return (1);
+ return (f(x-1) * x)
+)
+</pre><p>
+ </p><p>
+By far the easiest way to define a factorial function would be using
+the product loop as follows. This is not only the shortest and fastest,
+but also probably the most readable version.
+</p><pre class="programlisting">function f(x) = prod k=1 to x do k
+</pre><p>
+ </p><p>
+Here is a larger example, this basically redefines the internal
+<a class="link" href="ch11s09.html#gel-function-ref"><code class="function">ref</code></a> function to
calculate the row echelon form of a
+matrix. The function <code class="function">ref</code> is built in and much faster,
+but this example demonstrates some of the more complex features of GEL.
+</p><pre class="programlisting"># Calculate the row-echelon form of a matrix
+function MyOwnREF(m) = (
+ if not IsMatrix(m) or not IsValueOnly(m) then
+ (error("MyOwnREF: argument not a value only matrix");bailout);
+ s := min(rows(m), columns(m));
+ i := 1;
+ d := 1;
+ while d <= s and i <= columns(m) do (
+
+ # This just makes the anchor element non-zero if at
+ # all possible
+ if m@(d,i) == 0 then (
+ j := d+1;
+ while j <= rows(m) do (
+ if m@(j,i) == 0 then
+ (j=j+1;continue);
+ a := m@(j,);
+ m@(j,) := m@(d,);
+ m@(d,) := a;
+ j := j+1;
+ break
+ )
+ );
+ if m@(d,i) == 0 then
+ (i:=i+1;continue);
+
+ # Here comes the actual zeroing of all but the anchor
+ # element rows
+ j := d+1;
+ while j <= rows(m)) do (
+ if m@(j,i) != 0 then (
+ m@(j,) := m@(j,)-(m@(j,i)/m@(d,i))*m@(d,)
+ );
+ j := j+1
+ );
+ m@(d,) := m@(d,) * (1/m@(d,i));
+ d := d+1;
+ i := i+1
+ );
+ m
+)
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch11s20.html">Anterior</a> </td><td width="20%" align="center"> </td><td
width="40%" align="right"> <a accesskey="n" href="ch13.html">Próxima</a></td></tr><tr><td width="40%"
align="left" valign="top">Plotagem </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Principal</a></td><td width="40%" align="right" valign="top"> Capítulo 13.
Preferências</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch13.html b/help/pt_BR/html/ch13.html
new file mode 100644
index 0000000..c9f7b5a
--- /dev/null
+++ b/help/pt_BR/html/ch13.html
@@ -0,0 +1,73 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 13.
Preferências</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Manual do Genius"><link rel="up" href="index.html" title="Manual do Genius"><link
rel="prev" href="ch12.html" title="Capítulo 12. Example Programs in GEL"><link rel="next" href="ch13s02.html"
title="Precisão"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Capítulo 13. Preferências</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch12.html">Anterior</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch13s02.html">Próxima</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="geni
us-prefs"></a>Capítulo 13. Preferências</h1></div></div></div><div class="toc"><p><b>Índice</b></p><dl
class="toc"><dt><span class="sect1"><a href="ch13.html#genius-prefs-output">Saída</a></span></dt><dt><span
class="sect1"><a href="ch13s02.html">Precisão</a></span></dt><dt><span class="sect1"><a
href="ch13s03.html">Terminal</a></span></dt><dt><span class="sect1"><a
href="ch13s04.html">Memória</a></span></dt></dl></div><p>
+ To configure <span class="application">Genius Mathematics Tool</span>, choose
+ <span class="guimenu">Settings</span> → <span class="guimenuitem">Preferences</span>.
+ There are several basic parameters provided by the calculator in addition
+ to the ones provided by the standard library. These control how the
+ calculator behaves.
+ </p><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Changing
Settings with GEL</h3><p>
+ Many of the settings in Genius are simply global variables, and can
+ be evaluated and assigned to in the same way as normal variables. See
+ <a class="xref" href="ch05s02.html" title="Using Variables">“Using Variables”</a> about evaluating
and assigning
+ to variables, and <a class="xref" href="ch11s03.html" title="Parâmetros">“Parâmetros”</a> for
+ a list of settings that can be modified in this way.
+ </p><p>
+As an example, you can set the maximum number of digits in a result to 12 by typing:
+</p><pre class="programlisting">MaxDigits = 12
+</pre><p>
+ </p></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-prefs-output"></a>Saída</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Maximum digits to output</span>
+ </span></dt><dd><p>The maximum digits in a result (<a class="link"
href="ch11s03.html#gel-function-MaxDigits"><code class="function">MaxDigits</code></a>)</p></dd><dt><span
class="term">
+ <span class="guilabel">Resultados como números reais</span>
+ </span></dt><dd><p>If the results should be always printed as floats (<a class="link"
href="ch11s03.html#gel-function-ResultsAsFloats"><code
class="function">ResultsAsFloats</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Resultados em notação científica</span>
+ </span></dt><dd><p>If floats should be in scientific notation (<a class="link"
href="ch11s03.html#gel-function-ScientificNotation"><code
class="function">ScientificNotation</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Sempre mostrar expressões completas</span>
+ </span></dt><dd><p>Should we print out full expressions for non-numeric return values (longer than a
line) (<a class="link" href="ch11s03.html#gel-function-FullExpressions"><code
class="function">FullExpressions</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Usa frações mistas</span>
+ </span></dt><dd><p>If fractions should be printed as mixed fractions such as "1 1/3" rather than
"4/3". (<a class="link" href="ch11s03.html#gel-function-MixedFractions"><code
class="function">MixedFractions</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Exibir 0.0 quando o número de ponto flutuante for menor que 10^-x (0=nunca
arredondar)</span>
+ </span></dt><dd><p>How to chop output. But only when other numbers nearby are large.
+ See the documentation of the parameter
+ <a class="link" href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>. </p></dd><dt><span class="term">
+ <span class="guilabel">Só arredondar números quando outro número for maior que 10^-x</span>
+ </span></dt><dd><p>When to chop output. This is set by the parameter <a class="link"
href="ch11s03.html#gel-function-OutputChopWhenExponent"><code
class="function">OutputChopWhenExponent</code></a>.
+ See the documentation of the parameter
+ <a class="link" href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>. </p></dd><dt><span class="term">
+ <span class="guilabel">Lembrar a saída de configurações entre sessões</span>
+ </span></dt><dd><p>Should the output settings in the <span class="guilabel">Number/Expression output
options</span> frame
+ be remembered for next session. Does not apply to the <span class="guilabel">Error/Info output
options</span> frame.</p><p>
+ If unchecked,
+ either the default or any previously saved settings are used each time Genius starts
+ up. Note that
+ settings are saved at the end of the session, so if you wish to change the defaults
+ check this box, restart <span class="application">Genius Mathematics Tool</span> and then uncheck
it again.
+ </p></dd><dt><span class="term">
+ <span class="guilabel">Exibir erros em uma caixa de diálogo</span>
+ </span></dt><dd><p>If set the errors will be displayed in a separate dialog, if
+ unset the errors will be printed on the console.</p></dd><dt><span class="term">
+ <span class="guilabel">Exibir mensagens de informação em uma caixa de diálogo</span>
+ </span></dt><dd><p>If set the information messages will be displayed in a separate
+ dialog, if unset the information messages will be printed on the
+ console.</p></dd><dt><span class="term">
+ <span class="guilabel">Erros máximos para mostrar</span>
+ </span></dt><dd><p>
+ The maximum number of errors to return on one evaluation
+ (<a class="link" href="ch11s03.html#gel-function-MaxErrors"><code
class="function">MaxErrors</code></a>). If you set this to 0 then
+ all errors are always returned. Usually if some loop causes
+ many errors, then it is unlikely that you will be able to make
+ sense out of more than a few of these, so seeing a long list
+ of errors is usually not helpful.
+ </p></dd></dl></div><p>
+ In addition to these preferences, there are some preferences that can
+ only be changed by setting them in the workspace console. For others
+ that may affect the output see <a class="xref" href="ch11s03.html"
title="Parâmetros">“Parâmetros”</a>.
+ </p><div class="variablelist"><dl class="variablelist"><dt><span class="term">
+ <code class="function">IntegerOutputBase</code>
+ </span></dt><dd><p>The base that will be used to output integers</p></dd><dt><span class="term">
+ <code class="function">OutputStyle</code>
+ </span></dt><dd><p>A string, can be <code class="literal">"normal"</code>,
+<code class="literal">"latex"</code>, <code class="literal">"mathml"</code> or
+<code class="literal">"troff"</code> and it will affect how matrices (and perhaps other
+stuff) is printed, useful for pasting into documents. Normal style is the
+default human readable printing style of <span class="application">Genius Mathematics Tool</span>. The
other styles are for
+typesetting in LaTeX, MathML (XML), or in Troff.</p></dd></dl></div></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch12.html">Anterior</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> <a accesskey="n" href="ch13s02.html">Próxima</a></td></tr><tr><td width="40%" align="left"
valign="top">Capítulo 12. Example Programs in GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Principal</a></td><td width="40%" align="right" valign="top">
Precisão</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch13s02.html b/help/pt_BR/html/ch13s02.html
new file mode 100644
index 0000000..1e7e9ff
--- /dev/null
+++ b/help/pt_BR/html/ch13s02.html
@@ -0,0 +1,20 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Precisão</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
do Genius"><link rel="up" href="ch13.html" title="Capítulo 13. Preferências"><link rel="prev"
href="ch13.html" title="Capítulo 13. Preferências"><link rel="next" href="ch13s03.html"
title="Terminal"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Precisão</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch13.html">Anterior</a> </td><th width="60%" align="center">Capítulo 13. Preferências</th><td
width="20%" align="right"> <a accesskey="n" href="ch13s03.html">Próxima</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name
="genius-prefs-precision"></a>Precisão</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Precisão de ponto flutuante</span>
+ </span></dt><dd><p>
+ The floating point precision in bits
+ (<a class="link" href="ch11s03.html#gel-function-FloatPrecision"><code
class="function">FloatPrecision</code></a>).
+ Note that changing this only affects newly computed quantities.
+ Old values stored in variables are obviously still in the old
+ precision and if you want to have them more precise you will have
+ to recompute them. Exceptions to this are the system constants
+ such as <a class="link" href="ch11s04.html#gel-function-pi"><code class="function">pi</code></a> or
+ <a class="link" href="ch11s04.html#gel-function-e"><code class="function">e</code></a>.
+ </p></dd><dt><span class="term">
+ <span class="guilabel">Lembrar as configurações de precisão entre sessões</span>
+ </span></dt><dd><p>
+ Should the precision setting be remembered for the next session. If unchecked,
+ either the default or any previously saved setting is used each time Genius starts
+ up. Note that
+ settings are saved at the end of the session, so if you wish to change the default
+ check this box, restart genius and then uncheck it again.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13.html">Anterior</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch13.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch13s03.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Capítulo
13. Preferências </td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td
width="40%" align="right" valign="top"> Terminal</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch13s03.html b/help/pt_BR/html/ch13s03.html
new file mode 100644
index 0000000..6a7b5ba
--- /dev/null
+++ b/help/pt_BR/html/ch13s03.html
@@ -0,0 +1,11 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Terminal</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
do Genius"><link rel="up" href="ch13.html" title="Capítulo 13. Preferências"><link rel="prev"
href="ch13s02.html" title="Precisão"><link rel="next" href="ch13s04.html" title="Memória"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Terminal</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch13s02.html">Anterior</a> </td><th width="60%"
align="center">Capítulo 13. Preferências</th><td width="20%" align="right"> <a accesskey="n"
href="ch13s04.html">Próxima</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-prefs
-terminal"></a>Terminal</h2></div></div></div><p>
+ Terminal refers to the console in the work area.
+ </p><div class="variablelist"><dl class="variablelist"><dt><span class="term">
+ <span class="guilabel">Rolar linha para trás</span>
+ </span></dt><dd><p>Lines of scrollback in the terminal.</p></dd><dt><span class="term">
+ <span class="guilabel">Fonte</span>
+ </span></dt><dd><p>The font to use on the terminal.</p></dd><dt><span class="term">
+ <span class="guilabel">Preto em branco</span>
+ </span></dt><dd><p>If to use black on white on the terminal.</p></dd><dt><span class="term">
+ <span class="guilabel">Cursor piscante</span>
+ </span></dt><dd><p>If the cursor in the terminal should blink when the terminal is in focus. This can
sometimes be annoying and it generates idle traffic if you are using Genius
remotely.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13s02.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch13.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch13s04.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Precisão
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td width="40%"
align="right" valign="top"> Memória</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch13s04.html b/help/pt_BR/html/ch13s04.html
new file mode 100644
index 0000000..95f3c65
--- /dev/null
+++ b/help/pt_BR/html/ch13s04.html
@@ -0,0 +1,20 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Memória</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Manual
do Genius"><link rel="up" href="ch13.html" title="Capítulo 13. Preferências"><link rel="prev"
href="ch13s03.html" title="Terminal"><link rel="next" href="ch14.html" title="Capítulo 14. About Genius
Mathematics Tool"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Memória</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch13s03.html">Anterior</a> </td><th width="60%" align="center">Capítulo 13. Preferências</th><td
width="20%" align="right"> <a accesskey="n" href="ch14.html">Próxima</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-prefs-memory"></a>Memória</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Número máximo de nós para alocar</span>
+ </span></dt><dd><p>
+ Internally all data is put onto small nodes in memory. This gives
+ a limit on the maximum number of nodes to allocate for
+ computations. This limit avoids the problem of running out of memory
+ if you do something by mistake that uses too much memory, such
+ as a recursion without end. This could slow your computer and make
+ it hard to even interrupt the program.
+ </p><p>
+ Once the limit is reached, <span class="application">Genius Mathematics Tool</span> asks if you
wish to interrupt
+ the computation or if you wish to continue. If you continue, no
+ limit is applied and it will be possible to run your computer
+ out of memory. The limit will be applied again next time you
+ execute a program or an expression on the Console regardless of how
+ you answered the question.
+ </p><p>
+ Setting the limit to zero means there is no limit to the amount of
+ memory that genius uses.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13s03.html">Anterior</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch13.html">Acima</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch14.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top">Terminal
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Principal</a></td><td width="40%"
align="right" valign="top"> Capítulo 14. About <span class="application">Genius Mathematics
Tool</span></td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/ch14.html b/help/pt_BR/html/ch14.html
new file mode 100644
index 0000000..506a117
--- /dev/null
+++ b/help/pt_BR/html/ch14.html
@@ -0,0 +1,22 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Capítulo 14. About
Genius Mathematics Tool</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Manual do Genius"><link rel="up" href="index.html" title="Manual do
Genius"><link rel="prev" href="ch13s04.html" title="Memória"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Capítulo 14. About <span class="application">Genius Mathematics
Tool</span></th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch13s04.html">Anterior</a>
</td><th width="60%" align="center"> </th><td width="20%" align="right"> </td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="genius-about"></a>Capítulo 14.
About <span class="application">Ge
nius Mathematics Tool</span></h1></div></div></div><p> <span class="application">Genius Mathematics
Tool</span> was written by Jiří (George) Lebl
+(<code class="email"><<a class="email" href="mailto:jirka 5z com">jirka 5z com</a>></code>). The
history of <span class="application">Genius Mathematics Tool</span> goes back to late
+1997. It was the first calculator program for GNOME, but it then grew
+beyond being just a desktop calculator. To find more information about
+<span class="application">Genius Mathematics Tool</span>, please visit the <a class="ulink"
href="http://www.jirka.org/genius.html" target="_top">Genius Web page</a>.
+ </p><p>
+ To report a bug or make a suggestion regarding this application or
+ this manual, send email to me (the author) or post to the mailing
+ list (see the web page).
+ </p><p> This program is distributed under the terms of the GNU
+ General Public license as published by the Free Software
+ Foundation; either version 3 of the License, or (at your option)
+ any later version. A copy of this license can be found at this
+ <a class="ulink" href="http://www.gnu.org/copyleft/gpl.html" target="_top">link</a>, or in the file
+ COPYING included with the source code of this program. </p><p>Jiří Lebl was during various parts of
the development
+ partially supported for the work by NSF grants DMS 0900885,
+ DMS 1362337,
+ the University of Illinois at Urbana-Champaign,
+ the University of California at San Diego,
+ the University of Wisconsin-Madison, and
+ Oklahoma State University. The software has
+ been used for both teaching and research.</p></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch13s04.html">Anterior</a> </td><td width="20%" align="center"> </td><td width="40%" align="right">
</td></tr><tr><td width="40%" align="left" valign="top">Memória </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Principal</a></td><td width="40%" align="right" valign="top">
</td></tr></table></div></body></html>
diff --git a/help/pt_BR/html/genius.proc b/help/pt_BR/html/genius.proc
new file mode 100644
index 0000000..e69de29
diff --git a/help/pt_BR/html/index.html b/help/pt_BR/html/index.html
new file mode 100644
index 0000000..c969d84
--- /dev/null
+++ b/help/pt_BR/html/index.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Manual do
Genius</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><meta name="description"
content="Manual da ferramenta matemática Genius"><link rel="home" href="index.html" title="Manual do
Genius"><link rel="next" href="ch01.html" title="Capítulo 1. Introdução"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Manual do Genius</th></tr><tr><td width="20%"
align="left"> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch01.html">Próxima</a></td></tr></table><hr></div><div lang="pt_BR" class="book"><div
class="titlepage"><div><div><h1 class="title"><a name="index"></a>Manual do Genius</h1></div><div><div
class="authorgroup"><div class="author"><h3 class="author"><span cl
ass="firstname">Jiří</span> <span class="surname">Lebl</span></h3><div class="affiliation"><span
class="orgname">Universidade do Estado de Oklahoma<br></span><div class="address"><p> <code
class="email"><<a class="email" href="mailto:jirka 5z com">jirka 5z com</a>></code>
</p></div></div></div><div class="author"><h3 class="author"><span class="firstname">Kai</span> <span
class="surname">Willadsen</span></h3><div class="affiliation"><span class="orgname">Universidade de
Queensland, Austrália<br></span><div class="address"><p> <code class="email"><<a class="email"
href="mailto:kaiw itee uq edu au">kaiw itee uq edu au</a>></code>
</p></div></div></div></div></div><div><p class="releaseinfo">This manual describes version 1.0.22 of Genius.
+ </p></div><div><p class="copyright">Copyright © 1997-2016 Jiří (George) Lebl</p></div><div><p
class="copyright">Copyright © 2004 Kai Willadsen</p></div><div><p class="copyright">Copyright © 2013. Enrico
Nicoletto (liverig gmail com)</p></div><div><div class="legalnotice"><a name="legalnotice"></a><p>Permissão
concedida para copiar, distribuir e/ou modificar este documento sob os termos da Licença de Documentação
Livre GNU (GNU Free Documentation License), Versão 1.1 ou qualquer versão mais recente publicada pela Free
Software Foundation; sem Seções Invariantes, Textos de Capa Frontal, e sem Textos de Contracapa. Você pode
encontrar uma cópia da licença GFDL neste <a class="ulink" href="ghelp:fdl" target="_top">link</a> ou no
arquivo COPYING-DOCS distribuído com este manual.</p><p>Este manual é parte da coleção de manuais do GNOME
distribuídos sob a GFDL. Se você quiser distribuí-lo separadamente da coleção, você pode fazê-lo adicionando
ao manu
al uma cópia da licença, como descrito na seção 6 da licença.</p><p>Muitos dos nomes usados por empresas
para distinguir seus produtos e serviços são reivindicados como marcas registradas. Onde esses nomes aparecem
em qualquer documentação do GNOME e os membros do Projeto de Documentação do GNOME estiverem cientes dessas
marcas registradas, os nomes aparecerão impressos em letras maiúsculas ou com iniciais em maiúsculas.</p><p>O
DOCUMENTO E VERSÕES MODIFICADAS DO DOCUMENTO SÃO FORNECIDOS SOB OS TERMOS DA GNU FREE DOCUMENTATION LICENSE
COM O ENTENDIMENTO ADICIONAL DE QUE: </p><div class="orderedlist"><ol class="orderedlist" type="1"><li
class="listitem"><p>O DOCUMENTO É FORNECIDO NA BASE "COMO ESTÁ", SEM GARANTIAS DE QUALQUER TIPO, TANTO
EXPRESSA OU IMPLÍCITA, INCLUINDO, MAS NÃO LIMITADO A, GARANTIAS DE QUE O DOCUMENTO OU VERSÃO MODIFICADA DO
DOCUMENTO SEJA COMERCIALIZÁVEL, LIVRE DE DEFEITOS, PRÓPRIO PARA UM PROPÓSITO ESPECÍFICO OU SEM INFRAÇÕES. TO
DO O RISCO A RESPEITO DA QUALIDADE, EXATIDÃO, E DESEMPENHO DO DOCUMENTO OU VERSÕES MODIFICADAS DO DOCUMENTO
É DE SUA RESPONSABILIDADE. SE ALGUM DOCUMENTO OU VERSÃO MODIFICADA SE PROVAR DEFEITUOSO EM QUALQUER ASPECTO,
VOCÊ (NÃO O ESCRITOR INICIAL, AUTOR OU QUALQUER CONTRIBUIDOR) ASSUME O CUSTO DE QUALQUER SERVIÇO NECESSÁRIO,
REPARO OU CORREÇÃO. ESSA RENÚNCIA DE GARANTIAS CONSTITUI UMA PARTE ESSENCIAL DESTA LICENÇA. NENHUM USO DESTE
DOCUMENTO OU VERSÃO MODIFICADA DESTE DOCUMENTO É AUTORIZADO SE NÃO FOR SOB ESSA RENÚNCIA; E</p></li><li
class="listitem"><p>SOB NENHUMA CIRCUNSTÂNCIA E SOB NENHUMA TEORIA LEGAL, TANTO EM DANO (INCLUINDO
NEGLIGÊNCIA), CONTRATO, OU OUTROS, DEVEM O AUTOR, ESCRITOR INICIAL, QUALQUER CONTRIBUIDOR, OU QUALQUER
DISTRIBUIDOR DO DOCUMENTO OU VERSÃO MODIFICADA DO DOCUMENTO, OU QUALQUER FORNECEDOR DE ALGUMA DESSAS PARTES,
SEREM CONSIDERADOS RESPONSÁVEIS A QUALQUER PESSOA POR QUALQUER DANO, SEJA DIRETO, INDIRETO, ESPECIAL,
ACIDENTAL OU DANO
S DECORRENTES DE QUALQUER NATUREZA, INCLUINDO, MAS NÃO LIMITADO A, DANOS POR PERDA DE BOA VONTADE, TRABALHO
PARADO, FALHA OU MAU FUNCIONAMENTO DO COMPUTADOR, OU QUALQUER E TODOS OS OUTROS DANOS OU PERDAS RESULTANTES
OU RELACIONADOS AO USO DO DOCUMENTO E VERSÕES MODIFICADAS, MESMO QUE TAL PARTE TENHA SIDO INFORMADA DA
POSSIBILIDADE DE TAIS DANOS.</p></li></ol></div></div></div><div><div class="legalnotice"><a
name="idm45933042884336"></a><p class="legalnotice-title"><b>Comentários</b></p><p>
+ To report a bug or make a suggestion regarding the <span class="application">Genius Mathematics
Tool</span>
+ application or this manual, please visit the
+ <a class="ulink" href="http://www.jirka.org/genius.html" target="_top">Genius
+ Web page</a>
+ or email me at <code class="email"><<a class="email" href="mailto:jirka 5z com">jirka 5z
com</a>></code>.
+ </p></div></div><div><div class="revhistory"><table style="border-style:solid; width:100%;"
summary="histórico de revisões"><tr><th align="left" valign="top" colspan="2"><b>Histórico de
Revisões</b></th></tr><tr><td align="left">Revisão 0.2</td><td align="left">September 2016</td></tr><tr><td
align="left" colspan="2">
+ <p class="author">Jiri (George) Lebl <code class="email"><<a class="email"
href="mailto:jirka 5z com">jirka 5z com</a>></code></p>
+ </td></tr></table></div></div><div><div class="abstract"><p
class="title"><b>Resumo</b></p><p>Manual da ferramenta matemática Genius</p></div></div></div><hr></div><div
class="toc"><p><b>Índice</b></p><dl class="toc"><dt><span class="chapter"><a href="ch01.html">1.
Introdução</a></span></dt><dt><span class="chapter"><a href="ch02.html">2. Primeiros
passos</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch02.html#genius-to-start">To Start <span
class="application">Genius Mathematics Tool</span></a></span></dt><dt><span class="sect1"><a
href="ch02s02.html">When You Start Genius</a></span></dt></dl></dd><dt><span class="chapter"><a
href="ch03.html">3. Basic Usage</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch03.html#genius-usage-workarea">Using the Work Area</a></span></dt><dt><span class="sect1"><a
href="ch03s02.html">To Create a New Program </a></span></dt><dt><span class="sect1"><a href="ch03s03.html">To
Open and Run a Program </a></span></dt></dl><
/dd><dt><span class="chapter"><a href="ch04.html">4. Plotagem</a></span></dt><dd><dl><dt><span
class="sect1"><a href="ch04.html#genius-line-plots">Line Plots</a></span></dt><dt><span class="sect1"><a
href="ch04s02.html">Parametric Plots</a></span></dt><dt><span class="sect1"><a href="ch04s03.html">Slopefield
Plots</a></span></dt><dt><span class="sect1"><a href="ch04s04.html">Vectorfield
Plots</a></span></dt><dt><span class="sect1"><a href="ch04s05.html">Surface
Plots</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch05.html">5. GEL
Basics</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch05.html#genius-gel-values">Values</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-numbers">Números</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-booleans">Booleanos</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-strings">Strings</a></span></dt><dt><span class="sect2"><a href="c
h05.html#genius-gel-values-null">Null</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s02.html">Using Variables</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-setting">Setting Variables</a></span></dt><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-built-in">Built-in Variables</a></span></dt><dt><span
class="sect2"><a href="ch05s02.html#genius-gel-previous-result">Previous Result
Variable</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch05s03.html">Using
Functions</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-defining">Defining Functions</a></span></dt><dt><span
class="sect2"><a href="ch05s03.html#genius-gel-functions-variable-argument-lists">Variable Argument
Lists</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-passing-functions">Passing Functions to
Functions</a></span></dt><dt><span class="sect2"><a href="ch0
5s03.html#genius-gel-functions-operations">Operations on Functions</a></span></dt></dl></dd><dt><span
class="sect1"><a href="ch05s04.html">Separator</a></span></dt><dt><span class="sect1"><a
href="ch05s05.html">Comments</a></span></dt><dt><span class="sect1"><a href="ch05s06.html">Modular
Evaluation</a></span></dt><dt><span class="sect1"><a href="ch05s07.html">List of GEL
Operators</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch06.html">6. Programming with
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch06.html#genius-gel-conditionals">Conditionals</a></span></dt><dt><span class="sect1"><a
href="ch06s02.html">Loops</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-while">While Loops</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-for">For Loops</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-foreach">Foreach Loops</a></span></dt><dt><span class="sect2"
<a href="ch06s02.html#genius-gel-loops-break-continue">Break and
Continue</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch06s03.html">Sums and
Products</a></span></dt><dt><span class="sect1"><a href="ch06s04.html">Comparison
Operators</a></span></dt><dt><span class="sect1"><a href="ch06s05.html">Global Variables and Scope of
Variables</a></span></dt><dt><span class="sect1"><a href="ch06s06.html">Parameter
variables</a></span></dt><dt><span class="sect1"><a href="ch06s07.html">Returning</a></span></dt><dt><span
class="sect1"><a href="ch06s08.html">References</a></span></dt><dt><span class="sect1"><a
href="ch06s09.html">Lvalues</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch07.html">7.
Advanced Programming with GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch07.html#genius-gel-error-handling">Error Handling</a></span></dt><dt><span class="sect1"><a
href="ch07s02.html">Toplevel Syntax</a></span></dt><dt><span class="sect1"><a href="ch07
s03.html">Returning Functions</a></span></dt><dt><span class="sect1"><a href="ch07s04.html">True Local
Variables</a></span></dt><dt><span class="sect1"><a href="ch07s05.html">GEL Startup
Procedure</a></span></dt><dt><span class="sect1"><a href="ch07s06.html">Loading
Programs</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch08.html">8. Matrices in
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch08.html#genius-gel-matrix-support">Entering
Matrices</a></span></dt><dt><span class="sect1"><a href="ch08s02.html">Conjugate Transpose and Transpose
Operator</a></span></dt><dt><span class="sect1"><a href="ch08s03.html">Álgebra
linear</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch09.html">9. Polynomials in
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch09.html#genius-gel-polynomials-using">Using
Polynomials</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch10.html">10. Set Theory in
GEL</a></span></dt><dd><dl><dt><s
pan class="sect1"><a href="ch10.html#genius-gel-sets-using">Using Sets</a></span></dt></dl></dd><dt><span
class="chapter"><a href="ch11.html">11. List of GEL functions</a></span></dt><dd><dl><dt><span
class="sect1"><a href="ch11.html#genius-gel-function-list-commands">Comandos</a></span></dt><dt><span
class="sect1"><a href="ch11s02.html">Básico</a></span></dt><dt><span class="sect1"><a
href="ch11s03.html">Parâmetros</a></span></dt><dt><span class="sect1"><a
href="ch11s04.html">Constantes</a></span></dt><dt><span class="sect1"><a
href="ch11s05.html">Numérico</a></span></dt><dt><span class="sect1"><a
href="ch11s06.html">Trigonometria</a></span></dt><dt><span class="sect1"><a href="ch11s07.html">Teoria dos
números</a></span></dt><dt><span class="sect1"><a href="ch11s08.html">Manipulação de
matrizes</a></span></dt><dt><span class="sect1"><a href="ch11s09.html">Álgebra
linear</a></span></dt><dt><span class="sect1"><a href="ch11s10.html">Combinatória</a></span></dt><dt><sp
an class="sect1"><a href="ch11s11.html">Cálculo</a></span></dt><dt><span class="sect1"><a
href="ch11s12.html">Funções</a></span></dt><dt><span class="sect1"><a href="ch11s13.html">Solução de
equações</a></span></dt><dt><span class="sect1"><a href="ch11s14.html">Estatística</a></span></dt><dt><span
class="sect1"><a href="ch11s15.html">Polinômios</a></span></dt><dt><span class="sect1"><a
href="ch11s16.html">Teoria dos conjuntos</a></span></dt><dt><span class="sect1"><a
href="ch11s17.html">Álgebra comutativa</a></span></dt><dt><span class="sect1"><a
href="ch11s18.html">Miscelânea</a></span></dt><dt><span class="sect1"><a href="ch11s19.html">Operações
simbólicas</a></span></dt><dt><span class="sect1"><a
href="ch11s20.html">Plotagem</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch12.html">12.
Example Programs in GEL</a></span></dt><dt><span class="chapter"><a href="ch13.html">13.
Preferências</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch1
3.html#genius-prefs-output">Saída</a></span></dt><dt><span class="sect1"><a
href="ch13s02.html">Precisão</a></span></dt><dt><span class="sect1"><a
href="ch13s03.html">Terminal</a></span></dt><dt><span class="sect1"><a
href="ch13s04.html">Memória</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch14.html">14. About
<span class="application">Genius Mathematics Tool</span></a></span></dt></dl></div><div
class="list-of-figures"><p><b>Lista de Figuras</b></p><dl><dt>2.1. <a
href="ch02s02.html#mainwindow-fig"><span class="application">Genius Mathematics Tool</span>
Window</a></dt><dt>4.1. <a href="ch04.html#lineplot-fig">Create Plot Window</a></dt><dt>4.2. <a
href="ch04.html#lineplot2-fig">Janela de desenho</a></dt><dt>4.3. <a
href="ch04s02.html#paramplot-fig">Parametric Plot Tab</a></dt><dt>4.4. <a
href="ch04s02.html#paramplot2-fig">Parametric Plot</a></dt><dt>4.5. <a
href="ch04s05.html#surfaceplot-fig">Surface Plot</a></dt></dl></div></div><div class="navfooter"><h
r><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch01.html">Próxima</a></td></tr><tr><td width="40%" align="left" valign="top"> </td><td width="20%"
align="center"> </td><td width="40%" align="right" valign="top"> Capítulo 1.
Introdução</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch01.html b/help/ru/html/ch01.html
new file mode 100644
index 0000000..30c4a5e
--- /dev/null
+++ b/help/ru/html/ch01.html
@@ -0,0 +1,22 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Глава 1.
Введение</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="index.html" title="Руководство
пользователя Genius"><link rel="prev" href="index.html" title="Руководство пользователя Genius"><link
rel="next" href="ch02.html" title="Глава 2. Приступая к работе"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Глава 1. Введение</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="index.html">Пред.</a> </td><th width="60%" align="center"> </th><td width="20%"
align="right"> <a accesskey="n" href="c
h02.html">След.</a></td></tr></table><hr></div><div class="chapter"><div class="titlepage"><div><div><h1
class="title"><a name="genius-introduction"></a>Глава 1. Введение</h1></div></div></div><p>
+ The <span class="application">Genius Mathematics Tool</span> application is a general calculator for
use as a desktop
+ calculator, an educational tool in mathematics, and is useful even for
+ research. The language used in <span class="application">Genius Mathematics Tool</span> is designed
to be
+ ‘mathematical’ in the sense that it should be ‘what
+ you mean is what you get’. Of course that is not an
+ entirely attainable goal. <span class="application">Genius Mathematics Tool</span> features
rationals, arbitrary
+ precision integers and multiple precision floats using the GMP library.
+ It handles complex numbers using cartesian notation. It has good
+ vector and matrix manipulation and can handle basic linear algebra.
+ The programming language allows user defined functions, variables and
+ modification of parameters.
+ </p><p><span class="application">Математический инструмент Genius</span> имеет две версии. Одна из них —
это версия с графическим интерфейсом для GNOME, имеющая интерфейс в стиле интегрированных сред разработки
(IDE) и способная строить графики функций одной или двух переменных. Версия для командной строки не требует
наличия GNOME, но и не реализует тех возможностей, которые требуют наличия графического интерфейса.</p><p>
+ Parts of this manual describe the graphical version of the calculator,
+ but the language is of course the same. The command line only version
+ lacks the graphing capabilities and all other capabilities that require
+ the graphical user interface.
+ </p><p>
+ Generally, when some feature of the language (function, operator, etc...)
+ is new in some version past 1.0.5, it is mentioned, but
+ below 1.0.5 you would have to look at the NEWS file.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="index.html">Пред.</a> </td><td width="20%" align="center"> </td><td
width="40%" align="right"> <a accesskey="n" href="ch02.html">След.</a></td></tr><tr><td width="40%"
align="left" valign="top">Руководство пользователя Genius </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Начало</a></td><td width="40%" align="right" valign="top"> Глава 2. Приступая
к работе</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch02.html b/help/ru/html/ch02.html
new file mode 100644
index 0000000..b82b42e
--- /dev/null
+++ b/help/ru/html/ch02.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Глава 2. Приступая к
работе</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="index.html" title="Руководство
пользователя Genius"><link rel="prev" href="ch01.html" title="Глава 1. Введение"><link rel="next"
href="ch02s02.html" title="После запуска Genius"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Глава 2. Приступая к работе</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch01.html">Пред.</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch02
s02.html">След.</a></td></tr></table><hr></div><div class="chapter"><div class="titlepage"><div><div><h1
class="title"><a name="genius-getting-started"></a>Глава 2. Приступая к работе</h1></div></div></div><div
class="toc"><p><b>Содержание</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch02.html#genius-to-start">Запуск <span class="application">Математического инструмента
Genius</span></a></span></dt><dt><span class="sect1"><a href="ch02s02.html">После запуска
Genius</a></span></dt></dl></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-to-start"></a>Запуск <span class="application">Математического
инструмента Genius</span></h2></div></div></div><p>You can start <span class="application">Genius Mathematics
Tool</span> in the following ways:
+ </p><div class="variablelist"><dl class="variablelist"><dt><span class="term">Меню <span
class="guimenu">Приложения</span></span></dt><dd><p>В зависимости от установленной операционной системы и её
версии, команда меню для запуска <span class="application">Математического инструмента Genius</span> может
находиться в различных местах. Она может располагаться в подменю <span class="guisubmenu">Образование</span>,
<span class="guisubmenu">Стандартные</span>, <span class="guisubmenu">Офис</span>, <span
class="guisubmenu">Наука</span> или других подобных подменю. Нужный вам элемент меню называется <span
class="guimenuitem">Математический инструмент Genius</span>. Когда вы найдёте
этот элемент меню, щёлкните на нём, чтобы запустить <span class="application">Математический инструмент
Genius</span>.</p></dd><dt><span class="term">Диалог запуска</span></dt><dd><p>В некоторых операционных
системах упомянутая выше команда меню может быть недоступна. В этом случае можно открыть диалог запуска и
выполнить команду <span class="command"><strong>gnome-genius</strong></span>.</p></dd><dt><span
class="term">Командная строка</span></dt><dd><p>Чтобы запустить версию <span
class="application">Математического инструмента Genius</span> для GNOME, выполните в командной строке <span
class="command"><strong>gnome-genius</strong></span>.</p><p>Чтобы запустить верс�
�ю для командной строки, выполните следующую команду: <span class="command"><strong>genius</strong></span>.
Эта версия не содержит графического интерфейса и некоторые возможности, такие как построение графиков, будут
в ней недоступны.</p></dd></dl></div></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch01.html">Пред.</a>
</td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch02s02.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Глава 1. Введение
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> После запуска Genius</td></tr></table></div></body></
html>
diff --git a/help/ru/html/ch02s02.html b/help/ru/html/ch02s02.html
new file mode 100644
index 0000000..e3ef684
--- /dev/null
+++ b/help/ru/html/ch02s02.html
@@ -0,0 +1,32 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>После запуска
Genius</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch02.html" title="Глава 2.
Приступая к работе"><link rel="prev" href="ch02.html" title="Глава 2. Приступая к работе"><link rel="next"
href="ch03.html" title="Глава 3. Основы работы с программой"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">После запуска Genius</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch02.html">Пред.</a> </td><th width="60%" align="center">Глава 2. Приступая к
работе</th><td wi
dth="20%" align="right"> <a accesskey="n" href="ch03.html">След.</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-when-start"></a>После запуска Genius</h2></div></div></div><p>После запуска версии <span
class="application">Математического инструмента Genius</span> для GNOME появится окно, изображённое на
иллюстрации <a class="xref" href="ch02s02.html#mainwindow-fig" title="Рисунок 2.1. Окно Математического
инструмента Genius">Рисунок 2.1, «Окно <span class="application">Математического инструмента
Genius</span>»</a>.</p><div class="figure"><a name="mainwindow-fig"></a><p class="title"><b>Рисунок 2.1. Окно
<span class="application">Математического инструмента Genius</span></b></
p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/genius_window.png" alt="Shows Математический инструмент Genius main window. Contains titlebar,
menubar, toolbar and working area. Menubar contains Файл, Правка, Калькулятор, Examples, Programs, Настройки,
and Справка menus."></div></div></div></div><br class="figure-break"><p>Окно <span
class="application">Математического инструмента Genius</span> содержит следующие элементы:</p><div
class="variablelist"><dl class="variablelist"><dt><span class="term">Строка меню.</span></dt><dd><p>Строка
меню содержит все команды, необходимые для работы с файлами в <span class="application">Математическом
инструменте Genius</span>. Меню <span class="guilabel">Файл</span> содер�
�ит команды для загрузки и сохранения объектов и создания новых программ. Команда <span
class="guilabel">Загрузить и выполнить...</span> не открывает новое окно для программы, а просто сразу
выполняет программу. Её действие эквивалентно действию команды <span
class="command"><strong>load</strong></span>.</p><p>
+ The <span class="guilabel">Calculator</span> menu controls the
+calculator engine. It allows you to run the currently selected program or to
+interrupt the current calculation. You can also look at the full expression of
+the last answer (useful if the last answer was too large to fit onto the
+console), or you can view a listing of the values of all user defined
+variables. You can also monitor user variables, which is especially useful
+while a long calculation is running, or to debug a certain program.
+ Finally the <span class="guilabel">Calculator</span> allows plotting functions using a
user friendly dialog box.
+ </p><p>
+ The <span class="guilabel">Examples</span> menu is a list of example
+ programs or demos. If you open the menu, it will load the
+ example into a new program, which you can run, edit, modify,
+ and save. These programs should be well documented
+ and generally demonstrate either some feature of <span class="application">Genius
Mathematics Tool</span>
+ or some mathematical concept.
+ </p><p>
+ The <span class="guilabel">Programs</span> menu lists
+ the currently open programs and allows you to switch
+ between them.
+ </p><p>Остальные меню выполняют такие же действия, как в других приложениях.</p></dd><dt><span
class="term">Панель инструментов.</span></dt><dd><p>Панель инструментов содержит некоторые из команд, к
которым можно получить доступ через строку меню.</p></dd><dt><span class="term">Рабочая
область</span></dt><dd><p>Рабочая область — основной способ взаимодействия с приложением.</p><p>
+ The working area initially has just the <span class="guilabel">Console</span> tab, which is
+ the main way of interacting with the calculator. Here you
+ type expressions and the results are immediately returned
+ after you hit the Enter key.
+ </p><p>
+ Alternatively you can write longer programs and those can
+ appear in separate tabs. The programs are a set of commands or
+ functions that can be run all at once rather than entering them
+ at the command line. The programs can be saved in files for later
+ retrieval.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch02.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch02.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch03.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Глава 2.
Приступая к работе </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td
width="40%" align="right" valign="top"> Глава 3. Основы работы с
программой</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch03.html b/help/ru/html/ch03.html
new file mode 100644
index 0000000..8c7de13
--- /dev/null
+++ b/help/ru/html/ch03.html
@@ -0,0 +1,37 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Глава 3. Основы работы
с программой</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="index.html" title="Руководство
пользователя Genius"><link rel="prev" href="ch02s02.html" title="После запуска Genius"><link rel="next"
href="ch03s02.html" title="Создание новой программы"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Глава 3. Основы работы с программой</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch02s02.html">Пред.</a> </td><th width="60%" align="center"> </th><td wid
th="20%" align="right"> <a accesskey="n" href="ch03s02.html">След.</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="genius-usage"></a>Глава 3. Основы
работы с программой</h1></div></div></div><div class="toc"><p><b>Содержание</b></p><dl class="toc"><dt><span
class="sect1"><a href="ch03.html#genius-usage-workarea">Использование рабочей
области</a></span></dt><dt><span class="sect1"><a href="ch03s02.html">Создание новой
программы</a></span></dt><dt><span class="sect1"><a href="ch03s03.html">Открытие и запуск
программы</a></span></dt></dl></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-usage-workarea"></a>Использование рабочей
области</h2></div></div></div><p>
+ Normally you interact with the calculator in the <span class="guilabel">Console</span> tab of the
+ work area. If you are running the text only version then the console
+ will be the only thing that is available to you. If you want to use
+ <span class="application">Genius Mathematics Tool</span> as a calculator only, just type in your
expression in the console, it
+ will be evaluated, and the returned value will be printed.
+ </p><p>
+ To evaluate an expression, type it into the <span class="guilabel">Console</span> work area and
press enter.
+ Expressions are written in a
+language called GEL. The most simple GEL expressions just looks like
+mathematics. For example
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>30*70 +
67^3.0 + ln(7) * (88.8/100)</code></strong>
+</pre><p>
+or
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>62734 +
812634 + 77^4 mod 5</code></strong>
+</pre><p>
+or
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>| sin(37) -
e^7 |</code></strong>
+</pre><p>
+or
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>sum n=1 to 70
do 1/n</code></strong>
+</pre><p>
+(Last is the harmonic sum from 1 to 70)
+</p><p>Чтобы получить список функций и команд, наберите: </p><pre class="screen"><code
class="prompt">genius> </code><strong class="userinput"><code>help</code></strong>
+</pre><p> Для получения дополнительной справки по отдельной функции наберите : </p><pre class="screen"><code
class="prompt">genius> </code><strong class="userinput"><code>help ИмяФункции</code></strong>
+</pre><p> Чтобы увидеть это руководство, наберите: </p><pre class="screen"><code class="prompt">genius>
</code><strong class="userinput"><code>manual</code></strong>
+</pre><p>
+Suppose you have previously saved some GEL commands as a program to a file and
+you now want to execute them.
+To load this program from the file <code class="filename">path/to/program.gel</code>,
+type
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>load
path/to/program.gel</code></strong>
+</pre><p>
+<span class="application">Genius Mathematics Tool</span> keeps track of the current directory.
+To list files in the current directory type <span class="command"><strong>ls</strong></span>, to change
directory
+do <strong class="userinput"><code>cd directory</code></strong> as in the UNIX command shell.
+</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch02s02.html">Пред.</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch03s02.html">След.</a></td></tr><tr><td
width="40%" align="left" valign="top">После запуска Genius </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Начало</a></td><td width="40%" align="right" valign="top"> Создание новой
программы</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch03s02.html b/help/ru/html/ch03s02.html
new file mode 100644
index 0000000..d335cca
--- /dev/null
+++ b/help/ru/html/ch03s02.html
@@ -0,0 +1,31 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Создание новой
программы</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch03.html" title="Глава 3.
Основы работы с программой"><link rel="prev" href="ch03.html" title="Глава 3. Основы работы с
программой"><link rel="next" href="ch03s03.html" title="Открытие и запуск программы"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Создание новой
программы</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch03.html">Пред.</a> </td><th
width="60%" align="center">Глава
3. Основы работы с программой</th><td width="20%" align="right"> <a accesskey="n"
href="ch03s03.html">След.</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-usage-create-program"></a>Создание новой программы</h2></div></div></div><p>
+ If you wish to enter several more complicated commands, or perhaps write a complicated
+ function using the <a class="link" href="ch05.html" title="Глава 5. Основы GEL">GEL</a>
language, you can create a new
+ program.
+ </p><p>
+To start writing a new program, choose
+<span class="guimenu">File</span> → <span class="guimenuitem">New
+Program</span>. A new tab will appear in the work area. You
+can write a <a class="link" href="ch05.html" title="Глава 5. Основы GEL">GEL</a> program in this work area.
+Once you have written your program you can run it by
+<span class="guimenu">Calculator</span> → <span class="guimenuitem">Run</span> (or
+the <span class="guilabel">Run</span> toolbar button).
+This will execute your program and will display any output on the <span class="guilabel">Console</span> tab.
+Executing a program is equivalent of taking the text of the program and
+typing it into the console. The only difference is that this input is done
+independent of the console and just the output goes onto the console.
+<span class="guimenu">Calculator</span> → <span class="guimenuitem">Run</span>
+will always run the currently selected program even if you are on the <span class="guilabel">Console</span>
+tab. The currently selected program has its tab in bold type. To select a
+program, just click on its tab.
+ </p><p>
+To save the program you've just written, choose <span class="guimenu">File</span> → <span
class="guimenuitem">Save As...</span>.
+Similarly as in other programs you can choose
+<span class="guimenu">File</span> → <span class="guimenuitem">Save</span> to save a program that already has
+a filename attached to it. If you have many opened programs you have edited and wish to save you can also
choose
+<span class="guimenu">File</span> → <span class="guimenuitem">Save All Unsaved</span>.
+ </p><p>
+ Programs that have unsaved changes will have a "[+]" next to their filename. This way you can
see if the file
+ on disk and the currently opened tab differ in content. Programs which have not yet had a
filename associated
+ with them are always considered unsaved and no "[+]" is printed.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch03.html">Пред.</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch03.html">Наверх</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch03s03.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Глава 3. Основы работы с
программой </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td
width="40%" align="right" valign="top"> Открытие и запуск программы</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch03s03.html b/help/ru/html/ch03s03.html
new file mode 100644
index 0000000..8db77ef
--- /dev/null
+++ b/help/ru/html/ch03s03.html
@@ -0,0 +1,6 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Открытие и запуск
программы</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch03.html" title="Глава 3.
Основы работы с программой"><link rel="prev" href="ch03s02.html" title="Создание новой программы"><link
rel="next" href="ch04.html" title="Глава 4. Построение графиков"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Открытие и запуск программы</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch03s02.html">Пред.</a> </td><th width="60%" align="center">Глава 3.
Основы работы с программой</th><td width="20%" align="right"> <a accesskey="n"
href="ch04.html">След.</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-usage-open-program"></a>Открытие и запуск
программы</h2></div></div></div><p>Чтобы открыть файл, выберите <span class="guimenu">Файл</span> → <span
class="guimenuitem">Открыть</span>. В рабочей области появится новая вкладка с содержимым файла. Вы можете
использовать её для редактирования файла.</p><p>Чтобы запустить программу из файла, выберите <span
class="guimenu">Файл</span> → <span class="guimenuitem">Загрузить и выполнить...</span>. Это действие
запустит программу,
не открывая её в отдельной вкладке. Это эквивалентно команде <span
class="command"><strong>load</strong></span>.</p><p>
+ If you have made edits to a file you wish to throw away and want to reload to the version
that's on disk,
+ you can choose the
+ <span class="guimenu">File</span> → <span class="guimenuitem">Reload from Disk</span> menuitem.
This is useful for experimenting
+ with a program and making temporary edits, to run a program, but that you do not intend to keep.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch03s02.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch03.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch04.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Создание
новой программы </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td
width="40%" align="right" valign="top"> Глава 4. Построение графиков</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch04.html b/help/ru/html/ch04.html
new file mode 100644
index 0000000..310bf16
--- /dev/null
+++ b/help/ru/html/ch04.html
@@ -0,0 +1,32 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Глава 4. Построение
графиков</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="index.html" title="Руководство
пользователя Genius"><link rel="prev" href="ch03s03.html" title="Открытие и запуск программы"><link
rel="next" href="ch04s02.html" title="Parametric Plots"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Глава 4. Построение графиков</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch03s03.html">Пред.</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accessk
ey="n" href="ch04s02.html">След.</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-gel-plotting"></a>Глава 4. Построение
графиков</h1></div></div></div><div class="toc"><p><b>Содержание</b></p><dl class="toc"><dt><span
class="sect1"><a href="ch04.html#genius-line-plots">Линейные графики</a></span></dt><dt><span
class="sect1"><a href="ch04s02.html">Parametric Plots</a></span></dt><dt><span class="sect1"><a
href="ch04s03.html">Slopefield Plots</a></span></dt><dt><span class="sect1"><a
href="ch04s04.html">Vectorfield Plots</a></span></dt><dt><span class="sect1"><a href="ch04s05.html">Графики
поверхностей</a></span></dt></dl></div><p>Построение графиков поддерживается только в версии с графическим
интерфейсом для GNOME. Все варианты графиков, имеющ
иеся в графическом интерфейсе, доступны из окна <span class="guilabel">Создать график</span>. Чтобы открыть
это окно, нажмите кнопку <span class="guilabel">График</span> на панели инструментов или выберите <span
class="guilabel">Нарисовать график</span> из меню <span class="guilabel">Калькулятор</span>. Можно также
использовать команды <a class="link" href="ch11s20.html" title="Построение графиков">построения графиков</a>
языка GEL. Смотрите <a class="xref" href="ch05.html" title="Глава 5. Основы GEL">Глава 5, <i>Основы
GEL</i></a>, чтобы узнать, как вводить выражения, которые понимает Genius.</p><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-line-plots"></a>Линейные графики</h2></div></div></div><p>
+ To graph real valued functions of one variable open the <span class="guilabel">Create Plot</span>
+ window. You can also use the
+ <a class="link" href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a>
function
+ on the command line (see its documentation).
+ </p><p>После нажатия кнопки <span class="guilabel">График</span> откроется окно с несколькими
вкладками. Вам нужна вкладка <span class="guilabel">Линейный график функции</span>, внутри которой следует
выбрать вкладку <span class="guilabel">Функции / Выражения</span>. Смотрите <a class="xref"
href="ch04.html#lineplot-fig" title="Рисунок 4.1. Create Plot Window">Рисунок 4.1, «Create Plot
Window»</a>.</p><div class="figure"><a name="lineplot-fig"></a><p class="title"><b>Рисунок 4.1. Create Plot
Window</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/line_plot.png" alt="Shows the line plotting window."></div></div></div></div><br
class="figure-break"><p>
+ Type expressions with <strong class="userinput"><code>x</code></strong> as
+ the independent variable into the textboxes. Alternatively you can give names of functions such as
+ <strong class="userinput"><code>cos</code></strong> rather then having to type <strong
class="userinput"><code>cos(x)</code></strong>.
+ You can graph up to ten functions. If you make a mistake and Genius cannot
+ parse the input it will signify this with a warning icon on the right of the text
+ input box where the error occurred, as well as giving you an error dialog.
+ You can change the ranges of the dependent and independent variables in the bottom
+ part of the dialog.
+ The <code class="varname">y</code> (dependent) range can be set automatically by turning on the <span
class="guilabel">Fit dependent axis</span>
+ checkbox.
+ The names of the variables can also be changed.
+ Pressing the <span class="guilabel">Plot</span> button produces the graph shown in <a class="xref"
href="ch04.html#lineplot2-fig" title="Рисунок 4.2. Plot Window">Рисунок 4.2, «Plot Window»</a>.
+ </p><p>
+ The variables can be renamed by clicking the <span class="guilabel">Change variable
names...</span> button, which is useful if you wish to print or save the figure and don't want to use the
standard
+ names. Finally you can also avoid printing the legend and the axis labels completely,
+ which is also useful if printing or
+ saving, when the legend might simply be clutter.
+ </p><div class="figure"><a name="lineplot2-fig"></a><p class="title"><b>Рисунок 4.2. Plot
Window</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/line_plot_graph.png" alt="The graph produced."></div></div></div></div><br
class="figure-break"><p>
+ From here you can print out the plot, create encapsulated postscript
+ or a PNG version of the plot or change the zoom. If the dependent axis was
+ not set correctly you can have Genius fit it by finding out the extrema of
+ the graphed functions.
+ </p><p>
+ For plotting using the command line see the documentation of the
+ <a class="link" href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a>
function.
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch03s03.html">Пред.</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch04s02.html">След.</a></td></tr><tr><td
width="40%" align="left" valign="top">Открытие и запуск программы </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Начало</a></td><td width="40%" align="right" valign="top"> Parametric
Plots</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch04s02.html b/help/ru/html/ch04s02.html
new file mode 100644
index 0000000..944e715
--- /dev/null
+++ b/help/ru/html/ch04s02.html
@@ -0,0 +1,21 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Parametric
Plots</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch04.html" title="Глава 4.
Построение графиков"><link rel="prev" href="ch04.html" title="Глава 4. Построение графиков"><link rel="next"
href="ch04s03.html" title="Slopefield Plots"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Parametric Plots</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch04.html">Пред.</a> </td><th width="60%" align="center">Глава 4. Построение
графиков</th><td width="20%" align="right"> <a accesskey="n" href="ch04s03.html">Сл
ед.</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-parametric-plots"></a>Parametric Plots</h2></div></div></div><p>
+ In the create plot window, you can also choose the <span class="guilabel">Parametric</span> notebook
+ tab to create two dimensional parametric plots. This way you can
+ plot a single parametric function. You can either specify the
+ points as <code class="varname">x</code> and <code class="varname">y</code>, or giving a single
complex number
+ as a function of the variable <code class="varname">t</code>.
+ The range of the variable <code class="varname">t</code> is given explicitly, and the function is
sampled
+ according to the given increment.
+ The <code class="varname">x</code> and <code class="varname">y</code> range can be set
+ automatically by turning on the <span class="guilabel">Fit dependent axis</span>
+ checkbox, or it can be specified explicitly.
+ See <a class="xref" href="ch04s02.html#paramplot-fig" title="Рисунок 4.3. Parametric Plot
Tab">Рисунок 4.3, «Parametric Plot Tab»</a>.
+ </p><div class="figure"><a name="paramplot-fig"></a><p class="title"><b>Рисунок 4.3. Parametric Plot
Tab</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/parametric.png" alt="Parametric plotting tab in the Create Plot
window."></div></div></div></div><br class="figure-break"><p>
+ An example of a parametric plot is given in
+ <a class="xref" href="ch04s02.html#paramplot2-fig" title="Рисунок 4.4. Parametric Plot">Рисунок 4.4,
«Parametric Plot»</a>.
+ Similar operations can be
+ done on such graphs as can be done on the other line plots.
+ For plotting using the command line see the documentation of the
+ <a class="link" href="ch11s20.html#gel-function-LinePlotParametric"><code
class="function">LinePlotParametric</code></a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotCParametric"><code
class="function">LinePlotCParametric</code></a> function.
+ </p><div class="figure"><a name="paramplot2-fig"></a><p class="title"><b>Рисунок 4.4. Parametric
Plot</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/parametric_graph.png" alt="Parametric plot produced"></div></div></div></div><br
class="figure-break"></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04.html">Пред.</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch04.html">Наверх</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch04s03.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Глава 4. Построение
графиков </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td
width="40%" align="right" valign="top"> Slopefield Plots</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch04s03.html b/help/ru/html/ch04s03.html
new file mode 100644
index 0000000..6f525e4
--- /dev/null
+++ b/help/ru/html/ch04s03.html
@@ -0,0 +1,23 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Slopefield
Plots</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch04.html" title="Глава 4.
Построение графиков"><link rel="prev" href="ch04s02.html" title="Parametric Plots"><link rel="next"
href="ch04s04.html" title="Vectorfield Plots"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Slopefield Plots</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch04s02.html">Пред.</a> </td><th width="60%" align="center">Глава 4. Построение
графиков</th><td width="20%" align="right"> <a accesskey="n" href="ch04s04.html">След.</a></td></tr></table><
hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-slopefield-plots"></a>Slopefield Plots</h2></div></div></div><p>
+ In the create plot window, you can also choose the <span class="guilabel">Slope field</span> notebook
+ tab to create a two dimensional slope field plot.
+ Similar operations can be
+ done on such graphs as can be done on the other line plots.
+ For plotting using the command line see the documentation of the
+ <a class="link" href="ch11s20.html#gel-function-SlopefieldPlot"><code
class="function">SlopefieldPlot</code></a> function.
+ </p><p>
+ When a slope field is active, there is an extra <span class="guilabel">Solver</span> menu available,
+ through which you can bring up the solver dialog. Here you can have Genius plot specific
+ solutions for the given initial conditions. You can either specify initial conditions in the dialog,
+ or you can click on the plot directly to specify the initial point. While the solver dialog
+ is active, the zooming by clicking and dragging does not work. You have to close the dialog first
+ if you want to zoom using the mouse.
+ </p><p>
+ The solver uses the standard Runge-Kutta method.
+ The plots will stay on the screen until cleared. The solver will stop whenever it reaches the
boundary
+ of the plot window. Zooming does not change the limits or parameters of the solutions,
+ you will have to clear and redraw them with appropriate parameters.
+ You can also use the
+ <a class="link" href="ch11s20.html#gel-function-SlopefieldDrawSolution"><code
class="function">SlopefieldDrawSolution</code></a>
+ function to draw solutions from the command line or programs.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s02.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch04.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch04s04.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Parametric
Plots </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Vectorfield Plots</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch04s04.html b/help/ru/html/ch04s04.html
new file mode 100644
index 0000000..7ae15f4
--- /dev/null
+++ b/help/ru/html/ch04s04.html
@@ -0,0 +1,27 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Vectorfield
Plots</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch04.html" title="Глава 4.
Построение графиков"><link rel="prev" href="ch04s03.html" title="Slopefield Plots"><link rel="next"
href="ch04s05.html" title="Графики поверхностей"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Vectorfield Plots</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch04s03.html">Пред.</a> </td><th width="60%" align="center">Глава 4. Построение
графиков</th><td width="20%" align="right"> <a accesskey="n" href="ch04s05.html">След
.</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-vectorfield-plots"></a>Vectorfield Plots</h2></div></div></div><p>
+ In the create plot window, you can also choose the <span class="guilabel">Vector field</span> notebook
+ tab to create a two dimensional vector field plot.
+ Similar operations can be
+ done on such graphs as can be done on the other line plots.
+ For plotting using the command line see the documentation of the
+ <a class="link" href="ch11s20.html#gel-function-VectorfieldPlot"><code
class="function">VectorfieldPlot</code></a> function.
+ </p><p>
+ By default the direction and magnitude of the vector field is shown.
+ To only show direction and not the magnitude, check the appropriate
+ checkbox to normalize the arrow lengths.
+ </p><p>
+ When a vector field is active, there is an extra <span class="guilabel">Solver</span> menu available,
+ through which you can bring up the solver dialog. Here you can have Genius plot specific
+ solutions for the given initial conditions. You can either specify initial conditions in the dialog,
+ or you can click on the plot directly to specify the initial point. While the solver dialog
+ is active, the zooming by clicking and dragging does not work. You have to close the dialog first
+ if you want to zoom using the mouse.
+ </p><p>
+ The solver uses the standard Runge-Kutta method.
+ The plots will stay on the screen until cleared.
+ Zooming does not change the limits or parameters of the solutions,
+ you will have to clear and redraw them with appropriate parameters.
+ You can also use the
+ <a class="link" href="ch11s20.html#gel-function-VectorfieldDrawSolution"><code
class="function">VectorfieldDrawSolution</code></a>
+ function to draw solutions from the command line or programs.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s03.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch04.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch04s05.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Slopefield
Plots </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Графики поверхностей</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch04s05.html b/help/ru/html/ch04s05.html
new file mode 100644
index 0000000..5872f71
--- /dev/null
+++ b/help/ru/html/ch04s05.html
@@ -0,0 +1,28 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Графики
поверхностей</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch04.html" title="Глава 4.
Построение графиков"><link rel="prev" href="ch04s04.html" title="Vectorfield Plots"><link rel="next"
href="ch05.html" title="Глава 5. Основы GEL"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Графики поверхностей</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch04s04.html">Пред.</a> </td><th width="60%" align="center">Глава 4. Построение
графиков</th><td width="20%" align="right"> <a accesskey
="n" href="ch05.html">След.</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-surface-plots"></a>Графики
поверхностей</h2></div></div></div><p>
+ Genius can also plot surfaces. Select the <span class="guilabel">Surface plot</span> tab in the
+ main notebook of the <span class="guilabel">Create Plot</span> window. Here you can specify a single
+ expression that should use either <code class="varname">x</code> and <code class="varname">y</code>
as real independent variables
+ or <code class="varname">z</code> as a complex variable (where <code class="varname">x</code> is the
real part of <code class="varname">z</code> and <code class="varname">y</code> is the
+ imaginary part). For example to plot the modulus of the cosine
+ function for complex parameters,
+ you could enter <strong class="userinput"><code>|cos(z)|</code></strong>. This would be
+ equivalent to <strong class="userinput"><code>|cos(x+1i*y)|</code></strong>.
+ See <a class="xref" href="ch04s05.html#surfaceplot-fig" title="Рисунок 4.5. Surface Plot">Рисунок
4.5, «Surface Plot»</a>.
+ For plotting using the command line see the documentation of the
+ <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a> function.
+ </p><p>
+ The <code class="varname">z</code> range can be set automatically by turning on the <span
class="guilabel">Fit dependent axis</span>
+ checkbox. The variables can be renamed by clicking the <span class="guilabel">Change variable
names...</span> button, which is useful if you wish to print or save the figure and don't want to use the
standard
+ names. Finally you can also avoid printing the legend, which is also useful if printing or
+ saving, when the legend might simply be clutter.
+ </p><div class="figure"><a name="surfaceplot-fig"></a><p class="title"><b>Рисунок 4.5. Surface
Plot</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/surface_graph.png" alt="Modulus of the complex cosine function."></div></div></div></div><br
class="figure-break"><p>
+ In surface mode, left and right arrow keys on your keyboard will rotate the
+ view along the z axis. Alternatively you can rotate along any axis by
+ selecting <span class="guilabel">Rotate axis...</span> in the <span
class="guilabel">View</span>
+ menu. The <span class="guilabel">View</span> menu also has a top view mode which rotates the
+ graph so that the z axis is facing straight out, that is, we view the graph from the top
+ and get essentially just the colors that define the values of the function getting a
+ temperature plot of the function. Finally you should
+ try <span class="guilabel">Start rotate animation</span>, to start a continuous slow rotation.
+ This is especially good if using <span class="application">Genius Mathematics Tool</span> to
present to an audience.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s04.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch04.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Vectorfield
Plots </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Глава 5. Основы GEL</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch05.html b/help/ru/html/ch05.html
new file mode 100644
index 0000000..e439bd4
--- /dev/null
+++ b/help/ru/html/ch05.html
@@ -0,0 +1,82 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Глава 5. Основы
GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="index.html" title="Руководство
пользователя Genius"><link rel="prev" href="ch04s05.html" title="Графики поверхностей"><link rel="next"
href="ch05s02.html" title="Использование переменных"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Глава 5. Основы GEL</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch04s05.html">Пред.</a> </td><th width="60%" align="center"> </th><td width="20%"
align="right"> <a accesskey="n" href="ch05s02.ht
ml">След.</a></td></tr></table><hr></div><div class="chapter"><div class="titlepage"><div><div><h1
class="title"><a name="genius-gel"></a>Глава 5. Основы GEL</h1></div></div></div><div
class="toc"><p><b>Содержание</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch05.html#genius-gel-values">Значения</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-numbers">Числа</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-booleans">Логические значения</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-strings">Строки</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-null">Null</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s02.html">Использование переменных</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-setting">Присваив
ание значения переменным</a></span></dt><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-built-in">Встроенные переменные</a></span></dt><dt><span
class="sect2"><a href="ch05s02.html#genius-gel-previous-result">Переменные с результатом предыдущего
вычисления</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch05s03.html">Использование
функций</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-defining">Определение функций</a></span></dt><dt><span
class="sect2"><a href="ch05s03.html#genius-gel-functions-variable-argument-lists">Variable Argument
Lists</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-passing-functions">Passing Functions to
Functions</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-operations">Операции с
функциями</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s04.html">Разделитель</a></span></dt><dt><span class="sect1"><a
href="ch05s05.html">Comments</a></span></dt><dt><span class="sect1"><a href="ch05s06.html">Modular
Evaluation</a></span></dt><dt><span class="sect1"><a href="ch05s07.html">Список операторов
GEL</a></span></dt></dl></div><p>
+ GEL stands for Genius Extension Language. It is the language you use
+ to write programs in Genius. A program in GEL is simply an
+ expression that evaluates to a number, a matrix, or another object
+ in GEL.
+ <span class="application">Genius Mathematics Tool</span> can be used as a simple calculator, or as a
+ powerful theoretical research tool. The syntax is meant to
+ have as shallow of a learning curve as possible, especially for use
+ as a calculator.
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-values"></a>Значения</h2></div></div></div><p>
+ Values in GEL can be <a class="link" href="ch05.html#genius-gel-values-numbers"
title="Числа">numbers</a>, <a class="link" href="ch05.html#genius-gel-values-booleans" title="Логические
значения">Booleans</a>, or <a class="link" href="ch05.html#genius-gel-values-strings"
title="Строки">strings</a>. GEL also treats
+<a class="link" href="ch08.html" title="Глава 8. Матрицы в GEL">matrices</a> as values.
+ Values can be used in calculations, assigned to variables and returned from functions, among
other uses.
+ </p><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-numbers"></a>Числа</h3></div></div></div><p>Целые числа — первый тип чисел в GEL.
Целые числа записываются общепринятым способом. </p><pre class="programlisting">1234
+</pre><p> Шестнадцатиричные и восьмиричные числа можно записать, используя нотацию языка C. Например:
</p><pre class="programlisting">0x123ABC
+01234
+</pre><p> Можно также набрать числа в произвольной системе счисления, используя запись <code
class="literal"><основание>\<число></code>. Для цифр больше 10 используются буквы, как и в
шестнадцатиричном счислении. Например, число по основанию 23 может быть записано в виде: </p><pre
class="programlisting">23\1234ABCD
+</pre><p>Второй тип чисел в GEL — это рациональные числа. Они получаются делением двух целых чисел. Поэтому
можно написать: </p><pre class="programlisting">3/4
+</pre><p> чтобы обозначить три четвёртых. Рациональные числа также можно записывать в виде смешанных дробей.
Чтобы указать одну целую три десятых, можно написать: </p><pre class="programlisting">1 3/10
+</pre><p>
+The next type of number is floating point. These are entered in a similar fashion to C notation. You can use
<code class="literal">E</code>, <code class="literal">e</code> or <code class="literal">@</code> as the
exponent delimiter. Note that using the exponent delimiter gives a float even if there is no decimal point in
the number. Examples:
+</p><pre class="programlisting">1.315
+7.887e77
+7.887e-77
+.3
+0.3
+77e5
+</pre><p>
+ When Genius prints a floating point number it will always append a
+ <code class="computeroutput">.0</code> even if the number is whole. This is to indicate that
+ floating point numbers are taken as imprecise quantities. When a number is written in the
+ scientific notation, it is always a floating point number and thus Genius does not
+ print the <code class="computeroutput">.0</code>.
+ </p><p>
+The final type of number in GEL is the complex numbers. You can enter a complex number as a sum of real and
imaginary parts. To add an imaginary part, append an <code class="literal">i</code>. Here are examples of
entering complex numbers:
+</p><pre class="programlisting">1+2i
+8.01i
+77*e^(1.3i)
+</pre><p>
+ </p><div class="important" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Важно</h3><p>При вводе мнимых чисел перед символом <code class="literal">i</code> должно стоять
число. Если использовать символ <code class="literal">i</code> сам по себе, Genius интерпретирует его как
ссылку на переменную <code class="varname">i</code>. Если нужно указать саму мнимую единицу <code
class="literal">i</code>, используйте вместо неё <code class="literal">1i</code>.</p><p>Чтобы использовать
смешанные дроби в мнимых числах, нужно взять смешанную дробь в круглые скобки: (например, <strong
class="userinput"><code>(1 2/5)i</code></strong>)</p></div></div><div class="sect2"><div
class="titlepage"><div><div
<h3 class="title"><a name="genius-gel-values-booleans"></a>Логические
значения</h3></div></div></div><p>Genius также поддерживает логические значения. Определены две логические
константы: <code class="constant">true</code> и <code class="constant">false</code>; их можно использовать,
как и любую переменную. В качестве псевдонимов к ним можно также использовать <code
class="constant">True</code>, <code class="constant">TRUE</code>, <code class="constant">False</code> и
<code class="constant">FALSE</code>.</p><p>Там, где требуется логическое выражение, можно использовать
логическое значение или любое выражение, дающее в результате число или логическое значение. Если Genius ну
жно использовать число как логическое значение, он будет интерпретировать 0 как <code
class="constant">false</code> и любое другое число как <code class="constant">true</code>.</p><p>Кроме того,
с логическими значениями можно выполнять арифметические операции. Например: </p><pre class="programlisting">(
(1 + true) - false ) * true
+</pre><p> это то же самое, что и: </p><pre class="programlisting">( (true or true) or not false ) and true
+</pre><p> Поддерживаются только сложение, вычитание и умножение. Если вы используете в выражении смесь чисел
с логическими значениями, то числа преобразовываются в логические значения, как описано выше. То есть,
результатом выражения: </p><pre class="programlisting">1 == true
+</pre><p> всегда будет <code class="constant">true</code>, так как 1 преобразовывается в <code
class="constant">true</code> перед сравнением с <code class="constant">true</code>.</p></div><div
class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-strings"></a>Строки</h3></div></div></div><p>
+Like numbers and Booleans, strings in GEL can be stored as values inside variables and passed to functions.
You can also concatenate a string with another value using the plus operator. For example:
+</p><pre class="programlisting">a=2+3;"Результат равен: "+a
+</pre><p>
+will create the string:
+</p><pre class="programlisting">Результат равен: 5
+</pre><p>
+You can also use C-like escape sequences such as <code class="literal">\n</code>,<code
class="literal">\t</code>,<code class="literal">\b</code>,<code class="literal">\a</code> and <code
class="literal">\r</code>. To get a <code class="literal">\</code> or <code class="literal">"</code> into the
string you can quote it with a <code class="literal">\</code>. For example:
+</p><pre class="programlisting">"Косая черта: \\ Кавычки: \" Табуляция: \t1\t2\t3"
+</pre><p>
+will make a string:
+</p><pre class="programlisting">Косая черта: \ Кавычки: " Табуляция: 1 2 3
+</pre><p>
+Do note however that when a string is returned from a function, escapes are
+quoted, so that the output can be used as input. If you wish to print the
+string as it is (without escapes), use the
+<a class="link" href="ch11s02.html#gel-function-print"><code class="function">print</code></a>
+or
+<a class="link" href="ch11s02.html#gel-function-printn"><code class="function">printn</code></a> functions.
+ </p><p>
+ In addition, you can use the library function <a class="link"
href="ch11s02.html#gel-function-string"><code class="function">string</code></a> to convert anything to a
string. For example:
+</p><pre class="programlisting">string(22)
+</pre><p>
+will return
+</p><pre class="programlisting">"22"
+</pre><p>
+Strings can also be compared with <code class="literal">==</code> (equal), <code class="literal">!=</code>
(not equal) and <code class="literal"><=></code> (comparison) operators
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-null"></a>Null</h3></div></div></div><p>
+There is a special value called
+<code class="constant">null</code>. No operations can be performed on
+it, and nothing is printed when it is returned. Therefore,
+<code class="constant">null</code> is useful when you do not want output from an
+expression. The value <code class="constant">null</code> can be obtained as an expression when you
+type <code class="literal">.</code>, the constant <code class="constant">null</code> or nothing.
+By nothing we mean that if you end an expression with
+a separator <code class="literal">;</code>, it is equivalent to ending it with a
+separator followed by a <code class="constant">null</code>.
+ </p><p>Пример: </p><pre class="programlisting">x=5;.
+x=5;
+</pre><p>Некоторые функции возвращают <code class="constant">null</code>, если невозможно вернуть значение
или произошла ошибка. Также <code class="constant">null</code> используется как пустой вектор или матрица,
или пустая ссылка.</p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch04s05.html">Пред.</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch05s02.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Графики поверхностей
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Использование переменных</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch05s02.html b/help/ru/html/ch05s02.html
new file mode 100644
index 0000000..c2100be
--- /dev/null
+++ b/help/ru/html/ch05s02.html
@@ -0,0 +1,24 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Использование
переменных</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch05.html" title="Глава 5.
Основы GEL"><link rel="prev" href="ch05.html" title="Глава 5. Основы GEL"><link rel="next"
href="ch05s03.html" title="Использование функций"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Использование переменных</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch05.html">Пред.</a> </td><th width="60%" align="center">Глава 5. Основы
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s03.html">След.</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-variables"></a>Использование переменных</h2></div></div></div><p>Синтаксис: </p><pre
class="programlisting">ИмяПеременной
+</pre><p> Пример: </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>e</code></strong>
+= 2.71828182846
+</pre><p>Чтобы вычислить значение переменной, просто введите имя переменной и программа вернёт её значение.
Можно использовать переменную в любом месте, где обычно используется число или строка. Кроме того, переменные
необходимы при определении функций, принимающих аргументы (см. <a class="xref"
href="ch05s03.html#genius-gel-functions-defining" title="Определение функций">«Определение
функций»</a>).</p><div class="tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Использование автозавершения по клавише Tab</h3><p>Вы можете использовать автозавершение по
нажатию клавиши Tab, чтобы Genius автомат�
�чески подставлял полное имя переменной. Попробуйте набрать несколько первых букв имени и нажать <strong
class="userinput"><code>Tab</code></strong>.</p></div><div class="important" style="margin-left: 0.5in;
margin-right: 0.5in;"><h3 class="title">Имена переменных чувствительны к регистру</h3><p>Имена переменных
чувствительны к регистру символов. Это означает, что переменные <code class="varname">hello</code>, <code
class="varname">HELLO</code> и <code class="varname">Hello</code> — это разные переменные.</p></div><div
class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-variables-setting"></a>Присваивание значения переменным</h3></div></div></div><p>Синтаксис:
</p><pre class="programlisting"><i
dentifier> = <value>
+<identifier> := <value>
+</pre><p> Пример: </p><pre class="programlisting">x = 3
+x := 3
+</pre><p>
+To assign a value to a variable, use the <code class="literal">=</code> or <code class="literal">:=</code>
operators. These operators set the value of the variable and return the value you set, so you can do things
like
+</p><pre class="programlisting">a = b = 5
+</pre><p>
+This will set <code class="varname">b</code> to 5 and then also set <code class="varname">a</code> to 5.
+ </p><p>Для присваивания значения переменным можно использовать любой из операторов <code
class="literal">=</code> и <code class="literal">:=</code>. Различие между ними в том, что оператор <code
class="literal">:=</code> всегда действует как оператор присваивания, а оператор <code
class="literal">=</code> может интерпретироваться как проверка на равенство там, где ожидается логическое
выражение.</p><p>
+ For more information about the scope of variables, that is when are what variables visible, see <a
class="xref" href="ch06s05.html" title="Глобальные переменные и область видимости переменных">«Глобальные
переменные и область видимости переменных»</a>.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-variables-built-in"></a>Встроенные переменные</h3></div></div></div><p>
+GEL has a number of built-in ‘variables’, such as
+<code class="varname">e</code>, <code class="varname">pi</code> or <code class="varname">GoldenRatio</code>.
These are widely used constants with a preset value, and
+they cannot be assigned new values.
+There are a number of other built-in variables.
+See <a class="xref" href="ch11s04.html" title="Константы">«Константы»</a> for a full list. Note that <code
class="varname">i</code> is not by default
+the square root of negative one (the imaginary number), and is undefined to allow its use as a counter. If
you wish to write the imaginary number you need to
+use <strong class="userinput"><code>1i</code></strong>.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-previous-result"></a>Переменные с результатом предыдущего
вычисления</h3></div></div></div><p>Переменные <code class="varname">Ans</code> и <code
class="varname">ans</code> могут использоваться для получения результата последнего вычисления. Например,
чтобы добавить 389 к результату предыдущего вычисления, можно набрать: </p><pre class="programlisting">Ans+389
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05.html">Пред.</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch05.html">Наверх</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05s03.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Глава 5. Основы GEL
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Использование функций</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch05s03.html b/help/ru/html/ch05s03.html
new file mode 100644
index 0000000..01f5f70
--- /dev/null
+++ b/help/ru/html/ch05s03.html
@@ -0,0 +1,63 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Использование
функций</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch05.html" title="Глава 5.
Основы GEL"><link rel="prev" href="ch05s02.html" title="Использование переменных"><link rel="next"
href="ch05s04.html" title="Разделитель"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Использование функций</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch05s02.html">Пред.</a> </td><th width="60%" align="center">Глава 5. Основы GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch
05s04.html">След.</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-functions"></a>Использование
функций</h2></div></div></div><p>Синтаксис: </p><pre class="programlisting">ИмяФункции(аргумент1, аргумент2,
...)
+</pre><p> Пример: </p><pre class="programlisting">Factorial(5)
+cos(2*pi)
+gcd(921,317)
+</pre><p> Чтобы вычислить значение функции, введите имя функции, за которым следуют аргументы функции (если
они имеются) в круглых скобках. Программа вернёт результат применения функции к её аргументам. Разумеется,
число аргументов может быть разным для разных функций.</p><p>
+ There are many built-in functions, such as <a class="link"
href="ch11s06.html#gel-function-sin"><code class="function">sin</code></a>, <a class="link"
href="ch11s06.html#gel-function-cos"><code class="function">cos</code></a> and <a class="link"
href="ch11s06.html#gel-function-tan"><code class="function">tan</code></a>. You can use the <a class="link"
href="ch11.html#gel-command-help"><code class="function">help</code></a> built-in command to get a list of
available functions, or see <a class="xref" href="ch11.html" title="Глава 11. Список функций GEL">Глава 11,
<i>Список функций GEL</i></a> for a full listing.
+ </p><div class="tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Использование
автозавершения по клавише Tab</h3><p>Можно использовать автозавершение по клавише Tab, чтобы Genius
автоматически подставлял имена функций. Попробуйте набрать первые несколько букв имени и нажать <strong
class="userinput"><code>Tab</code></strong>.</p></div><div class="important" style="margin-left: 0.5in;
margin-right: 0.5in;"><h3 class="title">Имена функций чувствительны к регистру</h3><p>Имена функций
чувствительны к регистру символов. Это означает, что функции <code class="function">dosomething</code>, <code
class="function">DOSOMETHING</code> и <code class="function">DoSomething</code> — это разны
е функции.</p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-defining"></a>Определение функций</h3></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">function <identifier>(<comma separated arguments>) =
<function body>
+<identifier> = (`() = <function body>)
+</pre><p>
+The <code class="literal">`</code> is the backquote character, and signifies an anonymous function. By
setting it to a variable name you effectively define a function.
+ </p><p>
+A function takes zero or more comma separated arguments, and returns the result of the function body.
Defining your own functions is primarily a matter of convenience; one possible use is to have sets of
functions defined in GEL files that Genius can load in order to make them available.
+Example:
+</p><pre class="programlisting">function addup(a,b,c) = a+b+c
+</pre><p>
+then <strong class="userinput"><code>addup(1,4,9)</code></strong> yields 14
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-variable-argument-lists"></a>Variable Argument Lists</h3></div></div></div><p>
+If you include <code class="literal">...</code> after the last argument name in the function declaration,
then Genius will allow any number of arguments to be passed in place of that argument. If no arguments were
passed then that argument will be set to <code class="constant">null</code>. Otherwise, it will be a
horizontal vector containing all the arguments. For example:
+</p><pre class="programlisting">function f(a,b...) = b
+</pre><p>
+Then <strong class="userinput"><code>f(1,2,3)</code></strong> yields <code
class="computeroutput">[2,3]</code>, while <strong class="userinput"><code>f(1)</code></strong> yields a
<code class="constant">null</code>.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-passing-functions"></a>Passing Functions to Functions</h3></div></div></div><p>
+In Genius, it is possible to pass a function as an argument to another function. This can be done using
either ‘function nodes’ or anonymous functions.
+ </p><p>
+If you do not enter the parentheses after a function name, instead of being evaluated, the function will
instead be returned as a ‘function node’. The function node can then be passed to another function.
+Example:
+</p><pre class="programlisting">function f(a,b) = a(b)+1;
+function b(x) = x*x;
+f(b,2)
+</pre><p>
+ </p><p>
+To pass functions that are not defined,
+you can use an anonymous function (see <a class="xref" href="ch05s03.html#genius-gel-functions-defining"
title="Определение функций">«Определение функций»</a>). That is, you want to pass a function without giving
it a name.
+Syntax:
+</p><pre class="programlisting">function(<comma separated arguments>) = <function body>
+`(<comma separated arguments>) = <function body>
+</pre><p>
+Example:
+</p><pre class="programlisting">function f(a,b) = a(b)+1;
+f(`(x) = x*x,2)
+</pre><p>
+This will return 5.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-operations"></a>Операции с функциями</h3></div></div></div><p>
+ Some functions allow arithmetic operations, and some single argument functions such as <a
class="link" href="ch11s05.html#gel-function-exp"><code class="function">exp</code></a> or <a class="link"
href="ch11s05.html#gel-function-ln"><code class="function">ln</code></a>, to operate on the function. For
example,
+</p><pre class="programlisting">exp(sin*cos+4)
+</pre><p>
+will return a function that takes <code class="varname">x</code> and returns <strong
class="userinput"><code>exp(sin(x)*cos(x)+4)</code></strong>. It is functionally equivalent
+to typing
+</p><pre class="programlisting">`(x) = exp(sin(x)*cos(x)+4)
+</pre><p>
+
+This operation can be useful when quickly defining functions. For example to create a function called <code
class="varname">f</code>
+to perform the above operation, you can just type:
+</p><pre class="programlisting">f = exp(sin*cos+4)
+</pre><p>
+It can also be used in plotting. For example, to plot sin squared you can enter:
+</p><pre class="programlisting">LinePlot(sin^2)
+</pre><p>
+ </p><div class="warning" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Предупреждение</h3><p>
+Not all functions can be used in this way. For example, when you use a binary operation the functions must
take the same number of arguments.
+ </p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch05s02.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05s04.html">След.</a></td></tr><tr><td width="40%" align="left"
valign="top">Использование переменных </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Начало</a></td><td width="40%" align="right" valign="top">
Разделитель</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch05s04.html b/help/ru/html/ch05s04.html
new file mode 100644
index 0000000..3cb4576
--- /dev/null
+++ b/help/ru/html/ch05s04.html
@@ -0,0 +1,28 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Разделитель</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Руководство пользователя Genius"><link rel="up"
href="ch05.html" title="Глава 5. Основы GEL"><link rel="prev" href="ch05s03.html" title="Использование
функций"><link rel="next" href="ch05s05.html" title="Comments"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Разделитель</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch05s03.html">Пред.</a> </td><th width="60%" align="center">Глава 5. Основы GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch05s05.html">След.</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-separator"></a>Разделитель</h2></div></div></div><p>
+ GEL is somewhat different from other languages in how it deals with multiple commands and
functions.
+ In GEL you must chain commands together with a separator operator.
+That is, if you want to type more than one expression you have to use
+the <code class="literal">;</code> operator in between the expressions. This is
+a way in which both expressions are evaluated and the result of the second one (or the last one
+if there is more than two expressions) is returned.
+Suppose you type the following:
+</p><pre class="programlisting">3 ; 5
+</pre><p>
+This expression will yield 5.
+ </p><p>
+This will require some parenthesizing to make it unambiguous sometimes,
+especially if the <code class="literal">;</code> is not the top most primitive. This slightly differs from
+other programming languages where the <code class="literal">;</code> is a terminator of statements, whereas
+in GEL it’s actually a binary operator. If you are familiar with pascal
+this should be second nature. However genius can let you pretend it is a
+terminator to some degree. If a <code class="literal">;</code> is found at the end of a parenthesis or a
block,
+genius will append a null to it as if you would have written
+<strong class="userinput"><code>;null</code></strong>.
+This is useful in case you do not want to return a value from say a loop,
+or if you handle the return differently. Note that it will slightly slow down
+the code if it is executed too often as there is one more operator involved.
+ </p><p>
+ If you are typing expressions in a program you do not have to add a semicolon. In this case
+ genius will simply print the return value whenever it executes the expression. However, do
note that if you are defining a
+ function, the body of the function is a single expression.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s03.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05s05.html">След.</a></td></tr><tr><td width="40%" align="left"
valign="top">Использование функций </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Начало</a></td><td width="40%" align="right" valign="top">
Comments</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch05s05.html b/help/ru/html/ch05s05.html
new file mode 100644
index 0000000..97013ce
--- /dev/null
+++ b/help/ru/html/ch05s05.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Comments</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Руководство пользователя Genius"><link rel="up" href="ch05.html" title="Глава 5. Основы GEL"><link
rel="prev" href="ch05s04.html" title="Разделитель"><link rel="next" href="ch05s06.html" title="Modular
Evaluation"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Comments</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s04.html">Пред.</a> </td><th width="60%" align="center">Глава 5. Основы GEL</th><td width="20%"
align="right"> <a accesskey="n" href="ch05s06.html">След.</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage">
<div><div><h2 class="title" style="clear: both"><a
name="genius-gel-comments"></a>Comments</h2></div></div></div><p>
+ GEL is similar to other scripting languages in that <code class="literal">#</code> denotes
+ a comment, that is text that is not meant to be evaluated. Everything beyond the
+ pound sign till the end of line will just be ignored. For example,
+</p><pre class="programlisting"># This is just a comment
+# every line in a comment must have its own pound sign
+# in the next line we set x to the value 123
+x=123;
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s04.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05s06.html">След.</a></td></tr><tr><td width="40%" align="left"
valign="top">Разделитель </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Начало</a></td><td width="40%" align="right" valign="top"> Modular
Evaluation</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch05s06.html b/help/ru/html/ch05s06.html
new file mode 100644
index 0000000..2943cc8
--- /dev/null
+++ b/help/ru/html/ch05s06.html
@@ -0,0 +1,50 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Modular
Evaluation</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch05.html" title="Глава 5.
Основы GEL"><link rel="prev" href="ch05s05.html" title="Comments"><link rel="next" href="ch05s07.html"
title="Список операторов GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Modular Evaluation</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s05.html">Пред.</a> </td><th width="60%" align="center">Глава 5. Основы GEL</th><td width="20%"
align="right"> <a accesskey="n" href="ch05s07.html">След.</a></td></tr></table><hr></div><div class="sect1
"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-modular-evaluation"></a>Modular Evaluation</h2></div></div></div><p>
+ Genius implements modular arithmetic.
+To use it you just add "mod <integer>" after
+the expression. Example:
+<strong class="userinput"><code>2^(5!) * 3^(6!) mod 5</code></strong>
+It could be possible to do modular arithmetic by computing with integers and then modding in the end with
+the <code class="literal">%</code> operator, which simply gives the remainder, but
+that may be time consuming if not impossible when working with larger numbers.
+For example, <strong class="userinput"><code>10^(10^10) % 6</code></strong> will simply not work (the
exponent
+will be too large), while
+<strong class="userinput"><code>10^(10^10) mod 6</code></strong> is instantaneous. The first expression
first tries to compute the integer
+<strong class="userinput"><code>10^(10^10)</code></strong> and then find remainder after division by 6,
while the second expression evaluates
+everything modulo 6 to begin with.
+ </p><p>
+You can calculate the inverses of numbers mod some integer by just using
+rational numbers (of course the inverse has to exist).
+Examples:
+</p><pre class="programlisting">10^-1 mod 101
+1/10 mod 101</pre><p>
+You can also do modular evaluation with matrices including taking inverses,
+powers and dividing.
+Example:
+</p><pre class="programlisting">A = [1,2;3,4]
+B = A^-1 mod 5
+A*B mod 5</pre><p>
+This should yield the identity matrix as B will be the inverse of A mod 5.
+ </p><p>
+Some functions such as
+<a class="link" href="ch11s05.html#gel-function-sqrt"><code class="function">sqrt</code></a> or
+<a class="link" href="ch11s05.html#gel-function-log"><code class="function">log</code></a>
+work in a different way when in modulo mode. These will then work like their
+discrete versions working within the ring of integers you selected. For
+example:
+</p><pre class="programlisting">genius> sqrt(4) mod 7
+=
+[2, 5]
+genius> 2*2 mod 7
+= 4</pre><p>
+ <code class="function">sqrt</code> will actually return all the possible square
+ roots.
+ </p><p>
+ Do not chain mod operators, simply place it at the end of the computation, all computations in
the expression on the left
+ will be carried out in mod arithmetic. If you place a mod inside
+ a mod, you will get unexpected results. If you simply want to
+ mod a single number and control exactly when remainders are
+ taken, best to use the <code class="literal">%</code> operator. When you
+ need to chain several expressions in modular arithmetic with
+ different divisors, it may be best to just split up the expression into several and use
+ temporary variables to avoid a mod inside a mod.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s05.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05s07.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Comments
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Список операторов GEL</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch05s07.html b/help/ru/html/ch05s07.html
new file mode 100644
index 0000000..6f56e9a
--- /dev/null
+++ b/help/ru/html/ch05s07.html
@@ -0,0 +1,164 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Список операторов
GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch05.html" title="Глава 5.
Основы GEL"><link rel="prev" href="ch05s06.html" title="Modular Evaluation"><link rel="next" href="ch06.html"
title="Глава 6. Программирование в GEL"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Список операторов GEL</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch05s06.html">Пред.</a> </td><th width="60%" align="center">Глава 5. Основы GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch06.html">
След.</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-operator-list"></a>Список операторов GEL</h2></div></div></div><p>
+ Everything in GEL is really just an expression. Expressions are stringed together with
+ different operators. As we have seen, even the separator is simply a binary operator
+ in GEL. Here is a list of the operators in GEL.
+ </p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><strong
class="userinput"><code>a;b</code></strong></span></dt><dd><p>Разделитель, просто вычисляющий как <code
class="varname">a</code>, так и <code class="varname">b</code>, но возвращающий только результат <code
class="varname">b</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a=b</code></strong></span></dt><dd><p>
+ The assignment operator. This assigns <code class="varname">b</code> to
+<code class="varname">a</code> (<code class="varname">a</code> must be a valid <a class="link"
href="ch06s09.html" title="Lvalues">lvalue</a>) (note however that this operator
+may be translated to <code class="literal">==</code> if used in a place where boolean
+expression is expected)
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a:=b</code></strong></span></dt><dd><p>
+ The assignment operator. Assigns <code class="varname">b</code> to
+<code class="varname">a</code> (<code class="varname">a</code> must be a valid <a class="link"
href="ch06s09.html" title="Lvalues">lvalue</a>). This is
+different from <code class="literal">=</code> because it never gets translated to a
+<code class="literal">==</code>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>|a|</code></strong></span></dt><dd><p>
+ Absolute value.
+ In case the expression is a complex number the result will be the modulus
+(distance from the origin). For example:
+<strong class="userinput"><code>|3 * e^(1i*pi)|</code></strong>
+returns 3.
+ </p><p>Смотрите <a class="ulink" href="http://mathworld.wolfram.com/AbsoluteValue.html"
target="_top">Mathworld</a> для дополнительной информации.</p></dd><dt><span class="term"><strong
class="userinput"><code>a^b</code></strong></span></dt><dd><p>Возводит переменную <code
class="varname">a</code> в степень <code class="varname">b</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.^b</code></strong></span></dt><dd><p>Поэлементное возведение в степень. Возводит
каждый элемент матрицы <code class="varname">a</code> в степень <code class="varname">b</code>. Или, если
<code class="varname">b</code> — матрица той же размерности, что и <code class="varname">a</code>, выполняет
операцию поэлементно. Если <code class="varname">a</code> — число, а <code class=
"varname">b</code> — матрица, то создаёт матрицу той же размерности, что и <code class="varname">b</code> со
значением <code class="varname">a</code>, возведённым во все степени, содержащиеся в <code
class="varname">b</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a+b</code></strong></span></dt><dd><p>
+ Addition. Adds two numbers, matrices, functions or strings. If
+ you add a string to anything the result will just be a string. If one is
+ a square matrix and the other a number, then the number is multiplied by
+ the identity matrix.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a-b</code></strong></span></dt><dd><p>Вычитание. Вычитает два числа, матрицы или
функции.</p></dd><dt><span class="term"><strong
class="userinput"><code>a*b</code></strong></span></dt><dd><p>Умножение. Это обычное умножение
матриц.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.*b</code></strong></span></dt><dd><p>Поэлементное умножение, если <code
class="varname">a</code> и <code class="varname">b</code> являются матрицами.</p></dd><dt><span
class="term"><strong class="userinput"><code>a/b</code></strong></span></dt><dd><p>
+ Division. When <code class="varname">a</code> and <code class="varname">b</code> are just
numbers
+ this is the normal division. When they are matrices, then this is
+ equivalent to <strong class="userinput"><code>a*b^-1</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a./b</code></strong></span></dt><dd><p>
+ Element by element division. Same as <strong class="userinput"><code>a/b</code></strong>
for
+ numbers, but operates element by element on matrices.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a\b</code></strong></span></dt><dd><p>Обратное деление. Это то же самое, что <strong
class="userinput"><code>b/a</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.\b</code></strong></span></dt><dd><p>Поэлементное обратное
деление.</p></dd><dt><span class="term"><strong class="userinput"><code>a%b</code></strong></span></dt><dd><p>
+ The mod operator. This does not turn on the <a class="link" href="ch05s06.html" title="Modular
Evaluation">modular mode</a>, but
+ just returns the remainder of <strong class="userinput"><code>a/b</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a.%b</code></strong></span></dt><dd><p>
+ Element by element the mod operator. Returns the remainder
+ after element by element integer <strong class="userinput"><code>a./b</code></strong>.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a mod
b</code></strong></span></dt><dd><p>
+ Modular evaluation operator. The expression <code class="varname">a</code>
+ is evaluated modulo <code class="varname">b</code>. See <a class="xref" href="ch05s06.html"
title="Modular Evaluation">«Modular Evaluation»</a>.
+ Some functions and operators behave differently modulo an integer.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a!</code></strong></span></dt><dd><p>Факториал: <strong
class="userinput"><code>1*...*(n-2)*(n-1)*n</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a!!</code></strong></span></dt><dd><p>Двойной факториал: <strong
class="userinput"><code>1*...*(n-4)*(n-2)*n</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a==b</code></strong></span></dt><dd><p>
+ Equality operator.
+ Returns <code class="constant">true</code> or <code class="constant">false</code>
+ depending on <code class="varname">a</code> and <code class="varname">b</code> being equal or
not.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a!=b</code></strong></span></dt><dd><p>Оператор неравенства, возвращает <code
class="constant">true</code>, если <code class="varname">a</code> не равно <code class="varname">b</code>, в
противном случае возвращает <code class="constant">false</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a<>b</code></strong></span></dt><dd><p>Альтернативный оператор неравенства,
возвращает <code class="constant">true</code>, если <code class="varname">a</code> не равно <code
class="varname">b</code>, иначе возвращает <code class="constant">false</code>.</p></dd><dt><span
class="term"><strong class="userinput"><code>a<=b</code></strong></span></dt><dd><p>
+ Less than or equal operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> is
+ less than or equal to
+ <code class="varname">b</code> else returns <code class="constant">false</code>.
+ These can be chained as in <strong class="userinput"><code>a <= b <= c</code></strong> (can
+ also be combined with the less than operator).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a>=b</code></strong></span></dt><dd><p>
+ Greater than or equal operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> is
+ greater than or equal to
+ <code class="varname">b</code> else returns <code class="constant">false</code>.
+ These can be chained as in <strong class="userinput"><code>a >= b >= c</code></strong>
+ (can also be combine with the greater than operator).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a<b</code></strong></span></dt><dd><p>
+ Less than operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> is
+ less than
+ <code class="varname">b</code> else returns <code class="constant">false</code>.
+ These can be chained as in <strong class="userinput"><code>a < b < c</code></strong>
+ (can also be combine with the less than or equal to operator).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a>b</code></strong></span></dt><dd><p>
+ Greater than operator,
+ returns <code class="constant">true</code> if <code class="varname">a</code> is
+ greater than
+ <code class="varname">b</code> else returns <code class="constant">false</code>.
+ These can be chained as in <strong class="userinput"><code>a > b > c</code></strong>
+ (can also be combine with the greater than or equal to operator).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a<=>b</code></strong></span></dt><dd><p>Оператор сравнения. Если <code
class="varname">a</code> равно <code class="varname">b</code>, возвращает 0; если <code
class="varname">a</code> меньше <code class="varname">b</code>, возвращает -1; если <code
class="varname">a</code> больше <code class="varname">b</code>, возвращает 1.</p></dd><dt><span
class="term"><strong class="userinput"><code>a and b</code></strong></span></dt><dd><p>
+ Logical and. Returns true if both
+ <code class="varname">a</code> and <code class="varname">b</code> are true,
+ else returns false. If given numbers, nonzero numbers
+ are treated as true.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a or
b</code></strong></span></dt><dd><p>
+ Logical or.
+ Returns true if either
+ <code class="varname">a</code> or <code class="varname">b</code> is true,
+ else returns false. If given numbers, nonzero numbers
+ are treated as true.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a xor
b</code></strong></span></dt><dd><p>
+ Logical xor.
+ Returns true exactly one of
+ <code class="varname">a</code> or <code class="varname">b</code> is true,
+ else returns false. If given numbers, nonzero numbers
+ are treated as true.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>not
a</code></strong></span></dt><dd><p>
+ Logical not. Returns the logical negation of <code class="varname">a</code>
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>-a</code></strong></span></dt><dd><p>
+ Negation operator. Returns the negative of a number or a matrix (works element-wise on a
matrix).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>&a</code></strong></span></dt><dd><p>
+ Variable referencing (to pass a reference to a variable).
+ See <a class="xref" href="ch06s08.html" title="References">«References»</a>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>*a</code></strong></span></dt><dd><p>
+ Variable dereferencing (to access a referenced variable).
+ See <a class="xref" href="ch06s08.html" title="References">«References»</a>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a'</code></strong></span></dt><dd><p>
+ Matrix conjugate transpose. That is, rows and columns get swapped and we take complex
conjugate of all entries. That is
+ if the i,j element of <code class="varname">a</code> is x+iy, then the j,i element of
<strong class="userinput"><code>a'</code></strong> is x-iy.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a.'</code></strong></span></dt><dd><p>
+ Matrix transpose, does not conjugate the entries. That is,
+ the i,j element of <code class="varname">a</code> becomes the j,i element of <strong
class="userinput"><code>a.'</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,c)</code></strong></span></dt><dd><p>
+ Get element of a matrix in row <code class="varname">b</code> and column
+ <code class="varname">c</code>. If <code class="varname">b</code>,
+ <code class="varname">c</code> are vectors, then this gets the corresponding
+ rows columns or submatrices.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,)</code></strong></span></dt><dd><p>
+ Get row of a matrix (or multiple rows if <code class="varname">b</code> is a vector).
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,:)</code></strong></span></dt><dd><p>То же, что и выше.</p></dd><dt><span
class="term"><strong class="userinput"><code>a@(,c)</code></strong></span></dt><dd><p>Возвращает столбец
матрицы (или столбцы, если <code class="varname">c</code> является вектором).</p></dd><dt><span
class="term"><strong class="userinput"><code>a@(:,c)</code></strong></span></dt><dd><p>То же, что и
выше.</p></dd><dt><span class="term"><strong class="userinput"><code>a@(b)</code></strong></span></dt><dd><p>
+ Get an element from a matrix treating it as a vector. This will
+ traverse the matrix row-wise.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a:b</code></strong></span></dt><dd><p>
+ Build a vector from <code class="varname">a</code> to <code class="varname">b</code> (or
specify a row, column region for the <code class="literal">@</code> operator). For example to get rows 2 to
4 of matrix <code class="varname">A</code> we could do
+ </p><pre class="programlisting">A@(2:4,)
+ </pre><p>
+ as <strong class="userinput"><code>2:4</code></strong> will return a vector
+ <strong class="userinput"><code>[2,3,4]</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a:b:c</code></strong></span></dt><dd><p>
+ Build a vector from <code class="varname">a</code> to <code class="varname">c</code>
+ with <code class="varname">b</code> as a step. That is for example
+ </p><pre class="programlisting">genius> 1:2:9
+=
+`[1, 3, 5, 7, 9]
+</pre><p>
+ </p><p>
+ When the numbers involved are floating point numbers, for example
+ <strong class="userinput"><code>1.0:0.4:3.0</code></strong>, the output is what is expected
+ even though adding 0.4 to 1.0 five times is actually just slightly
+ more than 3.0 due to the way that floating point numbers are
+ stored in base 2 (there is no 0.4, the actual number stored is
+ just ever so slightly bigger). The way this is handled is the
+ same as in the for, sum, and prod loops. If the end is within
+ <strong class="userinput"><code>2^-20</code></strong> times the step size of the endpoint,
+ the endpoint is used and we assume there were roundoff errors.
+ This is not perfect, but it handles the majority of the cases.
+ This check is done only from version 1.0.18 onwards, so execution
+ of your code may differ on older versions. If you want to avoid
+ dealing with this issue, use actual rational numbers, possibly
+ using the <code class="function">float</code> if you wish to get floating
+ point numbers in the end. For example
+ <strong class="userinput"><code>1:2/5:3</code></strong> does the right thing and
+ <strong class="userinput"><code>float(1:2/5:3)</code></strong> even gives you floating
+ point numbers and is ever so slightly more precise than
+ <strong class="userinput"><code>1.0:0.4:3.0</code></strong>.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>(a)i</code></strong></span></dt><dd><p>Создаёт мнимое число (умножает <code
class="varname">a</code> на мнимую единицу). Обратите внимание, что обчыно мнимая единица <code
class="varname">i</code> записывается в виде <strong class="userinput"><code>1i</code></strong>. Поэтому
вышеуказанное выражение эквивалентно </p><pre class="programlisting">(a)*1i
+ </pre></dd><dt><span class="term"><strong
class="userinput"><code>`a</code></strong></span></dt><dd><p>
+ Quote an identifier so that it doesn't get evaluated. Or
+ quote a matrix so that it doesn't get expanded.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>a swapwith
b</code></strong></span></dt><dd><p>Меняет местами значение <code class="varname">a</code> со значением <code
class="varname">b</code>. В настоящее время не работает с диапазонами элементов матрицы. Возвращает <code
class="constant">null</code>. Доступен, начиная с версии 1.0.13.</p></dd><dt><span class="term"><strong
class="userinput"><code>increment a</code></strong></span></dt><dd><p>Инкремент переменной <code
class="varname">a</code> на 1. Если <code class="varname">a</code> — матрица, то инкрементирует каждый
элемент. Это эквивалентно <strong class="userinput"><code>a=a+1</code></strong>, но немного быстрее.
Возвращает <code class="constant">null</code>. Доступ
ен с версии 1.0.13.</p></dd><dt><span class="term"><strong class="userinput"><code>increment a by
b</code></strong></span></dt><dd><p>Инкремент переменной <code class="varname">a</code> на величину <code
class="varname">b</code>. Если <code class="varname">a</code> — матрица, то инкрементирует каждый элемент.
Это эквивалентно <strong class="userinput"><code>a=a+b</code></strong>, но немного быстрее. Возвращает <code
class="constant">null</code>. Доступен с версии 1.0.13.</p></dd></dl></div><div class="note"
style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Примечание</h3><p>Оператор @() делает
использование оператора : наиболее полезным. С его помощью можно указывать области матрицы. Таким образом,
a@(2:4,6) — �
�то строки 2,3,4 столбца 6. Или a@(,1:2) возвращает два первых столбца матрицы. Можно также присваивать
значения оператору @(), если правое значение — это матрица, совпадающая по размеру с данной областью, или
если это любой другой тип значений.</p></div><div class="note" style="margin-left: 0.5in; margin-right:
0.5in;"><h3 class="title">Примечание</h3><p>
+The comparison operators (except for the <=> operator, which behaves normally), are not strictly
binary operators, they can in fact be grouped in the normal mathematical way, e.g.: (1<x<=y<5) is a
legal boolean expression and means just what it should, that is (1<x and x≤y and y<5)
+</p></div><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Примечание</h3><p>
+The unitary minus operates in a different fashion depending on where it
+appears. If it appears before a number it binds very closely, if it appears in
+front of an expression it binds less than the power and factorial operators.
+So for example <strong class="userinput"><code>-1^k</code></strong> is really <strong
class="userinput"><code>(-1)^k</code></strong>,
+but <strong class="userinput"><code>-foo(1)^k</code></strong> is really <strong
class="userinput"><code>-(foo(1)^k)</code></strong>. So
+be careful how you use it and if in doubt, add parentheses.
+</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s06.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Modular
Evaluation </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td
width="40%" align="right" valign="top"> Глава 6. Программирование в GEL</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch06.html b/help/ru/html/ch06.html
new file mode 100644
index 0000000..33e438a
--- /dev/null
+++ b/help/ru/html/ch06.html
@@ -0,0 +1,19 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Глава 6.
Программирование в GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Руководство пользователя Genius"><link rel="up" href="index.html"
title="Руководство пользователя Genius"><link rel="prev" href="ch05s07.html" title="Список операторов
GEL"><link rel="next" href="ch06s02.html" title="Циклы"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Глава 6. Программирование в GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch05s07.html">Пред.</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch0
6s02.html">След.</a></td></tr></table><hr></div><div class="chapter"><div class="titlepage"><div><div><h1
class="title"><a name="genius-gel-programming"></a>Глава 6. Программирование в GEL</h1></div></div></div><div
class="toc"><p><b>Содержание</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch06.html#genius-gel-conditionals">Условные операторы</a></span></dt><dt><span class="sect1"><a
href="ch06s02.html">Циклы</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-while">Циклы While</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-for">Циклы For</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-foreach">Циклы Foreach</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-break-continue">Break и Continue</a></span></dt></dl></dd><dt><span
class="sect1"><a href="ch06s03.html">Суммы
и произведения</a></span></dt><dt><span class="sect1"><a href="ch06s04.html">Операторы
сравнения</a></span></dt><dt><span class="sect1"><a href="ch06s05.html">Глобальные переменные и область
видимости переменных</a></span></dt><dt><span class="sect1"><a href="ch06s06.html">Parameter
variables</a></span></dt><dt><span class="sect1"><a href="ch06s07.html">Returning</a></span></dt><dt><span
class="sect1"><a href="ch06s08.html">References</a></span></dt><dt><span class="sect1"><a
href="ch06s09.html">Lvalues</a></span></dt></dl></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-conditionals"></a>Условные
операторы</h2></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">if <expression1> then <expression2> [else <expression3>]
+</pre><p>
+If <code class="literal">else</code> is omitted, then if the <code class="literal">expression1</code> yields
<code class="constant">false</code> or 0, <code class="literal">NULL</code> is returned.
+ </p><p>
+Examples:
+</p><pre class="programlisting">if(a==5)then(a=a-1)
+if b<a then b=a
+if c>0 then c=c-1 else c=0
+a = ( if b>0 then b else 1 )
+</pre><p>
+Note that <code class="literal">=</code> will be translated to <code class="literal">==</code> if used
inside the expression for <code class="literal">if</code>, so
+</p><pre class="programlisting">if a=5 then a=a-1
+</pre><p>
+will be interpreted as:
+</p><pre class="programlisting">if a==5 then a:=a-1
+</pre><p>
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s07.html">Пред.</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch06s02.html">След.</a></td></tr><tr><td
width="40%" align="left" valign="top">Список операторов GEL </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Начало</a></td><td width="40%" align="right" valign="top">
Циклы</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch06s02.html b/help/ru/html/ch06s02.html
new file mode 100644
index 0000000..8ab92e7
--- /dev/null
+++ b/help/ru/html/ch06s02.html
@@ -0,0 +1,51 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Циклы</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Руководство пользователя Genius"><link rel="up" href="ch06.html" title="Глава 6. Программирование в
GEL"><link rel="prev" href="ch06.html" title="Глава 6. Программирование в GEL"><link rel="next"
href="ch06s03.html" title="Суммы и произведения"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Циклы</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06.html">Пред.</a> </td><th width="60%" align="center">Глава 6. Программирование в GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch
06s03.html">След.</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-loops"></a>Циклы</h2></div></div></div><div
class="sect2"><div class="titlepage"><div><div><h3 class="title"><a name="genius-gel-loops-while"></a>Циклы
While</h3></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">while <expression1> do <expression2>
+until <expression1> do <expression2>
+do <expression2> while <expression1>
+do <expression2> until <expression1></pre><p>
+
+ These are similar to other languages. However, as in GEL it is simply an expression that must have
some return value, these
+ constructs will simply return the result of the last iteration or <code class="literal">NULL</code>
if no iteration was done. In the boolean expression, <code class="literal">=</code> is translated into <code
class="literal">==</code> just as for the <code class="literal">if</code> statement.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-for"></a>Циклы For</h3></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">for <identifier> = <from> to <to> do <body>
+for <identifier> = <from> to <to> by <increment> do <body></pre><p>
+
+Loop with identifier being set to all values from <code class="literal"><from></code> to <code
class="literal"><to></code>, optionally using an increment other than 1. These are faster, nicer and
more compact than the normal loops such as above, but less flexible. The identifier must be an identifier and
can't be a dereference. The value of identifier is the last value of identifier, or <code
class="literal"><from></code> if body was never evaluated. The variable is guaranteed to be initialized
after a loop, so you can safely use it. Also the <code class="literal"><from></code>, <code
class="literal"><to></code> and <code class="literal"><increment></code> must be non complex
values. The <code class="literal"><to></code> is not guaranteed to be hit, but will never be overshot,
for example the following prints out odd numbers from 1 to 19:
+</p><pre class="programlisting">for i = 1 to 20 by 2 do print(i)
+</pre><p>
+ </p><p>
+ When one of the values is a floating point number, then the
+ final check is done to within 2^-20 of the step size. That is,
+ even if we overshoot by 2^-20 times the "by" above, we still execute the last
+ iteration. This way
+</p><pre class="programlisting">for x = 0 to 1 by 0.1 do print(x)
+</pre><p>
+does the expected even though adding 0.1 ten times becomes just slightly more than 1.0 due to the way that
floating point numbers
+are stored in base 2 (there is no 0.1, the actual number stored is just ever so slightly bigger). This is
not perfect but it handles
+the majority of the cases. If you want to avoid dealing with this issue, use actual rational numbers for
example:
+</p><pre class="programlisting">for x = 0 to 1 by 1/10 do print(x)
+</pre><p>
+ This check is done only from version 1.0.16 onwards, so execution of your code may differ on
older versions.
