[gnumeric] special functions: split trigonometric functions from mathfunc.c
- From: Morten Welinder <mortenw src gnome org>
- To: commits-list gnome org
- Cc:
- Subject: [gnumeric] special functions: split trigonometric functions from mathfunc.c
- Date: Mon, 18 Nov 2013 14:27:55 +0000 (UTC)
commit 10d4521af6a802baf19be3f4860586ea7461f494
Author: Morten Welinder <terra gnome org>
Date: Mon Nov 18 09:26:44 2013 -0500
special functions: split trigonometric functions from mathfunc.c
The file mathfunc.c is getting too fat. This starts a split.
ChangeLog | 4 +
plugins/fn-math/functions.c | 1 +
plugins/fn-r/extra.c | 1 +
src/Makefile.am | 2 +
src/mathfunc.c | 430 +------------------------------------------
src/mathfunc.h | 9 +-
src/sf-trig.c | 439 +++++++++++++++++++++++++++++++++++++++++++
src/sf-trig.h | 18 ++
8 files changed, 467 insertions(+), 437 deletions(-)
---
diff --git a/ChangeLog b/ChangeLog
index 33ca9ee..298326f 100644
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,3 +1,7 @@
+2013-11-18 Morten Welinder <terra gnome org>
+
+ * src/sf-trig.c: Split out trigonometric functions from mathfunc.c
+
2013-11-15 Morten Welinder <terra gnome org>
* src/mathfunc.c (reduce_pi_half): New function.
diff --git a/plugins/fn-math/functions.c b/plugins/fn-math/functions.c
index afd4537..86b6d99 100644
--- a/plugins/fn-math/functions.c
+++ b/plugins/fn-math/functions.c
@@ -28,6 +28,7 @@
#include <sheet.h>
#include <workbook.h>
#include <mathfunc.h>
+#include <sf-trig.h>
#include <rangefunc.h>
#include <collect.h>
#include <value.h>
diff --git a/plugins/fn-r/extra.c b/plugins/fn-r/extra.c
index 0b800e3..343af6b 100644
--- a/plugins/fn-r/extra.c
+++ b/plugins/fn-r/extra.c
@@ -1,6 +1,7 @@
#include <gnumeric-config.h>
#include "gnumeric.h"
#include <mathfunc.h>
+#include <sf-trig.h>
#include "extra.h"
#define ML_ERR_return_NAN { return gnm_nan; }
diff --git a/src/Makefile.am b/src/Makefile.am
index 9d7e760..0c53a43 100644
--- a/src/Makefile.am
+++ b/src/Makefile.am
@@ -153,6 +153,7 @@ libspreadsheet_la_SOURCES = \
search.c \
selection.c \
session.c \
+ sf-trig.c \
sheet.c \
sheet-view.c \
sheet-control.c \
@@ -279,6 +280,7 @@ libspreadsheet_include_HEADERS = \
search.h \
selection.h \
session.h \
+ sf-trig.h \
sheet.h \
sheet-view.h \
sheet-control.h \
diff --git a/src/mathfunc.c b/src/mathfunc.c
index 39c8cfb..c59ef46 100644
--- a/src/mathfunc.c
+++ b/src/mathfunc.c
@@ -36,6 +36,7 @@
#include <gnumeric-config.h>
#include "gnumeric.h"
#include "mathfunc.h"
+#include "sf-trig.h"
#include <glib/gi18n-lib.h>
#include <math.h>
@@ -90,158 +91,6 @@ mathfunc_init (void)
/* Nothing, for the time being. */
}
-static gnm_float
-gnm_cot_helper (volatile gnm_float *x)
-{
- gnm_float s = gnm_sin (*x);
- gnm_float c = gnm_cos (*x);
-
- if (s == 0)
- return gnm_nan;
- else
- return c / s;
-}
-
-/**
- * gnm_cot:
- * @x: an angle in radians
- *
- * Returns: The co-tangent of the given angle.