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-foreach"></a>Циклы Foreach</h3></div></div></div><p>
+Syntax:
+</p><pre class="programlisting">for <identifier> in <matrix> do <body></pre><p>
+
+ For each element in the matrix, going row by row from left to right we execute the
body
+ with the identifier set to the current element. To
+print numbers 1,2,3 and 4 in this order you could do:
+</p><pre class="programlisting">for n in [1,2:3,4] do print(n)
+</pre><p>
+If you wish to run through the rows and columns of a matrix, you can use
+the RowsOf and ColumnsOf functions, which return a vector of the rows or
+columns of the matrix. So,
+</p><pre class="programlisting">for n in RowsOf ([1,2:3,4]) do print(n)
+</pre><p>
+will print out [1,2] and then [3,4].
+ </p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-break-continue"></a>Break и Continue</h3></div></div></div><p>В циклах также можно
использовать команды <code class="literal">break</code> и <code class="literal">continue</code>. Команда
<code class="literal">continue</code> перезапускает текущий цикл с его следующей итерации, а команда <code
class="literal">break</code> позволяет выйти из текущего цикла. </p><pre
class="programlisting">while(<expression1>) do (
+ if(<expression2>) break
+ else if(<expression3>) continue;
+ <expression4>
+)
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06.html">Пред.</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch06.html">Наверх</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s03.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Глава 6.
Программирование в GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Начало</a></td><td width="40%" align="right" valign="top"> Суммы и
произведения</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch06s03.html b/help/ru/html/ch06s03.html
new file mode 100644
index 0000000..e7bdf40
--- /dev/null
+++ b/help/ru/html/ch06s03.html
@@ -0,0 +1,9 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Суммы и
произведения</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch06.html" title="Глава 6.
Программирование в GEL"><link rel="prev" href="ch06s02.html" title="Циклы"><link rel="next"
href="ch06s04.html" title="Операторы сравнения"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Суммы и произведения</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch06s02.html">Пред.</a> </td><th width="60%" align="center">Глава 6. Программирование в
GEL</th><td width="20%" align="right"> <a acce
sskey="n" href="ch06s04.html">След.</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-sums-products"></a>Суммы и произведения</h2></div></div></div><p>Синтаксис: </p><pre
class="programlisting">sum <identifier> = <from> to <to> do <body>
+sum <identifier> = <from> to <to> by <increment> do <body>
+sum <identifier> in <matrix> do <body>
+prod <identifier> = <from> to <to> do <body>
+prod <identifier> = <from> to <to> by <increment> do <body>
+prod <identifier> in <matrix> do <body></pre><p> Если заменить <code
class="literal">for</code> на <code class="literal">sum</code> или <code class="literal">prod</code>, то
вместо цикла <code class="literal">for</code> получатся циклы вычисления суммы или произведения. Вместо того,
чтобы возвращать последнее значение, эти команды возвращают сумму или произведение значений,
соответственно.</p><p>Если тело цикла не вычислялось (например, <strong class="userinput"><code>sum i=1 to 0
do ...</code></strong>), то <code class="literal">sum</code> возвращает 0, а <code
class="literal">prod</code> возвращает 1.</p><p>
+ For floating point numbers the same roundoff error protection is done as in the for loop.
+ See <a class="xref" href="ch06s02.html#genius-gel-loops-for" title="Циклы For">«Циклы For»</a>.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s02.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s04.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Циклы
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Операторы сравнения</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch06s04.html b/help/ru/html/ch06s04.html
new file mode 100644
index 0000000..ba6a590
--- /dev/null
+++ b/help/ru/html/ch06s04.html
@@ -0,0 +1,27 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Операторы
сравнения</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch06.html" title="Глава 6.
Программирование в GEL"><link rel="prev" href="ch06s03.html" title="Суммы и произведения"><link rel="next"
href="ch06s05.html" title="Глобальные переменные и область видимости переменных"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Операторы сравнения</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch06s03.html">Пред.</a> </td><th width="60%"
align="center">Глав�
� 6. Программирование в GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s05.html">След.</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-comparison-operators"></a>Операторы сравнения</h2></div></div></div><p>В GEL поддерживаются
следующие стандартные операторы сравнения, имеющие очевидное значение: <code class="literal">==</code>, <code
class="literal">>=</code>, <code class="literal"><=</code>, <code class="literal">!=</code>, <code
class="literal"><></code>, <code class="literal"><</code>, <code class="literal">></code>. Они
возвращают <code class="constant">true</code> или <code class="constant">false</code>. Операторы <code
class="literal">!=</code> и <code class="literal"><></code> эквивале
нтны и означают «не равно». GEL также поддерживает оператор <code class="literal"><=></code>, который
возвращает -1, если левая сторона меньше, 0 при равенстве обеих сторон и 1, если левая сторона больше.</p><p>
+ Normally <code class="literal">=</code> is translated to <code class="literal">==</code> if
+ it happens to be somewhere where GEL is expecting a condition such as
+ in the if condition. For example
+ </p><pre class="programlisting">if a=b then c
+if a==b then c
+</pre><p>
+ are the same thing in GEL. However you should really use
+ <code class="literal">==</code> or <code class="literal">:=</code> when you want to compare
+ or assign respectively if you want your code to be easy to read and
+ to avoid mistakes.
+ </p><p>
+ All the comparison operators (except for the
+ <code class="literal"><=></code> operator, which
+ behaves normally), are not strictly binary operators, they can in fact
+ be grouped in the normal mathematical way, e.g.:
+ (<code class="literal">1<x<=y<5</code>) is
+ a legal boolean expression and means just what it should, that is
+ (1<x and x≤y and y<5)
+ </p><p>
+ To build up logical expressions use the words <code class="literal">not</code>,
+ <code class="literal">and</code>, <code class="literal">or</code>, <code class="literal">xor</code>.
+ The operators <code class="literal">or</code> and <code class="literal">and</code> are
+special beasts as they evaluate their arguments one by one, so the usual trick
+for conditional evaluation works here as well. For example, <code class="literal">1 or a=1</code> will not
set
+<code class="literal">a=1</code> since the first argument was true.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s03.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s05.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Суммы и
произведения </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td
width="40%" align="right" valign="top"> Глобальные переменные и область видимости
переменных</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch06s05.html b/help/ru/html/ch06s05.html
new file mode 100644
index 0000000..ffe660b
--- /dev/null
+++ b/help/ru/html/ch06s05.html
@@ -0,0 +1,113 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Глобальные переменные
и область видимости переменных</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch06.html"
title="Глава 6. Программирование в GEL"><link rel="prev" href="ch06s04.html" title="Операторы
сравнения"><link rel="next" href="ch06s06.html" title="Parameter variables"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Глобальные переменные и область видимости
переменных</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="ch06s04.html">Пред.</a> </
td><th width="60%" align="center">Глава 6. Программирование в GEL</th><td width="20%" align="right"> <a
accesskey="n" href="ch06s06.html">След.</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-variables-global"></a>Глобальные переменные и область видимости
переменных</h2></div></div></div><p>
+ GEL is a
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Scope_%28programming%29" target="_top">
+ dynamically scoped language</a>. We will explain what this
+ means below. That is, normal variables and functions are dynamically
+ scoped. The exception are
+ <a class="link" href="ch06s06.html" title="Parameter variables">parameter variables</a>,
+ which are always global.
+ </p><p>
+ Like most programming languages, GEL has different types
+ of variables. Normally when a variable is defined in a function,
+ it is visible from that function and from all functions that are
+ called (all higher contexts). For example, suppose a function
+ <code class="function">f</code> defines a variable <code class="varname">a</code>
+ and then calls function <code class="function">g</code>. Then
+ function <code class="function">g</code> can reference
+ <code class="varname">a</code>. But once <code class="function">f</code> returns,
+ the variable <code class="varname">a</code> goes out of scope.
+ For example, the following code will print out 5.
+ The function <code class="function">g</code> cannot be called on the
+ top level (outside <code class="function">f</code> as <code class="varname">a</code>
+ will not be defined).
+</p><pre class="programlisting">function f() = (a:=5; g());
+function g() = print(a);
+f();
+</pre><p>
+ </p><p>
+ If you define a variable inside a function it will override
+ any variables defined in calling functions. For example,
+ we modify the above code and write:
+</p><pre class="programlisting">function f() = (a:=5; g());
+function g() = print(a);
+a:=10;
+f();
+</pre><p>
+ This code will still print out 5. But if you call
+ <code class="function">g</code> outside of <code class="function">f</code> then
+ you will get a printout of 10. Note that
+ setting <code class="varname">a</code>
+ to 5 inside <code class="function">f</code> does not change
+ the value of <code class="varname">a</code> at the top (global) level,
+ so if you now check the value of <code class="varname">a</code> it will
+ still be 10.
+ </p><p>
+ Function arguments are exactly like variables defined inside
+ the function, except that they are initialized with the value
+ that was passed to the function. Other than this point, they are
+ treated just like all other variables defined inside the
+ function.
+ </p><p>
+ Functions are treated exactly like variables. Hence you can
+ locally redefine functions. Normally (on the top level) you
+ cannot redefine protected variables and functions. But locally
+ you can do this. Consider the following session:
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>function f(x)
= sin(x)^2</code></strong>
+= (`(x)=(sin(x)^2))
+<code class="prompt">genius> </code><strong class="userinput"><code>function f(x) =
sin(x)^2</code></strong>
+= (`(x)=(sin(x)^2))
+<code class="prompt">genius> </code><strong class="userinput"><code>function g(x) = ((function
sin(x)=x^10);f(x))</code></strong>
+= (`(x)=((sin:=(`(x)=(x^10)));f(x)))
+<code class="prompt">genius> </code><strong class="userinput"><code>g(10)</code></strong>
+= 1e20
+</pre><p>
+ </p><p>
+ Functions and variables defined at the top level are
+ considered global. They are visible from anywhere. As we
+ said the following function <code class="function">f</code>
+ will not change the value of <code class="varname">a</code> to 5.
+</p><pre class="programlisting">a=6;
+function f() = (a:=5);
+f();
+</pre><p>
+ Sometimes, however, it is necessary to set
+a global variable from inside a function. When this behavior is needed,
+use the
+<a class="link" href="ch11s02.html#gel-function-set"><code class="function">set</code></a> function. Passing
a string or a quoted identifier to
+this function sets the variable globally (on the top level).
+For example, to set
+<code class="varname">a</code> to the value 3 you could call:
+</p><pre class="programlisting">set(`a,3)
+</pre><p>
+or:
+</p><pre class="programlisting">set("a",3)
+</pre><p>
+ </p><p>
+ The <code class="function">set</code> function always sets the toplevel
+ global. There is no way to set a local variable in some function
+ from a subroutine. If this is required, must use passing by
+ reference.
+ </p><p>
+ See also the
+ <a class="link" href="ch11s02.html#gel-function-SetElement"><code
class="function">SetElement</code></a> and
+ <a class="link" href="ch11s02.html#gel-function-SetVElement"><code
class="function">SetVElement</code></a> functions.
+ </p><p>
+ So to recap in a more technical language: Genius operates with
+ different numbered contexts. The top level is the context 0
+ (zero). Whenever a function is entered, the context is raised,
+ and when the function returns the context is lowered. A function
+ or a variable is always visible from all higher numbered contexts.
+ When a variable was defined in a lower numbered context, then
+ setting this variable has the effect of creating a new local
+ variable in the current context number and this variable
+ will now be visible from all higher numbered contexts.
+ </p><p>
+ There are also true local variables that are not seen from
+ anywhere but the current context. Also when returning functions
+ by value it may reference variables not visible from higher context
+ and this may be a problem. See the sections
+ <a class="link" href="ch07s04.html" title="True Local Variables">True
+ Local Variables</a> and
+ <a class="link" href="ch07s03.html" title="Returning Functions">Returning
+ Functions</a>.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s04.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s06.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Операторы
сравнения </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td
width="40%" align="right" valign="top"> Parameter variables</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch06s06.html b/help/ru/html/ch06s06.html
new file mode 100644
index 0000000..c069ac0
--- /dev/null
+++ b/help/ru/html/ch06s06.html
@@ -0,0 +1,18 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Parameter
variables</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch06.html" title="Глава 6.
Программирование в GEL"><link rel="prev" href="ch06s05.html" title="Глобальные переменные и область видимости
переменных"><link rel="next" href="ch06s07.html" title="Returning"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Parameter variables</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch06s05.html">Пред.</a> </td><th width="60%" align="center">Глава 6. Программирование в
GEL</th><td width="20%"
align="right"> <a accesskey="n" href="ch06s07.html">След.</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-parameters"></a>Parameter variables</h2></div></div></div><p>
+ As we said before, there exist special variables called parameters
+ that exist in all scopes. To declare a parameter called
+ <code class="varname">foo</code> with the initial value 1, we write
+</p><pre class="programlisting">parameter foo = 1
+</pre><p>
+ From then on, <code class="varname">foo</code> is a strictly global variable.
+ Setting <code class="varname">foo</code> inside any function will modify the
+ variable in all contexts, that is, functions do not have a private
+ copy of parameters.
+ </p><p>
+ When you undefine a parameter using the
+ <a class="link" href="ch11s02.html#gel-function-undefine">
+ <code class="function">undefine</code></a> function, it stops being
+ a parameter.
+ </p><p>
+ Some parameters are built-in and modify the behavior of genius.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s05.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s07.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Глобальные
переменные и область видимости переменных </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Начало</a></td><td width="40%" align="right" valign="top">
Returning</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch06s07.html b/help/ru/html/ch06s07.html
new file mode 100644
index 0000000..ba4d379
--- /dev/null
+++ b/help/ru/html/ch06s07.html
@@ -0,0 +1,14 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Returning</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Руководство пользователя Genius"><link rel="up" href="ch06.html" title="Глава 6. Программирование в
GEL"><link rel="prev" href="ch06s06.html" title="Parameter variables"><link rel="next" href="ch06s08.html"
title="References"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Returning</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s06.html">Пред.</a> </td><th width="60%" align="center">Глава 6. Программирование в GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch06s08.html">След.</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-returning"></a>Returning</h2></div></div></div><p>
+ Normally a function is one or several expressions separated by a
+semicolon, and the value of the last expression is returned. This is fine for
+simple functions, but
+sometimes you do not want a function to return the last thing calculated. You may, for example, want to
return from a middle of a function. In this case, you can use the <code class="literal">return</code>
keyword. <code class="literal">return</code> takes one argument, which is the value to be returned.
+ </p><p>Пример: </p><pre class="programlisting">function f(x) = (
+ y=1;
+ while true do (
+ if x>50 then return y;
+ y=y+1;
+ x=x+1
+ )
+)
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch06s06.html">Пред.</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch06.html">Наверх</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s08.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Parameter variables
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> References</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch06s08.html b/help/ru/html/ch06s08.html
new file mode 100644
index 0000000..73b01bb
--- /dev/null
+++ b/help/ru/html/ch06s08.html
@@ -0,0 +1,35 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>References</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Руководство пользователя Genius"><link rel="up"
href="ch06.html" title="Глава 6. Программирование в GEL"><link rel="prev" href="ch06s07.html"
title="Returning"><link rel="next" href="ch06s09.html" title="Lvalues"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">References</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch06s07.html">Пред.</a> </td><th width="60%" align="center">Глава 6.
Программирование в GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s09.html">След.</a></td></tr></table><hr></div><div class="sect
1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-references"></a>References</h2></div></div></div><p>
+ It may be necessary for some functions to return more than one value.
+ This may be accomplished by returning a vector of values, but many
+ times it is convenient to use passing a reference to a variable.
+ You pass a reference to a variable to a function, and the function
+ will set the variable for you using a dereference. You do not have
+ to use references only for this purpose, but this is their main use.
+ </p><p>
+ When using functions that return values through references
+ in the argument list, just pass the variable name with an ampersand.
+ For example the following code will compute an eigenvalue of a matrix
+ <code class="varname">A</code> with initial eigenvector guess
+ <code class="varname">x</code>, and store the computed eigenvector
+ into the variable named <code class="varname">v</code>:
+</p><pre class="programlisting">RayleighQuotientIteration (A,x,0.001,100,&v)
+</pre><p>
+ </p><p>
+The details of how references work and the syntax is similar to the C language.
+The operator
+<code class="literal">&</code> references a variable
+and <code class="literal">*</code> dereferences a variable. Both can only be applied to an identifier,
+so <code class="literal">**a</code> is not a legal expression in GEL.
+ </p><p>
+References are best explained by an example:
+</p><pre class="programlisting">a=1;
+b=&a;
+*b=2;
+</pre><p>
+now <code class="varname">a</code> contains 2. You can also reference functions:
+</p><pre class="programlisting">function f(x) = x+1;
+t=&f;
+*t(3)
+</pre><p>
+gives us 4.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s07.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s09.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Returning
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Lvalues</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch06s09.html b/help/ru/html/ch06s09.html
new file mode 100644
index 0000000..7b75572
--- /dev/null
+++ b/help/ru/html/ch06s09.html
@@ -0,0 +1,27 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Lvalues</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Руководство пользователя Genius"><link rel="up" href="ch06.html" title="Глава 6. Программирование в
GEL"><link rel="prev" href="ch06s08.html" title="References"><link rel="next" href="ch07.html" title="Глава
7. Advanced Programming with GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Lvalues</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s08.html">Пред.</a> </td><th width="60%" align="center">Глава 6. Программирование в GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch07.html">След.</a></td></tr></table><
hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-lvalues"></a>Lvalues</h2></div></div></div><p>
+ An lvalue is the left hand side of an assignment. In other words, an
+ lvalue is what you assign something to. Valid lvalues are:
+</p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><strong
class="userinput"><code>a</code></strong></span></dt><dd><p>
+ Identifier. Here we would be setting the variable of name
+ <code class="varname">a</code>.
+ </p></dd><dt><span class="term"><strong class="userinput"><code>*a</code></strong></span></dt><dd><p>
+ Dereference of an identifier. This will set whatever variable
+ <code class="varname">a</code> points to.
+ </p></dd><dt><span class="term"><strong
class="userinput"><code>a@(<region>)</code></strong></span></dt><dd><p>
+ A region of a matrix. Here the region is specified normally as with
+ the regular @() operator, and can be a single entry, or an entire
+ region of the matrix.
+ </p></dd></dl></div><p>
+ </p><p>
+Examples:
+</p><pre class="programlisting">a:=4
+*tmp := 89
+a@(1,1) := 5
+a@(4:8,3) := [1,2,3,4,5]'
+</pre><p>
+Note that both <code class="literal">:=</code> and <code class="literal">=</code> can be used
+interchangeably. Except if the assignment appears in a condition.
+It is thus always safer to just use
+<code class="literal">:=</code> when you mean assignment, and <code class="literal">==</code>
+when you mean comparison.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s08.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch07.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">References
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Глава 7. Advanced Programming with GEL</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch07.html b/help/ru/html/ch07.html
new file mode 100644
index 0000000..d234b70
--- /dev/null
+++ b/help/ru/html/ch07.html
@@ -0,0 +1,18 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Глава 7. Advanced
Programming with GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="index.html" title="Руководство
пользователя Genius"><link rel="prev" href="ch06s09.html" title="Lvalues"><link rel="next"
href="ch07s02.html" title="Toplevel Syntax"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Глава 7. Advanced Programming with GEL</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch06s09.html">Пред.</a> </td><th width="60%" align="center">
</th><td width="20%" align="right"> <a accesskey="n" href="ch07s02.html">След.</a></td></tr></table><hr
</div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a
name="genius-gel-programming-advanced"></a>Глава 7. Advanced Programming with
GEL</h1></div></div></div><div class="toc"><p><b>Содержание</b></p><dl class="toc"><dt><span
class="sect1"><a href="ch07.html#genius-gel-error-handling">Обработка ошибок</a></span></dt><dt><span
class="sect1"><a href="ch07s02.html">Toplevel Syntax</a></span></dt><dt><span class="sect1"><a
href="ch07s03.html">Returning Functions</a></span></dt><dt><span class="sect1"><a href="ch07s04.html">True
Local Variables</a></span></dt><dt><span class="sect1"><a href="ch07s05.html">GEL Startup
Procedure</a></span></dt><dt><span class="sect1"><a href="ch07s06.html">Загрузка
программ</a></span></dt></dl></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-error-handling"></a>Обработка ошибок</h2></div></div></
div><p>
+If you detect an error in your function, you can bail out of it. For normal
+errors, such as wrong types of arguments, you can fail to compute the function
+by adding the statement <code class="literal">bailout</code>. If something went
+really wrong and you want to completely kill the current computation, you can
+use <code class="literal">exception</code>.
+ </p><p>
+ For example if you want to check for arguments in your function. You
+could use the following code.
+</p><pre class="programlisting">function f(M) = (
+ if not IsMatrix (M) then (
+ error ("M not a matrix!");
+ bailout
+ );
+ ...
+)
+</pre><p>
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s09.html">Пред.</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch07s02.html">След.</a></td></tr><tr><td
width="40%" align="left" valign="top">Lvalues </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Начало</a></td><td width="40%" align="right" valign="top"> Toplevel
Syntax</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch07s02.html b/help/ru/html/ch07s02.html
new file mode 100644
index 0000000..932b312
--- /dev/null
+++ b/help/ru/html/ch07s02.html
@@ -0,0 +1,32 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Toplevel
Syntax</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch07.html" title="Глава 7.
Advanced Programming with GEL"><link rel="prev" href="ch07.html" title="Глава 7. Advanced Programming with
GEL"><link rel="next" href="ch07s03.html" title="Returning Functions"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Toplevel Syntax</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07.html">Пред.</a> </td><th width="60%" align="center">Глава 7.
Advanced Programming with GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s03.html">След.</a></td></tr></ta
ble><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-toplevel-syntax"></a>Toplevel Syntax</h2></div></div></div><p>
+ The syntax is slightly different if you enter statements on
+ the top level versus when they are inside parentheses or
+ inside functions. On the top level, enter acts the same as if
+ you press return on the command line. Therefore think of programs
+ as just sequence of lines as if were entered on the command line.
+ In particular, you do not need to enter the separator at the end of the
+ line (unless it is of course part of several statements inside
+ parentheses).
+ </p><p>
+ The following code will produce an error when entered on the top
+ level of a program, while it will work just fine in a function.
+</p><pre class="programlisting">if Something() then
+ DoSomething()
+else
+ DoSomethingElse()
+</pre><p>
+ </p><p>
+ The problem is that after <span class="application">Genius Mathematics Tool</span> sees the end of
line after the
+ second line, it will decide that we have whole statement and
+ it will execute it. After the execution is done, <span class="application">Genius Mathematics
Tool</span> will
+ go on to the next
+ line, it will see <code class="literal">else</code>, and it will produce
+ a parsing error. To fix this, use parentheses. <span class="application">Genius Mathematics
Tool</span> will not
+ be satisfied until it has found that all parentheses are closed.
+</p><pre class="programlisting">if Something() then (
+ DoSomething()
+) else (
+ DoSomethingElse()
+)
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07.html">Пред.</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch07.html">Наверх</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07s03.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Глава 7. Advanced
Programming with GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Начало</a></td><td width="40%" align="right" valign="top"> Returning
Functions</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch07s03.html b/help/ru/html/ch07s03.html
new file mode 100644
index 0000000..0b59bec
--- /dev/null
+++ b/help/ru/html/ch07s03.html
@@ -0,0 +1,102 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Returning
Functions</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch07.html" title="Глава 7.
Advanced Programming with GEL"><link rel="prev" href="ch07s02.html" title="Toplevel Syntax"><link rel="next"
href="ch07s04.html" title="True Local Variables"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Returning Functions</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch07s02.html">Пред.</a> </td><th width="60%" align="center">Глава 7. Advanced Programming
with GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s04.html">След.</a></td></tr></table><hr></div
<div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-returning-functions"></a>Returning Functions</h2></div></div></div><p>
+ It is possible to return functions as value. This way you can
+ build functions that construct special purpose functions according
+ to some parameters. The tricky bit is what variables does the
+ function see. The way this works in GEL is that when a function
+ returns another function, all identifiers referenced in the
+ function body that went out of scope
+ are prepended a private dictionary of the returned
+ function. So the function will see all variables that were in
+ scope
+ when it was defined. For example, we define a function that
+ returns a function that adds 5 to its argument.
+</p><pre class="programlisting">function f() = (
+ k = 5;
+ `(x) = (x+k)
+)
+</pre><p>
+ Notice that the function adds <code class="varname">k</code> to
+ <code class="varname">x</code>. You could use this as follows.
+</p><pre class="programlisting">g = f();
+g(5)
+</pre><p>
+ And <strong class="userinput"><code>g(5)</code></strong> should return 10.
+ </p><p>
+ One thing to note is that the value of <code class="varname">k</code>
+ that is used is the one that's in effect when the
+ <code class="function">f</code> returns. For example:
+</p><pre class="programlisting">function f() = (
+ k := 5;
+ function r(x) = (x+k);
+ k := 10;
+ r
+)
+</pre><p>
+ will return a function that adds 10 to its argument rather than
+ 5. This is because the extra dictionary is created only when
+ the context
+ in which the function was defined ends, which is when the function
+ <code class="function">f</code> returns. This is consistent with how you
+ would expect the function <code class="function">r</code> to work inside
+ the function <code class="function">f</code> according to the rules of
+ scope of variables in GEL. Only those variables are added to the
+ extra dictionary that are in the context that just ended and
+ no longer exists. Variables
+ used in the function that are in still valid contexts will work
+ as usual, using the current value of the variable.
+ The only difference is with global variables and functions.
+ All identifiers that referenced global variables at time of
+ the function definition are not added to the private dictionary.
+ This is to avoid much unnecessary work when returning functions
+ and would rarely be a problem. For example, suppose that you
+ delete the "k=5" from the function <code class="function">f</code>,
+ and at the top level you define <code class="varname">k</code> to be
+ say 5. Then when you run <code class="function">f</code>, the function
+ <code class="function">r</code> will not put <code class="varname">k</code> into
+ the private dictionary because it was global (toplevel)
+ at the time of definition of <code class="function">r</code>.
+ </p><p>
+ Sometimes it is better to have more control over how variables
+ are copied into the private dictionary. Since version 1.0.7,
+ you can specify which
+ variables are copied into the private dictionary by putting
+ extra square brackets after the arguments with the list of
+ variables to be copied separated by commas.
+ If you do this, then variables are
+ copied into the private dictionary at time of the function
+ definition, and the private dictionary is not touched afterwards.
+ For example
+</p><pre class="programlisting">function f() = (
+ k := 5;
+ function r(x) [k] = (x+k);
+ k := 10;
+ r
+)
+</pre><p>
+ will return a function that when called will add 5 to its
+ argument. The local copy of <code class="varname">k</code> was created
+ when the function was defined.
+ </p><p>
+ When you want the function to not have any private dictionary
+ then put empty square brackets after the argument list. Then
+ no private dictionary will be created at all. Doing this is
+ good to increase efficiency when a private dictionary is not
+ needed or when you want the function to lookup all variables
+ as it sees them when called. For example suppose you want
+ the function returned from <code class="function">f</code> to see
+ the value of <code class="varname">k</code> from the toplevel despite
+ there being a local variable of the same name during definition.
+ So the code
+</p><pre class="programlisting">function f() = (
+ k := 5;
+ function r(x) [] = (x+k);
+ r
+);
+k := 10;
+g = f();
+g(10)
+</pre><p>
+ will return 20 and not 15, which would happen if
+ <code class="varname">k</code> with a value of 5 was added to the private
+ dictionary.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07s02.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch07.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch07s04.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Toplevel
Syntax </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> True Local Variables</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch07s04.html b/help/ru/html/ch07s04.html
new file mode 100644
index 0000000..8ebb1fc
--- /dev/null
+++ b/help/ru/html/ch07s04.html
@@ -0,0 +1,58 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>True Local
Variables</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch07.html" title="Глава 7.
Advanced Programming with GEL"><link rel="prev" href="ch07s03.html" title="Returning Functions"><link
rel="next" href="ch07s05.html" title="GEL Startup Procedure"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">True Local Variables</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch07s03.html">Пред.</a> </td><th width="60%" align="center">Глава 7. Advanced Programming
with GEL</th><td width="20%" align="right"> <a accesskey="n" href="ch07s05.html">След.</a></td></tr></table><h
r></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-true-local-variables"></a>True Local Variables</h2></div></div></div><p>
+ When passing functions into other functions, the normal scoping of
+ variables might be undesired. For example:
+</p><pre class="programlisting">k := 10;
+function r(x) = (x+k);
+function f(g,x) = (
+ k := 5;
+ g(x)
+);
+f(r,1)
+</pre><p>
+ you probably want the function <code class="function">r</code>
+ when passed as <code class="function">g</code> into <code class="function">f</code>
+ to see <code class="varname">k</code> as 10 rather than 5, so that
+ the code returns 11 and not 6. However, as written, the function
+ when executed will see the <code class="varname">k</code> that is
+ equal to 5. There are two ways to solve this. One would be
+ to have <code class="function">r</code> get <code class="varname">k</code> in a
+ private dictionary using the square bracket notation section
+ <a class="link" href="ch07s03.html" title="Returning Functions">Returning
+ Functions</a>.
+ </p><p>
+ But there is another solution. Since version 1.0.7 there are
+ true local variables. These are variables that are visible only
+ from the current context and not from any called functions.
+ We could define <code class="varname">k</code> as a local variable in the
+ function <code class="function">f</code>. To do this add a
+ <span class="command"><strong>local</strong></span> statement as the first statement in the
+ function (it must always be the first statement in the function).
+ You can also make any arguments be local variables as well.
+ That is,
+</p><pre class="programlisting">function f(g,x) = (
+ local g,x,k;
+ k := 5;
+ g(x)
+);
+</pre><p>
+ Then the code will work as expected and prints out 11.
+ Note that the <span class="command"><strong>local</strong></span> statement initializes
+ all the referenced variables (except for function arguments) to
+ a <code class="constant">null</code>.
+ </p><p>
+ If all variables are to be created as locals you can just pass an
+ asterisk instead of a list of variables. In this case the variables
+ will not be initialized until they are actually set of course.
+ So the following definition of <code class="function">f</code>
+ will also work:
+</p><pre class="programlisting">function f(g,x) = (
+ local *;
+ k := 5;
+ g(x)
+);
+</pre><p>
+ </p><p>
+ It is good practice that all functions that take other functions
+ as arguments use local variables. This way the passed function
+ does not see implementation details and get confused.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07s03.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch07.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch07s05.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Returning
Functions </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td
width="40%" align="right" valign="top"> GEL Startup Procedure</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch07s05.html b/help/ru/html/ch07s05.html
new file mode 100644
index 0000000..0f9a8e0
--- /dev/null
+++ b/help/ru/html/ch07s05.html
@@ -0,0 +1,7 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>GEL Startup
Procedure</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch07.html" title="Глава 7.
Advanced Programming with GEL"><link rel="prev" href="ch07s04.html" title="True Local Variables"><link
rel="next" href="ch07s06.html" title="Загрузка программ"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">GEL Startup Procedure</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch07s04.html">Пред.</a> </td><th width="60%" align="center">Глава 7. Advanced Programming
with GEL</th><td width="20%" align="right"> <a accesskey="n" href="ch07s06.html">След.</a></td>
</tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-startup-procedure"></a>GEL Startup Procedure</h2></div></div></div><p>
+First the program looks for the installed library file (the compiled version <code
class="filename">lib.cgel</code>) in the installed directory, then it looks into the current directory, and
then it tries to load an uncompiled file called
+<code class="filename">~/.geniusinit</code>.
+ </p><p>
+If you ever change the library in its installed place, you’ll have to
+first compile it with <span class="command"><strong>genius --compile loader.gel > lib.cgel</strong></span>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07s04.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch07.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch07s06.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">True Local
Variables </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td
width="40%" align="right" valign="top"> Загрузка программ</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch07s06.html b/help/ru/html/ch07s06.html
new file mode 100644
index 0000000..fc39710
--- /dev/null
+++ b/help/ru/html/ch07s06.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Загрузка
программ</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch07.html" title="Глава 7.
Advanced Programming with GEL"><link rel="prev" href="ch07s05.html" title="GEL Startup Procedure"><link
rel="next" href="ch08.html" title="Глава 8. Матрицы в GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Загрузка программ</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch07s05.html">Пред.</a> </td><th width="60%" align="center">Глава 7. Advanced Programming
with GEL</th><td width="20%" align="right"> <a accesskey="n" href="ch08.htm
l">След.</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-loading-programs"></a>Загрузка
программ</h2></div></div></div><p>
+Sometimes you have a larger program you wrote into a file and want to read that file into <span
class="application">Genius Mathematics Tool</span>. In these situations, you have two options. You can keep
the functions you use most inside the <code class="filename">~/.geniusinit</code> file. Or if you want to
load up a file in a middle of a session (or from within another file), you can type <span
class="command"><strong>load <list of filenames></strong></span> at the prompt. This has to be done on
the top level and not inside any function or whatnot, and it cannot be part of any expression. It also has a
slightly different syntax than the rest of genius, more similar to a shell. You can enter the file in quotes.
If you use the '' quotes, you will get exactly the string that you typed, if you use the "" quotes, special
characters will be unescaped as they are for strings. Example:
+</p><pre class="programlisting">load program1.gel program2.gel
+load "Причудливое имя файла с ПРОБЕЛАМИ.gel"
+</pre><p>
+There are also <span class="command"><strong>cd</strong></span>, <span
class="command"><strong>pwd</strong></span> and <span class="command"><strong>ls</strong></span> commands
built in. <span class="command"><strong>cd</strong></span> will take one argument, <span
class="command"><strong>ls</strong></span> will take an argument that is like the glob in the UNIX shell
(i.e., you can use wildcards). <span class="command"><strong>pwd</strong></span> takes no arguments. For
example:
+</p><pre class="programlisting">cd каталог_с_программами_gel
+ls *.gel
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch07s05.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch07.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch08.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">GEL Startup
Procedure </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td
width="40%" align="right" valign="top"> Глава 8. Матрицы в GEL</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch08.html b/help/ru/html/ch08.html
new file mode 100644
index 0000000..3a5a1b3
--- /dev/null
+++ b/help/ru/html/ch08.html
@@ -0,0 +1,55 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Глава 8. Матрицы в
GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="index.html" title="Руководство
пользователя Genius"><link rel="prev" href="ch07s06.html" title="Загрузка программ"><link rel="next"
href="ch08s02.html" title="Conjugate Transpose and Transpose Operator"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Глава 8. Матрицы в GEL</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch07s06.html">Пред.</a> </td><th width="60%" align="center">
</th><td width="20%" align="right"> <a accesskey="n" href="ch08s02.htm
l">След.</a></td></tr></table><hr></div><div class="chapter"><div class="titlepage"><div><div><h1
class="title"><a name="genius-gel-matrices"></a>Глава 8. Матрицы в GEL</h1></div></div></div><div
class="toc"><p><b>Содержание</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch08.html#genius-gel-matrix-support">Ввод матриц</a></span></dt><dt><span class="sect1"><a
href="ch08s02.html">Conjugate Transpose and Transpose Operator</a></span></dt><dt><span class="sect1"><a
href="ch08s03.html">Линейная алгебра</a></span></dt></dl></div><p>
+ Genius has support for vectors and matrices and possesses a sizable library of
+ matrix manipulation and linear algebra functions.
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-matrix-support"></a>Ввод матриц</h2></div></div></div><p>
+To enter matrices, you can use one of the following two syntaxes. You can either enter
+the matrix on one line, separating values by commas and rows by semicolons. Or you
+can enter each row on one line, separating
+values by commas.
+You can also just combine the two methods.
+So to enter a 3x3 matrix
+of numbers 1-9 you could do
+</p><pre class="programlisting">[1,2,3;4,5,6;7,8,9]
+</pre><p>
+or
+</p><pre class="programlisting">[1, 2, 3
+ 4, 5, 6
+ 7, 8, 9]
+</pre><p>
+Do not use both ';' and return at once on the same line though.
+ </p><p>
+You can also use the matrix expansion functionality to enter matrices.
+For example you can do:
+</p><pre class="programlisting">a = [ 1, 2, 3
+ 4, 5, 6
+ 7, 8, 9]
+b = [ a, 10
+ 11, 12]
+</pre><p>
+and you should get
+</p><pre class="programlisting">[1, 2, 3, 10
+ 4, 5, 6, 10
+ 7, 8, 9, 10
+ 11, 11, 11, 12]
+</pre><p>
+similarly you can build matrices out of vectors and other stuff like that.
+ </p><p>
+Another thing is that non-specified spots are initialized to 0, so
+</p><pre class="programlisting">[1, 2, 3
+ 4, 5
+ 6]
+</pre><p>
+will end up being
+</p><pre class="programlisting">
+[1, 2, 3
+ 4, 5, 0
+ 6, 0, 0]
+</pre><p>
+ </p><p>
+ When matrices are evaluated, they are evaluated and traversed row-wise. This is just
+ like the <code class="literal">M@(j)</code> operator, which traverses the matrix row-wise.
+ </p><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Примечание</h3><p>
+Be careful about using returns for expressions inside the
+<code class="literal">[ ]</code> brackets, as they have a slightly different meaning
+there. You will start a new row.
+ </p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch07s06.html">Пред.</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch08s02.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Загрузка программ
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Conjugate Transpose and Transpose Operator</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch08s02.html b/help/ru/html/ch08s02.html
new file mode 100644
index 0000000..23ef094
--- /dev/null
+++ b/help/ru/html/ch08s02.html
@@ -0,0 +1,21 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Conjugate Transpose
and Transpose Operator</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch08.html"
title="Глава 8. Матрицы в GEL"><link rel="prev" href="ch08.html" title="Глава 8. Матрицы в GEL"><link
rel="next" href="ch08s03.html" title="Линейная алгебра"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Conjugate Transpose and Transpose Operator</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch08.html">Пред.</a> </td><th width="60%"
align="center">Глава 8. Матрицы в GEL</th><td width="20%" align="right"> <a accesskey="n" href=
"ch08s03.html">След.</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-matrix-transpose"></a>Conjugate Transpose and Transpose
Operator</h2></div></div></div><p>
+You can conjugate transpose a matrix by using the <code class="literal">'</code> operator. That is
+the entry in the
+<code class="varname">i</code>th column and the <code class="varname">j</code>th row will be
+the complex conjugate of the entry in the
+<code class="varname">j</code>th column and the <code class="varname">i</code>th row of the original matrix.
+ For example:
+</p><pre class="programlisting">[1,2,3]*[4,5,6]'
+</pre><p>
+We transpose the second vector to make matrix multiplication possible.
+If you just want to transpose a matrix without conjugating it, you would
+use the <code class="literal">.'</code> operator. For example:
+</p><pre class="programlisting">[1,2,3]*[4,5,6i].'
+</pre><p>
+ </p><p>
+ Note that normal transpose, that is the <code class="literal">.'</code> operator, is much faster
+ and will not create a new copy of the matrix in memory. The conjugate transpose does
+ create a new copy unfortunately.
+ It is recommended to always use the <code class="literal">.'</code> operator when working with real
+ matrices and vectors.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch08.html">Пред.</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch08.html">Наверх</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch08s03.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Глава 8. Матрицы в GEL
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Линейная алгебра</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch08s03.html b/help/ru/html/ch08s03.html
new file mode 100644
index 0000000..76a3509
--- /dev/null
+++ b/help/ru/html/ch08s03.html
@@ -0,0 +1,32 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Линейная
алгебра</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch08.html" title="Глава 8.
Матрицы в GEL"><link rel="prev" href="ch08s02.html" title="Conjugate Transpose and Transpose Operator"><link
rel="next" href="ch09.html" title="Глава 9. Многочлены в GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Линейная алгебра</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch08s02.html">Пред.</a> </td><th width="60%" align="center">Глава 8. Матрицы в
GEL</th><td width="20%" align="right"> <a accesskey="n" href="c
h09.html">След.</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-matrix-linalg"></a>Линейная
алгебра</h2></div></div></div><p>
+ Genius implements many useful linear algebra and matrix manipulation
+routines. See the <a class="link" href="ch11s09.html" title="Линейная алгебра">Linear Algebra</a> and
+<a class="link" href="ch11s08.html" title="Операции с матрицами">Matrix Manipulation</a>
+sections of the GEL function listing.
+ </p><p>
+ The linear algebra routines implemented in GEL do not currently come
+from a well tested numerical package, and thus should not be used for critical
+numerical computation. On the other hand, Genius implements very well many
+linear algebra operations with rational and integer coefficients. These are
+inherently exact and in fact will give you much better results than common
+double precision routines for linear algebra.
+ </p><p>
+ For example, it is pointless to compute the rank and nullspace of a
+floating point matrix since for all practical purposes, we need to consider the
+matrix as having some slight errors. You are likely to get a different result
+than you expect. The problem is that under a small perturbation every matrix
+is of full rank and invertible. If the matrix however is of rational numbers,
+then the rank and nullspace are always exact.
+ </p><p>
+ In general when Genius computes the basis of a certain vectorspace
+ (for example with the <a class="link" href="ch11s09.html#gel-function-NullSpace"><code
class="function">NullSpace</code></a>) it will give the basis as
+a matrix, in which the columns are the vectors of the basis. That is, when
+Genius talks of a linear subspace it means a matrix whose column space is
+the given linear subspace.
+ </p><p>
+ It should be noted that Genius can remember certain properties of a
+matrix. For example, it will remember that a matrix is in row reduced form.
+If many calls are made to functions that internally use row reduced form of
+the matrix, we can just row reduce the matrix beforehand once. Successive
+calls to <a class="link" href="ch11s09.html#gel-function-rref"><code class="function">rref</code></a> will
be very fast.
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch08s02.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch08.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch09.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Conjugate
Transpose and Transpose Operator </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Начало</a></td><td width="40%" align="right" valign="top"> Глава 9. Многочлены в
GEL</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch09.html b/help/ru/html/ch09.html
new file mode 100644
index 0000000..5eb8575
--- /dev/null
+++ b/help/ru/html/ch09.html
@@ -0,0 +1,47 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Глава 9. Многочлены в
GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="index.html" title="Руководство
пользователя Genius"><link rel="prev" href="ch08s03.html" title="Линейная алгебра"><link rel="next"
href="ch10.html" title="Глава 10. Теория множеств в GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Глава 9. Многочлены в GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch08s03.html">Пред.</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" h
ref="ch10.html">След.</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-gel-polynomials"></a>Глава 9. Многочлены в
GEL</h1></div></div></div><div class="toc"><p><b>Содержание</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch09.html#genius-gel-polynomials-using">Использование многочленов</a></span></dt></dl></div><p>В
настоящее время Genius может работать с многочленами одной переменной, записанными в виде векторов, и
выполнять некоторые основные операции с ними. В будущем планируется расширить их поддержку.</p><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-polynomials-using"></a>Использование многочленов
</h2></div></div></div><p>
+Currently
+polynomials in one variable are just horizontal vectors with value only nodes.
+The power of the term is the position in the vector, with the first position
+being 0. So,
+</p><pre class="programlisting">[1,2,3]
+</pre><p>
+translates to a polynomial of
+</p><pre class="programlisting">1 + 2*x + 3*x^2
+</pre><p>
+ </p><p>
+You can add, subtract and multiply polynomials using the
+<a class="link" href="ch11s15.html#gel-function-AddPoly"><code class="function">AddPoly</code></a>,
+<a class="link" href="ch11s15.html#gel-function-SubtractPoly"><code
class="function">SubtractPoly</code></a>, and
+<a class="link" href="ch11s15.html#gel-function-MultiplyPoly"><code class="function">MultiplyPoly</code></a>
functions respectively.
+You can print a polynomial using the
+<a class="link" href="ch11s15.html#gel-function-PolyToString"><code class="function">PolyToString</code></a>
+function.
+For example,
+</p><pre class="programlisting">PolyToString([1,2,3],"y")
+</pre><p>
+gives
+</p><pre class="programlisting">3*y^2 + 2*y + 1
+</pre><p>
+You can also get a function representation of the polynomial so that you can
+evaluate it. This is done by using
+<a class="link" href="ch11s15.html#gel-function-PolyToFunction"><code
class="function">PolyToFunction</code></a>,
+which
+returns an anonymous function.
+</p><pre class="programlisting">f = PolyToFunction([0,1,1])
+f(2)
+</pre><p>
+ </p><p>
+ It is also possible to find roots of polynomials of degrees 1 through 4 by using the
+function
+<a class="link" href="ch11s13.html#gel-function-PolynomialRoots"><code
class="function">PolynomialRoots</code></a>,
+which calls the appropriate formula function. Higher degree polynomials must be converted to
+functions and solved
+numerically using a function such as
+<a class="link" href="ch11s13.html#gel-function-FindRootBisection"><code
class="function">FindRootBisection</code></a>,
+<a class="link" href="ch11s13.html#gel-function-FindRootFalsePosition"><code
class="function">FindRootFalsePosition</code></a>,
+<a class="link" href="ch11s13.html#gel-function-FindRootMullersMethod"><code
class="function">FindRootMullersMethod</code></a>, or
+<a class="link" href="ch11s13.html#gel-function-FindRootSecant"><code
class="function">FindRootSecant</code></a>.
+ </p><p>
+See <a class="xref" href="ch11s15.html" title="Многочлены">«Многочлены»</a> in the function list
+for the rest of functions acting on polynomials.
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch08s03.html">Пред.</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch10.html">След.</a></td></tr><tr><td width="40%"
align="left" valign="top">Линейная алгебра </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Начало</a></td><td width="40%" align="right" valign="top"> Глава 10. Теория множеств в
GEL</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch10.html b/help/ru/html/ch10.html
new file mode 100644
index 0000000..4d51725
--- /dev/null
+++ b/help/ru/html/ch10.html
@@ -0,0 +1,41 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Глава 10. Теория
множеств в GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="index.html" title="Руководство
пользователя Genius"><link rel="prev" href="ch09.html" title="Глава 9. Многочлены в GEL"><link rel="next"
href="ch11.html" title="Глава 11. Список функций GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Глава 10. Теория множеств в GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch09.html">Пред.</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right">�
�<a accesskey="n" href="ch11.html">След.</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-gel-settheory"></a>Глава 10. Теория множеств в
GEL</h1></div></div></div><div class="toc"><p><b>Содержание</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch10.html#genius-gel-sets-using">Using Sets</a></span></dt></dl></div><p>
+ Genius has some basic set theoretic functionality built in. Currently a set is
+ just a vector (or a matrix). Every distinct object is treated as a different element.
+ </p><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-sets-using"></a>Using Sets</h2></div></div></div><p>
+ Just like vectors, objects
+ in sets can include numbers, strings, <code class="constant">null</code>, matrices and vectors. It is
+ planned in the future to have a dedicated type for sets, rather than using vectors.
+ Note that floating point numbers are distinct from integers, even if they appear the same.
+ That is, Genius will treat <code class="constant">0</code> and <code class="constant">0.0</code>
+ as two distinct elements. The <code class="constant">null</code> is treated as an empty set.
+ </p><p>
+ To build a set out of a vector, use the
+ <a class="link" href="ch11s16.html#gel-function-MakeSet"><code class="function">MakeSet</code></a>
function.
+ Currently, it will just return a new vector where every element is unique.
+</p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>MakeSet([1,2,2,3])</code></strong>
+= [1, 2, 3]
+</pre><p>
+</p><p>
+ Similarly there are functions
+ <a class="link" href="ch11s16.html#gel-function-Union"><code class="function">Union</code></a>,
+ <a class="link" href="ch11s16.html#gel-function-Intersection"><code
class="function">Intersection</code></a>,
+ <a class="link" href="ch11s16.html#gel-function-SetMinus"><code class="function">SetMinus</code></a>,
which
+ are rather self explanatory. For example:
+</p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>Union([1,2,3], [1,2,4])</code></strong>
+= [1, 2, 4, 3]
+</pre><p>
+ Note that no order is guaranteed for the return values. If you wish to sort the vector you
+should use the
+ <a class="link" href="ch11s08.html#gel-function-SortVector"><code
class="function">SortVector</code></a> function.
+ </p><p>
+ For testing membership, there are functions
+ <a class="link" href="ch11s16.html#gel-function-IsIn"><code class="function">IsIn</code></a> and
+ <a class="link" href="ch11s16.html#gel-function-IsSubset"><code class="function">IsSubset</code></a>,
+ which return a boolean value. For example:
+</p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>IsIn (1,
[0,1,2])</code></strong>
+= true
+</pre><p>
+ The input <strong class="userinput"><code>IsIn(x,X)</code></strong> is of course equivalent to
+ <strong class="userinput"><code>IsSubset([x],X)</code></strong>. Note that since the empty set is a
subset
+ of every set, <strong class="userinput"><code>IsSubset(null,X)</code></strong> is always true.
+ </p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch09.html">Пред.</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch11.html">След.</a></td></tr><tr><td width="40%"
align="left" valign="top">Глава 9. Многочлены в GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Начало</a></td><td width="40%" align="right" valign="top"> Глава 11. Список функций
GEL</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch11.html b/help/ru/html/ch11.html
new file mode 100644
index 0000000..afd1f63
--- /dev/null
+++ b/help/ru/html/ch11.html
@@ -0,0 +1,4 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Глава 11. Список
функций GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="index.html" title="Руководство
пользователя Genius"><link rel="prev" href="ch10.html" title="Глава 10. Теория множеств в GEL"><link
rel="next" href="ch11s02.html" title="Основные"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Глава 11. Список функций GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch10.html">Пред.</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch1
1s02.html">След.</a></td></tr></table><hr></div><div class="chapter"><div class="titlepage"><div><div><h1
class="title"><a name="genius-gel-function-list"></a>Глава 11. Список функций GEL</h1></div></div></div><div
class="toc"><p><b>Содержание</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch11.html#genius-gel-function-list-commands">Команды</a></span></dt><dt><span class="sect1"><a
href="ch11s02.html">Основные</a></span></dt><dt><span class="sect1"><a
href="ch11s03.html">Параметры</a></span></dt><dt><span class="sect1"><a
href="ch11s04.html">Константы</a></span></dt><dt><span class="sect1"><a
href="ch11s05.html">Числовые</a></span></dt><dt><span class="sect1"><a
href="ch11s06.html">Тригонометрические</a></span></dt><dt><span class="sect1"><a href="ch11s07.html">Теория
чисел</a></span></dt><dt><span class="sect1"><a href="ch11s08.html">Операции с матри
цами</a></span></dt><dt><span class="sect1"><a href="ch11s09.html">Линейная алгебра</a></span></dt><dt><span
class="sect1"><a href="ch11s10.html">Комбинаторика</a></span></dt><dt><span class="sect1"><a
href="ch11s11.html">Calculus</a></span></dt><dt><span class="sect1"><a
href="ch11s12.html">Functions</a></span></dt><dt><span class="sect1"><a href="ch11s13.html">Решение
уравнений</a></span></dt><dt><span class="sect1"><a href="ch11s14.html">Статистика</a></span></dt><dt><span
class="sect1"><a href="ch11s15.html">Многочлены</a></span></dt><dt><span class="sect1"><a
href="ch11s16.html">Теория множеств</a></span></dt><dt><span class="sect1"><a href="ch11s17.html">Commutative
Algebra</a></span></dt><dt><span class="sect1"><a href="ch11s18.html">Прочие</a></span></dt><dt><span
class="sect1"><a href="ch11s19.html">Symbolic Operations</a></span></dt><dt><span class="sect1"><a
href="ch11s20.html"
Построение графиков</a></span></dt></dl></div><p>Для получения справки по определённой функции, наберите в
консоли: </p><pre class="programlisting">help ИмяФункции
+</pre><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-commands"></a>Команды</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a name="gel-command-help"></a>help</span></dt><dd><pre
class="synopsis">help</pre><pre class="synopsis">help ИмяФункции</pre><p>Показывает справку (или справку по
функции/команде).</p></dd><dt><span class="term"><a name="gel-command-load"></a>load</span></dt><dd><pre
class="synopsis">load "file.gel"</pre><p>Load a file into the interpreter. The file will execute
+as if it were typed onto the command line.</p></dd><dt><span class="term"><a
name="gel-command-cd"></a>cd</span></dt><dd><pre class="synopsis">cd /каталог/имя</pre><p>Меняет рабочий
каталог на <code class="filename">/каталог/имя</code>.</p></dd><dt><span class="term"><a
name="gel-command-pwd"></a>pwd</span></dt><dd><pre class="synopsis">pwd</pre><p>Выводит текущий рабочий
каталог.</p></dd><dt><span class="term"><a name="gel-command-ls"></a>ls</span></dt><dd><pre
class="synopsis">ls</pre><p>Показывает список файлов в текущем каталоге.</p></dd><dt><span class="term"><a
name="gel-command-plugin"></a>plugin</span></dt><dd><pre class="synopsis">plugin plugin_name</pre><p>Load a
plugin. Plugin of that name must be installed on the system
+in the proper directory.</p></dd></dl></div></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch10.html">Пред.</a>
</td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch11s02.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Глава 10. Теория
множеств в GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td
width="40%" align="right" valign="top"> Основные</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch11s02.html b/help/ru/html/ch11s02.html
new file mode 100644
index 0000000..b02c8ac
--- /dev/null
+++ b/help/ru/html/ch11s02.html
@@ -0,0 +1,85 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Основные</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Руководство пользователя Genius"><link rel="up" href="ch11.html" title="Глава 11. Список функций
GEL"><link rel="prev" href="ch11.html" title="Глава 11. Список функций GEL"><link rel="next"
href="ch11s03.html" title="Параметры"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Основные</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11.html">Пред.</a> </td><th width="60%" align="center">Глава 11. Список функций
GEL</th><td width="20%" align="right"> <a accesskey="n" href="ch11s03.html">След.</a></td
</tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-function-list-basic"></a>Основные</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AskButtons"></a>AskButtons</span></dt><dd><pre class="synopsis">AskButtons
(вопрос)</pre><pre class="synopsis">AskButtons (вопрос, кнопка1, ...)</pre><p>Задаёт вопрос и предлагает
пользователю список кнопок (или меню вариантов в текстовом режиме). Возвращает отсчитываемый с 1 индекс
нажатой кнопки. То есть 1, если нажата первая кнопка, 2 — если нажата вторая и т.д. Если пользователь
закрыл окно (или просто нажал Enter в текстовом режиме), то в
озвращает <code class="constant">null</code>. Выполнение программы останавливается, пока пользователь не
ответит.</p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-AskString"></a>AskString</span></dt><dd><pre class="synopsis">AskString (query)</pre><pre
class="synopsis">AskString (query, default)</pre><p>Asks a question and lets the user enter a string, which
+it then returns. If the user cancels or closes the window, then
+<code class="constant">null</code> is returned. The execution of the program
+is blocked until the user responds. If <code class="varname">default</code> is given, then it is pre-typed
in for the user to just press enter on (version 1.0.6 onwards).</p></dd><dt><span class="term"><a
name="gel-function-Compose"></a>Compose</span></dt><dd><pre class="synopsis">Compose (f,g)</pre><p>Compose
two functions and return a function that is the composition of <code class="function">f</code> and <code
class="function">g</code>.</p></dd><dt><span class="term"><a
name="gel-function-ComposePower"></a>ComposePower</span></dt><dd><pre class="synopsis">ComposePower
(f,n,x)</pre><p>Compose and execute a function with itself <code class="varname">n</code> times, passing
<code class="varname">x</code> as argument. Returning <code class="varname">x</code> if
+<code class="varname">n</code> equals 0.
+ Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>function f(x) = x^2 ;</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>ComposePower (f,3,7)</code></strong>
+= 5764801
+<code class="prompt">genius></code> <strong class="userinput"><code>f(f(f(7)))</code></strong>
+= 5764801
+</pre><p>
+ </p></dd><dt><span class="term"><a name="gel-function-Evaluate"></a>Evaluate</span></dt><dd><pre
class="synopsis">Evaluate (str)</pre><p>Parses and evaluates a string.</p></dd><dt><span class="term"><a
name="gel-function-GetCurrentModulo"></a>GetCurrentModulo</span></dt><dd><pre
class="synopsis">GetCurrentModulo</pre><p>Get current modulo from the context outside the function. That is,
if outside of
+the function was executed in modulo (using <code class="literal">mod</code>) then this returns what
+this modulo was. Normally the body of the function called is not executed in modular arithmetic,
+and this builtin function makes it possible to make GEL functions aware of modular
arithmetic.</p></dd><dt><span class="term"><a name="gel-function-Identity"></a>Identity</span></dt><dd><pre
class="synopsis">Identity (x)</pre><p>Identity function, returns its argument. It is equivalent to <strong
class="userinput"><code>function Identity(x)=x</code></strong>.</p></dd><dt><span class="term"><a
name="gel-function-IntegerFromBoolean"></a>IntegerFromBoolean</span></dt><dd><pre
class="synopsis">IntegerFromBoolean (bval)</pre><p>Преобразует логическое значение в целое число (0 для <code
class="constant">false</code> или 1 для <code class="constant">true</code>). <code
class="varname">bval</code> может также быть числом, в этом случае ненулевое значение интерпретируется как
<code class="constant">true</code>, а нулевое — как <code class="constant">false<
/code>.</p></dd><dt><span class="term"><a name="gel-function-IsBoolean"></a>IsBoolean</span></dt><dd><pre
class="synopsis">IsBoolean (arg)</pre><p>Проверяет, является аргумент логическим значением (а не
числом).</p></dd><dt><span class="term"><a name="gel-function-IsDefined"></a>IsDefined</span></dt><dd><pre
class="synopsis">IsDefined (id)</pre><p>Check if an id is defined. You should pass a string or
+ and identifier. If you pass a matrix, each entry will be
+ evaluated separately and the matrix should contain strings
+ or identifiers.</p></dd><dt><span class="term"><a
name="gel-function-IsFunction"></a>IsFunction</span></dt><dd><pre class="synopsis">IsFunction
(arg)</pre><p>Проверяет, является ли аргумент функцией.</p></dd><dt><span class="term"><a
name="gel-function-IsFunctionOrIdentifier"></a>IsFunctionOrIdentifier</span></dt><dd><pre
class="synopsis">IsFunctionOrIdentifier (arg)</pre><p>Check if argument is a function or an
identifier.</p></dd><dt><span class="term"><a
name="gel-function-IsFunctionRef"></a>IsFunctionRef</span></dt><dd><pre class="synopsis">IsFunctionRef
(arg)</pre><p>Check if argument is a function reference. This includes variable
+references.</p></dd><dt><span class="term"><a name="gel-function-IsMatrix"></a>IsMatrix</span></dt><dd><pre
class="synopsis">IsMatrix (arg)</pre><p>Проверяет, является ли аргумент матрицей. Хотя <code
class="constant">null</code> иногда используют вместо пустой матрицы, функция <code
class="function">IsMatrix</code> не считает <code class="constant">null</code> матрицей.</p></dd><dt><span
class="term"><a name="gel-function-IsNull"></a>IsNull</span></dt><dd><pre class="synopsis">IsNull
(arg)</pre><p>Проверяет, имеет ли аргумент значение <code class="constant">null</code>.</p></dd><dt><span
class="term"><a name="gel-function-IsString"></a>IsString</span></dt><dd><pre class="synopsis">IsString
(arg)</pre><p>Проверяет, является ли аргумент текстовой строкой.</p></dd><dt><span class="term"><a
name="gel-functio
n-IsValue"></a>IsValue</span></dt><dd><pre class="synopsis">IsValue (arg)</pre><p>Проверяет, является ли
аргумент числом.</p></dd><dt><span class="term"><a name="gel-function-Parse"></a>Parse</span></dt><dd><pre
class="synopsis">Parse (str)</pre><p>Parses but does not evaluate a string. Note that certain
+ pre-computation is done during the parsing stage.</p></dd><dt><span class="term"><a
name="gel-function-SetFunctionFlags"></a>SetFunctionFlags</span></dt><dd><pre
class="synopsis">SetFunctionFlags (id,flags...)</pre><p>Set flags for a function, currently <code
class="literal">"PropagateMod"</code> and <code class="literal">"NoModuloArguments"</code>.
+If <code class="literal">"PropagateMod"</code> is set, then the body of the function is evaluated in modular
arithmetic when the function
+is called inside a block that was evaluated using modular arithmetic (using <code
class="literal">mod</code>). If
+<code class="literal">"NoModuloArguments"</code>, then the arguments of the function are never evaluated
using modular arithmetic.
+ </p></dd><dt><span class="term"><a name="gel-function-SetHelp"></a>SetHelp</span></dt><dd><pre
class="synopsis">SetHelp (id,category,desc)</pre><p>Set the category and help description line for a
function.</p></dd><dt><span class="term"><a
name="gel-function-SetHelpAlias"></a>SetHelpAlias</span></dt><dd><pre class="synopsis">SetHelpAlias
(id,alias)</pre><p>Sets up a help alias.</p></dd><dt><span class="term"><a
name="gel-function-chdir"></a>chdir</span></dt><dd><pre class="synopsis">chdir (dir)</pre><p>Изменяет текущий
каталог. То же, что и <span class="command"><strong>cd</strong></span>.</p></dd><dt><span class="term"><a
name="gel-function-CurrentTime"></a>CurrentTime</span></dt><dd><pre
class="synopsis">CurrentTime</pre><p>Возвращает текущее время UNIX с точностью до микросекунд в виде числа с
плавающей точкой. То есть возвращает число секунд с
1 января 1970 г.</p><p>Version 1.0.15 onwards.</p></dd><dt><span class="term"><a
name="gel-function-display"></a>display</span></dt><dd><pre class="synopsis">display
(str,expr)</pre><p>Display a string and an expression with a colon to separate them.</p></dd><dt><span
class="term"><a name="gel-function-DisplayVariables"></a>DisplayVariables</span></dt><dd><pre
class="synopsis">DisplayVariables (var1,var2,...)</pre><p>Display set of variables. The variables can be
given as
+ strings or identifiers. For example:
+ </p><pre class="programlisting">DisplayVariables(`x,`y,`z)
+ </pre><p>
+ </p><p>
+ If called without arguments (must supply empty argument list) as
+ </p><pre class="programlisting">DisplayVariables()
+ </pre><p>
+ then all variables are printed including a stacktrace similar to
+ <span class="guilabel">Show user variables</span> in the graphical version.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-error"></a>error</span></dt><dd><pre class="synopsis">error (str)</pre><p>Выводит строку в
поток ошибок (на консоль).</p></dd><dt><span class="term"><a
name="gel-function-exit"></a>exit</span></dt><dd><pre class="synopsis">exit</pre><p>Псевдоним: <code
class="function">quit</code></p><p>Завершает работу программы.</p></dd><dt><span class="term"><a
name="gel-function-false"></a>false</span></dt><dd><pre class="synopsis">false</pre><p>Псевдонимы: <code
class="function">False</code><code class="function">FALSE</code></p><p>Логическое значение <code
class="constant">false</code> (ложь).</p></dd><dt><span class="term"><a
name="gel-function-manual"></a>manual</span></dt><dd><pre class="synopsis">manual</pre><p>Показывает
руководство пользователя.</p></dd><dt><span c
lass="term"><a name="gel-function-print"></a>print</span></dt><dd><pre class="synopsis">print
(str)</pre><p>Выводит выражение и выполняет переход на новую строку. Аргумент <code
class="varname">str</code> может быть любым выражением. Он преобразуется в строку перед
выводом.</p></dd><dt><span class="term"><a name="gel-function-printn"></a>printn</span></dt><dd><pre
class="synopsis">printn (str)</pre><p>Выводит выражение без перехода на новую строку. Аргумент <code
class="varname">str</code> может быть любым выражением. Он преобразуется в строку перед
выводом.</p></dd><dt><span class="term"><a name="gel-function-PrintTable"></a>PrintTable</span></dt><dd><pre
class="synopsis">PrintTable (f,v)</pre><p>Print a table of values for a function. The values are in the
+ vector <code class="varname">v</code>. You can use the vector
+ building notation as follows:
+ </p><pre class="programlisting">PrintTable (f,[0:10])
+ </pre><p>
+ If <code class="varname">v</code> is a positive integer, then the table of
+ integers from 1 up to and including v will be used.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-protect"></a>protect</span></dt><dd><pre class="synopsis">protect (id)</pre><p>Protect a
variable from being modified. This is used on the internal GEL functions to
+avoid them being accidentally overridden.</p></dd><dt><span class="term"><a
name="gel-function-ProtectAll"></a>ProtectAll</span></dt><dd><pre class="synopsis">ProtectAll
()</pre><p>Protect all currently defined variables, parameters and
+functions from being modified. This is used on the internal GEL functions to
+avoid them being accidentally overridden. Normally <span class="application">Genius Mathematics Tool</span>
considers
+unprotected variables as user defined.</p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-set"></a>set</span></dt><dd><pre class="synopsis">set (id,val)</pre><p>Set a global
variable. The <code class="varname">id</code>
+ can be either a string or a quoted identifier.
+ For example:
+ </p><pre class="programlisting">set(`x,1)
+ </pre><p>
+ will set the global variable <code class="varname">x</code> to the value 1.
+ </p><p>The function returns the <code class="varname">val</code>, to be
+ usable in chaining.</p></dd><dt><span class="term"><a
name="gel-function-SetElement"></a>SetElement</span></dt><dd><pre class="synopsis">SetElement
(id,row,col,val)</pre><p>Set an element of a global variable which is a matrix.
+ The <code class="varname">id</code>
+ can be either a string or a quoted identifier.
+ For example:
+ </p><pre class="programlisting">SetElement(`x,2,3,1)
+ </pre><p>
+ will set the second row third column element of the global variable <code
class="varname">x</code> to the value 1. If no global variable of the name exists, or if it is set to
something that's not a matrix, a new zero matrix of appropriate size will be created.
+ </p><p>The <code class="varname">row</code> and <code class="varname">col</code> can also be
ranges, and the semantics are the same as for regular setting of the elements with an equals sign.
+ </p><p>The function returns the <code class="varname">val</code>, to be
+ usable in chaining.</p><p>Available from 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SetVElement"></a>SetVElement</span></dt><dd><pre class="synopsis">SetElement
(id,elt,val)</pre><p>Set an element of a global variable which is a vector.
+ The <code class="varname">id</code>
+ can be either a string or a quoted identifier.
+ For example:
+ </p><pre class="programlisting">SetElement(`x,2,1)
+ </pre><p>
+ will set the second element of the global vector variable <code class="varname">x</code> to the
value 1. If no global variable of the name exists, or if it is set to something that's not a vector
(matrix), a new zero row vector of appropriate size will be created.
+ </p><p>The <code class="varname">elt</code> can also be a range, and the semantics are the same as
for regular setting of the elements with an equals sign.
+ </p><p>The function returns the <code class="varname">val</code>, to be
+ usable in chaining.</p><p>Available from 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-string"></a>string</span></dt><dd><pre class="synopsis">string (s)</pre><p>Преобразует
аргумент любого типа в строку.</p></dd><dt><span class="term"><a
name="gel-function-true"></a>true</span></dt><dd><pre class="synopsis">true</pre><p>Псевдонимы: <code
class="function">True</code><code class="function">TRUE</code></p><p>Логическое значение <code
class="constant">true</code> (истина).</p></dd><dt><span class="term"><a
name="gel-function-undefine"></a>undefine</span></dt><dd><pre class="synopsis">undefine (id)</pre><p>Alias:
<code class="function">Undefine</code></p><p>Undefine a variable. This includes locals and globals,
+ every value on all context levels is wiped. This function
+ should really not be used on local variables. A vector of
+ identifiers can also be passed to undefine several variables.
+ </p></dd><dt><span class="term"><a
name="gel-function-UndefineAll"></a>UndefineAll</span></dt><dd><pre class="synopsis">UndefineAll
()</pre><p>Undefine all unprotected global variables
+ (including functions and parameters). Normally <span class="application">Genius Mathematics
Tool</span>
+ considers protected variables as system defined functions
+ and variables. Note that <code class="function">UndefineAll</code>
+ only removes the global definition of symbols not local ones,
+ so that it may be run from inside other functions safely.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-unprotect"></a>unprotect</span></dt><dd><pre class="synopsis">unprotect
(id)</pre><p>Unprotect a variable from being modified.</p></dd><dt><span class="term"><a
name="gel-function-UserVariables"></a>UserVariables</span></dt><dd><pre class="synopsis">UserVariables
()</pre><p>Возвращает вектор идентификаторов определённых пользователем (незащищённых) глобальных
переменных.</p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-wait"></a>wait</span></dt><dd><pre class="synopsis">wait (secs)</pre><p>Waits a specified
number of seconds. <code class="varname">secs</code>
+must be non-negative. Zero is accepted and nothing happens in this case,
+except possibly user interface events are processed.</p><p>Since version 1.0.18, <code
class="varname">secs</code> can be a noninteger number, so
+ <strong class="userinput"><code>wait(0.1)</code></strong> will wait for one tenth of a
second.</p></dd><dt><span class="term"><a name="gel-function-version"></a>version</span></dt><dd><pre
class="synopsis">version</pre><p>Returns the version of Genius as a horizontal 3-vector with
+ major version first, then minor version and finally the patch level.</p></dd><dt><span
class="term"><a name="gel-function-warranty"></a>warranty</span></dt><dd><pre
class="synopsis">warranty</pre><p>Gives the warranty information.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11.html">Пред.</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Наверх</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s03.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Глава 11. Список функций
GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Параметры</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch11s03.html b/help/ru/html/ch11s03.html
new file mode 100644
index 0000000..618477c
--- /dev/null
+++ b/help/ru/html/ch11s03.html
@@ -0,0 +1,39 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Параметры</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Руководство пользователя Genius"><link rel="up" href="ch11.html" title="Глава 11. Список функций
GEL"><link rel="prev" href="ch11s02.html" title="Основные"><link rel="next" href="ch11s04.html"
title="Константы"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Параметры</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s02.html">Пред.</a> </td><th width="60%" align="center">Глава 11. Список функций GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch11s04.html">След.</a></td></tr></table><hr></
div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-parameters"></a>Параметры</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-ChopTolerance"></a>ChopTolerance</span></dt><dd><pre class="synopsis">ChopTolerance =
number</pre><p>Tolerance of the <code class="function">Chop</code> function.</p></dd><dt><span
class="term"><a name="gel-function-ContinuousNumberOfTries"></a>ContinuousNumberOfTries</span></dt><dd><pre
class="synopsis">ContinuousNumberOfTries = number</pre><p>How many iterations to try to find the limit for
continuity and limits.</p></dd><dt><span class="term"><a
name="gel-function-ContinuousSFS"></a>ContinuousSFS</span></dt><dd><pre class="synopsis">ContinuousSFS =
number</pre><p>How many successive steps to be within tolerance for calculation of
continuity.</p></dd><dt><span class="term"><a name="gel-function-Continu
ousTolerance"></a>ContinuousTolerance</span></dt><dd><pre class="synopsis">ContinuousTolerance =
number</pre><p>Tolerance for continuity of functions and for calculating the limit.</p></dd><dt><span
class="term"><a name="gel-function-DerivativeNumberOfTries"></a>DerivativeNumberOfTries</span></dt><dd><pre
class="synopsis">DerivativeNumberOfTries = number</pre><p>How many iterations to try to find the limit for
derivative.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeSFS"></a>DerivativeSFS</span></dt><dd><pre class="synopsis">DerivativeSFS =
number</pre><p>How many successive steps to be within tolerance for calculation of
derivative.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeTolerance"></a>DerivativeTolerance</span></dt><dd><pre
class="synopsis">DerivativeTolerance = number</pre><p>Tolerance for calculating the derivatives of
functions.</p></dd><dt><span class="term"><a
name="gel-function-ErrorFunctionTolerance"></a>ErrorFunctionToleran
ce</span></dt><dd><pre class="synopsis">ErrorFunctionTolerance = number</pre><p>Tolerance of the <a
class="link" href="ch11s12.html#gel-function-ErrorFunction"><code
class="function">ErrorFunction</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-FloatPrecision"></a>FloatPrecision</span></dt><dd><pre class="synopsis">FloatPrecision =
число</pre><p>Точность чисел с плавающей точкой.</p></dd><dt><span class="term"><a
name="gel-function-FullExpressions"></a>FullExpressions</span></dt><dd><pre class="synopsis">FullExpressions
= логическое значение</pre><p>Выводить полные выражения, даже если они превышают длину
строки.</p></dd><dt><span class="term"><a
name="gel-function-GaussDistributionTolerance"></a>GaussDistributionTolerance</span></dt><dd><pre
class="synopsis">GaussDistributionTolerance = number</pre><p>Tolerance of the <a class="link"
href="ch11s14.html#
gel-function-GaussDistribution"><code class="function">GaussDistribution</code></a>
function.</p></dd><dt><span class="term"><a
name="gel-function-IntegerOutputBase"></a>IntegerOutputBase</span></dt><dd><pre
class="synopsis">IntegerOutputBase = number</pre><p>Integer output base.</p></dd><dt><span class="term"><a
name="gel-function-IsPrimeMillerRabinReps"></a>IsPrimeMillerRabinReps</span></dt><dd><pre
class="synopsis">IsPrimeMillerRabinReps = number</pre><p>Number of extra Miller-Rabin tests to run on a
number before declaring it a prime in <a class="link" href="ch11s07.html#gel-function-IsPrime"><code
class="function">IsPrime</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawLegends"></a>LinePlotDrawLegends</span></dt><dd><pre
class="synopsis">LinePlotDrawLegends = true</pre><p>Tells genius to draw the legends for <a class="link"
href="ch11s20.html" title="Построение графиков">line plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawAxisLabels"></a>LinePlotDrawAxisLabels</span></dt><dd><pre
class="synopsis">LinePlotDrawAxisLabels = true</pre><p>Tells genius to draw the axis labels for <a
class="link" href="ch11s20.html" title="Построение графиков">line plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotVariableNames"></a>LinePlotVariableNames</span></dt><dd><pre
class="synopsis">LinePlotVariableNames = ["x","y","z","t"]</pre><p>Tells genius which variable names are used
as default names for <a class="link" href="ch11s20.html" title="Построение графиков">line plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a> and friends.
+ </p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotWindow"></a>LinePlotWindow</span></dt><dd><pre class="synopsis">LinePlotWindow =
[x1,x2,y1,y2]</pre><p>Sets the limits for <a class="link" href="ch11s20.html" title="Построение
графиков">line plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>.
+ </p></dd><dt><span class="term"><a name="gel-function-MaxDigits"></a>MaxDigits</span></dt><dd><pre
class="synopsis">MaxDigits = number</pre><p>Maximum digits to display.</p></dd><dt><span class="term"><a
name="gel-function-MaxErrors"></a>MaxErrors</span></dt><dd><pre class="synopsis">MaxErrors =
number</pre><p>Maximum errors to display.</p></dd><dt><span class="term"><a
name="gel-function-MixedFractions"></a>MixedFractions</span></dt><dd><pre class="synopsis">MixedFractions =
логическое значение</pre><p>Если true, выводятся смешанные дроби.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegralFunction"></a>NumericalIntegralFunction</span></dt><dd><pre
class="synopsis">NumericalIntegralFunction = function</pre><p>The function used for numerical integration in
<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p></dd><dt><span class="ter
m"><a name="gel-function-NumericalIntegralSteps"></a>NumericalIntegralSteps</span></dt><dd><pre
class="synopsis">NumericalIntegralSteps = number</pre><p>Steps to perform in <a class="link"
href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-OutputChopExponent"></a>OutputChopExponent</span></dt><dd><pre
class="synopsis">OutputChopExponent = number</pre><p>When another number in the object being printed (a
matrix or a
+value) is greater than
+10<sup>-OutputChopWhenExponent</sup>, and
+the number being printed is less than
+10<sup>-OutputChopExponent</sup>, then
+display <code class="computeroutput">0.0</code> instead of the number.
+</p><p>
+Output is never chopped if <code class="function">OutputChopExponent</code> is zero.
+It must be a non-negative integer.
+</p><p>
+If you want output always chopped according to
+<code class="function">OutputChopExponent</code>, then set
+<code class="function">OutputChopWhenExponent</code>, to something
+greater than or equal to
+<code class="function">OutputChopExponent</code>.
+</p></dd><dt><span class="term"><a
name="gel-function-OutputChopWhenExponent"></a>OutputChopWhenExponent</span></dt><dd><pre
class="synopsis">OutputChopWhenExponent = number</pre><p>When to chop output. See
+ <a class="link" href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>.
+</p></dd><dt><span class="term"><a name="gel-function-OutputStyle"></a>OutputStyle</span></dt><dd><pre
class="synopsis">OutputStyle = строка</pre><p>Стиль вывода, может быть <code class="literal">normal</code>,
<code class="literal">latex</code>, <code class="literal">mathml</code> или <code
class="literal">troff</code>.</p><p>В основном влияет на то, как выводятся матрицы и дроби, и может быть
полезно для копирования и вставки в документы. Например, задать вывод в стиле latex можно с помощью: </p><pre
class="programlisting">OutputStyle = "latex"
+</pre></dd><dt><span class="term"><a
name="gel-function-ResultsAsFloats"></a>ResultsAsFloats</span></dt><dd><pre class="synopsis">ResultsAsFloats
= boolean</pre><p>Convert all results to floats before printing.</p></dd><dt><span class="term"><a
name="gel-function-ScientificNotation"></a>ScientificNotation</span></dt><dd><pre
class="synopsis">ScientificNotation = boolean</pre><p>Use scientific notation.</p></dd><dt><span
class="term"><a name="gel-function-SlopefieldTicks"></a>SlopefieldTicks</span></dt><dd><pre
class="synopsis">SlopefieldTicks = [vertical,horizontal]</pre><p>Sets the number of vertical and horizontal
ticks in a
+slopefield plot. (See <a class="link" href="ch11s20.html#gel-function-SlopefieldPlot"><code
class="function">SlopefieldPlot</code></a>).
+ </p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SumProductNumberOfTries"></a>SumProductNumberOfTries</span></dt><dd><pre
class="synopsis">SumProductNumberOfTries = number</pre><p>How many iterations to try for <a class="link"
href="ch11s11.html#gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a> and <a
class="link" href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SumProductSFS"></a>SumProductSFS</span></dt><dd><pre class="synopsis">SumProductSFS =
number</pre><p>How many successive steps to be within tolerance for <a class="link"
href="ch11s11.html#gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a> and <a
class="link" href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SumProductTolerance
"></a>SumProductTolerance</span></dt><dd><pre class="synopsis">SumProductTolerance =
number</pre><p>Tolerance for <a class="link" href="ch11s11.html#gel-function-InfiniteSum"><code
class="function">InfiniteSum</code></a> and <a class="link"
href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawLegends"></a>SurfacePlotDrawLegends</span></dt><dd><pre
class="synopsis">SurfacePlotDrawLegends = true</pre><p>Tells genius to draw the legends for <a class="link"
href="ch11s20.html" title="Построение графиков">surface plotting
+ functions</a> such as <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotVariableNames"></a>SurfacePlotVariableNames</span></dt><dd><pre
class="synopsis">SurfacePlotVariableNames = ["x","y","z"]</pre><p>Tells genius which variable names are used
as default names for <a class="link" href="ch11s20.html" title="Построение графиков">surface plotting
+ functions</a> using <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>.
+ Note that the <code class="varname">z</code> does not refer to the dependent (vertical) axis, but
to the independent complex variable
+ <strong class="userinput"><code>z=x+iy</code></strong>.
+ </p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotWindow"></a>SurfacePlotWindow</span></dt><dd><pre
class="synopsis">SurfacePlotWindow = [x1,x2,y1,y2,z1,z2]</pre><p>Sets the limits for surface plotting (See <a
class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>).</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldNormalized"></a>VectorfieldNormalized</span></dt><dd><pre
class="synopsis">VectorfieldNormalized = true</pre><p>Should the vectorfield plotting have normalized arrow
length. If true, vector fields will only show direction
+ and not magnitude. (See <a class="link" href="ch11s20.html#gel-function-VectorfieldPlot"><code
class="function">VectorfieldPlot</code></a>).
+ </p></dd><dt><span class="term"><a
name="gel-function-VectorfieldTicks"></a>VectorfieldTicks</span></dt><dd><pre
class="synopsis">VectorfieldTicks = [vertical,horizontal]</pre><p>Sets the number of vertical and horizontal
ticks in a
+vectorfield plot. (See <a class="link" href="ch11s20.html#gel-function-VectorfieldPlot"><code
class="function">VectorfieldPlot</code></a>).
+ </p><p>Version 1.0.10 onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s02.html">Пред.</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Наверх</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s04.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Основные </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%" align="right"
valign="top"> Константы</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch11s04.html b/help/ru/html/ch11s04.html
new file mode 100644
index 0000000..0bb4db4
--- /dev/null
+++ b/help/ru/html/ch11s04.html
@@ -0,0 +1,41 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Константы</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Руководство пользователя Genius"><link rel="up" href="ch11.html" title="Глава 11. Список функций
GEL"><link rel="prev" href="ch11s03.html" title="Параметры"><link rel="next" href="ch11s05.html"
title="Числовые"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Константы</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s03.html">Пред.</a> </td><th width="60%" align="center">Глава 11. Список функций GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch11s05.html">След.</a></td></tr></table><hr></
div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-constants"></a>Константы</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-CatalanConstant"></a>CatalanConstant</span></dt><dd><pre
class="synopsis">CatalanConstant</pre><p>
+ Catalan's Constant, approximately 0.915... It is defined to be the series where terms are
<strong class="userinput"><code>(-1^k)/((2*k+1)^2)</code></strong>, where <code class="varname">k</code>
ranges from 0 to infinity.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Catalan%27s_constant"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/CatalansConstant.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EulerConstant"></a>EulerConstant</span></dt><dd><pre
class="synopsis">EulerConstant</pre><p>Aliases: <code class="function">gamma</code></p><p>
+ Euler's constant gamma. Sometimes called the
+ Euler-Mascheroni constant.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Euler-Mascheroni_constant"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/MascheroniConstant" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Euler-MascheroniConstant.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GoldenRatio"></a>GoldenRatio</span></dt><dd><pre class="synopsis">GoldenRatio</pre><p>The
Golden Ratio.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Golden_ratio" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/GoldenRatio" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/GoldenRatio.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Gravity"></a>Gravity</span></dt><dd><pre
class="synopsis">Gravity</pre><p>Free fall acceleration at sea level in meters per second squared. This is
the standard gravity constant 9.80665. The gravity
+ in your particular neck of the woods might be different due to different altitude and the
fact that the earth is not perfectly
+ round and uniform.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Standard_gravity" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-e"></a>e</span></dt><dd><pre
class="synopsis">e</pre><p>
+ The base of the natural logarithm. <strong class="userinput"><code>e^x</code></strong>
+ is the exponential function
+ <a class="link" href="ch11s05.html#gel-function-exp"><code class="function">exp</code></a>. It
is approximately
+ 2.71828182846... This number is sometimes called Euler's number, although there are
+ several numbers that are also called Euler's. An example is the gamma constant: <a class="link"
href="ch11s04.html#gel-function-EulerConstant"><code class="function">EulerConstant</code></a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/E_(mathematical_constant)"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/E" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/e.html" target="_top">Mathworld</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-pi"></a>pi</span></dt><dd><pre
class="synopsis">pi</pre><p>Число «пи» — отношение длины окружности к её диаметру. Значение приблизительно
равно 3.14159265359...</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Pi" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Pi" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Pi.html" target="_top">Mathworld</a> for more
information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s03.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s05.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Параметры
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Числовые</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch11s05.html b/help/ru/html/ch11s05.html
new file mode 100644
index 0000000..90a4e32
--- /dev/null
+++ b/help/ru/html/ch11s05.html
@@ -0,0 +1,83 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Числовые</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Руководство пользователя Genius"><link rel="up" href="ch11.html" title="Глава 11. Список функций
GEL"><link rel="prev" href="ch11s04.html" title="Константы"><link rel="next" href="ch11s06.html"
title="Тригонометрические"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Числовые</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s04.html">Пред.</a> </td><th width="60%" align="center">Глава 11. Список функций GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch11s06.html">След.</a></td></t
r></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-function-list-numeric"></a>Числовые</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AbsoluteValue"></a>AbsoluteValue</span></dt><dd><pre class="synopsis">AbsoluteValue
(x)</pre><p>Синонимы: <code class="function">abs</code></p><p>
+ Absolute value of a number and if <code class="varname">x</code> is
+ a complex value the modulus of <code class="varname">x</code>. I.e. this
+ the distance of <code class="varname">x</code> to the origin. This is equivalent
+ to <strong class="userinput"><code>|x|</code></strong>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Absolute_value" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/AbsoluteValue" target="_top">Planetmath (absolute
value)</a>,
+ <a class="ulink" href="http://planetmath.org/ModulusOfComplexNumber" target="_top">Planetmath
(modulus)</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/AbsoluteValue.html" target="_top">Mathworld
(absolute value)</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/ComplexModulus.html" target="_top">Mathworld
(complex modulus)</a>
+for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Chop"></a>Chop</span></dt><dd><pre
class="synopsis">Chop (x)</pre><p>Заменяет очень малое число нулём.</p></dd><dt><span class="term"><a
name="gel-function-ComplexConjugate"></a>ComplexConjugate</span></dt><dd><pre
class="synopsis">ComplexConjugate (z)</pre><p>Aliases: <code class="function">conj</code> <code
class="function">Conj</code></p><p>Calculates the complex conjugate of the complex number <code
class="varname">z</code>. If <code class="varname">z</code> is a vector or matrix,
+all its elements are conjugated.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Complex_conjugate"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Denominator"></a>Denominator</span></dt><dd><pre class="synopsis">Denominator
(x)</pre><p>Возвращает знаменатель рационального числа.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Denominator" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FractionalPart"></a>FractionalPart</span></dt><dd><pre class="synopsis">FractionalPart
(x)</pre><p>Возвращает дробную часть числа.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fractional_part" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Im"></a>Im</span></dt><dd><pre
class="synopsis">Im (z)</pre><p>Синонимы: <code class="function">ImaginaryPart</code></p><p>Get the imaginary
part of a complex number. For example <strong class="userinput"><code>Re(3+4i)</code></strong> yields
4.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Imaginary_part" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IntegerQuotient"></a>IntegerQuotient</span></dt><dd><pre class="synopsis">IntegerQuotient
(m,n)</pre><p>Деление без остатка.</p></dd><dt><span class="term"><a
name="gel-function-IsComplex"></a>IsComplex</span></dt><dd><pre class="synopsis">IsComplex
(num)</pre><p>Check if argument is a complex (non-real) number. Do note that we really mean nonreal number.
That is,
+ <strong class="userinput"><code>IsComplex(3)</code></strong> yields false, while
+ <strong class="userinput"><code>IsComplex(3-1i)</code></strong> yields true.</p></dd><dt><span
class="term"><a name="gel-function-IsComplexRational"></a>IsComplexRational</span></dt><dd><pre
class="synopsis">IsComplexRational (num)</pre><p>Check if argument is a possibly complex rational number.
That is, if both real and imaginary parts are
+ given as rational numbers. Of course rational simply means "not stored as a floating point
number."</p></dd><dt><span class="term"><a name="gel-function-IsFloat"></a>IsFloat</span></dt><dd><pre
class="synopsis">IsFloat (num)</pre><p>Check if argument is a real floating point number
(non-complex).</p></dd><dt><span class="term"><a
name="gel-function-IsGaussInteger"></a>IsGaussInteger</span></dt><dd><pre class="synopsis">IsGaussInteger
(num)</pre><p>Aliases: <code class="function">IsComplexInteger</code></p><p>Check if argument is a possibly
complex integer. That is a complex integer is a number of
+ the form <strong class="userinput"><code>n+1i*m</code></strong> where <code
class="varname">n</code> and <code class="varname">m</code>
+ are integers.</p></dd><dt><span class="term"><a
name="gel-function-IsInteger"></a>IsInteger</span></dt><dd><pre class="synopsis">IsInteger
(num)</pre><p>Проверяет, является ли аргумент целым числом (не комплексным).</p></dd><dt><span
class="term"><a name="gel-function-IsNonNegativeInteger"></a>IsNonNegativeInteger</span></dt><dd><pre
class="synopsis">IsNonNegativeInteger (num)</pre><p>Check if argument is a non-negative real integer. That
is, either a positive integer or zero.</p></dd><dt><span class="term"><a
name="gel-function-IsPositiveInteger"></a>IsPositiveInteger</span></dt><dd><pre
class="synopsis">IsPositiveInteger (num)</pre><p>Синонимы: <code
class="function">IsNaturalNumber</code></p><p>Проверяет, является ли аргумент положительным действительным
целым числом. Обратите внимание, что мы придерживаемся с�
�глашения о том, что 0 не является натуральным числом.</p></dd><dt><span class="term"><a
name="gel-function-IsRational"></a>IsRational</span></dt><dd><pre class="synopsis">IsRational
(num)</pre><p>Проверяет, является ли аргумент рациональным числом (не комплексным). Разумеется,
«рациональное» означает просто «не хранящееся в виде числа с плавающей точкой».</p></dd><dt><span
class="term"><a name="gel-function-IsReal"></a>IsReal</span></dt><dd><pre class="synopsis">IsReal
(num)</pre><p>Проверяет, является ли аргумент действительным числом.</p></dd><dt><span class="term"><a
name="gel-function-Numerator"></a>Numerator</span></dt><dd><pre class="synopsis">Numerator
(x)</pre><p>Возвращает числитель рационального числа.</p><
p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Numerator" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Re"></a>Re</span></dt><dd><pre
class="synopsis">Re (z)</pre><p>Синонимы: <code class="function">RealPart</code></p><p>Get the real part of a
complex number. For example <strong class="userinput"><code>Re(3+4i)</code></strong> yields 3.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Real_part" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Sign"></a>Sign</span></dt><dd><pre
class="synopsis">Sign (x)</pre><p>Синонимы: <code class="function">sign</code></p><p>Возвращает знак числа.
То есть, возвращает <code class="literal">-1</code>, если значение отрицательно, <code
class="literal">0</code>, если рано нулю и <code class="literal">1</code>, если значение положительно. Если
<code class="varname">x</code> — комплексное число, то <code class="function">Sign</code> возвращает
направление на числовой оси (положительное или отрицательное) или 0.</p></dd><dt><span class="term"><a
name="gel-function-ceil"></a>ceil</span></dt><dd><pre class="synopsis">ceil (x)</pre><p>Синонимы: <code
class="function">Ceiling</code></p><p>Возвращает наименьше
е целое число, которое больше или равно <code class="varname">n</code>. Примеры: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>ceil(1.1)</code></strong>
+= 2
+<code class="prompt">genius></code> <strong class="userinput"><code>ceil(-1.1)</code></strong>
+= -1
+</pre><p>Note that you should be careful and notice that floating point
+ numbers are stored in binary and so may not be what you
+ expect. For example <strong class="userinput"><code>ceil(420/4.2)</code></strong>
+ returns 101 instead of the expected 100. This is because
+ 4.2 is actually very slightly less than 4.2. Use rational
+ representation <strong class="userinput"><code>42/10</code></strong> if you want
+ exact arithmetic.
+ </p></dd><dt><span class="term"><a name="gel-function-exp"></a>exp</span></dt><dd><pre
class="synopsis">exp (x)</pre><p>Экспоненциальная функция. Это функция <strong
class="userinput"><code>e^x</code></strong>, где <code class="varname">e</code> — <a class="link"
href="ch11s04.html#gel-function-e">основание натурального логарифма</a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Exponential_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/LogarithmFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/ExponentialFunction.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-float"></a>float</span></dt><dd><pre
class="synopsis">float (x)</pre><p>Возвращает представление числа <code class="varname">x</code> в виде числа
с плавающей точкой.</p></dd><dt><span class="term"><a name="gel-function-floor"></a>floor</span></dt><dd><pre
class="synopsis">floor (x)</pre><p>Синонимы: <code class="function">Floor</code></p><p>Возвращает наибольшее
целое число, которое меньше или равно <code class="varname">n</code>.</p></dd><dt><span class="term"><a
name="gel-function-ln"></a>ln</span></dt><dd><pre class="synopsis">ln (x)</pre><p>Натуральный логарифм
(логарифм по основанию <code class="varname">e</code>).</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Natural_logarithm"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/LogarithmFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/NaturalLogarithm.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-log"></a>log</span></dt><dd><pre
class="synopsis">log (x)</pre><pre class="synopsis">log (x,b)</pre><p>Logarithm of <code
class="varname">x</code> base <code class="varname">b</code> (calls <a class="link"
href="ch11s07.html#gel-function-DiscreteLog"><code class="function">DiscreteLog</code></a> if in modulo
mode), if base is not given, <a class="link" href="ch11s04.html#gel-function-e"><code
class="varname">e</code></a> is used.</p></dd><dt><span class="term"><a
name="gel-function-log10"></a>log10</span></dt><dd><pre class="synopsis">log10 (x)</pre><p>Логарифм <code
class="varname">x</code> по основанию 10.</p></dd><dt><span class="term"><a
name="gel-function-log2"></a>log2</span></dt><dd><pre class="synopsis">log2 (x)</pre><p>Синоним: <code
class="function">lg</code></p><p>Логарифм <code class="varname">x</code> по основанию 2.</p></dd><dt><span
class="term"><a name="gel-f
unction-max"></a>max</span></dt><dd><pre class="synopsis">max (a,args...)</pre><p>Псевдонимы: <code
class="function">Max</code><code class="function">Maximum</code></p><p>Возвращает максимальный из аргументов
или элементов матрицы.</p></dd><dt><span class="term"><a name="gel-function-min"></a>min</span></dt><dd><pre
class="synopsis">min (a,args...)</pre><p>Псевдонимы: <code class="function">Min</code><code
class="function">Minimum</code></p><p>Возвращает минимальный из аргументов или элементов
матрицы.</p></dd><dt><span class="term"><a name="gel-function-rand"></a>rand</span></dt><dd><pre
class="synopsis">rand (size...)</pre><p>Генерирует случайное число с плавающей точкой в диапазоне <code
class="literal">[0,1)</code>. Если задан аргумент size, то может возвращать ма
трицу (если указано два числа) или вектор (если указано одно число) заданной размерности.</p></dd><dt><span
class="term"><a name="gel-function-randint"></a>randint</span></dt><dd><pre class="synopsis">randint
(max,size...)</pre><p>Генерирует случайное целое число в диапазоне <code class="literal">[0,max)</code>. Если
задан аргумент size, возвращает матрицу (если указано два числа) или вектор (если указано одно число)
заданной размерности. Например, </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>randint(4)</code></strong>
+= 3
+<code class="prompt">genius></code> <strong class="userinput"><code>randint(4,2)</code></strong>
+=
+[0 1]
+<code class="prompt">genius></code> <strong class="userinput"><code>randint(4,2,3)</code></strong>
+=
+[2 2 1
+ 0 0 3]
+</pre></dd><dt><span class="term"><a name="gel-function-round"></a>round</span></dt><dd><pre
class="synopsis">round (x)</pre><p>Синонимы: <code class="function">Round</code></p><p>Округляет
число.</p></dd><dt><span class="term"><a name="gel-function-sqrt"></a>sqrt</span></dt><dd><pre
class="synopsis">sqrt (x)</pre><p>Синонимы: <code class="function">SquareRoot</code></p><p>The square root.
When operating modulo some integer will return either a <code class="constant">null</code> or a vector of the
square roots. Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>sqrt(2)</code></strong>
+= 1.41421356237
+<code class="prompt">genius></code> <strong class="userinput"><code>sqrt(-1)</code></strong>
+= 1i
+<code class="prompt">genius></code> <strong class="userinput"><code>sqrt(4) mod 7</code></strong>
+=
+[2 5]
+<code class="prompt">genius></code> <strong class="userinput"><code>2*2 mod 7</code></strong>
+= 4
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Square_root" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/SquareRoot" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-trunc"></a>trunc</span></dt><dd><pre
class="synopsis">trunc (x)</pre><p>Синонимы: <code class="function">Truncate</code><code
class="function">IntegerPart</code></p><p>Усекает число до целого (возвращает целую
часть).</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s04.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s06.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Константы
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Тригонометрические</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch11s06.html b/help/ru/html/ch11s06.html
new file mode 100644
index 0000000..2c24fdb
--- /dev/null
+++ b/help/ru/html/ch11s06.html
@@ -0,0 +1,64 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Тригонометрические</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Руководство пользователя Genius"><link rel="up"
href="ch11.html" title="Глава 11. Список функций GEL"><link rel="prev" href="ch11s05.html"
title="Числовые"><link rel="next" href="ch11s07.html" title="Теория чисел"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Тригонометрические</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch11s05.html">Пред.</a> </td><th width="60%"
align="center">Глава 11. Список функций GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s07.ht
ml">След.</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a
name="genius-gel-function-list-trigonometry"></a>Тригонометрические</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-acos"></a>acos</span></dt><dd><pre class="synopsis">acos (x)</pre><p>Синонимы: <code
class="function">arccos</code></p><p>Функция arccos (арккосинус, обратный косинус).</p></dd><dt><span
class="term"><a name="gel-function-acosh"></a>acosh</span></dt><dd><pre class="synopsis">acosh
(x)</pre><p>Синонимы: <code class="function">arccosh</code></p><p>Функция arccosh (обратный гиперболический
косинус).</p></dd><dt><span class="term"><a name="gel-function-acot"></a>acot</span></dt><dd><pre
class="synopsis">acot (x)</pre><p>Синонимы: <code class="function"
arccot</code></p><p>Фунция arccot (арккотангенс, обратный котангенс).</p></dd><dt><span class="term"><a
name="gel-function-acoth"></a>acoth</span></dt><dd><pre class="synopsis">acoth (x)</pre><p>Синонимы: <code
class="function">arccoth</code></p><p>Функция arccoth (обратный гиперболический
котангенс).</p></dd><dt><span class="term"><a name="gel-function-acsc"></a>acsc</span></dt><dd><pre
class="synopsis">acsc (x)</pre><p>Синонимы: <code class="function">arccsc</code></p><p>Обратный
косеканс.</p></dd><dt><span class="term"><a name="gel-function-acsch"></a>acsch</span></dt><dd><pre
class="synopsis">acsch (x)</pre><p>Синонимы: <code class="function">arccsch</code></p><p>Обратный
гиперболический косеканс.</p></dd><dt><span class="term"><a
name="gel-function-asec"></a>asec</span></dt><dd><pre class="synopsis">asec (x)</pre><p>Синон
имы: <code class="function">arcsec</code></p><p>Обратный секанс.</p></dd><dt><span class="term"><a
name="gel-function-asech"></a>asech</span></dt><dd><pre class="synopsis">asech (x)</pre><p>Синонимы: <code
class="function">arcsech</code></p><p>Обратный гиперболический секанс.</p></dd><dt><span class="term"><a
name="gel-function-asin"></a>asin</span></dt><dd><pre class="synopsis">asin (x)</pre><p>Синонимы: <code
class="function">arcsin</code></p><p>Функция arcsin (арксинус, обратный синус).</p></dd><dt><span
class="term"><a name="gel-function-asinh"></a>asinh</span></dt><dd><pre class="synopsis">asinh
(x)</pre><p>Синонимы: <code class="function">arcsinh</code></p><p>Фунция arcsinh (обратный гиперболический
синус).</p></dd><dt><span class="term"><a name="gel-function-atan"></a>atan</span></dt><dd><pre
class="synopsis">atan (x)</pre><p>Синони
мы: <code class="function">arctan</code></p><p>Вычисляет функцию arctan (арктангенс, обратный
тангенс).</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Arctangent" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/InverseTangent.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-atanh"></a>atanh</span></dt><dd><pre
class="synopsis">atanh (x)</pre><p>Синонимы: <code class="function">arctanh</code></p><p>Функция arctanh
(обратный гиперболический тангенс).</p></dd><dt><span class="term"><a
name="gel-function-atan2"></a>atan2</span></dt><dd><pre class="synopsis">atan2 (y, x)</pre><p>Синонимы: <code
class="function">arctan2</code></p><p>Calculates the arctan2 function. If
+ <strong class="userinput"><code>x>0</code></strong> then it returns
+ <strong class="userinput"><code>atan(y/x)</code></strong>. If <strong
class="userinput"><code>x<0</code></strong>
+ then it returns <strong class="userinput"><code>sign(y) * (pi - atan(|y/x|)</code></strong>.
+ When <strong class="userinput"><code>x=0</code></strong> it returns <strong
class="userinput"><code>sign(y) *
+ pi/2</code></strong>. <strong class="userinput"><code>atan2(0,0)</code></strong> returns 0
+ rather than failing.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Atan2" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/InverseTangent.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-cos"></a>cos</span></dt><dd><pre
class="synopsis">cos (x)</pre><p>Вычисляет косинус.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-cosh"></a>cosh</span></dt><dd><pre
class="synopsis">cosh (x)</pre><p>Вычисляет гиперболический косинус.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-cot"></a>cot</span></dt><dd><pre
class="synopsis">cot (x)</pre><p>Вычисляет котангенс.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-coth"></a>coth</span></dt><dd><pre
class="synopsis">coth (x)</pre><p>Вычисляет гиперболический котангенс.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-csc"></a>csc</span></dt><dd><pre
class="synopsis">csc (x)</pre><p>Вычисляет косеканс.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-csch"></a>csch</span></dt><dd><pre
class="synopsis">csch (x)</pre><p>Вычисляет гиперболический косеканс.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sec"></a>sec</span></dt><dd><pre
class="synopsis">sec (x)</pre><p>Вычисляет секанс.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sech"></a>sech</span></dt><dd><pre
class="synopsis">sech (x)</pre><p>Вычисляет гиперболический секанс.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sin"></a>sin</span></dt><dd><pre
class="synopsis">sin (x)</pre><p>Вычисляет синус.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-sinh"></a>sinh</span></dt><dd><pre
class="synopsis">sinh (x)</pre><p>Вычисляет гиперболический синус.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-tan"></a>tan</span></dt><dd><pre
class="synopsis">tan (x)</pre><p>Вычисляет тангенс.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-tanh"></a>tanh</span></dt><dd><pre
class="synopsis">tanh (x)</pre><p>Вычисляет гиперболический тангенс.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_function"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a>
for more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s05.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s07.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Числовые
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Теория чисел</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch11s07.html b/help/ru/html/ch11s07.html
new file mode 100644
index 0000000..e6bb416
--- /dev/null
+++ b/help/ru/html/ch11s07.html
@@ -0,0 +1,277 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Теория
чисел</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch11.html" title="Глава 11.
Список функций GEL"><link rel="prev" href="ch11s06.html" title="Тригонометрические"><link rel="next"
href="ch11s08.html" title="Операции с матрицами"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Теория чисел</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s06.html">Пред.</a> </td><th width="60%" align="center">Глава 11. Список функций
GEL</th><td width="20%" align="right"> <a accesskey="n" href="c
h11s08.html">След.</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-function-list-number-theory"></a>Теория
чисел</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AreRelativelyPrime"></a>AreRelativelyPrime</span></dt><dd><pre
class="synopsis">AreRelativelyPrime (a,b)</pre><p>
+ Are the real integers <code class="varname">a</code> and <code class="varname">b</code>
relatively prime?
+ Returns <code class="constant">true</code> or <code class="constant">false</code>.
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Coprime_integers"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/RelativelyPrime" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/RelativelyPrime.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-BernoulliNumber"></a>BernoulliNumber</span></dt><dd><pre class="synopsis">BernoulliNumber
(n)</pre><p>Return the <code class="varname">n</code>th Bernoulli number.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bernoulli_number" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://mathworld.wolfram.com/BernoulliNumber.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ChineseRemainder"></a>ChineseRemainder</span></dt><dd><pre
class="synopsis">ChineseRemainder (a,m)</pre><p>Aliases: <code class="function">CRT</code></p><p>Find the
<code class="varname">x</code> that solves the system given by
+ the vector <code class="varname">a</code> and modulo the elements of
+ <code class="varname">m</code>, using the Chinese Remainder Theorem.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Chinese_remainder_theorem"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/ChineseRemainderTheorem"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/ChineseRemainderTheorem.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CombineFactorizations"></a>CombineFactorizations</span></dt><dd><pre
class="synopsis">CombineFactorizations (a,b)</pre><p>Given two factorizations, give the factorization of the
+ product.</p><p>See <a class="link"
href="ch11s07.html#gel-function-Factorize">Factorize</a>.</p></dd><dt><span class="term"><a
name="gel-function-ConvertFromBase"></a>ConvertFromBase</span></dt><dd><pre class="synopsis">ConvertFromBase
(v,b)</pre><p>Convert a vector of values indicating powers of b to a number.</p></dd><dt><span
class="term"><a name="gel-function-ConvertToBase"></a>ConvertToBase</span></dt><dd><pre
class="synopsis">ConvertToBase (n,b)</pre><p>Convert a number to a vector of powers for elements in base
<code class="varname">b</code>.</p></dd><dt><span class="term"><a
name="gel-function-DiscreteLog"></a>DiscreteLog</span></dt><dd><pre class="synopsis">DiscreteLog
(n,b,q)</pre><p>Find discrete log of <code class="varname">n</code> base <code class="varname">b</code> in
+ F<sub>q</sub>, the finite field of order <code class="varname">q</code>, where <code
class="varname">q</code>
+ is a prime, using the Silver-Pohlig-Hellman algorithm.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Discrete_logarithm"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/DiscreteLogarithm" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/DiscreteLogarithm.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Divides"></a>Divides</span></dt><dd><pre
class="synopsis">Divides (m,n)</pre><p>Проверяет делимость (делится ли <code class="varname">n</code> на
<code class="varname">m</code>).</p></dd><dt><span class="term"><a
name="gel-function-EulerPhi"></a>EulerPhi</span></dt><dd><pre class="synopsis">EulerPhi (n)</pre><p>
+ Compute the Euler phi function for <code class="varname">n</code>, that is
+ the number of integers between 1 and <code class="varname">n</code>
+ relatively prime to <code class="varname">n</code>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Euler_phi" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/EulerPhifunction" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/TotientFunction.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ExactDivision"></a>ExactDivision</span></dt><dd><pre class="synopsis">ExactDivision
(n,d)</pre><p>Возвращает <strong class="userinput"><code>n/d</code></strong>, но только если <code
class="varname">n</code> делится на <code class="varname">d</code>. Если не делится, то функция возвращает
мусор. Для очень больших чисел это гораздо быстрее, чем операция <strong
class="userinput"><code>n/d</code></strong>, но, разумеется, полезно только в том случае, если вы точно
знаете, что числа делятся без остатка.</p></dd><dt><span class="term"><a
name="gel-function-Factorize"></a>Factorize</span></dt><dd><pre class="synopsis">Factorize (n)</pre><p>
+ Return factorization of a number as a matrix. The first
+ row is the primes in the factorization (including 1) and the
+ second row are the powers. So for example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>Factorize(11*11*13)</code></strong>
+=
+[1 11 13
+ 1 2 1]</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Factorization" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Factors"></a>Factors</span></dt><dd><pre
class="synopsis">Factors (n)</pre><p>
+ Return all factors of <code class="varname">n</code> in a vector. This
+ includes all the non-prime factors as well. It includes 1 and the
+ number itself. So for example to print all the perfect numbers
+ (those that are sums of their factors) up to the number 1000 you
+ could do (this is of course very inefficient)
+ </p><pre class="programlisting">for n=1 to 1000 do (
+ if MatrixSum (Factors(n)) == 2*n then
+ print(n)
+)
+</pre><p>
+ </p></dd><dt><span class="term"><a
name="gel-function-FermatFactorization"></a>FermatFactorization</span></dt><dd><pre
class="synopsis">FermatFactorization (n,tries)</pre><p>
+ Attempt Fermat factorization of <code class="varname">n</code> into
+ <strong class="userinput"><code>(t-s)*(t+s)</code></strong>, returns <code
class="varname">t</code>
+ and <code class="varname">s</code> as a vector if possible, <code class="constant">null</code>
otherwise.
+ <code class="varname">tries</code> specifies the number of tries before
+ giving up.
+ </p><p>
+ This is a fairly good factorization if your number is the product
+ of two factors that are very close to each other.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fermat_factorization"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FindPrimitiveElementMod"></a>FindPrimitiveElementMod</span></dt><dd><pre
class="synopsis">FindPrimitiveElementMod (q)</pre><p>Find the first primitive element in F<sub>q</sub>, the
finite
+group of order <code class="varname">q</code>. Of course <code class="varname">q</code> must be a
prime.</p></dd><dt><span class="term"><a
name="gel-function-FindRandomPrimitiveElementMod"></a>FindRandomPrimitiveElementMod</span></dt><dd><pre
class="synopsis">FindRandomPrimitiveElementMod (q)</pre><p>Find a random primitive element in F<sub>q</sub>,
the finite
+group of order <code class="varname">q</code> (q must be a prime).</p></dd><dt><span class="term"><a
name="gel-function-IndexCalculus"></a>IndexCalculus</span></dt><dd><pre class="synopsis">IndexCalculus
(n,b,q,S)</pre><p>Compute discrete log base <code class="varname">b</code> of n in F<sub>q</sub>, the finite
+group of order <code class="varname">q</code> (<code class="varname">q</code> a prime), using the
+factor base <code class="varname">S</code>. <code class="varname">S</code> should be a column of
+primes possibly with second column precalculated by
+<a class="link" href="ch11s07.html#gel-function-IndexCalculusPrecalculation"><code
class="function">IndexCalculusPrecalculation</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-IndexCalculusPrecalculation"></a>IndexCalculusPrecalculation</span></dt><dd><pre
class="synopsis">IndexCalculusPrecalculation (b,q,S)</pre><p>Run the precalculation step of
+ <a class="link" href="ch11s07.html#gel-function-IndexCalculus"><code
class="function">IndexCalculus</code></a> for logarithms base <code class="varname">b</code> in
+F<sub>q</sub>, the finite group of order <code class="varname">q</code>
+(<code class="varname">q</code> a prime), for the factor base <code class="varname">S</code> (where
+<code class="varname">S</code> is a column vector of primes). The logs will be
+precalculated and returned in the second column.</p></dd><dt><span class="term"><a
name="gel-function-IsEven"></a>IsEven</span></dt><dd><pre class="synopsis">IsEven (n)</pre><p>Проверяет,
является ли целое число чётным.</p></dd><dt><span class="term"><a
name="gel-function-IsMersennePrimeExponent"></a>IsMersennePrimeExponent</span></dt><dd><pre
class="synopsis">IsMersennePrimeExponent (p)</pre><p>
+ Tests if a positive integer <code class="varname">p</code> is a
+ Mersenne prime exponent. That is if
+ 2<sup>p</sup>-1 is a prime. It does this
+ by looking it up in a table of known values, which is relatively
+ short.
+ See also
+ <a class="link" href="ch11s07.html#gel-function-MersennePrimeExponents">MersennePrimeExponents</a>
+ and
+ <a class="link" href="ch11s07.html#gel-function-LucasLehmer">LucasLehmer</a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Mersenne_prime" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MersenneNumbers" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/MersennePrime.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://www.mersenne.org/" target="_top">GIMPS</a>
+ for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsNthPower"></a>IsNthPower</span></dt><dd><pre class="synopsis">IsNthPower (m,n)</pre><p>
+ Tests if a rational number <code class="varname">m</code> is a perfect
+ <code class="varname">n</code>th power. See also
+ <a class="link" href="ch11s07.html#gel-function-IsPerfectPower">IsPerfectPower</a>
+ and
+ <a class="link" href="ch11s07.html#gel-function-IsPerfectSquare">IsPerfectSquare</a>.
+ </p></dd><dt><span class="term"><a name="gel-function-IsOdd"></a>IsOdd</span></dt><dd><pre
class="synopsis">IsOdd (n)</pre><p>Проверяет, является ли целое число нечётным.</p></dd><dt><span
class="term"><a name="gel-function-IsPerfectPower"></a>IsPerfectPower</span></dt><dd><pre
class="synopsis">IsPerfectPower (n)</pre><p>Check an integer for being any perfect power,
a<sup>b</sup>.</p></dd><dt><span class="term"><a
name="gel-function-IsPerfectSquare"></a>IsPerfectSquare</span></dt><dd><pre class="synopsis">IsPerfectSquare
(n)</pre><p>
+ Check an integer for being a perfect square of an integer. The number must
+ be a real integer. Negative integers are of course never perfect
+ squares of real integers.
+ </p></dd><dt><span class="term"><a name="gel-function-IsPrime"></a>IsPrime</span></dt><dd><pre
class="synopsis">IsPrime (n)</pre><p>
+ Tests primality of integers, for numbers less than 2.5e10 the
+ answer is deterministic (if Riemann hypothesis is true). For
+ numbers larger, the probability of a false positive
+ depends on
+ <a class="link" href="ch11s03.html#gel-function-IsPrimeMillerRabinReps">
+ <code class="function">IsPrimeMillerRabinReps</code></a>. That
+ is the probability of false positive is 1/4 to the power
+ <code class="function">IsPrimeMillerRabinReps</code>. The default
+ value of 22 yields a probability of about 5.7e-14.
+ </p><p>
+ If <code class="constant">false</code> is returned, you can be sure that
+ the number is a composite. If you want to be absolutely sure
+ that you have a prime you can use
+ <a class="link" href="ch11s07.html#gel-function-MillerRabinTestSure">
+ <code class="function">MillerRabinTestSure</code></a> but it may take
+ a lot longer.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsPrimitiveMod"></a>IsPrimitiveMod</span></dt><dd><pre class="synopsis">IsPrimitiveMod
(g,q)</pre><p>Check if <code class="varname">g</code> is primitive in F<sub>q</sub>, the finite
+group of order <code class="varname">q</code>, where <code class="varname">q</code> is a prime. If <code
class="varname">q</code> is not prime results are bogus.</p></dd><dt><span class="term"><a
name="gel-function-IsPrimitiveModWithPrimeFactors"></a>IsPrimitiveModWithPrimeFactors</span></dt><dd><pre
class="synopsis">IsPrimitiveModWithPrimeFactors (g,q,f)</pre><p>Check if <code class="varname">g</code> is
primitive in F<sub>q</sub>, the finite
+group of order <code class="varname">q</code>, where <code class="varname">q</code> is a prime and
+<code class="varname">f</code> is a vector of prime factors of <code class="varname">q</code>-1.
+If <code class="varname">q</code> is not prime results are bogus.</p></dd><dt><span class="term"><a
name="gel-function-IsPseudoprime"></a>IsPseudoprime</span></dt><dd><pre class="synopsis">IsPseudoprime
(n,b)</pre><p>If <code class="varname">n</code> is a pseudoprime base <code class="varname">b</code> but not
a prime,
+ that is if <strong class="userinput"><code>b^(n-1) == 1 mod n</code></strong>. This calls
the <a class="link" href="ch11s07.html#gel-function-PseudoprimeTest"><code
class="function">PseudoprimeTest</code></a></p></dd><dt><span class="term"><a
name="gel-function-IsStrongPseudoprime"></a>IsStrongPseudoprime</span></dt><dd><pre
class="synopsis">IsStrongPseudoprime (n,b)</pre><p>Test if <code class="varname">n</code> is a strong
pseudoprime to base <code class="varname">b</code> but not a prime.</p></dd><dt><span class="term"><a
name="gel-function-Jacobi"></a>Jacobi</span></dt><dd><pre class="synopsis">Jacobi (a,b)</pre><p>Синонимы:
<code class="function">JacobiSymbol</code></p><p>Вычисляет символ Якоби (a/b) (b должно быть
нечётным).</p></dd><dt><span class="term"><a
name="gel-function-JacobiKronecker"></a>JacobiKronecker</span></dt><dd><pre class="synopsis">JacobiKronecker
(a,b)</pre><p>Синонимы: <code class="function"
JacobiKroneckerSymbol</code></p><p>Вычисляет символ Якоби (a/b) с дополнением Кронекера (a/2)=(2/a), если
нечётное или (a/2)=0, если чётное.</p></dd><dt><span class="term"><a
name="gel-function-LeastAbsoluteResidue"></a>LeastAbsoluteResidue</span></dt><dd><pre
class="synopsis">LeastAbsoluteResidue (a,n)</pre><p>Return the residue of <code class="varname">a</code>
mod <code class="varname">n</code> with the least absolute value (in the interval -n/2 to
n/2).</p></dd><dt><span class="term"><a name="gel-function-Legendre"></a>Legendre</span></dt><dd><pre
class="synopsis">Legendre (a,p)</pre><p>Aliases: <code
class="function">LegendreSymbol</code></p><p>Calculate the Legendre symbol (a/p).</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/LegendreSymbol" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/LegendreSymbol.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-LucasLehmer"></a>LucasLehmer</span></dt><dd><pre class="synopsis">LucasLehmer
(p)</pre><p>Test if 2<sup>p</sup>-1 is a Mersenne prime using the Lucas-Lehmer test.
+ See also
+ <a class="link" href="ch11s07.html#gel-function-MersennePrimeExponents">MersennePrimeExponents</a>
+ and
+ <a class="link"
href="ch11s07.html#gel-function-IsMersennePrimeExponent">IsMersennePrimeExponent</a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LucasLhemer" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/Lucas-LehmerTest.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-LucasNumber"></a>LucasNumber</span></dt><dd><pre class="synopsis">LucasNumber
(n)</pre><p>Returns the <code class="varname">n</code>th Lucas number.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lucas_number" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LucasNumbers" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/LucasNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MaximalPrimePowerFactors"></a>MaximalPrimePowerFactors</span></dt><dd><pre
class="synopsis">MaximalPrimePowerFactors (n)</pre><p>Return all maximal prime power factors of a
number.</p></dd><dt><span class="term"><a
name="gel-function-MersennePrimeExponents"></a>MersennePrimeExponents</span></dt><dd><pre
class="synopsis">MersennePrimeExponents</pre><p>
+ A vector of known Mersenne prime exponents, that is
+ a list of positive integers
+ <code class="varname">p</code> such that
+ 2<sup>p</sup>-1 is a prime.
+ See also
+ <a class="link"
href="ch11s07.html#gel-function-IsMersennePrimeExponent">IsMersennePrimeExponent</a>
+ and
+ <a class="link" href="ch11s07.html#gel-function-LucasLehmer">LucasLehmer</a>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Mersenne_prime" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MersenneNumbers" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/MersennePrime.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://www.mersenne.org/" target="_top">GIMPS</a>
+ for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MillerRabinTest"></a>MillerRabinTest</span></dt><dd><pre class="synopsis">MillerRabinTest
(n,reps)</pre><p>
+ Use the Miller-Rabin primality test on <code class="varname">n</code>,
+ <code class="varname">reps</code> number of times. The probability of false
+ positive is <strong class="userinput"><code>(1/4)^reps</code></strong>. It is probably
+ usually better to use
+ <a class="link" href="ch11s07.html#gel-function-IsPrime">
+ <code class="function">IsPrime</code></a> since that is faster and
+ better on smaller integers.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/MillerRabinPrimeTest" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MillerRabinTestSure"></a>MillerRabinTestSure</span></dt><dd><pre
class="synopsis">MillerRabinTestSure (n)</pre><p>
+ Use the Miller-Rabin primality test on <code class="varname">n</code> with
+ enough bases that assuming the Generalized Riemann Hypothesis the
+ result is deterministic.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MillerRabinPrimeTest" target="_top">Planetmath</a>,
or
+ <a class="ulink" href="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-ModInvert"></a>ModInvert</span></dt><dd><pre
class="synopsis">ModInvert (n,m)</pre><p>Returns inverse of n mod m.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/ModularInverse.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-MoebiusMu"></a>MoebiusMu</span></dt><dd><pre
class="synopsis">MoebiusMu (n)</pre><p>
+ Return the Moebius mu function evaluated in <code class="varname">n</code>.
+ That is, it returns 0 if <code class="varname">n</code> is not a product
+ of distinct primes and <strong class="userinput"><code>(-1)^k</code></strong> if it is
+ a product of <code class="varname">k</code> distinct primes.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MoebiusFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/MoebiusFunction.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-NextPrime"></a>NextPrime</span></dt><dd><pre
class="synopsis">NextPrime (n)</pre><p>
+ Returns the least prime greater than <code class="varname">n</code>.
+ Negatives of primes are considered prime and so to get the
+ previous prime you can use <strong class="userinput"><code>-NextPrime(-n)</code></strong>.
+ </p><p>
+ This function uses the GMPs <code class="function">mpz_nextprime</code>,
+ which in turn uses the probabilistic Miller-Rabin test
+ (See also <a class="link" href="ch11s07.html#gel-function-MillerRabinTest"><code
class="function">MillerRabinTest</code></a>).
+ The probability
+ of false positive is not tunable, but is low enough
+ for all practical purposes.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PadicValuation"></a>PadicValuation</span></dt><dd><pre class="synopsis">PadicValuation
(n,p)</pre><p>Returns the p-adic valuation (number of trailing zeros in base <code
class="varname">p</code>).</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/P-adic_order" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/PAdicValuation" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-PowerMod"></a>PowerMod</span></dt><dd><pre
class="synopsis">PowerMod (a,b,m)</pre><p>
+ Compute <strong class="userinput"><code>a^b mod m</code></strong>. The
+ <code class="varname">b</code>'s power of <code class="varname">a</code> modulo
+ <code class="varname">m</code>. It is not necessary to use this function
+ as it is automatically used in modulo mode. Hence
+ <strong class="userinput"><code>a^b mod m</code></strong> is just as fast.
+ </p></dd><dt><span class="term"><a name="gel-function-Prime"></a>Prime</span></dt><dd><pre
class="synopsis">Prime (n)</pre><p>Aliases: <code class="function">prime</code></p><p>Return the <code
class="varname">n</code>th prime (up to a limit).</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PrimeFactors"></a>PrimeFactors</span></dt><dd><pre class="synopsis">PrimeFactors
(n)</pre><p>Return all prime factors of a number as a vector.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Prime_factor" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PrimeFactor.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PseudoprimeTest"></a>PseudoprimeTest</span></dt><dd><pre class="synopsis">PseudoprimeTest
(n,b)</pre><p>Pseudoprime test, returns <code class="constant">true</code> if and only if
+ <strong class="userinput"><code>b^(n-1) == 1 mod n</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Pseudoprime" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Pseudoprime.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RemoveFactor"></a>RemoveFactor</span></dt><dd><pre class="synopsis">RemoveFactor
(n,m)</pre><p>Removes all instances of the factor <code class="varname">m</code> from the number <code
class="varname">n</code>. That is divides by the largest power of <code class="varname">m</code>, that
divides <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Divisibility" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/Factor.html" target="_top">Mathworld</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SilverPohligHellmanWithFactorization"></a>SilverPohligHellmanWithFactorization</span></dt><dd><pre
class="synopsis">SilverPohligHellmanWithFactorization (n,b,q,f)</pre><p>Find discrete log of <code
class="varname">n</code> base <code class="varname">b</code> in F<sub>q</sub>, the finite group of order
<code class="varname">q</code>, where <code class="varname">q</code> is a prime using the
Silver-Pohlig-Hellman algorithm, given <code class="varname">f</code> being the factorization of <code
class="varname">q</code>-1.</p></dd><dt><span class="term"><a
name="gel-function-SqrtModPrime"></a>SqrtModPrime</span></dt><dd><pre class="synopsis">SqrtModPrime
(n,p)</pre><p>Find square root of <code class="varname">n</code> modulo <code class="varname">p</code> (where
<code class="varname">p</code> is a prime). Null is returned if not a quadratic residue.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/QuadraticResidue" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/QuadraticResidue.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-StrongPseudoprimeTest"></a>StrongPseudoprimeTest</span></dt><dd><pre
class="synopsis">StrongPseudoprimeTest (n,b)</pre><p>Run the strong pseudoprime test base <code
class="varname">b</code> on <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Strong_pseudoprime"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/StrongPseudoprime" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/StrongPseudoprime.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-gcd"></a>gcd</span></dt><dd><pre
class="synopsis">gcd (a,args...)</pre><p>Aliases: <code class="function">GCD</code></p><p>
+ Greatest common divisor of integers. You can enter as many
+ integers as you want in the argument list, or you can give
+ a vector or a matrix of integers. If you give more than
+ one matrix of the same size then GCD is done element by
+ element.
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Greatest_common_divisor"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/GreatestCommonDivisor" target="_top">Planetmath</a>,
or
+ <a class="ulink" href="http://mathworld.wolfram.com/GreatestCommonDivisor.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-lcm"></a>lcm</span></dt><dd><pre
class="synopsis">lcm (a,args...)</pre><p>Aliases: <code class="function">LCM</code></p><p>
+ Least common multiplier of integers. You can enter as many
+ integers as you want in the argument list, or you can give a
+ vector or a matrix of integers. If you give more than one
+ matrix of the same size then LCM is done element by element.
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Least_common_multiple"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LeastCommonMultiple" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/LeastCommonMultiple.html"
target="_top">Mathworld</a> for more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s06.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s08.html">След.</a></td></tr><tr><td width="40%" align="left"
valign="top">Тригонометрические </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Начало</a></td><td width="40%" align="right" valign="top"> Операции с
матрицами</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch11s08.html b/help/ru/html/ch11s08.html
new file mode 100644
index 0000000..3f11bb9
--- /dev/null
+++ b/help/ru/html/ch11s08.html
@@ -0,0 +1,64 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Операции с
матрицами</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch11.html" title="Глава 11.
Список функций GEL"><link rel="prev" href="ch11s07.html" title="Теория чисел"><link rel="next"
href="ch11s09.html" title="Линейная алгебра"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Операции с матрицами</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s07.html">Пред.</a> </td><th width="60%" align="center">Глава 11. Список функций
GEL</th><td width="20%" align="right"> <a accesskey="
n" href="ch11s09.html">След.</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-matrix"></a>Операции с матрицами</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ApplyOverMatrix"></a>ApplyOverMatrix</span></dt><dd><pre class="synopsis">ApplyOverMatrix
(a,func)</pre><p>Применяет функцию к каждому элементу матрицы и возвращает матрицу
результатов.</p></dd><dt><span class="term"><a
name="gel-function-ApplyOverMatrix2"></a>ApplyOverMatrix2</span></dt><dd><pre
class="synopsis">ApplyOverMatrix2 (a,b,func)</pre><p>Применяет функцию к каждому элементу двух матриц (или 1
значению и 1 матрице) и возвращает матрицу результатов.</p></dd><dt
<span class="term"><a name="gel-function-ColumnsOf"></a>ColumnsOf</span></dt><dd><pre
class="synopsis">ColumnsOf (M)</pre><p>Возвращает столбцы матрицы в виде горизонтального
вектора.</p></dd><dt><span class="term"><a
name="gel-function-ComplementSubmatrix"></a>ComplementSubmatrix</span></dt><dd><pre
class="synopsis">ComplementSubmatrix (m,r,c)</pre><p>Remove column(s) and row(s) from a
matrix.</p></dd><dt><span class="term"><a
name="gel-function-CompoundMatrix"></a>CompoundMatrix</span></dt><dd><pre class="synopsis">CompoundMatrix
(k,A)</pre><p>Calculate the kth compound matrix of A.</p></dd><dt><span class="term"><a
name="gel-function-CountZeroColumns"></a>CountZeroColumns</span></dt><dd><pre
class="synopsis">CountZeroColumns (M)</pre><p>
+ Count the number of zero columns in a matrix. For example
+ once your column reduce a matrix you can use this to find
+ the nullity. See <a class="link" href="ch11s09.html#gel-function-cref"><code
class="function">cref</code></a>
+ and <a class="link" href="ch11s09.html#gel-function-Nullity"><code
class="function">Nullity</code></a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-DeleteColumn"></a>DeleteColumn</span></dt><dd><pre class="synopsis">DeleteColumn
(M,столбец)</pre><p>Удаляет столбец матрицы.</p></dd><dt><span class="term"><a
name="gel-function-DeleteRow"></a>DeleteRow</span></dt><dd><pre class="synopsis">DeleteRow
(M,строка)</pre><p>Удаляет строку матрицы.</p></dd><dt><span class="term"><a
name="gel-function-DiagonalOf"></a>DiagonalOf</span></dt><dd><pre class="synopsis">DiagonalOf
(M)</pre><p>Gets the diagonal entries of a matrix as a column vector.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Diagonal_of_a_matrix#Matrices"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-DotProduct"></a>DotProduct</span></dt><dd><pre class="synopsis">DotProduct
(u,v)</pre><p>Get the dot product of two vectors. The vectors must be of the
+ same size. No conjugates are taken so this is a bilinear form even if working over the
complex numbers; This is the bilinear scalar product not the sesquilinear scalar product. See <a
class="link" href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a> for the standard
sesquilinear inner product.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Dot_product" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/DotProduct" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ExpandMatrix"></a>ExpandMatrix</span></dt><dd><pre class="synopsis">ExpandMatrix
(M)</pre><p>
+ Expands a matrix just like we do on unquoted matrix input.
+ That is we expand any internal matrices as blocks. This is
+ a way to construct matrices out of smaller ones and this is
+ normally done automatically on input unless the matrix is quoted.
+ </p></dd><dt><span class="term"><a
name="gel-function-HermitianProduct"></a>HermitianProduct</span></dt><dd><pre
class="synopsis">HermitianProduct (u,v)</pre><p>Aliases: <code class="function">InnerProduct</code></p><p>Get
the Hermitian product of two vectors. The vectors must be of the same size. This is a sesquilinear form
using the identity matrix.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Sesquilinear_form"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/HermitianInnerProduct.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-I"></a>I</span></dt><dd><pre
class="synopsis">I (n)</pre><p>Aliases: <code class="function">eye</code></p><p>Return an identity matrix of
a given size, that is <code class="varname">n</code> by <code class="varname">n</code>. If <code
class="varname">n</code> is zero, returns <code class="constant">null</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Identity_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/IdentityMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IndexComplement"></a>IndexComplement</span></dt><dd><pre class="synopsis">IndexComplement
(vec,msize)</pre><p>Return the index complement of a vector of indexes. Everything is one based. For
example for vector <strong class="userinput"><code>[2,3]</code></strong> and size
+<strong class="userinput"><code>5</code></strong>, we return <strong
class="userinput"><code>[1,4,5]</code></strong>. If
+<code class="varname">msize</code> is 0, we always return <code
class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsDiagonal"></a>IsDiagonal</span></dt><dd><pre class="synopsis">IsDiagonal
(M)</pre><p>Является ли матрица диагональной.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Diagonal_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/DiagonalMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsIdentity"></a>IsIdentity</span></dt><dd><pre class="synopsis">IsIdentity
(x)</pre><p>Check if a matrix is the identity matrix. Automatically returns <code
class="constant">false</code>
+ if the matrix is not square. Also works on numbers, in which
+ case it is equivalent to <strong class="userinput"><code>x==1</code></strong>. When <code
class="varname">x</code> is
+ <code class="constant">null</code> (we could think of that as a 0 by 0 matrix),
+ no error is generated and <code class="constant">false</code> is returned.</p></dd><dt><span
class="term"><a name="gel-function-IsLowerTriangular"></a>IsLowerTriangular</span></dt><dd><pre
class="synopsis">IsLowerTriangular (M)</pre><p>Является ли матрица нижнетреугольной, то есть все её элементы
над диагональю равны нулю.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixInteger"></a>IsMatrixInteger</span></dt><dd><pre class="synopsis">IsMatrixInteger
(M)</pre><p>Check if a matrix is a matrix of integers (non-complex).</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixNonnegative"></a>IsMatrixNonnegative</span></dt><dd><pre
class="synopsis">IsMatrixNonnegative (M)</pre><p>Check if a matrix is non-negative, that is if each element
is non-negative.
+ Do not confuse positive matrices with positive semi-definite matrices.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Positive_matrix" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsMatrixPositive"></a>IsMatrixPositive</span></dt><dd><pre
class="synopsis">IsMatrixPositive (M)</pre><p>Check if a matrix is positive, that is if each element is
+positive (and hence real). In particular, no element is 0. Do not confuse
+positive matrices with positive definite matrices.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Positive_matrix" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsMatrixRational"></a>IsMatrixRational</span></dt><dd><pre
class="synopsis">IsMatrixRational (M)</pre><p>Проверяет, является ли матрица матрицей из рациональных (не
комплексных) чисел.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixReal"></a>IsMatrixReal</span></dt><dd><pre class="synopsis">IsMatrixReal
(M)</pre><p>Проверяет, является ли матрица матрицей из действительных (не комплексных)
чисел.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixSquare"></a>IsMatrixSquare</span></dt><dd><pre class="synopsis">IsMatrixSquare
(M)</pre><p>Проверяет, является ли матрица квадратной, то есть её ширина равна высоте.</p></dd><dt><span
class="term"><a name="gel-function-IsUpperTriangular"></a>IsUpperTriangular</sp
an></dt><dd><pre class="synopsis">IsUpperTriangular (M)</pre><p>Is a matrix upper triangular? That is, a
matrix is upper triangular if all the entries below the diagonal are zero.</p></dd><dt><span class="term"><a
name="gel-function-IsValueOnly"></a>IsValueOnly</span></dt><dd><pre class="synopsis">IsValueOnly
(M)</pre><p>Проверяет, состоит ли матрица только из чисел. Многие встроенные функции делают эту проверку.
Значения могут быть любыми числами, включая комплексные.</p></dd><dt><span class="term"><a
name="gel-function-IsVector"></a>IsVector</span></dt><dd><pre class="synopsis">IsVector (v)</pre><p>Является
ли аргумент горизонтальным или вертикальным вектором. Genius не делает различий между матрицей и вектором:
вектор — это просто матр
ица 1 на <code class="varname">n</code> или <code class="varname">n</code> на 1.</p></dd><dt><span
class="term"><a name="gel-function-IsZero"></a>IsZero</span></dt><dd><pre class="synopsis">IsZero
(x)</pre><p>Проверяет, состоит ли матрица из одних нулей. Также работает с числами, в этом случае
эквивалентна выражению <strong class="userinput"><code>x==0</code></strong>. Если переменная <code
class="varname">x</code> равна <code class="constant">null</code> (можно представить это, как матрицу 0 на 0
элементов), ошибка не генерируется и возвращается <code class="constant">true</code>, так как условие
является бессмысленным.</p></dd><dt><span class="term"><a
name="gel-function-LowerTriangular"></a>LowerTriangular</span></dt><dd><pre class="synopsis">LowerTr
iangular (M)</pre><p>Возвращает копию матрицы <code class="varname">M</code>, в которой все элементы под
диагональю заменены нулями.</p></dd><dt><span class="term"><a
name="gel-function-MakeDiagonal"></a>MakeDiagonal</span></dt><dd><pre class="synopsis">MakeDiagonal
(v,arg...)</pre><p>Псевдоним: <code class="function">diag</code></p><p>Создаёт диагональную матрицу из
вектора. Значения для диагонали также могут быть переданы в виде аргументов функции. Поэтому <strong
class="userinput"><code>MakeDiagonal([1,2,3])</code></strong> — то же самое, что и <strong
class="userinput"><code>MakeDiagonal(1,2,3)</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Diagonal_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/DiagonalMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MakeVector"></a>MakeVector</span></dt><dd><pre class="synopsis">MakeVector
(A)</pre><p>Make column vector out of matrix by putting columns above
+ each other. Returns <code class="constant">null</code> when given <code
class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-MatrixProduct"></a>MatrixProduct</span></dt><dd><pre class="synopsis">MatrixProduct
(A)</pre><p>Вычисляет произведение всех элементов матрицы или вектора. То есть, умножает друг на друга все
элементы и возвращает число, являющееся их произведением.</p></dd><dt><span class="term"><a
name="gel-function-MatrixSum"></a>MatrixSum</span></dt><dd><pre class="synopsis">MatrixSum
(A)</pre><p>Вычисляет сумму всех элементов матрицы или вектора. То есть, складывает все элементы и возвращает
число, являющееся их суммой.</p></dd><dt><span class="term"><a
name="gel-function-MatrixSumSquares"></a>MatrixSu
mSquares</span></dt><dd><pre class="synopsis">MatrixSumSquares (A)</pre><p>Вычисляет сумму квадратов всех
элементов матрицы или вектора.</p></dd><dt><span class="term"><a
name="gel-function-NonzeroColumns"></a>NonzeroColumns</span></dt><dd><pre class="synopsis">NonzeroColumns
(M)</pre><p>Returns a row vector of the indices of nonzero columns in the matrix <code
class="varname">M</code>.</p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NonzeroElements"></a>NonzeroElements</span></dt><dd><pre class="synopsis">NonzeroElements
(v)</pre><p>Returns a row vector of the indices of nonzero elements in the vector <code
class="varname">v</code>.</p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-OuterProduct"></a>OuterProduct</span></dt><dd><pre class="synopsis">OuterProduct
(u,v)</pre><p>Get the outer product of two vectors. That is, suppose that
+<code class="varname">u</code> and <code class="varname">v</code> are vertical vectors, then
+the outer product is <strong class="userinput"><code>v * u.'</code></strong>.</p></dd><dt><span
class="term"><a name="gel-function-ReverseVector"></a>ReverseVector</span></dt><dd><pre
class="synopsis">ReverseVector (v)</pre><p>Reverse elements in a vector. Return <code
class="constant">null</code> if given <code class="constant">null</code></p></dd><dt><span class="term"><a
name="gel-function-RowSum"></a>RowSum</span></dt><dd><pre class="synopsis">RowSum (m)</pre><p>Вычисляет суммы
элементов в каждой строке матрицы и возвращает вертикальный вектор с результатом.</p></dd><dt><span
class="term"><a name="gel-function-RowSumSquares"></a>RowSumSquares</span></dt><dd><pre
class="synopsis">RowSumSquares (m)</pre><p>Вычисляет суммы квадратов элементов в каждой строке матрицы и
возвращает вертикальный вектор с резу�
�ьтатами.</p></dd><dt><span class="term"><a name="gel-function-RowsOf"></a>RowsOf</span></dt><dd><pre
class="synopsis">RowsOf (M)</pre><p>Gets the rows of a matrix as a vertical vector. Each element
+of the vector is a horizontal vector that is the corresponding row of
+<code class="varname">M</code>. This function is useful if you wish to loop over the
+rows of a matrix. For example, as <strong class="userinput"><code>for r in RowsOf(M) do
+something(r)</code></strong>.</p></dd><dt><span class="term"><a
name="gel-function-SetMatrixSize"></a>SetMatrixSize</span></dt><dd><pre class="synopsis">SetMatrixSize
(M,строки,столбцы)</pre><p>Make new matrix of given size from old one. That is, a new
+ matrix will be returned to which the old one is copied. Entries that
+ don't fit are clipped and extra space is filled with zeros.
+ If <code class="varname">rows</code> or <code class="varname">columns</code> are zero
+ then <code class="constant">null</code> is returned.
+ </p></dd><dt><span class="term"><a
name="gel-function-ShuffleVector"></a>ShuffleVector</span></dt><dd><pre class="synopsis">ShuffleVector
(v)</pre><p>Shuffle elements in a vector. Return <code class="constant">null</code> if given <code
class="constant">null</code>.</p><p>Version 1.0.13 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SortVector"></a>SortVector</span></dt><dd><pre class="synopsis">SortVector
(v)</pre><p>Sort vector elements in an increasing order.</p></dd><dt><span class="term"><a
name="gel-function-StripZeroColumns"></a>StripZeroColumns</span></dt><dd><pre
class="synopsis">StripZeroColumns (M)</pre><p>Удаляет все состоящие только из нулей столбцы матрицы <code
class="varname">M</code>.</p></dd><dt><span class="term"><a
name="gel-function-StripZeroRows"></a>StripZeroRows</span></dt><dd><pre class="synopsis">StripZeroRows
(M)</pre><p>Удаляет все состоящие только из ну�
�ей строки матрицы <code class="varname">M</code>.</p></dd><dt><span class="term"><a
name="gel-function-Submatrix"></a>Submatrix</span></dt><dd><pre class="synopsis">Submatrix
(m,r,c)</pre><p>Return column(s) and row(s) from a matrix. This is
+just equivalent to <strong class="userinput"><code>m@(r,c)</code></strong>. <code class="varname">r</code>
+and <code class="varname">c</code> should be vectors of rows and columns (or single numbers if only one row
or column is needed).</p></dd><dt><span class="term"><a
name="gel-function-SwapRows"></a>SwapRows</span></dt><dd><pre class="synopsis">SwapRows
(m,строка1,строка2)</pre><p>Меняет местами две строки матрицы.</p></dd><dt><span class="term"><a
name="gel-function-UpperTriangular"></a>UpperTriangular</span></dt><dd><pre class="synopsis">UpperTriangular
(M)</pre><p>Возвращает копию матрицы <code class="varname">M</code>, в которой все элементы под диагональю
заменены нулями.</p></dd><dt><span class="term"><a
name="gel-function-columns"></a>columns</span></dt><dd><pre class="synopsis">columns (M)</pre><p>Возвращает
число столбцов в матрице.</p></dd><dt><span class="term"><a
name="gel-function-elements"></a>elements</span></dt><dd><pre cla
ss="synopsis">elements (M)</pre><p>Возвращает общее число элементов в матрице. Это число столбцов,
умноженное на число строк.</p></dd><dt><span class="term"><a
name="gel-function-ones"></a>ones</span></dt><dd><pre class="synopsis">ones
(строки,столбцы...)</pre><p>Создаёт матрицу, состоящую только из единиц (или строчный вектор, если задан
только один аргумент). Возвращает <code class="constant">null</code>, если задано число строк или столбцов,
равное нулю.</p></dd><dt><span class="term"><a name="gel-function-rows"></a>rows</span></dt><dd><pre
class="synopsis">rows (M)</pre><p>Возвращает число строк в матрице.</p></dd><dt><span class="term"><a
name="gel-function-zeros"></a>zeros</span></dt><dd><pre class="synopsis">zeros (стро�
�и,столбцы...)</pre><p>Создаёт матрицу, состоящую только из единиц (или строчный вектор, если задан только
один аргумент). Возвращает <code class="constant">null</code>, если задано число строк или столбцов, равное
нулю.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s07.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s09.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Теория
чисел </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Линейная алгебра</td></tr></table></d
iv></body></html>
diff --git a/help/ru/html/ch11s09.html b/help/ru/html/ch11s09.html
new file mode 100644
index 0000000..2a4c2d1
--- /dev/null
+++ b/help/ru/html/ch11s09.html
@@ -0,0 +1,284 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Линейная
алгебра</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch11.html" title="Глава 11.
Список функций GEL"><link rel="prev" href="ch11s08.html" title="Операции с матрицами"><link rel="next"
href="ch11s10.html" title="Комбинаторика"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Линейная алгебра</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s08.html">Пред.</a> </td><th width="60%" align="center">Глава 11. Список функций
GEL</th><td width="20%" align="right"> <a accesskey="n" h
ref="ch11s10.html">След.</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-linear-algebra"></a>Линейная алгебра</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AuxiliaryUnitMatrix"></a>AuxiliaryUnitMatrix</span></dt><dd><pre
class="synopsis">AuxiliaryUnitMatrix (n)</pre><p>Get the auxiliary unit matrix of size <code
class="varname">n</code>. This is a square matrix with that is all zero except the
+superdiagonal being all ones. It is the Jordan block matrix of one zero eigenvalue.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/JordanCanonicalFormTheorem"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/JordanBlock.html" target="_top">Mathworld</a>
for more information on Jordan Canonical Form.
+ </p></dd><dt><span class="term"><a
name="gel-function-BilinearForm"></a>BilinearForm</span></dt><dd><pre class="synopsis">BilinearForm
(v,A,w)</pre><p>Evaluate (v,w) with respect to the bilinear form given by the matrix A.</p></dd><dt><span
class="term"><a name="gel-function-BilinearFormFunction"></a>BilinearFormFunction</span></dt><dd><pre
class="synopsis">BilinearFormFunction (A)</pre><p>Return a function that evaluates two vectors with respect
to the bilinear form given by A.</p></dd><dt><span class="term"><a
name="gel-function-CharacteristicPolynomial"></a>CharacteristicPolynomial</span></dt><dd><pre
class="synopsis">CharacteristicPolynomial (M)</pre><p>Aliases: <code
class="function">CharPoly</code></p><p>Get the characteristic polynomial as a vector. That is, return
+the coefficients of the polynomial starting with the constant term. This is
+the polynomial defined by <strong class="userinput"><code>det(M-xI)</code></strong>. The roots of this
+polynomial are the eigenvalues of <code class="varname">M</code>.
+See also <a class="link"
href="ch11s09.html#gel-function-CharacteristicPolynomialFunction">CharacteristicPolynomialFunction</a>.
+</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Characteristic_polynomial"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/CharacteristicEquation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CharacteristicPolynomialFunction"></a>CharacteristicPolynomialFunction</span></dt><dd><pre
class="synopsis">CharacteristicPolynomialFunction (M)</pre><p>Get the characteristic polynomial as a
function. This is
+the polynomial defined by <strong class="userinput"><code>det(M-xI)</code></strong>. The roots of this
+polynomial are the eigenvalues of <code class="varname">M</code>.
+See also <a class="link"
href="ch11s09.html#gel-function-CharacteristicPolynomial">CharacteristicPolynomial</a>.
+</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Characteristic_polynomial"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/CharacteristicEquation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-ColumnSpace"></a>ColumnSpace</span></dt><dd><pre class="synopsis">ColumnSpace
(M)</pre><p>Get a basis matrix for the columnspace of a matrix. That is,
+return a matrix whose columns are the basis for the column space of
+<code class="varname">M</code>. That is the space spanned by the columns of
+<code class="varname">M</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Row_and_column_spaces"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CommutationMatrix"></a>CommutationMatrix</span></dt><dd><pre
class="synopsis">CommutationMatrix (m, n)</pre><p>Return the commutation matrix <strong
class="userinput"><code>K(m,n)</code></strong>, which is the unique <strong
class="userinput"><code>m*n</code></strong> by
+ <strong class="userinput"><code>m*n</code></strong> matrix such that <strong
class="userinput"><code>K(m,n) * MakeVector(A) = MakeVector(A.')</code></strong> for all <code
class="varname">m</code> by <code class="varname">n</code>
+ matrices <code class="varname">A</code>.</p></dd><dt><span class="term"><a
name="gel-function-CompanionMatrix"></a>CompanionMatrix</span></dt><dd><pre class="synopsis">CompanionMatrix
(p)</pre><p>Companion matrix of a polynomial (as vector).</p></dd><dt><span class="term"><a
name="gel-function-ConjugateTranspose"></a>ConjugateTranspose</span></dt><dd><pre
class="synopsis">ConjugateTranspose (M)</pre><p>Conjugate transpose of a matrix (adjoint). This is the
+ same as the <strong class="userinput"><code>'</code></strong> operator.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Conjugate_transpose"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/ConjugateTranspose" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Convolution"></a>Convolution</span></dt><dd><pre class="synopsis">Convolution
(a,b)</pre><p>Aliases: <code class="function">convol</code></p><p>Calculate convolution of two horizontal
vectors.</p></dd><dt><span class="term"><a
name="gel-function-ConvolutionVector"></a>ConvolutionVector</span></dt><dd><pre
class="synopsis">ConvolutionVector (a,b)</pre><p>Calculate convolution of two horizontal vectors. Return
+result as a vector and not added together.</p></dd><dt><span class="term"><a
name="gel-function-CrossProduct"></a>CrossProduct</span></dt><dd><pre class="synopsis">CrossProduct
(v,w)</pre><p>CrossProduct of two vectors in R<sup>3</sup> as
+ a column vector.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Cross_product" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-DeterminantalDivisorsInteger"></a>DeterminantalDivisorsInteger</span></dt><dd><pre
class="synopsis">DeterminantalDivisorsInteger (M)</pre><p>Get the determinantal divisors of an integer
matrix.</p></dd><dt><span class="term"><a name="gel-function-DirectSum"></a>DirectSum</span></dt><dd><pre
class="synopsis">DirectSum (M,N...)</pre><p>Direct sum of matrices.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Matrix_addition#directsum"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-DirectSumMatrixVector"></a>DirectSumMatrixVector</span></dt><dd><pre
class="synopsis">DirectSumMatrixVector (v)</pre><p>Direct sum of a vector of matrices.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Matrix_addition#directsum"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Eigenvalues"></a>Eigenvalues</span></dt><dd><pre class="synopsis">Eigenvalues
(M)</pre><p>Aliases: <code class="function">eig</code></p><p>Get the eigenvalues of a square matrix.
+ Currently only works for matrices of size up to 4 by 4, or for
+ triangular matrices (for which the eigenvalues are on the
+ diagonal).
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eigenvalue" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/Eigenvalue" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/Eigenvalue.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Eigenvectors"></a>Eigenvectors</span></dt><dd><pre class="synopsis">Eigenvectors
(M)</pre><pre class="synopsis">Eigenvectors (M, &eigenvalues)</pre><pre class="synopsis">Eigenvectors (M,
&eigenvalues, &multiplicities)</pre><p>Get the eigenvectors of a square matrix. Optionally get also
+the eigenvalues and their algebraic multiplicities.
+ Currently only works for matrices of size up to 2 by 2.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eigenvector" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/Eigenvector" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/Eigenvector.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GramSchmidt"></a>GramSchmidt</span></dt><dd><pre class="synopsis">GramSchmidt
(v,B...)</pre><p>Apply the Gram-Schmidt process (to the columns) with respect to
+inner product given by <code class="varname">B</code>. If <code class="varname">B</code> is not
+given then the standard Hermitian product is used. <code class="varname">B</code> can
+either be a sesquilinear function of two arguments or it can be a matrix giving
+a sesquilinear form. The vectors will be made orthonormal with respect to
+<code class="varname">B</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/GramSchmidtOrthogonalization"
target="_top">Planetmath</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-HankelMatrix"></a>HankelMatrix</span></dt><dd><pre class="synopsis">HankelMatrix
(c,r)</pre><p>Hankel matrix, a matrix whose skew-diagonals are constant. <code class="varname">c</code> is
the first row and <code class="varname">r</code> is the
+ last column. It is assumed that both arguments are vectors and the last element of <code
class="varname">c</code> is the same
+ as the first element of <code class="varname">r</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hankel_matrix" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-HilbertMatrix"></a>HilbertMatrix</span></dt><dd><pre class="synopsis">HilbertMatrix
(n)</pre><p>Hilbert matrix of order <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hilbert_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/HilbertMatrix" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-Image"></a>Image</span></dt><dd><pre
class="synopsis">Image (T)</pre><p>Get the image (columnspace) of a linear transform.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Row_and_column_spaces"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-InfNorm"></a>InfNorm</span></dt><dd><pre
class="synopsis">InfNorm (v)</pre><p>Get the Inf Norm of a vector, sometimes called the sup norm or the max
norm.</p></dd><dt><span class="term"><a
name="gel-function-InvariantFactorsInteger"></a>InvariantFactorsInteger</span></dt><dd><pre
class="synopsis">InvariantFactorsInteger (M)</pre><p>Get the invariant factors of a square integer
matrix.</p></dd><dt><span class="term"><a
name="gel-function-InverseHilbertMatrix"></a>InverseHilbertMatrix</span></dt><dd><pre
class="synopsis">InverseHilbertMatrix (n)</pre><p>Inverse Hilbert matrix of order <code
class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hilbert_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/HilbertMatrix" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsHermitian"></a>IsHermitian</span></dt><dd><pre class="synopsis">IsHermitian
(M)</pre><p>Is a matrix Hermitian. That is, is it equal to its conjugate transpose.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Hermitian_matrix"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/HermitianMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsInSubspace"></a>IsInSubspace</span></dt><dd><pre class="synopsis">IsInSubspace
(v,W)</pre><p>Test if a vector is in a subspace.</p></dd><dt><span class="term"><a
name="gel-function-IsInvertible"></a>IsInvertible</span></dt><dd><pre class="synopsis">IsInvertible
(n)</pre><p>Is a matrix (or number) invertible (Integer matrix is invertible if and only if it is invertible
over the integers).</p></dd><dt><span class="term"><a
name="gel-function-IsInvertibleField"></a>IsInvertibleField</span></dt><dd><pre
class="synopsis">IsInvertibleField (n)</pre><p>Is a matrix (or number) invertible over a
field.</p></dd><dt><span class="term"><a name="gel-function-IsNormal"></a>IsNormal</span></dt><dd><pre
class="synopsis">IsNormal (M)</pre><p>Is <code class="varname">M</code> a normal matrix. That is,
+ does <strong class="userinput"><code>M*M' == M'*M</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/NormalMatrix" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/NormalMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsPositiveDefinite"></a>IsPositiveDefinite</span></dt><dd><pre
class="synopsis">IsPositiveDefinite (M)</pre><p>Is <code class="varname">M</code> a Hermitian positive
definite matrix. That is if
+<strong class="userinput"><code>HermitianProduct(M*v,v)</code></strong> is always strictly positive for
+any vector <code class="varname">v</code>.
+<code class="varname">M</code> must be square and Hermitian to be positive definite.
+The check that is performed is that every principal submatrix has a non-negative
+determinant.
+(See <a class="link" href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a>)</p><p>
+ Note that some authors (for example Mathworld) do not require that
+ <code class="varname">M</code> be Hermitian, and then the condition is
+ on the real part of the inner product, but we do not take this
+ view. If you wish to perform this check, just check the
+ Hermitian part of the matrix <code class="varname">M</code> as follows:
+ <strong class="userinput"><code>IsPositiveDefinite(M+M')</code></strong>.
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Positive-definite_matrix"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/PositiveDefinite" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/PositiveDefiniteMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsPositiveSemidefinite"></a>IsPositiveSemidefinite</span></dt><dd><pre
class="synopsis">IsPositiveSemidefinite (M)</pre><p>Is <code class="varname">M</code> a Hermitian positive
semidefinite matrix. That is if
+<strong class="userinput"><code>HermitianProduct(M*v,v)</code></strong> is always non-negative for
+any vector <code class="varname">v</code>.
+<code class="varname">M</code> must be square and Hermitian to be positive semidefinite.
+The check that is performed is that every principal submatrix has a non-negative
+determinant.
+(See <a class="link" href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a>)</p><p>
+ Note that some authors do not require that
+ <code class="varname">M</code> be Hermitian, and then the condition is
+ on the real part of the inner product, but we do not take this
+ view. If you wish to perform this check, just check the
+ Hermitian part of the matrix <code class="varname">M</code> as follows:
+ <strong class="userinput"><code>IsPositiveSemidefinite(M+M')</code></strong>.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PositiveSemidefinite" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/PositiveSemidefiniteMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-IsSkewHermitian"></a>IsSkewHermitian</span></dt><dd><pre class="synopsis">IsSkewHermitian
(M)</pre><p>Is a matrix skew-Hermitian. That is, is the conjugate transpose equal to negative of the
matrix.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SkewHermitianMatrix" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-IsUnitary"></a>IsUnitary</span></dt><dd><pre
class="synopsis">IsUnitary (M)</pre><p>Is a matrix unitary? That is, does
+ <strong class="userinput"><code>M'*M</code></strong> and <strong
class="userinput"><code>M*M'</code></strong>
+ equal the identity.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/UnitaryTransformation" target="_top">Planetmath</a>
or
+ <a class="ulink" href="http://mathworld.wolfram.com/UnitaryMatrix.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-JordanBlock"></a>JordanBlock</span></dt><dd><pre class="synopsis">JordanBlock
(n,lambda)</pre><p>Aliases: <code class="function">J</code></p><p>Get the Jordan block corresponding to the
eigenvalue
+ <code class="varname">lambda</code> with multiplicity <code class="varname">n</code>.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/JordanCanonicalFormTheorem"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/JordanBlock.html" target="_top">Mathworld</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Kernel"></a>Kernel</span></dt><dd><pre
class="synopsis">Kernel (T)</pre><p>Get the kernel (nullspace) of a linear transform.</p><p>
+ (See <a class="link" href="ch11s09.html#gel-function-NullSpace">NullSpace</a>)
+ </p></dd><dt><span class="term"><a
name="gel-function-KroneckerProduct"></a>KroneckerProduct</span></dt><dd><pre
class="synopsis">KroneckerProduct (M, N)</pre><p>Aliases: <code class="function">TensorProduct</code></p><p>
+ Compute the Kronecker product (tensor product in standard basis)
+ of two matrices.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Kronecker_product"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/KroneckerProduct" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/KroneckerProduct.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LUDecomposition"></a>LUDecomposition</span></dt><dd><pre class="synopsis">LUDecomposition
(A, L, U)</pre><p>
+ Get the LU decomposition of <code class="varname">A</code>, that is
+ find a lower triangular matrix and upper triangular
+ matrix whose product is <code class="varname">A</code>.
+ Store the result in the <code class="varname">L</code> and
+ <code class="varname">U</code>, which should be references. It returns <code
class="constant">true</code>
+ if successful.
+ For example suppose that A is a square matrix, then after running:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LUDecomposition(A,&L,&U)</code></strong>
+</pre><p>
+ You will have the lower matrix stored in a variable called
+ <code class="varname">L</code> and the upper matrix in a variable called
+ <code class="varname">U</code>.
+ </p><p>
+ This is the LU decomposition of a matrix aka Crout and/or Cholesky
+ reduction.
+ (ISBN 0-201-11577-8 pp.99-103)
+ The upper triangular matrix features a diagonal
+ of values 1 (one). This is not Doolittle's Method, which features
+ the 1's diagonal on the lower matrix.
+ </p><p>
+ Not all matrices have LU decompositions, for example
+ <strong class="userinput"><code>[0,1;1,0]</code></strong> does not and this function returns
+ <code class="constant">false</code> in this case and sets <code class="varname">L</code>
+ and <code class="varname">U</code> to <code class="constant">null</code>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/LU_decomposition" target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/LUDecomposition" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/LUDecomposition.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Minor"></a>Minor</span></dt><dd><pre
class="synopsis">Minor (M,i,j)</pre><p>Get the <code class="varname">i</code>-<code class="varname">j</code>
minor of a matrix.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Minor" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-NonPivotColumns"></a>NonPivotColumns</span></dt><dd><pre class="synopsis">NonPivotColumns
(M)</pre><p>Return the columns that are not the pivot columns of a matrix.</p></dd><dt><span class="term"><a
name="gel-function-Norm"></a>Norm</span></dt><dd><pre class="synopsis">Norm (v,p...)</pre><p>Aliases: <code
class="function">norm</code></p><p>Get the p Norm (or 2 Norm if no p is supplied) of a
vector.</p></dd><dt><span class="term"><a name="gel-function-NullSpace"></a>NullSpace</span></dt><dd><pre
class="synopsis">NullSpace (T)</pre><p>Get the nullspace of a matrix. That is the kernel of the
+ linear mapping that the matrix represents. This is returned
+ as a matrix whose column space is the nullspace of
+ <code class="varname">T</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Nullspace" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-Nullity"></a>Nullity</span></dt><dd><pre
class="synopsis">Nullity (M)</pre><p>Aliases: <code class="function">nullity</code></p><p>Get the nullity of
a matrix. That is, return the dimension of
+the nullspace; the dimension of the kernel of <code class="varname">M</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Nullity" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-OrthogonalComplement"></a>OrthogonalComplement</span></dt><dd><pre
class="synopsis">OrthogonalComplement (M)</pre><p>Get the orthogonal complement of the
columnspace.</p></dd><dt><span class="term"><a
name="gel-function-PivotColumns"></a>PivotColumns</span></dt><dd><pre class="synopsis">PivotColumns
(M)</pre><p>Return pivot columns of a matrix, that is columns that have a leading 1 in row reduced form.
Also returns the row where they occur.</p></dd><dt><span class="term"><a
name="gel-function-Projection"></a>Projection</span></dt><dd><pre class="synopsis">Projection
(v,W,B...)</pre><p>Projection of vector <code class="varname">v</code> onto subspace
+<code class="varname">W</code> with respect to inner product given by
+<code class="varname">B</code>. If <code class="varname">B</code> is not given then the standard
+Hermitian product is used. <code class="varname">B</code> can either be a sesquilinear
+function of two arguments or it can be a matrix giving a sesquilinear form.
+ </p></dd><dt><span class="term"><a
name="gel-function-QRDecomposition"></a>QRDecomposition</span></dt><dd><pre class="synopsis">QRDecomposition
(A, Q)</pre><p>
+ Get the QR decomposition of a square matrix <code class="varname">A</code>,
+ returns the upper triangular matrix <code class="varname">R</code>
+ and sets <code class="varname">Q</code> to the orthogonal (unitary) matrix.
+ <code class="varname">Q</code> should be a reference or <code class="constant">null</code> if you
don't
+ want any return.
+ For example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong class="userinput"><code>R
= QRDecomposition(A,&Q)</code></strong>
+</pre><p>
+ You will have the upper triangular matrix stored in
+ a variable called
+ <code class="varname">R</code> and the orthogonal (unitary) matrix stored in
+ <code class="varname">Q</code>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/QR_decomposition" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/QRDecomposition" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/QRDecomposition.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RayleighQuotient"></a>RayleighQuotient</span></dt><dd><pre
class="synopsis">RayleighQuotient (A,x)</pre><p>Return the Rayleigh quotient (also called the Rayleigh-Ritz
quotient or ratio) of a matrix and a vector.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RayleighQuotient" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RayleighQuotientIteration"></a>RayleighQuotientIteration</span></dt><dd><pre
class="synopsis">RayleighQuotientIteration (A,x,epsilon,maxiter,vecref)</pre><p>Find eigenvalues of <code
class="varname">A</code> using the Rayleigh
+ quotient iteration method. <code class="varname">x</code> is a guess
+ at a eigenvector and could be random. It should have
+ nonzero imaginary part if it will have any chance at finding
+ complex eigenvalues. The code will run at most
+ <code class="varname">maxiter</code> iterations and return <code class="constant">null</code>
+ if we cannot get within an error of <code class="varname">epsilon</code>.
+ <code class="varname">vecref</code> should either be <code class="constant">null</code> or a
reference
+ to a variable where the eigenvector should be stored.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RayleighQuotient" target="_top">Planetmath</a> for
more information on Rayleigh quotient.
+ </p></dd><dt><span class="term"><a name="gel-function-Rank"></a>Rank</span></dt><dd><pre
class="synopsis">Rank (M)</pre><p>Синонимы: <code class="function">rank</code></p><p>Возвращает ранг
матрицы.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SylvestersLaw" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RosserMatrix"></a>RosserMatrix</span></dt><dd><pre class="synopsis">RosserMatrix
()</pre><p>Returns the Rosser matrix, which is a classic symmetric eigenvalue test problem.</p></dd><dt><span
class="term"><a name="gel-function-Rotation2D"></a>Rotation2D</span></dt><dd><pre class="synopsis">Rotation2D
(angle)</pre><p>Aliases: <code class="function">RotationMatrix</code></p><p>Return the matrix corresponding
to rotation around origin in R<sup>2</sup>.</p></dd><dt><span class="term"><a
name="gel-function-Rotation3DX"></a>Rotation3DX</span></dt><dd><pre class="synopsis">Rotation3DX
(angle)</pre><p>Return the matrix corresponding to rotation around origin in R<sup>3</sup> about the
x-axis.</p></dd><dt><span class="term"><a name="gel-function-Rotation3DY"></a>Rotation3DY</span></dt><dd><pre
class="synopsis">Rotation3DY (angle)</pre><p>Return the matrix corresponding to rotation around origin in
R<sup>3</sup> about the
y-axis.</p></dd><dt><span class="term"><a
name="gel-function-Rotation3DZ"></a>Rotation3DZ</span></dt><dd><pre class="synopsis">Rotation3DZ
(angle)</pre><p>Return the matrix corresponding to rotation around origin in R<sup>3</sup> about the
z-axis.</p></dd><dt><span class="term"><a name="gel-function-RowSpace"></a>RowSpace</span></dt><dd><pre
class="synopsis">RowSpace (M)</pre><p>Get a basis matrix for the rowspace of a matrix.</p></dd><dt><span
class="term"><a name="gel-function-SesquilinearForm"></a>SesquilinearForm</span></dt><dd><pre
class="synopsis">SesquilinearForm (v,A,w)</pre><p>Evaluate (v,w) with respect to the sesquilinear form given
by the matrix A.</p></dd><dt><span class="term"><a
name="gel-function-SesquilinearFormFunction"></a>SesquilinearFormFunction</span></dt><dd><pre
class="synopsis">SesquilinearFormFunction (A)</pre><p>Return a function that evaluates two vectors with
respect to the sesquilinear form given by A.</p></dd><dt><span class="term"><a name="gel
-function-SmithNormalFormField"></a>SmithNormalFormField</span></dt><dd><pre
class="synopsis">SmithNormalFormField (A)</pre><p>Returns the Smith normal form of a matrix over fields (will
end up with 1's on the diagonal).</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Smith_normal_form"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SmithNormalFormInteger"></a>SmithNormalFormInteger</span></dt><dd><pre
class="synopsis">SmithNormalFormInteger (M)</pre><p>Return the Smith normal form for square integer matrices
over integers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Smith_normal_form"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SolveLinearSystem"></a>SolveLinearSystem</span></dt><dd><pre
class="synopsis">SolveLinearSystem (M,V,args...)</pre><p>Solve linear system Mx=V, return solution V if there
is a unique solution, <code class="constant">null</code> otherwise. Extra two reference parameters can
optionally be used to get the reduced M and V.</p></dd><dt><span class="term"><a
name="gel-function-ToeplitzMatrix"></a>ToeplitzMatrix</span></dt><dd><pre class="synopsis">ToeplitzMatrix (c,
r...)</pre><p>Return the Toeplitz matrix constructed given the first column c
+and (optionally) the first row r. If only the column c is given then it is
+conjugated and the nonconjugated version is used for the first row to give a
+Hermitian matrix (if the first element is real of course).</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Toeplitz_matrix" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/ToeplitzMatrix" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Trace"></a>Trace</span></dt><dd><pre
class="synopsis">Trace (M)</pre><p>Aliases: <code class="function">trace</code></p><p>Calculate the trace of
a matrix. That is the sum of the diagonal elements.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Trace_(linear_algebra)"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Trace" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-Transpose"></a>Transpose</span></dt><dd><pre
class="synopsis">Transpose (M)</pre><p>Транспозиция матрицы. То же самое, что оператор <strong
class="userinput"><code>.'</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Transpose" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Transpose" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-VandermondeMatrix"></a>VandermondeMatrix</span></dt><dd><pre
class="synopsis">VandermondeMatrix (v)</pre><p>Aliases: <code class="function">vander</code></p><p>Return the
Vandermonde matrix.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Vandermonde_matrix"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-VectorAngle"></a>VectorAngle</span></dt><dd><pre class="synopsis">VectorAngle
(v,w,B...)</pre><p>The angle of two vectors with respect to inner product given by
+<code class="varname">B</code>. If <code class="varname">B</code> is not given then the standard
+Hermitian product is used. <code class="varname">B</code> can either be a sesquilinear
+function of two arguments or it can be a matrix giving a sesquilinear form.
+</p></dd><dt><span class="term"><a
name="gel-function-VectorSpaceDirectSum"></a>VectorSpaceDirectSum</span></dt><dd><pre
class="synopsis">VectorSpaceDirectSum (M,N)</pre><p>The direct sum of the vector spaces M and
N.</p></dd><dt><span class="term"><a
name="gel-function-VectorSubspaceIntersection"></a>VectorSubspaceIntersection</span></dt><dd><pre
class="synopsis">VectorSubspaceIntersection (M,N)</pre><p>Intersection of the subspaces given by M and
N.</p></dd><dt><span class="term"><a
name="gel-function-VectorSubspaceSum"></a>VectorSubspaceSum</span></dt><dd><pre
class="synopsis">VectorSubspaceSum (M,N)</pre><p>The sum of the vector spaces M and N, that is {w | w=m+n, m
in M, n in N}.</p></dd><dt><span class="term"><a name="gel-function-adj"></a>adj</span></dt><dd><pre
class="synopsis">adj (m)</pre><p>Aliases: <code class="function">Adjugate</code></p><p>Get the classical
adjoint (adjugate) of a matrix.</p></dd><dt><span class="term"><a name="gel-function-cref"></a>cref</spa
n></dt><dd><pre class="synopsis">cref (M)</pre><p>Aliases: <code class="function">CREF</code> <code
class="function">ColumnReducedEchelonForm</code></p><p>Compute the Column Reduced Echelon
Form.</p></dd><dt><span class="term"><a name="gel-function-det"></a>det</span></dt><dd><pre
class="synopsis">det (M)</pre><p>Aliases: <code class="function">Determinant</code></p><p>Get the determinant
of a matrix.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Determinant" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/Determinant2" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-ref"></a>ref</span></dt><dd><pre
class="synopsis">ref (M)</pre><p>Aliases: <code class="function">REF</code> <code
class="function">RowEchelonForm</code></p><p>Get the row echelon form of a matrix. That is, apply gaussian
+elimination but not backaddition to <code class="varname">M</code>. The pivot rows are
+divided to make all pivots 1.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Row_echelon_form" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/RowEchelonForm" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-rref"></a>rref</span></dt><dd><pre
class="synopsis">rref (M)</pre><p>Aliases: <code class="function">RREF</code> <code
class="function">ReducedRowEchelonForm</code></p><p>Get the reduced row echelon form of a matrix. That is,
apply gaussian elimination together with backaddition to <code class="varname">M</code>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Reduced_row_echelon_form"
target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://planetmath.org/ReducedRowEchelonForm" target="_top">Planetmath</a>
for more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s08.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s10.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Операции с
матрицами </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td
width="40%" align="right" valign="top"> Комбинаторика</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch11s10.html b/help/ru/html/ch11s10.html
new file mode 100644
index 0000000..f22cdd1
--- /dev/null
+++ b/help/ru/html/ch11s10.html
@@ -0,0 +1,107 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Комбинаторика</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Руководство пользователя Genius"><link rel="up"
href="ch11.html" title="Глава 11. Список функций GEL"><link rel="prev" href="ch11s09.html" title="Линейная
алгебра"><link rel="next" href="ch11s11.html" title="Calculus"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Комбинаторика</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s09.html">Пред.</a> </td><th width="60%" align="center">Глава 11. Список функций
GEL</th><td width="20%" align="right"> <a accesskey="n" href="ch11s11.html">След.</a></t
d></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-function-list-combinatorics"></a>Комбинаторика</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Catalan"></a>Catalan</span></dt><dd><pre class="synopsis">Catalan (n)</pre><p>Возвращает
<code class="varname">n</code>-ое число Каталана.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/CatalanNumbers" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Combinations"></a>Combinations</span></dt><dd><pre class="synopsis">Combinations
(k,n)</pre><p>Get all combinations of k numbers from 1 to n as a vector of vectors.
+ (See also <a class="link" href="ch11s10.html#gel-function-NextCombination">NextCombination</a>)
+</p></dd><dt><span class="term"><a
name="gel-function-DoubleFactorial"></a>DoubleFactorial</span></dt><dd><pre class="synopsis">DoubleFactorial
(n)</pre><p>Двойной факториал: <strong class="userinput"><code>n(n-2)(n-4)...</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/DoubleFactorial" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Factorial"></a>Factorial</span></dt><dd><pre
class="synopsis">Factorial (n)</pre><p>Факториал: <strong
class="userinput"><code>n(n-1)(n-2)...</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Factorial" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FallingFactorial"></a>FallingFactorial</span></dt><dd><pre
class="synopsis">FallingFactorial (n,k)</pre><p>Убывающий факториал: <strong class="userinput"><code>(n)_k =
n(n-1)...(n-(k-1))</code></strong></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/FallingFactorial" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Fibonacci"></a>Fibonacci</span></dt><dd><pre
class="synopsis">Fibonacci (x)</pre><p>Синонимы: <code class="function">fib</code></p><p>Вычисляет <code
class="varname">n</code>-ое число Фибоначчи. Это число, вычисляемое рекурсивно по формулам <strong
class="userinput"><code>Fibonacci(n) = Fibonacci(n-1) + Fibonacci(n-2)</code></strong> и <strong
class="userinput"><code>Fibonacci(1) = Fibonacci(2) = 1</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fibonacci_number" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/FibonacciSequence" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FibonacciNumber.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FrobeniusNumber"></a>FrobeniusNumber</span></dt><dd><pre class="synopsis">FrobeniusNumber
(v,arg...)</pre><p>
+ Calculate the Frobenius number. That is calculate smallest
+ number that cannot be given as a non-negative integer linear
+ combination of a given vector of non-negative integers.
+ The vector can be given as separate numbers or a single vector.
+ All the numbers given should have GCD of 1.
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/FrobeniusNumber.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GaloisMatrix"></a>GaloisMatrix</span></dt><dd><pre class="synopsis">GaloisMatrix
(combining_rule)</pre><p>Galois matrix given a linear combining rule
(a_1*x_1+...+a_n*x_n=x_(n+1)).</p></dd><dt><span class="term"><a
name="gel-function-GreedyAlgorithm"></a>GreedyAlgorithm</span></dt><dd><pre class="synopsis">GreedyAlgorithm
(n,v)</pre><p>
+ Find the vector <code class="varname">c</code> of non-negative integers
+ such that taking the dot product with <code class="varname">v</code> is
+ equal to n. If not possible returns <code class="constant">null</code>. <code
class="varname">v</code>
+ should be given sorted in increasing order and should consist
+ of non-negative integers.
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/GreedyAlgorithm.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-HarmonicNumber"></a>HarmonicNumber</span></dt><dd><pre class="synopsis">HarmonicNumber
(n,r)</pre><p>Aliases: <code class="function">HarmonicH</code></p><p>Harmonic Number, the <code
class="varname">n</code>th harmonic number of order <code class="varname">r</code>.</p></dd><dt><span
class="term"><a name="gel-function-Hofstadter"></a>Hofstadter</span></dt><dd><pre class="synopsis">Hofstadter
(n)</pre><p>Hofstadter's function q(n) defined by q(1)=1, q(2)=1,
q(n)=q(n-q(n-1))+q(n-q(n-2)).</p></dd><dt><span class="term"><a
name="gel-function-LinearRecursiveSequence"></a>LinearRecursiveSequence</span></dt><dd><pre
class="synopsis">LinearRecursiveSequence (seed_values,combining_rule,n)</pre><p>Compute linear recursive
sequence using Galois stepping.</p></dd><dt><span class="term"><a
name="gel-function-Multinomial"></a>Multinomial</span></dt><dd><pre class="synopsis">Multinomial
(v,arg...)</pre><p>Calculate multinomial coeffi
cients. Takes a vector of
+ <code class="varname">k</code>
+ non-negative integers and computes the multinomial coefficient.
+ This corresponds to the coefficient in the homogeneous polynomial
+ in <code class="varname">k</code> variables with the corresponding powers.
+ </p><p>
+ The formula for <strong class="userinput"><code>Multinomial(a,b,c)</code></strong>
+ can be written as:
+</p><pre class="programlisting">(a+b+c)! / (a!b!c!)
+</pre><p>
+ In other words, if we would have only two elements, then
+<strong class="userinput"><code>Multinomial(a,b)</code></strong> is the same thing as
+<strong class="userinput"><code>Binomial(a+b,a)</code></strong> or
+<strong class="userinput"><code>Binomial(a+b,b)</code></strong>.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Multinomial_theorem"
target="_top">Wikipedia</a>,
+ <a class="ulink" href="http://planetmath.org/MultinomialTheorem" target="_top">Planetmath</a>, or
+ <a class="ulink" href="http://mathworld.wolfram.com/MultinomialCoefficient.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-NextCombination"></a>NextCombination</span></dt><dd><pre class="synopsis">NextCombination
(v,n)</pre><p>Get combination that would come after v in call to
+combinations, first combination should be <strong class="userinput"><code>[1:k]</code></strong>. This
+function is useful if you have many combinations to go through and you don't
+want to waste memory to store them all.
+ </p><p>
+ For example with Combinations you would normally write a loop like:
+ </p><pre class="screen"><strong class="userinput"><code>for n in Combinations (4,6) do (
+ SomeFunction (n)
+);</code></strong>
+</pre><p>
+ But with NextCombination you would write something like:
+ </p><pre class="screen"><strong class="userinput"><code>n:=[1:4];
+do (
+ SomeFunction (n)
+) while not IsNull(n:=NextCombination(n,6));</code></strong>
+</pre><p>
+ See also <a class="link" href="ch11s10.html#gel-function-Combinations">Combinations</a>.
+ </p></dd><dt><span class="term"><a name="gel-function-Pascal"></a>Pascal</span></dt><dd><pre
class="synopsis">Pascal (i)</pre><p>Get the Pascal's triangle as a matrix. This will return
+ an <code class="varname">i</code>+1 by <code class="varname">i</code>+1 lower diagonal
+ matrix that is the Pascal's triangle after <code class="varname">i</code>
+ iterations.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PascalsTriangle" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Permutations"></a>Permutations</span></dt><dd><pre class="synopsis">Permutations
(k,n)</pre><p>Get all permutations of <code class="varname">k</code> numbers from 1 to <code
class="varname">n</code> as a vector of vectors.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/Permutation.html" target="_top">Mathworld</a>
or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Permutation" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RisingFactorial"></a>RisingFactorial</span></dt><dd><pre class="synopsis">RisingFactorial
(n,k)</pre><p>Aliases: <code class="function">Pochhammer</code></p><p>(Pochhammer) Rising factorial: (n)_k =
n(n+1)...(n+(k-1)).</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RisingFactorial" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-StirlingNumberFirst"></a>StirlingNumberFirst</span></dt><dd><pre
class="synopsis">StirlingNumberFirst (n,m)</pre><p>Aliases: <code
class="function">StirlingS1</code></p><p>Stirling number of the first kind.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/StirlingNumbersOfTheFirstKind"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-StirlingNumberSecond"></a>StirlingNumberSecond</span></dt><dd><pre
class="synopsis">StirlingNumberSecond (n,m)</pre><p>Aliases: <code
class="function">StirlingS2</code></p><p>Stirling number of the second kind.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/StirlingNumbersSecondKind"
target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Subfactorial"></a>Subfactorial</span></dt><dd><pre class="synopsis">Subfactorial
(n)</pre><p>Subfactorial: n! times sum_{k=0}^n (-1)^k/k!.</p></dd><dt><span class="term"><a
name="gel-function-Triangular"></a>Triangular</span></dt><dd><pre class="synopsis">Triangular
(nth)</pre><p>Calculate the <code class="varname">n</code>th triangular number.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/TriangularNumbers" target="_top">Planetmath</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-nCr"></a>nCr</span></dt><dd><pre
class="synopsis">nCr (n,r)</pre><p>Aliases: <code class="function">Binomial</code></p><p>Calculate
combinations, that is, the binomial coefficient.
+ <code class="varname">n</code> can be any real number.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/Choose" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a name="gel-function-nPr"></a>nPr</span></dt><dd><pre
class="synopsis">nPr (n,r)</pre><p>Calculate the number of permutations of size
+ <code class="varname">r</code> of numbers from 1 to <code class="varname">n</code>.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/Permutation.html" target="_top">Mathworld</a>
or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Permutation" target="_top">Wikipedia</a> for
more information.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s09.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s11.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Линейная
алгебра </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Calculus</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch11s11.html b/help/ru/html/ch11s11.html
new file mode 100644
index 0000000..1d4c83a
--- /dev/null
+++ b/help/ru/html/ch11s11.html
@@ -0,0 +1,120 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Calculus</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Руководство пользователя Genius"><link rel="up" href="ch11.html" title="Глава 11. Список функций
GEL"><link rel="prev" href="ch11s10.html" title="Комбинаторика"><link rel="next" href="ch11s12.html"
title="Functions"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Calculus</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s10.html">Пред.</a> </td><th width="60%" align="center">Глава 11. Список функций GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch11s12.html">След.</a></td></tr></table><hr></div><div
class="sec
t1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-calculus"></a>Calculus</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-CompositeSimpsonsRule"></a>CompositeSimpsonsRule</span></dt><dd><pre
class="synopsis">CompositeSimpsonsRule (f,a,b,n)</pre><p>Integration of f by Composite Simpson's Rule on the
interval [a,b] with n subintervals with error of max(f'''')*h^4*(b-a)/180, note that n should be even.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SimpsonsRule" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-CompositeSimpsonsRuleTolerance"></a>CompositeSimpsonsRuleTolerance</span></dt><dd><pre
class="synopsis">CompositeSimpsonsRuleTolerance (f,a,b,FourthDerivativeBound,Tolerance)</pre><p>Integration
of f by Composite Simpson's Rule on the interval [a,b] with the number of steps calculated by the fourth
derivative bound and the desired tolerance.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/SimpsonsRule" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Derivative"></a>Derivative</span></dt><dd><pre class="synopsis">Derivative
(f,x0)</pre><p>Attempt to calculate derivative by trying first symbolically and then numerically.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EvenPeriodicExtension"></a>EvenPeriodicExtension</span></dt><dd><pre
class="synopsis">EvenPeriodicExtension (f,L)</pre><p>Return a function that is the even periodic extension of
+<code class="function">f</code> with half period <code class="varname">L</code>. That
+is a function defined on the interval <strong class="userinput"><code>[0,L]</code></strong>
+extended to be even on <strong class="userinput"><code>[-L,L]</code></strong> and then
+extended to be periodic with period <strong class="userinput"><code>2*L</code></strong>.</p><p>
+ See also
+ <a class="link" href="ch11s11.html#gel-function-OddPeriodicExtension">OddPeriodicExtension</a>
+ and
+ <a class="link" href="ch11s11.html#gel-function-PeriodicExtension">PeriodicExtension</a>.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-FourierSeriesFunction"></a>FourierSeriesFunction</span></dt><dd><pre
class="synopsis">FourierSeriesFunction (a,b,L)</pre><p>Return a function that is a Fourier series with the
+coefficients given by the vectors <code class="varname">a</code> (sines) and
+<code class="varname">b</code> (cosines). Note that <strong class="userinput"><code>a@(1)</code></strong> is
+the constant coefficient! That is, <strong class="userinput"><code>a@(n)</code></strong> refers to
+the term <strong class="userinput"><code>cos(x*(n-1)*pi/L)</code></strong>, while
+<strong class="userinput"><code>b@(n)</code></strong> refers to the term
+<strong class="userinput"><code>sin(x*n*pi/L)</code></strong>. Either <code class="varname">a</code>
+or <code class="varname">b</code> can be <code class="constant">null</code>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierSeries.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-InfiniteProduct"></a>InfiniteProduct</span></dt><dd><pre class="synopsis">InfiniteProduct
(func,start,inc)</pre><p>Try to calculate an infinite product for a single parameter
function.</p></dd><dt><span class="term"><a
name="gel-function-InfiniteProduct2"></a>InfiniteProduct2</span></dt><dd><pre
class="synopsis">InfiniteProduct2 (func,arg,start,inc)</pre><p>Try to calculate an infinite product for a
double parameter function with func(arg,n).</p></dd><dt><span class="term"><a
name="gel-function-InfiniteSum"></a>InfiniteSum</span></dt><dd><pre class="synopsis">InfiniteSum
(func,start,inc)</pre><p>Try to calculate an infinite sum for a single parameter function.</p></dd><dt><span
class="term"><a name="gel-function-InfiniteSum2"></a>InfiniteSum2</span></dt><dd><pre
class="synopsis">InfiniteSum2 (func,arg,start,inc)</pre><p>Try to calculate an infinite sum for a double
parameter function with func(arg,n).</p></dd><d
t><span class="term"><a name="gel-function-IsContinuous"></a>IsContinuous</span></dt><dd><pre
class="synopsis">IsContinuous (f,x0)</pre><p>Try and see if a real-valued function is continuous at x0 by
calculating the limit there.</p></dd><dt><span class="term"><a
name="gel-function-IsDifferentiable"></a>IsDifferentiable</span></dt><dd><pre
class="synopsis">IsDifferentiable (f,x0)</pre><p>Test for differentiability by approximating the left and
right limits and comparing.</p></dd><dt><span class="term"><a
name="gel-function-LeftLimit"></a>LeftLimit</span></dt><dd><pre class="synopsis">LeftLimit
(f,x0)</pre><p>Calculate the left limit of a real-valued function at x0.</p></dd><dt><span class="term"><a
name="gel-function-Limit"></a>Limit</span></dt><dd><pre class="synopsis">Limit (f,x0)</pre><p>Calculate the
limit of a real-valued function at x0. Tries to calculate both left and right limits.</p></dd><dt><span
class="term"><a name="gel-function-MidpointRule"></a>MidpointRule</sp
an></dt><dd><pre class="synopsis">MidpointRule (f,a,b,n)</pre><p>Integration by midpoint
rule.</p></dd><dt><span class="term"><a
name="gel-function-NumericalDerivative"></a>NumericalDerivative</span></dt><dd><pre
class="synopsis">NumericalDerivative (f,x0)</pre><p>Aliases: <code
class="function">NDerivative</code></p><p>Attempt to calculate numerical derivative.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSeriesCoefficients"></a>NumericalFourierSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierSeriesCoefficients (f,L,N)</pre><p>Return a vector of vectors <strong
class="userinput"><code>[a,b]</code></strong>
+where <code class="varname">a</code> are the cosine coefficients and
+<code class="varname">b</code> are the sine coefficients of
+the Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code> (that is defined
+on <strong class="userinput"><code>[-L,L]</code></strong> and extended periodically) with coefficients
+up to <code class="varname">N</code>th harmonic computed numerically. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSeriesFunction"></a>NumericalFourierSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierSeriesFunction (f,L,N)</pre><p>Return a function that is the Fourier series
of
+<code class="function">f</code> with half-period <code class="varname">L</code> (that is defined
+on <strong class="userinput"><code>[-L,L]</code></strong> and extended periodically) with coefficients
+up to <code class="varname">N</code>th harmonic computed numerically. This is the
+trigonometric real series composed of sines and cosines. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierCosineSeriesCoefficients"></a>NumericalFourierCosineSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierCosineSeriesCoefficients (f,L,N)</pre><p>Return a vector of coefficients of
+the cosine Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code>. That is,
+we take <code class="function">f</code> defined on <strong class="userinput"><code>[0,L]</code></strong>
+take the even periodic extension and compute the Fourier series, which
+only has cosine terms. The series is computed up to the
+<code class="varname">N</code>th harmonic. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.
+Note that <strong class="userinput"><code>a@(1)</code></strong> is
+the constant coefficient! That is, <strong class="userinput"><code>a@(n)</code></strong> refers to
+the term <strong class="userinput"><code>cos(x*(n-1)*pi/L)</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierCosineSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierCosineSeriesFunction"></a>NumericalFourierCosineSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierCosineSeriesFunction (f,L,N)</pre><p>Return a function that is the cosine
Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code>. That is,
+we take <code class="function">f</code> defined on <strong class="userinput"><code>[0,L]</code></strong>
+take the even periodic extension and compute the Fourier series, which
+only has cosine terms. The series is computed up to the
+<code class="varname">N</code>th harmonic. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierCosineSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSineSeriesCoefficients"></a>NumericalFourierSineSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierSineSeriesCoefficients (f,L,N)</pre><p>Return a vector of coefficients of
+the sine Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code>. That is,
+we take <code class="function">f</code> defined on <strong class="userinput"><code>[0,L]</code></strong>
+take the odd periodic extension and compute the Fourier series, which
+only has sine terms. The series is computed up to the
+<code class="varname">N</code>th harmonic. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierSineSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSineSeriesFunction"></a>NumericalFourierSineSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierSineSeriesFunction (f,L,N)</pre><p>Return a function that is the sine
Fourier series of
+<code class="function">f</code> with half-period <code class="varname">L</code>. That is,
+we take <code class="function">f</code> defined on <strong class="userinput"><code>[0,L]</code></strong>
+take the odd periodic extension and compute the Fourier series, which
+only has sine terms. The series is computed up to the
+<code class="varname">N</code>th harmonic. The coefficients are
+computed by numerical integration using
+<a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/FourierSineSeries.html"
target="_top">Mathworld</a> for more information.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegral"></a>NumericalIntegral</span></dt><dd><pre
class="synopsis">NumericalIntegral (f,a,b)</pre><p>Integration by rule set in NumericalIntegralFunction of f
from a to b using NumericalIntegralSteps steps.</p></dd><dt><span class="term"><a
name="gel-function-NumericalLeftDerivative"></a>NumericalLeftDerivative</span></dt><dd><pre
class="synopsis">NumericalLeftDerivative (f,x0)</pre><p>Attempt to calculate numerical left
derivative.</p></dd><dt><span class="term"><a
name="gel-function-NumericalLimitAtInfinity"></a>NumericalLimitAtInfinity</span></dt><dd><pre
class="synopsis">NumericalLimitAtInfinity (_f,step_fun,tolerance,successive_for_success,N)</pre><p>Attempt to
calculate the limit of f(step_fun(i)) as i goes from 1 to N.</p></dd><dt><span class="term"><a
name="gel-function-NumericalRightDerivative"></a>NumericalRightDerivative</span></dt><dd><pre
class="synopsis">Nume
ricalRightDerivative (f,x0)</pre><p>Attempt to calculate numerical right derivative.</p></dd><dt><span
class="term"><a name="gel-function-OddPeriodicExtension"></a>OddPeriodicExtension</span></dt><dd><pre
class="synopsis">OddPeriodicExtension (f,L)</pre><p>Return a function that is the odd periodic extension of
+<code class="function">f</code> with half period <code class="varname">L</code>. That
+is a function defined on the interval <strong class="userinput"><code>[0,L]</code></strong>
+extended to be odd on <strong class="userinput"><code>[-L,L]</code></strong> and then
+extended to be periodic with period <strong class="userinput"><code>2*L</code></strong>.</p><p>
+ See also
+ <a class="link" href="ch11s11.html#gel-function-EvenPeriodicExtension">EvenPeriodicExtension</a>
+ and
+ <a class="link" href="ch11s11.html#gel-function-PeriodicExtension">PeriodicExtension</a>.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-OneSidedFivePointFormula"></a>OneSidedFivePointFormula</span></dt><dd><pre
class="synopsis">OneSidedFivePointFormula (f,x0,h)</pre><p>Compute one-sided derivative using five point
formula.</p></dd><dt><span class="term"><a
name="gel-function-OneSidedThreePointFormula"></a>OneSidedThreePointFormula</span></dt><dd><pre
class="synopsis">OneSidedThreePointFormula (f,x0,h)</pre><p>Compute one-sided derivative using three-point
formula.</p></dd><dt><span class="term"><a
name="gel-function-PeriodicExtension"></a>PeriodicExtension</span></dt><dd><pre
class="synopsis">PeriodicExtension (f,a,b)</pre><p>Return a function that is the periodic extension of
+<code class="function">f</code> defined on the interval <strong class="userinput"><code>[a,b]</code></strong>
+and has period <strong class="userinput"><code>b-a</code></strong>.</p><p>
+ See also
+ <a class="link" href="ch11s11.html#gel-function-OddPeriodicExtension">OddPeriodicExtension</a>
+ and
+ <a class="link" href="ch11s11.html#gel-function-EvenPeriodicExtension">EvenPeriodicExtension</a>.
+ </p><p>Version 1.0.7 onwards.</p></dd><dt><span class="term"><a
name="gel-function-RightLimit"></a>RightLimit</span></dt><dd><pre class="synopsis">RightLimit
(f,x0)</pre><p>Calculate the right limit of a real-valued function at x0.</p></dd><dt><span class="term"><a
name="gel-function-TwoSidedFivePointFormula"></a>TwoSidedFivePointFormula</span></dt><dd><pre
class="synopsis">TwoSidedFivePointFormula (f,x0,h)</pre><p>Compute two-sided derivative using five-point
formula.</p></dd><dt><span class="term"><a
name="gel-function-TwoSidedThreePointFormula"></a>TwoSidedThreePointFormula</span></dt><dd><pre
class="synopsis">TwoSidedThreePointFormula (f,x0,h)</pre><p>Compute two-sided derivative using three-point
formula.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s10.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Навер�
�</a></td><td width="40%" align="right"> <a accesskey="n" href="ch11s12.html">След.</a></td></tr><tr><td
width="40%" align="left" valign="top">Комбинаторика </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Начало</a></td><td width="40%" align="right" valign="top">
Functions</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch11s12.html b/help/ru/html/ch11s12.html
new file mode 100644
index 0000000..7f9a5d7
--- /dev/null
+++ b/help/ru/html/ch11s12.html
@@ -0,0 +1,79 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Functions</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Руководство пользователя Genius"><link rel="up" href="ch11.html" title="Глава 11. Список функций
GEL"><link rel="prev" href="ch11s11.html" title="Calculus"><link rel="next" href="ch11s13.html"
title="Решение уравнений"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Functions</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s11.html">Пред.</a> </td><th width="60%" align="center">Глава 11. Список функций GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch11s13.html">След.</a></td></tr></table><hr></div><div cl
ass="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-functions"></a>Functions</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a name="gel-function-Argument"></a>Argument</span></dt><dd><pre
class="synopsis">Argument (z)</pre><p>Aliases: <code class="function">Arg</code> <code
class="function">arg</code></p><p>argument (angle) of complex number.</p></dd><dt><span class="term"><a
name="gel-function-BesselJ0"></a>BesselJ0</span></dt><dd><pre class="synopsis">BesselJ0 (x)</pre><p>Bessel
function of the first kind of order 0. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselJ1"></a>BesselJ1</span></dt><dd><pre class="synopsis">BesselJ1 (x)</pre><p>Bessel
function of the first kind of order 1. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselJn"></a>BesselJn</span></dt><dd><pre class="synopsis">BesselJn (n,x)</pre><p>Bessel
function of the first kind of order <code class="varname">n</code>. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselY0"></a>BesselY0</span></dt><dd><pre class="synopsis">BesselY0 (x)</pre><p>Bessel
function of the second kind of order 0. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselY1"></a>BesselY1</span></dt><dd><pre class="synopsis">BesselY1 (x)</pre><p>Bessel
function of the second kind of order 1. Only implemented for real numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-BesselYn"></a>BesselYn</span></dt><dd><pre class="synopsis">BesselYn (n,x)</pre><p>Bessel
function of the second kind of order <code class="varname">n</code>. Only implemented for real
numbers.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-DirichletKernel"></a>DirichletKernel</span></dt><dd><pre class="synopsis">DirichletKernel
(n,t)</pre><p>Dirichlet kernel of order <code class="varname">n</code>.</p></dd><dt><span class="term"><a
name="gel-function-DiscreteDelta"></a>DiscreteDelta</span></dt><dd><pre class="synopsis">DiscreteDelta
(v)</pre><p>Returns 1 if and only if all elements are zero.</p></dd><dt><span class="term"><a
name="gel-function-ErrorFunction"></a>ErrorFunction</span></dt><dd><pre class="synopsis">ErrorFunction
(x)</pre><p>Aliases: <code class="function">erf</code></p><p>The error function, 2/sqrt(pi) * int_0^x
e^(-t^2) dt.</p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Error_function" target="_top">Wikipedia</a>
or
+ <a class="ulink" href="http://planetmath.org/ErrorFunction" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-FejerKernel"></a>FejerKernel</span></dt><dd><pre class="synopsis">FejerKernel
(n,t)</pre><p>Fejer kernel of order <code class="varname">n</code> evaluated at
+ <code class="varname">t</code></p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/FejerKernel" target="_top">Planetmath</a> for more
information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GammaFunction"></a>GammaFunction</span></dt><dd><pre class="synopsis">GammaFunction
(x)</pre><p>Aliases: <code class="function">Gamma</code></p><p>The Gamma function. Currently only
implemented for real values.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/GammaFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Gamma_function" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-KroneckerDelta"></a>KroneckerDelta</span></dt><dd><pre class="synopsis">KroneckerDelta
(v)</pre><p>Returns 1 if and only if all elements are equal.</p></dd><dt><span class="term"><a
name="gel-function-LambertW"></a>LambertW</span></dt><dd><pre class="synopsis">LambertW (x)</pre><p>
+ The principal branch of Lambert W function computed for only
+ real values greater than or equal to <strong class="userinput"><code>-1/e</code></strong>.
+ That is, <code class="function">LambertW</code> is the inverse of
+ the expression <strong class="userinput"><code>x*e^x</code></strong>. Even for
+ real <code class="varname">x</code> this expression is not one to one and
+ therefore has two branches over <strong class="userinput"><code>[-1/e,0)</code></strong>.
+ See <a class="link" href="ch11s12.html#gel-function-LambertWm1"><code
class="function">LambertWm1</code></a> for the other real branch.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lambert_W_function"
target="_top">Wikipedia</a> for more information.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LambertWm1"></a>LambertWm1</span></dt><dd><pre class="synopsis">LambertWm1 (x)</pre><p>
+ The minus-one branch of Lambert W function computed for only
+ real values greater than or equal to <strong class="userinput"><code>-1/e</code></strong>
+ and less than 0.
+ That is, <code class="function">LambertWm1</code> is the second
+ branch of the inverse of <strong class="userinput"><code>x*e^x</code></strong>.
+ See <a class="link" href="ch11s12.html#gel-function-LambertW"><code
class="function">LambertW</code></a> for the principal branch.
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Lambert_W_function"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MinimizeFunction"></a>MinimizeFunction</span></dt><dd><pre
class="synopsis">MinimizeFunction (func,x,incr)</pre><p>Find the first value where f(x)=0.</p></dd><dt><span
class="term"><a name="gel-function-MoebiusDiskMapping"></a>MoebiusDiskMapping</span></dt><dd><pre
class="synopsis">MoebiusDiskMapping (a,z)</pre><p>Moebius mapping of the disk to itself mapping a to 0.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMapping"></a>MoebiusMapping</span></dt><dd><pre class="synopsis">MoebiusMapping
(z,z2,z3,z4)</pre><p>Moebius mapping using the cross ratio taking z2,z3,z4 to 1,0, and infinity
respectively.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToInfty"></a>MoebiusMappingInftyToInfty</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToInfty (z,z2,z3)</pre><p>Moebius mapping using the cross ratio taking
infinity to infinity and z2,z3 to 1 and 0 respectively.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToOne"></a>MoebiusMappingInftyToOne</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToOne (z,z3,z4)</pre><p>Moebius mapping using the cross ratio taking
infinity to 1 and z3,z4 to 0 and infinity respectively.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToZero"></a>MoebiusMappingInftyToZero</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToZero (z,z2,z4)</pre><p>Moebius mapping using the cross ratio taking
infinity to 0 and z2,z4 to 1 and infinity respectively.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PoissonKernel"></a>PoissonKernel</span></dt><dd><pre class="synopsis">PoissonKernel
(r,sigma)</pre><p>Poisson kernel on D(0,1) (not normalized to 1, that is integral of this is
2pi).</p></dd><dt><span class="term"><a
name="gel-function-PoissonKernelRadius"></a>PoissonKernelRadius</span></dt><dd><pre
class="synopsis">PoissonKernelRadius (r,sigma)</pre><p>Poisson kernel on D(0,R) (not normalized to
1).</p></dd><dt><span class="term"><a name="gel-function-RiemannZeta"></a>RiemannZeta</span></dt><dd><pre
class="synopsis">RiemannZeta (x)</pre><p>Aliases: <code class="function">zeta</code></p><p>The Riemann zeta
function. Currently only implemented for real values.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/RiemannZetaFunction" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Riemann_zeta_function"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-UnitStep"></a>UnitStep</span></dt><dd><pre
class="synopsis">UnitStep (x)</pre><p>The unit step function is 0 for x<0, 1 otherwise. This is the
integral of the Dirac Delta function. Also called the Heaviside function.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Unit_step" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a name="gel-function-cis"></a>cis</span></dt><dd><pre
class="synopsis">cis (x)</pre><p>Функция <code class="function">cis</code>, то же самое, что <strong
class="userinput"><code>cos(x)+1i*sin(x)</code></strong></p></dd><dt><span class="term"><a
name="gel-function-deg2rad"></a>deg2rad</span></dt><dd><pre class="synopsis">deg2rad (x)</pre><p>Преобразует
градусы в радианы.</p></dd><dt><span class="term"><a
name="gel-function-rad2deg"></a>rad2deg</span></dt><dd><pre class="synopsis">rad2deg (x)</pre><p>Преобразует
радианы в градусы.</p></dd><dt><span class="term"><a name="gel-function-sinc"></a>sinc</span></dt><dd><pre
class="synopsis">sinc (x)</pre><p>Calculates the unnormalized sinc function, that is
+ <strong class="userinput"><code>sin(x)/x</code></strong>.
+ If you want the normalized function call <strong
class="userinput"><code>sinc(pi*x)</code></strong>.</p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Sinc" target="_top">Wikipedia</a> for more
information.
+ </p><p>Version 1.0.16 onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s11.html">Пред.</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Наверх</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s13.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Calculus </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%" align="right"
valign="top"> Решение уравнений</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch11s13.html b/help/ru/html/ch11s13.html
new file mode 100644
index 0000000..7bca08b
--- /dev/null
+++ b/help/ru/html/ch11s13.html
@@ -0,0 +1,213 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Решение
уравнений</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch11.html" title="Глава 11.
Список функций GEL"><link rel="prev" href="ch11s12.html" title="Functions"><link rel="next"
href="ch11s14.html" title="Статистика"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Решение уравнений</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s12.html">Пред.</a> </td><th width="60%" align="center">Глава 11. Список функций
GEL</th><td width="20%" align="right"> <a accesskey="n" href="ch11s14.html">След.</a
</td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-function-list-equation-solving"></a>Решение
уравнений</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span
class="term"><a name="gel-function-CubicFormula"></a>CubicFormula</span></dt><dd><pre
class="synopsis">CubicFormula (p)</pre><p>
+ Compute roots of a cubic (degree 3) polynomial using the
+ cubic formula. The polynomial should be given as a
+ vector of coefficients. That is
+ <strong class="userinput"><code>4*x^3 + 2*x + 1</code></strong> corresponds to the vector
+ <strong class="userinput"><code>[1,2,0,4]</code></strong>.
+ Returns a column vector of the three solutions. The first solution is always
+ the real one as a cubic always has one real solution.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/CubicFormula" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/CubicFormula.html"
target="_top">Mathworld</a>, or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Cubic_equation" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EulersMethod"></a>EulersMethod</span></dt><dd><pre class="synopsis">EulersMethod
(f,x0,y0,x1,n)</pre><p>
+ Use classical Euler's method to numerically solve y'=f(x,y) for
+ initial <code class="varname">x0</code>, <code class="varname">y0</code> going to
+ <code class="varname">x1</code> with <code class="varname">n</code> increments,
+ returns <code class="varname">y</code> at <code class="varname">x1</code>.
+ Unless you explicitly want to use Euler's method, you should really
+ think about using
+ <a class="link" href="ch11s13.html#gel-function-RungeKutta">RungeKutta</a>
+ for solving ODE.
+ </p><p>
+ Systems can be solved by just having <code class="varname">y</code> be a
+ (column) vector everywhere. That is, <code class="varname">y0</code> can
+ be a vector in which case <code class="varname">f</code> should take a number
+ <code class="varname">x</code> and a vector of the same size for the second
+ argument and should return a vector of the same size.
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/EulerForwardMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eulers_method" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-EulersMethodFull"></a>EulersMethodFull</span></dt><dd><pre
class="synopsis">EulersMethodFull (f,x0,y0,x1,n)</pre><p>
+ Use classical Euler's method to numerically solve y'=f(x,y) for
+ initial <code class="varname">x0</code>, <code class="varname">y0</code> going to
+ <code class="varname">x1</code> with <code class="varname">n</code> increments,
+ returns a 2 by <strong class="userinput"><code>n+1</code></strong> matrix with the
+ <code class="varname">x</code> and <code class="varname">y</code> values.
+ Unless you explicitly want to use Euler's method, you should really
+ think about using
+ <a class="link" href="ch11s13.html#gel-function-RungeKuttaFull">RungeKuttaFull</a>
+ for solving ODE.
+ Suitable
+ for plugging into
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawPoints">LinePlotDrawPoints</a>.
+ </p><p>
+ Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>line =
EulersMethodFull(`(x,y)=y,0,1.0,3.0,50);</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(line,"window","fit","color","blue","legend","Exponential
growth");</code></strong>
+</pre><p>
+ </p><p>
+ Systems can be solved by just having <code class="varname">y</code> be a
+ (column) vector everywhere. That is, <code class="varname">y0</code> can
+ be a vector in which case <code class="varname">f</code> should take a number
+ <code class="varname">x</code> and a vector of the same size for the second
+ argument and should return a vector of the same size.
+ </p><p>
+ The output for a system is still a n by 2 matrix with the second
+ entry being a vector. If you wish to plot the line, make sure to use row vectors, and then
flatten the matrix with
+ <a class="link" href="ch11s08.html#gel-function-ExpandMatrix">ExpandMatrix</a>,
+ and pick out the right columns. Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
EulersMethodFull(`(x,y)=[y@(2),-y@(1)],0,[1.0,1.0],10.0,500);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
ExpandMatrix(lines);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>firstline =
lines@(,[1,2]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>secondline =
lines@(,[1,3]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>LinePlotWindow =
[0,10,-2,2];</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(firstline,"color","blue","legend","First");</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(secondline,"color","red","thickness",3,"legend","Second");</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/EulerForwardMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Eulers_method" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.10 onwards.</p></dd><dt><span class="term"><a
name="gel-function-FindRootBisection"></a>FindRootBisection</span></dt><dd><pre
class="synopsis">FindRootBisection (f,a,b,TOL,N)</pre><p>Find root of a function using the bisection method.
+ <code class="varname">a</code> and <code class="varname">b</code> are the initial guess
interval,
+ <strong class="userinput"><code>f(a)</code></strong> and <strong
class="userinput"><code>f(b)</code></strong> should have opposite signs.
+ <code class="varname">TOL</code> is the desired tolerance and
+<code class="varname">N</code> is the limit on the number of iterations to run, 0 means no limit. The
function returns a vector <strong class="userinput"><code>[success,value,iteration]</code></strong>, where
<code class="varname">success</code> is a boolean indicating success, <code class="varname">value</code> is
the last value computed, and <code class="varname">iteration</code> is the number of iterations
done.</p></dd><dt><span class="term"><a
name="gel-function-FindRootFalsePosition"></a>FindRootFalsePosition</span></dt><dd><pre
class="synopsis">FindRootFalsePosition (f,a,b,TOL,N)</pre><p>Find root of a function using the method of
false position.
+ <code class="varname">a</code> and <code class="varname">b</code> are the initial guess
interval,
+ <strong class="userinput"><code>f(a)</code></strong> and <strong
class="userinput"><code>f(b)</code></strong> should have opposite signs.
+ <code class="varname">TOL</code> is the desired tolerance and
+<code class="varname">N</code> is the limit on the number of iterations to run, 0 means no limit. The
function returns a vector <strong class="userinput"><code>[success,value,iteration]</code></strong>, where
<code class="varname">success</code> is a boolean indicating success, <code class="varname">value</code> is
the last value computed, and <code class="varname">iteration</code> is the number of iterations
done.</p></dd><dt><span class="term"><a
name="gel-function-FindRootMullersMethod"></a>FindRootMullersMethod</span></dt><dd><pre
class="synopsis">FindRootMullersMethod (f,x0,x1,x2,TOL,N)</pre><p>Find root of a function using the Muller's
method.
+ <code class="varname">TOL</code> is the desired tolerance and
+<code class="varname">N</code> is the limit on the number of iterations to run, 0 means no limit. The
function returns a vector <strong class="userinput"><code>[success,value,iteration]</code></strong>, where
<code class="varname">success</code> is a boolean indicating success, <code class="varname">value</code> is
the last value computed, and <code class="varname">iteration</code> is the number of iterations
done.</p></dd><dt><span class="term"><a
name="gel-function-FindRootSecant"></a>FindRootSecant</span></dt><dd><pre class="synopsis">FindRootSecant
(f,a,b,TOL,N)</pre><p>Find root of a function using the secant method.
+ <code class="varname">a</code> and <code class="varname">b</code> are the initial guess
interval,
+ <strong class="userinput"><code>f(a)</code></strong> and <strong
class="userinput"><code>f(b)</code></strong> should have opposite signs.
+ <code class="varname">TOL</code> is the desired tolerance and
+<code class="varname">N</code> is the limit on the number of iterations to run, 0 means no limit. The
function returns a vector <strong class="userinput"><code>[success,value,iteration]</code></strong>, where
<code class="varname">success</code> is a boolean indicating success, <code class="varname">value</code> is
the last value computed, and <code class="varname">iteration</code> is the number of iterations
done.</p></dd><dt><span class="term"><a
name="gel-function-HalleysMethod"></a>HalleysMethod</span></dt><dd><pre class="synopsis">HalleysMethod
(f,df,ddf,guess,epsilon,maxn)</pre><p>Find zeros using Halley's method. <code class="varname">f</code> is
+ the function, <code class="varname">df</code> is the derivative of
+ <code class="varname">f</code>, and <code class="varname">ddf</code> is the second
derivative of
+ <code class="varname">f</code>. <code class="varname">guess</code> is the initial
+ guess. The function returns after two successive values are
+ within <code class="varname">epsilon</code> of each other, or after <code
class="varname">maxn</code> tries, in which case the function returns <code class="constant">null</code>
indicating failure.
+ </p><p>
+ See also <a class="link" href="ch11s13.html#gel-function-NewtonsMethod"><code
class="function">NewtonsMethod</code></a> and <a class="link"
href="ch11s19.html#gel-function-SymbolicDerivative"><code class="function">SymbolicDerivative</code></a>.
+ </p><p>
+ Example to find the square root of 10:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>HalleysMethod(`(x)=x^2-10,`(x)=2*x,`(x)=2,3,10^-10,100)</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Halley%27s_method"
target="_top">Wikipedia</a> for more information.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-NewtonsMethod"></a>NewtonsMethod</span></dt><dd><pre class="synopsis">NewtonsMethod
(f,df,guess,epsilon,maxn)</pre><p>Find zeros using Newton's method. <code class="varname">f</code> is
+ the function and <code class="varname">df</code> is the derivative of
+ <code class="varname">f</code>. <code class="varname">guess</code> is the initial
+ guess. The function returns after two successive values are
+ within <code class="varname">epsilon</code> of each other, or after <code
class="varname">maxn</code> tries, in which case the function returns <code class="constant">null</code>
indicating failure.
+ </p><p>
+ See also <a class="link" href="ch11s15.html#gel-function-NewtonsMethodPoly"><code
class="function">NewtonsMethodPoly</code></a> and <a class="link"
href="ch11s19.html#gel-function-SymbolicDerivative"><code class="function">SymbolicDerivative</code></a>.
+ </p><p>
+ Example to find the square root of 10:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>NewtonsMethod(`(x)=x^2-10,`(x)=2*x,3,10^-10,100)</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Newtons_method" target="_top">Wikipedia</a>
for more information.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-PolynomialRoots"></a>PolynomialRoots</span></dt><dd><pre class="synopsis">PolynomialRoots
(p)</pre><p>
+ Compute roots of a polynomial (degrees 1 through 4)
+ using one of the formulas for such polynomials.
+ The polynomial should be given as a
+ vector of coefficients. That is
+ <strong class="userinput"><code>4*x^3 + 2*x + 1</code></strong> corresponds to the vector
+ <strong class="userinput"><code>[1,2,0,4]</code></strong>.
+ Returns a column vector of the solutions.
+ </p><p>
+ The function calls
+ <a class="link" href="ch11s13.html#gel-function-QuadraticFormula">QuadraticFormula</a>,
+ <a class="link" href="ch11s13.html#gel-function-CubicFormula">CubicFormula</a>, and
+ <a class="link" href="ch11s13.html#gel-function-QuarticFormula">QuarticFormula</a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-QuadraticFormula"></a>QuadraticFormula</span></dt><dd><pre
class="synopsis">QuadraticFormula (p)</pre><p>
+ Compute roots of a quadratic (degree 2) polynomial using the
+ quadratic formula. The polynomial should be given as a
+ vector of coefficients. That is
+ <strong class="userinput"><code>3*x^2 + 2*x + 1</code></strong> corresponds to the vector
+ <strong class="userinput"><code>[1,2,3]</code></strong>.
+ Returns a column vector of the two solutions.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/QuadraticFormula" target="_top">Planetmath</a> or
+ <a class="ulink" href="http://mathworld.wolfram.com/QuadraticFormula.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-QuarticFormula"></a>QuarticFormula</span></dt><dd><pre class="synopsis">QuarticFormula
(p)</pre><p>
+ Compute roots of a quartic (degree 4) polynomial using the
+ quartic formula. The polynomial should be given as a
+ vector of coefficients. That is
+ <strong class="userinput"><code>5*x^4 + 2*x + 1</code></strong> corresponds to the vector
+ <strong class="userinput"><code>[1,2,0,0,5]</code></strong>.
+ Returns a column vector of the four solutions.
+ </p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/QuarticFormula" target="_top">Planetmath</a>,
+ <a class="ulink" href="http://mathworld.wolfram.com/QuarticEquation.html"
target="_top">Mathworld</a>, or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Quartic_equation" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RungeKutta"></a>RungeKutta</span></dt><dd><pre class="synopsis">RungeKutta
(f,x0,y0,x1,n)</pre><p>
+ Use classical non-adaptive fourth order Runge-Kutta method to
+ numerically solve
+ y'=f(x,y) for initial <code class="varname">x0</code>, <code class="varname">y0</code>
+ going to <code class="varname">x1</code> with <code class="varname">n</code>
+ increments, returns <code class="varname">y</code> at <code class="varname">x1</code>.
+ </p><p>
+ Systems can be solved by just having <code class="varname">y</code> be a
+ (column) vector everywhere. That is, <code class="varname">y0</code> can
+ be a vector in which case <code class="varname">f</code> should take a number
+ <code class="varname">x</code> and a vector of the same size for the second
+ argument and should return a vector of the same size.
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/Runge-KuttaMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Runge-Kutta_methods"
target="_top">Wikipedia</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RungeKuttaFull"></a>RungeKuttaFull</span></dt><dd><pre class="synopsis">RungeKuttaFull
(f,x0,y0,x1,n)</pre><p>
+ Use classical non-adaptive fourth order Runge-Kutta method to
+ numerically solve
+ y'=f(x,y) for initial <code class="varname">x0</code>, <code class="varname">y0</code>
+ going to <code class="varname">x1</code> with <code class="varname">n</code>
+ increments,
+ returns a 2 by <strong class="userinput"><code>n+1</code></strong> matrix with the
+ <code class="varname">x</code> and <code class="varname">y</code> values. Suitable
+ for plugging into
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotDrawPoints">LinePlotDrawPoints</a>.
+ </p><p>
+ Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>line =
RungeKuttaFull(`(x,y)=y,0,1.0,3.0,50);</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(line,"window","fit","color","blue","legend","Exponential
growth");</code></strong>
+</pre><p>
+ </p><p>
+ Systems can be solved by just having <code class="varname">y</code> be a
+ (column) vector everywhere. That is, <code class="varname">y0</code> can
+ be a vector in which case <code class="varname">f</code> should take a number
+ <code class="varname">x</code> and a vector of the same size for the second
+ argument and should return a vector of the same size.
+ </p><p>
+ The output for a system is still a n by 2 matrix with the second
+ entry being a vector. If you wish to plot the line, make sure to use row vectors, and then
flatten the matrix with
+ <a class="link" href="ch11s08.html#gel-function-ExpandMatrix">ExpandMatrix</a>,
+ and pick out the right columns. Example:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
RungeKuttaFull(`(x,y)=[y@(2),-y@(1)],0,[1.0,1.0],10.0,100);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
ExpandMatrix(lines);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>firstline =
lines@(,[1,2]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>secondline =
lines@(,[1,3]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>LinePlotWindow =
[0,10,-2,2];</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(firstline,"color","blue","legend","First");</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(secondline,"color","red","thickness",3,"legend","Second");</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/Runge-KuttaMethod.html"
target="_top">Mathworld</a> or
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Runge-Kutta_methods"
target="_top">Wikipedia</a> for more information.
+ </p><p>Version 1.0.10 onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s12.html">Пред.</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Наверх</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s14.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Functions </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%" align="right"
valign="top"> Статистика</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch11s14.html b/help/ru/html/ch11s14.html
new file mode 100644
index 0000000..e7db3d9
--- /dev/null
+++ b/help/ru/html/ch11s14.html
@@ -0,0 +1,14 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Статистика</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Руководство пользователя Genius"><link rel="up"
href="ch11.html" title="Глава 11. Список функций GEL"><link rel="prev" href="ch11s13.html" title="Решение
уравнений"><link rel="next" href="ch11s15.html" title="Многочлены"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Статистика</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s13.html">Пред.</a> </td><th width="60%" align="center">Глава 11. Список функций
GEL</th><td width="20%" align="right"> <a accesskey="n" href="ch11s15.html">След.</a><
/td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-function-list-statistics"></a>Статистика</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Average"></a>Average</span></dt><dd><pre class="synopsis">Average (m)</pre><p>Псевдонимы:
<code class="function">average</code><code class="function">Mean</code><code
class="function">mean</code></p><p>Вычисляет среднее арифметическое всех элементов матрицы.</p><p>Для
дополнительной информации смотрите <a class="ulink" href="http://mathworld.wolfram.com/ArithmeticMean.html"
target="_top">Mathworld</a>.</p></dd><dt><span class="term"><a
name="gel-function-GaussDistribution"></a>GaussDistribution</span></dt><dd><pre
class="synopsis">GaussDistribution (x,sigma)</pre><p>Integral of the
GaussFunction from 0 to <code class="varname">x</code> (area under the normal curve).</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/NormalDistribution.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-GaussFunction"></a>GaussFunction</span></dt><dd><pre class="synopsis">GaussFunction
(x,sigma)</pre><p>The normalized Gauss distribution function (the normal curve).</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/NormalDistribution.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-Median"></a>Median</span></dt><dd><pre
class="synopsis">Median (m)</pre><p>Aliases: <code class="function">median</code></p><p>Calculate median of
an entire matrix.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/StatisticalMedian.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-PopulationStandardDeviation"></a>PopulationStandardDeviation</span></dt><dd><pre
class="synopsis">PopulationStandardDeviation (m)</pre><p>Aliases: <code
class="function">stdevp</code></p><p>Calculate the population standard deviation of a whole
matrix.</p></dd><dt><span class="term"><a name="gel-function-RowAverage"></a>RowAverage</span></dt><dd><pre
class="synopsis">RowAverage (m)</pre><p>Aliases: <code class="function">RowMean</code></p><p>Calculate
average of each row in a matrix.</p><p>Для дополнительной информации смотрите <a class="ulink"
href="http://mathworld.wolfram.com/ArithmeticMean.html" target="_top">Mathworld</a>.</p></dd><dt><span
class="term"><a name="gel-function-RowMedian"></a>RowMedian</span></dt><dd><pre class="synopsis">RowMedian
(m)</pre><p>Calculate median of each row in a matrix and return a column
+ vector of the medians.</p><p>
+ See
+ <a class="ulink" href="http://mathworld.wolfram.com/StatisticalMedian.html"
target="_top">Mathworld</a> for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-RowPopulationStandardDeviation"></a>RowPopulationStandardDeviation</span></dt><dd><pre
class="synopsis">RowPopulationStandardDeviation (m)</pre><p>Aliases: <code
class="function">rowstdevp</code></p><p>Calculate the population standard deviations of rows of a matrix and
return a vertical vector.</p></dd><dt><span class="term"><a
name="gel-function-RowStandardDeviation"></a>RowStandardDeviation</span></dt><dd><pre
class="synopsis">RowStandardDeviation (m)</pre><p>Aliases: <code
class="function">rowstdev</code></p><p>Calculate the standard deviations of rows of a matrix and return a
vertical vector.</p></dd><dt><span class="term"><a
name="gel-function-StandardDeviation"></a>StandardDeviation</span></dt><dd><pre
class="synopsis">StandardDeviation (m)</pre><p>Aliases: <code class="function">stdev</code></p><p>Calculate
the standard deviation of a whole matrix.</p></dd></dl></div></div><div class="navfooter"><hr><table widt
h="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s13.html">Пред.</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Наверх</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s15.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Решение уравнений
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Многочлены</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch11s15.html b/help/ru/html/ch11s15.html
new file mode 100644
index 0000000..62eedfe
--- /dev/null
+++ b/help/ru/html/ch11s15.html
@@ -0,0 +1,21 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Многочлены</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Руководство пользователя Genius"><link rel="up"
href="ch11.html" title="Глава 11. Список функций GEL"><link rel="prev" href="ch11s14.html"
title="Статистика"><link rel="next" href="ch11s16.html" title="Теория множеств"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Многочлены</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch11s14.html">Пред.</a> </td><th width="60%" align="center">Глава 11.
Список функций GEL</th><td width="20%" align="right"> <a accesskey="n" href="ch11s16.html">След.</a></td>
</tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-function-list-polynomials"></a>Многочлены</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AddPoly"></a>AddPoly</span></dt><dd><pre class="synopsis">AddPoly
(p1,p2)</pre><p>Складывает два многочлена (в виде векторов).</p></dd><dt><span class="term"><a
name="gel-function-DividePoly"></a>DividePoly</span></dt><dd><pre class="synopsis">DividePoly
(p,q,&r)</pre><p>Divide two polynomials (as vectors) using long division.
+ Returns the quotient
+ of the two polynomials. The optional argument <code class="varname">r</code>
+ is used to return the remainder. The remainder will have lower
+ degree than <code class="varname">q</code>.</p><p>
+ See
+ <a class="ulink" href="http://planetmath.org/PolynomialLongDivision" target="_top">Planetmath</a>
for more information.
+ </p></dd><dt><span class="term"><a name="gel-function-IsPoly"></a>IsPoly</span></dt><dd><pre
class="synopsis">IsPoly (p)</pre><p>Проверяет, можно ли использовать вектор в качестве
многочлена.</p></dd><dt><span class="term"><a
name="gel-function-MultiplyPoly"></a>MultiplyPoly</span></dt><dd><pre class="synopsis">MultiplyPoly
(p1,p2)</pre><p>Умножает два многочлена (в виде векторов).</p></dd><dt><span class="term"><a
name="gel-function-NewtonsMethodPoly"></a>NewtonsMethodPoly</span></dt><dd><pre
class="synopsis">NewtonsMethodPoly (poly,guess,epsilon,maxn)</pre><p>Find a root of a polynomial using
Newton's method. <code class="varname">poly</code> is
+ the polynomial as a vector and <code class="varname">guess</code> is the initial
+ guess. The function returns after two successive values are
+ within <code class="varname">epsilon</code> of each other, or after <code
class="varname">maxn</code> tries, in which case the function returns <code class="constant">null</code>
indicating failure.
+ </p><p>
+ See also <a class="link" href="ch11s13.html#gel-function-NewtonsMethod"><code
class="function">NewtonsMethod</code></a>.