- */
-gnm_float
-gnm_cot (gnm_float x)
-{
- /* See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=59089 */
- return gnm_cot_helper (&x);
-}
-
-/**
- * gnm_acot:
- * @x: a number
- *
- * Returns: The inverse co-tangent of the given number.
- */
-gnm_float
-gnm_acot (gnm_float x)
-{
- if (gnm_finite (x)) {
- if (x == 0)
- return M_PIgnum / 2;
- return gnm_atan (1 / x);
- } else {
- /* +inf -> +0 */
- /* -Inf -> -0 */
- /* +-NaN -> +-NaN */
- return 1 / x;
- }
-}
-
-/**
- * gnm_coth:
- * @x: a number.
- *
- * Returns: The hyperbolic co-tangent of the given number.
- */
-gnm_float
-gnm_coth (gnm_float x)
-{
- return 1 / gnm_tanh (x);
-}
-
-/**
- * gnm_acoth:
- * @x: a number
- *
- * Returns: The inverse hyperbolic co-tangent of the given number.
- */
-gnm_float
-gnm_acoth (gnm_float x)
-{
- return (gnm_abs (x) > 2)
- ? gnm_log1p (2 / (x - 1)) / 2
- : gnm_log ((x - 1) / (x + 1)) / -2;
-}
-
-/**
- * gnm_sinpi:
- * @x: a number
- *
- * Returns: the sine of Pi times @x, but with less error than doing the
- * multiplication outright.
- */
-gnm_float
-gnm_sinpi (gnm_float x)
-{
- int k;
-
- if (gnm_isnan (x))
- return x;
-
- if (!gnm_finite (x))
- return gnm_nan;
-
- k = (x < 0) ? 2 : 0;
- x = gnm_fmod (gnm_abs (x), 2);
- if (x >= 1) {
- x -= 1;
- k ^= 2;
- }
- if (x >= 0.5) {
- x -= 0.5;
- k += 1;
- }
- if (x == 0) {
- static const gnm_float ys[4] = { 0, 1, -0, -1 };
- return ys[k];
- } else {
- switch (k) {
- default:
- case 0: return +gnm_sin (M_PIgnum * x);
- case 1: return +gnm_cos (M_PIgnum * x);
- case 2: return -gnm_sin (M_PIgnum * x);
- case 3: return -gnm_cos (M_PIgnum * x);
- }
- }
-}
-
-/**
- * gnm_cospi:
- * @x: a number
- *
- * Returns: the cosine of Pi times @x, but with less error than doing the
- * multiplication outright.
- */
-gnm_float
-gnm_cospi (gnm_float x)
-{
- int k = 0;
-
- if (!gnm_finite (x))
- return gnm_nan;
-
- x = gnm_fmod (gnm_abs (x), 2);
- if (x >= 1) {
- x -= 1;
- k ^= 2;
- }
- if (x >= 0.5) {
- x -= 0.5;
- k += 1;
- }
- if (x == 0) {
- static const gnm_float ys[4] = { 1, 0, -1, -0 };
- return ys[k];
- } else {
- switch (k) {
- default:
- case 0: return +gnm_cos (M_PIgnum * x);
- case 1: return -gnm_sin (M_PIgnum * x);
- case 2: return -gnm_cos (M_PIgnum * x);
- case 3: return +gnm_sin (M_PIgnum * x);
- }
- }
-}
-
/* ------------------------------------------------------------------------- */
/* --- BEGIN MAGIC R SOURCE MARKER --- */
@@ -9372,280 +9221,3 @@ gnm_bessel_y (gnm_float x, gnm_float alpha)
}
/* ------------------------------------------------------------------------- */
-
-#ifdef GNM_REDUCES_TRIG_RANGE
-
-static gnm_float
-reduce_pi_half_simple (gnm_float x, int *km4)
-{
- static const gnm_float two_over_pi = 0.63661977236758134307553505349;
- static const gnm_float pi_over_two[] = {
- +0x1.921fb5p+0,
- +0x1.110b46p-26,
- +0x1.1a6263p-54,
- +0x1.8a2e03p-81,
- +0x1.c1cd12p-107
- };
- int i;
- gnm_float k = gnm_floor (x * two_over_pi + 0.5);
- gnm_float xx = 0;
-
- g_assert (k < (1 << 26));
- *km4 = (int)k & 3;
-
- if (k == 0)
- return x;
-
- x -= k * pi_over_two[0];
- for (i = 1; i < 5; i++) {
- gnm_float dx = k * pi_over_two[i];
- gnm_float s = x - dx;
- xx += x - s - dx;
- x = s;
- }
-
- return x + xx;
-}
-
-/*
- * Add the 64-bit number p at *dst and backwards. This would be very
- * simple and fast in assembler. In C it's a bit of a mess.