+ </p><p>
+ Example to find the square root of 10:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>NewtonsMethodPoly([-10,0,1],3,10^-10,100)</code></strong>
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="http://en.wikipedia.org/wiki/Newtons_method" target="_top">Wikipedia</a>
for more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-Poly2ndDerivative"></a>Poly2ndDerivative</span></dt><dd><pre
class="synopsis">Poly2ndDerivative (p)</pre><p>Находит вторую производную многочлена (как
вектора).</p></dd><dt><span class="term"><a
name="gel-function-PolyDerivative"></a>PolyDerivative</span></dt><dd><pre class="synopsis">PolyDerivative
(p)</pre><p>Находит производную многочлена (как вектора).</p></dd><dt><span class="term"><a
name="gel-function-PolyToFunction"></a>PolyToFunction</span></dt><dd><pre class="synopsis">PolyToFunction
(p)</pre><p>Make function out of a polynomial (as vector).</p></dd><dt><span class="term"><a
name="gel-function-PolyToString"></a>PolyToString</span></dt><dd><pre class="synopsis">PolyToString
(p,var...)</pre><p>Make string out of a polynomial (as vector).</p></dd><dt><span class="term"><a
name="gel-function-SubtractPoly"></a>SubtractPoly</span></dt
<dd><pre class="synopsis">SubtractPoly (p1,p2)</pre><p>Subtract two polynomials (as
vectors).</p></dd><dt><span class="term"><a name="gel-function-TrimPoly"></a>TrimPoly</span></dt><dd><pre
class="synopsis">TrimPoly (p)</pre><p>Trim zeros from a polynomial (as
vector).</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s14.html">Пред.</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Наверх</a></td><td width="40%" align="right">
<a accesskey="n" href="ch11s16.html">След.</a></td></tr><tr><td width="40%" align="left"
valign="top">Статистика </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Начало</a></td><td width="40%" align="right" valign="top"> Теория
множеств</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch11s16.html b/help/ru/html/ch11s16.html
new file mode 100644
index 0000000..23fdd01
--- /dev/null
+++ b/help/ru/html/ch11s16.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Теория
множеств</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch11.html" title="Глава 11.
Список функций GEL"><link rel="prev" href="ch11s15.html" title="Многочлены"><link rel="next"
href="ch11s17.html" title="Commutative Algebra"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Теория множеств</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s15.html">Пред.</a> </td><th width="60%" align="center">Глава 11. Список функций
GEL</th><td width="20%" align="right"> <a accesskey="n" href="ch11s17.html">След.<
/a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-function-list-set-theory"></a>Теория
множеств</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Intersection"></a>Intersection</span></dt><dd><pre class="synopsis">Intersection
(X,Y)</pre><p>Возвращает пересечение множеств X и Y (X и Y — векторы, изображающие
множества).</p></dd><dt><span class="term"><a name="gel-function-IsIn"></a>IsIn</span></dt><dd><pre
class="synopsis">IsIn (x,X)</pre><p>Возвращает <code class="constant">true</code>, если элемент x присуствует
в множестве X (где X — вектор, изображающий множество).</p></dd><dt><span class="term"><a
name="gel-function-IsSubset"></a>IsSubset</span></dt><dd><pre class="sy
nopsis">IsSubset (X, Y)</pre><p>Возвращает <code class="constant">true</code>, если X является подмножеством
Y (X и Y — векторы, изображающие множество).</p></dd><dt><span class="term"><a
name="gel-function-MakeSet"></a>MakeSet</span></dt><dd><pre class="synopsis">MakeSet (X)</pre><p>Returns a
vector where every element of X appears only once.</p></dd><dt><span class="term"><a
name="gel-function-SetMinus"></a>SetMinus</span></dt><dd><pre class="synopsis">SetMinus (X,Y)</pre><p>Returns
a set theoretic difference X-Y (X and Y are vectors pretending to be sets).</p></dd><dt><span class="term"><a
name="gel-function-Union"></a>Union</span></dt><dd><pre class="synopsis">Union (X,Y)</pre><p>Возвращает
объединение множеств X и Y (X и Y — векторы, изображающие множества).</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigat
ion footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s15.html">Пред.</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s17.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Многочлены
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Commutative Algebra</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch11s17.html b/help/ru/html/ch11s17.html
new file mode 100644
index 0000000..7957e20
--- /dev/null
+++ b/help/ru/html/ch11s17.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Commutative
Algebra</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch11.html" title="Глава 11.
Список функций GEL"><link rel="prev" href="ch11s16.html" title="Теория множеств"><link rel="next"
href="ch11s18.html" title="Прочие"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Commutative Algebra</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s16.html">Пред.</a> </td><th width="60%" align="center">Глава 11. Список функций GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch11s18.html">След.</a></td></tr></tab
le><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-commutative-algebra"></a>Commutative Algebra</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-MacaulayBound"></a>MacaulayBound</span></dt><dd><pre class="synopsis">MacaulayBound
(c,d)</pre><p>For a Hilbert function that is c for degree d, given the Macaulay bound for the Hilbert
function of degree d+1 (The c^<d> operator from Green's proof).</p><p>Version 1.0.15
onwards.</p></dd><dt><span class="term"><a
name="gel-function-MacaulayLowerOperator"></a>MacaulayLowerOperator</span></dt><dd><pre
class="synopsis">MacaulayLowerOperator (c,d)</pre><p>The c_<d> operator from Green's proof of
Macaulay's Theorem.</p><p>Version 1.0.15 onwards.</p></dd><dt><span class="term"><a
name="gel-function-MacaulayRep"></a>MacaulayRep</span></dt><dd><pre class="synopsis">MacaulayRep
(c,d)</pre><p>Return the dth Macaulay representation of a positive integer c.</p><p>Version 1.0.15
onwards.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s16.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s18.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Теория
множеств </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td
width="40%" align="right" valign="top"> Прочие</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch11s18.html b/help/ru/html/ch11s18.html
new file mode 100644
index 0000000..9f56fb4
--- /dev/null
+++ b/help/ru/html/ch11s18.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Прочие</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Руководство пользователя Genius"><link rel="up" href="ch11.html" title="Глава 11. Список функций
GEL"><link rel="prev" href="ch11s17.html" title="Commutative Algebra"><link rel="next" href="ch11s19.html"
title="Symbolic Operations"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Прочие</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s17.html">Пред.</a> </td><th width="60%" align="center">Глава 11. Список функций GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch11s19.html">След.</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-miscellaneous"></a>Прочие</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-ASCIIToString"></a>ASCIIToString</span></dt><dd><pre class="synopsis">ASCIIToString
(vec)</pre><p>Преобразует вектор ASCII-значений в строку.</p></dd><dt><span class="term"><a
name="gel-function-AlphabetToString"></a>AlphabetToString</span></dt><dd><pre
class="synopsis">AlphabetToString (vec,alphabet)</pre><p>Преобразует вектор значений, представляющих собой
позиции букв в строке алфавита (начиная с 0), в строку.</p></dd><dt><span class="term"><a
name="gel-function-StringToASCII"></a>StringToASCII</span></dt><dd><pre class="synopsis">StringToASCII
(str)</pre><p>Преобразует строк�
� в вектор ASCII-значений.</p></dd><dt><span class="term"><a
name="gel-function-StringToAlphabet"></a>StringToAlphabet</span></dt><dd><pre
class="synopsis">StringToAlphabet (str,alphabet)</pre><p>Преобразует строку в вектор значений, представляющих
собой позиции букв в строке алфавита (начиная с 0). Для неизвестных букв значения равны
-1.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s17.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s19.html">След.</a></td></tr><tr><td width="40%" align="left"
valign="top">Commutative Algebra </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начал�
�</a></td><td width="40%" align="right" valign="top"> Symbolic
Operations</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch11s19.html b/help/ru/html/ch11s19.html
new file mode 100644
index 0000000..129030b
--- /dev/null
+++ b/help/ru/html/ch11s19.html
@@ -0,0 +1,28 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Symbolic
Operations</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch11.html" title="Глава 11.
Список функций GEL"><link rel="prev" href="ch11s18.html" title="Прочие"><link rel="next" href="ch11s20.html"
title="Построение графиков"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Symbolic Operations</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s18.html">Пред.</a> </td><th width="60%" align="center">Глава 11. Список функций GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch11s20.html">След.</a></td></
tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-function-list-symbolic"></a>Symbolic Operations</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-SymbolicDerivative"></a>SymbolicDerivative</span></dt><dd><pre
class="synopsis">SymbolicDerivative (f)</pre><p>Attempt to symbolically differentiate the function f, where f
is a function of one variable.</p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SymbolicDerivative(sin)</code></strong>
+= (`(x)=cos(x))
+<code class="prompt">genius></code> <strong
class="userinput"><code>SymbolicDerivative(`(x)=7*x^2)</code></strong>
+= (`(x)=(7*(2*x)))
+</pre><p>
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicDerivativeTry"></a>SymbolicDerivativeTry</span></dt><dd><pre
class="synopsis">SymbolicDerivativeTry (f)</pre><p>Attempt to symbolically differentiate the function f,
where f is a function of one variable, returns <code class="constant">null</code> if unsuccessful but is
silent.
+ (See <a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicNthDerivative"></a>SymbolicNthDerivative</span></dt><dd><pre
class="synopsis">SymbolicNthDerivative (f,n)</pre><p>Attempt to symbolically differentiate a function n times.
+ (See <a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicNthDerivativeTry"></a>SymbolicNthDerivativeTry</span></dt><dd><pre
class="synopsis">SymbolicNthDerivativeTry (f,n)</pre><p>Attempt to symbolically differentiate a function n
times quietly and return <code class="constant">null</code> on failure
+ (See <a class="link" href="ch11s19.html#gel-function-SymbolicNthDerivative"><code
class="function">SymbolicNthDerivative</code></a>)
+ </p><p>
+ See
+ <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> for
more information.
+ </p></dd><dt><span class="term"><a
name="gel-function-SymbolicTaylorApproximationFunction"></a>SymbolicTaylorApproximationFunction</span></dt><dd><pre
class="synopsis">SymbolicTaylorApproximationFunction (f,x0,n)</pre><p>Attempt to construct the Taylor
approximation function around x0 to the nth degree.
+ (See <a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s18.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s20.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Прочие
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Построение графиков</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch11s20.html b/help/ru/html/ch11s20.html
new file mode 100644
index 0000000..93ee0e7
--- /dev/null
+++ b/help/ru/html/ch11s20.html
@@ -0,0 +1,445 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Построение
графиков</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="ch11.html" title="Глава 11.
Список функций GEL"><link rel="prev" href="ch11s19.html" title="Symbolic Operations"><link rel="next"
href="ch12.html" title="Глава 12. Примеры программ на GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Построение графиков</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s19.html">Пред.</a> </td><th width="60%" align="center">Глава 11. Список функций
GEL</th><td width="20%" align="right">�
�<a accesskey="n" href="ch12.html">След.</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-plotting"></a>Построение графиков</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ExportPlot"></a>ExportPlot</span></dt><dd><pre class="synopsis">ExportPlot
(file,type)</pre><pre class="synopsis">ExportPlot (file)</pre><p>
+ Export the contents of the plotting window to a file.
+ The type is a string that specifies the file type to
+ use, "png", "eps", or "ps". If the type is not
+ specified, then it is taken to be the extension, in
+ which case the extension must be ".png", ".eps", or ".ps".
+ </p><p>
+ Note that files are overwritten without asking.
+ </p><p>
+ On successful export, true is returned. Otherwise
+ error is printed and exception is raised.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>ExportPlot("file.png")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>ExportPlot("/directory/file","eps")</code></strong>
+</pre><p>
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-LinePlot"></a>LinePlot</span></dt><dd><pre class="synopsis">LinePlot
(func1,func2,func3,...)</pre><pre class="synopsis">LinePlot (func1,func2,func3,x1,x2)</pre><pre
class="synopsis">LinePlot (func1,func2,func3,x1,x2,y1,y2)</pre><pre class="synopsis">LinePlot
(func1,func2,func3,[x1,x2])</pre><pre class="synopsis">LinePlot (func1,func2,func3,[x1,x2,y1,y2])</pre><p>
+ Plot a function (or several functions) with a line.
+ First (up to 10) arguments are functions, then optionally
+ you can specify the limits of the plotting window as
+ <code class="varname">x1</code>, <code class="varname">x2</code>,
+ <code class="varname">y1</code>, <code class="varname">y2</code>. If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>)
+ If the y limits are not specified, then the functions are computed and then the maxima and minima
+ are used.
+ </p><p>
+ The parameter
+ <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a>
+ controls the drawing of the legend.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlot(sin,cos)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlot(`(x)=x^2,-1,1,0,1)</code></strong>
+</pre><p>
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotClear"></a>LinePlotClear</span></dt><dd><pre class="synopsis">LinePlotClear
()</pre><p>
+ Show the line plot window and clear out functions and any other
+ lines that were drawn.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotCParametric"></a>LinePlotCParametric</span></dt><dd><pre
class="synopsis">LinePlotCParametric (func,...)</pre><pre class="synopsis">LinePlotCParametric
(func,t1,t2,tinc)</pre><pre class="synopsis">LinePlotCParametric (func,t1,t2,tinc,x1,x2,y1,y2)</pre><p>
+ Plot a parametric complex valued function with a line. First comes
+the function that returns <code class="computeroutput">x+iy</code>,
+then optionally the <code class="varname">t</code> limits as <strong
class="userinput"><code>t1,t2,tinc</code></strong>, then
+optionally the limits as <strong class="userinput"><code>x1,x2,y1,y2</code></strong>.
+ </p><p>
+ If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).
+ If instead the string "fit" is given for the x and y limits, then the limits are the maximum
extent of
+ the graph
+ </p><p>
+ The parameter
+ <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a>
+ controls the drawing of the legend.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawLine"></a>LinePlotDrawLine</span></dt><dd><pre
class="synopsis">LinePlotDrawLine (x1,y1,x2,y2,...)</pre><pre class="synopsis">LinePlotDrawLine
(v,...)</pre><p>
+ Draw a line from <code class="varname">x1</code>,<code class="varname">y1</code> to
+ <code class="varname">x2</code>,<code class="varname">y2</code>.
+ <code class="varname">x1</code>,<code class="varname">y1</code>,
+ <code class="varname">x2</code>,<code class="varname">y2</code> can be replaced by an
+ <code class="varname">n</code> by 2 matrix for a longer polyline.
+ Alternatively the vector <code class="varname">v</code> may be a column vector of complex numbers,
+ that is an <code class="varname">n</code> by 1 matrix and each complex number is then
+ considered a point in the plane.
+ </p><p>
+ Extra parameters can be added to specify line color, thickness,
+ arrows, the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ <strong class="userinput"><code>"arrow"</code></strong>, or <strong
class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 4-vector, type of arrow, or the legend. (Arrow and window are from version 1.0.6 onwards.)
+ </p><p>
+ If the line is to be treated as a filled polygon, filled with the given color, you
+ can specify the argument <strong class="userinput"><code>"filled"</code></strong>. Since version
1.0.22 onwards.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally, since version 1.0.18, the color
+ can also be specified as a real vector specifying the red green and
+ blue components where the components are between 0 and 1, e.g. <strong
class="userinput"><code>[1.0,0.5,0.1]</code></strong>.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>
+ Arrow specification should be
+ <strong class="userinput"><code>"origin"</code></strong>,
+ <strong class="userinput"><code>"end"</code></strong>,
+ <strong class="userinput"><code>"both"</code></strong>, or
+ <strong class="userinput"><code>"none"</code></strong>.
+ </p><p>
+ Finally, legend should be a string that can be used as the legend in the
+ graph. That is, if legends are being printed.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(0,0,1,1,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;1,-1;-1,-1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;1,1],"arrow","end")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(RungeKuttaFull(`(x,y)=y,0,3,100),"color","blue","legend","The
Solution")</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>for r=0.0 to 1.0 by 0.1 do
LinePlotDrawLine([0,0;1,r],"color",[r,(1-r),0.5],"window",[0,1,0,1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;10,0;10,10;0,10],"filled","color","green")</code></strong>
+</pre><p>
+ </p><p>
+ Unlike many other functions that do not care if they take a
+ column or a row vector, if specifying points as a vector of
+ complex values, due to possible ambiguities, it must always
+ be given as a column vector.
+ </p><p>
+ Specifying <code class="varname">v</code> as a column vector of complex numbers is
+ implemented from version 1.0.22 and onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawPoints"></a>LinePlotDrawPoints</span></dt><dd><pre
class="synopsis">LinePlotDrawPoints (x,y,...)</pre><pre class="synopsis">LinePlotDrawPoints (v,...)</pre><p>
+ Draw a point at <code class="varname">x</code>,<code class="varname">y</code>.
+ The input can be an <code class="varname">n</code> by 2 matrix
+ for <code class="varname">n</code> different points. This function has essentially the same
+ input as <a class="link"
href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a>.
+ Alternatively the vector <code class="varname">v</code> may be a column vector of complex
numbers,
+ that is an <code class="varname">n</code> by 1 matrix and each complex number is then
+ considered a point in the plane.
+ </p><p>
+ Extra parameters can be added to specify color, thickness,
+ the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ or <strong class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 4-vector, or the legend.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally the color can also be specified as a real vector specifying the
red green
+ and blue components where the components are between 0 and 1.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>
+ Finally, legend should be a string that can be used as the legend in the
+ graph. That is, if legends are being printed.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(0,0,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints([0,0;1,-1;-1,-1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(RungeKuttaFull(`(x,y)=y,0,3,100),"color","blue","legend","The
Solution")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints([1;1+1i;1i;0],"thickness",5)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(ApplyOverMatrix((0:6)',`(k)=exp(k*2*pi*1i/7)),"thickness",3,"legend","The
7th roots of unity")</code></strong>
+</pre><p>
+ </p><p>
+ Unlike many other functions that do not care if they take a
+ column or a row vector, if specifying points as a vector of
+ complex values, due to possible ambiguities, it must always
+ be given as a column vector. Therefore, notice in the
+ last example the transpose of the vector <strong class="userinput"><code>0:6</code></strong>
+ to make it into a column vector.
+ </p><p>
+ Available from version 1.0.18 onwards. Specifying
+ <code class="varname">v</code> as a column vector of complex numbers is
+ implemented from version 1.0.22 and onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotMouseLocation"></a>LinePlotMouseLocation</span></dt><dd><pre
class="synopsis">LinePlotMouseLocation ()</pre><p>
+ Returns a row vector of a point on the line plot corresponding to
+ the current mouse location. If the line plot is not visible,
+ then prints an error and returns <code class="constant">null</code>.
+ In this case you should run
+ <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a> or
+ <a class="link" href="ch11s20.html#gel-function-LinePlotClear"><code
class="function">LinePlotClear</code></a>
+ to put the graphing window into the line plot mode.
+ See also
+ <a class="link" href="ch11s20.html#gel-function-LinePlotWaitForClick"><code
class="function">LinePlotWaitForClick</code></a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotParametric"></a>LinePlotParametric</span></dt><dd><pre
class="synopsis">LinePlotParametric (xfunc,yfunc,...)</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc)</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc,x1,x2,y1,y2)</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc,[x1,x2,y1,y2])</pre><pre class="synopsis">LinePlotParametric
(xfunc,yfunc,t1,t2,tinc,"fit")</pre><p>
+ Plot a parametric function with a line. First come the functions
+for <code class="varname">x</code> and <code class="varname">y</code> then optionally the <code
class="varname">t</code> limits as <strong class="userinput"><code>t1,t2,tinc</code></strong>, then
optionally the
+limits as <strong class="userinput"><code>x1,x2,y1,y2</code></strong>.
+ </p><p>
+ If x and y limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).
+ If instead the string "fit" is given for the x and y limits, then the limits are the maximum
extent of
+ the graph
+ </p><p>
+ The parameter
+ <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a>
+ controls the drawing of the legend.
+ </p></dd><dt><span class="term"><a
name="gel-function-LinePlotWaitForClick"></a>LinePlotWaitForClick</span></dt><dd><pre
class="synopsis">LinePlotWaitForClick ()</pre><p>
+ If in line plot mode, waits for a click on the line plot window
+ and returns the location of the click as a row vector.
+ If the window is closed
+ the function returns immediately with <code class="constant">null</code>.
+ If the window is not in line plot mode, it is put in it and shown
+ if not shown.
+ See also
+ <a class="link" href="ch11s20.html#gel-function-LinePlotMouseLocation"><code
class="function">LinePlotMouseLocation</code></a>.
+ </p></dd><dt><span class="term"><a
name="gel-function-PlotCanvasFreeze"></a>PlotCanvasFreeze</span></dt><dd><pre
class="synopsis">PlotCanvasFreeze ()</pre><p>
+ Freeze drawing of the canvas plot temporarily. Useful if you need to draw a bunch of
elements
+ and want to delay drawing everything to avoid flicker in an animation. After everything
+ has been drawn you should call <a class="link"
href="ch11s20.html#gel-function-PlotCanvasThaw"><code class="function">PlotCanvasThaw</code></a>.
+ </p><p>
+ The canvas is always thawed after end of any execution, so it will never remain frozen.
The moment
+ a new command line is shown for example the plot canvas is thawed automatically. Also note
that
+ calls to freeze and thaw may be safely nested.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-PlotCanvasThaw"></a>PlotCanvasThaw</span></dt><dd><pre class="synopsis">PlotCanvasThaw
()</pre><p>
+ Thaw the plot canvas frozen by
+ <a class="link" href="ch11s20.html#gel-function-PlotCanvasFreeze"><code
class="function">PlotCanvasFreeze</code></a>
+ and redraw the canvas immediately. The canvas is also always thawed after end of execution
+ of any program.
+ </p><p>Version 1.0.18 onwards.</p></dd><dt><span class="term"><a
name="gel-function-PlotWindowPresent"></a>PlotWindowPresent</span></dt><dd><pre
class="synopsis">PlotWindowPresent ()</pre><p>
+ Show and raise the plot window, creating it if necessary.
+ Normally the window is created when one of the plotting
+ functions is called, but it is not always raised if it
+ happens to be below other windows. So this function is
+ good to call in scripts where the plot window might have
+ been created before, and by now is hidden behind the
+ console or other windows.
+ </p><p>Version 1.0.19 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SlopefieldClearSolutions"></a>SlopefieldClearSolutions</span></dt><dd><pre
class="synopsis">SlopefieldClearSolutions ()</pre><p>
+ Clears the solutions drawn by the
+ <a class="link" href="ch11s20.html#gel-function-SlopefieldDrawSolution"><code
class="function">SlopefieldDrawSolution</code></a>
+ function.
+ </p></dd><dt><span class="term"><a
name="gel-function-SlopefieldDrawSolution"></a>SlopefieldDrawSolution</span></dt><dd><pre
class="synopsis">SlopefieldDrawSolution (x, y, dx)</pre><p>
+ When a slope field plot is active, draw a solution with
+ the specified initial condition. The standard
+ Runge-Kutta method is used with increment <code class="varname">dx</code>.
+ Solutions stay on the graph until a different plot is shown or until
+ you call
+ <a class="link" href="ch11s20.html#gel-function-SlopefieldClearSolutions"><code
class="function">SlopefieldClearSolutions</code></a>.
+ You can also use the graphical interface to draw solutions and specify
+ initial conditions with the mouse.
+ </p></dd><dt><span class="term"><a
name="gel-function-SlopefieldPlot"></a>SlopefieldPlot</span></dt><dd><pre class="synopsis">SlopefieldPlot
(func)</pre><pre class="synopsis">SlopefieldPlot (func,x1,x2,y1,y2)</pre><p>
+ Plot a slope field. The function <code class="varname">func</code>
+ should take two real numbers <code class="varname">x</code>
+ and <code class="varname">y</code>, or a single complex
+ number.
+ Optionally you can specify the limits of the plotting window as
+ <code class="varname">x1</code>, <code class="varname">x2</code>,
+ <code class="varname">y1</code>, <code class="varname">y2</code>. If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).
+ </p><p>
+ The parameter
+ <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a>
+ controls the drawing of the legend.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SlopefieldPlot(`(x,y)=sin(x-y),-5,5,-5,5)</code></strong>
+</pre><p>
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlot"></a>SurfacePlot</span></dt><dd><pre class="synopsis">SurfacePlot
(func)</pre><pre class="synopsis">SurfacePlot (func,x1,x2,y1,y2,z1,z2)</pre><pre class="synopsis">SurfacePlot
(func,x1,x2,y1,y2)</pre><pre class="synopsis">SurfacePlot (func,[x1,x2,y1,y2,z1,z2])</pre><pre
class="synopsis">SurfacePlot (func,[x1,x2,y1,y2])</pre><p>
+ Plot a surface function that takes either two arguments or a complex number. First comes the
function then optionally limits as <code class="varname">x1</code>, <code class="varname">x2</code>,
+ <code class="varname">y1</code>, <code class="varname">y2</code>,
+ <code class="varname">z1</code>, <code class="varname">z2</code>. If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-SurfacePlotWindow"><code
class="function">SurfacePlotWindow</code></a>).
+ Genius can only plot a single surface function at this time.
+ </p><p>
+ If the z limits are not specified then the maxima and minima of the function are used.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(|sin|,-1,1,-1,1,0,1.5)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(`(x,y)=x^2+y,-1,1,-1,1,-2,2)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(`(z)=|z|^2,-1,1,-1,1,0,2)</code></strong>
+</pre><p>
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotClear"></a>SurfacePlotClear</span></dt><dd><pre
class="synopsis">SurfacePlotClear ()</pre><p>
+ Show the surface plot window and clear out functions and any other
+ lines that were drawn.
+ </p><p>
+ Available in version 1.0.19 and onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotData"></a>SurfacePlotData</span></dt><dd><pre class="synopsis">SurfacePlotData
(data)</pre><pre class="synopsis">SurfacePlotData (data,label)</pre><pre class="synopsis">SurfacePlotData
(data,x1,x2,y1,y2,z1,z2)</pre><pre class="synopsis">SurfacePlotData (data,label,x1,x2,y1,y2,z1,z2)</pre><pre
class="synopsis">SurfacePlotData (data,[x1,x2,y1,y2,z1,z2])</pre><pre class="synopsis">SurfacePlotData
(data,label,[x1,x2,y1,y2,z1,z2])</pre><p>
+ Plot a surface from data. The data is an n by 3 matrix whose
+ rows are the x, y and z coordinates. The data can also be
+ simply a vector whose length is a multiple of 3 and so
+ contains the triples of x, y, z. The data should contain at
+ least 3 points.
+ </p><p>
+ Optionally we can give the label and also optionally the
+ limits. If limits are not given, they are computed from
+ the data, <a class="link" href="ch11s03.html#gel-function-SurfacePlotWindow"><code
class="function">SurfacePlotWindow</code></a>
+ is not used, if you want to use it, pass it in explicitly.
+ If label is not given then empty label is used.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData([0,0,0;1,0,1;0,1,1;1,1,3])</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>SurfacePlotData(data,"My
data")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData(data,-1,1,-1,1,0,10)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData(data,SurfacePlotWindow)</code></strong>
+</pre><p>
+ </p><p>
+ Here's an example of how to plot in polar coordinates,
+ in particular how to plot the function
+ <strong class="userinput"><code>-r^2 * theta</code></strong>:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>d:=null; for r=0 to 1 by 0.1 do for theta=0 to 2*pi by pi/5 do
d=[d;[r*cos(theta),r*sin(theta),-r^2*theta]];</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>SurfacePlotData(d)</code></strong>
+</pre><p>
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDataGrid"></a>SurfacePlotDataGrid</span></dt><dd><pre
class="synopsis">SurfacePlotDataGrid (data,[x1,x2,y1,y2])</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2,z1,z2])</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2],label)</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2,z1,z2],label)</pre><p>
+ Plot a surface from regular rectangular data.
+ The data is given in a n by m matrix where the rows are the
+ x coordinate and the columns are the y coordinate.
+ The x coordinate is divided into equal n-1 subintervals
+ and y coordinate is divided into equal m-1 subintervals.
+ The limits <code class="varname">x1</code> and <code class="varname">x2</code>
+ give the interval on the x-axis that we use, and
+ the limits <code class="varname">y1</code> and <code class="varname">y2</code>
+ give the interval on the y-axis that we use.
+ If the limits <code class="varname">z1</code> and <code class="varname">z2</code>
+ are not given they are computed from the data (to be
+ the extreme values from the data).
+ </p><p>
+ Optionally we can give the label, if label is not given then
+ empty label is used.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid([1,2;3,4],[0,1,0,1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid(data,[-1,1,-1,1],"My data")</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>d:=null; for i=1 to 20 do for j=1 to
10 do d@(i,j) = (0.1*i-1)^2-(0.1*j)^2;</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid(d,[-1,1,0,1],"half a saddle")</code></strong>
+</pre><p>
+ </p><p>Version 1.0.16 onwards.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawLine"></a>SurfacePlotDrawLine</span></dt><dd><pre
class="synopsis">SurfacePlotDrawLine (x1,y1,z1,x2,y2,z2,...)</pre><pre class="synopsis">SurfacePlotDrawLine
(v,...)</pre><p>
+ Draw a line from <code class="varname">x1</code>,<code class="varname">y1</code>,<code
class="varname">z1</code> to
+ <code class="varname">x2</code>,<code class="varname">y2</code>,<code class="varname">z2</code>.
+ <code class="varname">x1</code>,<code class="varname">y1</code>,<code class="varname">z1</code>,
+ <code class="varname">x2</code>,<code class="varname">y2</code>,<code class="varname">z2</code>
can be replaced by an
+ <code class="varname">n</code> by 3 matrix for a longer polyline.
+ </p><p>
+ Extra parameters can be added to specify line color, thickness,
+ arrows, the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ or <strong class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 6-vector, or the legend.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally, since version 1.0.18, the color
+ can also be specified as a real vector specifying the red green and
+ blue components where the components are between 0 and 1, e.g. <strong
class="userinput"><code>[1.0,0.5,0.1]</code></strong>.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2,z1,z2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>
+ Finally, legend should be a string that can be used as the legend in the
+ graph. That is, if legends are being printed.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawLine(0,0,0,1,1,1,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawLine([0,0,0;1,-1,2;-1,-1,-3])</code></strong>
+</pre><p>
+ </p><p>
+ Available from version 1.0.19 onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawPoints"></a>SurfacePlotDrawPoints</span></dt><dd><pre
class="synopsis">SurfacePlotDrawPoints (x,y,z,...)</pre><pre class="synopsis">SurfacePlotDrawPoints
(v,...)</pre><p>
+ Draw a point at <code class="varname">x</code>,<code class="varname">y</code>,<code
class="varname">z</code>.
+ The input can be an <code class="varname">n</code> by 3 matrix
+ for <code class="varname">n</code> different points. This function has essentially the same
+ input as <a class="link"
href="ch11s20.html#gel-function-SurfacePlotDrawLine">SurfacePlotDrawLine</a>.
+ </p><p>
+ Extra parameters can be added to specify line color, thickness,
+ the plotting window, or legend.
+ You can do this by adding an argument string <strong
class="userinput"><code>"color"</code></strong>,
+ <strong class="userinput"><code>"thickness"</code></strong>,
+ <strong class="userinput"><code>"window"</code></strong>,
+ or <strong class="userinput"><code>"legend"</code></strong>, and after it specify
+ the color, the thickness, the window
+ as 6-vector, or the legend.
+ </p><p>
+ The color should be either a string indicating the common English word for the color
+ that GTK will recognize such as
+ <strong class="userinput"><code>"red"</code></strong>, <strong
class="userinput"><code>"blue"</code></strong>, <strong class="userinput"><code>"yellow"</code></strong>,
etc...
+ Alternatively the color can be specified in RGB format as
+ <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong>, or
+ <strong class="userinput"><code>"#rrrrggggbbbb"</code></strong>, where the r, g, or b are hex
digits of the red, green, and blue
+ components of the color. Finally the color can also be specified as a real vector specifying the
red green
+ and blue components where the components are between 0 and 1.
+ </p><p>
+ The window should be given as usual as <strong
class="userinput"><code>[x1,x2,y1,y2,z1,z2]</code></strong>, or
+ alternatively can be given as a string
+ <strong class="userinput"><code>"fit"</code></strong> in which case,
+ the x range will be set precisely and the y range will be set with
+ five percent borders around the line.
+ </p><p>
+ Finally, legend should be a string that can be used as the legend in the
+ graph. That is, if legends are being printed.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawPoints(0,0,0,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawPoints([0,0,0;1,-1,2;-1,-1,1])</code></strong>
+</pre><p>
+ </p><p>
+ Available from version 1.0.19 onwards.
+ </p></dd><dt><span class="term"><a
name="gel-function-VectorfieldClearSolutions"></a>VectorfieldClearSolutions</span></dt><dd><pre
class="synopsis">VectorfieldClearSolutions ()</pre><p>
+ Clears the solutions drawn by the
+ <a class="link" href="ch11s20.html#gel-function-VectorfieldDrawSolution"><code
class="function">VectorfieldDrawSolution</code></a>
+ function.
+ </p><p>Version 1.0.6 onwards.</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldDrawSolution"></a>VectorfieldDrawSolution</span></dt><dd><pre
class="synopsis">VectorfieldDrawSolution (x, y, dt, tlen)</pre><p>
+ When a vector field plot is active, draw a solution with
+ the specified initial condition. The standard
+ Runge-Kutta method is used with increment <code class="varname">dt</code>
+ for an interval of length <code class="varname">tlen</code>.
+ Solutions stay on the graph until a different plot is shown or until
+ you call
+ <a class="link" href="ch11s20.html#gel-function-VectorfieldClearSolutions"><code
class="function">VectorfieldClearSolutions</code></a>.
+ You can also use the graphical interface to draw solutions and specify
+ initial conditions with the mouse.
+ </p><p>Version 1.0.6 onwards.</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldPlot"></a>VectorfieldPlot</span></dt><dd><pre class="synopsis">VectorfieldPlot
(funcx, funcy)</pre><pre class="synopsis">VectorfieldPlot (funcx, funcy, x1, x2, y1, y2)</pre><p>
+ Plot a two dimensional vector field. The function
+ <code class="varname">funcx</code>
+ should be the dx/dt of the vectorfield and the function
+ <code class="varname">funcy</code> should be the dy/dt of the vectorfield.
+ The functions
+ should take two real numbers <code class="varname">x</code>
+ and <code class="varname">y</code>, or a single complex
+ number. When the parameter
+ <a class="link" href="ch11s03.html#gel-function-VectorfieldNormalized"><code
class="function">VectorfieldNormalized</code></a>
+ is <code class="constant">true</code>, then the magnitude of the vectors is normalized. That is,
only
+ the direction and not the magnitude is shown.
+ </p><p>
+ Optionally you can specify the limits of the plotting window as
+ <code class="varname">x1</code>, <code class="varname">x2</code>,
+ <code class="varname">y1</code>, <code class="varname">y2</code>. If limits are not
+ specified, then the currently set limits apply
+ (See <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).
+ </p><p>
+ The parameter
+ <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a>
+ controls the drawing of the legend.
+ </p><p>
+ Examples:
+ </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>VectorfieldPlot(`(x,y)=x^2-y, `(x,y)=y^2-x, -1, 1, -1, 1)</code></strong>
+</pre><p>
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s19.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch11.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch12.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Symbolic
Operations </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td
width="40%" align="right" valign="top"> Глава 12. Примеры программ на
GEL</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch12.html b/help/ru/html/ch12.html
new file mode 100644
index 0000000..ebc8f57
--- /dev/null
+++ b/help/ru/html/ch12.html
@@ -0,0 +1,74 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Глава 12. Примеры
программ на GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="index.html" title="Руководство
пользователя Genius"><link rel="prev" href="ch11s20.html" title="Построение графиков"><link rel="next"
href="ch13.html" title="Глава 13. Настройки"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Глава 12. Примеры программ на GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch11s20.html">Пред.</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a
accesskey="n" href="ch13.html">След.</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-gel-example-programs"></a>Глава 12. Примеры
программ на GEL</h1></div></div></div><p>
+Here is a function that calculates factorials:
+</p><pre class="programlisting">function f(x) = if x <= 1 then 1 else (f(x-1)*x)
+</pre><p>
+ </p><p>
+With indentation it becomes:
+</p><pre class="programlisting">function f(x) = (
+ if x <= 1 then
+ 1
+ else
+ (f(x-1)*x)
+)
+</pre><p>
+ </p><p>
+This is a direct port of the factorial function from the <span class="application">bc</span> manpage. The
syntax seems similar to <span class="application">bc</span>, but different in that in GEL, the last
expression is the one that is returned. Using the <code class="literal">return</code> function instead, it
would be:
+</p><pre class="programlisting">function f(x) = (
+ if (x <= 1) then return (1);
+ return (f(x-1) * x)
+)
+</pre><p>
+ </p><p>
+By far the easiest way to define a factorial function would be using
+the product loop as follows. This is not only the shortest and fastest,
+but also probably the most readable version.
+</p><pre class="programlisting">function f(x) = prod k=1 to x do k
+</pre><p>
+ </p><p>
+Here is a larger example, this basically redefines the internal
+<a class="link" href="ch11s09.html#gel-function-ref"><code class="function">ref</code></a> function to
calculate the row echelon form of a
+matrix. The function <code class="function">ref</code> is built in and much faster,
+but this example demonstrates some of the more complex features of GEL.
+</p><pre class="programlisting"># Calculate the row-echelon form of a matrix
+function MyOwnREF(m) = (
+ if not IsMatrix(m) or not IsValueOnly(m) then
+ (error("MyOwnREF: argument not a value only matrix");bailout);
+ s := min(rows(m), columns(m));
+ i := 1;
+ d := 1;
+ while d <= s and i <= columns(m) do (
+
+ # This just makes the anchor element non-zero if at
+ # all possible
+ if m@(d,i) == 0 then (
+ j := d+1;
+ while j <= rows(m) do (
+ if m@(j,i) == 0 then
+ (j=j+1;continue);
+ a := m@(j,);
+ m@(j,) := m@(d,);
+ m@(d,) := a;
+ j := j+1;
+ break
+ )
+ );
+ if m@(d,i) == 0 then
+ (i:=i+1;continue);
+
+ # Here comes the actual zeroing of all but the anchor
+ # element rows
+ j := d+1;
+ while j <= rows(m)) do (
+ if m@(j,i) != 0 then (
+ m@(j,) := m@(j,)-(m@(j,i)/m@(d,i))*m@(d,)
+ );
+ j := j+1
+ );
+ m@(d,) := m@(d,) * (1/m@(d,i));
+ d := d+1;
+ i := i+1
+ );
+ m
+)
+</pre><p>
+ </p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch11s20.html">Пред.</a> </td><td width="20%" align="center"> </td><td
width="40%" align="right"> <a accesskey="n" href="ch13.html">След.</a></td></tr><tr><td width="40%"
align="left" valign="top">Построение графиков </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Начало</a></td><td width="40%" align="right" valign="top"> Глава 13.
Настройки</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch13.html b/help/ru/html/ch13.html
new file mode 100644
index 0000000..cdb0b17
--- /dev/null
+++ b/help/ru/html/ch13.html
@@ -0,0 +1,73 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Глава 13.
Настройки</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="up" href="index.html" title="Руководство
пользователя Genius"><link rel="prev" href="ch12.html" title="Глава 12. Примеры программ на GEL"><link
rel="next" href="ch13s02.html" title="Precision"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Глава 13. Настройки</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch12.html">Пред.</a> </td><th width="60%" align="center"> </th><td width="20%"
align="right"> <a accesskey="n" href="ch13s02.html">След.</a></td>
</tr></table><hr></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a
name="genius-prefs"></a>Глава 13. Настройки</h1></div></div></div><div
class="toc"><p><b>Содержание</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch13.html#genius-prefs-output">Output</a></span></dt><dt><span class="sect1"><a
href="ch13s02.html">Precision</a></span></dt><dt><span class="sect1"><a
href="ch13s03.html">Терминал</a></span></dt><dt><span class="sect1"><a
href="ch13s04.html">Память</a></span></dt></dl></div><p>
+ To configure <span class="application">Genius Mathematics Tool</span>, choose
+ <span class="guimenu">Settings</span> → <span class="guimenuitem">Preferences</span>.
+ There are several basic parameters provided by the calculator in addition
+ to the ones provided by the standard library. These control how the
+ calculator behaves.
+ </p><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Changing
Settings with GEL</h3><p>
+ Many of the settings in Genius are simply global variables, and can
+ be evaluated and assigned to in the same way as normal variables. See
+ <a class="xref" href="ch05s02.html" title="Использование переменных">«Использование переменных»</a>
about evaluating and assigning
+ to variables, and <a class="xref" href="ch11s03.html" title="Параметры">«Параметры»</a> for
+ a list of settings that can be modified in this way.
+ </p><p>
+As an example, you can set the maximum number of digits in a result to 12 by typing:
+</p><pre class="programlisting">MaxDigits = 12
+</pre><p>
+ </p></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-prefs-output"></a>Output</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Maximum digits to output</span>
+ </span></dt><dd><p>The maximum digits in a result (<a class="link"
href="ch11s03.html#gel-function-MaxDigits"><code class="function">MaxDigits</code></a>)</p></dd><dt><span
class="term">
+ <span class="guilabel">Results as floats</span>
+ </span></dt><dd><p>If the results should be always printed as floats (<a class="link"
href="ch11s03.html#gel-function-ResultsAsFloats"><code
class="function">ResultsAsFloats</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Floats in scientific notation</span>
+ </span></dt><dd><p>If floats should be in scientific notation (<a class="link"
href="ch11s03.html#gel-function-ScientificNotation"><code
class="function">ScientificNotation</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Always print full expressions</span>
+ </span></dt><dd><p>Should we print out full expressions for non-numeric return values (longer than a
line) (<a class="link" href="ch11s03.html#gel-function-FullExpressions"><code
class="function">FullExpressions</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Use mixed fractions</span>
+ </span></dt><dd><p>If fractions should be printed as mixed fractions such as "1 1/3" rather than
"4/3". (<a class="link" href="ch11s03.html#gel-function-MixedFractions"><code
class="function">MixedFractions</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Display 0.0 when floating point number is less than 10^-x (0=never
chop)</span>
+ </span></dt><dd><p>How to chop output. But only when other numbers nearby are large.
+ See the documentation of the parameter
+ <a class="link" href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>. </p></dd><dt><span class="term">
+ <span class="guilabel">Only chop numbers when another number is greater than 10^-x</span>
+ </span></dt><dd><p>When to chop output. This is set by the parameter <a class="link"
href="ch11s03.html#gel-function-OutputChopWhenExponent"><code
class="function">OutputChopWhenExponent</code></a>.
+ See the documentation of the parameter
+ <a class="link" href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>. </p></dd><dt><span class="term">
+ <span class="guilabel">Remember output settings across sessions</span>
+ </span></dt><dd><p>Should the output settings in the <span class="guilabel">Number/Expression output
options</span> frame
+ be remembered for next session. Does not apply to the <span class="guilabel">Error/Info output
options</span> frame.</p><p>
+ If unchecked,
+ either the default or any previously saved settings are used each time Genius starts
+ up. Note that
+ settings are saved at the end of the session, so if you wish to change the defaults
+ check this box, restart <span class="application">Genius Mathematics Tool</span> and then uncheck
it again.
+ </p></dd><dt><span class="term">
+ <span class="guilabel">Display errors in a dialog</span>
+ </span></dt><dd><p>If set the errors will be displayed in a separate dialog, if
+ unset the errors will be printed on the console.</p></dd><dt><span class="term">
+ <span class="guilabel">Display information messages in a dialog</span>
+ </span></dt><dd><p>If set the information messages will be displayed in a separate
+ dialog, if unset the information messages will be printed on the
+ console.</p></dd><dt><span class="term">
+ <span class="guilabel">Maximum errors to display</span>
+ </span></dt><dd><p>
+ The maximum number of errors to return on one evaluation
+ (<a class="link" href="ch11s03.html#gel-function-MaxErrors"><code
class="function">MaxErrors</code></a>). If you set this to 0 then
+ all errors are always returned. Usually if some loop causes
+ many errors, then it is unlikely that you will be able to make
+ sense out of more than a few of these, so seeing a long list
+ of errors is usually not helpful.
+ </p></dd></dl></div><p>
+ In addition to these preferences, there are some preferences that can
+ only be changed by setting them in the workspace console. For others
+ that may affect the output see <a class="xref" href="ch11s03.html" title="Параметры">«Параметры»</a>.
+ </p><div class="variablelist"><dl class="variablelist"><dt><span class="term">
+ <code class="function">IntegerOutputBase</code>
+ </span></dt><dd><p>The base that will be used to output integers</p></dd><dt><span class="term">
+ <code class="function">OutputStyle</code>
+ </span></dt><dd><p>A string, can be <code class="literal">"normal"</code>,
+<code class="literal">"latex"</code>, <code class="literal">"mathml"</code> or
+<code class="literal">"troff"</code> and it will affect how matrices (and perhaps other
+stuff) is printed, useful for pasting into documents. Normal style is the
+default human readable printing style of <span class="application">Genius Mathematics Tool</span>. The
other styles are for
+typesetting in LaTeX, MathML (XML), or in Troff.</p></dd></dl></div></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch12.html">Пред.</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> <a accesskey="n" href="ch13s02.html">След.</a></td></tr><tr><td width="40%" align="left"
valign="top">Глава 12. Примеры программ на GEL </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Начало</a></td><td width="40%" align="right" valign="top">
Precision</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch13s02.html b/help/ru/html/ch13s02.html
new file mode 100644
index 0000000..e633283
--- /dev/null
+++ b/help/ru/html/ch13s02.html
@@ -0,0 +1,20 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Precision</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Руководство пользователя Genius"><link rel="up" href="ch13.html" title="Глава 13. Настройки"><link
rel="prev" href="ch13.html" title="Глава 13. Настройки"><link rel="next" href="ch13s03.html"
title="Терминал"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Precision</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch13.html">Пред.</a> </td><th width="60%" align="center">Глава 13. Настройки</th><td width="20%"
align="right"> <a accesskey="n" href="ch13s03.html">След.</a></td></tr></table><hr></div><div
class="sect1"><div class="
titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-prefs-precision"></a>Precision</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Floating point precision</span>
+ </span></dt><dd><p>
+ The floating point precision in bits
+ (<a class="link" href="ch11s03.html#gel-function-FloatPrecision"><code
class="function">FloatPrecision</code></a>).
+ Note that changing this only affects newly computed quantities.
+ Old values stored in variables are obviously still in the old
+ precision and if you want to have them more precise you will have
+ to recompute them. Exceptions to this are the system constants
+ such as <a class="link" href="ch11s04.html#gel-function-pi"><code class="function">pi</code></a> or
+ <a class="link" href="ch11s04.html#gel-function-e"><code class="function">e</code></a>.
+ </p></dd><dt><span class="term">
+ <span class="guilabel">Remember precision setting across sessions</span>
+ </span></dt><dd><p>
+ Should the precision setting be remembered for the next session. If unchecked,
+ either the default or any previously saved setting is used each time Genius starts
+ up. Note that
+ settings are saved at the end of the session, so if you wish to change the default
+ check this box, restart genius and then uncheck it again.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch13.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch13s03.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Глава 13.
Настройки </td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td
width="40%" align="right" valign="top"> Терминал</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch13s03.html b/help/ru/html/ch13s03.html
new file mode 100644
index 0000000..6850227
--- /dev/null
+++ b/help/ru/html/ch13s03.html
@@ -0,0 +1,9 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Терминал</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Руководство пользователя Genius"><link rel="up" href="ch13.html" title="Глава 13. Настройки"><link
rel="prev" href="ch13s02.html" title="Precision"><link rel="next" href="ch13s04.html"
title="Память"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Терминал</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch13s02.html">Пред.</a> </td><th width="60%" align="center">Глава 13. Настройки</th><td width="20%"
align="right"> <a accesskey="n" href="ch13s04.html">След.</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepag
e"><div><div><h2 class="title" style="clear: both"><a
name="genius-prefs-terminal"></a>Терминал</h2></div></div></div><p>Терминалом называется консоль в рабочей
области.</p><div class="variablelist"><dl class="variablelist"><dt><span class="term">
+ <span class="guilabel">Scrollback lines</span>
+ </span></dt><dd><p>Lines of scrollback in the terminal.</p></dd><dt><span class="term">
+ <span class="guilabel">Шрифт</span>
+ </span></dt><dd><p>Шрифт, используемый в терминале</p></dd><dt><span class="term">
+ <span class="guilabel">Чёрный на белом</span>
+ </span></dt><dd><p>Использовать в терминале чёрный текст на белом фоне.</p></dd><dt><span
class="term">
+ <span class="guilabel">Мигающий курсор</span>
+ </span></dt><dd><p>Должен ли курсор терминала мигать, если фокус ввода находится в терминале. Иногда
это раздражает, кроме того это создаёт лишний трафик при удалённом доступе к
Genius.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13s02.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch13.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch13s04.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Precision
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Память</td></tr></table></div></body></html>
diff --git a/help/ru/html/ch13s04.html b/help/ru/html/ch13s04.html
new file mode 100644
index 0000000..8e8a793
--- /dev/null
+++ b/help/ru/html/ch13s04.html
@@ -0,0 +1,20 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Память</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html"
title="Руководство пользователя Genius"><link rel="up" href="ch13.html" title="Глава 13. Настройки"><link
rel="prev" href="ch13s03.html" title="Терминал"><link rel="next" href="ch14.html" title="Глава 14. О
математическом инструменте Genius"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Память</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch13s03.html">Пред.</a> </td><th width="60%" align="center">Глава 13. Настройки</th><td width="20%"
align="right"> <a accesskey="n" href="ch14.html">След.</a></td></tr>
</table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-prefs-memory"></a>Память</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Maximum number of nodes to allocate</span>
+ </span></dt><dd><p>
+ Internally all data is put onto small nodes in memory. This gives
+ a limit on the maximum number of nodes to allocate for
+ computations. This limit avoids the problem of running out of memory
+ if you do something by mistake that uses too much memory, such
+ as a recursion without end. This could slow your computer and make
+ it hard to even interrupt the program.
+ </p><p>
+ Once the limit is reached, <span class="application">Genius Mathematics Tool</span> asks if you
wish to interrupt
+ the computation or if you wish to continue. If you continue, no
+ limit is applied and it will be possible to run your computer
+ out of memory. The limit will be applied again next time you
+ execute a program or an expression on the Console regardless of how
+ you answered the question.
+ </p><p>
+ Setting the limit to zero means there is no limit to the amount of
+ memory that genius uses.
+ </p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13s03.html">Пред.</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch13.html">Наверх</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch14.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top">Терминал
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Начало</a></td><td width="40%"
align="right" valign="top"> Глава 14. О <span class="application">математическом инструменте
Genius</span></td></tr></table></div></body></html>
diff --git a/help/ru/html/ch14.html b/help/ru/html/ch14.html
new file mode 100644
index 0000000..f5d14d2
--- /dev/null
+++ b/help/ru/html/ch14.html
@@ -0,0 +1,17 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Глава 14. О
математическом инструменте Genius</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Руководство пользователя Genius"><link rel="up"
href="index.html" title="Руководство пользователя Genius"><link rel="prev" href="ch13s04.html"
title="Память"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Глава
14. О <span class="application">математическом инструменте Genius</span></th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch13s04.html">Пред.</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> </td></tr></table><hr></div>
<div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="genius-about"></a>Глава 14.
О <span class="application">математическом инструменте Genius</span></h1></div></div></div><p><span
class="application">Математический инструмент Genius</span> создан Jiří (George) Lebl (<code
class="email"><<a class="email" href="mailto:jirka 5z com">jirka 5z com</a>></code>). История <span
class="application">математического инструмента Genius</span> началась в конце 1997 г. Это был первый
калькулятор для GNOME, но с тех пор он вырос в нечто большее, чем простой настольный калькулятор. Чтобы
узнать больше о <span class="application">математическом инструменте Genius</span>, посетите <a class="ulink"
href="http://www.
jirka.org/genius.html" target="_top">веб-страницу Genius</a>.</p><p>
+ To report a bug or make a suggestion regarding this application or
+ this manual, send email to me (the author) or post to the mailing
+ list (see the web page).
+ </p><p> This program is distributed under the terms of the GNU
+ General Public license as published by the Free Software
+ Foundation; either version 3 of the License, or (at your option)
+ any later version. A copy of this license can be found at this
+ <a class="ulink" href="http://www.gnu.org/copyleft/gpl.html" target="_top">link</a>, or in the file
+ COPYING included with the source code of this program. </p><p>Jiří Lebl was during various parts of
the development
+ partially supported for the work by NSF grants DMS 0900885,
+ DMS 1362337,
+ the University of Illinois at Urbana-Champaign,
+ the University of California at San Diego,
+ the University of Wisconsin-Madison, and
+ Oklahoma State University. The software has
+ been used for both teaching and research.</p></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13s04.html">Пред.</a>
</td><td width="20%" align="center"> </td><td width="40%" align="right"> </td></tr><tr><td width="40%"
align="left" valign="top">Память </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Начало</a></td><td width="40%" align="right" valign="top">
</td></tr></table></div></body></html>
diff --git a/help/ru/html/genius.proc b/help/ru/html/genius.proc
new file mode 100644
index 0000000..e69de29
diff --git a/help/ru/html/index.html b/help/ru/html/index.html
new file mode 100644
index 0000000..3b67b65
--- /dev/null
+++ b/help/ru/html/index.html
@@ -0,0 +1,69 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Руководство
пользователя Genius</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><meta
name="description" content="Руководство по Математическому инструменту Genius."><link rel="home"
href="index.html" title="Руководство пользователя Genius"><link rel="next" href="ch01.html" title="Глава 1.
Введение"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Руководство пользователя Genius</th></tr><tr><td width="20%" align="left"> </td><th
width="60%" align="center"> </th><td width="20%" align="right"> <a accesskey="n"
href="ch01.html">След.</a></td></tr></table><hr></div><div lang="ru" class="book"><div cla
ss="titlepage"><div><div><h1 class="title"><a name="index"></a>Руководство пользователя
Genius</h1></div><div><div class="authorgroup"><div class="author"><h3 class="author"><span
class="firstname">Jiří</span> <span class="surname">Lebl</span></h3><div class="affiliation"><span
class="orgname">Oklahoma State University<br></span><div class="address"><p> <code class="email"><<a
class="email" href="mailto:jirka 5z com">jirka 5z com</a>></code> </p></div></div></div><div
class="author"><h3 class="author"><span class="firstname">Kai</span> <span
class="surname">Willadsen</span></h3><div class="affiliation"><span class="orgname">Университет Квинслэнда,
Австралия<br></span><div class="address"><p> <code class="email"><<a class="email" href="mailto:kaiw itee
uq edu au">kaiw itee uq edu au</a>></code> </p></div></div></div></div></div><div><p
class="releaseinfo">This manual describes version 1.0.22 of Genius.
+ </p></div><div><p class="copyright">Авторские права © 1997-2016 Jiří (George) Lebl</p></div><div><p
class="copyright">Авторские права © 2004 Kai Willadsen</p></div><div><p class="copyright">Авторские права ©
2012 Алексей Кабанов (ak099 mail ru)</p></div><div><div class="legalnotice"><a name="legalnotice"></a><p>
+ Permission is granted to copy, distribute and/or modify this
+ document under the terms of the GNU Free Documentation
+ License (GFDL), Version 1.1 or any later version published
+ by the Free Software Foundation with no Invariant Sections,
+ no Front-Cover Texts, and no Back-Cover Texts. You can find
+ a copy of the GFDL at this <a class="ulink" href="ghelp:fdl" target="_top">link</a> or in the file
COPYING-DOCS
+ distributed with this manual.
+ </p><p> This manual is part of a collection of GNOME manuals
+ distributed under the GFDL. If you want to distribute this
+ manual separately from the collection, you can do so by
+ adding a copy of the license to the manual, as described in
+ section 6 of the license.
+ </p><p>
+ Many of the names used by companies to distinguish their
+ products and services are claimed as trademarks. Where those
+ names appear in any GNOME documentation, and the members of
+ the GNOME Documentation Project are made aware of those
+ trademarks, then the names are in capital letters or initial
+ capital letters.
+ </p><p>
+ DOCUMENT AND MODIFIED VERSIONS OF THE DOCUMENT ARE PROVIDED
+ UNDER THE TERMS OF THE GNU FREE DOCUMENTATION LICENSE
+ WITH THE FURTHER UNDERSTANDING THAT:
+
+ </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>DOCUMENT IS
PROVIDED ON AN "AS IS" BASIS,
+ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
+ IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES
+ THAT THE DOCUMENT OR MODIFIED VERSION OF THE
+ DOCUMENT IS FREE OF DEFECTS MERCHANTABLE, FIT FOR
+ A PARTICULAR PURPOSE OR NON-INFRINGING. THE ENTIRE
+ RISK AS TO THE QUALITY, ACCURACY, AND PERFORMANCE
+ OF THE DOCUMENT OR MODIFIED VERSION OF THE
+ DOCUMENT IS WITH YOU. SHOULD ANY DOCUMENT OR
+ MODIFIED VERSION PROVE DEFECTIVE IN ANY RESPECT,
+ YOU (NOT THE INITIAL WRITER, AUTHOR OR ANY
+ CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY
+ SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER
+ OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS
+ LICENSE. NO USE OF ANY DOCUMENT OR MODIFIED
+ VERSION OF THE DOCUMENT IS AUTHORIZED HEREUNDER
+ EXCEPT UNDER THIS DISCLAIMER; AND
+ </p></li><li class="listitem"><p>UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL
+ THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE),
+ CONTRACT, OR OTHERWISE, SHALL THE AUTHOR,
+ INITIAL WRITER, ANY CONTRIBUTOR, OR ANY
+ DISTRIBUTOR OF THE DOCUMENT OR MODIFIED VERSION
+ OF THE DOCUMENT, OR ANY SUPPLIER OF ANY OF SUCH
+ PARTIES, BE LIABLE TO ANY PERSON FOR ANY
+ DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
+ CONSEQUENTIAL DAMAGES OF ANY CHARACTER
+ INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS
+ OF GOODWILL, WORK STOPPAGE, COMPUTER FAILURE OR
+ MALFUNCTION, OR ANY AND ALL OTHER DAMAGES OR
+ LOSSES ARISING OUT OF OR RELATING TO USE OF THE
+ DOCUMENT AND MODIFIED VERSIONS OF THE DOCUMENT,
+ EVEN IF SUCH PARTY SHALL HAVE BEEN INFORMED OF
+ THE POSSIBILITY OF SUCH DAMAGES.
+ </p></li></ol></div><p>
+ </p></div></div><div><div class="legalnotice"><a name="idm45495306371328"></a><p
class="legalnotice-title"><b>Обратная связь</b></p><p>
+ To report a bug or make a suggestion regarding the <span class="application">Genius Mathematics
Tool</span>
+ application or this manual, please visit the
+ <a class="ulink" href="http://www.jirka.org/genius.html" target="_top">Genius
+ Web page</a>
+ or email me at <code class="email"><<a class="email" href="mailto:jirka 5z com">jirka 5z
com</a>></code>.
+ </p></div></div><div><div class="revhistory"><table style="border-style:solid; width:100%;"
summary="История переиздания"><tr><th align="left" valign="top" colspan="2"><b>История
переиздания</b></th></tr><tr><td align="left">Издание 0.2</td><td align="left">September
2016</td></tr><tr><td align="left" colspan="2">
+ <p class="author">Jiri (George) Lebl <code class="email"><<a class="email"
href="mailto:jirka 5z com">jirka 5z com</a>></code></p>
+ </td></tr></table></div></div><div><div class="abstract"><p
class="title"><b>Аннотация</b></p><p>Руководство по Математическому инструменту
Genius.</p></div></div></div><hr></div><div class="toc"><p><b>Содержание</b></p><dl class="toc"><dt><span
class="chapter"><a href="ch01.html">1. Введение</a></span></dt><dt><span class="chapter"><a
href="ch02.html">2. Приступая к работе</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch02.html#genius-to-start">Запуск <span class="application">Математического инструмента
Genius</span></a></span></dt><dt><span class="sect1"><a href="ch02s02.html">После запуска
Genius</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch03.html">3. Основы работы с
программой</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch03.html#genius-usage-workarea">Использование р�
�бочей области</a></span></dt><dt><span class="sect1"><a href="ch03s02.html">Создание новой
программы</a></span></dt><dt><span class="sect1"><a href="ch03s03.html">Открытие и запуск
программы</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch04.html">4. Построение
графиков</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch04.html#genius-line-plots">Линейные
графики</a></span></dt><dt><span class="sect1"><a href="ch04s02.html">Parametric
Plots</a></span></dt><dt><span class="sect1"><a href="ch04s03.html">Slopefield Plots</a></span></dt><dt><span
class="sect1"><a href="ch04s04.html">Vectorfield Plots</a></span></dt><dt><span class="sect1"><a
href="ch04s05.html">Графики поверхностей</a></span></dt></dl></dd><dt><span class="chapter"><a
href="ch05.html">5. Основы GEL</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch05.html#genius-gel-va
lues">Значения</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-numbers">Числа</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-booleans">Логические значения</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-strings">Строки</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-null">Null</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s02.html">Использование переменных</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-setting">Присваивание значения переменным</a></span></dt><dt><span
class="sect2"><a href="ch05s02.html#genius-gel-variables-built-in">Встроенные
переменные</a></span></dt><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-previous-result">Переменные с результатом �
�редыдущего вычисления</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch05s03.html">Использование
функций</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-defining">Определение функций</a></span></dt><dt><span
class="sect2"><a href="ch05s03.html#genius-gel-functions-variable-argument-lists">Variable Argument
Lists</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-passing-functions">Passing Functions to
Functions</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-operations">Операции с функциями</a></span></dt></dl></dd><dt><span
class="sect1"><a href="ch05s04.html">Разделитель</a></span></dt><dt><span class="sect1"><a
href="ch05s05.html">Comments</a></span></dt><dt><span class="sect1"><a href="ch05s06.html">Modular
Evaluation</a></span></dt><dt><span class="sect1"><a href="ch0
5s07.html">Список операторов GEL</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch06.html">6.
Программирование в GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch06.html#genius-gel-conditionals">Условные операторы</a></span></dt><dt><span class="sect1"><a
href="ch06s02.html">Циклы</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-while">Циклы While</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-for">Циклы For</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-foreach">Циклы Foreach</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-break-continue">Break и Continue</a></span></dt></dl></dd><dt><span
class="sect1"><a href="ch06s03.html">Суммы и произведения</a></span></dt><dt><span class="sect1"><a
href="ch06s04.html">Операторы срав
нения</a></span></dt><dt><span class="sect1"><a href="ch06s05.html">Глобальные переменные и область
видимости переменных</a></span></dt><dt><span class="sect1"><a href="ch06s06.html">Parameter
variables</a></span></dt><dt><span class="sect1"><a href="ch06s07.html">Returning</a></span></dt><dt><span
class="sect1"><a href="ch06s08.html">References</a></span></dt><dt><span class="sect1"><a
href="ch06s09.html">Lvalues</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch07.html">7.
Advanced Programming with GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch07.html#genius-gel-error-handling">Обработка ошибок</a></span></dt><dt><span class="sect1"><a
href="ch07s02.html">Toplevel Syntax</a></span></dt><dt><span class="sect1"><a href="ch07s03.html">Returning
Functions</a></span></dt><dt><span class="sect1"><a href="ch07s04.html">True Local
Variables</a></span></dt><dt><span class="sect1"><a href=
"ch07s05.html">GEL Startup Procedure</a></span></dt><dt><span class="sect1"><a href="ch07s06.html">Загрузка
программ</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch08.html">8. Матрицы в
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch08.html#genius-gel-matrix-support">Ввод
матриц</a></span></dt><dt><span class="sect1"><a href="ch08s02.html">Conjugate Transpose and Transpose
Operator</a></span></dt><dt><span class="sect1"><a href="ch08s03.html">Линейная
алгебра</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch09.html">9. Многочлены в
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch09.html#genius-gel-polynomials-using">Использование многочленов</a></span></dt></dl></dd><dt><span
class="chapter"><a href="ch10.html">10. Теория множеств в GEL</a></span></dt><dd><dl><dt><span
class="sect1"><a href="ch10.html#genius-gel-sets-usin
g">Using Sets</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch11.html">11. Список функций
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch11.html#genius-gel-function-list-commands">Команды</a></span></dt><dt><span class="sect1"><a
href="ch11s02.html">Основные</a></span></dt><dt><span class="sect1"><a
href="ch11s03.html">Параметры</a></span></dt><dt><span class="sect1"><a
href="ch11s04.html">Константы</a></span></dt><dt><span class="sect1"><a
href="ch11s05.html">Числовые</a></span></dt><dt><span class="sect1"><a
href="ch11s06.html">Тригонометрические</a></span></dt><dt><span class="sect1"><a href="ch11s07.html">Теория
чисел</a></span></dt><dt><span class="sect1"><a href="ch11s08.html">Операции с
матрицами</a></span></dt><dt><span class="sect1"><a href="ch11s09.html">Линейная
алгебра</a></span></dt><dt><span class="sect1"><a href="ch11
s10.html">Комбинаторика</a></span></dt><dt><span class="sect1"><a
href="ch11s11.html">Calculus</a></span></dt><dt><span class="sect1"><a
href="ch11s12.html">Functions</a></span></dt><dt><span class="sect1"><a href="ch11s13.html">Решение
уравнений</a></span></dt><dt><span class="sect1"><a href="ch11s14.html">Статистика</a></span></dt><dt><span
class="sect1"><a href="ch11s15.html">Многочлены</a></span></dt><dt><span class="sect1"><a
href="ch11s16.html">Теория множеств</a></span></dt><dt><span class="sect1"><a href="ch11s17.html">Commutative
Algebra</a></span></dt><dt><span class="sect1"><a href="ch11s18.html">Прочие</a></span></dt><dt><span
class="sect1"><a href="ch11s19.html">Symbolic Operations</a></span></dt><dt><span class="sect1"><a
href="ch11s20.html">Построение графиков</a></span></dt></dl></dd><dt><span class="chapter"><a
href="ch12.html">12. Примеры программ на GEL<
/a></span></dt><dt><span class="chapter"><a href="ch13.html">13. Настройки</a></span></dt><dd><dl><dt><span
class="sect1"><a href="ch13.html#genius-prefs-output">Output</a></span></dt><dt><span class="sect1"><a
href="ch13s02.html">Precision</a></span></dt><dt><span class="sect1"><a
href="ch13s03.html">Терминал</a></span></dt><dt><span class="sect1"><a
href="ch13s04.html">Память</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch14.html">14. О <span
class="application">математическом инструменте Genius</span></a></span></dt></dl></div><div
class="list-of-figures"><p><b>Список иллюстраций</b></p><dl><dt>2.1. <a
href="ch02s02.html#mainwindow-fig">Окно <span class="application">Математического инструмента
Genius</span></a></dt><dt>4.1. <a href="ch04.html#lineplot-fig">Create Plot Window</a></dt><dt>4.2. <a
href="ch04.html#lineplot2-fig">Plot Window</a></dt><dt>4.3. <a href=
"ch04s02.html#paramplot-fig">Parametric Plot Tab</a></dt><dt>4.4. <a
href="ch04s02.html#paramplot2-fig">Parametric Plot</a></dt><dt>4.5. <a
href="ch04s05.html#surfaceplot-fig">Surface Plot</a></dt></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch01.html">След.</a></td></tr><tr><td width="40%" align="left" valign="top"> </td><td width="20%"
align="center"> </td><td width="40%" align="right" valign="top"> Глава 1.
Введение</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch01.html b/help/sv/html/ch01.html
new file mode 100644
index 0000000..83c26c7
--- /dev/null
+++ b/help/sv/html/ch01.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 1.
Introduktion</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="index.html" title="Handbok för
Genius"><link rel="prev" href="index.html" title="Handbok för Genius"><link rel="next" href="ch02.html"
title="Kapitel 2. Komma igång"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Kapitel 1. Introduktion</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="index.html">Föregående</a> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch02.html">Nästa</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-intro
duction"></a>Kapitel 1. Introduktion</h1></div></div></div><p>Programmet <span class="application">Genius
matematikverktyg</span> är en allmän miniräknare som kan användas som en miniräknare för skrivbordet, ett
undervisningsverktyg för matematik och till och med är användbart för forskning. Språket som används i <span
class="application">Genius matematikverktyg</span> är designat för att vara ”matematiskt” i betydelsen att
det ska uppfylla att ”vad du menar är vad du får”. Detta är givetvis inte ett fullständigt uppnåeligt mål.
<span class="application">Genius matematikverktyg</span> klarar av rationella tal, heltal med godtycklig
precision och högprecisionsflyttal med GMP-biblioteket. Det hanterar komplexa tal med kartesisk notation. Det
har bra vektor- och matrismanipulation och kan hantera grundläggande linjär algebra. Programmeringsspråket
tillåter användardefinierade funktioner, variabler och ändring av parametrar.</p><p><span class="
application">Genius matematikverktyg</span> finns i två versioner. En version är den grafiska
GNOME-versionen, som har ett gränssnitt av IDE-stil och förmågan att rita grafer med en eller två variabler.
Kommandoradsversionen kräver inte GNOME, men implementerar förstås inte någon funktion som kräver det
grafiska gränssnittet.</p><p>Delar av denna handbok beskriver den grafiska versionen av miniräknaren, men
språket är förstås detsamma. Kommandoradsversionen saknar funktioner för grafritning och all annan
funktionalitet som kräver det grafiska användargränssnittet.</p><p>Allmänt så nämns det om någon
funktionalitet av språket (funktioner, operatorer och så vidare...) är ny för någon version efter 1.0.5, men
om den tillkom innan 1.0.5 skulle du behöva titta på NEWS-filen.</p></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="index.html">Föregående</a> </td><
td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch02.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Handbok för Genius </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%" align="right"
valign="top"> Kapitel 2. Komma igång</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch02.html b/help/sv/html/ch02.html
new file mode 100644
index 0000000..b58d70a
--- /dev/null
+++ b/help/sv/html/ch02.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 2. Komma
igång</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="index.html" title="Handbok för
Genius"><link rel="prev" href="ch01.html" title="Kapitel 1. Introduktion"><link rel="next"
href="ch02s02.html" title="Då du startar Genius"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitel 2. Komma igång</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch01.html">Föregående</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch02s02.html">Nästa</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="genius
-getting-started"></a>Kapitel 2. Komma igång</h1></div></div></div><div
class="toc"><p><b>Innehållsförteckning</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch02.html#genius-to-start">För att starta <span class="application">Genius
matematikverktyg</span></a></span></dt><dt><span class="sect1"><a href="ch02s02.html">Då du startar
Genius</a></span></dt></dl></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-to-start"></a>För att starta <span class="application">Genius
matematikverktyg</span></h2></div></div></div><p>Du kan starta <span class="application">Genius
matematikverktyg</span> på följande sätt:</p><div class="variablelist"><dl class="variablelist"><dt><span
class="term"><span class="guimenu">Program</span>-menyn</span></dt><dd><p>Beroende på ditt operativsystem och
version kan menyposten för <span class="application">Genius matematikverktyg</span> dyka upp på ett antal
olika platser. D
et kan vara i <span class="guisubmenu">Utbildning</span>, <span class="guisubmenu">Tillbehör</span>, <span
class="guisubmenu">Kontorsprogram</span>, <span class="guisubmenu">Vetenskap</span> eller någon liknande
undermeny beroende på din specifika konfiguration. Menyposten som du letar efter är <span
class="guimenuitem">Genius matematikverktyg</span>.Då du hittat denna menypost kan du klicka på den för att
starta <span class="application">Genius matematikverktyg</span>.</p></dd><dt><span class="term">Dialogen
<span class="guilabel">Kör</span></span></dt><dd><p>Beroende på din systeminstallation kanske inte menyposten
finns tillgänglig. Om den inte gör det kan du öppna Kör-dialogen och exekvera <span
class="command"><strong>gnome-genius</strong></span>.</p></dd><dt><span
class="term">Kommandorad</span></dt><dd><p>För att starta GNOME-versionen av <span class="application">Genius
matematikverktyg</span> kör <span class="command"><strong>gnome-genius</strong></sp
an> från kommandoraden.</p><p>För att starta kommandoradsversionen, kör följande kommando: <span
class="command"><strong>genius</strong></span>. Denna version inkluderar inte den grafiska miljön och viss
funktionalitet som grafritning kommer inte finnas tillgänglig.</p></dd></dl></div></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch01.html">Föregående</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> <a accesskey="n" href="ch02s02.html">Nästa</a></td></tr><tr><td width="40%" align="left"
valign="top">Kapitel 1. Introduktion </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Hem</a></td><td width="40%" align="right" valign="top"> Då du startar
Genius</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch02s02.html b/help/sv/html/ch02s02.html
new file mode 100644
index 0000000..fda2678
--- /dev/null
+++ b/help/sv/html/ch02s02.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Då du startar
Genius</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="ch02.html" title="Kapitel 2. Komma
igång"><link rel="prev" href="ch02.html" title="Kapitel 2. Komma igång"><link rel="next" href="ch03.html"
title="Kapitel 3. Grundläggande användning"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Då du startar Genius</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch02.html">Föregående</a> </td><th width="60%" align="center">Kapitel 2. Komma
igång</th><td width="20%" align="right"> <a accesskey="n"
href="ch03.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
c
lass="title" style="clear: both"><a name="genius-when-start"></a>Då du startar
Genius</h2></div></div></div><p>Då du startar GNOME-versionen av <span class="application">Genius
matematikverktyg</span> kommer fönstret som avbildas i <a class="xref" href="ch02s02.html#mainwindow-fig"
title="Figur 2.1. Genius matematikverktyg-fönstret">Figur 2.1, ”<span class="application">Genius
matematikverktyg</span>-fönstret”</a> att visas.</p><div class="figure"><a name="mainwindow-fig"></a><p
class="title"><b>Figur 2.1. <span class="application">Genius matematikverktyg</span>-fönstret</b></p><div
class="figure-contents"><div class="screenshot"><div class="mediaobject"><img src="figures/genius_window.png"
alt="Visar huvudfönster för Genius matematikverktyg. Innehåller titelrad, menyrad, verktygsfält och
arbetsyta. Menyraden innehåller menyerna Arkiv, Redigera, Miniräknare, Exempel, Program, Inställningar och
Hjälp."></div></div></div></div><br class="figure-break"><p>Fö
nstret för <span class="application">Genius matematikverktyg</span> innehåller följande element:</p><div
class="variablelist"><dl class="variablelist"><dt><span class="term">Menyrad.</span></dt><dd><p>Menyerna på
menyraden innehåller alla kommandon som du behöver för att arbeta med filer i <span
class="application">Genius matematikverktyg</span>.<span class="guilabel">Arkiv</span>-menyn innehåller
poster för att läsa in och spara objekt och skapa nya program. Kommandot <span class="guilabel">Läs in och
kör...</span> öppnar inte ett nytt fönster för programmet, utan kör bara programmet direkt. Det är ekvivalent
med kommandot <span class="command"><strong>läs in</strong></span>.</p><p>Menyn <span
class="guilabel">Miniräknare</span> kontrollerar miniräknarmotorn. Den låter dig välja det aktuellt valda
programmet eller att avbryta den pågående beräkningen. Du kan också se det fulla uttrycket för det senaste
svaret (praktiskt om det senaste svaret var f
ör stort för att passa i konsolen), eller så kan du se en lista över värdena för alla användardefinierade
variabler. Du kan också övervaka användarvariabler, vilket är särskilt användbart under tiden en lång
beräkning pågår, eller för att felsöka ett specifikt program. Slutligen låter <span
class="guilabel">Miniräknare</span> dig att rita funktionsgrafer med en användarvänlig
dialogruta.</p><p>Menyn <span class="guilabel">Exempel</span> är en lista över exempelprogram eller
demonstrationer. Om du öppnar menyn kommer den läsa in exemplet i ett nytt program vilket du kan köra,
redigera, ändra och spara. Dessa program bör vara väl dokumenterade och demonstrerar allmänt antingen någon
funktion i <span class="application">Genius matematikverktyg</span> eller något matematiskt
koncept.</p><p>Menyn <span class="guilabel">Program</span> listar aktuellt öppna program och låter dig växla
mellan dem.</p><p>De andra menyerna har samma bekanta funktio
ner som i andra program.</p></dd><dt><span class="term">Verktygsfält.</span></dt><dd><p>Verktygsfältet
innehåller en delmängd av kommandona du kan komma åt från menyraden.</p></dd><dt><span
class="term">Arbetsyta</span></dt><dd><p>Arbetsytan är den primära metoden för att interagera med
programmet.</p><p>Arbetsytan har ursprungligen bara fliken <span class="guilabel">Konsol</span>, vilken är
huvudsättet att interagera med miniräknaren. Här skriver du in uttryck och resultaten visas omedelbart efter
att du tryckt på Returknappen.</p><p>Alternativt kan du skriva längre program och de kan visas i separata
flikar. Programmen är en uppsättning kommandon eller funktioner som kan köras alla på en gång snarare mata in
dem i kommandoraden. Programmen kan sparas i filer för senare användning.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch02.html">Föreg
ående</a> </td><td width="20%" align="center"><a accesskey="u" href="ch02.html">Upp</a></td><td width="40%"
align="right"> <a accesskey="n" href="ch03.html">Nästa</a></td></tr><tr><td width="40%" align="left"
valign="top">Kapitel 2. Komma igång </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Hem</a></td><td width="40%" align="right" valign="top"> Kapitel 3. Grundläggande
användning</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch03.html b/help/sv/html/ch03.html
new file mode 100644
index 0000000..aa8631c
--- /dev/null
+++ b/help/sv/html/ch03.html
@@ -0,0 +1,9 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 3.
Grundläggande användning</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="index.html" title="Handbok för
Genius"><link rel="prev" href="ch02s02.html" title="Då du startar Genius"><link rel="next"
href="ch03s02.html" title="För att skapa ett nytt program"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitel 3. Grundläggande användning</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch02s02.html">Föregående</a> </td><th width="60%" align="center">
</th><td width="20%" align="right"> <a accesskey="n"
href="ch03s02.html">Nästa</a></td></tr></table><hr></div><div class="chapter"><div class="titlepage"><
div><div><h1 class="title"><a name="genius-usage"></a>Kapitel 3. Grundläggande
användning</h1></div></div></div><div class="toc"><p><b>Innehållsförteckning</b></p><dl class="toc"><dt><span
class="sect1"><a href="ch03.html#genius-usage-workarea">Använda arbetsytan</a></span></dt><dt><span
class="sect1"><a href="ch03s02.html">För att skapa ett nytt program</a></span></dt><dt><span class="sect1"><a
href="ch03s03.html">Att öppna eller köra ett program</a></span></dt></dl></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-usage-workarea"></a>Använda
arbetsytan</h2></div></div></div><p>Normalt interagerar du med miniräknaren i fliken <span
class="guilabel">Konsol</span> i arbetsytan. Om du kör textversionen kommer konsolen vara det enda som finns
tillgängligt för dig. Om du vill använda <span class="application">Genius matematikverktyg</span> endast som
en miniräknare skriver du bara in ditt uttryck i kons
olen så kommer det beräknas och det returnerade värdet kommer att skrivas ut.</p><p>För att beräkna ett
uttryck. skriv in det i arbetsytan <span class="guilabel">Konsol</span> och tryck Retur. Uttryck skrivs i ett
språk som kallas GEL. De enklaste GEL-uttrycken ser ut precis som matematik. Till exempel </p><pre
class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>30*70 + 67^3.0 + ln(7)
* (88.8/100)</code></strong>
+</pre><p> eller </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>62734 + 812634 + 77^4 mod 5</code></strong>
+</pre><p> eller </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>| sin(37) - e^7 |</code></strong>
+</pre><p> eller </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>sum n=1 to 70 do 1/n</code></strong>
+</pre><p> (Det sista är den harmoniska summan från 1 till 70)</p><p>För att se en lista över funktioner och
kommandon, skriv: </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>help</code></strong>
+</pre><p> Om du vill få mer hjälp om en specifik funktion, skriv: </p><pre class="screen"><code
class="prompt">genius> </code><strong class="userinput"><code>help Funktionsnamn</code></strong>
+</pre><p> För att se denna handbok, skriv: </p><pre class="screen"><code class="prompt">genius>
</code><strong class="userinput"><code>manual</code></strong>
+</pre><p>Anta att du tidigare har sparat några GEL-kommandon som ett program till en fil och att du nu vill
exekvera dem. För att läsa in detta program till filen <code class="filename">sökväg/till/program.gel</code>,
skriv </p><pre class="screen"><code class="prompt">genius> </code><strong class="userinput"><code>load
sökväg/till/program.gel</code></strong>
+</pre><p><span class="application">Genius matematikverktyg</span> håller reda på aktuell katalog. För att
lista filer i den aktuella katalogen skriv <span class="command"><strong>ls</strong></span>, för att ändra
katalog använder du <strong class="userinput"><code>cd katalog</code></strong> som i kommandoskalet i
UNIX.</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch02s02.html">Föregående</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch03s02.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Då du startar Genius
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> För att skapa ett nytt program</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch03s02.html b/help/sv/html/ch03s02.html
new file mode 100644
index 0000000..5970778
--- /dev/null
+++ b/help/sv/html/ch03s02.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>För att skapa ett nytt
program</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="ch03.html" title="Kapitel 3. Grundläggande
användning"><link rel="prev" href="ch03.html" title="Kapitel 3. Grundläggande användning"><link rel="next"
href="ch03s03.html" title="Att öppna eller köra ett program"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">För att skapa ett nytt program</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch03.html">Föregående</a> </td><th width="60%" align="center">Kapitel 3.
Grundläggande användning</th><td width="20%" align="right"> <a accesskey="n"
href="ch03s03.html">Nästa</a></td></tr></table><h
r></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-usage-create-program"></a>För att skapa ett nytt program</h2></div></div></div><p>Om du vill
mata in flera mer komplicerade kommandon, eller kanske skriva en komplicerad funktion med <a class="link"
href="ch05.html" title="Kapitel 5. Grunderna i GEL">GEL</a>-språket så kan du skapa ett nytt
program.</p><p>För att börja skriva ett nytt program, välj <span class="guimenu">Arkiv</span> → <span
class="guimenuitem">Nytt program</span>. En ny flik kommer att dyka upp i arbetsytan. Du kan skriva ett <a
class="link" href="ch05.html" title="Kapitel 5. Grunderna i GEL">GEL</a>-program i denna arbetsyta. Då du har
skrivit ditt program kan du köra det genom <span class="guimenu">Miniräknare</span> → <span
class="guimenuitem">Kör</span> (eller verktygsfältsknappen <span class="guilabel">Kör</span>). Detta kommer
exekvera ditt program och kommer visa all utmatn
ing i <span class="guilabel">Konsol</span>-fliken. Att exekvera ett program är ekvivalent med att ta texten
i programmet och skriva in den i konsolen. Den enda skillnaden är att denna inmatning görs oberoende från
konsolen och att bara utmatningen går till konsolen. <span class="guimenu">Miniräknare</span> → <span
class="guimenuitem">Kör</span> kommer alltid att köra det aktuellt valda programmet även om du är i <span
class="guilabel">Konsol</span>-fliken. Det aktuellt valda programmet har sin flik i fet stil. Klicka på ett
programs flik för att välja det.</p><p>För att spara programmet du just skrivit, välj <span
class="guimenu">Arkiv</span> → <span class="guimenuitem">Spara som…</span>. Liknande i andra program kan du
välja <span class="guimenu">Arkiv</span> → <span class="guimenuitem">Spara</span> för att spara ett program
som redan har ett associerat filnamn. Om du har många öppnade program som du har redigerat och vill spara kan
du också väl
ja <span class="guimenu">Arkiv</span> → <span class="guimenuitem">Spara allt osparat</span>.</p><p>Program
som har osparade ändringar kommer ha ett ”[+]” intill sitt filnamn. På detta sätt kan du se om filen på disk
och den aktuellt öppnade fliken skiljer sig åt vad gäller innehåll. Program som inte ännu fått ett filnamn
associerat med sig anses alltid vara osparade och inget ”[+]” skrivs ut.</p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch03.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch03.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch03s03.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel 3. Grundläggande
användning </td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Att öppna eller kö
ra ett program</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch03s03.html b/help/sv/html/ch03s03.html
new file mode 100644
index 0000000..e6032fb
--- /dev/null
+++ b/help/sv/html/ch03s03.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Att öppna eller köra
ett program</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="ch03.html" title="Kapitel 3. Grundläggande
användning"><link rel="prev" href="ch03s02.html" title="För att skapa ett nytt program"><link rel="next"
href="ch04.html" title="Kapitel 4. Grafritning"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Att öppna eller köra ett program</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch03s02.html">Föregående</a> </td><th width="60%" align="center">Kapitel
3. Grundläggande användning</th><td width="20%" align="right"> <a accesskey="n"
href="ch04.html">Nästa</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-usage-open-program"></a>Att öppna eller köra ett program</h2></div></div></div><p>För att öppna
en fil, välj <span class="guimenu">Arkiv</span> → <span class="guimenuitem">Öppna</span>. En ny flik som
innehåller filen kommer att dyka upp i arbetsytan. Du kan använda denna för att redigera filen.</p><p>För att
köra ett program från en fil, välj <span class="guimenu">Arkiv</span> → <span class="guimenuitem">Läs in och
kör...</span>. Detta kommer köra programmet utan att öppna det i en separat flik. Detta är ekvivalent med
kommandot <span class="command"><strong>load</strong></span>.</p><p>Om du har gjort redigeringar till en fil
som du vill slänga bort och vill läsa om versionen som finns på disk kan du välja menyposten <span
class="guimenu">Arkiv</span> → <span class="guimenuitem">Läs om från disk</span>. Detta är användbart för att
experiment
era med ett program och göra tillfälliga redigeringar för att köra ett program, men som du inte avser
behålla.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch03s02.html">Föregående</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch03.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch04.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">För att skapa ett nytt
program </td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Kapitel 4. Grafritning</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch04.html b/help/sv/html/ch04.html
new file mode 100644
index 0000000..7f935ab
--- /dev/null
+++ b/help/sv/html/ch04.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 4.
Grafritning</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="index.html" title="Handbok för
Genius"><link rel="prev" href="ch03s03.html" title="Att öppna eller köra ett program"><link rel="next"
href="ch04s02.html" title="Parametriska grafer"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitel 4. Grafritning</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch03s03.html">Föregående</a> </td><th width="60%" align="center">
</th><td width="20%" align="right"> <a accesskey="n"
href="ch04s02.html">Nästa</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a
name="genius-gel-plotting"></a>Kapitel 4. Grafritning</h1></div></div></div><div
class="toc"><p><b>Innehållsförteckning</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch04.html#genius-line-plots">Linjegrafer</a></span></dt><dt><span class="sect1"><a
href="ch04s02.html">Parametriska grafer</a></span></dt><dt><span class="sect1"><a
href="ch04s03.html">Riktningsfältsgrafer</a></span></dt><dt><span class="sect1"><a
href="ch04s04.html">Vektorfältsgrafer</a></span></dt><dt><span class="sect1"><a
href="ch04s05.html">Ytgrafer</a></span></dt></dl></div><p>Stöd för grafritning finns endast i den grafiska
GNOME-versionen. All grafritning som finns tillgänglig från det grafiska gränssnittet finns tillgänglig från
fönstret <span class="guilabel">Skapa graf</span>. Du kan komma åt detta fönster genom att antingen klicka på
<span class="guilabel">Graf</span>-knappen i verktygsfältet eller välja <span class="guilabel">Graf</span> i
menyn <span class="guilabel">Min
iräknare</span>. Du kan också komma åt grafritningsfunktionalitet genom att använda GEL-språkets <a
class="link" href="ch11s20.html" title="Grafritning">grafritningsfunktioner</a>. Se <a class="xref"
href="ch05.html" title="Kapitel 5. Grunderna i GEL">Kapitel 5, <i>Grunderna i GEL</i></a> för att få veta hur
du matar in uttryck som Genius förstår.</p><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-line-plots"></a>Linjegrafer</h2></div></div></div><p>För
att rita ut reellvärda funktioner i en variabel öppna fönstret <span class="guilabel">Skapa graf</span>. Du
kan också använda <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>-funktionen på kommandoraden (se dess dokumentation).</p><p>Då du klickar
på <span class="guilabel">Graf</span>-knappen öppnas ett fönster med några flikhäften. Du kommer att vilja
vara i fliken <span class="guilabel">Linjeg
raf för funktion</span> och inuti detta vill du vara i fliken <span class="guilabel">Funktioner /
Uttryck</span>. Se <a class="xref" href="ch04.html#lineplot-fig" title="Figur 4.1. Skapa graf-fönster">Figur
4.1, ”Skapa graf-fönster”</a>.</p><div class="figure"><a name="lineplot-fig"></a><p class="title"><b>Figur
4.1. Skapa graf-fönster</b></p><div class="figure-contents"><div class="screenshot"><div
class="mediaobject"><img src="figures/line_plot.png" alt="Visar
linjegrafsfönstret."></div></div></div></div><br class="figure-break"><p>Skriv in uttryck med <strong
class="userinput"><code>x</code></strong> som oberoende variabel i textrutorna. Alternativt kan du ange namn
på funktioner som <strong class="userinput"><code>cos</code></strong> snarare än att behöva skriva <strong
class="userinput"><code>cos(x)</code></strong>. Du kan rita upp till tio funktioner. Om du gör ett misstag
och Genius inte kan tolka inmatningen kommer det att visa detta med en varningsikon
till höger om textinmatningsrutan där felet uppstod, såväl som att ge dig en feldialog. Du kan ändra
intervallen för de beroende och de oberoende variablerna i nederdelen av dialogen. Intervallet <code
class="varname">y</code> (beroende) kan ställas in automatiskt genom att kryssa i kryssrutan <span
class="guilabel">Passa till beroende axel</span>. Namnen på variablerna kan också ändras. Att trycka på
knappen <span class="guilabel">Graf</span> producerar grafen som visas i <a class="xref"
href="ch04.html#lineplot2-fig" title="Figur 4.2. Graffönster">Figur 4.2, ”Graffönster”</a>.</p><p>Namnen på
variablerna kan ändras genom att klicka på knappen <span class="guilabel">Ändra variabelnamn…</span>, vilket
är användbart om du vill skriva ut eller spara figuren och inte vill använda standardnamnen. Slutligen kan du
också undvika att skriva ut förklaringen och axeletiketterna helt, vilket också är användbart då du skriver
ut eller sparar, då förk
laringen kan vara i vägen.</p><div class="figure"><a name="lineplot2-fig"></a><p class="title"><b>Figur 4.2.
Graffönster</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/line_plot_graph.png" alt="Den producerade grafen."></div></div></div></div><br
class="figure-break"><p>Härifrån kan du skriva ut grafen, skapa encapsulated postscript eller en PNG-version
av grafen eller ändra zoomnivån. Om den beroende axeln inte ställdes in korrekt kan Genius anpassa den genom
att hitta extremvärdena för de ritade funktionerna.</p><p>För grafritning med kommandoraden se
dokumentationen för <a class="link" href="ch11s20.html#gel-function-LinePlot"><code
class="function">LinePlot</code></a>-funktionen.</p></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch03s03.html">Föregående</a> </td><td width="20%" align="center"> </td><td widt
h="40%" align="right"> <a accesskey="n" href="ch04s02.html">Nästa</a></td></tr><tr><td width="40%"
align="left" valign="top">Att öppna eller köra ett program </td><td width="20%" align="center"><a
accesskey="h" href="index.html">Hem</a></td><td width="40%" align="right" valign="top"> Parametriska
grafer</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch04s02.html b/help/sv/html/ch04s02.html
new file mode 100644
index 0000000..d5f8fca
--- /dev/null
+++ b/help/sv/html/ch04s02.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Parametriska
grafer</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="ch04.html" title="Kapitel 4.
Grafritning"><link rel="prev" href="ch04.html" title="Kapitel 4. Grafritning"><link rel="next"
href="ch04s03.html" title="Riktningsfältsgrafer"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Parametriska grafer</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch04.html">Föregående</a> </td><th width="60%" align="center">Kapitel 4.
Grafritning</th><td width="20%" align="right"> <a accesskey="n"
href="ch04s03.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" styl
e="clear: both"><a name="genius-parametric-plots"></a>Parametriska grafer</h2></div></div></div><p>I ”Skapa
graf”-fönstret kan du också välja flikhäftet <span class="guilabel">Parametrisk</span> för att skapa
tvådimensionella parametriska grafer. På detta sätt kan du rita en parametrisk funktion. Du kan antingen ange
punkterna som <code class="varname">x</code> och <code class="varname">y</code>, eller ange ett ensamt
komplext tal som en funktion av variabeln <code class="varname">t</code>. Intervallet för variabeln <code
class="varname">t</code> anges explicit, och funktionen ritas enligt angivet inkrement. Intervallet för <code
class="varname">x</code> och <code class="varname">y</code> kan ställas in automatiskt genom att kryssa i
kryssrutan <span class="guilabel">Passa till beroende axel</span>, eller så kan det anges explicit. Se <a
class="xref" href="ch04s02.html#paramplot-fig" title="Figur 4.3. Flik för parametriska grafer">Figur 4.3,
”Flik för pa
rametriska grafer”</a>.</p><div class="figure"><a name="paramplot-fig"></a><p class="title"><b>Figur 4.3.
Flik för parametriska grafer</b></p><div class="figure-contents"><div class="screenshot"><div
class="mediaobject"><img src="figures/parametric.png" alt="Flik för parametrisk graf i fönstret Skapa
graf."></div></div></div></div><br class="figure-break"><p>Ett exempel på en parametrisk graf ges i <a
class="xref" href="ch04s02.html#paramplot2-fig" title="Figur 4.4. Parametrisk graf">Figur 4.4, ”Parametrisk
graf”</a>. Liknande operationer kan göras på sådana grafer som kan göras på de andra linjegraferna. För
grafritning på kommandoraden se dokumentationen för funktionerna <a class="link"
href="ch11s20.html#gel-function-LinePlotParametric"><code class="function">LinePlotParametric</code></a>
eller <a class="link" href="ch11s20.html#gel-function-LinePlotCParametric"><code
class="function">LinePlotCParametric</code></a>.</p><div class="figure"><a name="param
plot2-fig"></a><p class="title"><b>Figur 4.4. Parametrisk graf</b></p><div class="figure-contents"><div
class="screenshot"><div class="mediaobject"><img src="figures/parametric_graph.png" alt="Producerad
parametrisk graf"></div></div></div></div><br class="figure-break"></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch04.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch04.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch04s03.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel 4. Grafritning
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Riktningsfältsgrafer</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch04s03.html b/help/sv/html/ch04s03.html
new file mode 100644
index 0000000..0c5c513
--- /dev/null
+++ b/help/sv/html/ch04s03.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Riktningsfältsgrafer</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="ch04.html"
title="Kapitel 4. Grafritning"><link rel="prev" href="ch04s02.html" title="Parametriska grafer"><link
rel="next" href="ch04s04.html" title="Vektorfältsgrafer"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Riktningsfältsgrafer</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch04s02.html">Föregående</a> </td><th width="60%" align="center">Kapitel 4.
Grafritning</th><td width="20%" align="right"> <a accesskey="n"
href="ch04s04.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-slopefield-plots"></a>Riktningsfältsgrafer</h2></div></div></div><p>I
”Skapa graf”-fönstret kan du också välja flikhäftet <span class="guilabel">Riktningsfält</span> för att skapa
en tvådimensionell riktningsfältsgraf. Liknande operationer kan göras på sådana grafer som kan göras på de
andra linjegraferna. För grafritning på kommandoraden se dokumentationen för funktionen <a class="link"
href="ch11s20.html#gel-function-SlopefieldPlot"><code class="function">SlopefieldPlot</code></a>.</p><p>Då
ett riktningsfält är aktivt finns det en extra meny <span class="guilabel">Lösare</span> tillgänglig, genom
vilken du kan få fram lösardialogen. Här kan du få Genius att rita ut specifika lösningar för de givna
startvillkoren. Du kan antingen ange startvillkor i dialogen eller så kan du klicka direkt på grafen för att
ange ursprungspunkten. Medan lösardialogen är aktiv fungerar det inte att zooma genom att klicka o
ch dra. Du måste stänga dialogen först om du vill zooma med musen.</p><p>Lösaren använder den vanliga
Runge-Kutta-metoden. Graferna behålls på skärmen tills de rensas bort. Lösaren kommer stoppa då den når
kanten på graffönstret. Att zooma ändrar inte gränserna eller parametrarna för lösningarna, du kommer behöva
rensa bort och rita om dem med lämpliga parametrar. Du kan också använda funktionen <a class="link"
href="ch11s20.html#gel-function-SlopefieldDrawSolution"><code
class="function">SlopefieldDrawSolution</code></a> för att rita lösningar från kommandoraden eller
program.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s02.html">Föregående</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch04.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch04s04.html">Nästa</a></td></tr><tr><td width="40%" align="left" vali
gn="top">Parametriska grafer </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Hem</a></td><td width="40%" align="right" valign="top">
Vektorfältsgrafer</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch04s04.html b/help/sv/html/ch04s04.html
new file mode 100644
index 0000000..42409bb
--- /dev/null
+++ b/help/sv/html/ch04s04.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Vektorfältsgrafer</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="ch04.html"
title="Kapitel 4. Grafritning"><link rel="prev" href="ch04s03.html" title="Riktningsfältsgrafer"><link
rel="next" href="ch04s05.html" title="Ytgrafer"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Vektorfältsgrafer</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch04s03.html">Föregående</a> </td><th width="60%" align="center">Kapitel 4.
Grafritning</th><td width="20%" align="right"> <a accesskey="n"
href="ch04s05.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-vectorfield-plots"></a>Vektorfältsgrafer</h2></div></div></div><p>I ”Skapa
graf”-fönstret kan du också välja flikhäftet <span class="guilabel">Vektorfält</span> för att skapa en
tvådimensionell vektorfältsgraf. Liknande operationer kan göras på sådana grafer som kan göras på de andra
linjegraferna. För grafritning på kommandoraden se dokumentationen för funktionen <a class="link"
href="ch11s20.html#gel-function-VectorfieldPlot"><code class="function">VectorfieldPlot</code></a>.</p><p>Som
standard visas riktningen och magnituden för vektorfältet. För att endast visa riktning och inte magnituden,
kryssa i motsvarande kryssruta för att normalisera pillängderna.</p><p>Då ett vektorfält är aktivt finns det
en extra meny <span class="guilabel">Lösare</span> tillgänglig, genom vilken du kan få fram lösardialogen.
Här kan du få Genius att rita ut specifika lösningar för de givna startvillkoren. Du kan antingen ange
startvill
kor i dialogen eller så kan du klicka direkt på grafen för att ange ursprungspunkten. Medan lösardialogen är
aktiv fungerar det inte att zooma genom att klicka och dra. Du måste stänga dialogen först om du vill zooma
med musen.</p><p>Lösaren använder den vanliga Runge-Kutta-metoden. Graferna behålls på skärmen tills de
rensas bort. Att zooma ändrar inte gränserna eller parametrarna för lösningarna, du kommer behöva rensa bort
och rita om dem med lämpliga parametrar. Du kan också använda funktionen <a class="link"
href="ch11s20.html#gel-function-VectorfieldDrawSolution"><code
class="function">VectorfieldDrawSolution</code></a> för att rita lösningar från kommandoraden eller
program.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch04s03.html">Föregående</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch04.html">Upp</a></td><td width="40%" alig
n="right"> <a accesskey="n" href="ch04s05.html">Nästa</a></td></tr><tr><td width="40%" align="left"
valign="top">Riktningsfältsgrafer </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Hem</a></td><td width="40%" align="right" valign="top">
Ytgrafer</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch04s05.html b/help/sv/html/ch04s05.html
new file mode 100644
index 0000000..a19f07c
--- /dev/null
+++ b/help/sv/html/ch04s05.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Ytgrafer</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Handbok
för Genius"><link rel="up" href="ch04.html" title="Kapitel 4. Grafritning"><link rel="prev"
href="ch04s04.html" title="Vektorfältsgrafer"><link rel="next" href="ch05.html" title="Kapitel 5. Grunderna i
GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Ytgrafer</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch04s04.html">Föregående</a> </td><th width="60%" align="center">Kapitel 4. Grafritning</th><td
width="20%" align="right"> <a accesskey="n" href="ch05.html">Nästa</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a na
me="genius-surface-plots"></a>Ytgrafer</h2></div></div></div><p>Genius kan också rita ytor. Välj fliken
<span class="guilabel">Ytgraf</span> i huvudflikhäftet i <span class="guilabel">Skapa graf</span>-fönstret.
Här kan du ange ett enskilt uttryck som ska använda antingen <code class="varname">x</code> och <code
class="varname">y</code> som reella oberoende variabler eller <code class="varname">z</code> som en komplex
variabel (där <code class="varname">x</code> är realdelen av <code class="varname">z</code> och <code
class="varname">y</code> är imaginärdelen). Till exempel kan du för att rita absolutbeloppet av
cosinusfunktionen för komplexa parametrar mata in <strong class="userinput"><code>|cos(z)|</code></strong>.
Detta skulle vara ekvivalent med <strong class="userinput"><code>|cos(x+1i*y)|</code></strong>. Se <a
class="xref" href="ch04s05.html#surfaceplot-fig" title="Figur 4.5. Ytgraf">Figur 4.5, ”Ytgraf”</a>. För
grafritning med kommandoraden se doku
mentationen för funktionen <a class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>.</p><p><code class="varname">z</code>-intervallet kan ställas in
automatiskt genom att kryssa i kryssrutan <span class="guilabel">Passa till beroende axel</span>. Namnen på
variablerna kan ändras genom att klicka på knappen <span class="guilabel">Ändra variabelnamn…</span>, vilket
är användbart om du vill skriva ut eller spara figuren och inte vill använda standardnamnen. Slutligen kan du
också undvika att skriva ut förklaringen vilket också är användbart då du skriver ut eller sparar, då
förklaringen kan vara i vägen.</p><div class="figure"><a name="surfaceplot-fig"></a><p class="title"><b>Figur
4.5. Ytgraf</b></p><div class="figure-contents"><div class="screenshot"><div class="mediaobject"><img
src="figures/surface_graph.png" alt="Absolutbelopp för den komplexa
cosinusfunktionen."></div></div></div></div><br class="figur
e-break"><p>I ytläge kommer vänster- och högerpiltangenterna på ditt tangentbord att rotera vyn kring
z-axeln. Alternativt kan du rotera kring valfri axel genom att välja <span class="guilabel">Rotera
axel...</span> i <span class="guilabel">Visa</span>-menyn. <span class="guilabel">Visa</span>-menyn har också
ett toppvyläge som roterar grafen så att z-axeln pekar rakt ut, det vill säga vi ser grafen ovanifrån och får
i princip bara färgerna som definierar värdena på funktionen vilket ger oss en temperaturgraf av funktionen.
Slutligen bör du pröva <span class="guilabel">Börja rotera animering</span> för att starta en kontinuerlig
långsam rotation. Detta är speciellt bra om du använder <span class="application">Genius
matematikverktyg</span> för en presentation för åskådare.</p></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch04s04.html">Föregående</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch04.html">Upp</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch05.html">Nästa</a></td></tr><tr><td width="40%" align="left"
valign="top">Vektorfältsgrafer </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Hem</a></td><td width="40%" align="right" valign="top"> Kapitel 5. Grunderna i
GEL</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch05.html b/help/sv/html/ch05.html
new file mode 100644
index 0000000..fd442e8
--- /dev/null
+++ b/help/sv/html/ch05.html
@@ -0,0 +1,25 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 5. Grunderna i
GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="index.html" title="Handbok för
Genius"><link rel="prev" href="ch04s05.html" title="Ytgrafer"><link rel="next" href="ch05s02.html"
title="Använda variabler"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Kapitel 5. Grunderna i GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch04s05.html">Föregående</a> </td><th width="60%" align="center"> </th><td width="20%" align="right">
<a accesskey="n" href="ch05s02.html">Nästa</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="genius-gel">
</a>Kapitel 5. Grunderna i GEL</h1></div></div></div><div class="toc"><p><b>Innehållsförteckning</b></p><dl
class="toc"><dt><span class="sect1"><a
href="ch05.html#genius-gel-values">Värden</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-numbers">Tal</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-booleans">Booleska värden</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-strings">Strängar</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-null">Null</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s02.html">Använda variabler</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-setting">Ställa in variabler</a></span></dt><dt><span
class="sect2"><a href="ch05s02.html#genius-gel-variables-built-in">Inbyggda
variabler</a></span></dt><dt><span class="sect2"><a href="ch05s02.html#genius-gel-previous-result">Vari
abel för föregående resultat</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch05s03.html">Använda
funktioner</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-defining">Definiera funktioner</a></span></dt><dt><span
class="sect2"><a href="ch05s03.html#genius-gel-functions-variable-argument-lists">Variabla
argumentlistor</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-passing-functions">Skicka funktioner till
funktioner</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-operations">Operationer på
funktioner</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s04.html">Avskiljare</a></span></dt><dt><span class="sect1"><a
href="ch05s05.html">Kommentarer</a></span></dt><dt><span class="sect1"><a
href="ch05s06.html">Moduloberäkning</a></span></dt><dt><span class="sect1"><a href="ch05s07.html">Lista över
GEL-operatorer</a></span></dt></dl></div><p>GEL
står för Genius Extension Language. Det är språket som du använder för att skriva program i Genius. Ett
program i GEL är helt enkelt ett uttryck som evalueras till ett tal, en matris eller ett annat objekt i GEL.
<span class="application">Genius matematikverktyg</span> kan användas som en enkel miniräknare eller som ett
kraftfullt verktyg för teoretisk forskning. Syntaxen är tänkt att ha en så låg inlärningskurva som möjligt,
särskilt då det används som en miniräknare.</p><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-values"></a>Värden</h2></div></div></div><p>Värden i
GEL kan vara <a class="link" href="ch05.html#genius-gel-values-numbers" title="Tal">tal</a>, <a class="link"
href="ch05.html#genius-gel-values-booleans" title="Booleska värden">booleska värden</a> eller <a class="link"
href="ch05.html#genius-gel-values-strings" title="Strängar">strängar</a>. GEL behandlar också <a class
="link" href="ch08.html" title="Kapitel 8. Matriser i GEL">matriser</a> som värden. Värden kan bland annat
användas i beräkningar, tilldelas till variabler och returneras från funktioner.</p><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-numbers"></a>Tal</h3></div></div></div><p>Heltal är den första taltypen i GEL. Heltal
skrivs som vanligt. </p><pre class="programlisting">1234
+</pre><p> Hexadecimala och oktala tal kan skrivas med C-notation. Till exempel: </p><pre
class="programlisting">0x123ABC
+01234
+</pre><p> Eller så kan du skriva tal i en godtycklig bas med <code
class="literal"><base>\<number></code>. Siffror större än 10 använder bokstäver liknande för
hexadecimala tal. Till exempel kan ett tal i bas 23 skrivas: </p><pre class="programlisting">23\1234ABCD
+</pre><p>Den andra typen av GEL-tal är rationella tal. Rationella tal fås helt enkelt genom att dividera två
heltal. Man skulle kunna skriva: </p><pre class="programlisting">3/4
+</pre><p> för att få tre fjärdedelar. Rationella tal accepterar också notationen för delade bråk, så för att
få ett och tre tiondelar skulle du kunna skriva: </p><pre class="programlisting">1 3/10
+</pre><p>Nästa taltyp är flyttal. Dessa matas in på liknande sätt som C-notation. Du kan använda <code
class="literal">E</code>, <code class="literal">e</code> eller <code class="literal">@</code> som
exponentavskiljare. Observera att använda exponentavskiljaren ger ett flyttal även om det inte är något
decimaltecken i talet. Exempel: </p><pre class="programlisting">1.315
+7.887e77
+7.887e-77
+.3
+0.3
+77e5
+</pre><p> När Genius skriver ut ett flyttal kommer det alltid att lägga till ett <code
class="computeroutput">.0</code> även om talet är ett heltal. Detta är för att indikera att flyttal tas som
inexakta kvantiteter. Då ett tal är skrivet i vetenskaplig notation är det alltid ett flyttal och Genius
skriver därför inte ut <code class="computeroutput">.0</code>.</p><p>Den sista taltypen i GEL är de komplexa
talen. Du kan mata in ett komplext tal som en summa av reella och imaginära delar. För att lägga till en
imaginärdel, lägg till ett <code class="literal">i</code>. Här är några exempel då komplexa tal matas in:
</p><pre class="programlisting">1+2i
+8.01i
+77*e^(1.3i)
+</pre><div class="important" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Viktigt</h3><p>Då imaginära tal matas in måste det finnas ett tal före <code
class="literal">i</code>. Om du använder <code class="literal">i</code> för sig själv kommer Genius att tolka
det som att det handlar om variabeln <code class="varname">i</code>. Om du behöver hänvisa till ett ensamt
<code class="literal">i</code>, använd <code class="literal">1i</code> istället.</p><p>För att använda
blandad bråk-notation med imaginära tal måste du ha det blandade bråket inom parenteser. (d.v.s., <strong
class="userinput"><code>(1 2/5)i</code></strong>)</p></div></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a name="genius-gel-values-booleans"></a>Booleska
värden</h3></div></div></div><p>Genius har också stöd för inbyggda booleska värden. De två booleska
konstanterna är definierade som <code class="constant">true</code> och <code clas
s="constant">false</code>; dessa identifierare kan användas som vilken annan variabel som helst. Du kan
också använda identifierarna <code class="constant">True</code>, <code class="constant">TRUE</code>, <code
class="constant">False</code> och <code class="constant">FALSE</code> som alias för de ovannämnda.</p><p>På
alla ställen där ett booleskt uttryck förväntas kan du använda ett booleskt värde eller valfritt uttryck som
producerar antingen ett tal eller ett booleskt värde. Om Genius behöver evaluera ett tal som ett booleskt
värde kommer det tolka 0 som <code class="constant">false</code> och alla andra tal som <code
class="constant">true</code>.</p><p>Utöver detta kan du göra aritmetik med booleska värden. Till exempel är
</p><pre class="programlisting">( (1 + true) - false ) * true
+</pre><p> detsamma som: </p><pre class="programlisting">( (true or true) or not false ) and true
+</pre><p> Endast addition, subtraktion och multiplikation stöds. Om du blandar tal med booleska värden i ett
uttryck så konverteras talen till booleska värden som beskrivits ovan. Detta betyder att till exempel:
</p><pre class="programlisting">1 == true
+</pre><p> alltid evaluerar till <code class="constant">true</code> eftersom 1 kommer konverteras till <code
class="constant">true</code> innan det jämförs med <code class="constant">true</code>.</p></div><div
class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-values-strings"></a>Strängar</h3></div></div></div><p>Som tal och booleska värden kan även
strängar i GEL lagras som värden i variabler och skickas till funktioner. Du kan också konkatenera en sträng
med ett annat värde med plus-operatorn. Till exempel: </p><pre class="programlisting">a=2+3;"Resultatet är:
"+a
+</pre><p> kommer skapa strängen: </p><pre class="programlisting">Resultatet är: 5
+</pre><p> Du kan också använda C-liknande kontrollsekvenser som <code class="literal">\n</code>,<code
class="literal">\t</code>,<code class="literal">\b</code>,<code class="literal"> och \r. F\ eller " i str\.