- */
-static inline void
-add_at (guint32 *dst, guint64 p)
-{
- unsigned h = p >> 63;
-
- p += *dst;
- *dst-- = p & 0xffffffffu;
- p >>= 32;
- if (p) {
- p += *dst;
- *dst-- = p & 0xffffffffu;
- if (p >> 32)
- while (++*dst == 0)
- dst--;
- } else if (h) {
- /* p overflowed, pass carry on. */
- dst--;
- while (++*dst == 0)
- dst--;
- }
-}
-
-static gnm_float
-reduce_pi_half_full (gnm_float x, int *km4)
-{
- /* FIXME? This table isn't big enough for long double's range */
- static guint32 one_over_two_pi[] = {
- 0x28be60dbu,
- 0x9391054au,
- 0x7f09d5f4u,
- 0x7d4d3770u,
- 0x36d8a566u,
- 0x4f10e410u,
- 0x7f9458eau,
- 0xf7aef158u,
- 0x6dc91b8eu,
- 0x909374b8u,
- 0x01924bbau,
- 0x82746487u,
- 0x3f877ac7u,
- 0x2c4a69cfu,
- 0xba208d7du,
- 0x4baed121u,
- 0x3a671c09u,
- 0xad17df90u,
- 0x4e64758eu,
- 0x60d4ce7du,
- 0x272117e2u,
- 0xef7e4a0eu,
- 0xc7fe25ffu,
- 0xf7816603u,
- 0xfbcbc462u,
- 0xd6829b47u,
- 0xdb4d9fb3u,
- 0xc9f2c26du,
- 0xd3d18fd9u,
- 0xa797fa8bu,
- 0x5d49eeb1u,
- 0xfaf97c5eu,
- 0xcf41ce7du,
- 0xe294a4bau,
- 0x9afed7ecu,
- 0x47e35742u
- };
- static guint32 pi_over_four[] = {
- 0xc90fdaa2u,
- 0x2168c234u,
- 0xc4c6628bu,
- 0x80dc1cd1u
- };
-
- gnm_float m;
- guint32 w2, w1, w0, wm1, wm2;
- int e, neg;
- unsigned di, i, j;
- guint32 r[6], r4[4];
- gnm_float rh, rl, l48, h48;
-
- m = gnm_frexp (x, &e);
- if (e >= GNM_MANT_DIG) {
- di = ((unsigned)e - GNM_MANT_DIG) / 32u;
- e -= di * 32;
- } else
- di = 0;
- m = gnm_ldexp (m, e - 64);
- w2 = (guint32)gnm_floor (m); m = gnm_ldexp (m - w2, 32);
- w1 = (guint32)gnm_floor (m); m = gnm_ldexp (m - w1, 32);
- w0 = (guint32)gnm_floor (m); m = gnm_ldexp (m - w0, 32);
- wm1 = (guint32)gnm_floor (m); m = gnm_ldexp (m - wm1, 32);
- wm2 = (guint32)gnm_floor (m);
-
- /*
- * r[0] is an integer overflow area to be ignored. We will not create
- * any carry into r[-1] because 5/(2pi) < 1.