Till exempel: "Omv kommer skapa en strOmv Observera dock att nprint eller printn.</code></p><p>Dessutom kan
du använda biblioteksfunktionen <a class="link" href="ch11s02.html#gel-function-string"><code
class="function">string</code></a> för att konvertera vad som helst till en sträng. Till exempel: </p><pre
class="programlisting">string(22)
+</pre><p> kommer returnera </p><pre class="programlisting">"22"
+</pre><p> Strängar kan också jämföras med (jämförelse)operatorerna <code class="literal">==</code> (lika
med), <code class="literal">!=</code> (inte lika med) och <code
class="literal"><=></code></p></div><div class="sect2"><div class="titlepage"><div><div><h3
class="title"><a name="genius-gel-values-null"></a>Null</h3></div></div></div><p>Det finns ett speciellt
värde som kallas <code class="constant">null</code>. Inga operationer kan be utföras på det, och inget skrivs
ut då det returneras. Därför är <code class="constant">null</code> användbart då du inte vill ha utdata från
ett uttryck. Värdet <code class="constant">null</code> kan erhållas som ett uttryck då du skriver <code
class="literal">.</code>, konstanten <code class="constant">null</code> eller ingenting. Med ingenting menar
vi att om du avslutar ett uttryck med en avskiljare <code class="literal">;</code> är det ekvivalent med att
avsluta det med en avskiljare följt av ett <code class=
"constant">null</code>.</p><p>Exempel: </p><pre class="programlisting">x=5;.
+x=5;
+</pre><p>Vissa funktioner returnerar <code class="constant">null</code> då inget värde kan returneras eller
då ett fel uppstått. <code class="constant">null</code> används också som en tom vektor eller matris, eller
en tom referens.</p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch04s05.html">Föregående</a> </td><td
width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch05s02.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Ytgrafer </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%" align="right"
valign="top"> Använda variabler</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch05s02.html b/help/sv/html/ch05s02.html
new file mode 100644
index 0000000..1e8627e
--- /dev/null
+++ b/help/sv/html/ch05s02.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Använda
variabler</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="ch05.html" title="Kapitel 5. Grunderna i
GEL"><link rel="prev" href="ch05.html" title="Kapitel 5. Grunderna i GEL"><link rel="next"
href="ch05s03.html" title="Använda funktioner"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Använda variabler</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch05.html">Föregående</a> </td><th width="60%" align="center">Kapitel 5. Grunderna i
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s03.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="tit
le" style="clear: both"><a name="genius-gel-variables"></a>Använda
variabler</h2></div></div></div><p>Syntax: </p><pre class="programlisting">Variabelnamn
+</pre><p> Exempel: </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>e</code></strong>
+= 2.71828182846
+</pre><p>För att evaluera en ensam variabel skriver du bara in namnet på variabeln. Detta returnerar
variabelns värde. Du kan använda en variabel var som helst där du vanligen skulle använda ett tal eller en
sträng. Dessutom är variabler nödvändiga då man definierar funktioner som tar argument (se <a class="xref"
href="ch05s03.html#genius-gel-functions-defining" title="Definiera funktioner">”Definiera
funktioner”</a>).</p><div class="tip" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Använda tabbkomplettering</h3><p>Du kan använda tabbkomplettering för att få Genius att
komplettera variabelnamn åt dig. Skriv in de första bokstäverna i namnet och tryck <strong
class="userinput"><code>Tabb</code></strong>.</p></div><div class="important" style="margin-left: 0.5in;
margin-right: 0.5in;"><h3 class="title">Variabelnamn är skiftlägeskänsliga</h3><p>Namnen på variabler är
skiftlägeskänsliga. Detta betyder att variablerna med namnen
<code class="varname">hej</code>, <code class="varname">HEJ</code> och <code class="varname">Hej</code> alla
är olika variabler.</p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-variables-setting"></a>Ställa in variabler</h3></div></div></div><p>Syntax: </p><pre
class="programlisting"><identifier> = <value>
+<identifier> := <value>
+</pre><p> Exempel: </p><pre class="programlisting">x = 3
+x := 3
+</pre><p>För att tilldela ett värde till en variabel, använd operatorerna <code class="literal">=</code>
eller <code class="literal">:=</code>. Dessa operatorer ställer in värdet på variabeln och returnerar värdet
som du ställt in, så du kan göra saker som </p><pre class="programlisting">a = b = 5
+</pre><p> Detta kommer ställa in <code class="varname">b</code> till 5 och sedan även ställa in <code
class="varname">a</code> till 5.</p><p>Operatorerna <code class="literal">=</code> och <code
class="literal">:=</code> kan båda användas för att ställa in variabler. Skillnaden mellan dem är att <code
class="literal">:=</code>-operatorn alltid beter sig som en tilldelningsoperator medan <code
class="literal">=</code>-operatorn kan tolkas som ett test för likhet då den används i en kontext där ett
booleskt uttryck förväntas.</p><p>För mer information om variablers räckvidd, det vill säga när vilka
variabler är synliga, se <a class="xref" href="ch06s05.html" title="Globala variabler och räckvidd för
variabler">”Globala variabler och räckvidd för variabler”</a>.</p></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a name="genius-gel-variables-built-in"></a>Inbyggda
variabler</h3></div></div></div><p>GEL har ett antal inbyggd
a ”variabler”, som <code class="varname">e</code>, <code class="varname">pi</code> eller <code
class="varname">GoldenRatio</code>. Dessa är ofta använda konstanter med ett förinställt värde, och de kan
inte tilldelas nya värden. Det finns ett antal andra inbyggda variabler. Se <a class="xref"
href="ch11s04.html" title="Konstanter">”Konstanter”</a> för en fullständig lista. Observera att <code
class="varname">i</code> som standard inte är kvadratroten av minus ett (det imaginära talet), och har
lämnats odefinierad för att kunna användas som en räknare. Om du vill skriva det imaginära talet kommer du
behöva använda <strong class="userinput"><code>1i</code></strong>.</p></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a name="genius-gel-previous-result"></a>Variabel för
föregående resultat</h3></div></div></div><p>Variablerna <code class="varname">Ans</code> och <code
class="varname">ans</code> kan användas för att få r
esultatet av det senaste uttrycket. Om du till exempel utfört någon beräkning kan du göra följande för att
lägga till 389 till resultatet: </p><pre class="programlisting">Ans+389
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05.html">Föregående</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch05.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05s03.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel 5. Grunderna i
GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Använda funktioner</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch05s03.html b/help/sv/html/ch05s03.html
new file mode 100644
index 0000000..70d0abb
--- /dev/null
+++ b/help/sv/html/ch05s03.html
@@ -0,0 +1,20 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Använda
funktioner</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="ch05.html" title="Kapitel 5. Grunderna i
GEL"><link rel="prev" href="ch05s02.html" title="Använda variabler"><link rel="next" href="ch05s04.html"
title="Avskiljare"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Använda funktioner</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s02.html">Föregående</a> </td><th width="60%" align="center">Kapitel 5. Grunderna i GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch05s04.html">Nästa</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style
="clear: both"><a name="genius-gel-functions"></a>Använda funktioner</h2></div></div></div><p>Syntax:
</p><pre class="programlisting">Funktionsnamn(argument1, argument2, ...)
+</pre><p> Exempel: </p><pre class="programlisting">Factorial(5)
+cos(2*pi)
+gcd(921,317)
+</pre><p> För att evaluera en funktion, mata in funktionens namn följt av funktionens argument (om sådana
finns) i parenteser. Detta kommer returnera resultatet av att tillämpa funktionen på dess argument. Antalet
argument för funktionen skiljer sig förstås åt för varje funktion.</p><p>Det finns många inbyggda funktioner,
som <a class="link" href="ch11s06.html#gel-function-sin"><code class="function">sin</code></a>, <a
class="link" href="ch11s06.html#gel-function-cos"><code class="function">cos</code></a> och <a class="link"
href="ch11s06.html#gel-function-tan"><code class="function">tan</code></a>. Du kan använda det inbyggda
kommandot <a class="link" href="ch11.html#gel-command-help"><code class="function">help</code></a> för att få
en lista över tillgängliga funktioner, eller se <a class="xref" href="ch11.html" title="Kapitel 11. Lista
över GEL-funktioner">Kapitel 11, <i>Lista över GEL-funktioner</i></a> för en fullständig lista.</p><div
class="tip" s
tyle="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Använda tabbkomplettering</h3><p>Du kan
använda tabbkomplettering för att få Genius att komplettera funktionsnamn åt dig. Skriv in de första
bokstäverna i namnet och tryck <strong class="userinput"><code>Tabb</code></strong>.</p></div><div
class="important" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Funktionsnamn är
skiftlägeskänsliga</h3><p>Namnen på funktioner är skiftlägeskänsliga. Detta betyder att funktionerna med
namnen <code class="function">arbeta</code>, <code class="function">ARBETA</code> och <code
class="function">Arbeta</code> alla är olika funktioner.</p></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a name="genius-gel-functions-defining"></a>Definiera
funktioner</h3></div></div></div><p>Syntax: </p><pre class="programlisting">function
<identifier>(<comma separated arguments>) = <function body>
+<identifier> = (`() = <function body>)
+</pre><p> <code class="literal">`</code> är tecknet grav accent och betecknar en anonym funktion. Genom att
ställa in den till ett variabelnamn definierar du praktiskt sett en funktion.</p><p>En funktion tar noll
eller fler kommaseparerade argument och returnerar resultatet av funktionskroppen. Att definiera dina egna
funktioner är främst en bekvämlighetsfråga; en möjlig användning är att ha uppsättningar av funktioner
definierade i GEL-filer som Genius kan läsa in för att göra dem tillgängliga. Exempel: </p><pre
class="programlisting">function addup(a,b,c) = a+b+c
+</pre><p> sedan <strong class="userinput"><code>addup(1,4,9)</code></strong> ger 14</p></div><div
class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-functions-variable-argument-lists"></a>Variabla argumentlistor</h3></div></div></div><p>Om
du inkluderar <code class="literal">...</code> efter det sista argumentnamnet i funktionsdeklaration kommer
Genius att tillåta ett godtyckligt antal argument att skickas istället för det argumentet. Om inga skickades
så kommer det argumentet att ställas in till <code class="constant">null</code>. I andra fall kommer det vara
en horisontell vektor som innehåller alla argumenten. Till exempel: </p><pre class="programlisting">function
f(a,b...) = b
+</pre><p> Då kommer <strong class="userinput"><code>f(1,2,3)</code></strong> att ge <code
class="computeroutput">[2,3]</code>, medan <strong class="userinput"><code>f(1)</code></strong> ger ett <code
class="constant">null</code>.</p></div><div class="sect2"><div class="titlepage"><div><div><h3
class="title"><a name="genius-gel-functions-passing-functions"></a>Skicka funktioner till
funktioner</h3></div></div></div><p>I Genius är det möjligt att skicka en funktion som ett argument till en
annan funktion. Detta kan antingen göras med ”funktionsnoder” eller anonyma funktioner.</p><p>Om du inte
matar in parenteserna efter ett funktionsnamn så kommer funktionen istället för att evalueras returneras som
en ”funktionsnod”. Funktionsnoden kan sedan skickas till en annan funktion. Exempel: </p><pre
class="programlisting">function f(a,b) = a(b)+1;
+function b(x) = x*x;
+f(b,2)
+</pre><p>För att skicka funktioner som inte är definierade kan du använda en anonym funktion (se <a
class="xref" href="ch05s03.html#genius-gel-functions-defining" title="Definiera funktioner">”Definiera
funktioner”</a>). Det vill säga att du vill skicka en funktion utan att ge den ett namn. Syntax: </p><pre
class="programlisting">function(<comma separated arguments>) = <function body>
+`(<comma separated arguments>) = <function body>
+</pre><p> Exempel: </p><pre class="programlisting">function f(a,b) = a(b)+1;
+f(`(x) = x*x,2)
+</pre><p> Detta kommer returnera 5.</p></div><div class="sect2"><div class="titlepage"><div><div><h3
class="title"><a name="genius-gel-functions-operations"></a>Operationer på
funktioner</h3></div></div></div><p>Vissa funktioner tillåter aritmetiska operationer, och vissa funktioner
med ett argument som <a class="link" href="ch11s05.html#gel-function-exp"><code
class="function">exp</code></a> eller <a class="link" href="ch11s05.html#gel-function-ln"><code
class="function">ln</code></a> att operera på funktionen. Till exempel returnerar </p><pre
class="programlisting">exp(sin*cos+4)
+</pre><p> en funktion som tar <code class="varname">x</code> och returnerar <strong
class="userinput"><code>exp(sin(x)*cos(x)+4)</code></strong>. Det är funktionellt sett ekvivalent med att
skriva </p><pre class="programlisting">`(x) = exp(sin(x)*cos(x)+4)
+</pre><p> Denna operation kan vara användbar då man definierar funktioner snabbt. För att till exempel skapa
en funktion som kallas <code class="varname">f</code> för att utföra operationen ovan kan du helt enkelt
skriva: </p><pre class="programlisting">f = exp(sin*cos+4)
+</pre><p> Det kan också användas i grafritning. För att till exempel rita grafen för sinus i kvadrat kan du
mata in: </p><pre class="programlisting">LinePlot(sin^2)
+</pre><div class="warning" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Varning</h3><p>Alla funktioner kan inte användas på detta sätt. Då du till exempel använder en
binär operation måste funktionerna ta samma antal argument.</p></div></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch05s02.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch05.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05s04.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Använda variabler
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Avskiljare</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch05s04.html b/help/sv/html/ch05s04.html
new file mode 100644
index 0000000..4ae8cc6
--- /dev/null
+++ b/help/sv/html/ch05s04.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Avskiljare</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="ch05.html"
title="Kapitel 5. Grunderna i GEL"><link rel="prev" href="ch05s03.html" title="Använda funktioner"><link
rel="next" href="ch05s05.html" title="Kommentarer"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Avskiljare</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch05s03.html">Föregående</a> </td><th width="60%" align="center">Kapitel 5. Grunderna i
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s05.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><
a name="genius-gel-separator"></a>Avskiljare</h2></div></div></div><p>GEL skiljer sig något från andra språk
i hur det hanterar flera kommandon och funktioner. I GEL måste du skapa en kedja av kommandon med en
avskiljaroperator. Det vill säga om du vill skriva mer än ett uttryck måste du använda <code
class="literal">;</code>-operatorn mellan uttrycken. Detta är ett sätt så att båda uttrycken evalueras och
att resultatet av det andra (eller det sista om det finns mer är två uttryck) returneras. Anta att du matar
in följande: </p><pre class="programlisting">3 ; 5
+</pre><p> Detta uttryck kommer att ge 5.</p><p>Detta kommer ibland att kräva parenteser för att göra det
otvetydigt, särskilt om <code class="literal">;</code> inte är den översta primitiven. Detta skiljer sig
något från andra programmeringsspråk där <code class="literal">;</code> terminerar uttryck, medan den i GEL
faktiskt är en binär operator. Om du är bekant med pascal faller detta sig naturligt. Genius kan dock låta
dig låtsas att den är en terminator i någon utsträckning. Om en <code class="literal">;</code> hittas i
slutet på en parentes eller ett block kommer genius att lägga till ett null efter den som om du hade skrivit
<strong class="userinput"><code>;null</code></strong>. Detta är användbart ifall du inte vill returnera ett
värde från exempelvis en slinga, eller om du vill hantera returvärdet på annat sätt. Observera att detta
kommer sakta ner koden något om det anropas för ofta eftersom det är en till operator inblandad.</p><p>Om du
skriver uttryck i ett program måste du inte lägga till ett semikolon. I detta fall kommer genius helt
enkelt att skriva ut returvärdet närhelst det exekverar uttrycket. Observera dock att om du definierar en
funktion så är kroppen av funktionen ett enda uttryck.</p></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch05s03.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch05.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05s05.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Använda funktioner
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Kommentarer</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch05s05.html b/help/sv/html/ch05s05.html
new file mode 100644
index 0000000..6b25555
--- /dev/null
+++ b/help/sv/html/ch05s05.html
@@ -0,0 +1,5 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Kommentarer</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="ch05.html"
title="Kapitel 5. Grunderna i GEL"><link rel="prev" href="ch05s04.html" title="Avskiljare"><link rel="next"
href="ch05s06.html" title="Moduloberäkning"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kommentarer</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch05s04.html">Föregående</a> </td><th width="60%" align="center">Kapitel 5. Grunderna i
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s06.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-comments"></a>Kommentarer</h2></div></div></div><p>GEL liknar andra skriptspråk i att <code
class="literal">#</code> betecknar en kommentar, det vill säga text som inte ska evalueras. Allt från
nummertecknet till slutet på raden kommer att ignoreras. Till exempel, </p><pre class="programlisting"># Det
här är bara en kommentar
+# varje rad i en kommentar måste ha ett nummertecken
+# i nästa rad ställer vi in x till värdet 123
+x=123;
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch05s04.html">Föregående</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch05.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch05s06.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Avskiljare </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%" align="right"
valign="top"> Moduloberäkning</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch05s06.html b/help/sv/html/ch05s06.html
new file mode 100644
index 0000000..dea9cfb
--- /dev/null
+++ b/help/sv/html/ch05s06.html
@@ -0,0 +1,8 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Moduloberäkning</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="ch05.html"
title="Kapitel 5. Grunderna i GEL"><link rel="prev" href="ch05s05.html" title="Kommentarer"><link rel="next"
href="ch05s07.html" title="Lista över GEL-operatorer"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Moduloberäkning</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch05s05.html">Föregående</a> </td><th width="60%" align="center">Kapitel 5. Grunderna i
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch05s07.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" st
yle="clear: both"><a
name="genius-gel-modular-evaluation"></a>Moduloberäkning</h2></div></div></div><p>Genius implementerar
modulär aritmetik. För att använda det lägger du bara till ”mod <heltal>” efter uttrycket. Exempel:
<strong class="userinput"><code>2^(5!) * 3^(6!) mod 5</code></strong> Det kunde vara möjligt att utföra
modulär aritmetik genom att beräkna med heltal och sedan beräkna modulo i slutet med <code
class="literal">%</code>-operatorn, vilken helt enkelt ger resten, men det kan vara tidskrävande om inte
omöjligt då man arbetar med större tal. Till exempel, <strong class="userinput"><code>10^(10^10) %
6</code></strong> kommer helt enkelt inte att fungera (exponenten kommer vara för stor), medan <strong
class="userinput"><code>10^(10^10) mod 6</code></strong> är omedelbart. Det första uttrycket försöker först
att beräkna heltalet <strong class="userinput"><code>10^(10^10)</code></strong> och sedan hitta resten efter
division med 6,
medan det andra uttrycket evaluerar allting modulo 6 till att börja med.</p><p>Du kan beräkna inverserna av
tal modulo något heltal genom att bara använda rationella tal (givetvis måste inversen existera). Exempel:
</p><pre class="programlisting">10^-1 mod 101
+1/10 mod 101</pre><p> Du kan också utföra modulär evaluering med matriser inklusive att ta inverser,
potenser och division. Exempel: </p><pre class="programlisting">A = [1,2;3,4]
+B = A^-1 mod 5
+A*B mod 5</pre><p> Detta skulle ge identitetsmatrisen eftersom B kommer vara inversen av A mod
5.</p><p>Vissa funktioner som <a class="link" href="ch11s05.html#gel-function-sqrt"><code
class="function">sqrt</code></a> eller <a class="link" href="ch11s05.html#gel-function-log"><code
class="function">log</code></a> fungerar annorlunda i moduloläge. Dessa kommer då fungera som sina diskreta
versioner inom den ring av heltal som du valt. Till exempel: </p><pre class="programlisting">genius>
sqrt(4) mod 7
+=
+[2, 5]
+genius> 2*2 mod 7
+= 4</pre><p><code class="function">sqrt</code> kommer faktiskt returnera alla möjliga
kvadratrötter.</p><p>Kedja inte samman modulo-operatorer, placera det helt enkelt i slutet på beräkningen,
alla beräkningar i uttrycket till vänster kommer utföras i modulär aritmetik. Om du placerar en mod inuti en
annan mod kommer du att få oväntade resultat. Om du helt enkelt vill beräkna modulo av ett enda tal och
kontrollera exakt då rester tas är det bäst att använda <code class="literal">%</code>-operatorn. Då du
behöver kedja samman flera uttryck i modulär aritmetik med olika delare kan det vara bäst att bara dela upp
uttrycken i flera och använda tillfälliga variabler för att undvika att ha mod inuti mod.</p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch05s05.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch05.html">Upp</a></td><td w
idth="40%" align="right"> <a accesskey="n" href="ch05s07.html">Nästa</a></td></tr><tr><td width="40%"
align="left" valign="top">Kommentarer </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Hem</a></td><td width="40%" align="right" valign="top"> Lista över
GEL-operatorer</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch05s07.html b/help/sv/html/ch05s07.html
new file mode 100644
index 0000000..78e3b26
--- /dev/null
+++ b/help/sv/html/ch05s07.html
@@ -0,0 +1,6 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Lista över
GEL-operatorer</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="ch05.html" title="Kapitel 5. Grunderna i
GEL"><link rel="prev" href="ch05s06.html" title="Moduloberäkning"><link rel="next" href="ch06.html"
title="Kapitel 6. Programmering med GEL"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Lista över GEL-operatorer</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch05s06.html">Föregående</a> </td><th width="60%" align="center">Kapitel
5. Grunderna i GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div>
<div><h2 class="title" style="clear: both"><a name="genius-gel-operator-list"></a>Lista över
GEL-operatorer</h2></div></div></div><p>Allt i GEL är bara ett uttryck. Uttryck slås samman med olika
operatorer. Som vi har sett är till och med avskiljaren helt enkelt en binär operator i GEL. Här är en lista
över operatorerna i GEL.</p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><strong
class="userinput"><code>a;b</code></strong></span></dt><dd><p>Avskiljaren, evaluerar helt enkelt både <code
class="varname">a</code> och <code class="varname">b</code>, men returnerar bara resultatet av <code
class="varname">b</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a=b</code></strong></span></dt><dd><p>Tilldelningsoperatorn. Denna tilldelar <code
class="varname">b</code> till <code class="varname">a</code> (<code class="varname">a</code> måste vara ett
giltigt <a class="link" href="ch06s09.html" title="Vvärden">vvärde</a>) (o
bservera dock att denna operator kan översättas till <code class="literal">==</code> om den används där ett
booleskt uttryck förväntas)</p></dd><dt><span class="term"><strong
class="userinput"><code>a:=b</code></strong></span></dt><dd><p>Tilldelningsoperatorn. Tilldelar <code
class="varname">b</code> till <code class="varname">a</code> (<code class="varname">a</code> måste vara ett
giltigt <a class="link" href="ch06s09.html" title="Vvärden">vvärde</a>) Detta skiljer sig från <code
class="literal">=</code> eftersom det aldrig översätts till <code
class="literal">==</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>|a|</code></strong></span></dt><dd><p>Absolutbelopp. Om uttrycket är ett komplext tak
kommer resultatet vara avståndet från origo. Till exempel: <strong class="userinput"><code>|3 *
e^(1i*pi)|</code></strong> returnerar 3.</p><p>Se <a class="ulink"
href="http://mathworld.wolfram.com/AbsoluteValue.html" target="_top">Mathworld</a>
för mer information.</p></dd><dt><span class="term"><strong
class="userinput"><code>a^b</code></strong></span></dt><dd><p>Exponentiering, upphöjer <code
class="varname">a</code> till exponenten <code class="varname">b</code>.</p></dd><dt><span
class="term"><strong class="userinput"><code>a.^b</code></strong></span></dt><dd><p>Elementvis
exponentiering. Upphöj varje element i en matris <code class="varname">a</code> till exponenten <code
class="varname">b</code>. Eller om <code class="varname">b</code> är en matris med samma storlek som <code
class="varname">a</code>, gör i så fall operationen elementvis. Om <code class="varname">a</code> är ett tal
och <code class="varname">b</code> är en matris så skapar det en matris av samma storlek som <code
class="varname">b</code> med <code class="varname">a</code> upphöjt till alla de olika exponenterna i <code
class="varname">b</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a+b</code></strong></span>
</dt><dd><p>Addition. Adderar två tal, matriser, funktioner eller strängar. Om du lägger till en sträng
kommer resultatet att vara en sträng. Om en är en kvadratisk matris och den andra ett tal kommer talet att
multipliceras med identitetsmatrisen.</p></dd><dt><span class="term"><strong
class="userinput"><code>a-b</code></strong></span></dt><dd><p>Subtraktion. Subtrahera två tal, matriser eller
funktioner.</p></dd><dt><span class="term"><strong
class="userinput"><code>a*b</code></strong></span></dt><dd><p>Multiplikation. Detta är vanlig
matrismultiplikation.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.*b</code></strong></span></dt><dd><p>Elementvis multiplikation om <code
class="varname">a</code> och <code class="varname">b</code> är matriser.</p></dd><dt><span
class="term"><strong class="userinput"><code>a/b</code></strong></span></dt><dd><p>Division. Då <code
class="varname">a</code> och <code class="varname">b</code> bara är tal är detta v
anlig division. Då de är matriser är detta ekvivalent med <strong
class="userinput"><code>a*b^-1</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a./b</code></strong></span></dt><dd><p>Elementvis division. Samma som <strong
class="userinput"><code>a/b</code></strong> för tal, men opererar elementvis på matriser.</p></dd><dt><span
class="term"><strong class="userinput"><code>a\b</code></strong></span></dt><dd><p>Baklängesdivision. Det
vill säga detta är samma sak som <strong class="userinput"><code>b/a</code></strong>.</p></dd><dt><span
class="term"><strong class="userinput"><code>a.\b</code></strong></span></dt><dd><p>Elementvis
baklängesdivision.</p></dd><dt><span class="term"><strong
class="userinput"><code>a%b</code></strong></span></dt><dd><p>Modulooperatorn. Detta slår inte på <a
class="link" href="ch05s06.html" title="Moduloberäkning">moduloläget</a>, utan returnerar bara resten av
<strong class="userinput"><code>a/b</code></
strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.%b</code></strong></span></dt><dd><p>Elementvis modulooperator. Returnerar resten
efter elementvis <strong class="userinput"><code>a./b</code></strong> av heltal.</p></dd><dt><span
class="term"><strong class="userinput"><code>a mod b</code></strong></span></dt><dd><p>Modulär
evalueringsoperator. Uttrycket <code class="varname">a</code> evalueras modulo <code
class="varname">b</code>. Se <a class="xref" href="ch05s06.html"
title="Moduloberäkning">”Moduloberäkning”</a>. Vissa funktioner och operatorer beter sig annorlunda modulo
ett heltal.</p></dd><dt><span class="term"><strong
class="userinput"><code>a!</code></strong></span></dt><dd><p>Fakultetsoperator. Detta är som <strong
class="userinput"><code>1*...*(n-2)*(n-1)*n</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a!!</code></strong></span></dt><dd><p>Semifakultetsoperator. Detta är som <strong
class="userinpu
t"><code>1*...*(n-4)*(n-2)*n</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a==b</code></strong></span></dt><dd><p>Likhetsoperator. Returnerar <code
class="constant">true</code> eller <code class="constant">false</code> beroende på om <code
class="varname">a</code> och <code class="varname">b</code> är lika eller inte.</p></dd><dt><span
class="term"><strong class="userinput"><code>a!=b</code></strong></span></dt><dd><p>Olikhetsoperator,
returnerar <code class="constant">true</code> om <code class="varname">a</code> inte är lika med <code
class="varname">b</code>, returnerar annars <code class="constant">false</code>.</p></dd><dt><span
class="term"><strong class="userinput"><code>a<>b</code></strong></span></dt><dd><p>Alternativ
olikhetsoperator, returnerar <code class="constant">true</code> om <code class="varname">a</code> inte är
lika med <code class="varname">b</code>, returnerar annars <code class="constant">false</code>.</p></d
d><dt><span class="term"><strong class="userinput"><code>a<=b</code></strong></span></dt><dd><p>Mindre än
eller lika med-operator, returnerar <code class="constant">true</code> om <code class="varname">a</code> är
mindre eller lika med <code class="varname">b</code>, returnerar annars <code class="constant">false</code>.
Dessa kan kombineras som i <strong class="userinput"><code>a <= b <= c</code></strong> (kan också
kombineras med mindre än-operatorn).</p></dd><dt><span class="term"><strong
class="userinput"><code>a>=b</code></strong></span></dt><dd><p>Större än eller lika med-operator,
returnerar <code class="constant">true</code> om <code class="varname">a</code> är större eller lika med
<code class="varname">b</code>, returnerar annars <code class="constant">false</code>. Dessa kan kombineras
som i <strong class="userinput"><code>a >= b >= c</code></strong> (kan också kombineras med större
än-operatorn).</p></dd><dt><span class="term"><strong
class="userinput"><code>a<b</code></strong></span></dt><dd><p>Mindre än-operator, returnerar <code
class="constant">true</code> om <code class="varname">a</code> är mindre än <code class="varname">b</code>,
returnerar annars <code class="constant">false</code>. Dessa kan kombineras som i <strong
class="userinput"><code>a < b < c</code></strong> (kan också kombineras med mindre än eller lika
med-operatorn).</p></dd><dt><span class="term"><strong
class="userinput"><code>a>b</code></strong></span></dt><dd><p>Större än-operator, returnerar <code
class="constant">true</code> om <code class="varname">a</code> är större än <code class="varname">b</code>,
returnerar annars <code class="constant">false</code>. Dessa kan kombineras som i <strong
class="userinput"><code>a > b > c</code></strong> (kan också kombineras med större än eller lika
med-operatorn).</p></dd><dt><span class="term"><strong
class="userinput"><code>a<=>b</code></strong></span><
/dt><dd><p>Jämförelseoperator. Om <code class="varname">a</code> är lika med <code class="varname">b</code>
returnerar den 0, om <code class="varname">a</code> är mindre än <code class="varname">b</code> returnerar
den -1 och om <code class="varname">a</code> är större än <code class="varname">b</code> returnerar den
1.</p></dd><dt><span class="term"><strong class="userinput"><code>a and
b</code></strong></span></dt><dd><p>Logiskt och. Returnerar true om både <code class="varname">a</code> och
<code class="varname">b</code> är true, returnerar annars false. Om tal gives behandlas nollskilda tal som
true.</p></dd><dt><span class="term"><strong class="userinput"><code>a or
b</code></strong></span></dt><dd><p>Logiskt eller. Returnerar true om antingen <code class="varname">a</code>
eller <code class="varname">b</code> är true, returnerar annars false. Om tal gives behandlas nollskilda tal
som true.</p></dd><dt><span class="term"><strong class="userinput"><code>a xor
b</code></strong></span></dt><dd><p>Logiskt uteslutande eller. Returnerar true om exakt en av <code
class="varname">a</code> eller <code class="varname">b</code> är true, returnerar annars false. Om tal gives
behandlas nollskilda tal som true.</p></dd><dt><span class="term"><strong class="userinput"><code>not
a</code></strong></span></dt><dd><p>Logiskt inte. Returnerar den logiska negationen till <code
class="varname">a</code></p></dd><dt><span class="term"><strong
class="userinput"><code>-a</code></strong></span></dt><dd><p>Negationsoperator. Returnerar negativet av ett
tal eller en matris (arbetar elementvis på en matris).</p></dd><dt><span class="term"><strong
class="userinput"><code>&a</code></strong></span></dt><dd><p>Variabelreferens (för att skicka en referens
till en variabel). Se <a class="xref" href="ch06s08.html"
title="Referenser">”Referenser”</a>.</p></dd><dt><span class="term"><strong
class="userinput"><code>*a</code></strong></span></dt><dd><p>Varia
beldereferering (för att komma åt en refererad variabel). Se <a class="xref" href="ch06s08.html"
title="Referenser">”Referenser”</a>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a'</code></strong></span></dt><dd><p>Konjugattransponatet för matris. Det vill säga
rader och kolumner byter plats och vi tar komplexkonjugatet av alla poster. Det vill säga om i,j-elementet av
<code class="varname">a</code> är x+iy så är j,i-elementet av <strong
class="userinput"><code>a'</code></strong> då x-iy.</p></dd><dt><span class="term"><strong
class="userinput"><code>a.'</code></strong></span></dt><dd><p>Matristransponat, konjugerar inte posterna. Det
vill säga i,j-elementet av <code class="varname">a</code> blir j,i-elementet av <strong
class="userinput"><code>a.'</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,c)</code></strong></span></dt><dd><p>Hämta element för en matris i rad <code
class="varname">b</code> och kolu
mn <code class="varname">c</code>. Om <code class="varname">b</code>, <code class="varname">c</code> är
vektorer så ger detta de motsvarande raderna, kolumnerna eller delmatriserna.</p></dd><dt><span
class="term"><strong class="userinput"><code>a@(b,)</code></strong></span></dt><dd><p>Hämta rad av en matris
(eller flera rader om <code class="varname">b</code> är en vektor).</p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b,:)</code></strong></span></dt><dd><p>Samma som ovan.</p></dd><dt><span
class="term"><strong class="userinput"><code>a@(,c)</code></strong></span></dt><dd><p>Hämta kolumn av en
matris (eller flera kolumner om <code class="varname">b</code> är en vektor).</p></dd><dt><span
class="term"><strong class="userinput"><code>a@(:,c)</code></strong></span></dt><dd><p>Samma som
ovan.</p></dd><dt><span class="term"><strong
class="userinput"><code>a@(b)</code></strong></span></dt><dd><p>Hämta ett element från en matris behandlad
som en vektor.
Detta kommer traversera matrisen radvis.</p></dd><dt><span class="term"><strong
class="userinput"><code>a:b</code></strong></span></dt><dd><p>Bygg en vektor från <code
class="varname">a</code> till <code class="varname">b</code> (eller ange en rad- och kolumnregion för <code
class="literal">@</code>-operatorn). Till exempel kan vi för att få raderna 2 till 4 av matrisen <code
class="varname">A</code> göra </p><pre class="programlisting">A@(2:4,)
+ </pre><p> eftersom <strong class="userinput"><code>2:4</code></strong> kommer returnera en
vektor <strong class="userinput"><code>[2,3,4]</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>a:b:c</code></strong></span></dt><dd><p>Bygg en vektor från <code
class="varname">a</code> till <code class="varname">c</code> med <code class="varname">b</code> som
steglängd. Det vill säga exempelvis </p><pre class="programlisting">genius> 1:2:9
+=
+`[1, 3, 5, 7, 9]
+</pre><p>Då de inblandade talen är flyttal, till exempel <strong
class="userinput"><code>1.0:0.4:3.0</code></strong>, är utmatningen vad som förväntas även om att lägga till
0.4 till 1.0 fem gånger faktiskt är något mindre än 3.0 på grund av sättet som flyttal lagras i bas 2 (det
finns inget 0.4, det faktiska lagrade talet är bara något större). Sättet detta hanteras är detsamma som i
for-, sum-, och prod-slingorna. Om slutet är inom <strong class="userinput"><code>2^-20</code></strong>
gånger stegstorleken till ändpunkten, används ändpunkten och vi antar att det fanns avrundningsfel. Detta är
inte perfekt, men hanterar de flesta fallen. Denna kontroll görs bara från version 1.0.18 och framåt, så
exekvering av din kod kan skilja sig åt i äldre versioner. Använd faktiska rationella tal om du vill undvika
att hantera detta problem, möjligen tillsammans med <code class="function">float</code> om du vill få flyttal
i slutet. Till exempel gör <st
rong class="userinput"><code>1:2/5:3</code></strong> rätt sak och <strong
class="userinput"><code>float(1:2/5:3)</code></strong> ger dig till och med flyttal och är även något mer
exakt än <strong class="userinput"><code>1.0:0.4:3.0</code></strong>.</p></dd><dt><span class="term"><strong
class="userinput"><code>(a)i</code></strong></span></dt><dd><p>Skapa ett imaginärt tal (multiplicera <code
class="varname">a</code> med det imaginära). Observera att <code class="varname">i</code> vanligen skrivs
<strong class="userinput"><code>1i</code></strong>, så det ovanstående är detsamma som </p><pre
class="programlisting">(a)*1i
+ </pre></dd><dt><span class="term"><strong
class="userinput"><code>`a</code></strong></span></dt><dd><p>Citera en identifierare så att den inte
evalueras. Eller citera en matris så att den inte expanderas.</p></dd><dt><span class="term"><strong
class="userinput"><code>a swapwith b</code></strong></span></dt><dd><p>Byt värde på <code
class="varname">a</code> med värdet av <code class="varname">b</code>. Opererar för närvarande inte på
intervall av matriselement. Det returnerar <code class="constant">null</code>. Tillgängligt från version
1.0.13.</p></dd><dt><span class="term"><strong class="userinput"><code>increment
a</code></strong></span></dt><dd><p>Inkrementera variabeln <code class="varname">a</code> med 1. Om <code
class="varname">a</code> är en matris inkrementeras varje element. Detta är ekvivalent med <strong
class="userinput"><code>a=a+1</code></strong>, men är något snabbare. Det returnerar <code
class="constant">null</code>. Tillgängligt från
version 1.0.13.</p></dd><dt><span class="term"><strong class="userinput"><code>increment a by
b</code></strong></span></dt><dd><p>Inkrementera variabeln <code class="varname">a</code> med <code
class="varname">b</code>. Om <code class="varname">a</code> är en matris inkrementeras varje element. Detta
är ekvivalent med <strong class="userinput"><code>a=a+b</code></strong>, men är något snabbare. Det
returnerar <code class="constant">null</code>. Tillgängligt från version 1.0.13.</p></dd></dl></div><div
class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Notera</h3><p>@()-operatorn
gör :-operatorn mest användbar. Med denna kan du ange regioner i en matris. Därmed är a@(2:4,6) raderna 2,3,4
för kolumn 6. Eller så ger a@(,1:2) dig de två första kolumnerna i en matris. Du kan också tilldela till
@()-operatorn, så länge som högervärdet är en matris som matchar regionens storlek, eller om det är någon
annan sorts värde.</p></div><d
iv class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Notera</h3><p>Jämförelseoperatorerna (förutom <=>-operatorn, vilken beter sig normalt) är
inte strikt binära operatorer, de kan i själva verket grupperas på det vanliga matematiska sättet, t.ex. så
är (1<x<=y<5) ett giltigt booleskt uttryck och betyder precis vad det borde, det vill säga (1<x
och x≤y och y<5)</p></div><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3
class="title">Notera</h3><p>Unärt minus opererar annorlunda beroende på var det förekommer. Om det förekommer
före ett tal binder det väldigt hårt, om det förekommer före ett uttryck binder det mindre hårt än potens-
och fakultet-operatorerna. Så till exempel är <strong class="userinput"><code>-1^k</code></strong> faktiskt
<strong class="userinput"><code>(-1)^k</code></strong>, men <strong
class="userinput"><code>-foo(1)^k</code></strong> är verkligen <strong cla
ss="userinput"><code>-(foo(1)^k)</code></strong>. Så var aktsam över hur du använder det, och om du är
osäker, lägg till parenteser.</p></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch05s06.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch05.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Moduloberäkning </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%" align="right"
valign="top"> Kapitel 6. Programmering med GEL</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch06.html b/help/sv/html/ch06.html
new file mode 100644
index 0000000..ed171b4
--- /dev/null
+++ b/help/sv/html/ch06.html
@@ -0,0 +1,8 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 6.
Programmering med GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="index.html" title="Handbok för
Genius"><link rel="prev" href="ch05s07.html" title="Lista över GEL-operatorer"><link rel="next"
href="ch06s02.html" title="Slingor"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Kapitel 6. Programmering med GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch05s07.html">Föregående</a> </td><th width="60%" align="center"> </th><td width="20%" align="right">
<a accesskey="n" href="ch06s02.html">Nästa</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a
name="genius-gel-programming"></a>Kapitel 6. Programmering med GEL</h1></div></div></div><div
class="toc"><p><b>Innehållsförteckning</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch06.html#genius-gel-conditionals">Villkor</a></span></dt><dt><span class="sect1"><a
href="ch06s02.html">Slingor</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-while">While-slingor</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-for">For-slingor</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-foreach">Foreach-slingor</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-break-continue">Break och Continue</a></span></dt></dl></dd><dt><span
class="sect1"><a href="ch06s03.html">Summor och produkter</a></span></dt><dt><span class="sect1"><a
href="ch06s04.html">Jämförelseoperatorer</a></span></dt><dt><span class="sect1"><a
href="ch06s05.html">Globala variabler och räc
kvidd för variabler</a></span></dt><dt><span class="sect1"><a
href="ch06s06.html">Parametervariabler</a></span></dt><dt><span class="sect1"><a
href="ch06s07.html">Returnera</a></span></dt><dt><span class="sect1"><a
href="ch06s08.html">Referenser</a></span></dt><dt><span class="sect1"><a
href="ch06s09.html">Vvärden</a></span></dt></dl></div><div class="sect1"><div class="titlepage"><div><div><h2
class="title" style="clear: both"><a
name="genius-gel-conditionals"></a>Villkor</h2></div></div></div><p>Syntax: </p><pre
class="programlisting">if <expression1> then <expression2> [else <expression3>]
+</pre><p> Om <code class="literal">else</code> utesluts och <code class="literal">uttryck1</code> ger <code
class="constant">false</code> eller 0 kommer <code class="literal">NULL</code> att returneras.</p><p>Exempel:
</p><pre class="programlisting">if(a==5)then(a=a-1)
+if b<a then b=a
+if c>0 then c=c-1 else c=0
+a = ( if b>0 then b else 1 )
+</pre><p> Observera att <code class="literal">=</code> kommer att översättas till <code
class="literal">==</code> om det används inuti uttrycket för <code class="literal">if</code>, så </p><pre
class="programlisting">if a=5 then a=a-1
+</pre><p> kommer tolkas som: </p><pre class="programlisting">if a==5 then a:=a-1
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch05s07.html">Föregående</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch06s02.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Lista över
GEL-operatorer </td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td
width="40%" align="right" valign="top"> Slingor</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch06s02.html b/help/sv/html/ch06s02.html
new file mode 100644
index 0000000..f185380
--- /dev/null
+++ b/help/sv/html/ch06s02.html
@@ -0,0 +1,15 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Slingor</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Handbok
för Genius"><link rel="up" href="ch06.html" title="Kapitel 6. Programmering med GEL"><link rel="prev"
href="ch06.html" title="Kapitel 6. Programmering med GEL"><link rel="next" href="ch06s03.html" title="Summor
och produkter"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Slingor</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06.html">Föregående</a> </td><th width="60%" align="center">Kapitel 6. Programmering med GEL</th><td
width="20%" align="right"> <a accesskey="n" href="ch06s03.html">Nästa</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-loops"></a>Slingor</h2></div></div></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-while"></a>While-slingor</h3></div></div></div><p>Syntax: </p><pre
class="programlisting">while <expression1> do <expression2>
+until <expression1> do <expression2>
+do <expression2> while <expression1>
+do <expression2> until <expression1></pre><p> Dessa är liknande som i andra språk. Eftersom det
i GEL helt enkelt är ett uttryck som måste ha ett returvärde kommer dessa konstruktioner dock att helt enkelt
returnera resultatet av den sista iterationen eller <code class="literal">NULL</code> om ingen iteration
utfördes. I det booleska uttrycket översätts <code class="literal">=</code> till <code
class="literal">==</code> precis som för <code class="literal">if</code>-satsen.</p></div><div
class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-for"></a>For-slingor</h3></div></div></div><p>Syntax: </p><pre
class="programlisting">for <identifier> = <from> to <to> do <body>
+for <identifier> = <from> to <to> by <increment> do <body></pre><p> Slinga med
identifierare inställd till alla värden från <code class="literal"><from></code> till <code
class="literal"><to></code>, valfritt med ett annat inkrement än 1. Dessa är snabbare, trevligare och
mer kompakta än de vanliga slingorna som ovan, men mindre flexibla. Identifieraren måste vara en
identifierare och kan inte vara en dereferering. Värdet på identifieraren är identifierarens sista värde,
eller <code class="literal"><from></code> om kroppen aldrig evaluerades. Variabeln är garanterad att
vara initierad efter en slinga, så du kan använda den säkert. Vidare måste <code
class="literal"><from></code>, <code class="literal"><to></code> och <code
class="literal"><increment></code> vara icke-komplexa tal. <code class="literal"><to></code> är
inte garanterad att träffas, men kommer aldrig att passeras, till exem
pel skriver följande ut udda tal från 1 till 19: </p><pre class="programlisting">for i = 1 to 20 by 2 do
print(i)
+</pre><p>Då ett av värdena är ett flyttal görs den sista kontrollen till inom 2^-20 av stegstorleken. Det
vill säga även om vi passerar med 2^-20 gånger ”by”-värdet ovan kommer vi fortfarande att exekvera den sista
iterationen. På detta sätt gör </p><pre class="programlisting">for x = 0 to 1 by 0.1 do print(x)
+</pre><p> vad som förväntas även om addition av 0.1 tio gånger blir något mer än 1.0 på grund av hur flyttal
lagras i bas 2 (det finns inget 0.1, det faktiska lagrade talet är något större). Detta är inte perfekt, men
hanterar de flesta fallen. Använd faktiska rationella tal om du vill undvika att hantera detta problem, till
exempel: </p><pre class="programlisting">for x = 0 to 1 by 1/10 do print(x)
+</pre><p> Denna kontroll görs bara från version 1.0.16 och framåt, så exekvering av din kod kan skilja sig
åt i äldre versioner.</p></div><div class="sect2"><div class="titlepage"><div><div><h3 class="title"><a
name="genius-gel-loops-foreach"></a>Foreach-slingor</h3></div></div></div><p>Syntax: </p><pre
class="programlisting">for <identifier> in <matrix> do <body></pre><p> För varje element i
matrisen, från rad till rad från vänster till höger exekverar vi kroppen med identifieraren inställd till
aktuellt element. För att skriva ut siffrorna 1,2,3 och 4 i denna ordning kan du göra: </p><pre
class="programlisting">for n in [1,2:3,4] do print(n)
+</pre><p> Om du vill gå genom raderna och kolumnerna i en matris kan du använda funktionerna RowsOf och
ColumnsOf som returnerar en vektor av raderna eller kolumnerna i matrisen. Så </p><pre
class="programlisting">for n in RowsOf ([1,2:3,4]) do print(n)
+</pre><p> kommer skriva ut [1,2] och sedan [3,4].</p></div><div class="sect2"><div
class="titlepage"><div><div><h3 class="title"><a name="genius-gel-loops-break-continue"></a>Break och
Continue</h3></div></div></div><p>Du kan också använda kommandona <code class="literal">break</code> och
<code class="literal">continue</code> i slingor. Fortsättningskommandot <code class="literal">continue</code>
kommer att starta om den aktuella slingan i dess nästa iteration, medan kommandot <code
class="literal">break</code> går ur den aktuella slingan. </p><pre
class="programlisting">while(<expression1>) do (
+ if(<expression2>) break
+ else if(<expression3>) continue;
+ <expression4>
+)
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06.html">Föregående</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s03.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel 6. Programmering
med GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Summor och produkter</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch06s03.html b/help/sv/html/ch06s03.html
new file mode 100644
index 0000000..881a800
--- /dev/null
+++ b/help/sv/html/ch06s03.html
@@ -0,0 +1,6 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Summor och
produkter</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="ch06.html" title="Kapitel 6. Programmering
med GEL"><link rel="prev" href="ch06s02.html" title="Slingor"><link rel="next" href="ch06s04.html"
title="Jämförelseoperatorer"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Summor och produkter</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s02.html">Föregående</a> </td><th width="60%" align="center">Kapitel 6. Programmering med
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s04.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 clas
s="title" style="clear: both"><a name="genius-gel-sums-products"></a>Summor och
produkter</h2></div></div></div><p>Syntax: </p><pre class="programlisting">sum <identifier> =
<from> to <to> do <body>
+sum <identifier> = <from> to <to> by <increment> do <body>
+sum <identifier> in <matrix> do <body>
+prod <identifier> = <from> to <to> do <body>
+prod <identifier> = <from> to <to> by <increment> do <body>
+prod <identifier> in <matrix> do <body></pre><p> Om du ersätter <code
class="literal">for</code> med <code class="literal">sum</code> eller <code class="literal">prod</code>
kommer du att få en summa eller en produkt istället för en <code class="literal">for</code>-slinga. Istället
för att returnera det sista värdet kommer dessa att returnera summan respektive produkten av
värdena.</p><p>Om ingen kropp exekveras (till exempel <strong class="userinput"><code>sum i=1 to 0 do
...</code></strong>) så kommer <code class="literal">sum</code> att returnera 0 och <code
class="literal">prod</code> att returnera 1 som är standardkonventionen.</p><p>För flyttal görs samma skydd
mot avrundningsfel som i for-slingan. Se <a class="xref" href="ch06s02.html#genius-gel-loops-for"
title="For-slingor">”For-slingor”</a>.</p></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch
06s02.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch06.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s04.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Slingor </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%" align="right"
valign="top"> Jämförelseoperatorer</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch06s04.html b/help/sv/html/ch06s04.html
new file mode 100644
index 0000000..22aa745
--- /dev/null
+++ b/help/sv/html/ch06s04.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Jämförelseoperatorer</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="ch06.html"
title="Kapitel 6. Programmering med GEL"><link rel="prev" href="ch06s03.html" title="Summor och
produkter"><link rel="next" href="ch06s05.html" title="Globala variabler och räckvidd för
variabler"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Jämförelseoperatorer</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s03.html">Föregående</a> </td><th width="60%" align="center">Kapitel 6. Programmering med
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s05.html">Nästa</a></td></tr></table><hr></div><div class="sect1">
<div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-comparison-operators"></a>Jämförelseoperatorer</h2></div></div></div><p>Följande
standardoperatorer för jämförelse stöds i GEL och har de uppenbara betydelserna: <code
class="literal">==</code>, <code class="literal">>=</code>, <code class="literal"><=</code>, <code
class="literal">!=</code>, <code class="literal"><></code>, <code class="literal"><</code>, <code
class="literal">></code>. De returnerar <code class="constant">true</code> eller <code
class="constant">false</code>. Operatorerna <code class="literal">!=</code> och <code
class="literal"><></code> är samma sak och betyder ”är inte lika med”. GEL stöder även operatorn <code
class="literal"><=></code> som returnerar -1 om vänstersidan är mindre, 0 om båda sidor är lika, 1 om
vänstersidan är större.</p><p>Normalt översätts <code class="literal">=</code> till <code class="lite
ral">==</code> om det förekommer någonstans där GEL förväntar sig ett villkor som i if-villkoret. Till
exempel är </p><pre class="programlisting">if a=b then c
+if a==b then c
+</pre><p> samma sak i GEL. Du bör dock använda <code class="literal">==</code> eller <code
class="literal">:=</code> då du vill jämföra respektive tilldela om du vill att din kod ska vara lätt att
läsa och för att undvika misstag.</p><p>Alla jämförelseoperatorerna (förutom <code
class="literal"><=></code>-operatorn, vilken beter sig normalt) är inte strikt binära operatorer, de
kan i själva verket grupperas på det vanliga matematiska sättet, t.ex. så är (<code
class="literal">1<x<=y<5</code>) ett giltigt booleskt uttryck och betyder precis vad det borde, det
vill säga (1<x och x≤y och y<5)</p><p>Använd orden <code class="literal">not</code>, <code
class="literal">and</code>, <code class="literal">or</code>, <code class="literal">xor</code> för att bygga
upp logiska uttryck. Operatorerna <code class="literal">or</code> och <code class="literal">and</code> är
speciella eftersom de evaluerar sina uttryck ett efter ett, så det vanlig
a tricket för villkorlig evaluering fungerar även här. Till exempel kommer <code class="literal">1 or
a=1</code> inte att ställa in <code class="literal">a=1</code> eftersom det första argumentet var true
(sant).</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s03.html">Föregående</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch06.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s05.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Summor och produkter
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Globala variabler och räckvidd för variabler</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch06s05.html b/help/sv/html/ch06s05.html
new file mode 100644
index 0000000..9b3ecae
--- /dev/null
+++ b/help/sv/html/ch06s05.html
@@ -0,0 +1,21 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Globala variabler och
räckvidd för variabler</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="ch06.html" title="Kapitel 6.
Programmering med GEL"><link rel="prev" href="ch06s04.html" title="Jämförelseoperatorer"><link rel="next"
href="ch06s06.html" title="Parametervariabler"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Globala variabler och räckvidd för variabler</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch06s04.html">Föregående</a> </td><th width="60%"
align="center">Kapitel 6. Programmering med GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s06.html">Nästa</a></td></tr></table><hr></d
iv><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-variables-global"></a>Globala variabler och räckvidd för
variabler</h2></div></div></div><p>GEL är ett <a class="ulink"
href="http://en.wikipedia.org/wiki/Scope_%28programming%29" target="_top"> språk med dynamisk räckvidd</a>.
Vi kommer att förklara vad detta betyder nedan. Det betyder att normala variabler och funktioner har dynamisk
räckvidd. Undantaget är <a class="link" href="ch06s06.html" title="Parametervariabler">parametervariabler</a>
som alltid är globala.</p><p>Som de flesta programmeringsspråk har GEL olika typer av variabler. Normalt då
en variabel är definierad i en funktion är den synlig från den funktionen och från alla funktioner som
anropas (alla högre kontexter). Till exempel, anta att en funktion <code class="function">f</code> definierar
en variabel <code class="varname">a</code> och sedan anropar funktionen <code class="functi
on">g</code>. Då kan funktion <code class="function">g</code> referera till <code class="varname">a</code>.
Men då <code class="function">f</code> returnerar, går variabeln <code class="varname">a</code> utom
räckvidd. Till exempel kommer den följande koden att skriva ut 5. Funktionen <code class="function">g</code>
kan inte anropas på toppnivån (utanför <code class="function">f</code> eftersom <code
class="varname">a</code> inte kommer vara definierad). </p><pre class="programlisting">function f() = (a:=5;
g());
+function g() = print(a);
+f();
+</pre><p>Om du definierar en variabel inuti en funktion kommer den åsidosätta variabler definierade i
anropande funktioner. Som ett exempel modifierar vi koden ovan och skriver: </p><pre
class="programlisting">function f() = (a:=5; g());
+function g() = print(a);
+a:=10;
+f();
+</pre><p> Denna kod kommer fortfarande skriva ut 5. Men om du anropar <code class="function">g</code>
utanför <code class="function">f</code> kommer du få utskriften 10. Observera att ställa in <code
class="varname">a</code> till 5 inuti <code class="function">f</code> ändrar inte värdet på <code
class="varname">a</code> på toppnivån (globalt), så om du nu kontrollerar värdet på <code
class="varname">a</code> kommer det fortfarande vara 10.</p><p>Funktionsargument är exakt som variabler
definierade i funktionen, förutom att de initieras med värdet som skickats till funktionen. Förutom denna
punkt behandlas de precis som alla andra variabler som definieras i funktionen.</p><p>Funktioner behandlas
precis som variabler. Därmed kan du definiera om funktioner lokalt. Normalt (på toppnivån) kan du inte
definiera om skyddade variabler och funktioner. Lokalt kan du dock göra detta. Anta följande session:
</p><pre class="screen"><code class="prompt">genius> </c
ode><strong class="userinput"><code>function f(x) = sin(x)^2</code></strong>
+= (`(x)=(sin(x)^2))
+<code class="prompt">genius> </code><strong class="userinput"><code>function f(x) =
sin(x)^2</code></strong>
+= (`(x)=(sin(x)^2))
+<code class="prompt">genius> </code><strong class="userinput"><code>function g(x) = ((function
sin(x)=x^10);f(x))</code></strong>
+= (`(x)=((sin:=(`(x)=(x^10)));f(x)))
+<code class="prompt">genius> </code><strong class="userinput"><code>g(10)</code></strong>
+= 1e20
+</pre><p>Funktioner och variabler definierade på toppnivån anses vara globala. De är synliga överallt. Som
vi sa kommer den följande funktionen <code class="function">f</code> inte ändra värdet på <code
class="varname">a</code> till 5. </p><pre class="programlisting">a=6;
+function f() = (a:=5);
+f();
+</pre><p> Ibland är det dock nödvändigt att ställa in en global variabel inifrån en funktion. Då detta
beteende behövs, använd funktionen <a class="link" href="ch11s02.html#gel-function-set"><code
class="function">set</code></a>. Att skicka en sträng eller en citerad identifierare till denna funktion
ställer in variabeln globalt (på toppnivån). För att till exempel ställa in <code class="varname">a</code>
till värdet 3 kan du anropa: </p><pre class="programlisting">set(`a,3)
+</pre><p> eller: </p><pre class="programlisting">set("a",3)
+</pre><p>Funktionen <code class="function">set</code> ställer alltid in toppnivåglobalen. Det finns inget
sätt att ställa in en lokal variabel i någon funktion från en subrutin. Om detta krävs måste du använda
referensöverföring.</p><p>Se även funktionerna <a class="link"
href="ch11s02.html#gel-function-SetElement"><code class="function">SetElement</code></a> och <a class="link"
href="ch11s02.html#gel-function-SetVElement"><code class="function">SetVElement</code></a>.</p><p>För att
upprepa med mer tekniskt språk: Genius arbetar med olika numrerade kontexter. Toppnivån är kontext 0 (noll).
Närhelst vi går in i en funktion höjs kontexten, och då funktionen returnerar sänks kontexten. En funktion
eller en variabel är alltid synlig från alla kontexter med högre siffra. Då en variabel definierades i ett
lägre kontextnummer, så har inställandet av denna variabel effekten att det skapar en ny lokal variabel i det
aktuella kontextnumret och denna variabe
l kommer nu vara synlig från alla högre kontextnummer.</p><p>Det finns också verkligt lokala variabler som
inte ses från någon annan plats än den aktuella kontexten. Vid returnering av funktioner efter värde kan det
referera till variabler som ej är synliga från högre kontexter och detta kan vara ett problem. Se avsnitten
<a class="link" href="ch07s04.html" title="Verkligt lokala variabler">Verkligt lokala variabler</a> och <a
class="link" href="ch07s03.html" title="Returnera funktioner">Returnera funktioner</a>.</p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch06s04.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch06.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s06.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Jämförelseoperatorer
</td><td width="20%" align="center"><a accesske
y="h" href="index.html">Hem</a></td><td width="40%" align="right" valign="top">
Parametervariabler</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch06s06.html b/help/sv/html/ch06s06.html
new file mode 100644
index 0000000..4cf5374
--- /dev/null
+++ b/help/sv/html/ch06s06.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Parametervariabler</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="ch06.html"
title="Kapitel 6. Programmering med GEL"><link rel="prev" href="ch06s05.html" title="Globala variabler och
räckvidd för variabler"><link rel="next" href="ch06s07.html" title="Returnera"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Parametervariabler</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch06s05.html">Föregående</a> </td><th width="60%"
align="center">Kapitel 6. Programmering med GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s07.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div class="titlepa
ge"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-parameters"></a>Parametervariabler</h2></div></div></div><p>Som vi sa tidigare finns det
specialvariabler som kallas parametrar som finns i alla räckvidder. För att deklarera en parameter som kallas
<code class="varname">foo</code> med ursprungligt värde 1 skriver vi </p><pre
class="programlisting">parameter foo = 1
+</pre><p> Från denna punkt är <code class="varname">foo</code> en strikt global variabel. Att ställa in
<code class="varname">foo</code> i en funktion kommer ändra variabeln i alla kontexter, det vill säga att
funktioner inte har en privat kopia av parametrar.</p><p>Då du avdefinierar en parameter med funktionen <a
class="link" href="ch11s02.html#gel-function-undefine"><code class="function">undefine</code></a> slutar den
vara en parameter.</p><p>Några parametrar är inbyggda och ändrar beteendet hos genius.</p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch06s05.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch06.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s07.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Globala variabler och
räckvidd för variabler </td><td width="20%" align="ce
nter"><a accesskey="h" href="index.html">Hem</a></td><td width="40%" align="right" valign="top">
Returnera</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch06s07.html b/help/sv/html/ch06s07.html
new file mode 100644
index 0000000..7f5d13a
--- /dev/null
+++ b/help/sv/html/ch06s07.html
@@ -0,0 +1,9 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Returnera</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Handbok
för Genius"><link rel="up" href="ch06.html" title="Kapitel 6. Programmering med GEL"><link rel="prev"
href="ch06s06.html" title="Parametervariabler"><link rel="next" href="ch06s08.html"
title="Referenser"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Returnera</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s06.html">Föregående</a> </td><th width="60%" align="center">Kapitel 6. Programmering med
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s08.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-returning"></a>Returnera</h2></div></div></div><p>Normalt består en funktion av
ett eller flera uttryck som skiljs åt av ett semikolon, och värdet för det sista uttrycket returneras. Detta
är bra för enkla funktioner, men ibland vill du inte att en funktion ska returnera det sista som beräknades.
Du kan exempelvis vilja returnera från mitten av en funktion. I detta fall kan du använda nyckelordet <code
class="literal">return</code>. <code class="literal">return</code> tar ett argument, vilket är värdet som ska
returneras.</p><p>Exempel: </p><pre class="programlisting">function f(x) = (
+ y=1;
+ while true do (
+ if x>50 then return y;
+ y=y+1;
+ x=x+1
+ )
+)
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch06s06.html">Föregående</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch06.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch06s08.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Parametervariabler
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Referenser</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch06s08.html b/help/sv/html/ch06s08.html
new file mode 100644
index 0000000..1830d28
--- /dev/null
+++ b/help/sv/html/ch06s08.html
@@ -0,0 +1,8 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Referenser</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="ch06.html"
title="Kapitel 6. Programmering med GEL"><link rel="prev" href="ch06s07.html" title="Returnera"><link
rel="next" href="ch06s09.html" title="Vvärden"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Referenser</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch06s07.html">Föregående</a> </td><th width="60%" align="center">Kapitel 6. Programmering
med GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch06s09.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-references"></a>Referenser</h2></div></div></div><p>Det kan vara nödvändigt för vissa
funktioner att returnera mer än ett värde. Detta kan åstadkommas genom att returnera en vektor av värden, men
många gånger är det bekvämt att skicka en referens till en variabel. Du skickar en referens till en variabel
till en funktion, och funktionen kommer att ställa in variabeln åt dig med en dereferering. Du måste inte
använda referenser bara för detta syfte, men det är deras huvudsakliga användning.</p><p>Då du använder
funktioner som returnerar värden genom referenser i argumentlistan, skicka bara variabelnamnet med ett
et-tecken. Till exempel kommer följande kod att beräkna ett egenvärde för en matris <code
class="varname">A</code> med initial egenvektorgissning <code class="varname">x</code>, och lagra den
beräknade egenvektorn i variabeln <code class="varname">v</code>: </p><pre
class="programlisting">RayleighQuotientIteration (A,x,0.001,
100,&v)
+</pre><p>Detaljerna kring hur referenser fungerar och syntaxen liknar språket C. Operatorn <code
class="literal">&</code> refererar en variabel och <code class="literal">*</code> derefererar en
variabel. Båda kan endast tillämpas till en identifierare, så <code class="literal">**a</code> är inte ett
giltigt uttryck i GEL.</p><p>Referenser förklaras bäst med ett exempel: </p><pre class="programlisting">a=1;
+b=&a;
+*b=2;
+</pre><p> nu innehåller <code class="varname">a</code> 2. Du kan också referera till funktioner: </p><pre
class="programlisting">function f(x) = x+1;
+t=&f;
+*t(3)
+</pre><p> ger oss 4.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch06s07.html">Föregående</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch06.html">Upp</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch06s09.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Returnera
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Vvärden</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch06s09.html b/help/sv/html/ch06s09.html
new file mode 100644
index 0000000..6705df1
--- /dev/null
+++ b/help/sv/html/ch06s09.html
@@ -0,0 +1,5 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Vvärden</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Handbok
för Genius"><link rel="up" href="ch06.html" title="Kapitel 6. Programmering med GEL"><link rel="prev"
href="ch06s08.html" title="Referenser"><link rel="next" href="ch07.html" title="Kapitel 7. Avancerad
programmering med GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Vvärden</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch06s08.html">Föregående</a> </td><th width="60%" align="center">Kapitel 6. Programmering med
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h2
class="titl
e" style="clear: both"><a name="genius-gel-lvalues"></a>Vvärden</h2></div></div></div><p>Ett vvärde är
vänstersidan av en tilldelning. Med andra ord är ett vvärde vad du tilldelar något till. Giltiga vvärden är:
</p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><strong
class="userinput"><code>a</code></strong></span></dt><dd><p>Identifierare. Här skulle vi ställa in variabeln
med namn <code class="varname">a</code>.</p></dd><dt><span class="term"><strong
class="userinput"><code>*a</code></strong></span></dt><dd><p>Dereferering av en identifierare. Detta kommer
ställa in den variabel som <code class="varname">a</code> pekar på.</p></dd><dt><span class="term"><strong
class="userinput"><code>a@(<region>)</code></strong></span></dt><dd><p>En matrisregion. Här
specificeras regionen som vanligt med den vanliga @()-operatorn, och kan varfa en ensam post, eller en hel
region av matrisen.</p></dd></dl></div><p>Exempel: </p><pre class="p
rogramlisting">a:=4
+*tmp := 89
+a@(1,1) := 5
+a@(4:8,3) := [1,2,3,4,5]'
+</pre><p> Observera att både <code class="literal">:=</code> och <code class="literal">=</code> är direkt
utbytbara med varandra förutom om tilldelningen sker i ett villkor. Det är därför alltid säkrare att hel
enkelt använda <code class="literal">:=</code> då du menar tilldelning och <code class="literal">==</code> då
du menar jämförelse.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch06s08.html">Föregående</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch06.html">Upp</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch07.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Referenser
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Kapitel 7. Avancerad programmering med GEL</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch07.html b/help/sv/html/ch07.html
new file mode 100644
index 0000000..d7e0862
--- /dev/null
+++ b/help/sv/html/ch07.html
@@ -0,0 +1,8 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 7. Avancerad
programmering med GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link
rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="index.html" title="Handbok för
Genius"><link rel="prev" href="ch06s09.html" title="Vvärden"><link rel="next" href="ch07s02.html"
title="Toppnivåsyntax"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Kapitel 7. Avancerad programmering med GEL</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch06s09.html">Föregående</a> </td><th width="60%" align="center"> </th><td width="20%"
align="right"> <a accesskey="n" href="ch07s02.html">Nästa</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 class=
"title"><a name="genius-gel-programming-advanced"></a>Kapitel 7. Avancerad programmering med
GEL</h1></div></div></div><div class="toc"><p><b>Innehållsförteckning</b></p><dl class="toc"><dt><span
class="sect1"><a href="ch07.html#genius-gel-error-handling">Felhantering</a></span></dt><dt><span
class="sect1"><a href="ch07s02.html">Toppnivåsyntax</a></span></dt><dt><span class="sect1"><a
href="ch07s03.html">Returnera funktioner</a></span></dt><dt><span class="sect1"><a
href="ch07s04.html">Verkligt lokala variabler</a></span></dt><dt><span class="sect1"><a
href="ch07s05.html">Uppstartsprocedur för GEL</a></span></dt><dt><span class="sect1"><a
href="ch07s06.html">Läsa in program</a></span></dt></dl></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-error-handling"></a>Felhantering</h2></div></div></div><p>Om du upptäcker ett fel i din
funktion kan du avbryta den. För normala fel, som felaktiga typer på argum
ent kan du misslyckas att beräkna funktionen genom att lägga till satsen <code
class="literal">bailout</code>. Om något gick väldigt fel och du vill fullständigt döda den pågående
beräkningen kan du använda <code class="literal">exception</code>.</p><p>Om du till exempel vill kontrollera
argument i din funktion kan du använda följande kod. </p><pre class="programlisting">function f(M) = (
+ if not IsMatrix (M) then (
+ error ("M inte en matris!");
+ bailout
+ );
+ ...
+)
+</pre></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch06s09.html">Föregående</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch07s02.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Vvärden </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%" align="right"
valign="top"> Toppnivåsyntax</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch07s02.html b/help/sv/html/ch07s02.html
new file mode 100644
index 0000000..1cb211d
--- /dev/null
+++ b/help/sv/html/ch07s02.html
@@ -0,0 +1,10 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Toppnivåsyntax</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="ch07.html"
title="Kapitel 7. Avancerad programmering med GEL"><link rel="prev" href="ch07.html" title="Kapitel 7.
Avancerad programmering med GEL"><link rel="next" href="ch07s03.html" title="Returnera
funktioner"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Toppnivåsyntax</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch07.html">Föregående</a> </td><th width="60%" align="center">Kapitel 7. Avancerad programmering med
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s03.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-toplevel-syntax"></a>Toppnivåsyntax</h2></div></div></div><p>Syntaxen skiljer sig något
beroende på om du matar in satser på toppnivån gentemot då de används inom parenteser eller i funktioner. På
toppnivån uppför sig retur just som om du tryckte retur på kommandoraden. Tänk därför på program som bara en
följd av rader som matats in på kommandoraden. I synnerhet behöver du inte ange avskiljaren i slutet på raden
(om den förstås inte är del av flera satser inom parenteser).</p><p>Följande kod producerar ett fel då den
matas in i toppnivån för ett program, medan den kommer fungera fint i en funktion. </p><pre
class="programlisting">if Ngt() then
+ ExekveraNgt()
+else
+ ExekveraNgtAnnat()
+</pre><p>Problemet är att efter <span class="application">Genius matematikverktyg</span> ser slutet på raden
efter den andra raden kommer det att avgöra att vi har hela uttrycket och exekvera det. Efter exekveringen är
klar kommer <span class="application">Genius matematikverktyg</span> att gå till nästa rad och se <code
class="literal">else</code>, och det kommer att producera ett tolkfel. För att fixa detta, använd parenteser.
<span class="application">Genius matematikverktyg</span> kommer inte låta sig nöja förrän det har sett att
alla parenteser stängts. </p><pre class="programlisting">if Ngt() then (
+ ExekveraNgt()
+) else (
+ ExekveraNgtAnnat()
+)
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch07.html">Föregående</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch07.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07s03.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel 7. Avancerad
programmering med GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td
width="40%" align="right" valign="top"> Returnera funktioner</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch07s03.html b/help/sv/html/ch07s03.html
new file mode 100644
index 0000000..ba8868f
--- /dev/null
+++ b/help/sv/html/ch07s03.html
@@ -0,0 +1,27 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Returnera
funktioner</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="ch07.html" title="Kapitel 7. Avancerad
programmering med GEL"><link rel="prev" href="ch07s02.html" title="Toppnivåsyntax"><link rel="next"
href="ch07s04.html" title="Verkligt lokala variabler"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Returnera funktioner</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch07s02.html">Föregående</a> </td><th width="60%" align="center">Kapitel 7. Avancerad
programmering med GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s04.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div class
="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-returning-functions"></a>Returnera funktioner</h2></div></div></div><p>Det är möjligt att
returnera funktioner som värde. På detta sätt kan du bygga funktioner som konstruerar specialanpassade
funktioner enligt några parametrar. Det svåra är vilka variabler som funktionen ser. Sättet det fungerar på i
GEL är att när en funktion returnerar en annan funktion, blir alla identifierare refererade i
funktionskroppen som gick utanför räckvidd föregångna med en privat ordbok av den returnerade funktionen.
Funktion kommer därmed se alla variabler som var inom räckvidd då den definierades. Till exempel definierar
vi en funktion som returnerar en funktion som lägger till 5 till sitt argument. </p><pre
class="programlisting">function f() = (
+ k = 5;
+ `(x) = (x+k)
+)
+</pre><p> Observera att funktionen lägger till <code class="varname">k</code> till <code
class="varname">x</code>. Du kan använda detta som följer. </p><pre class="programlisting">g = f();
+g(5)
+</pre><p> och <strong class="userinput"><code>g(5)</code></strong> skulle returnera 10.</p><p>En sak att
notera är att värdet på <code class="varname">k</code> som används är det som används då <code
class="function">f</code> returnerar. Till exempel: </p><pre class="programlisting">function f() = (
+ k := 5;
+ function r(x) = (x+k);
+ k := 10;
+ r
+)
+</pre><p> kommer returnera en funktion som lägger till 10 till sitt argument snarare än 5. Detta är eftersom
den extra ordboken skapas bara då kontexten i vilken funktionen definierades tar slut, vilket är när
funktionen <code class="function">f</code> returnerar. Detta är konsekvent med hur du skulle förvänta dig att
funktionen <code class="function">r</code> fungerar inuti funktionen <code class="function">f</code> enligt
reglerna för variabelräckvidd i GEL. Endast de variabler som är i kontexten som just tog slut och inte längre
existerar läggs till i den extra ordboken. Variabler som används i funktionen som är i fortfarande giltiga
kontexter kommer fungera som vanligt, med aktuellt värde på variabeln. Den enda skillnaden är med globala
variabler och funktioner. Alla identifierare som refererade globala variabler under tiden för
funktionsdefinitionen läggs inte till i den privata ordboken. Detta är för att undvika mycket onödigt arbete
då funktio
ner returneras och kommer sällan vara ett problem. Anta till exempel att du tar bort "k=5" från funktionen
<code class="function">f</code>, och att du på toppnivån definierar <code class="varname">k</code> till att
vara exempelvis 5. När du då kör <code class="function">f</code> kommer funktionen <code
class="function">r</code> inte lägga <code class="varname">k</code> i den privata ordboken eftersom den var
global (toppnivå) då <code class="function">r</code> definierades.</p><p>Ibland är det bättre att ha mer
kontroll över hur variabler kopieras till den privata ordboken. Sedan version 1.0.7 kan du ange vilka
variabler som kopieras till den privata ordboken genom att lägga till extra hakparenteser efter argumenten
med listan över variabler som ska kopieras separerade av kommatecken. Om du gör detta kopieras variabler till
den privata ordboken vid funktionsdefinitionen, och den privata ordboken rörs inte efteråt. Till exempel
kommer </p><pre class="program
listing">function f() = (
+ k := 5;
+ function r(x) [k] = (x+k);
+ k := 10;
+ r
+)
+</pre><p> returnera en funktion som när den anropas kommer lägga till 5 till sitt argument. Den lokala
kopian av <code class="varname">k</code> skapades när funktionen definierades.</p><p>Då du vill att
funktionen inte ska ha någon privat ordbok sätter du tomma hakparenteser efter argumentlistan. Då kommer
ingen privat ordbok att skapas överhuvudtaget. Att göra detta är bra för att öka effektiviteten då en privat
ordbok inte behövs eller när du inte vill att funktionen ska slå upp alla variabler då den ser dem då de
anropas. Anta till exempel att du vill att funktionen som returneras från <code class="function">f</code> ska
se värdet av <code class="varname">k</code> från toppnivån även om det finns en lokal variabel med samma namn
under definitionen. Så koden </p><pre class="programlisting">function f() = (
+ k := 5;
+ function r(x) [] = (x+k);
+ r
+);
+k := 10;
+g = f();
+g(10)
+</pre><p> kommer att returnera 20 och inte 15, vilket skulle hända om <code class="varname">k</code> med ett
värde av 5 lades till i den privata ordboken.</p></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch07s02.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch07.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07s04.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Toppnivåsyntax </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%" align="right"
valign="top"> Verkligt lokala variabler</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch07s04.html b/help/sv/html/ch07s04.html
new file mode 100644
index 0000000..f0762cb
--- /dev/null
+++ b/help/sv/html/ch07s04.html
@@ -0,0 +1,18 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Verkligt lokala
variabler</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="ch07.html" title="Kapitel 7. Avancerad
programmering med GEL"><link rel="prev" href="ch07s03.html" title="Returnera funktioner"><link rel="next"
href="ch07s05.html" title="Uppstartsprocedur för GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Verkligt lokala variabler</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07s03.html">Föregående</a> </td><th width="60%" align="center">Kapitel
7. Avancerad programmering med GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s05.html">Nästa</a></td></tr></table><hr></div><div class="s
ect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-true-local-variables"></a>Verkligt lokala variabler</h2></div></div></div><p>Då funktioner
skickas till andra funktioner kan den vanliga variabelräckvidden vara oönskad. Till exempel: </p><pre
class="programlisting">k := 10;
+function r(x) = (x+k);
+function f(g,x) = (
+ k := 5;
+ g(x)
+);
+f(r,1)
+</pre><p> du vill antagligen att funktionen <code class="function">r</code> då den skickas som <code
class="function">g</code> till <code class="function">f</code> ska se <code class="varname">k</code> som 10
snarare än 5, så att koden returnerar 11 och inte 6. Som det är skrivet kommer dock funktionen då den
exekveras se det <code class="varname">k</code> som är lika med 5. Det finns två sätt att lösa detta. En
skulle vara att låta <code class="function">r</code> få <code class="varname">k</code> i en privat ordbok
genom hakparentesnotationen i avsnittet <a class="link" href="ch07s03.html" title="Returnera
funktioner">Returnera funktioner</a>.</p><p>Men det finns en annan lösning. Sedan version 1.0.7 finns det
verkligt lokala variabler. Dessa är variabler som är synliga endast från aktuell kontext och inte från några
anropade funktioner. Vi kan definiera <code class="varname">k</code> som en lokal variabel i funktionen <code
class="function">f</code>. För
att göra detta lägg till ett <span class="command"><strong>local</strong></span>-uttryck som det första
uttrycket i funktionen (det måste alltid vara det första uttrycket i funktionen). Du kan också göra argument
till lokala variabler. Det vill säga, </p><pre class="programlisting">function f(g,x) = (
+ local g,x,k;
+ k := 5;
+ g(x)
+);
+</pre><p> Då kommer koden fungera som förväntat och skriver ut 11. Observera att <span
class="command"><strong>local</strong></span>-uttrycket initierar alla de refererade variablerna (förutom
funktionsargument) till ett <code class="constant">null</code>.</p><p>Om alla variabler ska skapas som lokala
kan du helt enkelt skicka en asterisk istället för en variabellista. I detta fall kommer variablerna förstås
inte initieras förrän de faktiskt ställs in. Så följande definition av <code class="function">f</code> kommer
också att fungera: </p><pre class="programlisting">function f(g,x) = (
+ local *;
+ k := 5;
+ g(x)
+);
+</pre><p>Det är god sed att alla funktioner som tar andra funktioner som argument använder lokala variabler.
På detta sätt ser den skickade funktionen inte implementationsdetaljer och blir förvirrad.</p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch07s03.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch07.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch07s05.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Returnera funktioner
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Uppstartsprocedur för GEL</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch07s05.html b/help/sv/html/ch07s05.html
new file mode 100644
index 0000000..30998d2
--- /dev/null
+++ b/help/sv/html/ch07s05.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Uppstartsprocedur för
GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="ch07.html" title="Kapitel 7. Avancerad
programmering med GEL"><link rel="prev" href="ch07s04.html" title="Verkligt lokala variabler"><link
rel="next" href="ch07s06.html" title="Läsa in program"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Uppstartsprocedur för GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07s04.html">Föregående</a> </td><th width="60%" align="center">Kapitel
7. Avancerad programmering med GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch07s06.html">Nästa</a></td></tr></table><hr></div><div class="sect
1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-startup-procedure"></a>Uppstartsprocedur för GEL</h2></div></div></div><p>Först tittar
programmet efter den installerade biblioteksfilen (den kompilerade versionen <code
class="filename">lib.cgel</code>) i den installerade katalogen, sedan tittar det i den aktuella katalogen,
och sedan försöker det läsa in en okompilerad fil som heter <code
class="filename">~/.geniusinit</code>.</p><p>Om du någonsin ändrar biblioteket i dess installerade plats
måste du först kompilera det med <span class="command"><strong>genius --compile loader.gel >
lib.cgel</strong></span></p></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch07s04.html">Föregående</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch07.html">Upp</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch07s06.
html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Verkligt lokala variabler </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%" align="right"
valign="top"> Läsa in program</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch07s06.html b/help/sv/html/ch07s06.html
new file mode 100644
index 0000000..c5f1d86
--- /dev/null
+++ b/help/sv/html/ch07s06.html
@@ -0,0 +1,5 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Läsa in
program</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="ch07.html" title="Kapitel 7. Avancerad
programmering med GEL"><link rel="prev" href="ch07s05.html" title="Uppstartsprocedur för GEL"><link
rel="next" href="ch08.html" title="Kapitel 8. Matriser i GEL"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Läsa in program</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch07s05.html">Föregående</a> </td><th width="60%" align="center">Kapitel 7. Avancerad
programmering med GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch08.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div class="t
itlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-loading-programs"></a>Läsa in
program</h2></div></div></div><p>Ibland har du ett större program som du skrev till en fil och vill läsa in
den filen i <span class="application">Genius matematikverktyg</span>. I dessa situationer har du två val. Du
kan behålla funktionerna du vill använda mest inuti filen <code class="filename">~/.geniusinit</code>. Eller
om du vill läsa in en fil mitt i en session (eller inifrån en annan fil) kan du skriva <span
class="command"><strong>load <lista med filnamn></strong></span> på prompten. Detta måste göras på
toppnivån och inte inuti en funktion eller vad det må vara, och det kan inte vara en del av ett uttryck. Det
har också ett något annorlunda syntax från resten av genius, mer liknande ett skal. Du kan mata in filen
citerad. Om du använder citattecknen '' kommer du få precis strängen du skrev in, om du använder citattecknen
"" kommer sp
ecialtecken att få kontrollsekvenser borttagna som för strängar. Exempel: </p><pre
class="programlisting">load program1.gel program2.gel
+load "Konstigt filnamn med MELLANSLAG.gel"
+</pre><p> Det finns också de inbyggda kommandona <span class="command"><strong>cd</strong></span>, <span
class="command"><strong>pwd</strong></span> och <span class="command"><strong>ls</strong></span>. <span
class="command"><strong>cd</strong></span> kommer ta ett argument, <span
class="command"><strong>ls</strong></span> kommer ta ett argument som är som ett mönster i UNIX-skalet
(d.v.s. du kan använda jokertecken). <span class="command"><strong>pwd</strong></span> tar inga argument.
Till exempel: </p><pre class="programlisting">cd katalog_med_gelprogram
+ls *.gel
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch07s05.html">Föregående</a> </td><td width="20%" align="center"><a
accesskey="u" href="ch07.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch08.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Uppstartsprocedur för GEL
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Kapitel 8. Matriser i GEL</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch08.html b/help/sv/html/ch08.html
new file mode 100644
index 0000000..f443986
--- /dev/null
+++ b/help/sv/html/ch08.html
@@ -0,0 +1,21 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 8. Matriser i
GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="index.html" title="Handbok för
Genius"><link rel="prev" href="ch07s06.html" title="Läsa in program"><link rel="next" href="ch08s02.html"
title="Konjugattransponat och transponatoperator"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitel 8. Matriser i GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch07s06.html">Föregående</a> </td><th width="60%" align="center">
</th><td width="20%" align="right"> <a accesskey="n"
href="ch08s02.html">Nästa</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class=
"title"><a name="genius-gel-matrices"></a>Kapitel 8. Matriser i GEL</h1></div></div></div><div
class="toc"><p><b>Innehållsförteckning</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch08.html#genius-gel-matrix-support">Mata in matriser</a></span></dt><dt><span class="sect1"><a
href="ch08s02.html">Konjugattransponat och transponatoperator</a></span></dt><dt><span class="sect1"><a
href="ch08s03.html">Linjär algebra</a></span></dt></dl></div><p>Genius har stöd för vektorer och matriser och
innehåller ett stort bibliotek med funktioner för matrismanipulation och linjär algebra.</p><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-matrix-support"></a>Mata in matriser</h2></div></div></div><p>För att mata in matriser kan
du använda en av följande två syntaxer. Du kan antingen mata in matrisen på en rad, där värden skiljs åt av
kommatecken och rader av semikolon. Annars kan du mata in varje rad på
en rad, där värden separeras av kommatecken. Du kan också kombinera de två metoderna. För att mata in en
3x3-matris med talen 1-9 skulle du kunna göra </p><pre class="programlisting">[1,2,3;4,5,6;7,8,9]
+</pre><p> eller </p><pre class="programlisting">[1, 2, 3
+ 4, 5, 6
+ 7, 8, 9]
+</pre><p> Använd dock inte både ”;” och direkt returnering på samma rad.</p><p>Du kan också använda
matrisexpansionsfunktionen för att mata in matriser. Till exempel kan du göra: </p><pre
class="programlisting">a = [ 1, 2, 3
+ 4, 5, 6
+ 7, 8, 9]
+b = [ a, 10
+ 11, 12]
+</pre><p> och då få </p><pre class="programlisting">[1, 2, 3, 10
+ 4, 5, 6, 10
+ 7, 8, 9, 10
+ 11, 11, 11, 12]
+</pre><p> på liknande sätt kan du bygga matriser från vektorer och andra sådana saker.</p><p>En annan sak
att tänka på är att ej angivna fläckar initieras till 0, så </p><pre class="programlisting">[1, 2, 3
+ 4, 5
+ 6]
+</pre><p> kommer att bli </p><pre class="programlisting">
+[1, 2, 3
+ 4, 5, 0
+ 6, 0, 0]
+</pre><p>Då matriser evalueras så evalueras och traverseras de radvis. Detta är precis som <code
class="literal">M@(j)</code>-operatorn som traverserar matrisen radvis.</p><div class="note"
style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Notera</h3><p>Var försiktig med
returnering av uttryck inuti <code class="literal">[ ]</code>-parenteserna, eftersom det har en något
annorlunda betydelse där. Du kommer att starta en ny rad.</p></div></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch07s06.html">Föregående</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> <a accesskey="n" href="ch08s02.html">Nästa</a></td></tr><tr><td width="40%" align="left"
valign="top">Läsa in program </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Hem</a></td><td width="40%" align="right" valign="top"> Konjugattransponat och tra
nsponatoperator</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch08s02.html b/help/sv/html/ch08s02.html
new file mode 100644
index 0000000..0a7e284
--- /dev/null
+++ b/help/sv/html/ch08s02.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Konjugattransponat och
transponatoperator</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="ch08.html" title="Kapitel 8. Matriser i
GEL"><link rel="prev" href="ch08.html" title="Kapitel 8. Matriser i GEL"><link rel="next" href="ch08s03.html"
title="Linjär algebra"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Konjugattransponat och transponatoperator</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch08.html">Föregående</a> </td><th width="60%" align="center">Kapitel 8. Matriser i
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch08s03.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div cla
ss="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-matrix-transpose"></a>Konjugattransponat och transponatoperator</h2></div></div></div><p>Du
kan konjugattransponera en matris med <code class="literal">'</code>-operatorn. Det vill säga posten i kolumn
<code class="varname">i</code> och rad <code class="varname">j</code> kommer bli komplexkonjugatet till
posten i kolumn <code class="varname">j</code> och rad <code class="varname">i</code> av originalmatrisen.
Till exempel: </p><pre class="programlisting">[1,2,3]*[4,5,6]'
+</pre><p> Vi transponerar den andra vektorn för att göra matrismultiplikation möjlig. Om du bara vill
transponera en matris utan att konjugera den använder du <code class="literal">.'</code>-operatorn. Till
exempel: </p><pre class="programlisting">[1,2,3]*[4,5,6i].'
+</pre><p>Observera att normalt transponat, det vill säga <code class="literal">.'</code>-operatorn är mycket
snabbare och kommer inte skapa en ny kopia av matrisen i minnet. Konjugattransponatet skapar tyvärr en ny
kopia. Det rekommenderas att alltid använda <code class="literal">.'</code>-operatorn vid arbete med reella
matriser och vektorer.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch08.html">Föregående</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch08.html">Upp</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch08s03.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel 8.
Matriser i GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td
width="40%" align="right" valign="top"> Linjär algebra</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch08s03.html b/help/sv/html/ch08s03.html
new file mode 100644
index 0000000..fd57dc7
--- /dev/null
+++ b/help/sv/html/ch08s03.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Linjär
algebra</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="ch08.html" title="Kapitel 8. Matriser i
GEL"><link rel="prev" href="ch08s02.html" title="Konjugattransponat och transponatoperator"><link rel="next"
href="ch09.html" title="Kapitel 9. Polynom i GEL"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Linjär algebra</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch08s02.html">Föregående</a> </td><th width="60%" align="center">Kapitel 8. Matriser i
GEL</th><td width="20%" align="right"> <a accesskey="n"
href="ch09.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div><div><h
2 class="title" style="clear: both"><a name="genius-gel-matrix-linalg"></a>Linjär
algebra</h2></div></div></div><p>Genius implementerar många användbara rutiner för linjär algebra och
matrismanipulation. Se avsnitten för <a class="link" href="ch11s09.html" title="Linjär algebra">Linjär
algebra</a> och <a class="link" href="ch11s08.html" title="Matrismanipulation">Matrismanipulering</a> i
funktionslistan för GEL.</p><p>Linjär algebra-rutinerna som är implementerade i GEL kommer för närvarande
inte från något vältestat numeriskt paket, och bör därmed inte användas för kritiska numeriska beräkningar. Å
andra sidan implementerar Genius många linjär algebra-operationer med bråk- och heltalskoefficienter på ett
mycket bra sätt. Dessa är medfött exakta och kommer faktiskt ge dig mycket bättre resultat än vanliga
dubbelprecisionsrutiner för linjär algebra.</p><p>Till exempel är det meningslöst att beräkna rang och
nollrum för en flyttalsmatris ef
tersom för alla praktiska ändamål måste vi anse att matrisen har små fel. Du kommer mycket möjligt att få
ett annat resultat än du förväntar dig. Problemet är att under en liten störning är varje matris av full rang
och inverterbar. Om matrisen består av rationella tal är dock rangen och nollrummet alltid
exakt.</p><p>Allmänt då Genius beräknar basen av ett särskilt vektorrum (till exempel med <a class="link"
href="ch11s09.html#gel-function-NullSpace"><code class="function">NullSpace</code></a>) kommer det ge basen
som en matris, i vilken kolumnerna är vektorerna för basen. Det vill säga att då Genius pratar om ett linjärt
underrum menar det en matris vars kolumnrum är det angivna linjära underrummet.</p><p>Det bör noteras att
Genius kan komma ihåg vissa egenskaper hos en matris. Till exempel kommer det att komma ihåg att en matris är
i radreducerad form. Om många anrop görs till funktioner som internt använder radreducerad form av matrisen k
an vi helt enkelt först radreducera matrisen en gång. Upprepade anrop till <a class="link"
href="ch11s09.html#gel-function-rref"><code class="function">rref</code></a> kommer att vara väldigt
snabba.</p></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch08s02.html">Föregående</a> </td><td width="20%"
align="center"><a accesskey="u" href="ch08.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch09.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Konjugattransponat och
transponatoperator </td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td
width="40%" align="right" valign="top"> Kapitel 9. Polynom i GEL</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch09.html b/help/sv/html/ch09.html
new file mode 100644
index 0000000..87d42bb
--- /dev/null
+++ b/help/sv/html/ch09.html
@@ -0,0 +1,7 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 9. Polynom i
GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="index.html" title="Handbok för
Genius"><link rel="prev" href="ch08s03.html" title="Linjär algebra"><link rel="next" href="ch10.html"
title="Kapitel 10. Mängdlära i GEL"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Kapitel 9. Polynom i GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch08s03.html">Föregående</a> </td><th width="60%" align="center"> </th><td width="20%" align="right">
<a accesskey="n" href="ch10.html">Nästa</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a name="geni
us-gel-polynomials"></a>Kapitel 9. Polynom i GEL</h1></div></div></div><div
class="toc"><p><b>Innehållsförteckning</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch09.html#genius-gel-polynomials-using">Använda polynom</a></span></dt></dl></div><p>För närvarande kan
Genius hantera polynom i en variabel utskrivna som vektorer, och utföra några grundläggande operationer med
dessa. Det finns planer för att utöka detta stöd vidare.</p><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-polynomials-using"></a>Använda polynom</h2></div></div></div><p>För närvarande är polynom i
en variabel bara horisontella vektorer med värden som noder. Potensen av termen är positionen i vektorn, med
den första positionen som 0. Så, </p><pre class="programlisting">[1,2,3]
+</pre><p> översätts till polynomet </p><pre class="programlisting">1 + 2*x + 3*x^2
+</pre><p>Du kan addera, subtrahera och multiplicera polynom med de motsvarande funktionerna <a class="link"
href="ch11s15.html#gel-function-AddPoly"><code class="function">AddPoly</code></a>, <a class="link"
href="ch11s15.html#gel-function-SubtractPoly"><code class="function">SubtractPoly</code></a> och <a
class="link" href="ch11s15.html#gel-function-MultiplyPoly"><code class="function">MultiplyPoly</code></a>. Du
kan skriva ut ett polynom med funktionen <a class="link" href="ch11s15.html#gel-function-PolyToString"><code
class="function">PolyToString</code></a>. Till exempel, </p><pre
class="programlisting">PolyToString([1,2,3],"y")
+</pre><p> ger </p><pre class="programlisting">3*y^2 + 2*y + 1
+</pre><p> Du kan också få en funktionsrepresentation av polynomet så att du kan beräkna det. Detta görs
genom <a class="link" href="ch11s15.html#gel-function-PolyToFunction"><code
class="function">PolyToFunction</code></a>, som returnerar en anonym funktion. </p><pre
class="programlisting">f = PolyToFunction([0,1,1])
+f(2)
+</pre><p>Det är också möjligt att hitta rötter för polynom av grad 1 till 4 med funktionen <a class="link"
href="ch11s13.html#gel-function-PolynomialRoots"><code class="function">PolynomialRoots</code></a>, som
anropar lämplig formelfunktion. Polynom av högre grad måste konverteras till funktioner och lösas numeriskt
med en funktion som <a class="link" href="ch11s13.html#gel-function-FindRootBisection"><code
class="function">FindRootBisection</code></a>, <a class="link"
href="ch11s13.html#gel-function-FindRootFalsePosition"><code
class="function">FindRootFalsePosition</code></a>, <a class="link"
href="ch11s13.html#gel-function-FindRootMullersMethod"><code
class="function">FindRootMullersMethod</code></a> eller <a class="link"
href="ch11s13.html#gel-function-FindRootSecant"><code class="function">FindRootSecant</code></a>.</p><p>Se <a
class="xref" href="ch11s15.html" title="Polynom">”Polynom”</a> i funktionslistan för resten av funktionerna
som arbetar på polyn
om.</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch08s03.html">Föregående</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch10.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Linjär algebra </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%" align="right"
valign="top"> Kapitel 10. Mängdlära i GEL</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch10.html b/help/sv/html/ch10.html
new file mode 100644
index 0000000..dedeaf2
--- /dev/null
+++ b/help/sv/html/ch10.html
@@ -0,0 +1,7 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 10. Mängdlära
i GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="index.html" title="Handbok för
Genius"><link rel="prev" href="ch09.html" title="Kapitel 9. Polynom i GEL"><link rel="next" href="ch11.html"
title="Kapitel 11. Lista över GEL-funktioner"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitel 10. Mängdlära i GEL</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch09.html">Föregående</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch11.html">Nästa</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 class
="title"><a name="genius-gel-settheory"></a>Kapitel 10. Mängdlära i GEL</h1></div></div></div><div
class="toc"><p><b>Innehållsförteckning</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch10.html#genius-gel-sets-using">Använda mängder</a></span></dt></dl></div><p>Genius har viss
grundläggande mängdteoretisk funktionalitet inbyggd. För närvarande är en mängd bara en vektor (eller en
matris). Varje distinkt objekt behandlas som ett eget element.</p><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-gel-sets-using"></a>Använda
mängder</h2></div></div></div><p>Precis som vektorer kan objekt i mängder inkludera tal, strängar, <code
class="constant">null</code>, matriser och vektorer. Det planeras att i framtiden ha en enkom typ för
mängder, snarare än att använda vektorer. Observera att flyttal skiljer sig åt från heltal även om de verkar
vara lika. Det vill säga Genius behandlar <code class="c
onstant">0</code> och <code class="constant">0.0</code> som två olika element. <code
class="constant">null</code> behandlas som en tom mängd.</p><p>För att skapa en mängd från en vektor, använd
funktionen <a class="link" href="ch11s16.html#gel-function-MakeSet"><code class="function">MakeSet</code></a>
function. För närvarande kommer den bara att returnera en ny vektor där varje element är unikt. </p><pre
class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>MakeSet([1,2,2,3])</code></strong>
+= [1, 2, 3]
+</pre><p>På liknande sätt finns det funktionerna <a class="link"
href="ch11s16.html#gel-function-Union"><code class="function">Union</code></a>, <a class="link"
href="ch11s16.html#gel-function-Intersection"><code class="function">Intersection</code></a> och <a
class="link" href="ch11s16.html#gel-function-SetMinus"><code class="function">SetMinus</code></a>, som är
ganska självförklarande. Till exempel: </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>Union([1,2,3], [1,2,4])</code></strong>
+= [1, 2, 4, 3]
+</pre><p> Observera att ingen ordning garanteras för returvärdena. Om du vill sortera vektorn bör du använda
funktionen <a class="link" href="ch11s08.html#gel-function-SortVector"><code
class="function">SortVector</code></a>.</p><p>För att testa medlemskap finns funktionerna <a class="link"
href="ch11s16.html#gel-function-IsIn"><code class="function">IsIn</code></a> och <a class="link"
href="ch11s16.html#gel-function-IsSubset"><code class="function">IsSubset</code></a> vilka returnerar ett
booleskt värde. Till exempel: </p><pre class="screen"><code class="prompt">genius> </code><strong
class="userinput"><code>IsIn (1, [0,1,2])</code></strong>
+= true
+</pre><p> Inmatningen <strong class="userinput"><code>IsIn(x,X)</code></strong> är förstås ekvivalent med
<strong class="userinput"><code>IsSubset([x],X)</code></strong>. Observera att eftersom den tomma mängden är
en delmängd av varje mängd så är <strong class="userinput"><code>IsSubset(null,X)</code></strong> alltid true
(sann).</p></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td
width="40%" align="left"><a accesskey="p" href="ch09.html">Föregående</a> </td><td width="20%"
align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch11.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel 9. Polynom i GEL
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Kapitel 11. Lista över GEL-funktioner</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch11.html b/help/sv/html/ch11.html
new file mode 100644
index 0000000..1492ff5
--- /dev/null
+++ b/help/sv/html/ch11.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 11. Lista över
GEL-funktioner</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="index.html" title="Handbok för
Genius"><link rel="prev" href="ch10.html" title="Kapitel 10. Mängdlära i GEL"><link rel="next"
href="ch11s02.html" title="Grundläggande"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitel 11. Lista över GEL-funktioner</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch10.html">Föregående</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch11s02.html">Nästa</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1
class="title"><a name="genius-gel-function-list"></a>Kapitel 11. Lista över
GEL-funktioner</h1></div></div></div><div class="toc"><p><b>Innehållsförteckning</b></p><dl
class="toc"><dt><span class="sect1"><a
href="ch11.html#genius-gel-function-list-commands">Kommandon</a></span></dt><dt><span class="sect1"><a
href="ch11s02.html">Grundläggande</a></span></dt><dt><span class="sect1"><a
href="ch11s03.html">Parametrar</a></span></dt><dt><span class="sect1"><a
href="ch11s04.html">Konstanter</a></span></dt><dt><span class="sect1"><a href="ch11s05.html">Numeriska
funktioner</a></span></dt><dt><span class="sect1"><a
href="ch11s06.html">Trigonometri</a></span></dt><dt><span class="sect1"><a
href="ch11s07.html">Talteori</a></span></dt><dt><span class="sect1"><a
href="ch11s08.html">Matrismanipulation</a></span></dt><dt><span class="sect1"><a href="ch11s09.html">Linjär
algebra</a></span></dt><dt><span class="sect1"><a href="ch11s10.html">Kombinatorik</a></span></dt><dt><span
class="
sect1"><a href="ch11s11.html">Kalkyl</a></span></dt><dt><span class="sect1"><a
href="ch11s12.html">Funktioner</a></span></dt><dt><span class="sect1"><a
href="ch11s13.html">Ekvationslösning</a></span></dt><dt><span class="sect1"><a
href="ch11s14.html">Statistik</a></span></dt><dt><span class="sect1"><a
href="ch11s15.html">Polynom</a></span></dt><dt><span class="sect1"><a
href="ch11s16.html">Mängdlära</a></span></dt><dt><span class="sect1"><a href="ch11s17.html">Kommutativ
algebra</a></span></dt><dt><span class="sect1"><a href="ch11s18.html">Diverse</a></span></dt><dt><span
class="sect1"><a href="ch11s19.html">Symboliska operationer</a></span></dt><dt><span class="sect1"><a
href="ch11s20.html">Grafritning</a></span></dt></dl></div><p>För att få hjälp om en specifik funktion från
konsolen skriv: </p><pre class="programlisting">help Funktionsnamn
+</pre><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-commands"></a>Kommandon</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a name="gel-command-help"></a>help</span></dt><dd><pre
class="synopsis">help</pre><pre class="synopsis">help Funktionsnamn</pre><p>Skriv ut hjälp (eller hjälp om
funktion/kommando).</p></dd><dt><span class="term"><a name="gel-command-load"></a>load</span></dt><dd><pre
class="synopsis">load "fil.gel"</pre><p>Läs in en fil i tolken. Filen kommer att exekveras som om den skrevs
in i kommandoraden.</p></dd><dt><span class="term"><a name="gel-command-cd"></a>cd</span></dt><dd><pre
class="synopsis">cd /katalog/namn</pre><p>Ändra arbetskatalog till <code
class="filename">/katalog/namn</code>.</p></dd><dt><span class="term"><a
name="gel-command-pwd"></a>pwd</span></dt><dd><pre class="synopsis">pwd</pre><p>Skriv ut aktuell arbetskata
log.</p></dd><dt><span class="term"><a name="gel-command-ls"></a>ls</span></dt><dd><pre
class="synopsis">ls</pre><p>Lista filer i aktuell katalog.</p></dd><dt><span class="term"><a
name="gel-command-plugin"></a>plugin</span></dt><dd><pre class="synopsis">plugin
insticksmodulnamn</pre><p>Läs in en insticksmodul. En insticksmodul med det namnet måste vara installerad på
systemet i rätt katalog.</p></dd></dl></div></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch10.html">Föregående</a>
</td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch11s02.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel 10. Mängdlära i
GEL </td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Grundläggande</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch11s02.html b/help/sv/html/ch11s02.html
new file mode 100644
index 0000000..b9e53cc
--- /dev/null
+++ b/help/sv/html/ch11s02.html
@@ -0,0 +1,12 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Grundläggande</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="ch11.html"
title="Kapitel 11. Lista över GEL-funktioner"><link rel="prev" href="ch11.html" title="Kapitel 11. Lista över
GEL-funktioner"><link rel="next" href="ch11s03.html" title="Parametrar"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Grundläggande</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch11.html">Föregående</a> </td><th width="60%" align="center">Kapitel 11.
Lista över GEL-funktioner</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s03.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div>
<div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-basic"></a>Grundläggande</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-AskButtons"></a>AskButtons</span></dt><dd><pre class="synopsis">AskButtons
(fråga)</pre><pre class="synopsis">AskButtons (fråga, knapp1, ...)</pre><p>Ställer en fråga och visar en
lista med knappar för användaren (eller en meny med val i textläge). Returnerar det 1-baserade indexet för
knappen som tryckts ned. Det vill säga returnerar 1 om den första knappen trycktes ned, 2 om den andra
knappen trycktes ned och så vidare. Om användaren stänger fönstret (Eller helt enkelt trycker Retur i
textläge) så returneras <code class="constant">null</code>. Körningen av programmet blockeras till användaren
svarar.</p><p>Version 1.0.10 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-AskString"></a>AskString</span></dt><dd><pre class="s
ynopsis">AskString (fråga)</pre><pre class="synopsis">AskString (fråga, standard)</pre><p>Ställer en fråga
och låter användaren mata in en sträng som det sedan returnerar. Om användaren avbryter eller stänger
fönstret returneras <code class="constant">null</code>. Körningen av programmet blockeras till användaren
svarar. Om <code class="varname">standard</code> anges är det förifyllt så att användaren helt enkelt kan
trycka retur (version 1.0.6 och framåt).</p></dd><dt><span class="term"><a
name="gel-function-Compose"></a>Compose</span></dt><dd><pre class="synopsis">Compose (f,g)</pre><p>Sätt
samman två funktioner och returnera en funktion som är sammanslagningen av <code class="function">f</code>
och <code class="function">g</code>.</p></dd><dt><span class="term"><a
name="gel-function-ComposePower"></a>ComposePower</span></dt><dd><pre class="synopsis">ComposePower
(f,n,x)</pre><p>Sätt samman en funktion med sig själv <code class="varname">n</code> gån
ger och kör den, med <code class="varname">x</code> som argument. Returnerar <code class="varname">x</code>
om <code class="varname">n</code> är 0. Exempel: </p><pre class="screen"><code
class="prompt">genius></code> <strong class="userinput"><code>function f(x) = x^2 ;</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>ComposePower (f,3,7)</code></strong>
+= 5764801
+<code class="prompt">genius></code> <strong class="userinput"><code>f(f(f(7)))</code></strong>
+= 5764801
+</pre></dd><dt><span class="term"><a name="gel-function-Evaluate"></a>Evaluate</span></dt><dd><pre
class="synopsis">Evaluate (str)</pre><p>Tolkar och evaluerar en sträng.</p></dd><dt><span class="term"><a
name="gel-function-GetCurrentModulo"></a>GetCurrentModulo</span></dt><dd><pre
class="synopsis">GetCurrentModulo</pre><p>Hämta aktuell modulo från kontexten utanför funktionen. Det vill
säga, om utsidan av funktionen exekverades i modulo (med <code class="literal">mod</code>) så returnerar
detta vad detta modulo var. Normalt exekveras kroppen av den anropade funktionen inte i modulär aritmetik,
och denna inbyggda funktion gör det möjligt att göra GEL-funktioner medvetna om modulär
aritmetik.</p></dd><dt><span class="term"><a name="gel-function-Identity"></a>Identity</span></dt><dd><pre
class="synopsis">Identity (x)</pre><p>Identitetsfunktionen, returnerar sitt argument. Den är ekvivalent med
<strong class="userinput"><code>function Identity(x)=x</code></strong>.<
/p></dd><dt><span class="term"><a
name="gel-function-IntegerFromBoolean"></a>IntegerFromBoolean</span></dt><dd><pre
class="synopsis">IntegerFromBoolean (bool)</pre><p>Skapa heltal (0 för <code class="constant">false</code>
eller 1 för <code class="constant">true</code>) från booleskt värde. <code class="varname">bool</code> kan
också vara ett tal i vilket fall ett nollskilt värde kommer tolkas som <code class="constant">true</code> och
noll kommer tolkas som <code class="constant">false</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsBoolean"></a>IsBoolean</span></dt><dd><pre class="synopsis">IsBoolean
(arg)</pre><p>Kontrollera om argumentet är booleskt (och inte ett tal).</p></dd><dt><span class="term"><a
name="gel-function-IsDefined"></a>IsDefined</span></dt><dd><pre class="synopsis">IsDefined
(id)</pre><p>Kontrollera om ett id är definierat. Du bör skicka en sträng och eller identifierare. Om du
skickar en matris kommer varje post att evalueras se
parat och matrisen bör innehålla strängar eller identifierare.</p></dd><dt><span class="term"><a
name="gel-function-IsFunction"></a>IsFunction</span></dt><dd><pre class="synopsis">IsFunction
(arg)</pre><p>Kontrollera om argumentet är en funktion.</p></dd><dt><span class="term"><a
name="gel-function-IsFunctionOrIdentifier"></a>IsFunctionOrIdentifier</span></dt><dd><pre
class="synopsis">IsFunctionOrIdentifier (arg)</pre><p>Kontrollera om argumentet är en funktion eller en
identifierare.</p></dd><dt><span class="term"><a
name="gel-function-IsFunctionRef"></a>IsFunctionRef</span></dt><dd><pre class="synopsis">IsFunctionRef
(arg)</pre><p>Kontrollera om argumentet är en funktionsreferens. Detta inkluderar
variabelreferenser.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrix"></a>IsMatrix</span></dt><dd><pre class="synopsis">IsMatrix
(arg)</pre><p>Kontrollera om argumentet är en matris. Även om <code class="constant">null</code> ibland anses
vara en tom matris s
å anser funktionen <code class="function">IsMatrix</code> inte att <code class="constant">null</code> är en
matris.</p></dd><dt><span class="term"><a name="gel-function-IsNull"></a>IsNull</span></dt><dd><pre
class="synopsis">IsNull (arg)</pre><p>Kontrollera om argumentet är ett <code
class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsString"></a>IsString</span></dt><dd><pre class="synopsis">IsString
(arg)</pre><p>Kontrollera om argumentet är en textsträng.</p></dd><dt><span class="term"><a
name="gel-function-IsValue"></a>IsValue</span></dt><dd><pre class="synopsis">IsValue
(arg)</pre><p>Kontrollera om argumentet är ett tal.</p></dd><dt><span class="term"><a
name="gel-function-Parse"></a>Parse</span></dt><dd><pre class="synopsis">Parse (str)</pre><p>Tolkar men
evaluerar inte en sträng. Observera att viss förberäkning sker på tolkstadiet.</p></dd><dt><span
class="term"><a name="gel-function-SetFunctionFlags"></a>SetFunctionFlags</spa
n></dt><dd><pre class="synopsis">SetFunctionFlags (id,flaggor...)</pre><p>Ställ in flaggor för en funktion,
för närvarande <code class="literal">"PropagateMod"</code> och <code
class="literal">"NoModuloArguments"</code>. Om <code class="literal">"PropagateMod"</code> är inställd,
kommer funktionens kropp evalueras i modulär aritmetik då funktionen är anropad inuti ett block som
evaluerats med modulär aritmetik (med <code class="literal">mod</code>). Om <code
class="literal">"NoModuloArguments"</code>, evalueras funktionens argument aldrig med modulär
aritmetik.</p></dd><dt><span class="term"><a name="gel-function-SetHelp"></a>SetHelp</span></dt><dd><pre
class="synopsis">SetHelp (id,kategori,beskr)</pre><p>Ställer in kategori- och hjälpbeskrivningsraderna för en
funktion.</p></dd><dt><span class="term"><a
name="gel-function-SetHelpAlias"></a>SetHelpAlias</span></dt><dd><pre class="synopsis">SetHelpAlias
(id,alias)</pre><p>Konfigurerar ett hjälpalias.</p></dd><d
t><span class="term"><a name="gel-function-chdir"></a>chdir</span></dt><dd><pre class="synopsis">chdir
(kat)</pre><p>Ändrar aktuell katalog, samma som <span
class="command"><strong>cd</strong></span>.</p></dd><dt><span class="term"><a
name="gel-function-CurrentTime"></a>CurrentTime</span></dt><dd><pre
class="synopsis">CurrentTime</pre><p>Returnerar aktuell UNIX-tid med mikrosekundsprecision som ett flyttal.
Det vill säga, returnera antalet sekunder sedan 1 januari 1970.</p><p>Version 1.0.15 och
framåt.</p></dd><dt><span class="term"><a name="gel-function-display"></a>display</span></dt><dd><pre
class="synopsis">display (str,uttr)</pre><p>Visa en sträng och ett uttryck med ett kolon mellan
dem.</p></dd><dt><span class="term"><a
name="gel-function-DisplayVariables"></a>DisplayVariables</span></dt><dd><pre
class="synopsis">DisplayVariables (var1,var2,...)</pre><p>Visa en uppsättning variabler. Variablerna kan
anges som strängar eller identifierare. Till exempel: </p><pre
class="programlisting">DisplayVariables(`x,`y,`z)
+ </pre><p>Om anropad utan argument (måste skicka med tom argumentlista) som </p><pre
class="programlisting">DisplayVariables()
+ </pre><p> så skrivs alla variabler ut inklusive ett stackspår liknande <span
class="guilabel">Visa användarvariabler</span> i den grafiska versionen.</p><p>Version 1.0.18 och
framåt.</p></dd><dt><span class="term"><a name="gel-function-error"></a>error</span></dt><dd><pre
class="synopsis">error (str)</pre><p>Skriver ut en sträng till felflödet (till konsolen).</p></dd><dt><span
class="term"><a name="gel-function-exit"></a>exit</span></dt><dd><pre class="synopsis">exit</pre><p>Alias:
<code class="function">quit</code></p><p>Avslutar programmet.</p></dd><dt><span class="term"><a
name="gel-function-false"></a>false</span></dt><dd><pre class="synopsis">false</pre><p>Alias: <code
class="function">False</code><code class="function">FALSE</code></p><p>Det booleska värdet <code
class="constant">false</code> (falskt).</p></dd><dt><span class="term"><a
name="gel-function-manual"></a>manual</span></dt><dd><pre class="synopsis">manual</pre><p>Visar
användarmanualen.</p></dd
<dt><span class="term"><a name="gel-function-print"></a>print</span></dt><dd><pre class="synopsis">print
(str)</pre><p>Skriver ut ett uttryck och sedan en nyrad. Argumentet <code class="varname">str</code> kan
vara ett godtyckligt uttryck. Det omvandlas till en sträng innan det skrivs ut.</p></dd><dt><span
class="term"><a name="gel-function-printn"></a>printn</span></dt><dd><pre class="synopsis">printn
(str)</pre><p>Skriver ut ett uttryck utan en avslutande nyrad. Argumentet <code class="varname">str</code>
kan vara ett godtyckligt uttryck. Det omvandlas till en sträng innan det skrivs ut.</p></dd><dt><span
class="term"><a name="gel-function-PrintTable"></a>PrintTable</span></dt><dd><pre
class="synopsis">PrintTable (f,v)</pre><p>Skriv ut en tabell med värden för en funktion. Värdena är i
vektorn <code class="varname">v</code>. Du kan använda vektorbyggnotationen enligt följande: </p><pre
class="programlisting">PrintTable (f,[0:10])
+ </pre><p> Om <code class="varname">v</code> är ett positivt heltal kommer tabellen av heltal från
1 upp till och inklusive v att användas.</p><p>Version 1.0.18 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-protect"></a>protect</span></dt><dd><pre class="synopsis">protect (id)</pre><p>Skydda en
variabel från att ändras. Detta används på de interna GEL-funktionerna för att förhindra att de skrivs över
av misstag.</p></dd><dt><span class="term"><a
name="gel-function-ProtectAll"></a>ProtectAll</span></dt><dd><pre class="synopsis">ProtectAll
()</pre><p>Skydda alla för närvarande definierade variabler, parametrar och funktioner från att ändras. Detta
används på de interna GEL-funktionerna för att förhindra dem från att skrivas över av misstag. Normalt anser
<span class="application">Genius matematikverktyg</span> oskyddade variabler vara
användardefinierade.</p><p>Version 1.0.7 och framåt.</p></dd><dt><span class="term"><a name="gel-f
unction-set"></a>set</span></dt><dd><pre class="synopsis">set (id,värde)</pre><p>Ställ in en global
variabel. <code class="varname">id</code> kan antingen vara en sträng eller en citerad identifierare. Till
exempel: </p><pre class="programlisting">set(`x,1)
+ </pre><p> kommer ställa in den globala variabeln <code class="varname">x</code> till värdet
1.</p><p>Funktionen returnerar <code class="varname">värde</code>, att användas i en kedja.</p></dd><dt><span
class="term"><a name="gel-function-SetElement"></a>SetElement</span></dt><dd><pre class="synopsis">SetElement
(id,rad,kol,värde)</pre><p>Ställ in ett element i en global variabel som är en matris. <code
class="varname">id</code> kan vara antingen en sträng eller en citerad identifierare. Till exempel: </p><pre
class="programlisting">SetElement(`x,2,3,1)
+ </pre><p> kommer att ställa in elementet i andra raden och tredje kolumnen av den globala
variabeln <code class="varname">x</code> till värdet 1. Om ingen global variabel med det namnet existerar,
eller om den är inställd till något som inte är en matris kommer en ny nollmatris av lämplig storlek att
skapas.</p><p><code class="varname">rad</code> och <code class="varname">kol</code> kan också vara intervall,
och semantiken är densamma som för vanlig inställning av elementen med ett lika med-tecken.</p><p>Funktionen
returnerar <code class="varname">värde</code>, att användas i en kedja.</p><p>Tillgängligt i 1.0.18 och
framåt.</p></dd><dt><span class="term"><a name="gel-function-SetVElement"></a>SetVElement</span></dt><dd><pre
class="synopsis">SetElement (id,elt,värde)</pre><p>Ställ in ett element i en global variabel som är en
vektor. <code class="varname">id</code> kan vara antingen en sträng eller en citerad identifierare. Till
exempel: </p><pre clas
s="programlisting">SetElement(`x,2,1)
+ </pre><p> kommer att ställa in det andra elementet i den globala vektorvariabeln <code
class="varname">x</code> till värdet 1. Om ingen global variabel med det namnet existerar, eller om den är
inställd till något som inte är en vektor (matris) kommer en ny nollradvektor av lämplig storlek att
skapas.</p><p><code class="varname">elt</code> kan också vara ett intervall, och semantiken är densamma som
för vanlig inställning av elementen med ett lika med-tecken.</p><p>Funktionen returnerar <code
class="varname">värde</code>, att användas i en kedja.</p><p>Tillgängligt i 1.0.18 och
framåt.</p></dd><dt><span class="term"><a name="gel-function-string"></a>string</span></dt><dd><pre
class="synopsis">string (s)</pre><p>Skapa en sträng. Detta kommer göra en sträng av ett godtyckligt
argument.</p></dd><dt><span class="term"><a name="gel-function-true"></a>true</span></dt><dd><pre
class="synopsis">true</pre><p>Alias: <code class="function">True</code><code class=
"function">TRUE</code></p><p>Det booleska värdet <code class="constant">true</code>
(sant).</p></dd><dt><span class="term"><a name="gel-function-undefine"></a>undefine</span></dt><dd><pre
class="synopsis">undefine (id)</pre><p>Alias: <code class="function">Undefine</code></p><p>Avdefiniera en
variabel. Detta inkluderar lokala och globala variabler, varje värde i alla kontextnivåer rensas. Denna
funktion bör egentligen inte användas på lokala variabler. En vektor av identifierare kan också skickas för
att avdefiniera flera variabler.</p></dd><dt><span class="term"><a
name="gel-function-UndefineAll"></a>UndefineAll</span></dt><dd><pre class="synopsis">UndefineAll
()</pre><p>Avdefiniera alla oskyddade globala variabler (inklusive funktioner och parametrar). Normalt anser
<span class="application">Genius matematikverktyg</span> skyddade variabler vara systemdefinierade funktioner
och variabler. Observera att <code class="function">UndefineAll</code> endast tar bort den g
lobala definitionen av symboler, inte lokala, så den kan köras säkert inifrån andra
funktioner.</p><p>Version 1.0.7 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-unprotect"></a>unprotect</span></dt><dd><pre class="synopsis">unprotect
(id)</pre><p>Skydda inte längre en variabel från att ändras.</p></dd><dt><span class="term"><a
name="gel-function-UserVariables"></a>UserVariables</span></dt><dd><pre class="synopsis">UserVariables
()</pre><p>Returnera en vektor av identifierar för användardefinierade (oskyddade) globala
variabelnamn.</p><p>Version 1.0.7 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-wait"></a>wait</span></dt><dd><pre class="synopsis">wait (sek)</pre><p>Väntar ett angivet
antal sekunder. <code class="varname">sek</code> måste vara icke-negativ. Noll accepteras och inget händer i
detta fall, förutom att möjligen användargränssnittshändelser behandlas.</p><p>Sedan version 1.0.18 kan <code
class="varname">sek<
/code> vara ett icke-heltal, så <strong class="userinput"><code>wait(0.1)</code></strong> kommer vänta en
tiondels sekund.</p></dd><dt><span class="term"><a
name="gel-function-version"></a>version</span></dt><dd><pre class="synopsis">version</pre><p>Returnerar
versionen för Genius som en horisontell 3-vektor med huvudversion först, sedan mindre version och slutligen
patchnivå.</p></dd><dt><span class="term"><a name="gel-function-warranty"></a>warranty</span></dt><dd><pre
class="synopsis">warranty</pre><p>Ger garantiinformationen.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s03.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel 11. Lista över
GEL-funktioner </td><
td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%" align="right"
valign="top"> Parametrar</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch11s03.html b/help/sv/html/ch11s03.html
new file mode 100644
index 0000000..1d32cd8
--- /dev/null
+++ b/help/sv/html/ch11s03.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Parametrar</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="ch11.html"
title="Kapitel 11. Lista över GEL-funktioner"><link rel="prev" href="ch11s02.html"
title="Grundläggande"><link rel="next" href="ch11s04.html" title="Konstanter"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Parametrar</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch11s02.html">Föregående</a> </td><th width="60%" align="center">Kapitel
11. Lista över GEL-funktioner</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s04.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" sty
le="clear: both"><a name="genius-gel-function-parameters"></a>Parametrar</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ChopTolerance"></a>ChopTolerance</span></dt><dd><pre class="synopsis">ChopTolerance =
tal</pre><p><code class="function">Chop</code>-funktionens tolerans.</p></dd><dt><span class="term"><a
name="gel-function-ContinuousNumberOfTries"></a>ContinuousNumberOfTries</span></dt><dd><pre
class="synopsis">ContinuousNumberOfTries = tal</pre><p>Hur många iterationer för att försöka hitta
gränsvärdet för kontinuitet och gränsvärden.</p></dd><dt><span class="term"><a
name="gel-function-ContinuousSFS"></a>ContinuousSFS</span></dt><dd><pre class="synopsis">ContinuousSFS =
tal</pre><p>Hur många efter varandra följande steg att vara inom tolerans för
kontinuitetsberäkning.</p></dd><dt><span class="term"><a
name="gel-function-ContinuousTolerance"></a>ContinuousTolerance</span></dt><dd><pre cl
ass="synopsis">ContinuousTolerance = tal</pre><p>Toleransen för kontinuiteten för funktioner och för att
beräkna gränsvärdet.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeNumberOfTries"></a>DerivativeNumberOfTries</span></dt><dd><pre
class="synopsis">DerivativeNumberOfTries = tal</pre><p>Hur många iterationer för att försöka hitta
gränsvärdet för derivatan.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeSFS"></a>DerivativeSFS</span></dt><dd><pre class="synopsis">DerivativeSFS =
tal</pre><p>Hur många efter varandra följande steg att vara inom tolerans för beräkning av
derivata.</p></dd><dt><span class="term"><a
name="gel-function-DerivativeTolerance"></a>DerivativeTolerance</span></dt><dd><pre
class="synopsis">DerivativeTolerance = tal</pre><p>Toleransen för att beräkna derivatorna för
funktioner.</p></dd><dt><span class="term"><a
name="gel-function-ErrorFunctionTolerance"></a>ErrorFunctionTolerance</span></dt><dd><pre cla
ss="synopsis">ErrorFunctionTolerance = tal</pre><p>Toleransen för funktionen <a class="link"
href="ch11s12.html#gel-function-ErrorFunction"><code
class="function">ErrorFunction</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-FloatPrecision"></a>FloatPrecision</span></dt><dd><pre class="synopsis">FloatPrecision =
tal</pre><p>Flyttalsprecision.</p></dd><dt><span class="term"><a
name="gel-function-FullExpressions"></a>FullExpressions</span></dt><dd><pre class="synopsis">FullExpressions
= boolean</pre><p>Skriv ut fullständiga uttryck, även om det tar mer än en rad.</p></dd><dt><span
class="term"><a
name="gel-function-GaussDistributionTolerance"></a>GaussDistributionTolerance</span></dt><dd><pre
class="synopsis">GaussDistributionTolerance = tal</pre><p>Toleransen för funktionen <a class="link"
href="ch11s14.html#gel-function-GaussDistribution"><code
class="function">GaussDistribution</code></a>.</p></dd><dt><span class="term"><a name="gel-function-IntegerOut
putBase"></a>IntegerOutputBase</span></dt><dd><pre class="synopsis">IntegerOutputBase = tal</pre><p>Bas för
heltalsutdata.</p></dd><dt><span class="term"><a
name="gel-function-IsPrimeMillerRabinReps"></a>IsPrimeMillerRabinReps</span></dt><dd><pre
class="synopsis">IsPrimeMillerRabinReps = tal</pre><p>Antal extra Miller-Rabin-test att köra på ett tal innan
det deklareras som ett primtal i <a class="link" href="ch11s07.html#gel-function-IsPrime"><code
class="function">IsPrime</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawLegends"></a>LinePlotDrawLegends</span></dt><dd><pre
class="synopsis">LinePlotDrawLegends = true</pre><p>Säger till genius att rita ut förklaringar för <a
class="link" href="ch11s20.html" title="Grafritning">linjegrafsfunktioner</a> som <a class="link"
href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a>.</p></dd><dt><span
class="term"><a name="gel-function-LinePlotDrawAxisLabels"></a>LinePlot
DrawAxisLabels</span></dt><dd><pre class="synopsis">LinePlotDrawAxisLabels = true</pre><p>Säger till genius
att rita ut axeletiketter för <a class="link" href="ch11s20.html"
title="Grafritning">linjegrafsfunktioner</a> som <a class="link"
href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a>.</p><p>Version 1.0.16
och framåt.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotVariableNames"></a>LinePlotVariableNames</span></dt><dd><pre
class="synopsis">LinePlotVariableNames = ["x","y","z","t"]</pre><p>Säger till genius vilka variabelnamn som
används som standardnamn för <a class="link" href="ch11s20.html" title="Grafritning">linjegrafsfunktioner</a>
som <a class="link" href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a> och
dylikt.</p><p>Version 1.0.10 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotWindow"></a>LinePlotWindow</span></dt><dd><pre class="synopsis">LinePlotW
indow = [x1,x2,y1,y2]</pre><p>Ställer in gränserna för <a class="link" href="ch11s20.html"
title="Grafritning">linjegrafsfunktioner</a> som <a class="link"
href="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a>.</p></dd><dt><span
class="term"><a name="gel-function-MaxDigits"></a>MaxDigits</span></dt><dd><pre class="synopsis">MaxDigits =
tal</pre><p>Maximalt antal siffror att visa.</p></dd><dt><span class="term"><a
name="gel-function-MaxErrors"></a>MaxErrors</span></dt><dd><pre class="synopsis">MaxErrors =
tal</pre><p>Maximalt antal fel att visa.</p></dd><dt><span class="term"><a
name="gel-function-MixedFractions"></a>MixedFractions</span></dt><dd><pre class="synopsis">MixedFractions =
boolean</pre><p>Om true (sant) skrivs blandade bråk ut.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegralFunction"></a>NumericalIntegralFunction</span></dt><dd><pre
class="synopsis">NumericalIntegralFunction = funktion</pre><p>Funktionen so
m används för numerisk integration i <a class="link"
href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-NumericalIntegralSteps"></a>NumericalIntegralSteps</span></dt><dd><pre
class="synopsis">NumericalIntegralSteps = tal</pre><p>Steg att utföra i <a class="link"
href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-OutputChopExponent"></a>OutputChopExponent</span></dt><dd><pre
class="synopsis">OutputChopExponent = tal</pre><p>Då ett annat tal i objektet som skrivs ut (en matris eller
ett värde) är större än 10<sup>-OutputChopWhenExponent</sup>, och talet som skrivs ut är mindre än
10<sup>-OutputChopExponent</sup> visas <code class="computeroutput">0.0</code> istället för
talet.</p><p>Utdata klipps aldrig om <code class="function">OutputChopExponent</code> ä
r noll. De måste vara ett icke-negativt heltal.</p><p>Om du vill att utdata alltid ska klippas enligt <code
class="function">OutputChopExponent</code>, ställ då in <code class="function">OutputChopWhenExponent</code>
till något större än eller lika med <code class="function">OutputChopExponent</code>.</p></dd><dt><span
class="term"><a name="gel-function-OutputChopWhenExponent"></a>OutputChopWhenExponent</span></dt><dd><pre
class="synopsis">OutputChopWhenExponent = tal</pre><p>När utdata ska klippas. Se <a class="link"
href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-OutputStyle"></a>OutputStyle</span></dt><dd><pre class="synopsis">OutputStyle =
sträng</pre><p>Utdatastil, detta kan vara <code class="literal">normal</code>, <code
class="literal">latex</code>, <code class="literal">mathml</code> eller <code
class="literal">troff</code>.</p><p>Detta påverkar fr�
�mst hur matriser och bråk skrivs ut och är användbart då du vill klistra in i dokument. Till exempel kan du
ställa in detta till latex med: </p><pre class="programlisting">OutputStyle = "latex"
+</pre></dd><dt><span class="term"><a
name="gel-function-ResultsAsFloats"></a>ResultsAsFloats</span></dt><dd><pre class="synopsis">ResultsAsFloats
= boolean</pre><p>Konvertera alla resultat till flyttal innan de skrivs ut.</p></dd><dt><span class="term"><a
name="gel-function-ScientificNotation"></a>ScientificNotation</span></dt><dd><pre
class="synopsis">ScientificNotation = boolean</pre><p>Använd vetenskaplig notation.</p></dd><dt><span
class="term"><a name="gel-function-SlopefieldTicks"></a>SlopefieldTicks</span></dt><dd><pre
class="synopsis">SlopefieldTicks = [vertikalt,horisontellt]</pre><p>Ställer in antalet vertikala och
horisontella skalstreck i en riktningsfältsgraf. (Se <a class="link"
href="ch11s20.html#gel-function-SlopefieldPlot"><code
class="function">SlopefieldPlot</code></a>).</p><p>Version 1.0.10 och framåt.</p></dd><dt><span
class="term"><a name="gel-function-SumProductNumberOfTries"></a>SumProductNumberOfTries</span></dt><dd><pre
class="synopsis">SumProdu
ctNumberOfTries = tal</pre><p>Hur många iterationer att försöka för <a class="link"
href="ch11s11.html#gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a> och <a
class="link" href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SumProductSFS"></a>SumProductSFS</span></dt><dd><pre class="synopsis">SumProductSFS =
tal</pre><p>Hur många efter varandra följande steg att vara inom tolerans för <a class="link"
href="ch11s11.html#gel-function-InfiniteSum"><code class="function">InfiniteSum</code></a> och <a
class="link" href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SumProductTolerance"></a>SumProductTolerance</span></dt><dd><pre
class="synopsis">SumProductTolerance = tal</pre><p>Toleransen för <a class="link"
href="ch11s11.html#gel-function-InfiniteSu
m"><code class="function">InfiniteSum</code></a> och <a class="link"
href="ch11s11.html#gel-function-InfiniteProduct"><code
class="function">InfiniteProduct</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawLegends"></a>SurfacePlotDrawLegends</span></dt><dd><pre
class="synopsis">SurfacePlotDrawLegends = true</pre><p>Säger till genius att rita ut förklaringar för <a
class="link" href="ch11s20.html" title="Grafritning">ytgrafsfunktioner</a> som <a class="link"
href="ch11s20.html#gel-function-SurfacePlot"><code class="function">SurfacePlot</code></a>.</p><p>Version
1.0.16 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotVariableNames"></a>SurfacePlotVariableNames</span></dt><dd><pre
class="synopsis">SurfacePlotVariableNames = ["x","y","z"]</pre><p>Säger till genius vilka variabelnamn som
används som standardnamn för <a class="link" href="ch11s20.html" title="Grafritning">ytgrafsfunktioner</a>
med <a class="link" hr
ef="ch11s20.html#gel-function-SurfacePlot"><code class="function">SurfacePlot</code></a>. Observera att
<code class="varname">z</code> inte avser den beroende (vertikala) axeln, utan den oberoende komplexa
variabeln <strong class="userinput"><code>z=x+iy</code></strong>.</p><p>Version 1.0.10 och
framåt.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotWindow"></a>SurfacePlotWindow</span></dt><dd><pre
class="synopsis">SurfacePlotWindow = [x1,x2,y1,y2,z1,z2]</pre><p>Ställer in gränserna för ytgrafer (Se <a
class="link" href="ch11s20.html#gel-function-SurfacePlot"><code
class="function">SurfacePlot</code></a>).</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldNormalized"></a>VectorfieldNormalized</span></dt><dd><pre
class="synopsis">VectorfieldNormalized = true</pre><p>Ska vektorfältsgrafen ha normaliserad pillängd. Om true
kommer vektorfält endast visa riktning och inte magnitud. (Se <a class="link"
href="ch11s20.html#gel-function-Vectorfie
ldPlot"><code class="function">VectorfieldPlot</code></a>).</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldTicks"></a>VectorfieldTicks</span></dt><dd><pre
class="synopsis">VectorfieldTicks = [vertikalt,horisontellt]</pre><p>Ställer in antalet vertikala och
horisontella skalstreck i en vektorfältsgraf. (Se <a class="link"
href="ch11s20.html#gel-function-VectorfieldPlot"><code
class="function">VectorfieldPlot</code></a>).</p><p>Version 1.0.10 och framåt.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s02.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s04.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Grundläggande </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td widt
h="40%" align="right" valign="top"> Konstanter</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch11s04.html b/help/sv/html/ch11s04.html
new file mode 100644
index 0000000..35101ee
--- /dev/null
+++ b/help/sv/html/ch11s04.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Konstanter</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="ch11.html"
title="Kapitel 11. Lista över GEL-funktioner"><link rel="prev" href="ch11s03.html" title="Parametrar"><link
rel="next" href="ch11s05.html" title="Numeriska funktioner"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Konstanter</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s03.html">Föregående</a> </td><th width="60%" align="center">Kapitel 11. Lista över
GEL-funktioner</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s05.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="titl
e" style="clear: both"><a
name="genius-gel-function-list-constants"></a>Konstanter</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-CatalanConstant"></a>CatalanConstant</span></dt><dd><pre
class="synopsis">CatalanConstant</pre><p>Catalans konstant, ungefär 0.915... Den är definierad som serien där
termerna är <strong class="userinput"><code>(-1^k)/((2*k+1)^2)</code></strong>, där <code
class="varname">k</code> går från 0 till oändligheten.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Catalan%27s_constant" target="_top">Wikipedia</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/CatalansConstant.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-EulerConstant"></a>EulerConstant</span></dt><dd><pre
class="synopsis">EulerConstant</pre><p>Alias: <code class="function">gamma</code></p><p>Eulers gammakonstant.
Ibland kal
lad Euler-Mascheroni-konstanten.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Euler-Mascheroni_constant" target="_top">Wikipedia</a> eller <a
class="ulink" href="http://planetmath.org/MascheroniConstant" target="_top">Planetmath</a> eller <a
class="ulink" href="http://mathworld.wolfram.com/Euler-MascheroniConstant.html" target="_top">Mathworld</a>
för mer information.</p></dd><dt><span class="term"><a
name="gel-function-GoldenRatio"></a>GoldenRatio</span></dt><dd><pre class="synopsis">GoldenRatio</pre><p>Det
gyllene snittet.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Golden_ratio"
target="_top">Wikipedia</a> eller <a class="ulink" href="http://planetmath.org/GoldenRatio"
target="_top">Planetmath</a> eller <a class="ulink" href="http://mathworld.wolfram.com/GoldenRatio.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-Gravity"></a>Gravity</span></dt><dd><pre class="synopsis">Gravity<
/pre><p>Acceleration vid fritt fall vid havsytan i meter per sekundkvadrat- Detta är den vanliga
gravitationskonstanten 9.80665. Gravitationen i dina hemtrakter kan skilja sig från denna på grund av annan
höjd och för att jorden inte är ett perfekt klot.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Standard_gravity" target="_top">Wikipedia</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-e"></a>e</span></dt><dd><pre
class="synopsis">e</pre><p>Basen för den naturliga logaritmen. <strong
class="userinput"><code>e^x</code></strong> är den exponentiella funktionen <a class="link"
href="ch11s05.html#gel-function-exp"><code class="function">exp</code></a>. Den är ungefär 2.71828182846...
Detta tal kallas ibland Eulers tal, men det finns flera tal som också kallas Eulers. Ett exempel på det är
gammakonstanten: <a class="link" href="ch11s04.html#gel-function-EulerConstant"><code
class="function">EulerConstant</code></a>.</p>
<p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/E_(mathematical_constant)"
target="_top">Wikipedia</a> eller <a class="ulink" href="http://planetmath.org/E"
target="_top">Planetmath</a> eller <a class="ulink" href="http://mathworld.wolfram.com/e.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-pi"></a>pi</span></dt><dd><pre class="synopsis">pi</pre><p>Talet pi, det vill säga
förhållandet mellan en cirkels omkrets och dess diameter. Detta är ungefär 3,14159265359...</p><p>Se <a
class="ulink" href="http://en.wikipedia.org/wiki/Pi" target="_top">Wikipedia</a> eller <a class="ulink"
href="http://planetmath.org/Pi" target="_top">Planetmath</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/Pi.html" target="_top">Mathworld</a> för mer
information.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s03.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s05.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Parametrar </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%" align="right"
valign="top"> Numeriska funktioner</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch11s05.html b/help/sv/html/ch11s05.html
new file mode 100644
index 0000000..5a6a607
--- /dev/null
+++ b/help/sv/html/ch11s05.html
@@ -0,0 +1,23 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Numeriska
funktioner</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="ch11.html" title="Kapitel 11. Lista över
GEL-funktioner"><link rel="prev" href="ch11s04.html" title="Konstanter"><link rel="next" href="ch11s06.html"
title="Trigonometri"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Numeriska funktioner</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s04.html">Föregående</a> </td><th width="60%" align="center">Kapitel 11. Lista över
GEL-funktioner</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s06.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-function-list-numeric"></a>Numeriska
funktioner</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AbsoluteValue"></a>AbsoluteValue</span></dt><dd><pre class="synopsis">AbsoluteValue
(x)</pre><p>Alias: <code class="function">abs</code></p><p>Absolutbeloppet av ett tal, och om <code
class="varname">x</code> är ett komplext tal så är detta avståndet för <code class="varname">x</code> till
origo. Detta är ekvivalent med <strong class="userinput"><code>|x|</code></strong>.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Absolute_value" target="_top">Wikipedia</a>, <a class="ulink"
href="http://planetmath.org/AbsoluteValue" target="_top">Planetmath (absolutbelopp)</a>, <a class="ulink"
href="http://planetmath.org/ModulusOfComplexNumber" target="_top">Planetmath (modulus)</a>, <a class="ulink"
href="http://mathworld.wolfram.com/AbsoluteValue.
html" target="_top">Mathworld (absolutbelopp)</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/ComplexModulus.html" target="_top">Mathworld (complex modulus)</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-Chop"></a>Chop</span></dt><dd><pre
class="synopsis">Chop (x)</pre><p>Ersätt väldigt litet tal med noll.</p></dd><dt><span class="term"><a
name="gel-function-ComplexConjugate"></a>ComplexConjugate</span></dt><dd><pre
class="synopsis">ComplexConjugate (z)</pre><p>Alias: <code class="function">conj</code><code
class="function">Conj</code></p><p>Beräknar komplexkonjugatet av det komplexa talet <code
class="varname">z</code>. Om <code class="varname">z</code> är en vektor eller matris konjugeras alla dess
element.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Complex_conjugate"
target="_top">Wikipedia</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-Denominator"></a>Denominator</span></
dt><dd><pre class="synopsis">Denominator (x)</pre><p>Hämta nämnaren för ett rationellt tal.</p><p>Se <a
class="ulink" href="http://en.wikipedia.org/wiki/Denominator" target="_top">Wikipedia</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-FractionalPart"></a>FractionalPart</span></dt><dd><pre class="synopsis">FractionalPart
(x)</pre><p>Returnera bråkdelen av ett tal.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Fractional_part" target="_top">Wikipedia</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-Im"></a>Im</span></dt><dd><pre
class="synopsis">Im (z)</pre><p>Alias: <code class="function">ImaginaryPart</code></p><p>Hämta den imaginära
delen av ett komplext tal. Till exempel ger <strong class="userinput"><code>Re(3+4i)</code></strong> svaret
4.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Imaginary_part" target="_top">Wikipedia</a>
för mer information.</p></dd><dt><span class=
"term"><a name="gel-function-IntegerQuotient"></a>IntegerQuotient</span></dt><dd><pre
class="synopsis">IntegerQuotient (m,n)</pre><p>Division utan rest.</p></dd><dt><span class="term"><a
name="gel-function-IsComplex"></a>IsComplex</span></dt><dd><pre class="synopsis">IsComplex
(tal)</pre><p>Kontrollera om argumentet är ett komplext (icke-reellt) tal. Observera att vi menar icke-reellt
tal. Det vill säga <strong class="userinput"><code>IsComplex(3)</code></strong> ger false, medan <strong
class="userinput"><code>IsComplex(3-1i)</code></strong> ger true.</p></dd><dt><span class="term"><a
name="gel-function-IsComplexRational"></a>IsComplexRational</span></dt><dd><pre
class="synopsis">IsComplexRational (tal)</pre><p>Kontrollera om argumentet är ett möjligtvis komplext
rationellt tal. Det vill säga om både real- och imaginärdelarna anges som rationella tal. Givetvis betyder
rationell helt enkelt ”inte lagrad som ett flyttal”.</p></dd><dt><span class="term"><a name="gel
-function-IsFloat"></a>IsFloat</span></dt><dd><pre class="synopsis">IsFloat (tal)</pre><p>Kontrollera om
argumentet är ett reellt flyttal (icke-komplext).</p></dd><dt><span class="term"><a
name="gel-function-IsGaussInteger"></a>IsGaussInteger</span></dt><dd><pre class="synopsis">IsGaussInteger
(tal)</pre><p>Alias: <code class="function">IsComplexInteger</code></p><p>Kontrollera om argumentet är ett
möjligtvis komplext heltal. Det vill säga ett komplext heltal är ett heltal på formen <strong
class="userinput"><code>n+1i*m</code></strong> där <code class="varname">n</code> och <code
class="varname">m</code> är heltal.</p></dd><dt><span class="term"><a
name="gel-function-IsInteger"></a>IsInteger</span></dt><dd><pre class="synopsis">IsInteger
(tal)</pre><p>Kontrollera om argumentet är ett heltal (icke-komplext).</p></dd><dt><span class="term"><a
name="gel-function-IsNonNegativeInteger"></a>IsNonNegativeInteger</span></dt><dd><pre
class="synopsis">IsNonNegativeInteger (t
al)</pre><p>Kontrollera om argumentet är ett icke-negativt reellt heltal. Det vill säga antingen ett
positivt heltal eller noll.</p></dd><dt><span class="term"><a
name="gel-function-IsPositiveInteger"></a>IsPositiveInteger</span></dt><dd><pre
class="synopsis">IsPositiveInteger (tal)</pre><p>Alias: <code
class="function">IsNaturalNumber</code></p><p>Kontrollera om argumentet är ett positivt reellt heltal.
Observera att vi accepterar konventionen att 0 inte är ett naturligt tal.</p></dd><dt><span class="term"><a
name="gel-function-IsRational"></a>IsRational</span></dt><dd><pre class="synopsis">IsRational
(tal)</pre><p>Kontrollera om argumentet är ett rationellt tal (icke-komplext). Rationellt betyder förstås
endast ”inte lagrat som ett flyttal”.</p></dd><dt><span class="term"><a
name="gel-function-IsReal"></a>IsReal</span></dt><dd><pre class="synopsis">IsReal (tal)</pre><p>Kontrollera
om argumentet är ett reellt tal.</p></dd><dt><span class="term"><a name="gel-func
tion-Numerator"></a>Numerator</span></dt><dd><pre class="synopsis">Numerator (x)</pre><p>Hämta täljaren för
ett rationellt tal.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Numerator"
target="_top">Wikipedia</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-Re"></a>Re</span></dt><dd><pre class="synopsis">Re (z)</pre><p>Alias: <code
class="function">RealPart</code></p><p>Hämta den reella delen av ett komplext tal. Till exempel ger <strong
class="userinput"><code>Re(3+4i)</code></strong> svaret 3.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Real_part" target="_top">Wikipedia</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-Sign"></a>Sign</span></dt><dd><pre
class="synopsis">Sign (x)</pre><p>Alias: <code class="function">sign</code></p><p>Returnera tecknet för ett
tal. Det vill säga returnerar <code class="literal">-1</code> om värdet är negativt, <code
class="literal">0</code> o
m värdet är noll och <code class="literal">1</code> om värdet är positivt. Om <code class="varname">x</code>
är ett komplext värde så returnerar <code class="function">Sign</code> riktningen eller 0.</p></dd><dt><span
class="term"><a name="gel-function-ceil"></a>ceil</span></dt><dd><pre class="synopsis">ceil
(x)</pre><p>Alias: <code class="function">Ceiling</code></p><p>Hämta det minsta heltalet större än eller lika
med <code class="varname">n</code>. Exempel: </p><pre class="screen"><code class="prompt">genius></code>
<strong class="userinput"><code>ceil(1.1)</code></strong>
+= 2
+<code class="prompt">genius></code> <strong class="userinput"><code>ceil(-1.1)</code></strong>
+= -1
+</pre><p>Observera att du bör vara försiktig och notera att flyttal lagras binärt och därför kanske inte är
vad du förväntar dig. Till exempel har vi <strong class="userinput"><code>ceil(420/4.2)</code></strong> som
returnerar 101 istället för det förväntade 100. Detta är för att 4.2 faktiskt är något mindre än 4.2. Använd
bråkrepresentationen <strong class="userinput"><code>42/10</code></strong> om du vill ha exakt
aritmetik.</p></dd><dt><span class="term"><a name="gel-function-exp"></a>exp</span></dt><dd><pre
class="synopsis">exp (x)</pre><p>Exponentialfunktionen. Detta är funktionen <strong
class="userinput"><code>e^x</code></strong> där <code class="varname">e</code> är <a class="link"
href="ch11s04.html#gel-function-e">basen för den naturliga logaritmen</a>.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Exponential_function" target="_top">Wikipedia</a> eller <a class="ulink"
href="http://planetmath.org/LogarithmFunction" target="_to
p">Planetmath</a> eller <a class="ulink" href="http://mathworld.wolfram.com/ExponentialFunction.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-float"></a>float</span></dt><dd><pre class="synopsis">float (x)</pre><p>Gör ett tal till
ett flyttalsvärde. Det vill säga returnerar flyttalsrepresentationen av talet <code
class="varname">x</code>.</p></dd><dt><span class="term"><a
name="gel-function-floor"></a>floor</span></dt><dd><pre class="synopsis">floor (x)</pre><p>Alias: <code
class="function">Floor</code></p><p>Hämta det största heltalet mindre än eller lika med <code
class="varname">n</code>.</p></dd><dt><span class="term"><a name="gel-function-ln"></a>ln</span></dt><dd><pre
class="synopsis">ln (x)</pre><p>Den naturliga logaritmen, logaritmen med bas <code
class="varname">e</code>.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Natural_logarithm"
target="_top">Wikipedia</a> eller <a class="ulin
k" href="http://planetmath.org/LogarithmFunction" target="_top">Planetmath</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/NaturalLogarithm.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-log"></a>log</span></dt><dd><pre
class="synopsis">log (x)</pre><pre class="synopsis">log (x,b)</pre><p>Logaritm för <code
class="varname">x</code> med basen <code class="varname">b</code> (anropar <a class="link"
href="ch11s07.html#gel-function-DiscreteLog"><code class="function">DiscreteLog</code></a> om i moduloläge),
om bas inte är angiven används <a class="link" href="ch11s04.html#gel-function-e"><code
class="varname">e</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-log10"></a>log10</span></dt><dd><pre class="synopsis">log10 (x)</pre><p>Logaritmen av
<code class="varname">x</code> bas 10.</p></dd><dt><span class="term"><a
name="gel-function-log2"></a>log2</span></dt><dd><pre class="synopsis"
log2 (x)</pre><p>Alias: <code class="function">lg</code></p><p>Logaritmen av <code class="varname">x</code>
bas 2.</p></dd><dt><span class="term"><a name="gel-function-max"></a>max</span></dt><dd><pre
class="synopsis">max (a,arg...)</pre><p>Alias: <code class="function">Max</code><code
class="function">Maximum</code></p><p>Returnera maximum av argument eller matris.</p></dd><dt><span
class="term"><a name="gel-function-min"></a>min</span></dt><dd><pre class="synopsis">min
(a,arg...)</pre><p>Alias: <code class="function">Min</code><code
class="function">Minimum</code></p><p>Returnera minimum av argument eller matris.</p></dd><dt><span
class="term"><a name="gel-function-rand"></a>rand</span></dt><dd><pre class="synopsis">rand
(storlek...)</pre><p>Generera slumpmässigt flyttal i intervallet <code class="literal">[0,1)</code>. Om
storlek är angiven returneras en matris (om två tal anges) eller en vektor (om ett tal anges) av den
angivna storleken.</p></dd><dt><span class="ter
m"><a name="gel-function-randint"></a>randint</span></dt><dd><pre class="synopsis">randint
(max,storlek...)</pre><p>Generera slumpmässigt heltal i intervallet <code class="literal">[0,1)</code>. Om
storlek är angiven returneras en matris (om två tal anges) eller en vektor (om ett tal anges) av den angivna
storleken. Till exempel, </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>randint(4)</code></strong>
+= 3
+<code class="prompt">genius></code> <strong class="userinput"><code>randint(4,2)</code></strong>
+=
+[0 1]
+<code class="prompt">genius></code> <strong class="userinput"><code>randint(4,2,3)</code></strong>
+=
+[2 2 1
+ 0 0 3]
+</pre></dd><dt><span class="term"><a name="gel-function-round"></a>round</span></dt><dd><pre
class="synopsis">round (x)</pre><p>Alias: <code class="function">Round</code></p><p>Avrunda ett
tal.</p></dd><dt><span class="term"><a name="gel-function-sqrt"></a>sqrt</span></dt><dd><pre
class="synopsis">sqrt (x)</pre><p>Alias: <code class="function">SquareRoot</code></p><p>Kvadratroten. Vid
operation modulo något heltal kommer den returnera antingen <code class="constant">null</code> eller en
vektor av kvadratrötterna. Exempel: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>sqrt(2)</code></strong>
+= 1.41421356237
+<code class="prompt">genius></code> <strong class="userinput"><code>sqrt(-1)</code></strong>
+= 1i
+<code class="prompt">genius></code> <strong class="userinput"><code>sqrt(4) mod 7</code></strong>
+=
+[2 5]
+<code class="prompt">genius></code> <strong class="userinput"><code>2*2 mod 7</code></strong>
+= 4
+</pre><p>Se <a class="ulink" href="https://en.wikipedia.org/wiki/Square_root" target="_top">Wikipedia</a>
eller <a class="ulink" href="http://planetmath.org/SquareRoot" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-trunc"></a>trunc</span></dt><dd><pre
class="synopsis">trunc (x)</pre><p>Alias: <code class="function">Truncate</code><code
class="function">IntegerPart</code></p><p>Trunkera talet till ett heltal (returnera
heltalsdelen).</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s04.html">Föregående</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Upp</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s06.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Konstanter
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a
</td><td width="40%" align="right" valign="top"> Trigonometri</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch11s06.html b/help/sv/html/ch11s06.html
new file mode 100644
index 0000000..c0575b4
--- /dev/null
+++ b/help/sv/html/ch11s06.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Trigonometri</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="ch11.html"
title="Kapitel 11. Lista över GEL-funktioner"><link rel="prev" href="ch11s05.html" title="Numeriska
funktioner"><link rel="next" href="ch11s07.html" title="Talteori"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Trigonometri</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s05.html">Föregående</a> </td><th width="60%" align="center">Kapitel 11. Lista över
GEL-funktioner</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s07.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="ti
tle" style="clear: both"><a
name="genius-gel-function-list-trigonometry"></a>Trigonometri</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-acos"></a>acos</span></dt><dd><pre class="synopsis">acos (x)</pre><p>Alias: <code
class="function">arccos</code></p><p>arccos-funktionen (invers cos).</p></dd><dt><span class="term"><a
name="gel-function-acosh"></a>acosh</span></dt><dd><pre class="synopsis">acosh (x)</pre><p>Alias: <code
class="function">arccosh</code></p><p>arccosh-funktionen (invers cosh).</p></dd><dt><span class="term"><a
name="gel-function-acot"></a>acot</span></dt><dd><pre class="synopsis">acot (x)</pre><p>Alias: <code
class="function">arccot</code></p><p>arccot-funktionen (invers cot).</p></dd><dt><span class="term"><a
name="gel-function-acoth"></a>acoth</span></dt><dd><pre class="synopsis">acoth (x)</pre><p>Alias: <code
class="function">arccoth</code></p><p>arccoth-funktionen (invers coth).</p></d
d><dt><span class="term"><a name="gel-function-acsc"></a>acsc</span></dt><dd><pre class="synopsis">acsc
(x)</pre><p>Alias: <code class="function">arccsc</code></p><p>Inversa cosekantfunktionen.</p></dd><dt><span
class="term"><a name="gel-function-acsch"></a>acsch</span></dt><dd><pre class="synopsis">acsch
(x)</pre><p>Alias: <code class="function">arccsch</code></p><p>Inversa hyperboliska
cosekantfunktionen.</p></dd><dt><span class="term"><a name="gel-function-asec"></a>asec</span></dt><dd><pre
class="synopsis">asec (x)</pre><p>Alias: <code class="function">arcsec</code></p><p>Inversa
sekantfunktionen.</p></dd><dt><span class="term"><a name="gel-function-asech"></a>asech</span></dt><dd><pre
class="synopsis">asech (x)</pre><p>Alias: <code class="function">arcsech</code></p><p>Inversa hyperboliska
sekantfunktionen.</p></dd><dt><span class="term"><a name="gel-function-asin"></a>asin</span></dt><dd><pre
class="synopsis">asin (x)</pre><p>Alias: <code class="function">arcsin</code>
</p><p>arcsin-funktionen (invers sin).</p></dd><dt><span class="term"><a
name="gel-function-asinh"></a>asinh</span></dt><dd><pre class="synopsis">asinh (x)</pre><p>Alias: <code
class="function">arcsinh</code></p><p>arcsinh-funktionen (invers sinh).</p></dd><dt><span class="term"><a
name="gel-function-atan"></a>atan</span></dt><dd><pre class="synopsis">atan (x)</pre><p>Alias: <code
class="function">arctan</code></p><p>Beräknar arcustangensfunktionen (invers tangens).</p><p>Se <a
class="ulink" href="http://en.wikipedia.org/wiki/Arctangent" target="_top">Wikipedia</a> eller <a
class="ulink" href="http://mathworld.wolfram.com/InverseTangent.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-atanh"></a>atanh</span></dt><dd><pre
class="synopsis">atanh (x)</pre><p>Alias: <code class="function">arctanh</code></p><p>arctanh-funktionen
(invers tanh).</p></dd><dt><span class="term"><a name="gel-function-atan2"></a>atan2</span><
/dt><dd><pre class="synopsis">atan2 (y, x)</pre><p>Alias: <code
class="function">arctan2</code></p><p>Beräknar arctan2-funktionen. Om <strong
class="userinput"><code>x>0</code></strong> returnerar den <strong
class="userinput"><code>atan(y/x)</code></strong>. If <strong class="userinput"><code>x<0</code></strong>
returnerar den <strong class="userinput"><code>sign(y) * (pi - atan(|y/x|)</code></strong>. Då <strong
class="userinput"><code>x=0</code></strong> returnerar den <strong class="userinput"><code>sign(y) *
+ pi/2</code></strong>. <strong class="userinput"><code>atan2(0,0)</code></strong> returnerar 0
snarare än att misslyckas.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Atan2"
target="_top">Wikipedia</a> eller <a class="ulink" href="http://mathworld.wolfram.com/InverseTangent.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-cos"></a>cos</span></dt><dd><pre class="synopsis">cos (x)</pre><p>Beräknar
cosinusfunktionen.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Trigonometric_functions"
target="_top">Wikipedia</a> eller <a class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry"
target="_top">Planetmath</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-cosh"></a>cosh</span></dt><dd><pre class="synopsis">cosh (x)</pre><p>Beräknar funktionen
för hyperbolisk cosinus.</p><p>Se <a class="ulink" href="https://en.wikipedia.org/wiki/Hyperbolic_functi
on" target="_top">Wikipedia</a> eller <a class="ulink" href="http://planetmath.org/HyperbolicFunctions"
target="_top">Planetmath</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-cot"></a>cot</span></dt><dd><pre class="synopsis">cot
(x)</pre><p>Cotangensfunktionen.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Trigonometric_functions" target="_top">Wikipedia</a> eller <a
class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-coth"></a>coth</span></dt><dd><pre
class="synopsis">coth (x)</pre><p>Hyperboliska cotangensfunktionen.</p><p>Se <a class="ulink"
href="https://en.wikipedia.org/wiki/Hyperbolic_function" target="_top">Wikipedia</a> eller <a class="ulink"
href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-csc"></a
csc</span></dt><dd><pre class="synopsis">csc (x)</pre><p>Cosekantfunktionen.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Trigonometric_functions" target="_top">Wikipedia</a> eller <a
class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-csch"></a>csch</span></dt><dd><pre
class="synopsis">csch (x)</pre><p>Hyperboliska cosekantfunktionen.</p><p>Se <a class="ulink"
href="https://en.wikipedia.org/wiki/Hyperbolic_function" target="_top">Wikipedia</a> eller <a class="ulink"
href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-sec"></a>sec</span></dt><dd><pre
class="synopsis">sec (x)</pre><p>Sekantfunktionen.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Trigonometric_functions" target="_top">Wikipedia</a> eller <a
class="ulink" href=
"http://planetmath.org/DefinitionsInTrigonometry" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-sech"></a>sech</span></dt><dd><pre
class="synopsis">sech (x)</pre><p>Hyperboliska sekantfunktionen.</p><p>Se <a class="ulink"
href="https://en.wikipedia.org/wiki/Hyperbolic_function" target="_top">Wikipedia</a> eller <a class="ulink"
href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-sin"></a>sin</span></dt><dd><pre
class="synopsis">sin (x)</pre><p>Beräknar sinusfunktionen.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Trigonometric_functions" target="_top">Wikipedia</a> eller <a
class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-sinh"></a>sinh</span></dt><dd><pre
class="synopsis">sinh (x
)</pre><p>Beräknar funktionen för hyperbolisk sinus.</p><p>Se <a class="ulink"
href="https://en.wikipedia.org/wiki/Hyperbolic_function" target="_top">Wikipedia</a> eller <a class="ulink"
href="http://planetmath.org/HyperbolicFunctions" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-tan"></a>tan</span></dt><dd><pre
class="synopsis">tan (x)</pre><p>Beräknar tangensfunktionen.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Trigonometric_functions" target="_top">Wikipedia</a> eller <a
class="ulink" href="http://planetmath.org/DefinitionsInTrigonometry" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-tanh"></a>tanh</span></dt><dd><pre
class="synopsis">tanh (x)</pre><p>Hyperboliska tangensfunktionen.</p><p>Se <a class="ulink"
href="https://en.wikipedia.org/wiki/Hyperbolic_function" target="_top">Wikipedia</a> eller <a class="ulink"
href="http://planetma
th.org/HyperbolicFunctions" target="_top">Planetmath</a> för mer information.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s05.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s07.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Numeriska funktioner
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Talteori</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch11s07.html b/help/sv/html/ch11s07.html
new file mode 100644
index 0000000..5e13229
--- /dev/null
+++ b/help/sv/html/ch11s07.html
@@ -0,0 +1,8 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Talteori</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Handbok
för Genius"><link rel="up" href="ch11.html" title="Kapitel 11. Lista över GEL-funktioner"><link rel="prev"
href="ch11s06.html" title="Trigonometri"><link rel="next" href="ch11s08.html"
title="Matrismanipulation"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Talteori</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s06.html">Föregående</a> </td><th width="60%" align="center">Kapitel 11. Lista över
GEL-funktioner</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s08.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" s
tyle="clear: both"><a name="genius-gel-function-list-number-theory"></a>Talteori</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AreRelativelyPrime"></a>AreRelativelyPrime</span></dt><dd><pre
class="synopsis">AreRelativelyPrime (a,b)</pre><p>Är de reella heltalen <code class="varname">a</code> och
<code class="varname">b</code> relativt prima? Returnerar <code class="constant">true</code> eller <code
class="constant">false</code>.</p><p>Se <a class="ulink"
href="https://en.wikipedia.org/wiki/Coprime_integers" target="_top">Wikipedia</a> eller <a class="ulink"
href="http://planetmath.org/RelativelyPrime" target="_top">Planetmath</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/RelativelyPrime.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-BernoulliNumber"></a>BernoulliNumber</span></dt><dd><pre class="synopsis">BernoulliNumber
(n)</
pre><p>Returnerar det <code class="varname">n</code>:e Bernoullitalet.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Bernoulli_number" target="_top">Wikipedia</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/BernoulliNumber.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-ChineseRemainder"></a>ChineseRemainder</span></dt><dd><pre
class="synopsis">ChineseRemainder (a,m)</pre><p>Alias: <code class="function">CRT</code></p><p>Hitta det
<code class="varname">x</code> som löser systemet givet av vektorn <code class="varname">a</code> modulo
elementen i <code class="varname">m</code> med den kinesiska restsatsen.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Chinese_remainder_theorem" target="_top">Wikipedia</a> eller <a
class="ulink" href="http://planetmath.org/ChineseRemainderTheorem" target="_top">Planetmath</a> eller <a
class="ulink" href="http://mathworld.wolfram.com/Chines
eRemainderTheorem.html" target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-CombineFactorizations"></a>CombineFactorizations</span></dt><dd><pre
class="synopsis">CombineFactorizations (a,b)</pre><p>Givet två faktoriseringar, ange faktoriseringen av
produkten.</p><p>Se <a class="link"
href="ch11s07.html#gel-function-Factorize">Factorize</a>.</p></dd><dt><span class="term"><a
name="gel-function-ConvertFromBase"></a>ConvertFromBase</span></dt><dd><pre class="synopsis">ConvertFromBase
(v,b)</pre><p>Konvertera en vektor av värden som indikerar potenser av b till ett tal.</p></dd><dt><span
class="term"><a name="gel-function-ConvertToBase"></a>ConvertToBase</span></dt><dd><pre
class="synopsis">ConvertToBase (n,b)</pre><p>Konvertera ett tal till en vektor av potenser för element i bas
<code class="varname">b</code>.</p></dd><dt><span class="term"><a
name="gel-function-DiscreteLog"></a>DiscreteLog</span></dt><dd><pre class="synops
is">DiscreteLog (n,b,q)</pre><p>Hitta diskret logaritm av <code class="varname">n</code> bas <code
class="varname">b</code> i F<sub>q</sub>, den ändliga kroppen av ordning <code class="varname">q</code>, där
<code class="varname">q</code> är ett primtal, med Silver-Pohlig-Hellman-algoritmen.</p><p>Se <a
class="ulink" href="http://en.wikipedia.org/wiki/Discrete_logarithm" target="_top">Wikipedia</a>, <a
class="ulink" href="http://planetmath.org/DiscreteLogarithm" target="_top">Planetmath</a> eller <a
class="ulink" href="http://mathworld.wolfram.com/DiscreteLogarithm.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-Divides"></a>Divides</span></dt><dd><pre
class="synopsis">Divides (m,n)</pre><p>Kontrollerar delbarhet (om <code class="varname">m</code> delar <code
class="varname">n</code>).</p></dd><dt><span class="term"><a
name="gel-function-EulerPhi"></a>EulerPhi</span></dt><dd><pre class="synopsis">EulerPhi (n)</p
re><p>Beräkna Eulers φ-funktion för <code class="varname">n</code>, det vill säga antalet heltal mellan 1
och <code class="varname">n</code> som är relativt prima till <code class="varname">n</code>.</p><p>Se <a
class="ulink" href="http://en.wikipedia.org/wiki/Euler_phi" target="_top">Wikipedia</a>, <a class="ulink"
href="http://planetmath.org/EulerPhifunction" target="_top">Planetmath</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/TotientFunction.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-ExactDivision"></a>ExactDivision</span></dt><dd><pre class="synopsis">ExactDivision
(n,d)</pre><p>Returnera <strong class="userinput"><code>n/d</code></strong> men endast om <code
class="varname">d</code> delar <code class="varname">n</code>. Om <code class="varname">d</code> inte delar
<code class="varname">n</code> kommer denna funktion returnera skräpvärden. Detta är mycket snabbare för
väldigt st
ora tal än operationen <strong class="userinput"><code>n/d</code></strong>, men självklart bara användbart
om du vet att divisionen är exakt.</p></dd><dt><span class="term"><a
name="gel-function-Factorize"></a>Factorize</span></dt><dd><pre class="synopsis">Factorize
(n)</pre><p>Returnera faktoriseringen av ett tal som en matris. Den första raden är primtalen i
faktoriseringen (inklusive 1) och den andra raden är exponenterna. Till exempel: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>Factorize(11*11*13)</code></strong>
+=
+[1 11 13
+ 1 2 1]</pre><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Factorization"
target="_top">Wikipedia</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-Factors"></a>Factors</span></dt><dd><pre class="synopsis">Factors (n)</pre><p>Returnera
alla faktorer av <code class="varname">n</code> i en vektor. Detta inkluderar även alla
icke-primtalsfaktorer. Det inkluderar 1 och talet självt. Så för att till exempel skriva ut alla perfekta tal
(de som är summan av sina faktorer) upp till talet 1000 kan du göra följande (detta är förstås väldigt
ineffektivt) </p><pre class="programlisting">for n=1 to 1000 do (
+ if MatrixSum (Factors(n)) == 2*n then
+ print(n)
+)
+</pre></dd><dt><span class="term"><a
name="gel-function-FermatFactorization"></a>FermatFactorization</span></dt><dd><pre
class="synopsis">FermatFactorization (n,försök)</pre><p>Försök med Fermatfaktorisering av <code
class="varname">n</code> till <strong class="userinput"><code>(t-s)*(t+s)</code></strong>, returnerar <code
class="varname">t</code> och <code class="varname">s</code> som en vektor om möjligt, annars <code
class="constant">null</code>. <code class="varname">försök</code> anger antalet försök innan vi ger
upp.</p><p>Detta är en rätt bra faktorisering om ditt tal är produkten av två faktorer som ligger väldigt
nära varandra.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Fermat_factorization"
target="_top">Wikipedia</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-FindPrimitiveElementMod"></a>FindPrimitiveElementMod</span></dt><dd><pre
class="synopsis">FindPrimitiveElementMod (q)</pre><p>Hitta det första
primitiva elementet i F<sub>q</sub>, den finita gruppen av ordning <code class="varname">q</code>. Givetvis
måste <code class="varname">q</code> vara ett primtal.</p></dd><dt><span class="term"><a
name="gel-function-FindRandomPrimitiveElementMod"></a>FindRandomPrimitiveElementMod</span></dt><dd><pre
class="synopsis">FindRandomPrimitiveElementMod (q)</pre><p>Hitta ett slumpmässigt primitivt element i
F<sub>q</sub>, den ändliga gruppen av ordning <code class="varname">q</code> (q måste vara ett
primtal).</p></dd><dt><span class="term"><a
name="gel-function-IndexCalculus"></a>IndexCalculus</span></dt><dd><pre class="synopsis">IndexCalculus
(n,b,q,S)</pre><p>Beräkna diskret logaritm av n bas <code class="varname">b</code> i F<sub>q</sub>, den
ändliga gruppen av ordning <code class="varname">q</code> (<code class="varname">q</code> ett primtal) med
faktorbas <code class="varname">S</code>. <code class="varname">S</code> ska vara en kolumn av primtal,
möjligen med en andra
kolumn förberäknad av <a class="link" href="ch11s07.html#gel-function-IndexCalculusPrecalculation"><code
class="function">IndexCalculusPrecalculation</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-IndexCalculusPrecalculation"></a>IndexCalculusPrecalculation</span></dt><dd><pre
class="synopsis">IndexCalculusPrecalculation (b,q,S)</pre><p>Kör förberäkningssteget av <a class="link"
href="ch11s07.html#gel-function-IndexCalculus"><code class="function">IndexCalculus</code></a> för logaritmer
bas <code class="varname">b</code> i F<sub>q</sub>, den ändliga gruppen av ordning <code
class="varname">q</code> (<code class="varname">q</code> ett primtal) för faktorbasen <code
class="varname">S</code> (där <code class="varname">S</code> är en kolumnvektor av primtal). Logaritmerna
kommer vara förberäknade och returneras i den andra kolumnen.</p></dd><dt><span class="term"><a
name="gel-function-IsEven"></a>IsEven</span></dt><dd><pre class="synopsis">IsEven (
n)</pre><p>Testar om ett heltal är jämnt.</p></dd><dt><span class="term"><a
name="gel-function-IsMersennePrimeExponent"></a>IsMersennePrimeExponent</span></dt><dd><pre
class="synopsis">IsMersennePrimeExponent (p)</pre><p>Testar om ett positivt heltal <code
class="varname">p</code> är en Mersenneprimtalsexponent. Det vill säga om 2<sup>p</sup>-1 är ett primtal. Det
gör detta genom att slå upp det i en tabell med kända värden, vilken är relativt kort. Se även <a
class="link" href="ch11s07.html#gel-function-MersennePrimeExponents">MersennePrimeExponents</a> och <a
class="link" href="ch11s07.html#gel-function-LucasLehmer">LucasLehmer</a>.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Mersenne_prime" target="_top">Wikipedia</a>, <a class="ulink"
href="http://planetmath.org/MersenneNumbers" target="_top">Planetmath</a>, <a class="ulink"
href="http://mathworld.wolfram.com/MersennePrime.html" target="_top">Mathworld</a> eller <a class="ulink"
href="http://w
ww.mersenne.org/" target="_top">GIMPS</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-IsNthPower"></a>IsNthPower</span></dt><dd><pre class="synopsis">IsNthPower
(m,n)</pre><p>Testar om ett rationellt tal <code class="varname">m</code> är lika med något heltal upphöjt
till <code class="varname">n</code>. Se även <a class="link"
href="ch11s07.html#gel-function-IsPerfectPower">IsPerfectPower</a> och <a class="link"
href="ch11s07.html#gel-function-IsPerfectSquare">IsPerfectSquare</a>.</p></dd><dt><span class="term"><a
name="gel-function-IsOdd"></a>IsOdd</span></dt><dd><pre class="synopsis">IsOdd (n)</pre><p>Testar om ett
heltal är udda.</p></dd><dt><span class="term"><a
name="gel-function-IsPerfectPower"></a>IsPerfectPower</span></dt><dd><pre class="synopsis">IsPerfectPower
(n)</pre><p>Kontrollera om ett heltal är en perfekt potens, a<sup>b</sup>.</p></dd><dt><span class="term"><a
name="gel-function-IsPerfectSquare"></a>IsPerfectSquare</span>
</dt><dd><pre class="synopsis">IsPerfectSquare (n)</pre><p>Kontrollera om ett heltal är en perfekt kvadrat
av ett heltal. Talet måste vara ett reellt heltal. Negativa heltal kan givetvis aldrig vara perfekta
kvadrater av reella heltal.</p></dd><dt><span class="term"><a
name="gel-function-IsPrime"></a>IsPrime</span></dt><dd><pre class="synopsis">IsPrime (n)</pre><p>Testar om
heltal är primtal. För tal mindre än 2.5e10 är svaret deterministiskt (om Riemann-hypotesen är sann). För
större tal beror sannolikheten för ett falskt positivt svar på <a class="link"
href="ch11s03.html#gel-function-IsPrimeMillerRabinReps"><code
class="function">IsPrimeMillerRabinReps</code></a>. Det vill säga sannolikheten för ett falskt positivt värde
är 1/4 upphöjt till <code class="function">IsPrimeMillerRabinReps</code>. Standardvärdet 22 ger en
sannolikhet på ungefär 5.7e-14.</p><p>Om <code class="constant">false</code> returneras kan du vara säker på
att talet är sammansatt.
Om du vill vara fullständigt säker på att du har ett primtal kan du använda <a class="link"
href="ch11s07.html#gel-function-MillerRabinTestSure"><code class="function">MillerRabinTestSure</code></a>
men det kan ta mycket längre tid.</p><p>Se <a class="ulink" href="http://planetmath.org/PrimeNumber"
target="_top">Planetmath</a> eller <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-IsPrimitiveMod"></a>IsPrimitiveMod</span></dt><dd><pre class="synopsis">IsPrimitiveMod
(g,q)</pre><p>Kontrollera om <code class="varname">g</code> är primitiv i F<sub>q</sub>, den finita gruppen
av ordning <code class="varname">q</code>, där <code class="varname">q</code> är ett primtal. Om <code
class="varname">q</code> inte är ett primtal kommer resultat vara felaktiga.</p></dd><dt><span
class="term"><a name="gel-function-IsPrimitiveModWithPrimeFactors"></a>IsPrimit
iveModWithPrimeFactors</span></dt><dd><pre class="synopsis">IsPrimitiveModWithPrimeFactors
(g,q,f)</pre><p>Kontrollera om <code class="varname">g</code> är primitiv i F<sub>q</sub>, den finita gruppen
av ordning <code class="varname">q</code>, där <code class="varname">q</code> är ett primtal och <code
class="varname">f</code> är en vektor av primtalsfaktorer av <code class="varname">q</code>-1. Om <code
class="varname">q</code> inte är ett primtal kommer resultat vara felaktiga.</p></dd><dt><span
class="term"><a name="gel-function-IsPseudoprime"></a>IsPseudoprime</span></dt><dd><pre
class="synopsis">IsPseudoprime (n,b)</pre><p>Om <code class="varname">n</code> är ett pseudoprimtal för basen
<code class="varname">b</code> men inte ett primtal, det vill säga om <strong class="userinput"><code>b^(n-1)
== 1 mod n</code></strong>. Detta anropar <a class="link"
href="ch11s07.html#gel-function-PseudoprimeTest"><code
class="function">PseudoprimeTest</code></a></p></dd><dt><
span class="term"><a name="gel-function-IsStrongPseudoprime"></a>IsStrongPseudoprime</span></dt><dd><pre
class="synopsis">IsStrongPseudoprime (n,b)</pre><p>Testa om <code class="varname">n</code> är ett starkt
pseudoprimtal för basen <code class="varname">b</code> men inte ett primtal.</p></dd><dt><span
class="term"><a name="gel-function-Jacobi"></a>Jacobi</span></dt><dd><pre class="synopsis">Jacobi
(a,b)</pre><p>Alias: <code class="function">JacobiSymbol</code></p><p>Beräkna Jacobi-symbolen (a/b) (b måste
vara udda).</p></dd><dt><span class="term"><a
name="gel-function-JacobiKronecker"></a>JacobiKronecker</span></dt><dd><pre class="synopsis">JacobiKronecker
(a,b)</pre><p>Alias: <code class="function">JacobiKroneckerSymbol</code></p><p>Beräkna Jacobi-symbolen (a/b)
med Kronecker-tillägget (a/2)=(2/a) när a är udda, eller (a/2)=0 när a är jämnt.</p></dd><dt><span
class="term"><a name="gel-function-LeastAbsoluteResidue"></a>LeastAbsoluteResidue</span></dt><dd><pre c
lass="synopsis">LeastAbsoluteResidue (a,n)</pre><p>Returnera residualen av <code class="varname">a</code>
mod <code class="varname">n</code> med det minsta absolutbeloppet (i intervallet -n/2 till
n/2).</p></dd><dt><span class="term"><a name="gel-function-Legendre"></a>Legendre</span></dt><dd><pre
class="synopsis">Legendre (a,p)</pre><p>Alias: <code class="function">LegendreSymbol</code></p><p>Beräkna
Legendre-symbolen (a/p).</p><p>Se <a class="ulink" href="http://planetmath.org/LegendreSymbol"
target="_top">Planetmath</a> eller <a class="ulink" href="http://mathworld.wolfram.com/LegendreSymbol.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-LucasLehmer"></a>LucasLehmer</span></dt><dd><pre class="synopsis">LucasLehmer
(p)</pre><p>Testa om 2<sup>p</sup>-1 är ett Mersenne-primtal med Lucas-Lehmer-testet. Se även <a class="link"
href="ch11s07.html#gel-function-MersennePrimeExponents">MersennePrimeExponents</a> och
<a class="link"
href="ch11s07.html#gel-function-IsMersennePrimeExponent">IsMersennePrimeExponent</a>.</p><p>Se <a
class="ulink" href="http://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test"
target="_top">Wikipedia</a>, <a class="ulink" href="http://planetmath.org/LucasLhemer"
target="_top">Planetmath</a> eller <a class="ulink" href="http://mathworld.wolfram.com/Lucas-LehmerTest.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-LucasNumber"></a>LucasNumber</span></dt><dd><pre class="synopsis">LucasNumber
(n)</pre><p>Returnerar det <code class="varname">n</code>:e Lucas-talet.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Lucas_number" target="_top">Wikipedia</a>, <a class="ulink"
href="http://planetmath.org/LucasNumbers" target="_top">Planetmath</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/LucasNumber.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span cl
ass="term"><a name="gel-function-MaximalPrimePowerFactors"></a>MaximalPrimePowerFactors</span></dt><dd><pre
class="synopsis">MaximalPrimePowerFactors (n)</pre><p>Returnera alla maximala potenser av primtalsfaktorer
för ett tal.</p></dd><dt><span class="term"><a
name="gel-function-MersennePrimeExponents"></a>MersennePrimeExponents</span></dt><dd><pre
class="synopsis">MersennePrimeExponents</pre><p>En vektor av kända Mersenne-primtalsexponenter, det vill säga
en lista över positiva heltal <code class="varname">p</code> så att 2<sup>p</sup>-1 är ett primtal. Se även
<a class="link" href="ch11s07.html#gel-function-IsMersennePrimeExponent">IsMersennePrimeExponent</a> och <a
class="link" href="ch11s07.html#gel-function-LucasLehmer">LucasLehmer</a>.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Mersenne_prime" target="_top">Wikipedia</a>, <a class="ulink"
href="http://planetmath.org/MersenneNumbers" target="_top">Planetmath</a>, <a class="ulink" href="http://m
athworld.wolfram.com/MersennePrime.html" target="_top">Mathworld</a> eller <a class="ulink"
href="http://www.mersenne.org/" target="_top">GIMPS</a> för mer information.</p></dd><dt><span
class="term"><a name="gel-function-MillerRabinTest"></a>MillerRabinTest</span></dt><dd><pre
class="synopsis">MillerRabinTest (n,reps)</pre><p>Använd Miller-Rabin-primalitetstestet på <code
class="varname">n</code>, <code class="varname">reps</code> gånger. Sannolikheten för falska positiva är
<strong class="userinput"><code>(1/4)^reps</code></strong>. Det är troligen vanligen bättre att använda <a
class="link" href="ch11s07.html#gel-function-IsPrime"><code class="function">IsPrime</code></a> eftersom det
är snabbare och bättre för mindre heltal.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test" target="_top">Wikipedia</a> eller <a
class="ulink" href="http://planetmath.org/MillerRabinPrimeTest" target="_top">Planetmath</a> eller <a c
lass="ulink" href="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-MillerRabinTestSure"></a>MillerRabinTestSure</span></dt><dd><pre
class="synopsis">MillerRabinTestSure (n)</pre><p>Använd Miller-Rabin-primalitetstestet på <code
class="varname">n</code> med tillräckliga baser för att, givet den allmänna Riemann-hypotesen, resultatet ska
vara deterministiskt.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test" target="_top">Wikipedia</a>, <a
class="ulink" href="http://planetmath.org/MillerRabinPrimeTest" target="_top">Planetmath</a> eller <a
class="ulink" href="http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-ModInvert"></a>ModInvert</span></dt><dd><pre class="synopsis">ModInvert (n,m
)</pre><p>Returnerar inversen av n mod m.</p><p>Se <a class="ulink"
href="http://mathworld.wolfram.com/ModularInverse.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-MoebiusMu"></a>MoebiusMu</span></dt><dd><pre class="synopsis">MoebiusMu
(n)</pre><p>Returnera Möbiusfunktionen µ(n) beräknad i <code class="varname">n</code>. Det vill säga,
returnerar 0 om <code class="varname">n</code> inte är en produkt av distinkta primtal och <strong
class="userinput"><code>(-1)^k</code></strong> om det är en produkt av <code class="varname">k</code>
distinkta primtal.</p><p>Se <a class="ulink" href="http://planetmath.org/MoebiusFunction"
target="_top">Planetmath</a> eller <a class="ulink" href="http://mathworld.wolfram.com/MoebiusFunction.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-NextPrime"></a>NextPrime</span></dt><dd><pre class="synopsis">NextPrime (n)</pr
e><p>Returnerar det minsta primtalet större än <code class="varname">n</code>. Negativer av primtal anses
vara primtal så för att få det föregående primtalet kan du använda <strong
class="userinput"><code>-NextPrime(-n)</code></strong>.</p><p>Denna funktion använder GMP:s <code
class="function">mpz_nextprime</code>, som i sin tur använder det probabilistiska Miller-Rabin-testet (Se
även <a class="link" href="ch11s07.html#gel-function-MillerRabinTest"><code
class="function">MillerRabinTest</code></a>). Sannolikheten för att få falska positiva går inte att ställa
in, men är låg nog för alla praktiska användningsområden.</p><p>Se <a class="ulink"
href="http://planetmath.org/PrimeNumber" target="_top">Planetmath</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/PrimeNumber.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-PadicValuation"></a>PadicValuation</span></dt><dd><pre class="synops
is">PadicValuation (n,p)</pre><p>Returnera den p-adiska beräkningen (antal efterföljande nollor i bas <code
class="varname">p</code>).</p><p>Se <a class="ulink" href="https://en.wikipedia.org/wiki/P-adic_order"
target="_top">Wikipedia</a> eller <a class="ulink" href="http://planetmath.org/PAdicValuation"
target="_top">Planetmath</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-PowerMod"></a>PowerMod</span></dt><dd><pre class="synopsis">PowerMod
(a,b,m)</pre><p>Beräkna <strong class="userinput"><code>a^b mod m</code></strong>. <code
class="varname">b</code>-potensen av <code class="varname">a</code> modulo <code class="varname">m</code>.
Det är inte nödvändigt att använda denna funktion eftersom den används automatiskt i moduloläge. Därför går
<strong class="userinput"><code>a^b mod m</code></strong> precis lika snabbt.</p></dd><dt><span
class="term"><a name="gel-function-Prime"></a>Prime</span></dt><dd><pre class="synopsis">Prime (n)
</pre><p>Alias: <code class="function">prime</code></p><p>Returnera det <code class="varname">n</code>:e
primtalet (upp till en gräns).</p><p>Se <a class="ulink" href="http://planetmath.org/PrimeNumber"
target="_top">Planetmath</a> eller <a class="ulink" href="http://mathworld.wolfram.com/PrimeNumber.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-PrimeFactors"></a>PrimeFactors</span></dt><dd><pre class="synopsis">PrimeFactors
(n)</pre><p>Returnera alla primtalsfaktorer för ett tal som en vektor.</p><p>Se <a class="ulink"
href="https://en.wikipedia.org/wiki/Prime_factor" target="_top">Wikipedia</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/PrimeFactor.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-PseudoprimeTest"></a>PseudoprimeTest</span></dt><dd><pre class="synopsis">PseudoprimeTest
(n,b)</pre><p>Pseudoprimtalstest, returnerar <code
class="constant">true</code> om och endast om <strong class="userinput"><code>b^(n-1) == 1 mod
n</code></strong></p><p>Se <a class="ulink" href="http://planetmath.org/Pseudoprime"
target="_top">Planetmath</a> eller <a class="ulink" href="http://mathworld.wolfram.com/Pseudoprime.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-RemoveFactor"></a>RemoveFactor</span></dt><dd><pre class="synopsis">RemoveFactor
(n,m)</pre><p>Tar bort alla förekomster av faktorn <code class="varname">m</code> från talet <code
class="varname">n</code>. Det vill säga dividerar med den största potensen av <code class="varname">m</code>
som delar <code class="varname">n</code>.</p><p>Se <a class="ulink" href="http://planetmath.org/Divisibility"
target="_top">Planetmath</a> eller <a class="ulink" href="http://mathworld.wolfram.com/Factor.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a name="gel-fun
ction-SilverPohligHellmanWithFactorization"></a>SilverPohligHellmanWithFactorization</span></dt><dd><pre
class="synopsis">SilverPohligHellmanWithFactorization (n,b,q,f)</pre><p>Hitta diskret logaritm av <code
class="varname">n</code> bas <code class="varname">b</code> i F<sub>q</sub>, den finita gruppen av ordning
<code class="varname">q</code>, där <code class="varname">q</code> är ett primtal med
Silver-Pohlig-Hellman-algoritmen, givet att <code class="varname">f</code> är faktoriseringen av <code
class="varname">q</code>-1.</p></dd><dt><span class="term"><a
name="gel-function-SqrtModPrime"></a>SqrtModPrime</span></dt><dd><pre class="synopsis">SqrtModPrime
(n,p)</pre><p>Hitta kvadratrot av <code class="varname">n</code> mod <code class="varname">p</code> (där
<code class="varname">p</code> är ett primtal). Null returneras om inte en kvadratisk rest.</p><p>Se <a
class="ulink" href="http://planetmath.org/QuadraticResidue" target="_top">Planetmath</a> eller <a class="uli
nk" href="http://mathworld.wolfram.com/QuadraticResidue.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-StrongPseudoprimeTest"></a>StrongPseudoprimeTest</span></dt><dd><pre
class="synopsis">StrongPseudoprimeTest (n,b)</pre><p>Kör det starka pseudoprimtalstestet bas <code
class="varname">b</code> på <code class="varname">n</code>.</p><p>Se <a class="ulink"
href="https://en.wikipedia.org/wiki/Strong_pseudoprime" target="_top">Wikipedia</a>, <a class="ulink"
href="http://planetmath.org/StrongPseudoprime" target="_top">Planetmath</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/StrongPseudoprime.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-gcd"></a>gcd</span></dt><dd><pre
class="synopsis">gcd (a,arg...)</pre><p>Alias: <code class="function">GCD</code></p><p>Största gemensamma
delare av heltal. Du kan mata in så många heltal som du vill i
argumentlistan, eller så kan du ange en vektor eller en matris av heltal. Om du anger mer än en matris av
samma storlek kommer SGD att utföras elementvis.</p><p>Se <a class="ulink"
href="https://en.wikipedia.org/wiki/Greatest_common_divisor" target="_top">Wikipedia</a>, <a class="ulink"
href="http://planetmath.org/GreatestCommonDivisor" target="_top">Planetmath</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/GreatestCommonDivisor.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-lcm"></a>lcm</span></dt><dd><pre
class="synopsis">lcm (a,arg...)</pre><p>Alias: <code class="function">LCM</code></p><p>Minsta gemensamma
multipel av heltal. Du kan mata in så många heltal som du vill i argumentlistan, eller så kan du ange en
vektor eller en matris av heltal. Om du anger mer än en matris av samma storlek kommer MGM att utföras
elementvis.</p><p>Se <a class="ulink" href="https://en.wikipedia.org/wiki/Leas
t_common_multiple" target="_top">Wikipedia</a>, <a class="ulink"
href="http://planetmath.org/LeastCommonMultiple" target="_top">Planetmath</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/LeastCommonMultiple.html" target="_top">Mathworld</a> för mer
information.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s06.html">Föregående</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Upp</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s08.html">Nästa</a></td></tr><tr><td width="40%" align="left"
valign="top">Trigonometri </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Hem</a></td><td width="40%" align="right" valign="top">
Matrismanipulation</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch11s08.html b/help/sv/html/ch11s08.html
new file mode 100644
index 0000000..786883b
--- /dev/null
+++ b/help/sv/html/ch11s08.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Matrismanipulation</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="ch11.html"
title="Kapitel 11. Lista över GEL-funktioner"><link rel="prev" href="ch11s07.html" title="Talteori"><link
rel="next" href="ch11s09.html" title="Linjär algebra"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Matrismanipulation</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s07.html">Föregående</a> </td><th width="60%" align="center">Kapitel 11. Lista över
GEL-funktioner</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s09.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 cl
ass="title" style="clear: both"><a
name="genius-gel-function-list-matrix"></a>Matrismanipulation</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-ApplyOverMatrix"></a>ApplyOverMatrix</span></dt><dd><pre class="synopsis">ApplyOverMatrix
(a,funk)</pre><p>Tillämpa en funktion över alla poster av en matris och returnera en matris av
resultaten.</p></dd><dt><span class="term"><a
name="gel-function-ApplyOverMatrix2"></a>ApplyOverMatrix2</span></dt><dd><pre
class="synopsis">ApplyOverMatrix2 (a,b,funk)</pre><p>Tillämpa en funktion över alla poster av två matriser
(eller ett värde och en matris) och returnera en matris av resultaten.</p></dd><dt><span class="term"><a
name="gel-function-ColumnsOf"></a>ColumnsOf</span></dt><dd><pre class="synopsis">ColumnsOf (M)</pre><p>Hämtar
kolumnerna i en matris som en horisontell vektor.</p></dd><dt><span class="term"><a
name="gel-function-ComplementSubmatrix"></a>Compleme
ntSubmatrix</span></dt><dd><pre class="synopsis">ComplementSubmatrix (m,r,c)</pre><p>Ta bort kolumn(er) och
rad(er) från en matris.</p></dd><dt><span class="term"><a
name="gel-function-CompoundMatrix"></a>CompoundMatrix</span></dt><dd><pre class="synopsis">CompoundMatrix
(k,A)</pre><p>Beräkna den k:e compound-matrisen av A.</p></dd><dt><span class="term"><a
name="gel-function-CountZeroColumns"></a>CountZeroColumns</span></dt><dd><pre
class="synopsis">CountZeroColumns (M)</pre><p>Räkna antalet nollkolumner i en matris. Till exempel då du
kolumnreducerat en matris kan du använda detta för att hitta nulliteten. Se <a class="link"
href="ch11s09.html#gel-function-cref"><code class="function">cref</code></a> och <a class="link"
href="ch11s09.html#gel-function-Nullity"><code class="function">Nullity</code></a>.</p></dd><dt><span
class="term"><a name="gel-function-DeleteColumn"></a>DeleteColumn</span></dt><dd><pre
class="synopsis">DeleteColumn (M,kol)</pre><p>Ta bort en kolumn
i en matris.</p></dd><dt><span class="term"><a
name="gel-function-DeleteRow"></a>DeleteRow</span></dt><dd><pre class="synopsis">DeleteRow (M,rad)</pre><p>Ta
bort en rad i en matris.</p></dd><dt><span class="term"><a
name="gel-function-DiagonalOf"></a>DiagonalOf</span></dt><dd><pre class="synopsis">DiagonalOf
(M)</pre><p>Hämtar diagonalposterna i en matris som en kolumnvektor.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Diagonal_of_a_matrix#Matrices" target="_top">Wikipedia</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-DotProduct"></a>DotProduct</span></dt><dd><pre class="synopsis">DotProduct
(u,v)</pre><p>Hämta skalärprodukten av två vektorer. Vektorerna måste vara av samma storlek. Inga konjugat
tas så detta är en bilinjär form även om vi arbetar över de komplexa talen; detta är den bilinjära
skalärprodukten, inte den seskvilinjära skalärprodukten. Se <a class="link"
href="ch11s08.html#gel-function-HermitianP
roduct">HermitianProduct</a> för den vanliga seskvilinjära inre produkten.</p><p>Se <a class="ulink"
href="https://en.wikipedia.org/wiki/Dot_product" target="_top">Wikipedia</a> eller <a class="ulink"
href="http://planetmath.org/DotProduct" target="_top">Planetmath</a> för mer information.</p></dd><dt><span
class="term"><a name="gel-function-ExpandMatrix"></a>ExpandMatrix</span></dt><dd><pre
class="synopsis">ExpandMatrix (M)</pre><p>Expanderar en matris precis som vi gör med ociterade matrisindata.
Det vill säga vi expanderar alla interna matriser som block. Detta är ett sätt att konstruera matriser från
mindre matriser och detta görs vanligen automatiskt vid inmatning om inte matrisen är
citerad.</p></dd><dt><span class="term"><a
name="gel-function-HermitianProduct"></a>HermitianProduct</span></dt><dd><pre
class="synopsis">HermitianProduct (u,v)</pre><p>Alias: <code class="function">InnerProduct</code></p><p>Hämta
den hermiteska produkten av två vektorer. Vektor
erna måste vara av samma storlek. Detta är en seskvilinjär form som använder identitetsmatrisen.</p><p>Se <a
class="ulink" href="https://en.wikipedia.org/wiki/Sesquilinear_form" target="_top">Wikipedia</a> eller <a
class="ulink" href="http://mathworld.wolfram.com/HermitianInnerProduct.html" target="_top">Mathworld</a> för
mer information.</p></dd><dt><span class="term"><a name="gel-function-I"></a>I</span></dt><dd><pre
class="synopsis">I (n)</pre><p>Alias: <code class="function">eye</code></p><p>Returnera identitetsmatris av
given storlek, det vill säga <code class="varname">n</code>×<code class="varname">n</code>. Om <code
class="varname">n</code> är noll returneras <code class="constant">null</code>.</p><p>Se <a class="ulink"
href="https://en.wikipedia.org/wiki/Identity_matrix" target="_top">Wikipedia</a> eller <a class="ulink"
href="http://planetmath.org/IdentityMatrix" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-
function-IndexComplement"></a>IndexComplement</span></dt><dd><pre class="synopsis">IndexComplement
(vek,mstorl)</pre><p>Returnera indexkomplementet av en vektor med index. Allt är i basen ett. Till exempel
för vektorn <strong class="userinput"><code>[2,3]</code></strong> och storlek <strong
class="userinput"><code>5</code></strong> returnerar vi <strong
class="userinput"><code>[1,4,5]</code></strong>. Om <code class="varname">mstorl</code> är 0, returnerar vi
alltid <code class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-IsDiagonal"></a>IsDiagonal</span></dt><dd><pre class="synopsis">IsDiagonal (M)</pre><p>Är
en matris diagonal.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Diagonal_matrix"
target="_top">Wikipedia</a> eller <a class="ulink" href="http://planetmath.org/DiagonalMatrix"
target="_top">Planetmath</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-IsIdentity"></a>IsIdentity</span></dt>
<dd><pre class="synopsis">IsIdentity (x)</pre><p>Kontrollera om en matris är identitetsmatrisen. Returnerar
automatiskt <code class="constant">false</code> om matrisen inte är kvadratisk. Fungerar också på tal, i
vilket fall den är ekvivalent med <strong class="userinput"><code>x==1</code></strong>. Då <code
class="varname">x</code> är <code class="constant">null</code> (vi kan tänka oss detta som en 0×0-matris),
genereras inget fel och <code class="constant">false</code> returneras.</p></dd><dt><span class="term"><a
name="gel-function-IsLowerTriangular"></a>IsLowerTriangular</span></dt><dd><pre
class="synopsis">IsLowerTriangular (M)</pre><p>Är en matris nedåt triangulär. Det vill säga, är alla poster
ovanför diagonalen noll.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixInteger"></a>IsMatrixInteger</span></dt><dd><pre class="synopsis">IsMatrixInteger
(M)</pre><p>Kontrollera om en matris är en matris med heltal (icke-komplex).</p></dd><dt><span
class="term"><a name="gel-function-IsMatrixNonnegative"></a>IsMatrixNonnegative</span></dt><dd><pre
class="synopsis">IsMatrixNonnegative (M)</pre><p>Kontrollera om en matris är icke-negativ, det vill säga om
varje element är icke-negativt. Förväxla inte positiva matriser med positivt semidefinita matriser.</p><p>Se
<a class="ulink" href="http://en.wikipedia.org/wiki/Positive_matrix" target="_top">Wikipedia</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixPositive"></a>IsMatrixPositive</span></dt><dd><pre
class="synopsis">IsMatrixPositive (M)</pre><p>Kontrollera om en matris är positiv, det vill säga om varje
element är positivt (och därmed reellt). Specifikt är inget element 0. Förväxla inte positiva matriser med
positivt definita matriser.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Positive_matrix"
target="_top">Wikipedia</a> för mer information.</p></dd><dt><span class="term"><a name="gel-function-IsMatr
ixRational"></a>IsMatrixRational</span></dt><dd><pre class="synopsis">IsMatrixRational
(M)</pre><p>Kontrollera om en matris är en matris med rationella (icke-komplexa) tal.</p></dd><dt><span
class="term"><a name="gel-function-IsMatrixReal"></a>IsMatrixReal</span></dt><dd><pre
class="synopsis">IsMatrixReal (M)</pre><p>Kontrollera om en matris är en matris med reella (icke-komplexa)
tal.</p></dd><dt><span class="term"><a
name="gel-function-IsMatrixSquare"></a>IsMatrixSquare</span></dt><dd><pre class="synopsis">IsMatrixSquare
(M)</pre><p>Kontrollera om en matris är kvadratisk, det vill säga att dess bredd är samma som dess
höjd.</p></dd><dt><span class="term"><a
name="gel-function-IsUpperTriangular"></a>IsUpperTriangular</span></dt><dd><pre
class="synopsis">IsUpperTriangular (M)</pre><p>Är en matris uppåt triangulär? Det vill säga, en matris är
uppåt triangulär om alla poster nedanför diagonalen är noll.</p></dd><dt><span class="term"><a
name="gel-function-IsValu
eOnly"></a>IsValueOnly</span></dt><dd><pre class="synopsis">IsValueOnly (M)</pre><p>Kontrollera om en matris
är en matris med endast tal. Många interna funktioner utför denna kontroll. Värden kan vara godtyckliga tal,
inklusive komplexa tal.</p></dd><dt><span class="term"><a
name="gel-function-IsVector"></a>IsVector</span></dt><dd><pre class="synopsis">IsVector (v)</pre><p>Är
argument en horisontell eller vertikal vektor. Genius skiljer inte mellan en matris och en vektor, och en
vektor är bara en 1×<code class="varname">n</code>- eller <code
class="varname">n</code>×1-matrix.</p></dd><dt><span class="term"><a
name="gel-function-IsZero"></a>IsZero</span></dt><dd><pre class="synopsis">IsZero (x)</pre><p>Kontrollera om
en matris består av endast nollor. Fungerar också på tal, i vilket fall det är ekvivalent med <strong
class="userinput"><code>x==0</code></strong>. Då <code class="varname">x</code> är <code
class="constant">null</code> (vi kan tänka oss det som e
n 0×0-matris), genereras inget fel och <code class="constant">true</code> returneras eftersom villkoret är
tomt.</p></dd><dt><span class="term"><a
name="gel-function-LowerTriangular"></a>LowerTriangular</span></dt><dd><pre class="synopsis">LowerTriangular
(M)</pre><p>Returnerar en kopia av matrisen <code class="varname">M</code> där alla poster ovanför diagonalen
satts till noll.</p></dd><dt><span class="term"><a
name="gel-function-MakeDiagonal"></a>MakeDiagonal</span></dt><dd><pre class="synopsis">MakeDiagonal
(v,arg...)</pre><p>Alias: <code class="function">diag</code></p><p>Skapa diagonalmatris från en vektor.
Alternativt kan du skicka med värdena att placera i diagonalen som argument. Därmed är <strong
class="userinput"><code>MakeDiagonal([1,2,3])</code></strong> samma som <strong
class="userinput"><code>MakeDiagonal(1,2,3)</code></strong>.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Diagonal_matrix" target="_top">Wikipedia</a> eller <a class="ul
ink" href="http://planetmath.org/DiagonalMatrix" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-MakeVector"></a>MakeVector</span></dt><dd><pre class="synopsis">MakeVector
(A)</pre><p>Skapa en kolumnvektor från matris genom att lägga kolumner ovanpå varandra. Returnerar <code
class="constant">null</code> då den får <code class="constant">null</code> som indata.</p></dd><dt><span
class="term"><a name="gel-function-MatrixProduct"></a>MatrixProduct</span></dt><dd><pre
class="synopsis">MatrixProduct (A)</pre><p>Beräkna produkten av alla element i en matris eller vektor. Det
vill säga vi multiplicerar alla element och returnerar ett tal som är produkten av alla
element.</p></dd><dt><span class="term"><a name="gel-function-MatrixSum"></a>MatrixSum</span></dt><dd><pre
class="synopsis">MatrixSum (A)</pre><p>Beräkna summan av alla element i en matris eller vektor. Det vill säga
vi adderar alla element och returnerar et
t tal som är summan av alla element.</p></dd><dt><span class="term"><a
name="gel-function-MatrixSumSquares"></a>MatrixSumSquares</span></dt><dd><pre
class="synopsis">MatrixSumSquares (A)</pre><p>Beräkna summan av kvadraterna av alla element i en matris eller
vektor.</p></dd><dt><span class="term"><a
name="gel-function-NonzeroColumns"></a>NonzeroColumns</span></dt><dd><pre class="synopsis">NonzeroColumns
(M)</pre><p>Returnerar en radvektor av indexen för nollskilda kolumner i matrisen <code
class="varname">M</code>.</p><p>Version 1.0.18 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-NonzeroElements"></a>NonzeroElements</span></dt><dd><pre class="synopsis">NonzeroElements
(v)</pre><p>Returnerar en radvektor av indexen för nollskilda element i vektorn <code
class="varname">v</code>.</p><p>Version 1.0.18 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-OuterProduct"></a>OuterProduct</span></dt><dd><pre class="synopsis">OuterProduct (u,v)</
pre><p>Hämta den yttre produkten av två vektorer. Det vill säga anta att <code class="varname">u</code> och
<code class="varname">v</code> är vertikala vektorer, då är den yttre produkten <strong
class="userinput"><code>v * u.'</code></strong>.</p></dd><dt><span class="term"><a
name="gel-function-ReverseVector"></a>ReverseVector</span></dt><dd><pre class="synopsis">ReverseVector
(v)</pre><p>Vänd på elementen i en vektor. Returnera <code class="constant">null</code> om <code
class="constant">null</code> ges</p></dd><dt><span class="term"><a
name="gel-function-RowSum"></a>RowSum</span></dt><dd><pre class="synopsis">RowSum (m)</pre><p>Beräkna summan
av varje rad i en matris och returnera en vertikal vektor med resultatet.</p></dd><dt><span class="term"><a
name="gel-function-RowSumSquares"></a>RowSumSquares</span></dt><dd><pre class="synopsis">RowSumSquares
(m)</pre><p>Beräkna summan av kvadraterna för varje rad i en matris och returnera en vertikal vektor med
resulta
ten.</p></dd><dt><span class="term"><a name="gel-function-RowsOf"></a>RowsOf</span></dt><dd><pre
class="synopsis">RowsOf (M)</pre><p>Hämtar raderna i en matris som en vertikal vektor. Varje element i
vektorn är en horisontell vektor som är motsvarande rad i <code class="varname">M</code>. Denna funktion är
användbar om du vill köra en slinga över raderna i en matris. Till exempel som i <strong
class="userinput"><code>for r in RowsOf(M) do
+radfunktion(r)</code></strong>.</p></dd><dt><span class="term"><a
name="gel-function-SetMatrixSize"></a>SetMatrixSize</span></dt><dd><pre class="synopsis">SetMatrixSize
(M,rader,kolumner)</pre><p>Skapa ny matris av given storlek från en gammal. Det vill säga en ny matris kommer
returneras till vilken den gamla kopieras. Poster som inte ryms tas bort och extra utrymme fylls med nollor.
Om <code class="varname">rader</code> eller <code class="varname">kolumner</code> är noll returneras <code
class="constant">null</code>.</p></dd><dt><span class="term"><a
name="gel-function-ShuffleVector"></a>ShuffleVector</span></dt><dd><pre class="synopsis">ShuffleVector
(v)</pre><p>Flytta runt element i en vektor. Returnera <code class="constant">null</code> om <code
class="constant">null</code> ges.</p><p>Version 1.0.13 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-SortVector"></a>SortVector</span></dt><dd><pre class="synopsis">SortVector
(v)</pre><p>Sortera vektorele
ment i stigande ordning.</p></dd><dt><span class="term"><a
name="gel-function-StripZeroColumns"></a>StripZeroColumns</span></dt><dd><pre
class="synopsis">StripZeroColumns (M)</pre><p>Ta bort alla kolumner med endast nollor i <code
class="varname">M</code>.</p></dd><dt><span class="term"><a
name="gel-function-StripZeroRows"></a>StripZeroRows</span></dt><dd><pre class="synopsis">StripZeroRows
(M)</pre><p>Ta bort alla rader med endast nollor i <code class="varname">M</code>.</p></dd><dt><span
class="term"><a name="gel-function-Submatrix"></a>Submatrix</span></dt><dd><pre class="synopsis">Submatrix
(m,r,c)</pre><p>Returnera kolumn(er) och rad(er) från en matris. Detta är ekvivalent med <strong
class="userinput"><code>m@(r,c)</code></strong>. <code class="varname">r</code> och <code
class="varname">c</code> ska vara vektorer av rader och kolumner (eller enskilda tal om endast en rad eller
kolumn behövs).</p></dd><dt><span class="term"><a name="gel-function-SwapRows"></a>SwapRo
ws</span></dt><dd><pre class="synopsis">SwapRows (m,rad1,rad2)</pre><p>Byt plats på två rader i en
matris.</p></dd><dt><span class="term"><a
name="gel-function-UpperTriangular"></a>UpperTriangular</span></dt><dd><pre class="synopsis">UpperTriangular
(M)</pre><p>Returnerar en kopia av matrisen <code class="varname">M</code> där alla poster under diagonalen
satts till noll.</p></dd><dt><span class="term"><a
name="gel-function-columns"></a>columns</span></dt><dd><pre class="synopsis">columns (M)</pre><p>Hämta
antalet kolumner i en matris.</p></dd><dt><span class="term"><a
name="gel-function-elements"></a>elements</span></dt><dd><pre class="synopsis">elements (M)</pre><p>Hämta det
totala antalet element i en matris. Detta är antalet kolumner gånger antalet rader.</p></dd><dt><span
class="term"><a name="gel-function-ones"></a>ones</span></dt><dd><pre class="synopsis">ones
(rader,kolumner...)</pre><p>Skapa en matris med ettor överallt (eller en radvektor om endast ett argu
ment ges). Returnerar <code class="constant">null</code> om antingen rader eller kolumner är
noll.</p></dd><dt><span class="term"><a name="gel-function-rows"></a>rows</span></dt><dd><pre
class="synopsis">rows (M)</pre><p>Hämta antalet rader i en matris.</p></dd><dt><span class="term"><a
name="gel-function-zeros"></a>zeros</span></dt><dd><pre class="synopsis">zeros
(rader,kolumner...)</pre><p>Skapa en matris med nollor överallt (eller en radvektor om endast ett argument
ges). Returnerar <code class="constant">null</code> om antingen rader eller kolumner är
noll.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s07.html">Föregående</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Upp</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s09.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Talteori </
td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Linjär algebra</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch11s09.html b/help/sv/html/ch11s09.html
new file mode 100644
index 0000000..12ce1d8
--- /dev/null
+++ b/help/sv/html/ch11s09.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Linjär
algebra</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="ch11.html" title="Kapitel 11. Lista över
GEL-funktioner"><link rel="prev" href="ch11s08.html" title="Matrismanipulation"><link rel="next"
href="ch11s10.html" title="Kombinatorik"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Linjär algebra</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s08.html">Föregående</a> </td><th width="60%" align="center">Kapitel 11. Lista över
GEL-funktioner</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s10.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 c
lass="title" style="clear: both"><a name="genius-gel-function-list-linear-algebra"></a>Linjär
algebra</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AuxiliaryUnitMatrix"></a>AuxiliaryUnitMatrix</span></dt><dd><pre
class="synopsis">AuxiliaryUnitMatrix (n)</pre><p>Hämta hjälpenhetsmatrisen av storlek <code
class="varname">n</code>. Detta är en kvadratisk matris med bara nollor, förutom element i överdiagonalen
(i,i+1) som har värdet 1. Det är Jordanblockmatrisen med ett egenvärde som är noll.</p><p>Se <a class="ulink"
href="http://planetmath.org/JordanCanonicalFormTheorem" target="_top">Planetmath</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/JordanBlock.html" target="_top">Mathworld</a> för mer information om
Jordans normalform.</p></dd><dt><span class="term"><a
name="gel-function-BilinearForm"></a>BilinearForm</span></dt><dd><pre class="synopsis">BilinearForm
(v,A,w)</pre><p>Ber
äkna (v,w) med avseende på den bilinjära formen given av matrisen A.</p></dd><dt><span class="term"><a
name="gel-function-BilinearFormFunction"></a>BilinearFormFunction</span></dt><dd><pre
class="synopsis">BilinearFormFunction (A)</pre><p>Returnera en funktion som beräknar två vektorer med
avseende på den bilinjära formen given av A.</p></dd><dt><span class="term"><a
name="gel-function-CharacteristicPolynomial"></a>CharacteristicPolynomial</span></dt><dd><pre
class="synopsis">CharacteristicPolynomial (M)</pre><p>Alias: <code
class="function">CharPoly</code></p><p>Hämta det karakteristiska polynomet som en vektor. Det vill säga
returnera koefficienterna för polynomet med den konstanta termen först. Detta är polynomet som definieras av
<strong class="userinput"><code>det(M-xI)</code></strong>. Rötterna för detta polynom är egenvärdena för
<code class="varname">M</code>. Se även <a class="link"
href="ch11s09.html#gel-function-CharacteristicPolynomialFunction">
CharacteristicPolynomialFunction</a>.</p><p>Se <a class="ulink"
href="https://en.wikipedia.org/wiki/Characteristic_polynomial" target="_top">Wikipedia</a> eller <a
class="ulink" href="http://planetmath.org/CharacteristicEquation" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-CharacteristicPolynomialFunction"></a>CharacteristicPolynomialFunction</span></dt><dd><pre
class="synopsis">CharacteristicPolynomialFunction (M)</pre><p>Hämta det karakteristiska polynomet som en
funktion. Detta är polynomet som definieras av <strong class="userinput"><code>det(M-xI)</code></strong>.
Rötterna för detta polynom är egenvärdena för <code class="varname">M</code>. Se även <a class="link"
href="ch11s09.html#gel-function-CharacteristicPolynomial">CharacteristicPolynomial</a>.</p><p>Se <a
class="ulink" href="https://en.wikipedia.org/wiki/Characteristic_polynomial" target="_top">Wikipedia</a>
eller <a class="ulink" href="http://pl
anetmath.org/CharacteristicEquation" target="_top">Planetmath</a> för mer information.</p></dd><dt><span
class="term"><a name="gel-function-ColumnSpace"></a>ColumnSpace</span></dt><dd><pre
class="synopsis">ColumnSpace (M)</pre><p>Hämta en basmatris för kolumnrummet för en matris. Det vill säga
returnera en matris vars kolumner är basen för kolumnrummet av <code class="varname">M</code>. Det vill säga
rummet som spänns upp av kolumnerna i <code class="varname">M</code>.</p><p>Se <a class="ulink"
href="https://en.wikipedia.org/wiki/Row_and_column_spaces" target="_top">Wikipedia</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-CommutationMatrix"></a>CommutationMatrix</span></dt><dd><pre
class="synopsis">CommutationMatrix (m, n)</pre><p>Returnera kommutationsmatrisen <strong
class="userinput"><code>K(m,n)</code></strong> som är den unika <strong
class="userinput"><code>m*n</code></strong>×<strong class="userinput"><code>m*n</code></strong
-matrisen så att <strong class="userinput"><code>K(m,n) * MakeVector(A) = MakeVector(A.')</code></strong>
för alla <code class="varname">m</code>×<code class="varname">n</code>-matriser <code
class="varname">A</code>.</p></dd><dt><span class="term"><a
name="gel-function-CompanionMatrix"></a>CompanionMatrix</span></dt><dd><pre
class="synopsis">CompanionMatrix (p)</pre><p>Följeslagarmatris av ett polynom (som en
vektor).</p></dd><dt><span class="term"><a
name="gel-function-ConjugateTranspose"></a>ConjugateTranspose</span></dt><dd><pre
class="synopsis">ConjugateTranspose (M)</pre><p>Konjugattransponatet av en matris (adjungerad matris).
Detta är det samma som <strong class="userinput"><code>.'</code></strong>-operatorn.</p><p>Se <a
class="ulink" href="https://en.wikipedia.org/wiki/Conjugate_transpose" target="_top">Wikipedia</a> eller <a
class="ulink" href="http://planetmath.org/ConjugateTranspose" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class
="term"><a name="gel-function-Convolution"></a>Convolution</span></dt><dd><pre class="synopsis">Convolution
(a,b)</pre><p>Alias: <code class="function">convol</code></p><p>Beräkna faltningen av två horisontella
vektorer.</p></dd><dt><span class="term"><a
name="gel-function-ConvolutionVector"></a>ConvolutionVector</span></dt><dd><pre
class="synopsis">ConvolutionVector (a,b)</pre><p>Beräkna faltning av två horisontella vektorer. Returnera
resultatet som en vektor och inte adderade.</p></dd><dt><span class="term"><a
name="gel-function-CrossProduct"></a>CrossProduct</span></dt><dd><pre class="synopsis">CrossProduct
(v,w)</pre><p>CrossProduct (kryssprodukt) av två vektorer i R<sup>3</sup> som en kolumnvektor.</p><p>Se <a
class="ulink" href="https://en.wikipedia.org/wiki/Cross_product" target="_top">Wikipedia</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-DeterminantalDivisorsInteger"></a>DeterminantalDivisorsInteger</span></dt><dd><pre class="
synopsis">DeterminantalDivisorsInteger (M)</pre><p>Hämta determinantdelarna av en
heltalsmatris.</p></dd><dt><span class="term"><a
name="gel-function-DirectSum"></a>DirectSum</span></dt><dd><pre class="synopsis">DirectSum
(M,N...)</pre><p>Direkt summa av matriser.</p><p>Se <a class="ulink"
href="https://en.wikipedia.org/wiki/Matrix_addition#directsum" target="_top">Wikipedia</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-DirectSumMatrixVector"></a>DirectSumMatrixVector</span></dt><dd><pre
class="synopsis">DirectSumMatrixVector (v)</pre><p>Direkt summa av en vektor av matriser.</p><p>Se <a
class="ulink" href="https://en.wikipedia.org/wiki/Matrix_addition#directsum" target="_top">Wikipedia</a> för
mer information.</p></dd><dt><span class="term"><a
name="gel-function-Eigenvalues"></a>Eigenvalues</span></dt><dd><pre class="synopsis">Eigenvalues
(M)</pre><p>Alias: <code class="function">eig</code></p><p>Hämta egenvärdena för en kvadratisk matr
is. Fungerar för närvarande endast för upp till matriser av storlek upp till 4×4-matriser eller triangulära
matriser (för vilka egenvärdena är på diagonalen).</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Eigenvalue" target="_top">Wikipedia</a>, <a class="ulink"
href="http://planetmath.org/Eigenvalue" target="_top">Planetmath</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/Eigenvalue.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-Eigenvectors"></a>Eigenvectors</span></dt><dd><pre class="synopsis">Eigenvectors
(M)</pre><pre class="synopsis">Eigenvectors (M, &eigenvalues)</pre><pre class="synopsis">Eigenvectors (M,
&eigenvalues, &multipliciteter)</pre><p>Hämta egenvektorerna för en kvadratisk matris. Hämta valfritt
även egenvärdena och deras algebraiska multipliciteter. Fungerar för närvarande endast för matriser med
stolek upp till 2×2.</p><p>Se <a class="u
link" href="http://en.wikipedia.org/wiki/Eigenvector" target="_top">Wikipedia</a>, <a class="ulink"
href="http://planetmath.org/Eigenvector" target="_top">Planetmath</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/Eigenvector.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-GramSchmidt"></a>GramSchmidt</span></dt><dd><pre class="synopsis">GramSchmidt
(v,B...)</pre><p>Tillämpa Gram-Schmidt-processen (till kolumnerna) med avseende på inre produkten given av
<code class="varname">B</code>. Om <code class="varname">B</code> inte angiven används den hermiteska
produkten. <code class="varname">B</code> kan antingen vara en seskvilinjär funktion av två argument eller så
kan det vara en som ger en seskvilinjär form. Vektorerna kommer att göras ortonormala med avseende på <code
class="varname">B</code>.</p><p>Se <a class="ulink"
href="https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process" target="
_top">Wikipedia</a> eller <a class="ulink" href="http://planetmath.org/GramSchmidtOrthogonalization"
target="_top">Planetmath</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-HankelMatrix"></a>HankelMatrix</span></dt><dd><pre class="synopsis">HankelMatrix
(k,r)</pre><p>Hankelmatris, en matris vars antidiagonaler är konstanta. <code class="varname">k</code> är den
första raden och <code class="varname">r</code> är den sista kolumnen. Det antas att båda argumenten är
vektorer och att det sista elementet i <code class="varname">c</code> är detsamma som det första elementet i
<code class="varname">r</code>.</p><p>Se <a class="ulink" href="https://en.wikipedia.org/wiki/Hankel_matrix"
target="_top">Wikipedia</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-HilbertMatrix"></a>HilbertMatrix</span></dt><dd><pre class="synopsis">HilbertMatrix
(n)</pre><p>Hilbertmatris av ordning <code class="varname">n</code>.</p><p>S
e <a class="ulink" href="https://en.wikipedia.org/wiki/Hilbert_matrix" target="_top">Wikipedia</a> eller <a
class="ulink" href="http://planetmath.org/HilbertMatrix" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-Image"></a>Image</span></dt><dd><pre
class="synopsis">Image (T)</pre><p>Hämta bilden (kolumnrummet) av en linjär avbildning.</p><p>Se <a
class="ulink" href="https://en.wikipedia.org/wiki/Row_and_column_spaces" target="_top">Wikipedia</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-InfNorm"></a>InfNorm</span></dt><dd><pre
class="synopsis">InfNorm (v)</pre><p>Hämta supremumnormen av en vektor, även kallad maximinormen eller
oändlighetsnormen.</p></dd><dt><span class="term"><a
name="gel-function-InvariantFactorsInteger"></a>InvariantFactorsInteger</span></dt><dd><pre
class="synopsis">InvariantFactorsInteger (M)</pre><p>Hämta de invarianta faktorerna för en kvadratisk
heltalsma
tris.</p></dd><dt><span class="term"><a
name="gel-function-InverseHilbertMatrix"></a>InverseHilbertMatrix</span></dt><dd><pre
class="synopsis">InverseHilbertMatrix (n)</pre><p>Invers Hilbertmatris av ordning <code
class="varname">n</code>.</p><p>Se <a class="ulink" href="https://en.wikipedia.org/wiki/Hilbert_matrix"
target="_top">Wikipedia</a> eller <a class="ulink" href="http://planetmath.org/HilbertMatrix"
target="_top">Planetmath</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-IsHermitian"></a>IsHermitian</span></dt><dd><pre class="synopsis">IsHermitian
(M)</pre><p>Är en matris hermitesk. Det vill säga lika med sitt konjugattransponat.</p><p>Se <a class="ulink"
href="https://en.wikipedia.org/wiki/Hermitian_matrix" target="_top">Wikipedia</a> eller <a class="ulink"
href="http://planetmath.org/HermitianMatrix" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-IsInSubspace"></a>IsInSubspac
e</span></dt><dd><pre class="synopsis">IsInSubspace (v,W)</pre><p>Testa om en vektor är i ett
underrum.</p></dd><dt><span class="term"><a
name="gel-function-IsInvertible"></a>IsInvertible</span></dt><dd><pre class="synopsis">IsInvertible
(n)</pre><p>Är en matris (eller tal) inverterbar (En heltalsmatris är inverterbar om och endast om den är
inverterbar över heltalen).</p></dd><dt><span class="term"><a
name="gel-function-IsInvertibleField"></a>IsInvertibleField</span></dt><dd><pre
class="synopsis">IsInvertibleField (n)</pre><p>Är en matris (eller ett tal) inverterbar över en
kropp.</p></dd><dt><span class="term"><a name="gel-function-IsNormal"></a>IsNormal</span></dt><dd><pre
class="synopsis">IsNormal (M)</pre><p>Är <code class="varname">M</code> en normal matris. Det vill säga är
<strong class="userinput"><code>M*M' == M'*M</code></strong>.</p><p>Se <a class="ulink"
href="http://planetmath.org/NormalMatrix" target="_top">Planetmath</a> eller <a class="ulink" href=
"http://mathworld.wolfram.com/NormalMatrix.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-IsPositiveDefinite"></a>IsPositiveDefinite</span></dt><dd><pre
class="synopsis">IsPositiveDefinite (M)</pre><p>Är <code class="varname">M</code> en hermitesk positivt
definit matris. Det vill säga om <strong class="userinput"><code>HermitianProduct(M*v,v)</code></strong>
alltid är strikt positiv för varje vektor <code class="varname">v</code>. <code class="varname">M</code>
måste vara kvadratisk och hermitesk för att vara positivt definit. Kontrollen som utförs är att varje
principal-undermatris har en icke-negativ determinant. (Se <a class="link"
href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a>)</p><p>Observera att vissa författare
(till exempel Mathworld) inte kräver att <code class="varname">M</code> är hermitesk, och då är villkoret på
realdelen av den inre produkten, men vi delar inte
denna åskådning. Om du vill utföra denna kontroll, se bara på den hermiteska delen av matrisen <code
class="varname">M</code> enligt följande: <strong
class="userinput"><code>IsPositiveSemidefinite(M+M')</code></strong>.</p><p>Se <a class="ulink"
href="https://en.wikipedia.org/wiki/Positive-definite_matrix" target="_top">Wikipedia</a>, <a class="ulink"
href="http://planetmath.org/PositiveDefinite" target="_top">Planetmath</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/PositiveDefiniteMatrix.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-IsPositiveSemidefinite"></a>IsPositiveSemidefinite</span></dt><dd><pre
class="synopsis">IsPositiveSemidefinite (M)</pre><p>Är <code class="varname">M</code> en hermitesk positivt
semidefinit matris. Det vill säga om <strong class="userinput"><code>HermitianProduct(M*v,v)</code></strong>
alltid är icke-negativ för varje vektor <code class="varname">v</code>.
<code class="varname">M</code> måste vara kvadratisk och hermitesk för att vara positivt semidefinit.