- */
- r[0] = 0;
-
- for (i = 0; i < 5; i++) {
- g_assert (i + 2 + di < G_N_ELEMENTS (one_over_two_pi));
- r[i + 1] = 0;
- if (wm2 && i > 1)
- add_at (&r[i + 1], (guint64)wm2 * one_over_two_pi[i - 2]);
- if (wm1 && i > 0)
- add_at (&r[i + 1], (guint64)wm1 * one_over_two_pi[i - 1]);
- if (w0)
- add_at (&r[i + 1], (guint64)w0 * one_over_two_pi[i + di]);
- if (w1)
- add_at (&r[i + 1], (guint64)w1 * one_over_two_pi[i + 1 + di]);
- if (w2)
- add_at (&r[i + 1], (guint64)w2 * one_over_two_pi[i + 2 + di]);
-
- /*
- * We're done at i==3 unless the first 29 bits, not counting
- * those ending up in sign and *km4, are all zeros or ones.
- */
- if (i == 3 && ((r[1] + 1u) & 0x1fffffffu) > 1)
- break;
- }
-
- *km4 = r[1] >> 30;
- if ((neg = ((r[1] >> 29) & 1))) {
- *km4 = (*km4 + 1) & 3;
- /* Two-complement negation */
- for (j = 1; j <= i; j++) r[j] ^= 0xffffffffu;
- add_at (&r[i], 1);
- }
- r[1] &= 0x3fffffffu;
-
- j = 1;
- if (r[j] == 0) j++;
- r4[0] = r4[1] = r4[2] = r4[3] = 0;
- add_at (&r4[1], (guint64)r[j ] * pi_over_four[0]);
- add_at (&r4[2], (guint64)r[j ] * pi_over_four[1]);
- add_at (&r4[2], (guint64)r[j + 1] * pi_over_four[0]);
- add_at (&r4[3], (guint64)r[j ] * pi_over_four[2]);
- add_at (&r4[3], (guint64)r[j + 1] * pi_over_four[1]);
- add_at (&r4[3], (guint64)r[j + 2] * pi_over_four[0]);
-
- h48 = gnm_ldexp (((guint64)r4[0] << 16) | (r4[1] >> 16),
- -32 * j + 3 - 16);
- l48 = gnm_ldexp (((guint64)(r4[1] & 0xffff) << 32) | r4[2],
- -32 * j + 3 - 64);
-
- rh = h48 + l48;
- rl = h48 - rh + l48;
-
- if (neg) {
- rh = -rh;
- rl = -rl;
- }
-
- return rh + rl;
-}
-
-/*
- * Subtract k times Pi from @x where k is picked such that the absolute
- * value of x-k*Pi is no larger than Pi/4. k%4 is returned in @km4.
- * @x must not be negative.
- *
- * This function is used to reduce arguments to trigonometric functions
- * to [-Pi/4;+Pi/4], a range in which hardware and libm generally are
- * accurate. This avoids problems for example with Intel chips for
- * values near multiples of Pi/2 or values above 10^15.
- *
- * Note, that the Pi used has sufficient accuracy to not suffer cancellation
- * errors throughout the entire range of "double". That means 1000+ bits.
- *
- * The "no larger than Pi/4" condition may be violated by a hair. That's
- * not important since none of the trigonometric functions are critical
- * there.