Kontrollen som utförs är att varje principal-undermatris har en icke-negativ determinant. (Se <a class="link"
href="ch11s08.html#gel-function-HermitianProduct">HermitianProduct</a>)</p><p>Observera att vissa författare
inte kräver att <code class="varname">M</code> är hermitesk, och då är villkoret på realdelen av den inre
produkten, men vi delar inte denna åskådning. Om du vill utföra denna kontroll, se bara på den hermiteska
delen av matrisen <code class="varname">M</code> enligt följande: <strong
class="userinput"><code>IsPositiveSemidefinite(M+M')</code></strong>.</p><p>Se <a class="ulink"
href="http://planetmath.org/PositiveSemidefinite" target="_top">Planetmath</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/PositiveSemidefiniteMatrix.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-functio
n-IsSkewHermitian"></a>IsSkewHermitian</span></dt><dd><pre class="synopsis">IsSkewHermitian (M)</pre><p>Är
en matris skevhermitesk. Det vill säga är konjugattransponatet lika med den negativa matrisen.</p><p>Se <a
class="ulink" href="http://planetmath.org/SkewHermitianMatrix" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-IsUnitary"></a>IsUnitary</span></dt><dd><pre class="synopsis">IsUnitary (M)</pre><p>Är en
matris unitär? Det vill säga, är <strong class="userinput"><code>M'*M</code></strong> och <strong
class="userinput"><code>M*M'</code></strong> lika med identiteten.</p><p>Se <a class="ulink"
href="http://planetmath.org/UnitaryTransformation" target="_top">Planetmath</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/UnitaryMatrix.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-JordanBlock"></a>JordanBlock</span></dt><dd><pre class="syn
opsis">JordanBlock (n,lambda)</pre><p>Alias: <code class="function">J</code></p><p>Hämta Jordanblocket som
motsvarar egenvärdet <code class="varname">lambda</code> med multiplicitet <code
class="varname">n</code>.</p><p>Se <a class="ulink" href="http://planetmath.org/JordanCanonicalFormTheorem"
target="_top">Planetmath</a> eller <a class="ulink" href="http://mathworld.wolfram.com/JordanBlock.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-Kernel"></a>Kernel</span></dt><dd><pre class="synopsis">Kernel (T)</pre><p>Hämta kärnan
(nollrummet) av en linjär avbildning.</p><p>(Se <a class="link"
href="ch11s09.html#gel-function-NullSpace">NullSpace</a>)</p></dd><dt><span class="term"><a
name="gel-function-KroneckerProduct"></a>KroneckerProduct</span></dt><dd><pre
class="synopsis">KroneckerProduct (M, N)</pre><p>Alias: <code
class="function">TensorProduct</code></p><p>Beräkna Kroneckerprodukten (tensorprodukt i standar
dbas) av två matriser.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Kronecker_product"
target="_top">Wikipedia</a>, <a class="ulink" href="http://planetmath.org/KroneckerProduct"
target="_top">Planetmath</a> eller <a class="ulink" href="http://mathworld.wolfram.com/KroneckerProduct.html"
target="_top">Mathworld</a> för mer information.</p><p>Version 1.0.18 och framåt.</p></dd><dt><span
class="term"><a name="gel-function-LUDecomposition"></a>LUDecomposition</span></dt><dd><pre
class="synopsis">LUDecomposition (A, L, U)</pre><p>Hämta LU-faktoriseringen av <code
class="varname">A</code>, det vill säga hitta en nedåt triangulär matris och uppåt triangulär matris vilkas
produkt är <code class="varname">A</code>. Lagra resultatet i <code class="varname">L</code> och <code
class="varname">U</code> som ska vara referenser. Det returnerar <code class="constant">true</code> om det
lyckas. Anta till exempel att A är en kvadratisk matris, då kommer du efter a
tt köra: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LUDecomposition(A,&L,&U)</code></strong>
+</pre><p> ha den nedre matrisen lagrad i en variabel som kallas <code class="varname">L</code> och den övre
matrisen i en variabel som kallas <code class="varname">U</code>.</p><p>Detta är LU-faktoriseringen av en
matris, även känd som Crout- och/eller Cholesky-faktorisering. (ISBN 0-201-11577-8 pp.99-103) Den uppåt
triangulära matrisen har värdet 1 (ett) på diagonalen. Detta är inte Doolittles metod som har ettorna
diagonalt på nedermatrisen.</p><p>Alla matriser har inte LU-faktoriseringar, till exempel har <strong
class="userinput"><code>[0,1;1,0]</code></strong> inte det och denna funktion returnerar <code
class="constant">false</code> i det fallet och ställer in <code class="varname">L</code> och <code
class="varname">U</code> till <code class="constant">null</code>.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/LU_decomposition" target="_top">Wikipedia</a>, <a class="ulink"
href="http://planetmath.org/LUDecomposition" target="_top">Planetmath</
a> eller <a class="ulink" href="http://mathworld.wolfram.com/LUDecomposition.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-Minor"></a>Minor</span></dt><dd><pre class="synopsis">Minor (M,i,j)</pre><p>Hämta <code
class="varname">i</code>-<code class="varname">j</code>-underdeterminanten (minoren) av en matris.</p><p>Se
<a class="ulink" href="http://planetmath.org/Minor" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-NonPivotColumns"></a>NonPivotColumns</span></dt><dd><pre class="synopsis">NonPivotColumns
(M)</pre><p>Returnera kolumnerna som inte är pivotkolumnerna av en matris.</p></dd><dt><span class="term"><a
name="gel-function-Norm"></a>Norm</span></dt><dd><pre class="synopsis">Norm (v,p...)</pre><p>Alias: <code
class="function">norm</code></p><p>Hämta p-normen (eller 2-normen om inget p är angivet) för en
vektor.</p></dd><dt><span class="term"><a nam
e="gel-function-NullSpace"></a>NullSpace</span></dt><dd><pre class="synopsis">NullSpace (T)</pre><p>Hämta
nollrummet för en matris. Det vill säga kärnan för den linjära avbildningen som matrisen representerar. Detta
returneras som en matris vars kolumnrum är nollrummet av <code class="varname">T</code>.</p><p>Se <a
class="ulink" href="http://planetmath.org/Nullspace" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-Nullity"></a>Nullity</span></dt><dd><pre
class="synopsis">Nullity (M)</pre><p>Alias: <code class="function">nullity</code></p><p>Hämta nulliteten av
en matris. Det vill säga returnera nollrummets dimension; dimensionen på kärnan av <code
class="varname">M</code>.</p><p>Se <a class="ulink" href="http://planetmath.org/Nullity"
target="_top">Planetmath</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-OrthogonalComplement"></a>OrthogonalComplement</span></dt><dd><pre class=
"synopsis">OrthogonalComplement (M)</pre><p>Hämta det ortogonala komplementet till
kolumnrummet.</p></dd><dt><span class="term"><a
name="gel-function-PivotColumns"></a>PivotColumns</span></dt><dd><pre class="synopsis">PivotColumns
(M)</pre><p>Returnera pivotkolumner för en matris, det vill säga kolumner som börjar med 1 i radreducerad
trappstegsform, returnerar också raden där de förekommer.</p></dd><dt><span class="term"><a
name="gel-function-Projection"></a>Projection</span></dt><dd><pre class="synopsis">Projection
(v,W,B...)</pre><p>Projicering av vektor <code class="varname">v</code> till underrum <code
class="varname">W</code> med avseende på inre produkt given av <code class="varname">B</code>. Om <code
class="varname">B</code> ej angiven används den vanliga hermiteska produkten. <code class="varname">B</code>
kan antingen vara en seskvilinjär funktion av två argument eller så kan det vara en matris som ger en
seskvilinjär form.</p></dd><dt><span class="te
rm"><a name="gel-function-QRDecomposition"></a>QRDecomposition</span></dt><dd><pre
class="synopsis">QRDecomposition (A, Q)</pre><p>Hämta QR-faktoriseringen av en kvadratisk matris <code
class="varname">A</code>, returnerar den uppåt triangulära matrisen <code class="varname">R</code> och
ställer in <code class="varname">Q</code> till den ortogonala (unitära) matrisen. <code
class="varname">Q</code> bör vara en referens eller <code class="constant">null</code> om de inte vill att
något ska returneras. Till exempel: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>R = QRDecomposition(A,&Q)</code></strong>
+</pre><p> Du kommer att ha den uppåt triangulära matrisen lagrad i en variabel kallad <code
class="varname">R</code> och den ortogonala (unitära) matrisen lagrad i <code
class="varname">Q</code>.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/QR_decomposition"
target="_top">Wikipedia</a> eller <a class="ulink" href="http://planetmath.org/QRDecomposition"
target="_top">Planetmath</a> eller <a class="ulink" href="http://mathworld.wolfram.com/QRDecomposition.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-RayleighQuotient"></a>RayleighQuotient</span></dt><dd><pre
class="synopsis">RayleighQuotient (A,x)</pre><p>Returnera Rayleighkvoten (även kallad Rayleigh-Ritz-kvoten
eller förhållandet) av en matris och en vektor.</p><p>Se <a class="ulink"
href="http://planetmath.org/RayleighQuotient" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-RayleighQu
otientIteration"></a>RayleighQuotientIteration</span></dt><dd><pre
class="synopsis">RayleighQuotientIteration (A,x,epsilon,maxiter,vekref)</pre><p>Hitta egenvärdena av <code
class="varname">A</code> med Rayleighkvot-iterationsmetoden. <code class="varname">x</code> är en gissning av
en egenvektor och kan vara slumpmässig. Den ska ha nollskild imaginärdel om den ska ha någon chans att hitta
komplexa egenvärden. Koden kommer köras som mest <code class="varname">maxiter</code> iterationer och
returnera <code class="constant">null</code> om vi inte kan få ett mindre fel än <code
class="varname">epsilon</code>. <code class="varname">vekref</code> ska antingen vara <code
class="constant">null</code> eller en referens till en variabel där egenvektorn ska lagras.</p><p>Se <a
class="ulink" href="http://planetmath.org/RayleighQuotient" target="_top">Planetmath</a> för mer information
om Rayleighkvot.</p></dd><dt><span class="term"><a name="gel-function-Rank"></a>Rank</span>
</dt><dd><pre class="synopsis">Rank (M)</pre><p>Alias: <code class="function">rank</code></p><p>Hämta rangen
av en matris.</p><p>Se <a class="ulink" href="http://planetmath.org/SylvestersLaw"
target="_top">Planetmath</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-RosserMatrix"></a>RosserMatrix</span></dt><dd><pre class="synopsis">RosserMatrix
()</pre><p>Returnerar Rossermatrisen som är ett klassiskt testproblem för symmetriska
egenvärden.</p></dd><dt><span class="term"><a
name="gel-function-Rotation2D"></a>Rotation2D</span></dt><dd><pre class="synopsis">Rotation2D
(vinkel)</pre><p>Alias: <code class="function">RotationMatrix</code></p><p>Returnera matrisen som motsvarar
rotation runt origo i R<sup>2</sup>.</p></dd><dt><span class="term"><a
name="gel-function-Rotation3DX"></a>Rotation3DX</span></dt><dd><pre class="synopsis">Rotation3DX
(vinkel)</pre><p>Returnera matrisen som motsvarar rotation runt origo i R<sup>3</sup> kring x-axeln.</p></
dd><dt><span class="term"><a name="gel-function-Rotation3DY"></a>Rotation3DY</span></dt><dd><pre
class="synopsis">Rotation3DY (vinkel)</pre><p>Returnera matrisen som motsvarar rotation runt origo i
R<sup>3</sup> kring y-axeln.</p></dd><dt><span class="term"><a
name="gel-function-Rotation3DZ"></a>Rotation3DZ</span></dt><dd><pre class="synopsis">Rotation3DZ
(vinkel)</pre><p>Returnera matrisen som motsvarar rotation runt origo i R<sup>3</sup> kring
z-axeln.</p></dd><dt><span class="term"><a name="gel-function-RowSpace"></a>RowSpace</span></dt><dd><pre
class="synopsis">RowSpace (M)</pre><p>Hämta en basmatris för radrummet av en matris.</p></dd><dt><span
class="term"><a name="gel-function-SesquilinearForm"></a>SesquilinearForm</span></dt><dd><pre
class="synopsis">SesquilinearForm (v,A,w)</pre><p>Beräkna (v,w) med avseende på den seskvilinjära formen
given av matrisen A.</p></dd><dt><span class="term"><a
name="gel-function-SesquilinearFormFunction"></a>SesquilinearFormFunctio
n</span></dt><dd><pre class="synopsis">SesquilinearFormFunction (A)</pre><p>Returnera en funktion som
beräknar två vektorer med avseende på den seskvilinjära formen given av A.</p></dd><dt><span class="term"><a
name="gel-function-SmithNormalFormField"></a>SmithNormalFormField</span></dt><dd><pre
class="synopsis">SmithNormalFormField (A)</pre><p>Returnerar Smiths normalform för en matris över kroppar
(kommer i slutet ha 1:or på diagonalen).</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Smith_normal_form" target="_top">Wikipedia</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-SmithNormalFormInteger"></a>SmithNormalFormInteger</span></dt><dd><pre
class="synopsis">SmithNormalFormInteger (M)</pre><p>Returnerar Smiths normalform för kvadratiska
heltalsmatriser över heltal.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Smith_normal_form"
target="_top">Wikipedia</a> för mer information.</p></dd><dt><span class="t
erm"><a name="gel-function-SolveLinearSystem"></a>SolveLinearSystem</span></dt><dd><pre
class="synopsis">SolveLinearSystem (M,V,arg...)</pre><p>Lös det linjära systemet Mx=V, returnera lösningen V
om det finns en unik lösning, returnera <code class="constant">null</code> annars. Två extra
referensparametrar kan valfritt användas för att få tag i de reducerade M och V.</p></dd><dt><span
class="term"><a name="gel-function-ToeplitzMatrix"></a>ToeplitzMatrix</span></dt><dd><pre
class="synopsis">ToeplitzMatrix (k, r...)</pre><p>Returnera Toeplitzmatrisen skapad med den första kolumnen k
och (valfritt) den första raden r. Om endast kolumnen k anges så konjugeras den och den icke-konjugerade
versionen används som den första raden för att ge en hermitesk matris (givetvis om det första elementet är
reellt).</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Toeplitz_matrix"
target="_top">Wikipedia</a> eller <a class="ulink" href="http://planetmath.org/Toepli
tzMatrix" target="_top">Planetmath</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-Trace"></a>Trace</span></dt><dd><pre class="synopsis">Trace (M)</pre><p>Alias: <code
class="function">trace</code></p><p>Beräkna spåret av en matris. Det vill säga summan av de diagonala
elementen.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Trace_(linear_algebra)"
target="_top">Wikipedia</a> eller <a class="ulink" href="http://planetmath.org/Trace"
target="_top">Planetmath</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-Transpose"></a>Transpose</span></dt><dd><pre class="synopsis">Transpose
(M)</pre><p>Transponatet av en matris. Detta är det samma som <strong
class="userinput"><code>.'</code></strong>-operatorn.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Transpose" target="_top">Wikipedia</a> eller <a class="ulink"
href="http://planetmath.org/Transpose" target="_top">Planetmath</a> för mer in
formation.</p></dd><dt><span class="term"><a
name="gel-function-VandermondeMatrix"></a>VandermondeMatrix</span></dt><dd><pre
class="synopsis">VandermondeMatrix (v)</pre><p>Alias: <code class="function">vander</code></p><p>Returnera
Vandermondematrisen.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Vandermonde_matrix"
target="_top">Wikipedia</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-VectorAngle"></a>VectorAngle</span></dt><dd><pre class="synopsis">VectorAngle
(v,w,B...)</pre><p>Vinkeln av två vektorer med avseende på en inre produkt given av <code
class="varname">B</code>. Om <code class="varname">B</code> inte är angiven används den vanliga hermiteska
produkten. <code class="varname">B</code> kan antingen vara en seskvilinjär funktion av två argument eller så
kan det vara en matris som ger en seskvilinjär form.</p></dd><dt><span class="term"><a
name="gel-function-VectorSpaceDirectSum"></a>VectorSpaceDirectSum</span>
</dt><dd><pre class="synopsis">VectorSpaceDirectSum (M,N)</pre><p>Den direkta summan av vektorrummen M och
N.</p></dd><dt><span class="term"><a
name="gel-function-VectorSubspaceIntersection"></a>VectorSubspaceIntersection</span></dt><dd><pre
class="synopsis">VectorSubspaceIntersection (M,N)</pre><p>Snitt av underrummen angivna av M och
N.</p></dd><dt><span class="term"><a
name="gel-function-VectorSubspaceSum"></a>VectorSubspaceSum</span></dt><dd><pre
class="synopsis">VectorSubspaceSum (M,N)</pre><p>Summan av vektorrummen M och N, det vill säga {w | w=m+n, m
i M, n i N}.</p></dd><dt><span class="term"><a name="gel-function-adj"></a>adj</span></dt><dd><pre
class="synopsis">adj (m)</pre><p>Alias: <code class="function">Adjugate</code></p><p>Hämta den klassiska
adjunkten (transponatet av kofaktormatrisen) av en matris.</p></dd><dt><span class="term"><a
name="gel-function-cref"></a>cref</span></dt><dd><pre class="synopsis">cref (M)</pre><p>Alias: <code
class="function">CREF</co
de><code class="function">ColumnReducedEchelonForm</code></p><p>Beräkna den kolumnreducerade
trappstegsformen.</p></dd><dt><span class="term"><a name="gel-function-det"></a>det</span></dt><dd><pre
class="synopsis">det (M)</pre><p>Alias: <code class="function">Determinant</code></p><p>Hämta determinanten
av en matris.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Determinant"
target="_top">Wikipedia</a> eller <a class="ulink" href="http://planetmath.org/Determinant2"
target="_top">Planetmath</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-ref"></a>ref</span></dt><dd><pre class="synopsis">ref (M)</pre><p>Alias: <code
class="function">REF</code><code class="function">RowEchelonForm</code></p><p>Hämta trappstegsformen av en
matris. Det vill säga tillämpa gausselimination men inte bakåtaddition till <code class="varname">M</code>.
Pivotraderna divideras så att alla pivoter blir 1.</p><p>Se <a class="ulink" href="http://en.wikip
edia.org/wiki/Row_echelon_form" target="_top">Wikipedia</a> eller <a class="ulink"
href="http://planetmath.org/RowEchelonForm" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-rref"></a>rref</span></dt><dd><pre
class="synopsis">rref (M)</pre><p>Alias: <code class="function">RREF</code><code
class="function">ReducedRowEchelonForm</code></p><p>Hämta den radreducerade trappstegsformen av en matris.
Det vill säga tillämpa gausselimination tillsammans med bakåtaddition till <code
class="varname">M</code>.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Reduced_row_echelon_form" target="_top">Wikipedia</a> eller <a
class="ulink" href="http://planetmath.org/ReducedRowEchelonForm" target="_top">Planetmath</a> för mer
information.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s08.html">Föregående</
a> </td><td width="20%" align="center"><a accesskey="u" href="ch11.html">Upp</a></td><td width="40%"
align="right"> <a accesskey="n" href="ch11s10.html">Nästa</a></td></tr><tr><td width="40%" align="left"
valign="top">Matrismanipulation </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Hem</a></td><td width="40%" align="right" valign="top">
Kombinatorik</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch11s10.html b/help/sv/html/ch11s10.html
new file mode 100644
index 0000000..9e29e8a
--- /dev/null
+++ b/help/sv/html/ch11s10.html
@@ -0,0 +1,9 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Kombinatorik</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="ch11.html"
title="Kapitel 11. Lista över GEL-funktioner"><link rel="prev" href="ch11s09.html" title="Linjär
algebra"><link rel="next" href="ch11s11.html" title="Kalkyl"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kombinatorik</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s09.html">Föregående</a> </td><th width="60%" align="center">Kapitel 11. Lista över
GEL-funktioner</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s11.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" st
yle="clear: both"><a
name="genius-gel-function-list-combinatorics"></a>Kombinatorik</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Catalan"></a>Catalan</span></dt><dd><pre class="synopsis">Catalan (n)</pre><p>Hämta det
<code class="varname">n</code>:e Catalantalet.</p><p>Se <a class="ulink"
href="http://planetmath.org/CatalanNumbers" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-Combinations"></a>Combinations</span></dt><dd><pre class="synopsis">Combinations
(k,n)</pre><p>Hämta alla kombinationer av k tal från 1 till n som en vektor av vektorer. (Se även <a
class="link" href="ch11s10.html#gel-function-NextCombination">NextCombination</a>)</p></dd><dt><span
class="term"><a name="gel-function-DoubleFactorial"></a>DoubleFactorial</span></dt><dd><pre
class="synopsis">DoubleFactorial (n)</pre><p>Semifakultet: <strong class="userinput"><code>n(n-2)(n
-4)...</code></strong></p><p>Se <a class="ulink" href="http://planetmath.org/DoubleFactorial"
target="_top">Planetmath</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-Factorial"></a>Factorial</span></dt><dd><pre class="synopsis">Factorial
(n)</pre><p>Fakultet: <strong class="userinput"><code>n(n-1)(n-2)...</code></strong></p><p>Se <a
class="ulink" href="http://planetmath.org/Factorial" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-FallingFactorial"></a>FallingFactorial</span></dt><dd><pre
class="synopsis">FallingFactorial (n,k)</pre><p>Fallande fakultet: <strong class="userinput"><code>(n)_k =
n(n-1)...(n-(k-1))</code></strong></p><p>Se <a class="ulink" href="http://planetmath.org/FallingFactorial"
target="_top">Planetmath</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-Fibonacci"></a>Fibonacci</span></dt><dd><pre class="synopsis">Fibonacci (x)</pre><p>Alia
s: <code class="function">fib</code></p><p>Beräkna det <code class="varname">n</code>:e Fibonaccitalet. Det
vill säga numret som definieras rekursivt av <strong class="userinput"><code>Fibonacci(n) = Fibonacci(n-1) +
Fibonacci(n-2)</code></strong> och <strong class="userinput"><code>Fibonacci(1) = Fibonacci(2) =
1</code></strong>.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Fibonacci_number"
target="_top">Wikipedia</a> eller <a class="ulink" href="http://planetmath.org/FibonacciSequence"
target="_top">Planetmath</a> eller <a class="ulink" href="http://mathworld.wolfram.com/FibonacciNumber.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-FrobeniusNumber"></a>FrobeniusNumber</span></dt><dd><pre class="synopsis">FrobeniusNumber
(v,arg...)</pre><p>Beräkna Frobeniustalet. Det vill säga beräkna det största tal som inte kan anges som en
icke-negativ linjär heltalskombination av en given vektor av ic
ke-negativa tal. Vektorn kan ges som separata tal eller en ensam vektor. Alla angivna tal ska ha SGD
1.</p><p>Se <a class="ulink" href="http://mathworld.wolfram.com/FrobeniusNumber.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-GaloisMatrix"></a>GaloisMatrix</span></dt><dd><pre class="synopsis">GaloisMatrix
(komberingsregel)</pre><p>Galois-matris givet en linjär kombineringsregel
(a_1*x_1+...+a_n*x_n=x_(n+1)).</p></dd><dt><span class="term"><a
name="gel-function-GreedyAlgorithm"></a>GreedyAlgorithm</span></dt><dd><pre class="synopsis">GreedyAlgorithm
(n,v)</pre><p>Hitta vektorn <code class="varname">c</code> av icke-negativa heltal så att skalärprodukten med
<code class="varname">v</code> är lika med n. Om inte möjligt returneras <code class="constant">null</code>.
<code class="varname">v</code> bör anges sorterad i ökande ordning och bestå av icke-negativa
heltal.</p><p>Se <a class="ulink" href="http://ma
thworld.wolfram.com/GreedyAlgorithm.html" target="_top">Mathworld</a> för mer information.</p></dd><dt><span
class="term"><a name="gel-function-HarmonicNumber"></a>HarmonicNumber</span></dt><dd><pre
class="synopsis">HarmonicNumber (n,r)</pre><p>Alias: <code class="function">HarmonicH</code></p><p>Harmoniskt
tal, det <code class="varname">n</code>:e harmoniska talet av ordning <code
class="varname">r</code>.</p></dd><dt><span class="term"><a
name="gel-function-Hofstadter"></a>Hofstadter</span></dt><dd><pre class="synopsis">Hofstadter
(n)</pre><p>Hofstadters funktion q(n) definierad av q(1)=1, q(2)=1,
q(n)=q(n-q(n-1))+q(n-q(n-2)).</p></dd><dt><span class="term"><a
name="gel-function-LinearRecursiveSequence"></a>LinearRecursiveSequence</span></dt><dd><pre
class="synopsis">LinearRecursiveSequence (frövärden,kombineringsregel,n)</pre><p>Beräkna linjär rekursiv
sekvens med Galois-stegning.</p></dd><dt><span class="term"><a
name="gel-function-Multinomial"></a>Multinomial</span
</dt><dd><pre class="synopsis">Multinomial (v,arg...)</pre><p>Beräkna multinomialkoefficienter. Tar en
vektor av <code class="varname">k</code> icke-negativa heltal och beräknar multinomialkoefficienten. Denna
motsvarar koefficienten i det homogena polynomet i <code class="varname">k</code> variabler med motsvarande
potenser.</p><p>Formeln för <strong class="userinput"><code>Multinomial(a,b,c)</code></strong> kan skrivas
som: </p><pre class="programlisting">(a+b+c)! / (a!b!c!)
+</pre><p> Med andra ord, om vi bara skulle ha två element så är <strong
class="userinput"><code>Multinomial(a,b)</code></strong> samma sak som <strong
class="userinput"><code>Binomial(a+b,a)</code></strong> eller <strong
class="userinput"><code>Binomial(a+b,b)</code></strong>.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Multinomial_theorem" target="_top">Wikipedia</a>, <a class="ulink"
href="http://planetmath.org/MultinomialTheorem" target="_top">Planetmath</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/MultinomialCoefficient.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-NextCombination"></a>NextCombination</span></dt><dd><pre class="synopsis">NextCombination
(v,n)</pre><p>Hämta kombination som skulle komma efter v i anrop till kombinationer, första kombination
skulle vara <strong class="userinput"><code>[1:k]</code></strong>. Denna funktion är användbar om du har
många kom
binationer att gå igenom och du inte vill slösa minne med att lagra dem alla.</p><p>Till exempel med
Combinations skulle du vanligen skriva en slinga som: </p><pre class="screen"><strong
class="userinput"><code>for n in Combinations (4,6) do (
+ EnFunktion (n)
+);</code></strong>
+</pre><p> Men med NextCombination skulle du skriva något som: </p><pre class="screen"><strong
class="userinput"><code>n:=[1:4];
+do (
+ EnFunktion (n)
+) while not IsNull(n:=NextCombination(n,6));</code></strong>
+</pre><p> Se även <a class="link"
href="ch11s10.html#gel-function-Combinations">Combinations</a>.</p></dd><dt><span class="term"><a
name="gel-function-Pascal"></a>Pascal</span></dt><dd><pre class="synopsis">Pascal (i)</pre><p>Hämta Pascals
triangel som en matris. Detta kommer att returnera en (<code class="varname">i</code>+1)×(<code
class="varname">i</code>+1) nedåt diagonal matris som är Pascals triangel efter <code
class="varname">i</code> iterationer.</p><p>Se <a class="ulink" href="http://planetmath.org/PascalsTriangle"
target="_top">Planetmath</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-Permutations"></a>Permutations</span></dt><dd><pre class="synopsis">Permutations
(k,n)</pre><p>Hämta alla permutationer av <code class="varname">k</code> tal från 1 till <code
class="varname">n</code> som en vektor av vektorer.</p><p>Se <a class="ulink"
href="http://mathworld.wolfram.com/Permutation.html" target="_top">Mathworld</a> eller <a cla
ss="ulink" href="http://en.wikipedia.org/wiki/Permutation" target="_top">Wikipedia</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-RisingFactorial"></a>RisingFactorial</span></dt><dd><pre class="synopsis">RisingFactorial
(n,k)</pre><p>Alias: <code class="function">Pochhammer</code></p><p>(Pochhammer) Stigande fakultet: (n)_k =
n(n+1)…(n+(k-1)).</p><p>Se <a class="ulink" href="http://planetmath.org/RisingFactorial"
target="_top">Planetmath</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-StirlingNumberFirst"></a>StirlingNumberFirst</span></dt><dd><pre
class="synopsis">StirlingNumberFirst (n,m)</pre><p>Alias: <code
class="function">StirlingS1</code></p><p>Stirlingtal av första slaget.</p><p>Se <a class="ulink"
href="http://planetmath.org/StirlingNumbersOfTheFirstKind" target="_top">Planetmath</a> eller <a
class="ulink" href="http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html" target="_top">Mathworld</a
för mer information.</p></dd><dt><span class="term"><a
name="gel-function-StirlingNumberSecond"></a>StirlingNumberSecond</span></dt><dd><pre
class="synopsis">StirlingNumberSecond (n,m)</pre><p>Alias: <code
class="function">StirlingS2</code></p><p>Stirlingtal av andra slaget.</p><p>Se <a class="ulink"
href="http://planetmath.org/StirlingNumbersSecondKind" target="_top">Planetmath</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-Subfactorial"></a>Subfactorial</span></dt><dd><pre class="synopsis">Subfactorial
(n)</pre><p>Derangemang: n! gånger sum_{k=0}^n (-1)^k/k!.</p></dd><dt><span class="term"><a
name="gel-function-Triangular"></a>Triangular</span></dt><dd><pre class="synopsis">Triangular
(n)</pre><p>Beräkna det <code class="varname">n</code>:e triangeltalet.</p><p>Se <a class="ulink"
href="http://planetmath.org/Triangul
arNumbers" target="_top">Planetmath</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-nCr"></a>nCr</span></dt><dd><pre class="synopsis">nCr (n,r)</pre><p>Alias: <code
class="function">Binomial</code></p><p>Beräkna kombinationer, det vill säga binomialkoefficienten. <code
class="varname">n</code> kan vara ett godtyckligt reellt tal.</p><p>Se <a class="ulink"
href="http://planetmath.org/Choose" target="_top">Planetmath</a> för mer information.</p></dd><dt><span
class="term"><a name="gel-function-nPr"></a>nPr</span></dt><dd><pre class="synopsis">nPr
(n,r)</pre><p>Beräkna antalet permutationer av storlek <code class="varname">r</code> av tal från 1 till
<code class="varname">n</code>.</p><p>Se <a class="ulink"
href="http://mathworld.wolfram.com/Permutation.html" target="_top">Mathworld</a> eller <a class="ulink"
href="http://en.wikipedia.org/wiki/Permutation" target="_top">Wikipedia</a> för mer
information.</p></dd></dl></div></div><div class="
navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch11s09.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s11.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Linjär algebra </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%" align="right"
valign="top"> Kalkyl</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch11s11.html b/help/sv/html/ch11s11.html
new file mode 100644
index 0000000..f3c7201
--- /dev/null
+++ b/help/sv/html/ch11s11.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kalkyl</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Handbok
för Genius"><link rel="up" href="ch11.html" title="Kapitel 11. Lista över GEL-funktioner"><link rel="prev"
href="ch11s10.html" title="Kombinatorik"><link rel="next" href="ch11s12.html" title="Funktioner"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Kalkyl</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch11s10.html">Föregående</a> </td><th width="60%"
align="center">Kapitel 11. Lista över GEL-funktioner</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s12.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-function-list-calculus"></a>Kalkyl</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-CompositeSimpsonsRule"></a>CompositeSimpsonsRule</span></dt><dd><pre
class="synopsis">CompositeSimpsonsRule (f,a,b,n)</pre><p>Integration av f med sammansatt Simpsons regel på
intervallet [a,b] med n underintervall med fel högst max(f'''')*h^4*(b-a)/180, observera att n ska vara
jämn.</p><p>Se <a class="ulink" href="http://planetmath.org/SimpsonsRule" target="_top">Planetmath</a> för
mer information.</p></dd><dt><span class="term"><a
name="gel-function-CompositeSimpsonsRuleTolerance"></a>CompositeSimpsonsRuleTolerance</span></dt><dd><pre
class="synopsis">CompositeSimpsonsRuleTolerance
(f,a,b,FjärdederivataBegränsning,Tolerans)</pre><p>Integration av f med sammansatt Simpsons regel på
intervallet [a,b] med antalet steg beräknat av fjärdederivatans begränsning och den önskade toleransen.</
p><p>Se <a class="ulink" href="http://planetmath.org/SimpsonsRule" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-Derivative"></a>Derivative</span></dt><dd><pre class="synopsis">Derivative
(f,x0)</pre><p>Försök att beräkna derivata genom att först försöka symboliskt och sedan numeriskt.</p><p>Se
<a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-EvenPeriodicExtension"></a>EvenPeriodicExtension</span></dt><dd><pre
class="synopsis">EvenPeriodicExtension (f,L)</pre><p>Returnera en funktion som är den jämna periodiska
utvidgningen av <code class="function">f</code> med halvperiod <code class="varname">L</code>. Det vill säga
en funktion definierad på intervallet <strong class="userinput"><code>[0,L]</code></strong> utvidgad att vara
jämn på <strong class="userinput"><code>[-L,L]</code></strong> o
ch sedan utvidgad för att vara periodisk med perioden <strong
class="userinput"><code>2*L</code></strong>.</p><p>Se även <a class="link"
href="ch11s11.html#gel-function-OddPeriodicExtension">OddPeriodicExtension</a> och <a class="link"
href="ch11s11.html#gel-function-PeriodicExtension">PeriodicExtension</a>.</p><p>Version 1.0.7 och
framåt.</p></dd><dt><span class="term"><a
name="gel-function-FourierSeriesFunction"></a>FourierSeriesFunction</span></dt><dd><pre
class="synopsis">FourierSeriesFunction (a,b,L)</pre><p>Returnera en funktion som är en Fourierserie med
koefficienterna angivna av vektorerna <code class="varname">a</code> (sinus) och <code
class="varname">b</code> (cosinus). Observera att <strong class="userinput"><code>a@(1)</code></strong> är
den konstanta koefficienten! Det vill säga, <strong class="userinput"><code>a@(n)</code></strong> avser
termen <strong class="userinput"><code>cos(x*(n-1)*pi/L)</code></strong>, medan <strong
class="userinput"><code>b@(n)
</code></strong> avser termen <strong class="userinput"><code>sin(x*n*pi/L)</code></strong>. Antingen <code
class="varname">a</code> eller <code class="varname">b</code> kan vara <code
class="constant">null</code>.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series"
target="_top">Wikipedia</a> eller <a class="ulink" href="http://mathworld.wolfram.com/FourierSeries.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-InfiniteProduct"></a>InfiniteProduct</span></dt><dd><pre class="synopsis">InfiniteProduct
(funk,start,ökn)</pre><p>Försök beräkna en oändlig produkt för en funktion med en
parameter.</p></dd><dt><span class="term"><a
name="gel-function-InfiniteProduct2"></a>InfiniteProduct2</span></dt><dd><pre
class="synopsis">InfiniteProduct2 (func,arg,start,ökn)</pre><p>Försök beräkna en oändlig produkt för en
funktion med dubbel parameter med func(arg,n).</p></dd><dt><span class="term"
<a name="gel-function-InfiniteSum"></a>InfiniteSum</span></dt><dd><pre class="synopsis">InfiniteSum
(funk,start,ökn)</pre><p>Försök beräkna en oändlig summa för en funktion med en
parameter.</p></dd><dt><span class="term"><a
name="gel-function-InfiniteSum2"></a>InfiniteSum2</span></dt><dd><pre class="synopsis">InfiniteSum2
(func,arg,start,ökn)</pre><p>Försök beräkna en oändlig summa för en funktion med dubbel parameter med
func(arg,n).</p></dd><dt><span class="term"><a
name="gel-function-IsContinuous"></a>IsContinuous</span></dt><dd><pre class="synopsis">IsContinuous
(f,x0)</pre><p>Testa och se om en reellvärd funktion är kontinuerlig vid x0 genom att beräkna gränsvärdet
där.</p></dd><dt><span class="term"><a
name="gel-function-IsDifferentiable"></a>IsDifferentiable</span></dt><dd><pre
class="synopsis">IsDifferentiable (f,x0)</pre><p>Testa för differentierbarhet genom att approximera
vänster- och högergränsvärden och jämföra.</p></dd><dt><span class
="term"><a name="gel-function-LeftLimit"></a>LeftLimit</span></dt><dd><pre class="synopsis">LeftLimit
(f,x0)</pre><p>Beräkna vänstergränsvärdet för en reellvärd funktion vid x0.</p></dd><dt><span class="term"><a
name="gel-function-Limit"></a>Limit</span></dt><dd><pre class="synopsis">Limit (f,x0)</pre><p>Beräkna
gränsvärdet för en reellvärd funktion vid x0. Försöker beräkna både vänster- och
högergränsvärden.</p></dd><dt><span class="term"><a
name="gel-function-MidpointRule"></a>MidpointRule</span></dt><dd><pre class="synopsis">MidpointRule
(f,a,b,n)</pre><p>Integration med mittpunktsregeln.</p></dd><dt><span class="term"><a
name="gel-function-NumericalDerivative"></a>NumericalDerivative</span></dt><dd><pre
class="synopsis">NumericalDerivative (f,x0)</pre><p>Alias: <code
class="function">NDerivative</code></p><p>Försök beräkna numerisk derivata.</p><p>Se <a class="ulink"
href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> för me
r information.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSeriesCoefficients"></a>NumericalFourierSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierSeriesCoefficients (f,L,N)</pre><p>Returnera en vektor av vektorer <strong
class="userinput"><code>[a,b]</code></strong> där <code class="varname">a</code> är cosinuskoefficienterna
och <code class="varname">b</code> är sinuskoefficienterna för Fourierserien av <code
class="function">f</code> med halvperiod <code class="varname">L</code> (det vill säga definierad på <strong
class="userinput"><code>[-L,L]</code></strong> och utvidgad periodiskt) med koefficienter upp till <code
class="varname">N</code>:e deltonen beräknade numeriskt. Koefficienterna beräknas med numerisk integration
med <a class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Fourier_ser
ies" target="_top">Wikipedia</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/FourierSeries.html" target="_top">Mathworld</a> för mer
information.</p><p>Version 1.0.7 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSeriesFunction"></a>NumericalFourierSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierSeriesFunction (f,L,N)</pre><p>Returnera en funktion som är Fourierserien av
<code class="function">f</code> med halvperiod <code class="varname">L</code> (det vill säga definierad på
<strong class="userinput"><code>[-L,L]</code></strong> och utvidgad periodiskt) med koefficienter upp till
<code class="varname">N</code>:e deltonen beräknade numeriskt. Detta är den trigonometriska reella serien som
byggs upp av sinus och cosinus. Koefficienterna beräknas med numerisk integration med <a class="link"
href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Se
<a class="ulink" href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> eller <a
class="ulink" href="http://mathworld.wolfram.com/FourierSeries.html" target="_top">Mathworld</a> för mer
information.</p><p>Version 1.0.7 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierCosineSeriesCoefficients"></a>NumericalFourierCosineSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierCosineSeriesCoefficients (f,L,N)</pre><p>Returnera en vektor av
koefficienter för cosinus-Fourierserien av <code class="function">f</code> med halvperiod <code
class="varname">L</code>. Det vill säga vi tar <code class="function">f</code> definierad på <strong
class="userinput"><code>[0,L]</code></strong> och tar den jämna periodiska utvidgningen och beräknar
Fourierserien, som endast har cosinustermer. Serien beräknas upp till <code class="varname">N</code>:e
deltonen. Koefficienterna beräknas med numerisk integration med <a
class="link" href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>. Observera att <strong
class="userinput"><code>a@(1)</code></strong> är den konstanta koefficienten! Det vill säga, <strong
class="userinput"><code>a@(n)</code></strong> avser termen <strong
class="userinput"><code>cos(x*(n-1)*pi/L)</code></strong>.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/FourierCosineSeries.html" target="_top">Mathworld</a> för mer
information.</p><p>Version 1.0.7 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierCosineSeriesFunction"></a>NumericalFourierCosineSeriesFunction</span></dt><dd><pre
class="synopsis">NumericalFourierCosineSeriesFunction (f,L,N)</pre><p>Returnera en funktion som är
cosinus-Fourierserien av <code class="function">f</code> med halvperiod <code class="varname">L</
code>. Det vill säga vi tar <code class="function">f</code> definierad på <strong
class="userinput"><code>[0,L]</code></strong> och tar den jämna periodiska utvidgningen och beräknar
Fourierserien, som endast har cosinustermer. Serien beräknas upp till <code class="varname">N</code>:e
deltonen. Koefficienterna beräknas med numerisk integration med <a class="link"
href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/FourierCosineSeries.html" target="_top">Mathworld</a> för mer
information.</p><p>Version 1.0.7 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSineSeriesCoefficients"></a>NumericalFourierSineSeriesCoefficients</span></dt><dd><pre
class="synopsis">NumericalFourierSineSeriesCoefficients (f,L,N)</pre><p>Returnera en
vektor av koefficienter för sinus-Fourierserien av <code class="function">f</code> med halvperiod <code
class="varname">L</code>. Det vill säga vi tar <code class="function">f</code> definierad på <strong
class="userinput"><code>[0,L]</code></strong> och tar den udda periodiska utvidgningen och beräknar
Fourierserien, som endast har sinustermer. Serien beräknas upp till <code class="varname">N</code>:e
deltonen. Koefficienterna beräknas med numerisk integration med <a class="link"
href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/FourierSineSeries.html" target="_top">Mathworld</a> för mer
information.</p><p>Version 1.0.7 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-NumericalFourierSineSeriesFunction"></a>NumericalFourierSineSeriesFunc
tion</span></dt><dd><pre class="synopsis">NumericalFourierSineSeriesFunction (f,L,N)</pre><p>Returnera en
funktion som är sinus-Fourierserien av <code class="function">f</code> med halvperiod <code
class="varname">L</code>. Det vill säga vi tar <code class="function">f</code> definierad på <strong
class="userinput"><code>[0,L]</code></strong> och tar den udda periodiska utvidgningen och beräknar
Fourierserien, som endast har sinustermer. Serien beräknas upp till <code class="varname">N</code>:e
deltonen. Koefficienterna beräknas med numerisk integration med <a class="link"
href="ch11s11.html#gel-function-NumericalIntegral"><code
class="function">NumericalIntegral</code></a>.</p><p>Se <a class="ulink"
href="http://en.wikipedia.org/wiki/Fourier_series" target="_top">Wikipedia</a> eller <a class="ulink"
href="http://mathworld.wolfram.com/FourierSineSeries.html" target="_top">Mathworld</a> för mer
information.</p><p>Version 1.0.7 och framåt.</p></dd><dt><span class="term
"><a name="gel-function-NumericalIntegral"></a>NumericalIntegral</span></dt><dd><pre
class="synopsis">NumericalIntegral (f,a,b)</pre><p>Integration efter regel inställd i
NumericalIntegralFunction av f från a till b med NumericalIntegralSteps steg.</p></dd><dt><span
class="term"><a name="gel-function-NumericalLeftDerivative"></a>NumericalLeftDerivative</span></dt><dd><pre
class="synopsis">NumericalLeftDerivative (f,x0)</pre><p>Försök beräkna numerisk
vänsterderivata.</p></dd><dt><span class="term"><a
name="gel-function-NumericalLimitAtInfinity"></a>NumericalLimitAtInfinity</span></dt><dd><pre
class="synopsis">NumericalLimitAtInfinity (_f,step_fun,tolerans,upprepade_som_ger_lyckat,N)</pre><p>Försök
beräkna gränsvärdet av f(step_fun(i)) medan i går från 1 till N.</p></dd><dt><span class="term"><a
name="gel-function-NumericalRightDerivative"></a>NumericalRightDerivative</span></dt><dd><pre
class="synopsis">NumericalRightDerivative (f,x0)</pre><p>Försök beräkna n
umerisk högerderivata.</p></dd><dt><span class="term"><a
name="gel-function-OddPeriodicExtension"></a>OddPeriodicExtension</span></dt><dd><pre
class="synopsis">OddPeriodicExtension (f,L)</pre><p>Returnera en funktion som är den udda periodiska
utvidgningen av <code class="function">f</code> med halvperiod <code class="varname">L</code>. Det vill säga
en funktion definierad på intervallet <strong class="userinput"><code>[0,L]</code></strong> utvidgad att vara
udda på <strong class="userinput"><code>[-L,L]</code></strong> och sedan utvidgad för att vara periodisk med
perioden <strong class="userinput"><code>2*L</code></strong>.</p><p>Se även <a class="link"
href="ch11s11.html#gel-function-EvenPeriodicExtension">EvenPeriodicExtension</a> och <a class="link"
href="ch11s11.html#gel-function-PeriodicExtension">PeriodicExtension</a>.</p><p>Version 1.0.7 och
framåt.</p></dd><dt><span class="term"><a
name="gel-function-OneSidedFivePointFormula"></a>OneSidedFivePointFormula</s
pan></dt><dd><pre class="synopsis">OneSidedFivePointFormula (f,x0,h)</pre><p>Beräkna ensidig derivata med
fempunktsformel.</p></dd><dt><span class="term"><a
name="gel-function-OneSidedThreePointFormula"></a>OneSidedThreePointFormula</span></dt><dd><pre
class="synopsis">OneSidedThreePointFormula (f,x0,h)</pre><p>Beräkna ensidig derivata med
trepunktsformel.</p></dd><dt><span class="term"><a
name="gel-function-PeriodicExtension"></a>PeriodicExtension</span></dt><dd><pre
class="synopsis">PeriodicExtension (f,a,b)</pre><p>Returnera en funktion som är den periodiska utvidgningen
av <code class="function">f</code> definierad på intervallet <strong
class="userinput"><code>[a,b]</code></strong> och har perioden <strong
class="userinput"><code>b-a</code></strong>.</p><p>Se även <a class="link"
href="ch11s11.html#gel-function-OddPeriodicExtension">OddPeriodicExtension</a> och <a class="link"
href="ch11s11.html#gel-function-EvenPeriodicExtension">EvenPeriodicExtension</a>.</p><p>V
ersion 1.0.7 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-RightLimit"></a>RightLimit</span></dt><dd><pre class="synopsis">RightLimit
(f,x0)</pre><p>Beräkna högergränsvärdet för en reellvärd funktion vid x0.</p></dd><dt><span class="term"><a
name="gel-function-TwoSidedFivePointFormula"></a>TwoSidedFivePointFormula</span></dt><dd><pre
class="synopsis">TwoSidedFivePointFormula (f,x0,h)</pre><p>Beräkna tvåsidig derivata med
fempunktsformel.</p></dd><dt><span class="term"><a
name="gel-function-TwoSidedThreePointFormula"></a>TwoSidedThreePointFormula</span></dt><dd><pre
class="synopsis">TwoSidedThreePointFormula (f,x0,h)</pre><p>Beräkna tvåsidig derivata med
trepunktsformel.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s10.html">Föregående</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Upp</a></td><td width=
"40%" align="right"> <a accesskey="n" href="ch11s12.html">Nästa</a></td></tr><tr><td width="40%"
align="left" valign="top">Kombinatorik </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Hem</a></td><td width="40%" align="right" valign="top">
Funktioner</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch11s12.html b/help/sv/html/ch11s12.html
new file mode 100644
index 0000000..13851da
--- /dev/null
+++ b/help/sv/html/ch11s12.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Funktioner</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="ch11.html"
title="Kapitel 11. Lista över GEL-funktioner"><link rel="prev" href="ch11s11.html" title="Kalkyl"><link
rel="next" href="ch11s13.html" title="Ekvationslösning"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Funktioner</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s11.html">Föregående</a> </td><th width="60%" align="center">Kapitel 11. Lista över
GEL-funktioner</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s13.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" styl
e="clear: both"><a name="genius-gel-function-list-functions"></a>Funktioner</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Argument"></a>Argument</span></dt><dd><pre class="synopsis">Argument (z)</pre><p>Alias:
<code class="function">Arg</code><code class="function">arg</code></p><p>argument (vinkel) för komplext
tal.</p></dd><dt><span class="term"><a name="gel-function-BesselJ0"></a>BesselJ0</span></dt><dd><pre
class="synopsis">BesselJ0 (x)</pre><p>Besselfunktion av första slaget av ordning 0. Endast implementerad för
reella tal.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions"
target="_top">Wikipedia</a> för mer information.</p><p>Version 1.0.16 och framåt.</p></dd><dt><span
class="term"><a name="gel-function-BesselJ1"></a>BesselJ1</span></dt><dd><pre class="synopsis">BesselJ1
(x)</pre><p>Besselfunktion av första slaget av ordning 1. Endast implementerad för reella t
al.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions"
target="_top">Wikipedia</a> för mer information.</p><p>Version 1.0.16 och framåt.</p></dd><dt><span
class="term"><a name="gel-function-BesselJn"></a>BesselJn</span></dt><dd><pre class="synopsis">BesselJn
(n,x)</pre><p>Besselfunktion av första slaget av ordning <code class="varname">n</code>. Endast implementerad
för reella tal.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions"
target="_top">Wikipedia</a> för mer information.</p><p>Version 1.0.16 och framåt.</p></dd><dt><span
class="term"><a name="gel-function-BesselY0"></a>BesselY0</span></dt><dd><pre class="synopsis">BesselY0
(x)</pre><p>Besselfunktion av andra slaget av ordning 0. Endast implementerad för reella tal.</p><p>Se <a
class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a> för mer
information.</p><p>Version 1.0.16 och framåt.</p></dd><dt><span class="term
"><a name="gel-function-BesselY1"></a>BesselY1</span></dt><dd><pre class="synopsis">BesselY1
(x)</pre><p>Besselfunktion av andra slaget av ordning 1. Endast implementerad för reella tal.</p><p>Se <a
class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions" target="_top">Wikipedia</a> för mer
information.</p><p>Version 1.0.16 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-BesselYn"></a>BesselYn</span></dt><dd><pre class="synopsis">BesselYn
(n,x)</pre><p>Besselfunktion av andra slaget av ordning <code class="varname">n</code>. Endast implementerad
för reella tal.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Bessel_functions"
target="_top">Wikipedia</a> för mer information.</p><p>Version 1.0.16 och framåt.</p></dd><dt><span
class="term"><a name="gel-function-DirichletKernel"></a>DirichletKernel</span></dt><dd><pre
class="synopsis">DirichletKernel (n,t)</pre><p>Dirichletkärna av ordning <code
class="varname">n</code>.</p></dd><dt
<span class="term"><a name="gel-function-DiscreteDelta"></a>DiscreteDelta</span></dt><dd><pre
class="synopsis">DiscreteDelta (v)</pre><p>Returnerar 1 om och endast om alla element är
noll.</p></dd><dt><span class="term"><a
name="gel-function-ErrorFunction"></a>ErrorFunction</span></dt><dd><pre class="synopsis">ErrorFunction
(x)</pre><p>Alias: <code class="function">erf</code></p><p>Felfunktionen, 2/sqrt(2) * int_0^x e^(-t^2)
dt.</p><p>Se <a class="ulink" href="https://en.wikipedia.org/wiki/Error_function"
target="_top">Wikipedia</a> eller <a class="ulink" href="http://planetmath.org/ErrorFunction"
target="_top">Planetmath</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-FejerKernel"></a>FejerKernel</span></dt><dd><pre class="synopsis">FejerKernel
(n,t)</pre><p>Fejerkärna av ordning <code class="varname">n</code> beräknad vid <code
class="varname">t</code></p><p>Se <a class="ulink" href="http://planetmath.org/FejerKernel"
target="_top">Planet
math</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-GammaFunction"></a>GammaFunction</span></dt><dd><pre class="synopsis">GammaFunction
(x)</pre><p>Alias: <code class="function">Gamma</code></p><p>Gammafunktionen. För närvarande bara
implementerad för reella värden.</p><p>Se <a class="ulink" href="http://planetmath.org/GammaFunction"
target="_top">Planetmath</a> eller <a class="ulink" href="http://en.wikipedia.org/wiki/Gamma_function"
target="_top">Wikipedia</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-KroneckerDelta"></a>KroneckerDelta</span></dt><dd><pre class="synopsis">KroneckerDelta
(v)</pre><p>Returnerar 1 om och endast om alla element är lika.</p></dd><dt><span class="term"><a
name="gel-function-LambertW"></a>LambertW</span></dt><dd><pre class="synopsis">LambertW
(x)</pre><p>Huvudgrenen av Lamberts W-funktion beräknad endast för reella värden större än eller lika med
<strong class="userinput">
<code>-1/e</code></strong>. Det vill säga <code class="function">LambertW</code> är inversen av <strong
class="userinput"><code>x*e^x</code></strong>. Även för reella värden på <code class="varname">x</code> är
detta uttryck inte 1 till 1 och har därför två grenar över <strong
class="userinput"><code>[-1/e,0)</code></strong>. Se <a class="link"
href="ch11s12.html#gel-function-LambertWm1"><code class="function">LambertWm1</code></a> för den andra reella
grenen.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Lambert_W_function"
target="_top">Wikipedia</a> för mer information.</p><p>Version 1.0.18 och framåt.</p></dd><dt><span
class="term"><a name="gel-function-LambertWm1"></a>LambertWm1</span></dt><dd><pre class="synopsis">LambertWm1
(x)</pre><p>Minus-ett-grenen av Lamberts W-funktion beräknad endast för reella värden större än eller lika
med <strong class="userinput"><code>-1/e</code></strong> och mindre än 0. Det vill säga <code class="func
tion">LambertWm1</code> är den andra grenen av inversen av <strong
class="userinput"><code>x*e^x</code></strong>. Se <a class="link"
href="ch11s12.html#gel-function-LambertW"><code class="function">LambertW</code></a> för
huvudgrenen.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Lambert_W_function"
target="_top">Wikipedia</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-MinimizeFunction"></a>MinimizeFunction</span></dt><dd><pre
class="synopsis">MinimizeFunction (funk,x,ökn)</pre><p>Hitta det första värdet där f(x)=0.</p></dd><dt><span
class="term"><a name="gel-function-MoebiusDiskMapping"></a>MoebiusDiskMapping</span></dt><dd><pre
class="synopsis">MoebiusDiskMapping (a,z)</pre><p>Möbiusavbildning av skivan till sig själv som avbildar a
till 0.</p><p>Se <a class="ulink" href="http://planetmath.org/MobiusTransformation"
target="_top">Planetmath</a> för mer information.</p></dd><dt><span class="term"><a name="gel-function-M
oebiusMapping"></a>MoebiusMapping</span></dt><dd><pre class="synopsis">MoebiusMapping
(z,z2,z3,z4)</pre><p>Möbiusavbildning som använder dubbelförhållandet som tar z2,z3,z4 till 1, 0 respektive
oändligheten.</p><p>Se <a class="ulink" href="http://planetmath.org/MobiusTransformation"
target="_top">Planetmath</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToInfty"></a>MoebiusMappingInftyToInfty</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToInfty (z,z2,z3)</pre><p>Möbiusavbildning som använder
dubbelförhållandet som tar oändligheten till oändligheten och z2,z3 till 1 respektive 0.</p><p>Se <a
class="ulink" href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToOne"></a>MoebiusMappingInftyToOne</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToOne (z,z3,z4)</pre><p>Möbiusavbildni
ng som använder dubbelförhållandet som tar oändligheten till 1 och z3,z4 till 0 respektive
oändligheten.</p><p>Se <a class="ulink" href="http://planetmath.org/MobiusTransformation"
target="_top">Planetmath</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-MoebiusMappingInftyToZero"></a>MoebiusMappingInftyToZero</span></dt><dd><pre
class="synopsis">MoebiusMappingInftyToZero (z,z2,z4)</pre><p>Möbiusavbildning som använder dubbelförhållandet
som tar oändligheten till 0 och z2,z4 till 1 respektive oändligheten.</p><p>Se <a class="ulink"
href="http://planetmath.org/MobiusTransformation" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-PoissonKernel"></a>PoissonKernel</span></dt><dd><pre class="synopsis">PoissonKernel
(r,sigma)</pre><p>Poissonkärna på D(0,1) (inte normaliserad till 1, det vill säga integral av detta är
2pi).</p></dd><dt><span class="term"><a name="gel-function-Poisso
nKernelRadius"></a>PoissonKernelRadius</span></dt><dd><pre class="synopsis">PoissonKernelRadius
(r,sigma)</pre><p>Poissonkärna på D(0,R) (inte normaliserad till 1).</p></dd><dt><span class="term"><a
name="gel-function-RiemannZeta"></a>RiemannZeta</span></dt><dd><pre class="synopsis">RiemannZeta
(x)</pre><p>Alias: <code class="function">zeta</code></p><p>Riemanns zetafunktion. För närvarande bara
implementerad för reella värden.</p><p>Se <a class="ulink" href="http://planetmath.org/RiemannZetaFunction"
target="_top">Planetmath</a> eller <a class="ulink" href="http://en.wikipedia.org/wiki/Riemann_zeta_function"
target="_top">Wikipedia</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-UnitStep"></a>UnitStep</span></dt><dd><pre class="synopsis">UnitStep
(x)</pre><p>Enhetsstegfunktionen är 0 för x<0, 1 annars. Detta är integralen för Diracs delta-funktion.
Också kallad Heavisidefunktionen.</p><p>Se <a class="ulink" href="http://en.wikipe
dia.org/wiki/Unit_step" target="_top">Wikipedia</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-cis"></a>cis</span></dt><dd><pre class="synopsis">cis (x)</pre><p><code
class="function">cis</code>-funktionen, detta är samma sak som <strong
class="userinput"><code>cos(x)+1i*sin(x)</code></strong></p></dd><dt><span class="term"><a
name="gel-function-deg2rad"></a>deg2rad</span></dt><dd><pre class="synopsis">deg2rad (x)</pre><p>Konvertera
grader till radianer.</p></dd><dt><span class="term"><a
name="gel-function-rad2deg"></a>rad2deg</span></dt><dd><pre class="synopsis">rad2deg (x)</pre><p>Konvertera
radianer till grader.</p></dd><dt><span class="term"><a name="gel-function-sinc"></a>sinc</span></dt><dd><pre
class="synopsis">sinc (x)</pre><p>Beräknar den onormaliserade sinc-funktionen, det vill säga <strong
class="userinput"><code>sin(x)/x</code></strong>. Om du vill ha den normaliserade funktionen, anropa <strong
class="userinput"><code>sinc(pi*x
)</code></strong>.</p><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Sinc"
target="_top">Wikipedia</a> för mer information.</p><p>Version 1.0.16 och
framåt.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s11.html">Föregående</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Upp</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s13.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Kalkyl
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Ekvationslösning</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch11s13.html b/help/sv/html/ch11s13.html
new file mode 100644
index 0000000..185629a
--- /dev/null
+++ b/help/sv/html/ch11s13.html
@@ -0,0 +1,25 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Ekvationslösning</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="ch11.html"
title="Kapitel 11. Lista över GEL-funktioner"><link rel="prev" href="ch11s12.html" title="Funktioner"><link
rel="next" href="ch11s14.html" title="Statistik"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Ekvationslösning</th></tr><tr><td width="20%" align="left"><a
accesskey="p" href="ch11s12.html">Föregående</a> </td><th width="60%" align="center">Kapitel 11. Lista över
GEL-funktioner</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s14.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="t
itle" style="clear: both"><a
name="genius-gel-function-list-equation-solving"></a>Ekvationslösning</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-CubicFormula"></a>CubicFormula</span></dt><dd><pre class="synopsis">CubicFormula
(p)</pre><p>Beräkna rötter för ett tredjegradspolynom med formel. Polynomet ska anges som en vektor av
koefficienter. Det vill säga <strong class="userinput"><code>4*x^3 + 2*x + 1</code></strong> motsvarar
vektorn <strong class="userinput"><code>[1,2,0,4]</code></strong>. Returnerar en kolumnvektor av de tre
lösningarna. Den första lösningen är alltid den reella eftersom ett tredjegradspolynom alltid har en reell
lösning.</p><p>Se <a class="ulink" href="http://planetmath.org/CubicFormula" target="_top">Planetmath</a>, <a
class="ulink" href="http://mathworld.wolfram.com/CubicFormula.html" target="_top">Mathworld</a> eller <a
class="ulink" href="http://en.wikipedia.org/wiki/
Cubic_equation" target="_top">Wikipedia</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-EulersMethod"></a>EulersMethod</span></dt><dd><pre class="synopsis">EulersMethod
(f,x0,y0,x1,n)</pre><p>Använd Eulers klassiska metod för att numeriskt lösa y'=f(x,y) för initialt <code
class="varname">x0</code>, <code class="varname">y0</code> som går till <code class="varname">x1</code> med
<code class="varname">n</code> inkrement, returnerar <code class="varname">y</code> vid <code
class="varname">x1</code>. Om du inte explicit vill använda Eulers metod bör du verkligen överväga att
använda <a class="link" href="ch11s13.html#gel-function-RungeKutta">RungeKutta</a> för lösning av
ODE.</p><p>System kan lösas genom att helt enkelt låta <code class="varname">y</code> vara en (kolumn)vektor
överallt. Det vill säga, <code class="varname">y0</code> kan vara en vektor i vilket fall <code
class="varname">f</code> bör ta ett tal <code class="varnam
e">x</code> och en vektor av samma storlek som det andra argumentet och bör returnera en vektor av samma
storlek.</p><p>Se <a class="ulink" href="http://mathworld.wolfram.com/EulerForwardMethod.html"
target="_top">Mathworld</a> eller <a class="ulink" href="http://en.wikipedia.org/wiki/Eulers_method"
target="_top">Wikipedia</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-EulersMethodFull"></a>EulersMethodFull</span></dt><dd><pre
class="synopsis">EulersMethodFull (f,x0,y0,x1,n)</pre><p>Använd Eulers klassiska metod för att numeriskt lösa
y'=f(x,y) för initialt <code class="varname">x0</code>, <code class="varname">y0</code> som går till <code
class="varname">x1</code> med <code class="varname">n</code> inkrement, returnerar en 2×(<strong
class="userinput"><code>n+1</code></strong>)-matris med <code class="varname">x</code>- och <code
class="varname">y</code>-värdena. Om du inte explicit vill använda Eulers metod bör du verkligen överv�
�ga att använda <a class="link" href="ch11s13.html#gel-function-RungeKuttaFull">RungeKuttaFull</a> för
lösning av ODE. Lämplig för att koppla ihop med <a class="link"
href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a> eller <a class="link"
href="ch11s20.html#gel-function-LinePlotDrawPoints">LinePlotDrawPoints</a>.</p><p>Exempel: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>line =
EulersMethodFull(`(x,y)=y,0,1.0,3.0,50);</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(line,"window","fit","color","blue","legend","Exponentiell
tillväxt");</code></strong>
+</pre><p>System kan lösas genom att helt enkelt låta <code class="varname">y</code> vara en (kolumn)vektor
överallt. Det vill säga, <code class="varname">y0</code> kan vara en vektor i vilket fall <code
class="varname">f</code> bör ta ett tal <code class="varname">x</code> och en vektor av samma storlek som det
andra argumentet och bör returnera en vektor av samma storlek.</p><p>Utdata för ett system är fortfarande en
n×2-matris där den andra posten är en vektor. Om du vill rita linjen, se till att använda radvektorer och
platta sedan till matrisen med <a class="link" href="ch11s08.html#gel-function-ExpandMatrix">ExpandMatrix</a>
och välj de rätta kolumnerna. Exempel: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
EulersMethodFull(`(x,y)=[y@(2),-y@(1)],0,[1.0,1.0],10.0,500);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
ExpandMatrix(lines);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>firstline =
lines@(,[1,2]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>secondline =
lines@(,[1,3]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>LinePlotWindow =
[0,10,-2,2];</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(firstline,"color","blue","legend","Första");</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(secondline,"color","red","thickness",3,"legend","Andra");</code></strong>
+</pre><p>Se <a class="ulink" href="http://mathworld.wolfram.com/EulerForwardMethod.html"
target="_top">Mathworld</a> eller <a class="ulink" href="http://en.wikipedia.org/wiki/Eulers_method"
target="_top">Wikipedia</a> för mer information.</p><p>Version 1.0.10 och framåt.</p></dd><dt><span
class="term"><a name="gel-function-FindRootBisection"></a>FindRootBisection</span></dt><dd><pre
class="synopsis">FindRootBisection (f,a,b,TOL,N)</pre><p>Hitta rot för en funktion med bisektionsmetoden.
<code class="varname">a</code> och <code class="varname">b</code> är det ursprungliga gissningsintervallet,
<strong class="userinput"><code>f(a)</code></strong> och <strong class="userinput"><code>f(b)</code></strong>
måste ha olika tecken. <code class="varname">TOL</code> är den önskade toleransen och <code
class="varname">N</code> är gränsen för hur många iterationer att köra, 0 betyder ingen gräns. Funktionen
returnerar en vektor <strong class="userinput"><code>[lyckad,värde,
iteration]</code></strong>, där <code class="varname">lyckad</code> är ett booleskt värde som indikerar om
den lyckats, <code class="varname">värde</code> är det sista beräknade värdet, och <code
class="varname">iteration</code> är antalet utförda iterationer.</p></dd><dt><span class="term"><a
name="gel-function-FindRootFalsePosition"></a>FindRootFalsePosition</span></dt><dd><pre
class="synopsis">FindRootFalsePosition (f,a,b,TOL,N)</pre><p>Hitta rot för en funktion med regula
falsi-metoden. <code class="varname">a</code> och <code class="varname">b</code> är det ursprungliga
gissningsintervallet, <strong class="userinput"><code>f(a)</code></strong> och <strong
class="userinput"><code>f(b)</code></strong> måste ha olika tecken. <code class="varname">TOL</code> är den
önskade toleransen och <code class="varname">N</code> är gränsen för hur många iterationer att köra, 0
betyder ingen gräns. Funktionen returnerar en vektor <strong class="userinput"><code>[lyc
kad,värde,iteration]</code></strong>, där <code class="varname">lyckad</code> är ett booleskt värde som
indikerar om den lyckats, <code class="varname">värde</code> är det sista beräknade värdet, och <code
class="varname">iteration</code> är antalet utförda iterationer.</p></dd><dt><span class="term"><a
name="gel-function-FindRootMullersMethod"></a>FindRootMullersMethod</span></dt><dd><pre
class="synopsis">FindRootMullersMethod (f,x0,x1,x2,TOL,N)</pre><p>Hitta rot för en funktion med Mullers
metod. <code class="varname">TOL</code> är den önskade toleransen och <code class="varname">N</code> är
gränsen för antal iterationer att köra, 0 betyder ingen gräns. Funktionen returnerar en vektor <strong
class="userinput"><code>[lyckad,värde,iteration]</code></strong>, där <code class="varname">lyckad</code> är
ett booleskt värde som indikerar om den lyckats, <code class="varname">värde</code> är det sista beräknade
värdet, och <code class="varname">iteration
</code> är antalet utförda iterationer.</p></dd><dt><span class="term"><a
name="gel-function-FindRootSecant"></a>FindRootSecant</span></dt><dd><pre class="synopsis">FindRootSecant
(f,a,b,TOL,N)</pre><p>Hitta rot för en funktion med sekantmetoden. <code class="varname">a</code> och <code
class="varname">b</code> är det ursprungliga gissningsintervallet, <strong
class="userinput"><code>f(a)</code></strong> och <strong class="userinput"><code>f(b)</code></strong> måste
ha olika tecken. <code class="varname">TOL</code> är den önskade toleransen och <code
class="varname">N</code> är gränsen för hur många iterationer att köra, 0 betyder ingen gräns. Funktionen
returnerar en vektor <strong class="userinput"><code>[lyckad,värde,iteration]</code></strong>, där <code
class="varname">lyckad</code> är ett booleskt värde som indikerar om den lyckats, <code
class="varname">värde</code> är det sista beräknade värdet, och <code class="varname">iteration</code> är
antal
et utförda iterationer.</p></dd><dt><span class="term"><a
name="gel-function-HalleysMethod"></a>HalleysMethod</span></dt><dd><pre class="synopsis">HalleysMethod
(f,df,ddf,gissning,epsilon,maxn)</pre><p>Hitta nollpunkter med Halleys metod. <code class="varname">f</code>
är funktionen, <code class="varname">df</code> är derivatan av <code class="varname">f</code>, och <code
class="varname">ddf</code> är andraderivatan av <code class="varname">f</code>. <code
class="varname">gissning</code> är den ursprungliga gissningen. Funktionen returnerar efter att två på
varandra följande värden är inom <code class="varname">epsilon</code> från varandra, eller efter <code
class="varname">maxn</code> försök, i vilket fall funktionen returnerar sedan <code
class="constant">null</code> vilket indikerar misslyckande.</p><p>Se även <a class="link"
href="ch11s13.html#gel-function-NewtonsMethod"><code class="function">NewtonsMethod</code></a> och <a
class="link" href="ch11s19.html#
gel-function-SymbolicDerivative"><code class="function">SymbolicDerivative</code></a>.</p><p>Exempel för att
hitta kvadratroten av 10: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>HalleysMethod(`(x)=x^2-10,`(x)=2*x,`(x)=2,3,10^-10,100)</code></strong>
+</pre><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Halley%27s_method"
target="_top">Wikipedia</a> för mer information.</p><p>Version 1.0.18 och framåt.</p></dd><dt><span
class="term"><a name="gel-function-NewtonsMethod"></a>NewtonsMethod</span></dt><dd><pre
class="synopsis">NewtonsMethod (f,df,gissning,epsilon,maxn)</pre><p>Hitta nollor med Newtons metod. <code
class="varname">f</code> är funktionen och <code class="varname">df</code> är derivatan av <code
class="varname">f</code>. <code class="varname">gissning</code> är den ursprungliga gissningen. Funktionen
returnerar efter två på varandra följande värden inom <code class="varname">epsilon</code> från varandra,
eller efter <code class="varname">maxn</code> försök, i vilket fall funktionen returnerar <code
class="constant">null</code> vilket indikerar misslyckande.</p><p>Se även <a class="link"
href="ch11s15.html#gel-function-NewtonsMethodPoly"><code class="function">NewtonsMethodPoly</code></a>
och <a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>.</p><p>Exempel för att hitta kvadratroten av 10: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>NewtonsMethod(`(x)=x^2-10,`(x)=2*x,3,10^-10,100)</code></strong>
+</pre><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Newtons_method" target="_top">Wikipedia</a>
för mer information.</p><p>Version 1.0.18 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-PolynomialRoots"></a>PolynomialRoots</span></dt><dd><pre class="synopsis">PolynomialRoots
(p)</pre><p>Beräkna rötter för ett polynom (grad 1 till 4) med en av formlerna för sådana polynom. Polynomet
ska anges som en vektor av koefficienter. Det vill säga <strong class="userinput"><code>4*x^3 + 2*x +
1</code></strong> motsvarar vektorn <strong class="userinput"><code>[1,2,0,4]</code></strong>. Returnerar en
kolumnvektor av lösningarna.</p><p>Funktionsanropen <a class="link"
href="ch11s13.html#gel-function-QuadraticFormula">QuadraticFormula</a>, <a class="link"
href="ch11s13.html#gel-function-CubicFormula">CubicFormula</a> och <a class="link"
href="ch11s13.html#gel-function-QuarticFormula">QuarticFormula</a>.</p></dd><dt><span class="term"><a
name="gel-func
tion-QuadraticFormula"></a>QuadraticFormula</span></dt><dd><pre class="synopsis">QuadraticFormula
(p)</pre><p>Beräkna rötter för ett andragradspolynom med formel. Polynomet ska anges som en vektor av
koefficienter. Det vill säga <strong class="userinput"><code>3*x^2 + 2*x + 1</code></strong> motsvarar
vektorn <strong class="userinput"><code>[1,2,3]</code></strong>. Returnerar en kolumnvektor av de två
lösningarna.</p><p>Se <a class="ulink" href="http://planetmath.org/QuadraticFormula"
target="_top">Planetmath</a> eller <a class="ulink" href="http://mathworld.wolfram.com/QuadraticFormula.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-QuarticFormula"></a>QuarticFormula</span></dt><dd><pre class="synopsis">QuarticFormula
(p)</pre><p>Beräkna rötter för ett fjärdegradspolynom med formel. Polynomet ska anges som en vektor av
koefficienter. Det vill säga <strong class="userinput"><code>5*x^4 + 2*x + 1</code></
strong> motsvarar vektorn <strong class="userinput"><code>[1,2,0,0,5]</code></strong>. Returnerar en
kolumnvektor av de fyra lösningarna.</p><p>Se <a class="ulink" href="http://planetmath.org/QuarticFormula"
target="_top">Planetmath</a>, <a class="ulink" href="http://mathworld.wolfram.com/QuarticEquation.html"
target="_top">Mathworld</a> eller <a class="ulink" href="http://en.wikipedia.org/wiki/Quartic_equation"
target="_top">Wikipedia</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-RungeKutta"></a>RungeKutta</span></dt><dd><pre class="synopsis">RungeKutta
(f,x0,y0,x1,n)</pre><p>Använd klassisk icke-adaptiv Runge-Kuttametod av fjärde ordningen för att numeriskt
lösa y'=f(x,y) för initialt <code class="varname">x0</code>, <code class="varname">y0</code> som går till
<code class="varname">x1</code> med <code class="varname">n</code> inkrement, returnerar <code
class="varname">y</code> vid <code class="varname">x1</code>.</p><p>System kan l
ösas genom att helt enkelt låta <code class="varname">y</code> vara en (kolumn)vektor överallt. Det vill
säga, <code class="varname">y0</code> kan vara en vektor i vilket fall <code class="varname">f</code> bör ta
ett tal <code class="varname">x</code> och en vektor av samma storlek som det andra argumentet och bör
returnera en vektor av samma storlek.</p><p>Se <a class="ulink"
href="http://mathworld.wolfram.com/Runge-KuttaMethod.html" target="_top">Mathworld</a> eller <a class="ulink"
href="http://en.wikipedia.org/wiki/Runge-Kutta_methods" target="_top">Wikipedia</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-RungeKuttaFull"></a>RungeKuttaFull</span></dt><dd><pre class="synopsis">RungeKuttaFull
(f,x0,y0,x1,n)</pre><p>Använd klassisk icke-adaptiv Runge-Kuttametod av fjärde ordningen för att numeriskt
lösa y'=f(x,y) för initialt <code class="varname">x0</code>, <code class="varname">y0</code> som går till
<code class="varname">x1</c
ode> med <code class="varname">n</code> inkrement, returnerar en 2×(<strong
class="userinput"><code>n+1</code></strong>)-matris med <code class="varname">x</code>- och <code
class="varname">y</code>-värdena. Lämplig för att koppla ihop med <a class="link"
href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a> eller <a class="link"
href="ch11s20.html#gel-function-LinePlotDrawPoints">LinePlotDrawPoints</a>.</p><p>Exempel: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>line =
RungeKuttaFull(`(x,y)=y,0,1.0,3.0,50);</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(line,"window","fit","color","blue","legend","Exponentiell
tillväxt");</code></strong>
+</pre><p>System kan lösas genom att helt enkelt låta <code class="varname">y</code> vara en (kolumn)vektor
överallt. Det vill säga, <code class="varname">y0</code> kan vara en vektor i vilket fall <code
class="varname">f</code> bör ta ett tal <code class="varname">x</code> och en vektor av samma storlek som det
andra argumentet och bör returnera en vektor av samma storlek.</p><p>Utdata för ett system är fortfarande en
n×2-matris där den andra posten är en vektor. Om du vill rita linjen, se till att använda radvektorer och
platta sedan till matrisen med <a class="link" href="ch11s08.html#gel-function-ExpandMatrix">ExpandMatrix</a>
och välj de rätta kolumnerna. Exempel: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotClear();</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
RungeKuttaFull(`(x,y)=[y@(2),-y@(1)],0,[1.0,1.0],10.0,100);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>lines =
ExpandMatrix(lines);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>firstline =
lines@(,[1,2]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>secondline =
lines@(,[1,3]);</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>LinePlotWindow =
[0,10,-2,2];</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(firstline,"color","blue","legend","Första");</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(secondline,"color","red","thickness",3,"legend","Andra");</code></strong>
+</pre><p>Se <a class="ulink" href="http://mathworld.wolfram.com/Runge-KuttaMethod.html"
target="_top">Mathworld</a> eller <a class="ulink" href="http://en.wikipedia.org/wiki/Runge-Kutta_methods"
target="_top">Wikipedia</a> för mer information.</p><p>Version 1.0.10 och
framåt.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s12.html">Föregående</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Upp</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s14.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Funktioner
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Statistik</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch11s14.html b/help/sv/html/ch11s14.html
new file mode 100644
index 0000000..5ea2118
--- /dev/null
+++ b/help/sv/html/ch11s14.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Statistik</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Handbok
för Genius"><link rel="up" href="ch11.html" title="Kapitel 11. Lista över GEL-funktioner"><link rel="prev"
href="ch11s13.html" title="Ekvationslösning"><link rel="next" href="ch11s15.html"
title="Polynom"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Statistik</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s13.html">Föregående</a> </td><th width="60%" align="center">Kapitel 11. Lista över
GEL-funktioner</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s15.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style
="clear: both"><a name="genius-gel-function-list-statistics"></a>Statistik</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Average"></a>Average</span></dt><dd><pre class="synopsis">Average (m)</pre><p>Alias: <code
class="function">average</code><code class="function">Mean</code><code
class="function">mean</code></p><p>Beräkna medelvärde för en hel matris.</p><p>Se <a class="ulink"
href="http://mathworld.wolfram.com/ArithmeticMean.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-GaussDistribution"></a>GaussDistribution</span></dt><dd><pre
class="synopsis">GaussDistribution (x,sigma)</pre><p>Integral av GaussFunction från 0 till <code
class="varname">x</code> (area under normalkurvan).</p><p>Se <a class="ulink"
href="http://mathworld.wolfram.com/NormalDistribution.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="t
erm"><a name="gel-function-GaussFunction"></a>GaussFunction</span></dt><dd><pre
class="synopsis">GaussFunction (x,sigma)</pre><p>Gauss normaliserade distributionsfunktion
(normalkurvan).</p><p>Se <a class="ulink" href="http://mathworld.wolfram.com/NormalDistribution.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-Median"></a>Median</span></dt><dd><pre class="synopsis">Median (m)</pre><p>Alias: <code
class="function">median</code></p><p>Beräkna median för en hel matris.</p><p>Se <a class="ulink"
href="http://mathworld.wolfram.com/StatisticalMedian.html" target="_top">Mathworld</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-PopulationStandardDeviation"></a>PopulationStandardDeviation</span></dt><dd><pre
class="synopsis">PopulationStandardDeviation (m)</pre><p>Alias: <code
class="function">stdevp</code></p><p>Beräkna populationsstandardavvikelsen för en hel
matris.</p></dd><dt><span
class="term"><a name="gel-function-RowAverage"></a>RowAverage</span></dt><dd><pre
class="synopsis">RowAverage (m)</pre><p>Alias: <code class="function">RowMean</code></p><p>Beräkna medelvärde
för varje rad i en matris.</p><p>Se <a class="ulink" href="http://mathworld.wolfram.com/ArithmeticMean.html"
target="_top">Mathworld</a> för mer information.</p></dd><dt><span class="term"><a
name="gel-function-RowMedian"></a>RowMedian</span></dt><dd><pre class="synopsis">RowMedian
(m)</pre><p>Beräkna median för varje rad i en matris och returnera en kolumnvektor över medianerna.</p><p>Se
<a class="ulink" href="http://mathworld.wolfram.com/StatisticalMedian.html" target="_top">Mathworld</a> för
mer information.</p></dd><dt><span class="term"><a
name="gel-function-RowPopulationStandardDeviation"></a>RowPopulationStandardDeviation</span></dt><dd><pre
class="synopsis">RowPopulationStandardDeviation (m)</pre><p>Alias: <code
class="function">rowstdevp</code></p><p>Beräkna populatio
nsstandardavvikelserna för rader i en matris och returnera en vertikal vektor.</p></dd><dt><span
class="term"><a name="gel-function-RowStandardDeviation"></a>RowStandardDeviation</span></dt><dd><pre
class="synopsis">RowStandardDeviation (m)</pre><p>Alias: <code class="function">rowstdev</code></p><p>Beräkna
standardavvikelserna för rader av en matris och returnera en vertikal vektor.</p></dd><dt><span
class="term"><a name="gel-function-StandardDeviation"></a>StandardDeviation</span></dt><dd><pre
class="synopsis">StandardDeviation (m)</pre><p>Alias: <code class="function">stdev</code></p><p>Beräkna
standardavvikelsen för en hel matris.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s13.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n" href="ch11s15.html">N�
�sta</a></td></tr><tr><td width="40%" align="left" valign="top">Ekvationslösning </td><td width="20%"
align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%" align="right" valign="top">
Polynom</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch11s15.html b/help/sv/html/ch11s15.html
new file mode 100644
index 0000000..ca0c33d
--- /dev/null
+++ b/help/sv/html/ch11s15.html
@@ -0,0 +1,2 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Polynom</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Handbok
för Genius"><link rel="up" href="ch11.html" title="Kapitel 11. Lista över GEL-funktioner"><link rel="prev"
href="ch11s14.html" title="Statistik"><link rel="next" href="ch11s16.html" title="Mängdlära"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Polynom</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch11s14.html">Föregående</a> </td><th width="60%"
align="center">Kapitel 11. Lista över GEL-funktioner</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s16.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear:
both"><a name="genius-gel-function-list-polynomials"></a>Polynom</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-AddPoly"></a>AddPoly</span></dt><dd><pre class="synopsis">AddPoly (p1,p2)</pre><p>Addera
två polynom (vektorer).</p></dd><dt><span class="term"><a
name="gel-function-DividePoly"></a>DividePoly</span></dt><dd><pre class="synopsis">DividePoly
(p,q,&r)</pre><p>Dividera två polynom (som vektorer) med lång division. Returnerar kvoten av de två
polynomen. Det valfria argumentet <code class="varname">r</code> används för att returnera resten. Rester
kommer ha lägre grad än <code class="varname">q</code>.</p><p>Se <a class="ulink"
href="http://planetmath.org/PolynomialLongDivision" target="_top">Planetmath</a> för mer
information.</p></dd><dt><span class="term"><a name="gel-function-IsPoly"></a>IsPoly</span></dt><dd><pre
class="synopsis">IsPoly (p)</pre><p>Kontrollera om en vektor är anv�
�ndbar som ett polynom.</p></dd><dt><span class="term"><a
name="gel-function-MultiplyPoly"></a>MultiplyPoly</span></dt><dd><pre class="synopsis">MultiplyPoly
(p1,p2)</pre><p>Multiplicera två polynom (som vektorer).</p></dd><dt><span class="term"><a
name="gel-function-NewtonsMethodPoly"></a>NewtonsMethodPoly</span></dt><dd><pre
class="synopsis">NewtonsMethodPoly (poly,gissning,epsilon,maxn)</pre><p>Hitta en rot av ett polynom med
Newtons metod. <code class="varname">poly</code> är polynomet som en vektor och <code
class="varname">gissning</code> är den ursprungliga gissningen. Funktionen returnerar efter två på varandra
följande värden inom <code class="varname">epsilon</code> från varandra, eller efter <code
class="varname">maxn</code> försök, i vilket fall funktionen returnerar <code class="constant">null</code>
vilket indikerar misslyckande.</p><p>Se även <a class="link"
href="ch11s13.html#gel-function-NewtonsMethod"><code class="function">NewtonsMethod</code></
a>.</p><p>Exempel för att hitta kvadratroten av 10: </p><pre class="screen"><code
class="prompt">genius></code> <strong
class="userinput"><code>NewtonsMethodPoly([-10,0,1],3,10^-10,100)</code></strong>
+</pre><p>Se <a class="ulink" href="http://en.wikipedia.org/wiki/Newtons_method" target="_top">Wikipedia</a>
för mer information.</p></dd><dt><span class="term"><a
name="gel-function-Poly2ndDerivative"></a>Poly2ndDerivative</span></dt><dd><pre
class="synopsis">Poly2ndDerivative (p)</pre><p>Ta andraderivata av polynom (som vektor).</p></dd><dt><span
class="term"><a name="gel-function-PolyDerivative"></a>PolyDerivative</span></dt><dd><pre
class="synopsis">PolyDerivative (p)</pre><p>Ta derivata av polynom (som vektor).</p></dd><dt><span
class="term"><a name="gel-function-PolyToFunction"></a>PolyToFunction</span></dt><dd><pre
class="synopsis">PolyToFunction (p)</pre><p>Skapa funktion av ett polynom (som en vektor).</p></dd><dt><span
class="term"><a name="gel-function-PolyToString"></a>PolyToString</span></dt><dd><pre
class="synopsis">PolyToString (p,var...)</pre><p>Skapa sträng av ett polynom (som en
vektor).</p></dd><dt><span class="term"><a name="gel-function-SubtractPoly"></
a>SubtractPoly</span></dt><dd><pre class="synopsis">SubtractPoly (p1,p2)</pre><p>Subtrahera två polynom (som
vektorer).</p></dd><dt><span class="term"><a name="gel-function-TrimPoly"></a>TrimPoly</span></dt><dd><pre
class="synopsis">TrimPoly (p)</pre><p>Ta bort nollor från ett polynom (som
vektor).</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s14.html">Föregående</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Upp</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch11s16.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Statistik
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Mängdlära</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch11s16.html b/help/sv/html/ch11s16.html
new file mode 100644
index 0000000..8a2a3b7
--- /dev/null
+++ b/help/sv/html/ch11s16.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Mängdlära</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Handbok
för Genius"><link rel="up" href="ch11.html" title="Kapitel 11. Lista över GEL-funktioner"><link rel="prev"
href="ch11s15.html" title="Polynom"><link rel="next" href="ch11s17.html" title="Kommutativ
algebra"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Mängdlära</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s15.html">Föregående</a> </td><th width="60%" align="center">Kapitel 11. Lista över
GEL-funktioner</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s17.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title"
style="clear: both"><a name="genius-gel-function-list-set-theory"></a>Mängdlära</h2></div></div></div><div
class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-Intersection"></a>Intersection</span></dt><dd><pre class="synopsis">Intersection
(X,Y)</pre><p>Returnerar det mängdteoretiska snittet av X och Y (X och Y är vektorer som föreställer att vara
mängder).</p></dd><dt><span class="term"><a name="gel-function-IsIn"></a>IsIn</span></dt><dd><pre
class="synopsis">IsIn (x,X)</pre><p>Returnerar <code class="constant">true</code> (sant) om elementet x är i
mängden X (där X är en vektor som föreställer att vara en mängd).</p></dd><dt><span class="term"><a
name="gel-function-IsSubset"></a>IsSubset</span></dt><dd><pre class="synopsis">IsSubset (X,
Y)</pre><p>Returnerar <code class="constant">true</code> (sant) om X är en delmängd av Y (X och Y är vektorer
som föreställer att vara mängder).</p></dd><dt><span class="term"><a na
me="gel-function-MakeSet"></a>MakeSet</span></dt><dd><pre class="synopsis">MakeSet (X)</pre><p>Returnerar en
mängd där varje element i X förekommer endast en gång.</p></dd><dt><span class="term"><a
name="gel-function-SetMinus"></a>SetMinus</span></dt><dd><pre class="synopsis">SetMinus
(X,Y)</pre><p>Returnerar den mängdteoretiska differensen X-Y (X och Y är vektorer som föreställer att vara
mängder).</p></dd><dt><span class="term"><a name="gel-function-Union"></a>Union</span></dt><dd><pre
class="synopsis">Union (X,Y)</pre><p>Returnerar den mängdteoretiska unionen av X och Y (X och Y är vektorer
som föreställer att vara mängder).</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s15.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n" href="ch11s17.html">
Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Polynom </td><td width="20%"
align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%" align="right" valign="top">
Kommutativ algebra</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch11s17.html b/help/sv/html/ch11s17.html
new file mode 100644
index 0000000..06074fb
--- /dev/null
+++ b/help/sv/html/ch11s17.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kommutativ
algebra</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="ch11.html" title="Kapitel 11. Lista över
GEL-funktioner"><link rel="prev" href="ch11s16.html" title="Mängdlära"><link rel="next" href="ch11s18.html"
title="Diverse"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Kommutativ algebra</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s16.html">Föregående</a> </td><th width="60%" align="center">Kapitel 11. Lista över
GEL-funktioner</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s18.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="
title" style="clear: both"><a name="genius-gel-function-list-commutative-algebra"></a>Kommutativ
algebra</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><a
name="gel-function-MacaulayBound"></a>MacaulayBound</span></dt><dd><pre class="synopsis">MacaulayBound
(c,d)</pre><p>För en Hilbertfunktion som är c för grad d, givet Macaulay-gränsen för Hilbertfunktionen av
grad d+1 (c^<d>-operatorn från Greens bevis).</p><p>Version 1.0.15 och framåt.</p></dd><dt><span
class="term"><a name="gel-function-MacaulayLowerOperator"></a>MacaulayLowerOperator</span></dt><dd><pre
class="synopsis">MacaulayLowerOperator (c,d)</pre><p>c_<d>-operatorn från Greens bevis för Macaulays
sats.</p><p>Version 1.0.15 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-MacaulayRep"></a>MacaulayRep</span></dt><dd><pre class="synopsis">MacaulayRep
(c,d)</pre><p>Returnera den d:e Macaulayrepresentationen av ett positivt heltal c.
</p><p>Version 1.0.15 och framåt.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%"
summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s16.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s18.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Mängdlära </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%" align="right"
valign="top"> Diverse</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch11s18.html b/help/sv/html/ch11s18.html
new file mode 100644
index 0000000..94cd702
--- /dev/null
+++ b/help/sv/html/ch11s18.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Diverse</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Handbok
för Genius"><link rel="up" href="ch11.html" title="Kapitel 11. Lista över GEL-funktioner"><link rel="prev"
href="ch11s17.html" title="Kommutativ algebra"><link rel="next" href="ch11s19.html" title="Symboliska
operationer"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div
class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Diverse</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s17.html">Föregående</a> </td><th width="60%" align="center">Kapitel 11. Lista över
GEL-funktioner</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s19.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="
title" style="clear: both"><a
name="genius-gel-function-list-miscellaneous"></a>Diverse</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-ASCIIToString"></a>ASCIIToString</span></dt><dd><pre class="synopsis">ASCIIToString
(vek)</pre><p>Konvertera en vektor med ASCII-värden till en sträng.</p></dd><dt><span class="term"><a
name="gel-function-AlphabetToString"></a>AlphabetToString</span></dt><dd><pre
class="synopsis">AlphabetToString (vek,alfabet)</pre><p>Konvertera en vektor med 0-baserade alfabetvärden
(positioner i alfabetsträngen) till en sträng.</p></dd><dt><span class="term"><a
name="gel-function-StringToASCII"></a>StringToASCII</span></dt><dd><pre class="synopsis">StringToASCII
(str)</pre><p>Konvertera en sträng till en vektor med ASCII-värden.</p></dd><dt><span class="term"><a
name="gel-function-StringToAlphabet"></a>StringToAlphabet</span></dt><dd><pre
class="synopsis">StringToAlphabet (str,alf
abet)</pre><p>Konvertera en sträng till en vektor med 0-baserade alfabetvärden (positioner i
alfabetsträngen), -1 för okända bokstäver.</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s17.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s19.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Kommutativ algebra
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Symboliska operationer</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch11s19.html b/help/sv/html/ch11s19.html
new file mode 100644
index 0000000..65e4627
--- /dev/null
+++ b/help/sv/html/ch11s19.html
@@ -0,0 +1,5 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Symboliska
operationer</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="ch11.html" title="Kapitel 11. Lista över
GEL-funktioner"><link rel="prev" href="ch11s18.html" title="Diverse"><link rel="next" href="ch11s20.html"
title="Grafritning"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Symboliska operationer</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s18.html">Föregående</a> </td><th width="60%" align="center">Kapitel 11. Lista över
GEL-funktioner</th><td width="20%" align="right"> <a accesskey="n"
href="ch11s20.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2
class="title" style="clear: both"><a name="genius-gel-function-list-symbolic"></a>Symboliska
operationer</h2></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span
class="term"><a name="gel-function-SymbolicDerivative"></a>SymbolicDerivative</span></dt><dd><pre
class="synopsis">SymbolicDerivative (f)</pre><p>Försök att symboliskt differentiera funktionen f, där f är en
funktion av en variabel.</p><p>Exempel: </p><pre class="screen"><code class="prompt">genius></code>
<strong class="userinput"><code>SymbolicDerivative(sin)</code></strong>
+= (`(x)=cos(x))
+<code class="prompt">genius></code> <strong
class="userinput"><code>SymbolicDerivative(`(x)=7*x^2)</code></strong>
+= (`(x)=(7*(2*x)))
+</pre><p>Se <a class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> för
mer information.</p></dd><dt><span class="term"><a
name="gel-function-SymbolicDerivativeTry"></a>SymbolicDerivativeTry</span></dt><dd><pre
class="synopsis">SymbolicDerivativeTry (f)</pre><p>Försök att symboliskt differentiera funktionen f, där f är
en funktion av en variabel, returnerar <code class="constant">null</code> vid misslyckande men är tyst. (Se
<a class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)</p><p>Se <a class="ulink"
href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-SymbolicNthDerivative"></a>SymbolicNthDerivative</span></dt><dd><pre
class="synopsis">SymbolicNthDerivative (f,n)</pre><p>Försök att symboliskt differentiera en funktion n
gånger. (Se <a class="link" href="ch11s19.h
tml#gel-function-SymbolicDerivative"><code class="function">SymbolicDerivative</code></a>)</p><p>Se <a
class="ulink" href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-SymbolicNthDerivativeTry"></a>SymbolicNthDerivativeTry</span></dt><dd><pre
class="synopsis">SymbolicNthDerivativeTry (f,n)</pre><p>Försök att symboliskt differentiera en funktion n
gånger tyst, och returnera <code class="constant">null</code> vid misslyckande (Se <a class="link"
href="ch11s19.html#gel-function-SymbolicNthDerivative"><code
class="function">SymbolicNthDerivative</code></a>)</p><p>Se <a class="ulink"
href="https://en.wikipedia.org/wiki/Derivative" target="_top">Wikipedia</a> för mer
information.</p></dd><dt><span class="term"><a
name="gel-function-SymbolicTaylorApproximationFunction"></a>SymbolicTaylorApproximationFunction</span></dt><dd><pre
class="synopsis">SymbolicTaylorApproximationFunction
(f,x0,n)</pre><p>Försök att konstruera Taylorapproximationsfunktionen kring x0 till n:e graden. (Se <a
class="link" href="ch11s19.html#gel-function-SymbolicDerivative"><code
class="function">SymbolicDerivative</code></a>)</p></dd></dl></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch11s18.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch11.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch11s20.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Diverse </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%" align="right"
valign="top"> Grafritning</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch11s20.html b/help/sv/html/ch11s20.html
new file mode 100644
index 0000000..8e27854
--- /dev/null
+++ b/help/sv/html/ch11s20.html
@@ -0,0 +1,35 @@
+<html><head><meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"><title>Grafritning</title><meta name="generator" content="DocBook XSL Stylesheets
V1.79.1"><link rel="home" href="index.html" title="Handbok för Genius"><link rel="up" href="ch11.html"
title="Kapitel 11. Lista över GEL-funktioner"><link rel="prev" href="ch11s19.html" title="Symboliska
operationer"><link rel="next" href="ch12.html" title="Kapitel 12. Exempelprogram i GEL"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Grafritning</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch11s19.html">Föregående</a> </td><th width="60%"
align="center">Kapitel 11. Lista över GEL-funktioner</th><td width="20%" align="right"> <a accesskey="n"
href="ch12.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div class="titlepage"><div>
<div><h2 class="title" style="clear: both"><a
name="genius-gel-function-list-plotting"></a>Grafritning</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term"><a
name="gel-function-ExportPlot"></a>ExportPlot</span></dt><dd><pre class="synopsis">ExportPlot
(fil,typ)</pre><pre class="synopsis">ExportPlot (fil)</pre><p>Exportera innehållet för graffönstret till en
fil. Typen är en sträng som anger filtypen att använda, "png", "eps" eller "ps". Om typen inte är angiven
antas den vara ändelsen, i vilket fall ändelsen måste vara ".png", ".eps", eller ".ps".</p><p>Observera att
filer skrivs över utan att du tillfrågas.</p><p>Vid lyckad export returneras true. I annat fall skrivs ett
fel ut och ett undantag flaggas.</p><p>Exempel: </p><pre class="screen"><code
class="prompt">genius></code> <strong class="userinput"><code>ExportPlot("fil.png")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>ExportPlot("/katalog/fil","eps")</code></strong>
+</pre><p>Version 1.0.16 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-LinePlot"></a>LinePlot</span></dt><dd><pre class="synopsis">LinePlot
(funk1,funk2,funk3,...)</pre><pre class="synopsis">LinePlot (funk1,funk2,funk3,x1,x2)</pre><pre
class="synopsis">LinePlot (funk1,funk2,funk3,x1,x2,y1,y2)</pre><pre class="synopsis">LinePlot
(funk1,funk2,funk3,[x1,x2])</pre><pre class="synopsis">LinePlot
(funk1,funk2,funk3,[x1,x2,y1,y2])</pre><p>Rita en funktion (eller flera) med en linjegraf. De första (upp
till 10) argumenten är funktioner, sedan kan du valfritt ange gränserna för graffönstret som <code
class="varname">x1</code>, <code class="varname">x2</code>, <code class="varname">y1</code>, <code
class="varname">y2</code>. Om gränser inte anges kommer de aktuellt inställda gränserna att användas (Se <a
class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>) Om y-gränserna inte anges beräknas funktio
nerna och sedan används max- och minvärdena.</p><p>Parametern <a class="link"
href="ch11s03.html#gel-function-LinePlotDrawLegends"><code class="function">LinePlotDrawLegends</code></a>
styr om förklaringen ritas ut.</p><p>Exempel: </p><pre class="screen"><code class="prompt">genius></code>
<strong class="userinput"><code>LinePlot(sin,cos)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlot(`(x)=x^2,-1,1,0,1)</code></strong>
+</pre></dd><dt><span class="term"><a name="gel-function-LinePlotClear"></a>LinePlotClear</span></dt><dd><pre
class="synopsis">LinePlotClear ()</pre><p>Visa linjegrafsfönstret och rensa bort funktioner och alla andra
linjer som ritades.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotCParametric"></a>LinePlotCParametric</span></dt><dd><pre
class="synopsis">LinePlotCParametric (funk,...)</pre><pre class="synopsis">LinePlotCParametric
(funk,t1,t2,tinc)</pre><pre class="synopsis">LinePlotCParametric (funk,t1,t2,tinc,x1,x2,y1,y2)</pre><p>Rita
en parametrisk komplexvärd funktion med en linjegraf. Först kommer funktionen som returnerar <code
class="computeroutput">x+iy</code> sedan valfritt <code class="varname">t</code>-gränserna som <strong
class="userinput"><code>t1,t2,tinc</code></strong>, sedan valfritt gränserna som <strong
class="userinput"><code>x1,x2,y1,y2</code></strong>.</p><p>Om gränser inte anges kommer de aktuellt inställda
gränserna att användas
(Se <a class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>). Om istället strängen "fit" anges för x- och y-gränserna kommer
gränserna vara den största utsträckningen för grafen</p><p>Parametern <a class="link"
href="ch11s03.html#gel-function-LinePlotDrawLegends"><code class="function">LinePlotDrawLegends</code></a>
styr om förklaringen ritas ut.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawLine"></a>LinePlotDrawLine</span></dt><dd><pre
class="synopsis">LinePlotDrawLine (x1,y1,x2,y2,...)</pre><pre class="synopsis">LinePlotDrawLine
(v,...)</pre><p>Rita en linje från <code class="varname">x1</code>,<code class="varname">y1</code> till <code
class="varname">x2</code>,<code class="varname">y2</code>. <code class="varname">x1</code>,<code
class="varname">y1</code>, <code class="varname">x2</code>,<code class="varname">y2</code> kan ersättas med
en <code class="varname">n</code>×2-matris för
ett längre polygontåg. Alternativt kan vektorn <code class="varname">v</code> vara en kolumnvektor med
komplexa tal, det vill säga en <code class="varname">n</code>×1-matris och varje komplext tal anses då vara
en punkt i planet.</p><p>Extra parametrar kan läggas till för att ange linjefärg, tjocklek, pilar,
graffönstret eller förklaring. Du kan göra detta genom att lägga till en argumentsträng <strong
class="userinput"><code>"color"</code></strong>, <strong class="userinput"><code>"thickness"</code></strong>,
<strong class="userinput"><code>"window"</code></strong>, <strong
class="userinput"><code>"arrow"</code></strong> eller <strong
class="userinput"><code>"legend"</code></strong>, och efter detta ange färgen, tjockleken, fönstret som en
4-vektor, piltyp eller förklaringen. (Pil och fönster är från version 1.0.6 och framåt.)</p><p>Om linjen ska
behandlas som en fylld polygon som är fylld med den angivna färgen kan du ange argumentet <strong class="u
serinput"><code>"filled"</code></strong>. Sedan version 1.0.22 och framåt.</p><p>Färgen ska vara antingen en
sträng som indikerar det vanliga engelska ordet för färgen som GTK kommer känna igen, som <strong
class="userinput"><code>"red"</code></strong>, <strong class="userinput"><code>"blue"</code></strong>,
<strong class="userinput"><code>"yellow"</code></strong>, o.s.v... Alternativt kan färgen anges i RGB-format
som <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong> eller <strong
class="userinput"><code>"#rrrrggggbbbb"</code></strong>, där r, g och b är hexadecimala tal för de röda,
gröna och blåa komponenterna av färgen. Slutligen kan sedan version 1.0.18 färgen också anges som en reell
vektor som anger de röda gröna och blåa komponenterna där komponenterna är mellan 0 och 1, t.ex. <strong
class="userinput"><code>[1.0,0.5,0.1]</code></strong>.</p><p>Fönstret ska som vanligt anges som <st
rong class="userinput"><code>[x1,x2,y1,y2]</code></strong>, eller kan alternativt anges som en sträng
<strong class="userinput"><code>"fit"</code></strong> i vilket fall x-intervallet kommer ställas in precis
och y-intervallet med fem percents gränser kring linjen.</p><p>Pilspecifikation ska vara <strong
class="userinput"><code>"origin"</code></strong>, <strong class="userinput"><code>"end"</code></strong>,
<strong class="userinput"><code>"both"</code></strong> eller <strong
class="userinput"><code>"none"</code></strong>.</p><p>Slutligen ska förklaring vara en sträng som kan
användas som förklaring i grafen. Det vill säga om förklaringar skrivs ut.</p><p>Exempel: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(0,0,1,1,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;1,-1;-1,-1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;1,1],"arrow","end")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine(RungeKuttaFull(`(x,y)=y,0,3,100),"color","blue","legend","Lösningen")</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>for r=0.0 to 1.0 by 0.1 do
LinePlotDrawLine([0,0;1,r],"color",[r,(1-r),0.5],"window",[0,1,0,1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawLine([0,0;10,0;10,10;0,10],"filled","color","green")</code></strong>
+</pre><p>Till skillnad från många andra funktioner som inte bryr sig om de tar en kolumn- eller radvektor så
måste på grund av möjliga tvetydigheter punkter som anges som en vektor av komplexa tal alltid anges som en
kolumnvektor.</p><p>Att ange <code class="varname">v</code> som en kolumnvektor med komplexa tal är
implementerat från version 1.0.22 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotDrawPoints"></a>LinePlotDrawPoints</span></dt><dd><pre
class="synopsis">LinePlotDrawPoints (x,y,...)</pre><pre class="synopsis">LinePlotDrawPoints
(v,...)</pre><p>Rita en punkt vid <code class="varname">x</code>,<code class="varname">y</code>. Indata kan
vara en <code class="varname">n</code>×2-matris för <code class="varname">n</code> olika punkter. Denna
funktion har i stort sett samma indata som <a class="link"
href="ch11s20.html#gel-function-LinePlotDrawLine">LinePlotDrawLine</a>. Alternativt kan vektorn <code
class="varname">v</code> vara en k
olumnvektor med komplexa tal, det vill säga en <code class="varname">n</code>×1-matris och varje komplext
tal anses då vara en punkt i planet.</p><p>Extra parametrar kan läggas till för att ange färg, tjocklek,
graffönstret eller förklaring. Du kan göra detta genom att lägga till en argumentsträng <strong
class="userinput"><code>"color"</code></strong>, <strong class="userinput"><code>"thickness"</code></strong>,
<strong class="userinput"><code>"window"</code></strong> eller <strong
class="userinput"><code>"legend"</code></strong>, och efter detta ange färgen, tjockleken, fönstret som en
4-vektor eller förklaringen.</p><p>Färgen ska vara antingen en sträng som indikerar det vanliga engelska
ordet för färgen som GTK kommer känna igen, som <strong class="userinput"><code>"red"</code></strong>,
<strong class="userinput"><code>"blue"</code></strong>, <strong
class="userinput"><code>"yellow"</code></strong>, o.s.v... Alternativt kan färgen anges i RGB-format s
om <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong> eller <strong
class="userinput"><code>"#rrrrggggbbbb"</code></strong>, där r, g och b är hexadecimala tal för de röda,
gröna och blåa komponenterna av färgen. Slutligen kan färgen också anges som en reell vektor som anger de
röda gröna och blåa komponenterna där komponenterna är mellan 0 och 1.</p><p>Fönstret ska som vanligt anges
som <strong class="userinput"><code>[x1,x2,y1,y2]</code></strong>, eller kan alternativt anges som en sträng
<strong class="userinput"><code>"fit"</code></strong> i vilket fall x-intervallet kommer ställas in precis
och y-intervallet med fem percents gränser kring linjen.</p><p>Slutligen ska förklaring vara en sträng som
kan användas som förklaring i grafen. Det vill säga om förklaringar skrivs ut.</p><p>Exempel: </p><pre
class="screen"><code class="prompt">genius></code> <strong class="userinput"><code>Lin
ePlotDrawPoints(0,0,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints([0,0;1,-1;-1,-1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(RungeKuttaFull(`(x,y)=y,0,3,100),"color","blue","legend","Lösningen")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints([1;1+1i;1i;0],"thickness",5)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>LinePlotDrawPoints(ApplyOverMatrix((0:6)',`(k)=exp(k*2*pi*1i/7)),"thickness",3,"legend","7:e
enhetsrötterna")</code></strong>
+</pre><p>Till skillnad från många andra funktioner som inte bryr sig om de tar en kolumn- eller radvektor så
måste på grund av möjliga tvetydigheter punkter som anges som en vektor av komplexa tal alltid anges som en
kolumnvektor. Notera därför i sista exemplet transponatet av vektorn <strong
class="userinput"><code>0:6</code></strong> för att göra den till en kolumvektor.</p><p>Tillgängligt från
version 1.0.18 och framåt. Att ange <code class="varname">v</code> som en kolumnvektor med komplexa tal är
implementerat från version 1.0.22 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotMouseLocation"></a>LinePlotMouseLocation</span></dt><dd><pre
class="synopsis">LinePlotMouseLocation ()</pre><p>Returnerar en radvektor för en punkt på linjegrafen som
motsvarar den aktuella positionen för musen. Om linjegrafen inte är synlig skrivs ett fel ut och <code
class="constant">null</code> returneras. I detta fall bör du köra <a class="link" h
ref="ch11s20.html#gel-function-LinePlot"><code class="function">LinePlot</code></a> eller <a class="link"
href="ch11s20.html#gel-function-LinePlotClear"><code class="function">LinePlotClear</code></a> för att ställa
graffönstret i linjegrafsläget. Se även <a class="link"
href="ch11s20.html#gel-function-LinePlotWaitForClick"><code
class="function">LinePlotWaitForClick</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-LinePlotParametric"></a>LinePlotParametric</span></dt><dd><pre
class="synopsis">LinePlotParametric (xfunk,yfunk,...)</pre><pre class="synopsis">LinePlotParametric
(xfunk,yfunk,t1,t2,tinc)</pre><pre class="synopsis">LinePlotParametric
(xfunk,yfunk,t1,t2,tinc,x1,x2,y1,y2)</pre><pre class="synopsis">LinePlotParametric
(xfunk,yfunk,t1,t2,tinc,[x1,x2,y1,y2])</pre><pre class="synopsis">LinePlotParametric
(xfunk,yfunk,t1,t2,tinc,"fit")</pre><p>Rita en parametrisk funktion med en linjegraf. Först kommer
funktionerna för <code class="varname">x</code
och <code class="varname">y</code>, sedan valfritt <code class="varname">t</code>-gränserna som <strong
class="userinput"><code>t1,t2,tinc</code></strong>, sedan valfritt gränserna som <strong
class="userinput"><code>x1,x2,y1,y2</code></strong>.</p><p>Om x- och y-gränser inte anges kommer de
aktuellt inställda gränserna att användas (Se <a class="link"
href="ch11s03.html#gel-function-LinePlotWindow"><code class="function">LinePlotWindow</code></a>). Om
istället strängen "fit" anges för x- och y-gränserna kommer gränserna vara den största utsträckningen för
grafen</p><p>Parametern <a class="link" href="ch11s03.html#gel-function-LinePlotDrawLegends"><code
class="function">LinePlotDrawLegends</code></a> styr om förklaringen ritas ut.</p></dd><dt><span
class="term"><a name="gel-function-LinePlotWaitForClick"></a>LinePlotWaitForClick</span></dt><dd><pre
class="synopsis">LinePlotWaitForClick ()</pre><p>Om i linjegrafsläge så inväntas ett klick på linjegrafsfö
nstret och platsen för klicket returneras som en radvektor. Om fönstret är stängt returnerar funktionen
omedelbart <code class="constant">null</code>. Om fönstret inte är i linjegrafsläge ställs det i det läget
och visas om det inte visats. Se även <a class="link"
href="ch11s20.html#gel-function-LinePlotMouseLocation"><code
class="function">LinePlotMouseLocation</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-PlotCanvasFreeze"></a>PlotCanvasFreeze</span></dt><dd><pre
class="synopsis">PlotCanvasFreeze ()</pre><p>Frys tillfälligt ritande av grafens rityta. Användbart om du
behöver rita ett gäng element och vill fördröja ritande av allt för att undvika flimmer i en animering. Efter
att allt har ritats bör du anropa <a class="link" href="ch11s20.html#gel-function-PlotCanvasThaw"><code
class="function">PlotCanvasThaw</code></a>.</p><p>Ritytan töas alltid upp efter att en exekvering avslutas.
så den kommer aldrig att förbli frusen. Till exempe
l töas ritytan automatiskt ögonblicket då en ny kommandorad visas. Observera också att anrop för att frysa
och töa upp kan nästas på ett säkert sätt.</p><p>Version 1.0.18 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-PlotCanvasThaw"></a>PlotCanvasThaw</span></dt><dd><pre class="synopsis">PlotCanvasThaw
()</pre><p>Töa upp ritytan för graf som frystes av <a class="link"
href="ch11s20.html#gel-function-PlotCanvasFreeze"><code class="function">PlotCanvasFreeze</code></a> och rita
om ritytan omedelbart. Ritytan töas också alltid upp efter att ett program slutat exekvera.</p><p>Version
1.0.18 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-PlotWindowPresent"></a>PlotWindowPresent</span></dt><dd><pre
class="synopsis">PlotWindowPresent ()</pre><p>Visa och höj graffönstret, skapa det om nödvändigt. Normalt
skapas fönstret då en av graffunktionerna anropas, men det höjs inte alltid om det råkar vara under andra
fönster. Denn
a funktion är därför bra att anropa i skript där graffönstret kan ha skapats tidigare, och nu är dolt bakom
konsolen eller andra fönster.</p><p>Version 1.0.19 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-SlopefieldClearSolutions"></a>SlopefieldClearSolutions</span></dt><dd><pre
class="synopsis">SlopefieldClearSolutions ()</pre><p>Rensar bort lösningarna som ritats av funktionen <a
class="link" href="ch11s20.html#gel-function-SlopefieldDrawSolution"><code
class="function">SlopefieldDrawSolution</code></a>.</p></dd><dt><span class="term"><a
name="gel-function-SlopefieldDrawSolution"></a>SlopefieldDrawSolution</span></dt><dd><pre
class="synopsis">SlopefieldDrawSolution (x, y, dx)</pre><p>Då en riktningsfältsgraf är aktiv, rita en lösning
med de angivna startvillkoren. Den vanliga Runge-Kutta-metoden används med ökning <code
class="varname">dx</code>. Lösningarna stannar i grafen tills en annan graf visas eller tills du anropar <a
class="link"
href="ch11s20.html#gel-function-SlopefieldClearSolutions"><code
class="function">SlopefieldClearSolutions</code></a>. Du kan också använda det grafiska gränssnittet för att
rita lösningar och ange startvillkor med musen.</p></dd><dt><span class="term"><a
name="gel-function-SlopefieldPlot"></a>SlopefieldPlot</span></dt><dd><pre class="synopsis">SlopefieldPlot
(funk)</pre><pre class="synopsis">SlopefieldPlot (funk,x1,x2,y1,y2)</pre><p>Rita ett riktningsfält.