- */
-static gnm_float
-reduce_pi_half (gnm_float x, int *km4)
-{
- if (gnm_isnan (x))
- return x;
-
- g_assert (x >= 0);
-
- if (x < (1u << 26))
- return reduce_pi_half_simple (x, km4);
- else
- return reduce_pi_half_full (x, km4);
-}
-
-gnm_float
-gnm_sin (gnm_float x)
-{
- int km4;
- gnm_float ax = gnm_abs (x);
- gnm_float xr = reduce_pi_half (ax, &km4);
-
- if (x < 0) km4 ^= 2;
-
- switch (km4) {
- default:
- case 0: return +sin (xr);
- case 1: return +cos (xr);
- case 2: return -sin (xr);
- case 3: return -cos (xr);
- }
-}
-
-gnm_float
-gnm_cos (gnm_float x)
-{
- int km4;
- gnm_float ax = gnm_abs (x);
- gnm_float xr = reduce_pi_half (ax, &km4);
-
- switch (km4) {
- default:
- case 0: return +cos (xr);
- case 1: return -sin (xr);
- case 2: return -cos (xr);
- case 3: return +sin (xr);
- }
-}
-
-gnm_float
-gnm_tan (gnm_float x)
-{
- int km4;
- gnm_float ax = gnm_abs (x);
- gnm_float xr = reduce_pi_half (ax, &km4);
-
- if (x < 0) xr = -xr;
-
- switch (km4) {
- default:
- case 0: case 2: return +tan (xr);
- case 1: case 3: return -cos (xr) / sin (xr);
- }
-}
-
-#endif
-
-/* ------------------------------------------------------------------------- */
diff --git a/src/mathfunc.h b/src/mathfunc.h
index 0c2b019..7781b6f 100644
--- a/src/mathfunc.h
+++ b/src/mathfunc.h
@@ -5,6 +5,7 @@
#include "numbers.h"
#include <math.h>
#include <glib.h>
+#include "gnumeric.h"
G_BEGIN_DECLS
@@ -39,14 +40,6 @@ gnm_float gnm_owent (gnm_float h, gnm_float a);
gnm_float pochhammer (gnm_float x, gnm_float n, gboolean give_log);
gnm_float gnm_gamma (gnm_float x);
-gnm_float gnm_cot (gnm_float x);
-gnm_float gnm_acot (gnm_float x);
-gnm_float gnm_coth (gnm_float x);
-gnm_float gnm_acoth (gnm_float x);
-
-gnm_float gnm_sinpi (gnm_float x);
-gnm_float gnm_cospi (gnm_float x);
-
gnm_float beta (gnm_float a, gnm_float b);
gnm_float lbeta3 (gnm_float a, gnm_float b, int *sign);
diff --git a/src/sf-trig.c b/src/sf-trig.c
new file mode 100644
index 0000000..e04e63e
--- /dev/null
+++ b/src/sf-trig.c
@@ -0,0 +1,439 @@
+#include <gnumeric-config.h>
+#include <sf-trig.h>
+#include <mathfunc.h>
+
+/* ------------------------------------------------------------------------- */
+
+static gnm_float
+gnm_cot_helper (volatile gnm_float *x)
+{
+ gnm_float s = gnm_sin (*x);
+ gnm_float c = gnm_cos (*x);
+
+ if (s == 0)
+ return gnm_nan;
+ else
+ return c / s;
+}
+
+/**
+ * gnm_cot:
+ * @x: an angle in radians
+ *
+ * Returns: The co-tangent of the given angle.
+ */
+gnm_float
+gnm_cot (gnm_float x)
+{
+ /* See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=59089 */
+ return gnm_cot_helper (&x);
+}
+
+/**
+ * gnm_acot:
+ * @x: a number
+ *
+ * Returns: The inverse co-tangent of the given number.
+ */
+gnm_float
+gnm_acot (gnm_float x)
+{
+ if (gnm_finite (x)) {
+ if (x == 0)
+ return M_PIgnum / 2;
+ return gnm_atan (1 / x);
+ } else {
+ /* +inf -> +0 */
+ /* -Inf -> -0 */
+ /* +-NaN -> +-NaN */
+ return 1 / x;
+ }
+}
+
+/**
+ * gnm_coth:
+ * @x: a number.
+ *
+ * Returns: The hyperbolic co-tangent of the given number.
+ */
+gnm_float
+gnm_coth (gnm_float x)
+{
+ return 1 / gnm_tanh (x);
+}
+
+/**
+ * gnm_acoth:
+ * @x: a number
+ *
+ * Returns: The inverse hyperbolic co-tangent of the given number.