Funktionen <code class="varname">funk</code> ska ta två reella tal <code class="varname">x</code> och <code
class="varname">y</code> eller ett ensamt komplext tal. Valfritt kan du ange gränserna för graffönstret som
<code class="varname">x1</code>, <code class="varname">x2</code>, <code class="varname">y1</code>, <code
class="varname">y2</code>. Om gränser inte anges kommer de aktuellt inställda gränserna att användas (Se <a
class="link" href="ch11s03.html#gel-function-LinePlotWindow"><code class="function">
LinePlotWindow</code></a>).</p><p>Parametern <a class="link"
href="ch11s03.html#gel-function-LinePlotDrawLegends"><code class="function">LinePlotDrawLegends</code></a>
styr om förklaringen ritas ut.</p><p>Exempel: </p><pre class="screen"><code class="prompt">genius></code>
<strong class="userinput"><code>SlopefieldPlot(`(x,y)=sin(x-y),-5,5,-5,5)</code></strong>
+</pre></dd><dt><span class="term"><a name="gel-function-SurfacePlot"></a>SurfacePlot</span></dt><dd><pre
class="synopsis">SurfacePlot (funk)</pre><pre class="synopsis">SurfacePlot (funk,x1,x2,y1,y2,z1,z2)</pre><pre
class="synopsis">SurfacePlot (funk,x1,x2,y1,y2)</pre><pre class="synopsis">SurfacePlot
(funk,[x1,x2,y1,y2,z1,z2])</pre><pre class="synopsis">SurfacePlot (funk,[x1,x2,y1,y2])</pre><p>Rita en
ytfunktion som antingen tar två argument eller ett komplext tal. Först kommer funktionen sedan valfritt
gränser som <code class="varname">x1</code>, <code class="varname">x2</code>, <code
class="varname">y1</code>, <code class="varname">y2</code>, <code class="varname">z1</code>, <code
class="varname">z2</code>. Om gränser inte anges kommer de aktuellt inställda gränserna att användas (Se <a
class="link" href="ch11s03.html#gel-function-SurfacePlotWindow"><code
class="function">SurfacePlotWindow</code></a>). Genius kan för närvarande endast rita ut en ensam ytgraf.</p><
p>Om z-gränserna inte är angivna kommer maximum- och minimumvärdena för funktionen att
användas.</p><p>Exempel: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(|sin|,-1,1,-1,1,0,1.5)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(`(x,y)=x^2+y,-1,1,-1,1,-2,2)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlot(`(z)=|z|^2,-1,1,-1,1,0,2)</code></strong>
+</pre></dd><dt><span class="term"><a
name="gel-function-SurfacePlotClear"></a>SurfacePlotClear</span></dt><dd><pre
class="synopsis">SurfacePlotClear ()</pre><p>Visa ytgrafsfönstret och rensa ut funktioner och alla andra
linjer som ritats.</p><p>Tillgängligt i version 1.0.19 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotData"></a>SurfacePlotData</span></dt><dd><pre class="synopsis">SurfacePlotData
(data)</pre><pre class="synopsis">SurfacePlotData (data,etikett)</pre><pre class="synopsis">SurfacePlotData
(data,x1,x2,y1,y2,z1,z2)</pre><pre class="synopsis">SurfacePlotData
(data,etikett,x1,x2,y1,y2,z1,z2)</pre><pre class="synopsis">SurfacePlotData
(data,[x1,x2,y1,y2,z1,z2])</pre><pre class="synopsis">SurfacePlotData
(data,etikett,[x1,x2,y1,y2,z1,z2])</pre><p>Rita en yta från data. Data är en n×3-matris vars rader är x-, y-
och z-koordinaterna. Data kan också helt enkelt vara en vektor vars längd är en multipel av 3 och därmed
innehåller
tripplarna av x, y, z. Data ska innehålla minst 3 punkter.</p><p>Valfritt kan vi ange etiketten och valfritt
även gränserna. Om gränserna inte anges beräknas de från data, <a class="link"
href="ch11s03.html#gel-function-SurfacePlotWindow"><code class="function">SurfacePlotWindow</code></a>
används inte, om du vill använda det, skicka med det explicit. Om ingen etikett anges används en tom
etikett.</p><p>Exempel: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData([0,0,0;1,0,1;0,1,1;1,1,3])</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>SurfacePlotData(data,"Mina
data")</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData(data,-1,1,-1,1,0,10)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotData(data,SurfacePlotWindow)</code></strong>
+</pre><p>Här är ett exempel på hur vi kan rita med polära koordinater, i synnerhet hur funktionen <strong
class="userinput"><code>-r^2 * theta</code></strong> ritas: </p><pre class="screen"><code
class="prompt">genius></code> <strong class="userinput"><code>d:=null; for r=0 to 1 by 0.1 do for theta=0
to 2*pi by pi/5 do d=[d;[r*cos(theta),r*sin(theta),-r^2*theta]];</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>SurfacePlotData(d)</code></strong>
+</pre><p>Version 1.0.16 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDataGrid"></a>SurfacePlotDataGrid</span></dt><dd><pre
class="synopsis">SurfacePlotDataGrid (data,[x1,x2,y1,y2])</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2,z1,z2])</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2],etikett)</pre><pre class="synopsis">SurfacePlotDataGrid
(data,[x1,x2,y1,y2,z1,z2],etikett)</pre><p>Rita en yta från vanliga rektangulära data. Data ges i en
n×m-matris där raderna är x-koordinaten och kolumnerna är y-koordinaten. x-koordinaten delas in i n-1 lika
stora delintervall och y-koordinaten delas in i m-1 lika stora delintervall. Gränserna <code
class="varname">x1</code> och <code class="varname">x2</code> ger intervallet på x-axeln som vi använder, och
gränserna <code class="varname">y1</code> och <code class="varname">y2</code> ger intervallet på y-axeln som
vi använder. Om gränserna <code class="varname
">z1</code> och <code class="varname">z2</code> inte anges beräknas de från data (till att vara
extremvärdena från data).</p><p>Valfritt kan vi ange etiketten, om etikett inte anges används en tom
etikett.</p><p>Exempel: </p><pre class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid([1,2;3,4],[0,1,0,1])</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid(data,[-1,1,-1,1],"Mina data")</code></strong>
+<code class="prompt">genius></code> <strong class="userinput"><code>d:=null; for i=1 to 20 do for j=1 to
10 do d@(i,j) = (0.1*i-1)^2-(0.1*j)^2;</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDataGrid(d,[-1,1,0,1],"halv sadel")</code></strong>
+</pre><p>Version 1.0.16 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawLine"></a>SurfacePlotDrawLine</span></dt><dd><pre
class="synopsis">SurfacePlotDrawLine (x1,y1,z1,x2,y2,z2,...)</pre><pre class="synopsis">SurfacePlotDrawLine
(v,...)</pre><p>Rita en linje från <code class="varname">x1</code>,<code class="varname">y1</code>,<code
class="varname">z1</code> till <code class="varname">x2</code>,<code class="varname">y2</code>,<code
class="varname">z2</code>. <code class="varname">x1</code>,<code class="varname">y1</code>,<code
class="varname">z1</code>, <code class="varname">x2</code>,<code class="varname">y2</code>,<code
class="varname">z2</code> kan ersättas med en <code class="varname">n</code>×3-matris för ett längre
polygontåg.</p><p>Extra parametrar kan läggas till för att ange linjefärg, tjocklek, pilar, graffönster eller
förklaring. Du kan göra detta genom att lägga till en argumentsträng <strong class="userinput"><code>
"color"</code></strong>, <strong class="userinput"><code>"thickness"</code></strong>, <strong
class="userinput"><code>"window"</code></strong> eller <strong
class="userinput"><code>"legend"</code></strong>, och efter detta ange färgen, tjockleken, fönstret som en
6-vektor eller förklaringen.</p><p>Färgen ska vara antingen en sträng som indikerar det vanliga engelska
ordet för färgen som GTK kommer känna igen, som <strong class="userinput"><code>"red"</code></strong>,
<strong class="userinput"><code>"blue"</code></strong>, <strong
class="userinput"><code>"yellow"</code></strong>, o.s.v... Alternativt kan färgen anges i RGB-format som
<strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong> eller <strong
class="userinput"><code>"#rrrrggggbbbb"</code></strong>, där r, g och b är hexadecimala tal för de röda,
gröna och blåa komponenterna av färgen. Slutligen kan sedan version 1.0.18 färgen också anges som
en reell vektor som anger de röda gröna och blåa komponenterna där komponenterna är mellan 0 och 1, t.ex.
<strong class="userinput"><code>[1.0,0.5,0.1]</code></strong>.</p><p>Fönstret ska som vanligt anges som
<strong class="userinput"><code>[x1,x2,y1,y2,z1,z2]</code></strong>, eller kan alternativt anges som en
sträng <strong class="userinput"><code>"fit"</code></strong> i vilket fall x-intervallet kommer ställas in
precis och y-intervallet med fem percents gränser kring linjen.</p><p>Slutligen ska förklaring vara en sträng
som kan användas som förklaring i grafen. Det vill säga om förklaringar skrivs ut.</p><p>Exempel: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawLine(0,0,0,1,1,1,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawLine([0,0,0;1,-1,2;-1,-1,-3])</code></strong>
+</pre><p>Tillgängligt i version 1.0.19 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-SurfacePlotDrawPoints"></a>SurfacePlotDrawPoints</span></dt><dd><pre
class="synopsis">SurfacePlotDrawPoints (x,y,z,...)</pre><pre class="synopsis">SurfacePlotDrawPoints
(v,...)</pre><p>Rita en punkt vid <code class="varname">x</code>,<code class="varname">y</code>,<code
class="varname">z</code>. Indata kan vara en <code class="varname">n</code>×3-matris för <code
class="varname">n</code> olika punkter. Denna funktion har i huvudsak samma indata som <a class="link"
href="ch11s20.html#gel-function-SurfacePlotDrawLine">SurfacePlotDrawLine</a>.</p><p>Extra parametrar kan
läggas till för att ange linjefärg, tjocklek, graffönster eller förklaring. Du kan göra detta genom att lägga
till en argumentsträng <strong class="userinput"><code>"color"</code></strong>, <strong
class="userinput"><code>"thickness"</code></strong>, <strong class="userinput"><code>"window"</code><
/strong> eller <strong class="userinput"><code>"legend"</code></strong>, och efter detta ange färgen,
tjockleken, fönstret som en 6-vektor eller förklaringen.</p><p>Färgen ska vara antingen en sträng som
indikerar det vanliga engelska ordet för färgen som GTK kommer känna igen, som <strong
class="userinput"><code>"red"</code></strong>, <strong class="userinput"><code>"blue"</code></strong>,
<strong class="userinput"><code>"yellow"</code></strong>, o.s.v... Alternativt kan färgen anges i RGB-format
som <strong class="userinput"><code>"#rgb"</code></strong>, <strong
class="userinput"><code>"#rrggbb"</code></strong> eller <strong
class="userinput"><code>"#rrrrggggbbbb"</code></strong>, där r, g och b är hexadecimala tal för de röda,
gröna och blåa komponenterna av färgen. Slutligen kan färgen också anges som en reell vektor som anger de
röda gröna och blåa komponenterna där komponenterna är mellan 0 och 1.</p><p>Fönstret ska som vanligt anges
som <strong
class="userinput"><code>[x1,x2,y1,y2,z1,z2]</code></strong>, eller kan alternativt anges som en sträng
<strong class="userinput"><code>"fit"</code></strong> i vilket fall x-intervallet kommer ställas in precis
och y-intervallet med fem percents gränser kring linjen.</p><p>Slutligen ska förklaring vara en sträng som
kan användas som förklaring i grafen. Det vill säga om förklaringar skrivs ut.</p><p>Exempel: </p><pre
class="screen"><code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawPoints(0,0,0,"color","blue","thickness",3)</code></strong>
+<code class="prompt">genius></code> <strong
class="userinput"><code>SurfacePlotDrawPoints([0,0,0;1,-1,2;-1,-1,1])</code></strong>
+</pre><p>Tillgängligt i version 1.0.19 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldClearSolutions"></a>VectorfieldClearSolutions</span></dt><dd><pre
class="synopsis">VectorfieldClearSolutions ()</pre><p>Rensar bort lösningarna som ritats av funktionen <a
class="link" href="ch11s20.html#gel-function-VectorfieldDrawSolution"><code
class="function">VectorfieldDrawSolution</code></a>.</p><p>Version 1.0.6 och framåt.</p></dd><dt><span
class="term"><a name="gel-function-VectorfieldDrawSolution"></a>VectorfieldDrawSolution</span></dt><dd><pre
class="synopsis">VectorfieldDrawSolution (x, y, dt, tlen)</pre><p>Då en verktorfältsgraf är aktiv, rita en
lösning med de angivna startvillkoren. Den vanliga Runge-Kutta-metoden används med ökning <code
class="varname">dt</code> under ett intervall med längden <code class="varname">tlen</code>. Lösningarna
stannar i grafen tills en annan graf visas eller tills du anropar <a class="link" href="ch11s20
.html#gel-function-VectorfieldClearSolutions"><code class="function">VectorfieldClearSolutions</code></a>.
Du kan också använda det grafiska gränssnittet för att rita lösningar och ange startvillkor med
musen.</p><p>Version 1.0.6 och framåt.</p></dd><dt><span class="term"><a
name="gel-function-VectorfieldPlot"></a>VectorfieldPlot</span></dt><dd><pre class="synopsis">VectorfieldPlot
(funkx, funky)</pre><pre class="synopsis">VectorfieldPlot (funkx, funky, x1, x2, y1, y2)</pre><p>Rita ett
tvådimensionellt vektorfält. Funktionen <code class="varname">funkx</code> ska vara dx/dt för vektorfältet
och funktionen <code class="varname">funky</code> ska vara dy/dt för vektorfältet. Funktionerna ska ta två
reella tal <code class="varname">x</code> och <code class="varname">y</code>, eller ett ensamt komplext tal.
Då parametern <a class="link" href="ch11s03.html#gel-function-VectorfieldNormalized"><code
class="function">VectorfieldNormalized</code></a> är <code class="con
stant">true</code> normaliseras magnituden för vektorerna. Det vill säga endast riktningen visas, inte
magnituden.</p><p>Valfritt kan du ange gränserna för graffönstret som <code class="varname">x1</code>, <code
class="varname">x2</code>, <code class="varname">y1</code>, <code class="varname">y2</code>. Om gränser inte
anges kommer de aktuellt inställda gränserna att användas (Se <a class="link"
href="ch11s03.html#gel-function-LinePlotWindow"><code
class="function">LinePlotWindow</code></a>).</p><p>Parametern <a class="link"
href="ch11s03.html#gel-function-LinePlotDrawLegends"><code class="function">LinePlotDrawLegends</code></a>
styr om förklaringen ritas ut.</p><p>Exempel: </p><pre class="screen"><code class="prompt">genius></code>
<strong class="userinput"><code>VectorfieldPlot(`(x,y)=x^2-y, `(x,y)=y^2-x, -1, 1, -1, 1)</code></strong>
+</pre></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch11s19.html">Föregående</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch11.html">Upp</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch12.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Symboliska
operationer </td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td
width="40%" align="right" valign="top"> Kapitel 12. Exempelprogram i GEL</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch12.html b/help/sv/html/ch12.html
new file mode 100644
index 0000000..fec5309
--- /dev/null
+++ b/help/sv/html/ch12.html
@@ -0,0 +1,54 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 12.
Exempelprogram i GEL</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="index.html" title="Handbok för
Genius"><link rel="prev" href="ch11s20.html" title="Grafritning"><link rel="next" href="ch13.html"
title="Kapitel 13. Inställningar"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Kapitel 12. Exempelprogram i GEL</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch11s20.html">Föregående</a> </td><th width="60%" align="center"> </th><td width="20%" align="right">
<a accesskey="n" href="ch13.html">Nästa</a></td></tr></table><hr></div><div class="chapter"><div
class="titlepage"><div><div><h1 class="title"><a n
ame="genius-gel-example-programs"></a>Kapitel 12. Exempelprogram i GEL</h1></div></div></div><p>Här är en
funktion som beräknar fakultet: </p><pre class="programlisting">function f(x) = if x <= 1 then 1 else
(f(x-1)*x)
+</pre><p>Med indentering blir det: </p><pre class="programlisting">function f(x) = (
+ if x <= 1 then
+ 1
+ else
+ (f(x-1)*x)
+)
+</pre><p>Detta är en direkt portering av fakultetsfunktionen från manualsidan från <span
class="application">bc</span>. Syntaxen verkar liknande som i <span class="application">bc</span>, men
skiljer sig åt i att i GEL är det sista uttrycket det som returneras. Om funktionen <code
class="literal">return</code> används istället blir det: </p><pre class="programlisting">function f(x) = (
+ if (x <= 1) then return (1);
+ return (f(x-1) * x)
+)
+</pre><p>Det absolut enklaste sättet att definiera en fakultetsfunktion är att använda produktloopen enligt
följande. Detta är inte bara kortast och snabbast, utan också troligen den mest läsbara versionen. </p><pre
class="programlisting">function f(x) = prod k=1 to x do k
+</pre><p>Här är ett större exempel som i stort omdefinierar den inbyggda funktionen <a class="link"
href="ch11s09.html#gel-function-ref"><code class="function">ref</code></a> för att beräkna trappstegsformen
för en matris. Funktionen <code class="function">ref</code> är inbyggd och mycket snabbare, men detta exempel
demonstrerar några av de mer komplexa funktionerna i GEL. </p><pre class="programlisting"># Calculate the
row-echelon form of a matrix
+function MyOwnREF(m) = (
+ if not IsMatrix(m) or not IsValueOnly(m) then
+ (error("MyOwnREF: argument not a value only matrix");bailout);
+ s := min(rows(m), columns(m));
+ i := 1;
+ d := 1;
+ while d <= s and i <= columns(m) do (
+
+ # This just makes the anchor element non-zero if at
+ # all possible
+ if m@(d,i) == 0 then (
+ j := d+1;
+ while j <= rows(m) do (
+ if m@(j,i) == 0 then
+ (j=j+1;continue);
+ a := m@(j,);
+ m@(j,) := m@(d,);
+ m@(d,) := a;
+ j := j+1;
+ break
+ )
+ );
+ if m@(d,i) == 0 then
+ (i:=i+1;continue);
+
+ # Here comes the actual zeroing of all but the anchor
+ # element rows
+ j := d+1;
+ while j <= rows(m)) do (
+ if m@(j,i) != 0 then (
+ m@(j,) := m@(j,)-(m@(j,i)/m@(d,i))*m@(d,)
+ );
+ j := j+1
+ );
+ m@(d,) := m@(d,) * (1/m@(d,i));
+ d := d+1;
+ i := i+1
+ );
+ m
+)
+</pre></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%"
align="left"><a accesskey="p" href="ch11s20.html">Föregående</a> </td><td width="20%" align="center">
</td><td width="40%" align="right"> <a accesskey="n" href="ch13.html">Nästa</a></td></tr><tr><td width="40%"
align="left" valign="top">Grafritning </td><td width="20%" align="center"><a accesskey="h"
href="index.html">Hem</a></td><td width="40%" align="right" valign="top"> Kapitel 13.
Inställningar</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch13.html b/help/sv/html/ch13.html
new file mode 100644
index 0000000..970cacf
--- /dev/null
+++ b/help/sv/html/ch13.html
@@ -0,0 +1,28 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 13.
Inställningar</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="index.html" title="Handbok för
Genius"><link rel="prev" href="ch12.html" title="Kapitel 12. Exempelprogram i GEL"><link rel="next"
href="ch13s02.html" title="Precision"></head><body bgcolor="white" text="black" link="#0000FF"
vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitel 13. Inställningar</th></tr><tr><td width="20%"
align="left"><a accesskey="p" href="ch12.html">Föregående</a> </td><th width="60%" align="center"> </th><td
width="20%" align="right"> <a accesskey="n" href="ch13s02.html">Nästa</a></td></tr></table><hr></div><div
class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="gen
ius-prefs"></a>Kapitel 13. Inställningar</h1></div></div></div><div
class="toc"><p><b>Innehållsförteckning</b></p><dl class="toc"><dt><span class="sect1"><a
href="ch13.html#genius-prefs-output">Utdata</a></span></dt><dt><span class="sect1"><a
href="ch13s02.html">Precision</a></span></dt><dt><span class="sect1"><a
href="ch13s03.html">Terminal</a></span></dt><dt><span class="sect1"><a
href="ch13s04.html">Minne</a></span></dt></dl></div><p>För att konfigurera <span class="application">Genius
matematikverktyg</span>, välj <span class="guimenu">Inställningar</span> → <span
class="guimenuitem">Inställningar</span>. Det finns flera grundläggande parametrar som tillhandahålls av
miniräknaren utöver de som tillhandahålls av standardbiblioteket. Dessa kontrollerar hur miniräknaren beter
sig.</p><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Ändra
inställningar med GEL</h3><p>Många av inställningarna i Genius är helt enkelt glob
ala variabler, och kan evalueras och tilldelas till på samma sätt som vanliga variabler. Se <a class="xref"
href="ch05s02.html" title="Använda variabler">”Använda variabler”</a> om evaluering och tilldelning till
variabler, och <a class="xref" href="ch11s03.html" title="Parametrar">”Parametrar”</a> för en lista över
inställningar som kan ändras på detta sätt.</p><p>Som ett exempel kan du ställa in det maximala antalet
siffror i ett resultat till 12 genom att skriva: </p><pre class="programlisting">MaxDigits = 12
+</pre></div><div class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a
name="genius-prefs-output"></a>Utdata</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Maximalt antal siffror att skriva ut</span>
+ </span></dt><dd><p>Maximalt antal siffror i ett resultat (<a class="link"
href="ch11s03.html#gel-function-MaxDigits"><code class="function">MaxDigits</code></a>)</p></dd><dt><span
class="term">
+ <span class="guilabel">Resultat som flyttal</span>
+ </span></dt><dd><p>Om resultaten alltid ska skrivas ut som flyttal (<a class="link"
href="ch11s03.html#gel-function-ResultsAsFloats"><code
class="function">ResultsAsFloats</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Flyttal i vetenskaplig notation</span>
+ </span></dt><dd><p>Om flyttal ska vara i vetenskaplig notation (<a class="link"
href="ch11s03.html#gel-function-ScientificNotation"><code
class="function">ScientificNotation</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Skriv alltid ut fullständiga uttryck</span>
+ </span></dt><dd><p>Ska vi skriva ut fullständiga uttryck för icke-numeriska returvärden (längre än en
rad) (<a class="link" href="ch11s03.html#gel-function-FullExpressions"><code
class="function">FullExpressions</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Använd blandade bråk</span>
+ </span></dt><dd><p>Om bråk ska skrivas ut som blandade bråk som exempelvis ”1 1/3” snarare än ”4/3”.
(<a class="link" href="ch11s03.html#gel-function-MixedFractions"><code
class="function">MixedFractions</code></a>)</p></dd><dt><span class="term">
+ <span class="guilabel">Visa 0.0 när flyttal är mindre än 10^-x (0=klipp aldrig)</span>
+ </span></dt><dd><p>Hur utmatning klipps. Men bara när andra tal i närheten är stora. Se
dokumentationen för parametern <a class="link" href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>.</p></dd><dt><span class="term">
+ <span class="guilabel">Klipp endast tal när ett annat tal är större än 10^-x</span>
+ </span></dt><dd><p>När utmatning ska klippas. Detta ställs in av parametern <a class="link"
href="ch11s03.html#gel-function-OutputChopWhenExponent"><code
class="function">OutputChopWhenExponent</code></a>. Se dokumentationen för parametern <a class="link"
href="ch11s03.html#gel-function-OutputChopExponent"><code
class="function">OutputChopExponent</code></a>.</p></dd><dt><span class="term">
+ <span class="guilabel">Kom ihåg utdatainställningar mellan sessioner</span>
+ </span></dt><dd><p>Ska utdatainställningar i ramen <span class="guilabel">Utdatainställningar för
tal/uttryck</span> kommas ihåg till nästa session. Gäller inte för ramen <span
class="guilabel">Utdatainställningar för fel/information</span>.</p><p>Om ej ikryssad kommer antingen
standardinställningen eller tidigare sparade inställningar användas varje gång Genius startas. Observera att
inställningar sparas i slutet på sessionen, så om du vill ändra standardinställningen kryssa i denna ruta,
starta om <span class="application">Genius matematikverktyg</span> och kryssa sedan ur den
igen.</p></dd><dt><span class="term">
+ <span class="guilabel">Visa felmeddelanden i en dialog</span>
+ </span></dt><dd><p>Om inställd kommer fel att visas i en separat dialog, om ej inställd kommer felen
att skrivas ut i konsolen.</p></dd><dt><span class="term">
+ <span class="guilabel">Visa informationsmeddelanden i en dialog</span>
+ </span></dt><dd><p>Om inställd kommer informationsmeddelandena att visas i en separat dialog, om ej
inställd kommer informationsmeddelandena att skrivas ut i konsolen.</p></dd><dt><span class="term">
+ <span class="guilabel">Maximalt antal fel att visa</span>
+ </span></dt><dd><p>Det maximala antalet fel att returnera vid en evaluering (<a class="link"
href="ch11s03.html#gel-function-MaxErrors"><code class="function">MaxErrors</code></a>). Om du ställer in
detta till 0 kommer alla fel alltid att returneras. Om en slinga orsakar många fel så är det vanligen
osannolikt att du kommer att kunna tolka mer än några få av dessa, så att se en lång lista av fel är vanligen
inte till någon större hjälp.</p></dd></dl></div><p>Utöver dessa inställningar finns det några inställningar
som endast kan ändras genom att ställa in dem i arbetsytans konsol. För andra som kan påverka utmatningen se
<a class="xref" href="ch11s03.html" title="Parametrar">”Parametrar”</a>.</p><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <code class="function">IntegerOutputBase</code>
+ </span></dt><dd><p>Basen som kommer användas för utskrift av heltal</p></dd><dt><span class="term">
+ <code class="function">OutputStyle</code>
+ </span></dt><dd><p>En sträng, kan vara <code class="literal">"normal"</code>, <code
class="literal">"latex"</code>, <code class="literal">"mathml"</code> eller <code
class="literal">"troff"</code> och den kommer påverka hur matriser (och kanske andra saker) skrivs ut,
användbart då du vill klistra in i dokument. Normal stil är den av människor läsbara utskriftsstilen som är
standard för <span class="application">Genius matematikverktyg</span>. De andra stilarna är för textsättning
i LaTeX, MathML (XML) eller i Troff.</p></dd></dl></div></div></div><div class="navfooter"><hr><table
width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch12.html">Föregående</a> </td><td width="20%" align="center"> </td><td width="40%" align="right"> <a
accesskey="n" href="ch13s02.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel
12. Exempelprogram i GEL </td><td width="20%" align="center"><a access
key="h" href="index.html">Hem</a></td><td width="40%" align="right" valign="top">
Precision</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch13s02.html b/help/sv/html/ch13s02.html
new file mode 100644
index 0000000..de843fb
--- /dev/null
+++ b/help/sv/html/ch13s02.html
@@ -0,0 +1,5 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Precision</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Handbok
för Genius"><link rel="up" href="ch13.html" title="Kapitel 13. Inställningar"><link rel="prev"
href="ch13.html" title="Kapitel 13. Inställningar"><link rel="next" href="ch13s03.html"
title="Terminal"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Precision</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch13.html">Föregående</a> </td><th width="60%" align="center">Kapitel 13. Inställningar</th><td
width="20%" align="right"> <a accesskey="n" href="ch13s03.html">Nästa</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a na
me="genius-prefs-precision"></a>Precision</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Flyttalsprecision</span>
+ </span></dt><dd><p>Flyttalsprecisionen i bitar (<a class="link"
href="ch11s03.html#gel-function-FloatPrecision"><code class="function">FloatPrecision</code></a>). Observera
att ändra denna endast påverkar nya beräknade kvantiteter. Gamla värden som är lagrade i variabler är
uppenbarligen fortfarande i den gamla precisionen och om du vill ha dem mer exakta måste du räkna ut dem på
nytt. Undantag till detta är systemkonstanterna som <a class="link" href="ch11s04.html#gel-function-pi"><code
class="function">pi</code></a> eller <a class="link" href="ch11s04.html#gel-function-e"><code
class="function">e</code></a>.</p></dd><dt><span class="term">
+ <span class="guilabel">Kom ihåg precisionsinställning mellan sessioner</span>
+ </span></dt><dd><p>Ska precisionsinställningen kommas ihåg för nästa session. Om ej ikryssad används
antingen standardinställningen eller någon tidigare sparad inställning varje gång Genius startar. Observera
att inställningar sparas i slutet på varje session, så om du vill ändra standardinställningen kryssa i denna
ruta, starta om genius och kryssa sedan ur den igen.</p></dd></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch13.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch13.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch13s03.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Kapitel 13.
Inställningar </td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td
width="40%" align="right" valign="top"> Terminal</td></tr></table></div></body><
/html>
diff --git a/help/sv/html/ch13s03.html b/help/sv/html/ch13s03.html
new file mode 100644
index 0000000..6f8a7c8
--- /dev/null
+++ b/help/sv/html/ch13s03.html
@@ -0,0 +1,9 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Terminal</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Handbok
för Genius"><link rel="up" href="ch13.html" title="Kapitel 13. Inställningar"><link rel="prev"
href="ch13s02.html" title="Precision"><link rel="next" href="ch13s04.html" title="Minne"></head><body
bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table
width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Terminal</th></tr><tr><td
width="20%" align="left"><a accesskey="p" href="ch13s02.html">Föregående</a> </td><th width="60%"
align="center">Kapitel 13. Inställningar</th><td width="20%" align="right"> <a accesskey="n"
href="ch13s04.html">Nästa</a></td></tr></table><hr></div><div class="sect1"><div
class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="genius-prefs
-terminal"></a>Terminal</h2></div></div></div><p>Terminalen avser konsolen i arbetsytan.</p><div
class="variablelist"><dl class="variablelist"><dt><span class="term">
+ <span class="guilabel">Tidigare rader sparade</span>
+ </span></dt><dd><p>Rader historik i terminalen.</p></dd><dt><span class="term">
+ <span class="guilabel">Typsnitt</span>
+ </span></dt><dd><p>Typsnittet att använda i terminalen.</p></dd><dt><span class="term">
+ <span class="guilabel">Svart på vitt</span>
+ </span></dt><dd><p>Om svart text på vit bakgrund ska användas i terminalen.</p></dd><dt><span
class="term">
+ <span class="guilabel">Blinkande markör</span>
+ </span></dt><dd><p>Om markören i terminalen ska blinka då terminalen är fokuserad. Detta kan ibland
vara irriterande och det genererar meningslös trafik om du fjärranvänder
Genius.</p></dd></dl></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation
footer"><tr><td width="40%" align="left"><a accesskey="p" href="ch13s02.html">Föregående</a> </td><td
width="20%" align="center"><a accesskey="u" href="ch13.html">Upp</a></td><td width="40%" align="right"> <a
accesskey="n" href="ch13s04.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Precision
</td><td width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%"
align="right" valign="top"> Minne</td></tr></table></div></body></html>
diff --git a/help/sv/html/ch13s04.html b/help/sv/html/ch13s04.html
new file mode 100644
index 0000000..90acc2f
--- /dev/null
+++ b/help/sv/html/ch13s04.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Minne</title><meta
name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home" href="index.html" title="Handbok
för Genius"><link rel="up" href="ch13.html" title="Kapitel 13. Inställningar"><link rel="prev"
href="ch13s03.html" title="Terminal"><link rel="next" href="ch14.html" title="Kapitel 14. Om Genius
matematikverktyg"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084"
alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3"
align="center">Minne</th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch13s03.html">Föregående</a> </td><th width="60%" align="center">Kapitel 13. Inställningar</th><td
width="20%" align="right"> <a accesskey="n" href="ch14.html">Nästa</a></td></tr></table><hr></div><div
class="sect1"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><
a name="genius-prefs-memory"></a>Minne</h2></div></div></div><div class="variablelist"><dl
class="variablelist"><dt><span class="term">
+ <span class="guilabel">Maximalt antal noder att allokera</span>
+ </span></dt><dd><p>Internt stoppas alla data i små noder i minnet. Detta ger en gräns för det största
antalet noder som kan allokeras för beräkningar. Denna gräns förhindrar problemet med att få slut minne om du
av misstag gör något som använder för mycket minne, som en rekursion utan slut. Detta skulle kunna sakta ner
din dator och göra det svårt att ens avbryta programmet.</p><p>Då gränsen har nåtts frågar <span
class="application">Genius matematikverktyg</span> om du vill avbryta beräkningen eller om du vill fortsätta.
Om du fortsätter kommer ingen gräns att tillämpas och det kommer vara möjligt att köra tills din dator få
slut minne. Gränsen kommer att tillämpas igen nästa gång du kör ett program eller uttryck på konsolen oavsett
hur du besvarade frågan.</p><p>Att ställa in gränsen till noll innebär att det inte finns någon gräns för
mängden minne som genius använder.</p></dd></dl></div></div><div class="navfooter"><hr><tab
le width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p"
href="ch13s03.html">Föregående</a> </td><td width="20%" align="center"><a accesskey="u"
href="ch13.html">Upp</a></td><td width="40%" align="right"> <a accesskey="n"
href="ch14.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top">Terminal </td><td
width="20%" align="center"><a accesskey="h" href="index.html">Hem</a></td><td width="40%" align="right"
valign="top"> Kapitel 14. Om <span class="application">Genius
matematikverktyg</span></td></tr></table></div></body></html>
diff --git a/help/sv/html/ch14.html b/help/sv/html/ch14.html
new file mode 100644
index 0000000..b2d619f
--- /dev/null
+++ b/help/sv/html/ch14.html
@@ -0,0 +1 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Kapitel 14. Om Genius
matematikverktyg</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><link rel="home"
href="index.html" title="Handbok för Genius"><link rel="up" href="index.html" title="Handbok för
Genius"><link rel="prev" href="ch13s04.html" title="Minne"></head><body bgcolor="white" text="black"
link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation
header"><tr><th colspan="3" align="center">Kapitel 14. Om <span class="application">Genius
matematikverktyg</span></th></tr><tr><td width="20%" align="left"><a accesskey="p"
href="ch13s04.html">Föregående</a> </td><th width="60%" align="center"> </th><td width="20%" align="right">
</td></tr></table><hr></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a
name="genius-about"></a>Kapitel 14. Om <span class="application">Genius mat
ematikverktyg</span></h1></div></div></div><p><span class="application">Genius matematikverktyg</span>
skrevs av Jiří (George) Lebl (<code class="email"><<a class="email" href="mailto:jirka 5z com">jirka 5z
com</a>></code>). Historien för <span class="application">Genius matematikverktyg</span> går tillbaka till
sent i 1997. Det var det första miniräknarprogrammet för GNOME, men sedan växte det bortom att bara vara en
miniräknare för skrivbordet. För att hitta mer information om <span class="application">Genius
matematikverktyg</span>, besök <a class="ulink" href="http://www.jirka.org/genius.html" target="_top">Genius
webbsida</a>.</p><p>För att rapportera ett fel eller lämna ett förslag för detta program eller denna handbok,
skicka ett e-postmeddelande till mig (upphovsmannen) eller skicka ett meddelande till sändlistan (se
webbsidan).</p><p>Detta program distribueras under villkoren i GNU General Public License, publicerad av Free
Software Foundation
, antingen version 3 eller (om du så vill) någon senare version. En kopia av denna licens kan hittas på
denna <a class="ulink" href="http://www.gnu.org/copyleft/gpl.html" target="_top">länk</a> eller i filen
COPYING inkluderad med källkoden i detta program.</p><p>Jiří Lebl fick under diverse delar av utvecklingen
stöd för arbetet av NSF-stipendierna DMS 0900885, DMS 1362337, the University of Illinois at
Urbana-Champaign, the University of California at San Diego, the University of Wisconsin-Madison och Oklahoma
State University. Programvaran har använts både för undervisning och forskning.</p></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a
accesskey="p" href="ch13s04.html">Föregående</a> </td><td width="20%" align="center"> </td><td width="40%"
align="right"> </td></tr><tr><td width="40%" align="left" valign="top">Minne </td><td width="20%"
align="center"><a accesskey="h" href="index.html
">Hem</a></td><td width="40%" align="right" valign="top"> </td></tr></table></div></body></html>
diff --git a/help/sv/html/genius.proc b/help/sv/html/genius.proc
new file mode 100644
index 0000000..e69de29
diff --git a/help/sv/html/index.html b/help/sv/html/index.html
new file mode 100644
index 0000000..d8f50cf
--- /dev/null
+++ b/help/sv/html/index.html
@@ -0,0 +1,3 @@
+<html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>Handbok för
Genius</title><meta name="generator" content="DocBook XSL Stylesheets V1.79.1"><meta name="description"
content="Handbok för Genius matteverktyg."><link rel="home" href="index.html" title="Handbok för
Genius"><link rel="next" href="ch01.html" title="Kapitel 1. Introduktion"></head><body bgcolor="white"
text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%"
summary="Navigation header"><tr><th colspan="3" align="center">Handbok för Genius</th></tr><tr><td
width="20%" align="left"> </td><th width="60%" align="center"> </th><td width="20%" align="right"> <a
accesskey="n" href="ch01.html">Nästa</a></td></tr></table><hr></div><div lang="sv" class="book"><div
class="titlepage"><div><div><h1 class="title"><a name="index"></a>Handbok för Genius</h1></div><div><div
class="authorgroup"><div class="author"><h3 class="author"><span cla
ss="firstname">Jiří</span> <span class="surname">Lebl</span></h3><div class="affiliation"><span
class="orgname">Oklahoma State University<br></span><div class="address"><p> <code class="email"><<a
class="email" href="mailto:jirka 5z com">jirka 5z com</a>></code> </p></div></div></div><div
class="author"><h3 class="author"><span class="firstname">Kai</span> <span
class="surname">Willadsen</span></h3><div class="affiliation"><span class="orgname">University of Queensland,
Australien<br></span><div class="address"><p> <code class="email"><<a class="email" href="mailto:kaiw itee
uq edu au">kaiw itee uq edu au</a>></code> </p></div></div></div></div></div><div><p
class="releaseinfo">Denna handbok beskriver version 1.0.22 av Genius.</p></div><div><p
class="copyright">Copyright © 1997-2016 Jiří (George) Lebl</p></div><div><p class="copyright">Copyright ©
2004 Kai Willadsen</p></div><div><p class="copyright">Copyright © 2016 Anders Jonsson (anders.jonsson@nors
jovallen.se)</p></div><div><div class="legalnotice"><a name="legalnotice"></a><p>Tillstånd att kopiera,
distribuera och/eller modifiera detta dokument ges under villkoren i GNU Free Documentation License (GFDL),
version 1.1 eller senare, utgivet av Free Software Foundation utan standardavsnitt och omslagstexter. En
kopia av GFDL finns att hämta på denna <a class="ulink" href="ghelp:fdl" target="_top">länk</a> eller i filen
COPYING-DOCS som medföljer denna handbok.</p><p>Denna handbok utgör en av flera GNOME-handböcker som
distribueras under villkoren i GFDL. Om du vill distribuera denna handbok separat från övriga handböcker kan
du göra detta genom att lägga till en kopia av licensavtalet i handboken enligt instruktionerna i avsnitt 6 i
licensavtalet.</p><p>Många av namnen som används av företag för att särskilja deras produkter och tjänster är
registrerade varumärken. I de fall dessa namn förekommer i GNOME-dokumentation - och medlemmarna i GNOME-doku
mentationsprojektet är medvetna om dessa varumärken - är de skrivna med versaler eller med inledande
versal.</p><p>DOKUMENTET OCH MODIFIERADE VERSIONER AV DOKUMENTET TILLHANDAHÅLLS UNDER VILLKOREN I GNU FREE
DOCUMENTATION LICENSE ENDAST UNDER FÖLJANDE FÖRUTSÄTTNINGAR: </p><div class="orderedlist"><ol
class="orderedlist" type="1"><li class="listitem"><p>DOKUMENTET TILLHANDAHÅLLS I "BEFINTLIGT SKICK" UTAN
NÅGRA SOM HELST GARANTIER, VARE SIG UTTRYCKLIGA ELLER UNDERFÖRSTÅDDA, INKLUSIVE, MEN INTE BEGRÄNSAT TILL,
GARANTIER ATT DOKUMENTET ELLER EN MODIFIERAD VERSION AV DOKUMENTET INTE INNEHÅLLER NÅGRA FELAKTIGHETER, ÄR
LÄMPLIGT FÖR ETT VISST ÄNDAMÅL ELLER INTE STRIDER MOT LAG. HELA RISKEN VAD GÄLLER KVALITET, EXAKTHET OCH
UTFÖRANDE AV DOKUMENTET OCH MODIFIERADE VERSIONER AV DOKUMENTET LIGGER HELT OCH HÅLLET PÅ ANVÄNDAREN. OM ETT
DOKUMENT ELLER EN MODIFIERAD VERSION AV ETT DOKUMENT SKULLE VISA SIG INNEHÅLLA FELAKTIGHETER I NÅGOT
HÄNSEENDE ÄR DET DU (INTE
DEN URSPRUNGLIGA SKRIBENTEN, FÖRFATTAREN ELLER NÅGON ANNAN MEDARBETARE) SOM FÅR STÅ FÖR ALLA EVENTUELLA
KOSTNADER FÖR SERVICE, REPARATIONER ELLER KORRIGERINGAR. DENNA GARANTIFRISKRIVNING UTGÖR EN VÄSENTLIG DEL AV
DETTA LICENSAVTAL. DETTA INNEBÄR ATT ALL ANVÄNDNING AV ETT DOKUMENT ELLER EN MODIFIERAD VERSION AV ETT
DOKUMENT BEVILJAS ENDAST UNDER DENNA ANSVARSFRISKRIVNING; OCH</p></li><li class="listitem"><p>UNDER INGA
OMSTÄNDIGHETER ELLER INOM RAMEN FÖR NÅGON LAGSTIFTNING, OAVSETT OM DET GÄLLER KRÄNKNING (INKLUSIVE
VÅRDSLÖSHET), KONTRAKT ELLER DYLIKT, SKA FÖRFATTAREN, DEN URSPRUNGLIGA SKRIBENTEN ELLER ANNAN MEDARBETARE
ELLER ÅTERFÖRSÄLJARE AV DOKUMENTET ELLER AV EN MODIFIERAD VERSION AV DOKUMENTET ELLER NÅGON LEVERANTÖR TILL
NÅGON AV NÄMNDA PARTER STÄLLAS ANSVARIG GENTEMOT NÅGON FÖR NÅGRA DIREKTA, INDIREKTA, SÄRSKILDA ELLER
OFÖRUTSEDDA SKADOR ELLER FÖLJDSKADOR AV NÅGOT SLAG, INKLUSIVE, MEN INTE BEGRÄNSAT TILL, SKADOR BETRÄFFANDE
FÖRLORAD GO
ODWILL, HINDER I ARBETET, DATORHAVERI ELLER NÅGRA ANDRA TÄNKBARA SKADOR ELLER FÖRLUSTER SOM KAN UPPKOMMA PÅ
GRUND AV ELLER RELATERAT TILL ANVÄNDNINGEN AV DOKUMENTET ELLER MODIFIERADE VERSIONER AV DOKUMENTET, ÄVEN OM
PART SKA HA BLIVIT INFORMERAD OM MÖJLIGHETEN TILL SÅDANA SKADOR.</p></li></ol></div></div></div><div><div
class="legalnotice"><a name="idm45527219338448"></a><p
class="legalnotice-title"><b>Återkoppling</b></p><p>För att rapportera ett fel eller komma med ett förslag
för programmet <span class="application">Genius matematikverktyg</span> eller denna handbok, besök <a
class="ulink" href="http://www.jirka.org/genius.html" target="_top">webbsidan för Genius</a> eller skicka mig
ett e-postmeddelande på <code class="email"><<a class="email" href="mailto:jirka 5z com">jirka 5z
com</a>></code>.</p></div></div><div><div class="revhistory"><table style="border-style:solid;
width:100%;" summary="Revisionshistorik"><tr><th align="left" valign="top" cols
pan="2"><b>Revisionshistorik</b></th></tr><tr><td align="left">Revision 0.2</td><td align="left">September
2016</td></tr><tr><td align="left" colspan="2">
+ <p class="author">Jiri (George) Lebl <code class="email"><<a class="email"
href="mailto:jirka 5z com">jirka 5z com</a>></code></p>
+ </td></tr></table></div></div><div><div class="abstract"><p
class="title"><b>Sammanfattning</b></p><p>Handbok för Genius
matteverktyg.</p></div></div></div><hr></div><div class="toc"><p><b>Innehållsförteckning</b></p><dl
class="toc"><dt><span class="chapter"><a href="ch01.html">1. Introduktion</a></span></dt><dt><span
class="chapter"><a href="ch02.html">2. Komma igång</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch02.html#genius-to-start">För att starta <span class="application">Genius
matematikverktyg</span></a></span></dt><dt><span class="sect1"><a href="ch02s02.html">Då du startar
Genius</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch03.html">3. Grundläggande
användning</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch03.html#genius-usage-workarea">Använda
arbetsytan</a></span></dt><dt><span class="sect1"><a href="ch03s02.html">För att skapa ett nytt
program</a></span></dt><dt><span class="sect1"><a href="ch03s03.html">Att ö
ppna eller köra ett program</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch04.html">4.
Grafritning</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch04.html#genius-line-plots">Linjegrafer</a></span></dt><dt><span class="sect1"><a
href="ch04s02.html">Parametriska grafer</a></span></dt><dt><span class="sect1"><a
href="ch04s03.html">Riktningsfältsgrafer</a></span></dt><dt><span class="sect1"><a
href="ch04s04.html">Vektorfältsgrafer</a></span></dt><dt><span class="sect1"><a
href="ch04s05.html">Ytgrafer</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch05.html">5.
Grunderna i GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch05.html#genius-gel-values">Värden</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-numbers">Tal</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-booleans">Booleska värden</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-
strings">Strängar</a></span></dt><dt><span class="sect2"><a
href="ch05.html#genius-gel-values-null">Null</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s02.html">Använda variabler</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s02.html#genius-gel-variables-setting">Ställa in variabler</a></span></dt><dt><span
class="sect2"><a href="ch05s02.html#genius-gel-variables-built-in">Inbyggda
variabler</a></span></dt><dt><span class="sect2"><a href="ch05s02.html#genius-gel-previous-result">Variabel
för föregående resultat</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch05s03.html">Använda
funktioner</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-defining">Definiera funktioner</a></span></dt><dt><span
class="sect2"><a href="ch05s03.html#genius-gel-functions-variable-argument-lists">Variabla
argumentlistor</a></span></dt><dt><span class="sect2"><a href="ch05s03.html#genius-gel-functions-passing-fu
nctions">Skicka funktioner till funktioner</a></span></dt><dt><span class="sect2"><a
href="ch05s03.html#genius-gel-functions-operations">Operationer på
funktioner</a></span></dt></dl></dd><dt><span class="sect1"><a
href="ch05s04.html">Avskiljare</a></span></dt><dt><span class="sect1"><a
href="ch05s05.html">Kommentarer</a></span></dt><dt><span class="sect1"><a
href="ch05s06.html">Moduloberäkning</a></span></dt><dt><span class="sect1"><a href="ch05s07.html">Lista över
GEL-operatorer</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch06.html">6. Programmering med
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch06.html#genius-gel-conditionals">Villkor</a></span></dt><dt><span class="sect1"><a
href="ch06s02.html">Slingor</a></span></dt><dd><dl><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-while">While-slingor</a></span></dt><dt><span class="sect2"><a
href="ch06s02.html#genius-gel-loops-for">For-slingor</a></span></dt><dt><span class="s
ect2"><a href="ch06s02.html#genius-gel-loops-foreach">Foreach-slingor</a></span></dt><dt><span
class="sect2"><a href="ch06s02.html#genius-gel-loops-break-continue">Break och
Continue</a></span></dt></dl></dd><dt><span class="sect1"><a href="ch06s03.html">Summor och
produkter</a></span></dt><dt><span class="sect1"><a
href="ch06s04.html">Jämförelseoperatorer</a></span></dt><dt><span class="sect1"><a
href="ch06s05.html">Globala variabler och räckvidd för variabler</a></span></dt><dt><span class="sect1"><a
href="ch06s06.html">Parametervariabler</a></span></dt><dt><span class="sect1"><a
href="ch06s07.html">Returnera</a></span></dt><dt><span class="sect1"><a
href="ch06s08.html">Referenser</a></span></dt><dt><span class="sect1"><a
href="ch06s09.html">Vvärden</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch07.html">7.
Avancerad programmering med GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch07.html#genius-gel-error-handling">Felhantering</a></span>
</dt><dt><span class="sect1"><a href="ch07s02.html">Toppnivåsyntax</a></span></dt><dt><span class="sect1"><a
href="ch07s03.html">Returnera funktioner</a></span></dt><dt><span class="sect1"><a
href="ch07s04.html">Verkligt lokala variabler</a></span></dt><dt><span class="sect1"><a
href="ch07s05.html">Uppstartsprocedur för GEL</a></span></dt><dt><span class="sect1"><a
href="ch07s06.html">Läsa in program</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch08.html">8.
Matriser i GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch08.html#genius-gel-matrix-support">Mata in matriser</a></span></dt><dt><span class="sect1"><a
href="ch08s02.html">Konjugattransponat och transponatoperator</a></span></dt><dt><span class="sect1"><a
href="ch08s03.html">Linjär algebra</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch09.html">9.
Polynom i GEL</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch09.html#genius-gel-polynomials-using">Använda polynom<
/a></span></dt></dl></dd><dt><span class="chapter"><a href="ch10.html">10. Mängdlära i
GEL</a></span></dt><dd><dl><dt><span class="sect1"><a href="ch10.html#genius-gel-sets-using">Använda
mängder</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch11.html">11. Lista över
GEL-funktioner</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch11.html#genius-gel-function-list-commands">Kommandon</a></span></dt><dt><span class="sect1"><a
href="ch11s02.html">Grundläggande</a></span></dt><dt><span class="sect1"><a
href="ch11s03.html">Parametrar</a></span></dt><dt><span class="sect1"><a
href="ch11s04.html">Konstanter</a></span></dt><dt><span class="sect1"><a href="ch11s05.html">Numeriska
funktioner</a></span></dt><dt><span class="sect1"><a
href="ch11s06.html">Trigonometri</a></span></dt><dt><span class="sect1"><a
href="ch11s07.html">Talteori</a></span></dt><dt><span class="sect1"><a
href="ch11s08.html">Matrismanipulation</a></span></dt><dt><span class="sect1"><a h
ref="ch11s09.html">Linjär algebra</a></span></dt><dt><span class="sect1"><a
href="ch11s10.html">Kombinatorik</a></span></dt><dt><span class="sect1"><a
href="ch11s11.html">Kalkyl</a></span></dt><dt><span class="sect1"><a
href="ch11s12.html">Funktioner</a></span></dt><dt><span class="sect1"><a
href="ch11s13.html">Ekvationslösning</a></span></dt><dt><span class="sect1"><a
href="ch11s14.html">Statistik</a></span></dt><dt><span class="sect1"><a
href="ch11s15.html">Polynom</a></span></dt><dt><span class="sect1"><a
href="ch11s16.html">Mängdlära</a></span></dt><dt><span class="sect1"><a href="ch11s17.html">Kommutativ
algebra</a></span></dt><dt><span class="sect1"><a href="ch11s18.html">Diverse</a></span></dt><dt><span
class="sect1"><a href="ch11s19.html">Symboliska operationer</a></span></dt><dt><span class="sect1"><a
href="ch11s20.html">Grafritning</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch12.html">12.
Exempelprogram i GEL</a></span></dt><dt><span class="cha
pter"><a href="ch13.html">13. Inställningar</a></span></dt><dd><dl><dt><span class="sect1"><a
href="ch13.html#genius-prefs-output">Utdata</a></span></dt><dt><span class="sect1"><a
href="ch13s02.html">Precision</a></span></dt><dt><span class="sect1"><a
href="ch13s03.html">Terminal</a></span></dt><dt><span class="sect1"><a
href="ch13s04.html">Minne</a></span></dt></dl></dd><dt><span class="chapter"><a href="ch14.html">14. Om <span
class="application">Genius matematikverktyg</span></a></span></dt></dl></div><div
class="list-of-figures"><p><b>Figurförteckning</b></p><dl><dt>2.1. <a
href="ch02s02.html#mainwindow-fig"><span class="application">Genius
matematikverktyg</span>-fönstret</a></dt><dt>4.1. <a href="ch04.html#lineplot-fig">Skapa
graf-fönster</a></dt><dt>4.2. <a href="ch04.html#lineplot2-fig">Graffönster</a></dt><dt>4.3. <a
href="ch04s02.html#paramplot-fig">Flik för parametriska grafer</a></dt><dt>4.4. <a
href="ch04s02.html#paramplot2-fig">Parametrisk graf</a></dt><d
t>4.5. <a href="ch04s05.html#surfaceplot-fig">Ytgraf</a></dt></dl></div></div><div
class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left">
</td><td width="20%" align="center"> </td><td width="40%" align="right"> <a accesskey="n"
href="ch01.html">Nästa</a></td></tr><tr><td width="40%" align="left" valign="top"> </td><td width="20%"
align="center"> </td><td width="40%" align="right" valign="top"> Kapitel 1.
Introduktion</td></tr></table></div></body></html>
diff --git a/m4/NOTES b/m4/NOTES
new file mode 100644
index 0000000..e69de29
diff --git a/src/binreloc.c b/src/binreloc.c
index 97ef12f..0b1c4fd 100644
--- a/src/binreloc.c
+++ b/src/binreloc.c
@@ -345,7 +345,7 @@ gbr_init_lib (GError **error)
static void
set_gerror (GError **error, GbrInitError errcode)
{
- gchar *error_message;
+ const gchar *error_message;
if (error == NULL)
return;
diff --git a/src/calc.c b/src/calc.c
index 5b11548..08eaaca 100644
--- a/src/calc.c
+++ b/src/calc.c
@@ -1,5 +1,5 @@
/* GENIUS Calculator
- * Copyright (C) 1997-2016 Jiri (George) Lebl
+ * Copyright (C) 1997-2017 Jiri (George) Lebl
*
* Author: Jiri (George) Lebl
*
@@ -536,7 +536,7 @@ gel_get_file_info (char **file, int *line)
}
static void
-append_anal_binaryoper(GelOutput *gelo, char *p, GelETree *n)
+append_anal_binaryoper(GelOutput *gelo, const char *p, GelETree *n)
{
gboolean extra_param1 = FALSE;
gboolean extra_param2 = FALSE;
@@ -582,7 +582,7 @@ append_binaryoper(GelOutput *gelo, const char *p, GelETree *n)
}
static void
-append_unaryoper(GelOutput *gelo, char *p, GelETree *n)
+append_unaryoper(GelOutput *gelo, const char *p, GelETree *n)
{
GelETree *l;
GEL_GET_L (n, l);
@@ -1339,7 +1339,6 @@ append_func (GelOutput *gelo, GelEFunc *f)
if (f->local_all) {
gel_output_string(gelo,"local *;");
} else if (f->local_idents != NULL) {
- GSList *li;
gel_output_string(gelo,"local ");
for (li = f->local_idents; li != NULL; li = li->next) {
GelToken *tok = li->data;
@@ -1350,7 +1349,6 @@ append_func (GelOutput *gelo, GelEFunc *f)
gel_output_string(gelo,";");
}
if (f->extra_dict != NULL) {
- GSList *li;
for (li = f->extra_dict; li != NULL; li = li->next) {
GelEFunc *ff = li->data;
gel_output_string (gelo, ff->id->token);
diff --git a/src/calc.h b/src/calc.h
index eaa225f..2e2c503 100644
--- a/src/calc.h
+++ b/src/calc.h
@@ -1,5 +1,5 @@
/* GENIUS Calculator
- * Copyright (C) 1997-2016 Jiri (George) Lebl
+ * Copyright (C) 1997-2017 Jiri (George) Lebl
*
* Author: Jiri (George) Lebl
*
@@ -29,7 +29,7 @@
#include "structs.h"
-#define GENIUS_COPYRIGHT_STRING N_("Copyright (C) 1997-2016 Jiří (George) Lebl")
+#define GENIUS_COPYRIGHT_STRING N_("Copyright (C) 1997-2017 Jiří (George) Lebl")
typedef enum {
GEL_NO_ERROR = 0,
diff --git a/src/compil.c b/src/compil.c
index 23d2c92..5044d42 100644
--- a/src/compil.c
+++ b/src/compil.c
@@ -46,7 +46,7 @@ gel_decode_string (const char *s)
} else if (s[0] == '=') {
gsize len;
char *p = (char *)g_base64_decode (&(s[1]), &len);
- if (p == NULL || len < 0) /* error was probably logged by now */
+ if (p == NULL) /* error was probably logged by now */
return NULL;
p = g_realloc (p, len+1);
p[len] = '\0';
diff --git a/src/eval.c b/src/eval.c
index 90de592..a542ebf 100644
--- a/src/eval.c
+++ b/src/eval.c
@@ -1,5 +1,5 @@
/* GENIUS Calculator
- * Copyright (C) 1997-2014 Jiri (George) Lebl
+ * Copyright (C) 1997-2017 Jiri (George) Lebl
*
* Author: Jiri (George) Lebl
*
@@ -270,8 +270,8 @@ branches (int op)
case GEL_E_SWAPWITH: return 2;
case GEL_E_INCREMENT: return 1;
case GEL_E_INCREMENT_BY: return 2;
+ default: return 0;
}
- return 0;
}
void
@@ -1807,28 +1807,28 @@ op_two_nodes (GelCtx *ctx, GelETree *ll, GelETree *rr, int oper,
(ll->type == GEL_VALUE_NODE || ll->type == GEL_BOOL_NODE)) {
gboolean lt = gel_isnodetrue (ll, NULL);
gboolean rt = gel_isnodetrue (rr, NULL);
- gboolean res;
+ gboolean resbool;
gboolean got_res = FALSE;
switch (oper) {
case GEL_E_PLUS:
case GEL_E_ELTPLUS:
- res = lt || rt;
+ resbool = lt || rt;
got_res = TRUE;
break;
case GEL_E_MINUS:
case GEL_E_ELTMINUS:
- res = lt || ! rt;
+ resbool = lt || ! rt;
got_res = TRUE;
break;
case GEL_E_MUL:
case GEL_E_ELTMUL:
- res = lt && rt;
+ resbool = lt && rt;
got_res = TRUE;
break;
default:
got_res = FALSE;
- res = FALSE;
+ resbool = FALSE;
break;
}
if G_UNLIKELY ( ! got_res ||
@@ -1843,7 +1843,7 @@ op_two_nodes (GelCtx *ctx, GelETree *ll, GelETree *rr, int oper,
gel_error_num = GEL_NO_ERROR;
return n;
}
- return gel_makenum_bool (res);
+ return gel_makenum_bool (resbool);
} else {
/*this is the less common case so we can get around with a
wierd thing, we'll just make a new fake node and pretend
@@ -3498,7 +3498,7 @@ gel_similar_possible_ids (const char *id)
sim = g_string_new ("'");
for (li = similar; li != NULL; li = li->next) {
- const char *id = li->data;
+ const char *lid = li->data;
if (li->next == NULL &&
li != similar) {
@@ -3509,7 +3509,7 @@ gel_similar_possible_ids (const char *id)
g_string_append (sim, "', '");
}
- g_string_append (sim, id);
+ g_string_append (sim, lid);
li->data = NULL; /* paranoia */
}
@@ -6155,7 +6155,6 @@ do_swapwithop (GelETree *l, GelETree *r)
if (r->type == GEL_IDENTIFIER_NODE ||
r->op.oper == GEL_E_DEREFERENCE) {
GelEFunc *rf = get_functoset (r);
- GelETree *tmp;
if G_UNLIKELY (rf == NULL)
return;
@@ -6175,7 +6174,7 @@ do_swapwithop (GelETree *l, GelETree *r)
if (index1->type == GEL_VALUE_NODE &&
index2->type == GEL_VALUE_NODE) {
int x, y;
- GelETree *t, *tmp;
+ GelETree *t;
x = iter_get_matrix_index_num (index2, INT_MAX);
if G_UNLIKELY (x < 0)
@@ -6209,7 +6208,7 @@ do_swapwithop (GelETree *l, GelETree *r)
if (index->type == GEL_VALUE_NODE) {
int i, x, y;
- GelETree *t, *tmp;
+ GelETree *t;
i = iter_get_matrix_index_num (index, INT_MAX);
if G_UNLIKELY (i < 0)
@@ -7800,7 +7799,6 @@ gel_eval_etree (GelCtx *ctx, GelETree *etree)
level++;
if G_UNLIKELY (!iter_eval_etree(ctx)) {
- gpointer data;
/*an exception happened*/
ctx->current = NULL;
gel_freetree (ctx->res);
diff --git a/src/eval.h b/src/eval.h
index 79dc611..3e30618 100644
--- a/src/eval.h
+++ b/src/eval.h
@@ -1,5 +1,5 @@
/* GENIUS Calculator
- * Copyright (C) 1997-2014 Jiri (George) Lebl
+ * Copyright (C) 1997-2017 Jiri (George) Lebl
*
* Author: Jiri (George) Lebl
*
@@ -216,8 +216,8 @@ void _gel_make_free_trees (void);
}
#endif
-const extern GelHookFunc _gel_tree_limit_hook;
-const extern GelHookFunc _gel_finished_toplevel_exec_hook;
+extern const GelHookFunc _gel_tree_limit_hook;
+extern const GelHookFunc _gel_finished_toplevel_exec_hook;
void gel_test_max_nodes_again (void);
extern GelEFunc *_gel_internal_ln_function;
diff --git a/src/funclib.c b/src/funclib.c
index 6d4a0e1..f594037 100644
--- a/src/funclib.c
+++ b/src/funclib.c
@@ -1,5 +1,5 @@
/* GENIUS Calculator
- * Copyright (C) 1997-2016 Jiri (George) Lebl
+ * Copyright (C) 1997-2017 Jiri (George) Lebl
*
* Author: Jiri (George) Lebl
*
@@ -140,6 +140,8 @@ static GelETree *
version_op(GelCtx *ctx, GelETree * * a, gboolean *exception)
{
int v,b,c;
+ GelETree *n;
+ GelMatrix *m;
if (sscanf (VERSION, "%d.%d.%d", &v, &b, &c) != 3) {
if (sscanf (VERSION, "%d.%d", &v, &b) == 2) {
@@ -156,9 +158,6 @@ version_op(GelCtx *ctx, GelETree * * a, gboolean *exception)
}
}
- GelETree *n;
- GelMatrix *m;
-
m = gel_matrix_new ();
gel_matrix_set_size (m, 3, 1, FALSE /* padding */);
gel_matrix_index (m, 0, 0) = gel_makenum_ui (v);
@@ -2670,7 +2669,6 @@ gcd2_op(GelCtx *ctx, GelETree * * a, gboolean *exception)
static GelETree *
gcd_op(GelCtx *ctx, GelETree * * a, gboolean *exception)
{
- GelETree *gcd;
int i;
if (a[1] == NULL) {
@@ -2712,31 +2710,33 @@ gcd_op(GelCtx *ctx, GelETree * * a, gboolean *exception)
/* FIXME: optimize value only case */
- /* kind of a quick hack follows */
- gcd = a[0];
- for (i = 1; a[i] != NULL; i++) {
- /* at least ONE iteration will be run */
- GelETree *argv[2] = { gcd, a[i] };
- GelETree *res;
- res = gcd2_op (ctx, argv, exception);
- if (res == NULL) {
+ {
+ GelETree *gcd;
+ /* kind of a quick hack follows */
+ gcd = a[0];
+ for (i = 1; a[i] != NULL; i++) {
+ /* at least ONE iteration will be run */
+ GelETree *argv[2] = { gcd, a[i] };
+ GelETree *res;
+ res = gcd2_op (ctx, argv, exception);
+ if (res == NULL) {
+ if (gcd != a[0])
+ gel_freetree (gcd);
+ return NULL;
+ }
if (gcd != a[0])
gel_freetree (gcd);
- return NULL;
+ gcd = res;
+ }
+ if (gcd == a[0]) {
+ mpw_t tmp;
+ mpw_init (tmp);
+ mpw_abs (tmp, a[0]->val.value);
+ return gel_makenum_use (tmp);
+ } else {
+ return gcd;
}
- if (gcd != a[0])
- gel_freetree (gcd);
- gcd = res;
- }
- if (gcd == a[0]) {
- mpw_t tmp;
- mpw_init (tmp);
- mpw_abs (tmp, a[0]->val.value);
- return gel_makenum_use (tmp);
- } else {
- return gcd;
}
-
}
/*lcm function*/
@@ -2770,7 +2770,6 @@ lcm2_op(GelCtx *ctx, GelETree * * a, gboolean *exception)
static GelETree *
lcm_op(GelCtx *ctx, GelETree * * a, gboolean *exception)
{
- GelETree *lcm;
int i;
if (a[1] == NULL) {
@@ -2812,29 +2811,32 @@ lcm_op(GelCtx *ctx, GelETree * * a, gboolean *exception)
/* FIXME: optimize value only case */
- /* kind of a quick hack follows */
- lcm = a[0];
- for (i = 1; a[i] != NULL; i++) {
- /* at least ONE iteration will be run */
- GelETree *argv[2] = { lcm, a[i] };
- GelETree *res;
- res = lcm2_op (ctx, argv, exception);
- if (res == NULL) {
+ {
+ GelETree *lcm;
+ /* kind of a quick hack follows */
+ lcm = a[0];
+ for (i = 1; a[i] != NULL; i++) {
+ /* at least ONE iteration will be run */
+ GelETree *argv[2] = { lcm, a[i] };
+ GelETree *res;
+ res = lcm2_op (ctx, argv, exception);
+ if (res == NULL) {
+ if (lcm != a[0])
+ gel_freetree (lcm);
+ return NULL;
+ }
if (lcm != a[0])
gel_freetree (lcm);
- return NULL;
+ lcm = res;
+ }
+ if (lcm == a[0]) {
+ mpw_t tmp;
+ mpw_init (tmp);
+ mpw_abs (tmp, a[0]->val.value);
+ return gel_makenum_use (tmp);
+ } else {
+ return lcm;
}
- if (lcm != a[0])
- gel_freetree (lcm);
- lcm = res;
- }
- if (lcm == a[0]) {
- mpw_t tmp;
- mpw_init (tmp);
- mpw_abs (tmp, a[0]->val.value);
- return gel_makenum_use (tmp);
- } else {
- return lcm;
}
}
@@ -4673,7 +4675,7 @@ MillerRabinTestSure_op(GelCtx *ctx, GelETree * * a, gboolean *exception)
static GelETree *
Factorize_op(GelCtx *ctx, GelETree * * a, gboolean *exception)
{
- mpz_ptr num;
+ mpz_ptr numz;
GArray *fact;
GelETree *n;
GelMatrixW *mn;
@@ -4687,9 +4689,9 @@ Factorize_op(GelCtx *ctx, GelETree * * a, gboolean *exception)
if G_UNLIKELY ( ! check_argument_integer (a, 0, "Factorize"))
return NULL;
- num = mpw_peek_real_mpz (a[0]->val.value);
+ numz = mpw_peek_real_mpz (a[0]->val.value);
- fact = mympz_pollard_rho_factorize (num);
+ fact = mympz_pollard_rho_factorize (numz);
/* error or interrupt or whatnot */
if G_UNLIKELY (fact == NULL) {
@@ -4838,7 +4840,7 @@ poly_cut_zeros(GelMatrixW *m)
}
static gboolean
-check_poly(GelETree * *a, int args, char *func, gboolean complain)
+check_poly(GelETree * *a, int args, const char *func, gboolean complain)
{
int i,j;
@@ -5308,7 +5310,7 @@ PolyToString_op (GelCtx *ctx, GelETree * * a, gboolean *exception)
GString *gs;
gboolean any = FALSE;
GelMatrixW *m;
- char *var;
+ const char *var;
GelOutput *gelo;
char *r;
diff --git a/src/genius.c b/src/genius.c
index 66c366d..e723db1 100644
--- a/src/genius.c
+++ b/src/genius.c
@@ -1,5 +1,5 @@
/* GENIUS Calculator
- * Copyright (C) 1997-2013 Jiri (George) Lebl
+ * Copyright (C) 1997-2017 Jiri (George) Lebl
*
* Author: Jiri (George) Lebl
*
@@ -568,11 +568,11 @@ main(int argc, char *argv[])
gel_load_compiled_file (NULL, "../lib/lib.cgel", FALSE);
} else {
char *datadir = gbr_find_data_dir (DATADIR);
- char *file = g_build_filename (datadir,
- "genius",
- "gel",
- "lib.cgel",
- NULL);
+ file = g_build_filename (datadir,
+ "genius",
+ "gel",
+ "lib.cgel",
+ NULL);
if (access (file, F_OK) != 0) {
g_free (file);
file = g_build_filename (DATADIR,
diff --git a/src/gnome-genius.c b/src/gnome-genius.c
index a161658..3da89f2 100644
--- a/src/gnome-genius.c
+++ b/src/gnome-genius.c
@@ -1,5 +1,5 @@
/* GENIUS Calculator
- * Copyright (C) 1997-2014 Jiri (George) Lebl
+ * Copyright (C) 1997-2017 Jiri (George) Lebl
*
* Author: Jiri (George) Lebl
*
@@ -117,7 +117,7 @@ int gel_calc_running = 0;
static GtkWidget *setupdialog = NULL;
static GtkWidget *term = NULL;
-static GtkWidget *notebook = NULL;
+static GtkWidget *genius_notebook = NULL;
static GString *errors = NULL;
static GString *infos = NULL;
static GtkRecentManager *recent_manager;
@@ -191,7 +191,7 @@ terminal_palette_black_on_white[TERMINAL_PALETTE_SIZE] =
};
static GtkTargetEntry drag_types[] = {
- { "text/uri-list", 0, TARGET_URI_LIST },
+ { (char *)"text/uri-list", 0, TARGET_URI_LIST },
};
static gint n_drag_types = sizeof (drag_types) / sizeof (drag_types [0]);
@@ -576,14 +576,14 @@ simple_menu_item_deselect_cb (GtkMenuItem *item, gpointer data)
}
static const struct {
- char *stock_id;
- char *icon;
+ const char *stock_id;
+ const char *icon;
} stock_icons [] = {
{ "genius-stock-plot", "genius-stock-plot" }
};
static const GtkStockItem stock_items [] = {
- { "genius-stock-plot", N_("_Plot"), 0, 0, GETTEXT_PACKAGE },
+ { (char *)"genius-stock-plot", (char *)N_("_Plot"), 0, 0, (char *)GETTEXT_PACKAGE },
};
static void
@@ -669,8 +669,8 @@ recent_add (const char *uri)
{
GtkRecentData *data;
- static gchar *groups[2] = {
- "gnome-genius",
+ static char *groups[2] = {
+ (char *)"gnome-genius",
NULL
};
@@ -678,8 +678,8 @@ recent_add (const char *uri)
data->display_name = NULL;
data->description = NULL;
- data->mime_type = "text/x-genius";
- data->app_name = (gchar *) g_get_application_name ();
+ data->mime_type = (char *)"text/x-genius";
+ data->app_name = (char *) g_get_application_name ();
data->app_exec = g_strconcat (g_get_prgname (), " %u", NULL);
data->groups = groups;
data->is_private = FALSE;
@@ -1014,7 +1014,6 @@ run_help_dlg_again:
char *txt = g_strstrip (g_strdup (gtk_entry_get_text (GTK_ENTRY (e))));
GelHelp *help = gel_get_help (txt, FALSE /* insert */);
gboolean found = FALSE;
- int i;
for (i = 0; genius_toplevels[i] != NULL; i++) {
if (strcmp (txt, genius_toplevels[i]) == 0) {
@@ -1720,12 +1719,12 @@ printout_error_num_and_reset(GtkWidget *parent)
static char *
resolve_file (const char *file)
{
- int n = gtk_notebook_get_n_pages (GTK_NOTEBOOK (notebook));
+ int n = gtk_notebook_get_n_pages (GTK_NOTEBOOK (genius_notebook));
int i;
for (i = 0; i < n; i++) {
GtkWidget *w = gtk_notebook_get_nth_page
- (GTK_NOTEBOOK (notebook), i);
+ (GTK_NOTEBOOK (genius_notebook), i);
Program *p = g_object_get_data (G_OBJECT (w), "program");
if (p == NULL) /* console */
continue;
@@ -1818,20 +1817,91 @@ gel_printout_infos (void)
gel_printout_infos_parent (genius_window);
}
+static char *
+get_help_lang (void)
+{
+ const char * const* langs;
+ int i;
+
+ langs = g_get_language_names ();
+ for (i = 0; langs[i] != NULL; i++) {
+ char *file;
+ file = g_build_filename (genius_datadir,
+ "genius",
+ "help",
+ langs[i],
+ "html",
+ "index.html",
+ NULL);
+ if (access (file, F_OK) == 0) {
+ g_free (file);
+ return g_strdup (langs[i]);
+ }
+ g_free (file);
+ }
+ return g_strdup("C");
+}
+
static void
actually_open_help (const char *id)
{
GError *error = NULL;
char *str;
+ char *lang;
+#if 0
if (id != NULL) {
str = g_strdup_printf ("ghelp:genius?%s", id);
} else {
str = g_strdup ("ghelp:genius");
}
+#endif
+
+ lang = get_help_lang ();
+
+ str = g_strdup_printf ("file://%s/genius/help/%s/html/index.html",
+ genius_datadir, lang);
+
+ if (id != NULL) {
+ char buf[256];
+ gboolean found = FALSE;
+ char *command = g_strdup_printf ("fgrep -l 'name=\"%s\"' '%s'/genius/help/%s/html/*.html",
+ id,
+ genius_datadir,
+ lang);
+ FILE *fp = popen (command, "r");
+ if (fp != NULL) {
+ if (fgets (buf,(int)sizeof(buf),fp) != NULL) {
+ char *p = strchr (buf, '\n');
+ if (p != NULL) *p = '\0';
+ g_free(str);
+ str = g_strdup_printf ("file://%s#%s", buf, id);
+ found = TRUE;
+
+ }
+ fclose (fp);
+ }
+ if ( ! found) {
+ char *warn = g_strdup_printf (_("<b>Help on %s not found</b>"), id);
+ display_warning (NULL /* parent */, warn);
+ g_free (warn);
+ }
+ }
gtk_show_uri (NULL, str, GDK_CURRENT_TIME, &error);
+ if (error != NULL) {
+ char *err = g_strdup_printf
+ (_("<b>Cannot display help</b>\n\n%s"),
+ error->message);
+ genius_display_error (NULL /* parent */, err);
+ g_free (err);
+ g_error_free (error);
+ }
+
+ g_free (str);
+
+#if 0
if G_UNLIKELY (error != NULL) {
char *gnomehelp = NULL;
if (g_error_matches (error, G_IO_ERROR,
@@ -1865,8 +1935,7 @@ actually_open_help (const char *id)
g_error_free (error);
}
- g_free (str);
-
+#endif
}
void
@@ -1931,7 +2000,7 @@ geniusinfo(const char *s)
static void
aboutcb(GtkWidget * widget, gpointer data)
{
- static char *authors[] = {
+ static const char *authors[] = {
"Jiří (George) Lebl, Ph.D. <jirka 5z com>",
N_("Nils Barth (initial implementation of parts of the GEL library)"),
N_("Adrian E. Feiguin <feiguin ifir edu ar> (GtkExtra - plotting widgetry)"),
@@ -1948,12 +2017,12 @@ aboutcb(GtkWidget * widget, gpointer data)
* which will give them credit in the About box.
* E.g. "Fulano de Tal <fulano detal com>"
*/
- char *new_credits = N_("translator-credits");
+ const char *new_credits = N_("translator-credits");
GdkPixbuf *logo;
char *file;
/* hack for old translations */
- char *old_hack = "translator_credits-PLEASE_ADD_YOURSELF_HERE";
+ const char *old_hack = "translator_credits-PLEASE_ADD_YOURSELF_HERE";
/* Force translation */
authors[1] = _(authors[1]);
@@ -2166,12 +2235,12 @@ genius_ask_question (GtkWidget *parent, const char *question)
static gboolean
any_changed (void)
{
- int n = gtk_notebook_get_n_pages (GTK_NOTEBOOK (notebook));
+ int n = gtk_notebook_get_n_pages (GTK_NOTEBOOK (genius_notebook));
int i;
for (i = 1; i < n; i++) {
GtkWidget *w = gtk_notebook_get_nth_page
- (GTK_NOTEBOOK (notebook), i);
+ (GTK_NOTEBOOK (genius_notebook), i);
Program *p = g_object_get_data (G_OBJECT (w), "program");
if (p == NULL) /* console */
continue;
@@ -2723,11 +2792,11 @@ warranty_call (GtkWidget *widget, gpointer data)
static int
get_console_pagenum (void)
{
- int n = gtk_notebook_get_n_pages (GTK_NOTEBOOK (notebook));
+ int n = gtk_notebook_get_n_pages (GTK_NOTEBOOK (genius_notebook));
int i;
for (i = 0; i < n; i++) {
GtkWidget *w = gtk_notebook_get_nth_page
- (GTK_NOTEBOOK (notebook), i);
+ (GTK_NOTEBOOK (genius_notebook), i);
Program *p = g_object_get_data (G_OBJECT (w), "program");
if (p == NULL) /* console */
return i;
@@ -2788,7 +2857,7 @@ really_load_cb (GtkFileChooser *fs, int response, gpointer data)
vte_terminal_feed (VTE_TERMINAL (term), s, -1);
vte_terminal_feed (VTE_TERMINAL (term),
"\e[0m (((\r\n", -1);
- gtk_notebook_set_current_page (GTK_NOTEBOOK (notebook),
+ gtk_notebook_set_current_page (GTK_NOTEBOOK (genius_notebook),
get_console_pagenum ());
gel_calc_running ++;
@@ -2851,7 +2920,7 @@ static guint ur_idle_id = 0;
static gboolean
setup_undo_redo_idle (gpointer data)
{
- int page = gtk_notebook_get_current_page (GTK_NOTEBOOK (notebook));
+ int page = gtk_notebook_get_current_page (GTK_NOTEBOOK (genius_notebook));
GtkWidget *w;
Program *p;
@@ -2860,7 +2929,7 @@ setup_undo_redo_idle (gpointer data)
if (page < 0)
return FALSE;
- w = gtk_notebook_get_nth_page (GTK_NOTEBOOK (notebook), page);
+ w = gtk_notebook_get_nth_page (GTK_NOTEBOOK (genius_notebook), page);
p = g_object_get_data (G_OBJECT (w), "program");
if (p == NULL) {
@@ -2892,14 +2961,14 @@ setup_undo_redo (void)
static void
undo_callback (GtkWidget *menu_item, gpointer data)
{
- int page = gtk_notebook_get_current_page (GTK_NOTEBOOK (notebook));
+ int page = gtk_notebook_get_current_page (GTK_NOTEBOOK (genius_notebook));
GtkWidget *w;
Program *p;
if (page < 0)
return;
- w = gtk_notebook_get_nth_page (GTK_NOTEBOOK (notebook), page);
+ w = gtk_notebook_get_nth_page (GTK_NOTEBOOK (genius_notebook), page);
p = g_object_get_data (G_OBJECT (w), "program");
if (p == NULL) {
@@ -2916,14 +2985,14 @@ undo_callback (GtkWidget *menu_item, gpointer data)
static void
redo_callback (GtkWidget *menu_item, gpointer data)
{
- int page = gtk_notebook_get_current_page (GTK_NOTEBOOK (notebook));
+ int page = gtk_notebook_get_current_page (GTK_NOTEBOOK (genius_notebook));
GtkWidget *w;
Program *p;
if (page < 0)
return;
- w = gtk_notebook_get_nth_page (GTK_NOTEBOOK (notebook), page);
+ w = gtk_notebook_get_nth_page (GTK_NOTEBOOK (genius_notebook), page);
p = g_object_get_data (G_OBJECT (w), "program");
if (p == NULL) {
@@ -2941,14 +3010,14 @@ redo_callback (GtkWidget *menu_item, gpointer data)
static void
cut_callback (GtkWidget *menu_item, gpointer data)
{
- int page = gtk_notebook_get_current_page (GTK_NOTEBOOK (notebook));
+ int page = gtk_notebook_get_current_page (GTK_NOTEBOOK (genius_notebook));
GtkWidget *w;
Program *p;
if (page < 0)
return;
- w = gtk_notebook_get_nth_page (GTK_NOTEBOOK (notebook), page);
+ w = gtk_notebook_get_nth_page (GTK_NOTEBOOK (genius_notebook), page);
p = g_object_get_data (G_OBJECT (w), "program");
if (p == NULL) {
@@ -2966,14 +3035,14 @@ cut_callback (GtkWidget *menu_item, gpointer data)
static void
copy_callback (GtkWidget *menu_item, gpointer data)
{
- int page = gtk_notebook_get_current_page (GTK_NOTEBOOK (notebook));
+ int page = gtk_notebook_get_current_page (GTK_NOTEBOOK (genius_notebook));
GtkWidget *w;
Program *p;
if (page < 0)
return;
- w = gtk_notebook_get_nth_page (GTK_NOTEBOOK (notebook), page);
+ w = gtk_notebook_get_nth_page (GTK_NOTEBOOK (genius_notebook), page);
p = g_object_get_data (G_OBJECT (w), "program");
if (p == NULL) {
@@ -2988,14 +3057,14 @@ copy_callback (GtkWidget *menu_item, gpointer data)
static void
paste_callback (GtkWidget *menu_item, gpointer data)
{
- int page = gtk_notebook_get_current_page (GTK_NOTEBOOK (notebook));
+ int page = gtk_notebook_get_current_page (GTK_NOTEBOOK (genius_notebook));
GtkWidget *w;
Program *p;
if (page < 0)
return;
- w = gtk_notebook_get_nth_page (GTK_NOTEBOOK (notebook), page);
+ w = gtk_notebook_get_nth_page (GTK_NOTEBOOK (genius_notebook), page);
p = g_object_get_data (G_OBJECT (w), "program");
if (p == NULL) {
@@ -3031,10 +3100,10 @@ copy_answer (void)
{
GtkClipboard *cb;
GtkTargetEntry targets[] = {
- {"UTF8_STRING", 0, 0},
- {"COMPOUND_TEXT", 0, 0},
- {"TEXT", 0, 0},
- {"STRING", 0, 0},
+ {(char *)"UTF8_STRING", 0, 0},
+ {(char *)"COMPOUND_TEXT", 0, 0},
+ {(char *)"TEXT", 0, 0},
+ {(char *)"STRING", 0, 0},
};
/* perhaps a bit ugly */
GelOutput *out = gel_output_new ();
@@ -3187,13 +3256,13 @@ setup_label (Program *p)
static void
next_tab (GtkWidget *menu_item, gpointer data)
{
- gtk_notebook_next_page (GTK_NOTEBOOK (notebook));
+ gtk_notebook_next_page (GTK_NOTEBOOK (genius_notebook));
}
static void
prev_tab (GtkWidget *menu_item, gpointer data)
{
- gtk_notebook_prev_page (GTK_NOTEBOOK (notebook));
+ gtk_notebook_prev_page (GTK_NOTEBOOK (genius_notebook));
}
static void
@@ -3205,14 +3274,14 @@ prog_menu_activated (GtkWidget *item, gpointer data)
if (w == NULL)
num = get_console_pagenum ();
else
- num = gtk_notebook_page_num (GTK_NOTEBOOK (notebook), w);
- gtk_notebook_set_current_page (GTK_NOTEBOOK (notebook), num);
+ num = gtk_notebook_page_num (GTK_NOTEBOOK (genius_notebook), w);
+ gtk_notebook_set_current_page (GTK_NOTEBOOK (genius_notebook), num);
}
static void
build_program_menu (void)
{
- int n = gtk_notebook_get_n_pages (GTK_NOTEBOOK (notebook));
+ int n = gtk_notebook_get_n_pages (GTK_NOTEBOOK (genius_notebook));
int i;
GtkWidget *menu;
@@ -3226,7 +3295,7 @@ build_program_menu (void)
for (i = 0; i < n; i++) {
GtkWidget *item;
GtkWidget *w = gtk_notebook_get_nth_page
- (GTK_NOTEBOOK (notebook), i);
+ (GTK_NOTEBOOK (genius_notebook), i);
Program *p = g_object_get_data (G_OBJECT (w), "program");
if (p == NULL) /* console */
continue;
@@ -3489,11 +3558,11 @@ file_is_writable (const char *fname)
static int
get_program_pagenum (Program *p)
{
- int n = gtk_notebook_get_n_pages (GTK_NOTEBOOK (notebook));
+ int n = gtk_notebook_get_n_pages (GTK_NOTEBOOK (genius_notebook));
int i;
for (i = 0; i < n; i++) {
GtkWidget *w = gtk_notebook_get_nth_page
- (GTK_NOTEBOOK (notebook), i);
+ (GTK_NOTEBOOK (genius_notebook), i);
Program *pp = g_object_get_data (G_OBJECT (w), "program");
if (p == pp)
return i;
@@ -3546,7 +3615,7 @@ close_program (Program *p)
page = get_program_pagenum (p);
if (page >= 0) /* sanity */
- gtk_notebook_remove_page (GTK_NOTEBOOK (notebook), page);
+ gtk_notebook_remove_page (GTK_NOTEBOOK (genius_notebook), page);
whack_program (p);
build_program_menu ();
@@ -3752,14 +3821,14 @@ new_program (const char *filename, gboolean example)
gtk_widget_show_all (b);
gtk_misc_set_alignment (GTK_MISC (p->mlabel), 0.0, 0.5);
- gtk_notebook_append_page_menu (GTK_NOTEBOOK (notebook), sw,
+ gtk_notebook_append_page_menu (GTK_NOTEBOOK (genius_notebook), sw,
b, p->mlabel);
- gtk_notebook_set_tab_reorderable (GTK_NOTEBOOK (notebook),
+ gtk_notebook_set_tab_reorderable (GTK_NOTEBOOK (genius_notebook),
sw,
TRUE);
- gtk_notebook_set_current_page (GTK_NOTEBOOK (notebook), -1);
+ gtk_notebook_set_current_page (GTK_NOTEBOOK (genius_notebook), -1);
g_signal_connect (G_OBJECT (buffer), "changed",
G_CALLBACK (changed_cb), sw);
@@ -3917,9 +3986,9 @@ save_callback (GtkWidget *w)
}
static void
-save_all_cb (GtkWidget *w)
+save_all_cb (GtkWidget *ww)
{
- int n = gtk_notebook_get_n_pages (GTK_NOTEBOOK (notebook));
+ int n = gtk_notebook_get_n_pages (GTK_NOTEBOOK (genius_notebook));
int i;
GError *error = NULL;
gboolean there_are_unsaved = FALSE;
@@ -3927,7 +3996,7 @@ save_all_cb (GtkWidget *w)
for (i = 0; i < n; i++) {
GtkWidget *w = gtk_notebook_get_nth_page
- (GTK_NOTEBOOK (notebook), i);
+ (GTK_NOTEBOOK (genius_notebook), i);
Program *p = g_object_get_data (G_OBJECT (w), "program");
if (p == NULL) /* console */
continue;
@@ -4216,8 +4285,8 @@ close_callback (GtkWidget *menu_item, gpointer data)
{
GtkWidget *w;
Program *p;
- int current = gtk_notebook_get_current_page (GTK_NOTEBOOK (notebook));
- w = gtk_notebook_get_nth_page (GTK_NOTEBOOK (notebook), current);
+ int current = gtk_notebook_get_current_page (GTK_NOTEBOOK (genius_notebook));
+ w = gtk_notebook_get_nth_page (GTK_NOTEBOOK (genius_notebook), current);
p = g_object_get_data (G_OBJECT (w), "program");
if (p == NULL) /* if the console */
return;
@@ -4282,7 +4351,7 @@ run_program_idle (gpointer data)
vte_terminal_feed (VTE_TERMINAL (term), vname, -1);
vte_terminal_feed (VTE_TERMINAL (term),
"\e[0m (((\r\n", -1);
- gtk_notebook_set_current_page (GTK_NOTEBOOK (notebook), get_console_pagenum ());
+ gtk_notebook_set_current_page (GTK_NOTEBOOK (genius_notebook), get_console_pagenum ());
/* run this in a fork so that we don't block on very
long input */
@@ -4298,8 +4367,8 @@ run_program_idle (gpointer data)
}
if (pid == 0) {
- int status = 0;
int len = strlen (prog);
+ status = 0;
close (p[0]);
if (write (p[1], prog, len) < len) {
status = 1;
@@ -4909,7 +4978,7 @@ setup_rl_fifos (void)
static void
selection_changed (void)
{
- int page = gtk_notebook_get_current_page (GTK_NOTEBOOK (notebook));
+ int page = gtk_notebook_get_current_page (GTK_NOTEBOOK (genius_notebook));
if (page == 0) {
gboolean can_copy =
vte_terminal_get_has_selection (VTE_TERMINAL (term));
@@ -5179,14 +5248,14 @@ main (int argc, char *argv[])
recent_manager = gtk_recent_manager_get_default ();
/* create our notebook and setup toplevel window */
- notebook = gtk_notebook_new ();
- /* g_object_set (G_OBJECT (notebook), "tab-vborder", 0, NULL);*/
- gtk_container_set_border_width (GTK_CONTAINER (notebook), 5);
- gtk_notebook_set_scrollable (GTK_NOTEBOOK (notebook), TRUE);
- gtk_notebook_popup_enable (GTK_NOTEBOOK (notebook));
+ genius_notebook = gtk_notebook_new ();
+ /* g_object_set (G_OBJECT (genius_notebook), "tab-vborder", 0, NULL);*/
+ gtk_container_set_border_width (GTK_CONTAINER (genius_notebook), 5);
+ gtk_notebook_set_scrollable (GTK_NOTEBOOK (genius_notebook), TRUE);
+ gtk_notebook_popup_enable (GTK_NOTEBOOK (genius_notebook));
/*set up the top level window*/
- create_main_window (notebook);
+ create_main_window (genius_notebook);
/* Drag and drop support */
gtk_drag_dest_set (GTK_WIDGET (genius_window),
@@ -5201,7 +5270,7 @@ main (int argc, char *argv[])
NULL);
/* setup the notebook */
- g_signal_connect (G_OBJECT (notebook), "switch_page",
+ g_signal_connect (G_OBJECT (genius_notebook), "switch_page",
G_CALLBACK (switch_page), NULL);
/*the main box to put everything in*/
@@ -5234,10 +5303,10 @@ main (int argc, char *argv[])
gtk_box_pack_start (GTK_BOX (hbox), w, FALSE, FALSE, 0);
/*set up the main window*/
- gtk_notebook_append_page (GTK_NOTEBOOK (notebook),
+ gtk_notebook_append_page (GTK_NOTEBOOK (genius_notebook),
hbox,
gtk_label_new (_("Console")));
- gtk_notebook_set_tab_reorderable (GTK_NOTEBOOK (notebook),
+ gtk_notebook_set_tab_reorderable (GTK_NOTEBOOK (genius_notebook),
hbox,
TRUE);
/* FIXME:
diff --git a/src/graphing.c b/src/graphing.c
index 28752b0..c78376d 100644
--- a/src/graphing.c
+++ b/src/graphing.c
@@ -1,5 +1,5 @@
/* GENIUS Calculator
- * Copyright (C) 2003-2016 Jiri (George) Lebl
+ * Copyright (C) 2003-2017 Jiri (George) Lebl
*
* Author: Jiri (George) Lebl
*
@@ -2097,6 +2097,7 @@ plot_canvas_key_press_event (GtkWidget *widget, GdkEventKey *event, gpointer use
gtk_plot_canvas_refresh (GTK_PLOT_CANVAS (plot_canvas));
}
break;
+ default: break;
}
return FALSE;
@@ -4790,7 +4791,7 @@ plot_functions (gboolean do_window_present,
gboolean from_gui,
gboolean fit)
{
- char *colors[] = {
+ const char *colors[] = {
"darkblue",
"darkgreen",
"darkred",
@@ -10643,14 +10644,14 @@ set_SurfacePlotVariableNames (GelETree * a)
set_surface_labels ();
if (surface_plot != NULL) {
- GtkPlotAxis *a;
-
- a = gtk_plot_get_axis (GTK_PLOT (surface_plot), GTK_PLOT_AXIS_BOTTOM);
- gtk_plot_axis_set_title (a, sp_x_name);
- a = gtk_plot_get_axis (GTK_PLOT (surface_plot), GTK_PLOT_AXIS_LEFT);
- gtk_plot_axis_set_title (a, sp_y_name);
- a = gtk_plot_get_axis (GTK_PLOT (surface_plot), GTK_PLOT_AXIS_TOP);
- gtk_plot_axis_set_title (a, "");
+ GtkPlotAxis *axis;
+
+ axis = gtk_plot_get_axis (GTK_PLOT (surface_plot), GTK_PLOT_AXIS_BOTTOM);
+ gtk_plot_axis_set_title (axis, sp_x_name);
+ axis = gtk_plot_get_axis (GTK_PLOT (surface_plot), GTK_PLOT_AXIS_LEFT);
+ gtk_plot_axis_set_title (axis, sp_y_name);
+ axis = gtk_plot_get_axis (GTK_PLOT (surface_plot), GTK_PLOT_AXIS_TOP);
+ gtk_plot_axis_set_title (axis, "");
if (plot_canvas != NULL) {
gtk_plot_canvas_paint (GTK_PLOT_CANVAS (plot_canvas));
diff --git a/src/inter.c b/src/inter.c
index f0d2558..aff8732 100644
--- a/src/inter.c
+++ b/src/inter.c
@@ -1,5 +1,5 @@
/* GENIUS Calculator
- * Copyright (C) 1997-2011 Jiri (George) Lebl
+ * Copyright (C) 1997-2017 Jiri (George) Lebl
*
* Author: Jiri (George) Lebl
*
@@ -58,7 +58,7 @@ GelETree *
get_p_expression(void)
{
GString *gs;
- char *prompt = "genius> ";
+ const char *prompt = "genius> ";
gel_interrupted = FALSE;
@@ -162,12 +162,12 @@ write_all_state_to_rl(FILE *fp)
}
void
-get_cb_p_expression(char *s, FILE *torlfp)
+get_cb_p_expression(const char *s, FILE *torlfp)
{
int finished;
GelETree *ret;
- /* "genius> "*/
- char *prompt = " > ";
+ /* "genius> "*/
+ const char *prompt = " > ";
toplevelokg = old_toplevelokg;
if(gel_interrupted) {
diff --git a/src/inter.h b/src/inter.h
index e5c85c4..cfd60ac 100644
--- a/src/inter.h
+++ b/src/inter.h
@@ -1,5 +1,5 @@
/* GENIUS Calculator
- * Copyright (C) 1997-2002 Jiri (George) Lebl
+ * Copyright (C) 1997-2017 Jiri (George) Lebl
*
* Author: Jiri (George) Lebl
*
@@ -26,7 +26,7 @@ void init_inter(void);
GelETree * get_p_expression(void);
void start_cb_p_expression(void (*get_func)(GelETree *), FILE *torlfp);
void stop_cb_p_expression(void);
-void get_cb_p_expression(char *s, FILE *torlfp);
+void get_cb_p_expression(const char *s, FILE *torlfp);
diff --git a/src/matop.c b/src/matop.c
index f33a702..cb12ad0 100644
--- a/src/matop.c
+++ b/src/matop.c
@@ -444,8 +444,9 @@ gel_value_matrix_gauss (GelCtx *ctx,
/* kind of a hack */
int bestj = h;
mpw_t best_abs_sq;
- mpw_init (best_abs_sq);
GelETree *bestpiv = NULL;
+
+ mpw_init (best_abs_sq);
for (j = d; j < h; j++) {
GelETree *t = gel_matrixw_get_index(m,i,j);
if (t != NULL &&
diff --git a/src/matrixw.c b/src/matrixw.c
index 0e2f640..6eddda9 100644
--- a/src/matrixw.c
+++ b/src/matrixw.c
@@ -1,5 +1,5 @@
/* GENIUS Calculator
- * Copyright (C) 1997-2016 Jiri (George) Lebl
+ * Copyright (C) 1997-2017 Jiri (George) Lebl
*
* Author: Jiri (George) Lebl
*
@@ -1294,7 +1294,6 @@ gel_matrixw_set_vregion (GelMatrixW *m, GelMatrixW *src, int *desti, int len)
void
gel_matrixw_set_vregion_etree (GelMatrixW *m, GelETree *src, int *desti, int len)
{
- int srcelts;
int max;
g_return_if_fail (m != NULL);
diff --git a/src/mpwrap.c b/src/mpwrap.c
index 99ad6ed..86bb3a8 100644
--- a/src/mpwrap.c
+++ b/src/mpwrap.c
@@ -1,5 +1,5 @@
/* GENIUS Calculator
- * Copyright (C) 1997-2015 Jiri (George) Lebl
+ * Copyright (C) 1997-2017 Jiri (George) Lebl
*
* Author: Jiri (George) Lebl
*
@@ -597,6 +597,8 @@ mpwl_make_type (MpwRealNum *op, int type)
sizeof (__mpfr_struct));
}
break;
+ default:
+ break;
}
}
@@ -681,8 +683,8 @@ mpwl_sgn(MpwRealNum *op)
case MPW_FLOAT: return mpfr_sgn(op->data.fval);
case MPW_RATIONAL: return mpq_sgn(op->data.rval);
case MPW_INTEGER: return mpz_sgn(op->data.ival);
+ default: return 0;
}
- return 0;
}
static inline int
@@ -692,8 +694,8 @@ mpwl_zero_p (MpwRealNum *op) /* PURE!*/
case MPW_FLOAT: return mpfr_zero_p (op->data.fval);
case MPW_RATIONAL: return mpq_sgn(op->data.rval) == 0;
case MPW_INTEGER: return mpz_sgn(op->data.ival) == 0;
+ default: return 0;
}
- return 0;
}
static long
@@ -725,6 +727,8 @@ mpwl_eql (MpwRealNum *op1, MpwRealNum *op2)
return mpq_equal (op1->data.rval,op2->data.rval);
case MPW_INTEGER:
return (mpz_cmp (op1->data.ival,op2->data.ival) == 0);
+ default:
+ break;
}
} else {
switch (MPWL_MAX_TYPE (op1, op2)) {
@@ -754,6 +758,8 @@ mpwl_eql (MpwRealNum *op1, MpwRealNum *op2)
case MPW_INTEGER:
return mpz_cmp(op1->data.ival,op2->data.ival);
*/
+ default:
+ break;
}
}
return r;
@@ -772,6 +778,8 @@ mpwl_cmp(MpwRealNum *op1, MpwRealNum *op2)
return mpq_cmp(op1->data.rval,op2->data.rval);
case MPW_INTEGER:
return mpz_cmp(op1->data.ival,op2->data.ival);
+ default:
+ break;
}
} else {
switch (MPWL_MAX_TYPE (op1, op2)) {
@@ -801,6 +809,8 @@ mpwl_cmp(MpwRealNum *op1, MpwRealNum *op2)
case MPW_INTEGER:
return mpz_cmp(op1->data.ival,op2->data.ival);
*/
+ default:
+ break;
}
}
return r;
@@ -813,8 +823,8 @@ mpwl_cmp_ui(MpwRealNum *op, unsigned long int i)
case MPW_FLOAT: return mpfr_cmp_ui(op->data.fval,i);
case MPW_RATIONAL: return mpq_cmp_ui(op->data.rval,i,1);
case MPW_INTEGER: return mpz_cmp_ui(op->data.ival,i);
+ default: return 0;
}
- return 0;
}
static void
@@ -830,6 +840,7 @@ mpwl_set_d(MpwRealNum *rop,double d)
mpwl_init_type(rop,MPW_FLOAT);
mpfr_set_d (rop->data.fval, d, GMP_RNDN);
break;
+ default: break;
}
}
@@ -846,6 +857,7 @@ mpwl_set_si(MpwRealNum *rop,signed long int i)
case MPW_INTEGER:
mpz_set_si(rop->data.ival,i);
return;
+ default: break;
}
mpwl_init_type (rop, MPW_INTEGER);
mpz_set_si (rop->data.ival,i);
@@ -866,6 +878,7 @@ mpwl_set_ui(MpwRealNum *rop,unsigned long int i)
case MPW_INTEGER:
mpz_set_ui(rop->data.ival,i);
break;
+ default: break;
}
}
@@ -898,6 +911,7 @@ mpwl_set(MpwRealNum *rop,MpwRealNum *op)
case MPW_INTEGER:
mpz_set(rop->data.ival,op->data.ival);
break;
+ default: break;
}
} else {
mpwl_clear(rop);
@@ -932,6 +946,7 @@ mpwl_add(MpwRealNum *rop,MpwRealNum *op1,MpwRealNum *op2)
case MPW_INTEGER:
mpz_add(rop->data.ival,op1->data.ival,op2->data.ival);
break;
+ default: break;
}
return;
}
@@ -956,6 +971,7 @@ mpwl_add(MpwRealNum *rop,MpwRealNum *op1,MpwRealNum *op2)
mpfr_add_z (rp->data.fval, op1->data.fval,
op2->data.ival, GMP_RNDN);
break;
+ default: break;
}
} else /* op2 is MPW_FLOAT */ {
switch(op1->type) {
@@ -967,6 +983,7 @@ mpwl_add(MpwRealNum *rop,MpwRealNum *op1,MpwRealNum *op2)
mpfr_add_z (rp->data.fval, op2->data.fval,
op1->data.ival, GMP_RNDN);
break;
+ default: break;
}
}
break;
@@ -987,6 +1004,7 @@ mpwl_add(MpwRealNum *rop,MpwRealNum *op1,MpwRealNum *op2)
mpz_add (rp->data.ival, op1->data.ival, op2->data.ival);
break;
*/
+ default: break;
}
if (rp != rop)
@@ -1021,6 +1039,7 @@ mpwl_add_ui(MpwRealNum *rop,MpwRealNum *op,unsigned long i)
case MPW_INTEGER:
mpz_add_ui(rop->data.ival,op->data.ival,i);
break;
+ default: break;
}
}
@@ -1050,6 +1069,7 @@ mpwl_sub(MpwRealNum *rop,MpwRealNum *op1,MpwRealNum *op2)
case MPW_INTEGER:
mpz_sub(rop->data.ival,op1->data.ival,op2->data.ival);
break;
+ default: break;
}
return;
}
@@ -1074,6 +1094,7 @@ mpwl_sub(MpwRealNum *rop,MpwRealNum *op1,MpwRealNum *op2)
mpfr_sub_z (rp->data.fval, op1->data.fval,
op2->data.ival, GMP_RNDN);
break;
+ default: break;
}
} else /* op2 is MPW_FLOAT */ {
switch(op1->type) {
@@ -1085,6 +1106,7 @@ mpwl_sub(MpwRealNum *rop,MpwRealNum *op1,MpwRealNum *op2)
mpfr_sub_z (rp->data.fval, op2->data.fval,
op1->data.ival, GMP_RNDN);
break;
+ default: break;
}
mpfr_neg (rp->data.fval, rp->data.fval, GMP_RNDN);
}
@@ -1106,6 +1128,7 @@ mpwl_sub(MpwRealNum *rop,MpwRealNum *op1,MpwRealNum *op2)
mpz_sub (rp->data.ival, op1->data.ival, op2->data.ival);
break;
*/
+ default: break;
}
if (rop != rp)
@@ -1142,6 +1165,7 @@ mpwl_sub_ui(MpwRealNum *rop,MpwRealNum *op,unsigned long i)
case MPW_INTEGER:
mpz_sub_ui(rop->data.ival,op->data.ival,i);
break;
+ default: break;
}
}
@@ -1175,6 +1199,7 @@ mpwl_ui_sub(MpwRealNum *rop, unsigned long i, MpwRealNum *op)
mpz_sub_ui(rop->data.ival,op->data.ival,i);
mpz_neg(rop->data.ival,rop->data.ival);
break;
+ default: break;
}
}
@@ -1204,6 +1229,7 @@ mpwl_mul(MpwRealNum *rop,MpwRealNum *op1,MpwRealNum *op2)
case MPW_INTEGER:
mpz_mul(rop->data.ival,op1->data.ival,op2->data.ival);
break;
+ default: break;
}
return;
}
@@ -1228,6 +1254,7 @@ mpwl_mul(MpwRealNum *rop,MpwRealNum *op1,MpwRealNum *op2)
mpfr_mul_z (rp->data.fval, op1->data.fval,
op2->data.ival, GMP_RNDN);
break;
+ default: break;
}
} else /* op2 is MPW_FLOAT */ {
switch(op1->type) {
@@ -1239,6 +1266,7 @@ mpwl_mul(MpwRealNum *rop,MpwRealNum *op1,MpwRealNum *op2)
mpfr_mul_z (rp->data.fval, op2->data.fval,
op1->data.ival, GMP_RNDN);
break;
+ default: break;
}
}
break;
@@ -1259,6 +1287,7 @@ mpwl_mul(MpwRealNum *rop,MpwRealNum *op1,MpwRealNum *op2)
mpz_mul (rp->data.ival, op1->data.ival, op2->data.ival);
break;
*/
+ default: break;
}
if (rop != rp)
@@ -1284,6 +1313,7 @@ mpwl_mul_ui(MpwRealNum *rop,MpwRealNum *op,unsigned long int i)
case MPW_INTEGER:
mpz_mul_ui(rop->data.ival,op->data.ival,i);
break;
+ default: break;
}
}
@@ -1314,7 +1344,7 @@ mpwl_div(MpwRealNum *rop,MpwRealNum *op1,MpwRealNum *op2)
mpq_div(rop->data.rval,op1->data.rval,op2->data.rval);
mpwl_make_int(rop);
break;
- default: ;
+ default: break;
}
return;
}
@@ -1354,6 +1384,7 @@ mpwl_div(MpwRealNum *rop,MpwRealNum *op1,MpwRealNum *op2)
mpz_set (mpq_denref (r.data.rval), op2->data.ival);
mpwl_make_int (&r);
break;
+ default: break;
}
mpwl_move (rop, &r);
@@ -1396,6 +1427,7 @@ mpwl_div_ui(MpwRealNum *rop,MpwRealNum *op,unsigned long int i)
mpwl_make_int (rop);
}
break;
+ default: break;
}
}
@@ -1435,6 +1467,7 @@ mpwl_ui_div(MpwRealNum *rop,unsigned long int i,MpwRealNum *op)
mpwl_make_int (rop);
}
break;
+ default: break;
}
}
@@ -1671,6 +1704,7 @@ mpwl_neg(MpwRealNum *rop,MpwRealNum *op)
case MPW_INTEGER:
mpz_neg(rop->data.ival,op->data.ival);
break;
+ default: break;
}
}
@@ -1951,6 +1985,7 @@ mpwl_pow_ui(MpwRealNum *rop,MpwRealNum *op1,unsigned int e, gboolean reverse)
if(reverse)
mpfr_ui_div (r.data.fval, 1, r.data.fval, GMP_RNDN);
break;
+ default: break;
}
mpwl_move(rop,&r);
}
@@ -2011,6 +2046,7 @@ mpwl_pow_z(MpwRealNum *rop,MpwRealNum *op1,MpwRealNum *op2)
mpfr_ui_div (r.data.fval, 1, r.data.fval,
GMP_RNDN);
break;
+ default: break;
}
mpwl_move(rop,&r);
} else {
@@ -2072,6 +2108,7 @@ mpwl_pow (MpwRealNum *rop, MpwRealNum *op1, MpwRealNum *op2)
case MPW_FLOAT: return mpwl_pow_f(rop,op1,op2);
case MPW_RATIONAL: return mpwl_pow_q(rop,op1,op2);
case MPW_INTEGER: mpwl_pow_z(rop,op1,op2); break;
+ default: break;
}
return FALSE;
}
@@ -2123,8 +2160,9 @@ mpwl_powm (MpwRealNum *rop,
if G_UNLIKELY ( ! mpz_invert (r.data.ival,
r.data.ival,
mod->data.ival)) {
- char *n1 = mpwl_getstring_for_error (&r);
- char *n2 = mpwl_getstring_for_error (mod);
+ char *n1, *n2;
+ n1 = mpwl_getstring_for_error (&r);
+ n2 = mpwl_getstring_for_error (mod);
gel_errorout (_("Can't invert %s modulo %s "
"in %s"),
n1, n2, "powm");
@@ -2140,6 +2178,7 @@ mpwl_powm (MpwRealNum *rop,
case MPW_RATIONAL:
g_assert_not_reached ();
break;
+ default: break;
}
mpwl_move (rop, &r);
@@ -2493,6 +2532,7 @@ mpwl_make_int(MpwRealNum *rop)
rop->type = MPW_INTEGER;
}
break;
+ default: break;
}
}
@@ -3111,7 +3151,7 @@ str_getstring_f (mpfr_ptr num,
/* approximately the exponent base 10 */
e = mpfr_get_exp (num) / 3.32192809489;
if (e < -chop) {
- char *sign = "";
+ const char *sign = "";
if (mpfr_sgn (num) < 0)
sign = "-";
if (scientific_notation)
@@ -3186,6 +3226,7 @@ mpwl_getstring(MpwRealNum * num, int max_digits,
scientific_notation,
postfix,
chop);
+ default: break;
}
/*something bad happened*/
return NULL;
diff --git a/src/mpzextra.c b/src/mpzextra.c
index 78905c6..3495bb4 100644
--- a/src/mpzextra.c
+++ b/src/mpzextra.c
@@ -1,5 +1,5 @@
/* GENIUS Calculator
- * Copyright (C) 1997-2009 Jiri (George) Lebl
+ * Copyright (C) 1997-2017 Jiri (George) Lebl
*
* Author: Jiri (George) Lebl
*
@@ -379,10 +379,10 @@ factor_using_pollard_rho (GArray *fact, mpz_t n, int a_int)
{
S2:
if (gel_evalnode_hook != NULL) {
- static int i = 0;
- if G_UNLIKELY ((i++ & GEL_RUN_HOOK_EVERY_MASK) == GEL_RUN_HOOK_EVERY_MASK) {
+ static int ii = 0;
+ if G_UNLIKELY ((ii++ & GEL_RUN_HOOK_EVERY_MASK) == GEL_RUN_HOOK_EVERY_MASK) {
(*gel_evalnode_hook)();
- i = 0;
+ ii = 0;
}
}
if G_UNLIKELY (gel_interrupted) {
diff --git a/src/plugin.c b/src/plugin.c
index d803ee2..64c3964 100644
--- a/src/plugin.c
+++ b/src/plugin.c
@@ -1,5 +1,5 @@
/* GENIUS Calculator
- * Copyright (C) 1997-2014 Jiri (George) Lebl
+ * Copyright (C) 1997-2017 Jiri (George) Lebl
*
* Author: Jiri (George) Lebl
*
@@ -162,7 +162,7 @@ open_get_info (GelPlugin *plug)
if(!(inf=g_hash_table_lookup(info,mod))) {
gpointer f;
gboolean ret;
- GelPluginInfo *(*init_func)(void);
+ GelPluginInfo *(*the_init_func)(void);
ret = g_module_symbol (mod, "init_func", &f);
@@ -172,8 +172,8 @@ open_get_info (GelPlugin *plug)
return NULL;
}
- init_func = f;
- inf = (*init_func)();
+ the_init_func = f;
+ inf = (*the_init_func)();
if (inf == NULL) {
gel_errorout (_("Can't initialize plugin!"));
[
Date Prev][
Date Next] [
Thread Prev][
Thread Next]
[
Thread Index]
[
Date Index]
[
Author Index]