+ */
+gnm_float
+gnm_acoth (gnm_float x)
+{
+ return (gnm_abs (x) > 2)
+ ? gnm_log1p (2 / (x - 1)) / 2
+ : gnm_log ((x - 1) / (x + 1)) / -2;
+}
+
+/* ------------------------------------------------------------------------- */
+
+/**
+ * gnm_sinpi:
+ * @x: a number
+ *
+ * Returns: the sine of Pi times @x, but with less error than doing the
+ * multiplication outright.
+ */
+gnm_float
+gnm_sinpi (gnm_float x)
+{
+ int k;
+
+ if (gnm_isnan (x))
+ return x;
+
+ if (!gnm_finite (x))
+ return gnm_nan;
+
+ k = (x < 0) ? 2 : 0;
+ x = gnm_fmod (gnm_abs (x), 2);
+ if (x >= 1) {
+ x -= 1;
+ k ^= 2;
+ }
+ if (x >= 0.5) {
+ x -= 0.5;
+ k += 1;
+ }
+ if (x == 0) {
+ static const gnm_float ys[4] = { 0, 1, -0, -1 };
+ return ys[k];
+ } else {
+ switch (k) {
+ default:
+ case 0: return +gnm_sin (M_PIgnum * x);
+ case 1: return +gnm_cos (M_PIgnum * x);
+ case 2: return -gnm_sin (M_PIgnum * x);
+ case 3: return -gnm_cos (M_PIgnum * x);
+ }
+ }
+}
+
+/**
+ * gnm_cospi:
+ * @x: a number
+ *
+ * Returns: the cosine of Pi times @x, but with less error than doing the
+ * multiplication outright.
+ */
+gnm_float
+gnm_cospi (gnm_float x)
+{
+ int k = 0;
+
+ if (!gnm_finite (x))
+ return gnm_nan;
+
+ x = gnm_fmod (gnm_abs (x), 2);
+ if (x >= 1) {
+ x -= 1;
+ k ^= 2;
+ }
+ if (x >= 0.5) {
+ x -= 0.5;
+ k += 1;
+ }
+ if (x == 0) {
+ static const gnm_float ys[4] = { 1, 0, -1, -0 };
+ return ys[k];
+ } else {
+ switch (k) {
+ default:
+ case 0: return +gnm_cos (M_PIgnum * x);
+ case 1: return -gnm_sin (M_PIgnum * x);
+ case 2: return -gnm_cos (M_PIgnum * x);
+ case 3: return +gnm_sin (M_PIgnum * x);
+ }
+ }
+}
+
+/* ------------------------------------------------------------------------- */
+
+
+#ifdef GNM_REDUCES_TRIG_RANGE
+
+static gnm_float
+reduce_pi_half_simple (gnm_float x, int *km4)
+{
+ static const gnm_float two_over_pi = 0.63661977236758134307553505349;
+ static const gnm_float pi_over_two[] = {
+ +0x1.921fb5p+0,
+ +0x1.110b46p-26,
+ +0x1.1a6263p-54,
+ +0x1.8a2e03p-81,
+ +0x1.c1cd12p-107
+ };
+ int i;
+ gnm_float k = gnm_floor (x * two_over_pi + 0.5);
+ gnm_float xx = 0;
+
+ g_assert (k < (1 << 26));
+ *km4 = (int)k & 3;
+
+ if (k == 0)
+ return x;
+
+ x -= k * pi_over_two[0];
+ for (i = 1; i < 5; i++) {
+ gnm_float dx = k * pi_over_two[i];
+ gnm_float s = x - dx;
+ xx += x - s - dx;
+ x = s;
+ }
+
+ return x + xx;
+}
+
+/*
+ * Add the 64-bit number p at *dst and backwards. This would be very
+ * simple and fast in assembler. In C it's a bit of a mess.
+ */
+static inline void
+add_at (guint32 *dst, guint64 p)
+{
+ unsigned h = p >> 63;
+
+ p += *dst;
+ *dst-- = p & 0xffffffffu;
+ p >>= 32;
+ if (p) {
+ p += *dst;
+ *dst-- = p & 0xffffffffu;
+ if (p >> 32)
+ while (++*dst == 0)
+ dst--;
+ } else if (h) {
+ /* p overflowed, pass carry on. */
+ dst--;
+ while (++*dst == 0)
+ dst--;
+ }
+}
+
+static gnm_float
+reduce_pi_half_full (gnm_float x, int *km4)
+{
+ /* FIXME? This table isn't big enough for long double's range */
+ static guint32 one_over_two_pi[] = {
+ 0x28be60dbu,
+ 0x9391054au,
+ 0x7f09d5f4u,
+ 0x7d4d3770u,
+ 0x36d8a566u,
+ 0x4f10e410u,
+ 0x7f9458eau,
+ 0xf7aef158u,
+ 0x6dc91b8eu,
+ 0x909374b8u,
+ 0x01924bbau,
+ 0x82746487u,
+ 0x3f877ac7u,
+ 0x2c4a69cfu,
+ 0xba208d7du,
+ 0x4baed121u,
+ 0x3a671c09u,
+ 0xad17df90u,
+ 0x4e64758eu,
+ 0x60d4ce7du,
+ 0x272117e2u,
+ 0xef7e4a0eu,
+ 0xc7fe25ffu,
+ 0xf7816603u,
+ 0xfbcbc462u,
+ 0xd6829b47u,
+ 0xdb4d9fb3u,
+ 0xc9f2c26du,
+ 0xd3d18fd9u,
+ 0xa797fa8bu,
+ 0x5d49eeb1u,
+ 0xfaf97c5eu,
+ 0xcf41ce7du,
+ 0xe294a4bau,
+ 0x9afed7ecu,
+ 0x47e35742u
+ };
+ static guint32 pi_over_four[] = {
+ 0xc90fdaa2u,
+ 0x2168c234u,
+ 0xc4c6628bu,
+ 0x80dc1cd1u
+ };
+
+ gnm_float m;
+ guint32 w2, w1, w0, wm1, wm2;
+ int e, neg;
+ unsigned di, i, j;
+ guint32 r[6], r4[4];
+ gnm_float rh, rl, l48, h48;
+
+ m = gnm_frexp (x, &e);
+ if (e >= GNM_MANT_DIG) {
+ di = ((unsigned)e - GNM_MANT_DIG) / 32u;
+ e -= di * 32;
+ } else
+ di = 0;
+ m = gnm_ldexp (m, e - 64);
+ w2 = (guint32)gnm_floor (m); m = gnm_ldexp (m - w2, 32);
+ w1 = (guint32)gnm_floor (m); m = gnm_ldexp (m - w1, 32);
+ w0 = (guint32)gnm_floor (m); m = gnm_ldexp (m - w0, 32);
+ wm1 = (guint32)gnm_floor (m); m = gnm_ldexp (m - wm1, 32);
+ wm2 = (guint32)gnm_floor (m);
+
+ /*
+ * r[0] is an integer overflow area to be ignored. We will not create
+ * any carry into r[-1] because 5/(2pi) < 1.
+ */
+ r[0] = 0;
+
+ for (i = 0; i < 5; i++) {
+ g_assert (i + 2 + di < G_N_ELEMENTS (one_over_two_pi));
+ r[i + 1] = 0;
+ if (wm2 && i > 1)
+ add_at (&r[i + 1], (guint64)wm2 * one_over_two_pi[i - 2]);
+ if (wm1 && i > 0)
+ add_at (&r[i + 1], (guint64)wm1 * one_over_two_pi[i - 1]);
+ if (w0)
+ add_at (&r[i + 1], (guint64)w0 * one_over_two_pi[i + di]);
+ if (w1)
+ add_at (&r[i + 1], (guint64)w1 * one_over_two_pi[i + 1 + di]);
+ if (w2)
+ add_at (&r[i + 1], (guint64)w2 * one_over_two_pi[i + 2 + di]);
+
+ /*
+ * We're done at i==3 unless the first 29 bits, not counting
+ * those ending up in sign and *km4, are all zeros or ones.
+ */
+ if (i == 3 && ((r[1] + 1u) & 0x1fffffffu) > 1)
+ break;
+ }
+
+ *km4 = r[1] >> 30;
+ if ((neg = ((r[1] >> 29) & 1))) {
+ *km4 = (*km4 + 1) & 3;
+ /* Two-complement negation */
+ for (j = 1; j <= i; j++) r[j] ^= 0xffffffffu;
+ add_at (&r[i], 1);
+ }
+ r[1] &= 0x3fffffffu;
+
+ j = 1;
+ if (r[j] == 0) j++;
+ r4[0] = r4[1] = r4[2] = r4[3] = 0;
+ add_at (&r4[1], (guint64)r[j ] * pi_over_four[0]);
+ add_at (&r4[2], (guint64)r[j ] * pi_over_four[1]);
+ add_at (&r4[2], (guint64)r[j + 1] * pi_over_four[0]);
+ add_at (&r4[3], (guint64)r[j ] * pi_over_four[2]);
+ add_at (&r4[3], (guint64)r[j + 1] * pi_over_four[1]);
+ add_at (&r4[3], (guint64)r[j + 2] * pi_over_four[0]);
+
+ h48 = gnm_ldexp (((guint64)r4[0] << 16) | (r4[1] >> 16),
+ -32 * j + 3 - 16);
+ l48 = gnm_ldexp (((guint64)(r4[1] & 0xffff) << 32) | r4[2],
+ -32 * j + 3 - 64);
+
+ rh = h48 + l48;
+ rl = h48 - rh + l48;
+
+ if (neg) {
+ rh = -rh;
+ rl = -rl;
+ }
+
+ return rh + rl;
+}
+
+/*
+ * Subtract k times Pi from @x where k is picked such that the absolute
+ * value of x-k*Pi is no larger than Pi/4. k%4 is returned in @km4.
+ * @x must not be negative.
+ *
+ * This function is used to reduce arguments to trigonometric functions
+ * to [-Pi/4;+Pi/4], a range in which hardware and libm generally are
+ * accurate. This avoids problems for example with Intel chips for
+ * values near multiples of Pi/2 or values above 10^15.
+ *
+ * Note, that the Pi used has sufficient accuracy to not suffer cancellation
+ * errors throughout the entire range of "double". That means 1000+ bits.
+ *
+ * The "no larger than Pi/4" condition may be violated by a hair. That's
+ * not important since none of the trigonometric functions are critical
+ * there.
+ */
+static gnm_float
+reduce_pi_half (gnm_float x, int *km4)
+{
+ if (gnm_isnan (x))
+ return x;
+
+ g_assert (x >= 0);
+
+ if (x < (1u << 26))
+ return reduce_pi_half_simple (x, km4);
+ else
+ return reduce_pi_half_full (x, km4);
+}
+
+gnm_float
+gnm_sin (gnm_float x)
+{
+ int km4;
+ gnm_float ax = gnm_abs (x);
+ gnm_float xr = reduce_pi_half (ax, &km4);
+
+ if (x < 0) km4 ^= 2;
+
+ switch (km4) {
+ default:
+ case 0: return +sin (xr);
+ case 1: return +cos (xr);
+ case 2: return -sin (xr);
+ case 3: return -cos (xr);
+ }
+}
+
+gnm_float
+gnm_cos (gnm_float x)
+{
+ int km4;
+ gnm_float ax = gnm_abs (x);
+ gnm_float xr = reduce_pi_half (ax, &km4);
+
+ switch (km4) {
+ default:
+ case 0: return +cos (xr);
+ case 1: return -sin (xr);
+ case 2: return -cos (xr);
+ case 3: return +sin (xr);
+ }
+}
+
+gnm_float
+gnm_tan (gnm_float x)
+{
+ int km4;
+ gnm_float ax = gnm_abs (x);
+ gnm_float xr = reduce_pi_half (ax, &km4);
+
+ if (x < 0) xr = -xr;
+
+ switch (km4) {
+ default:
+ case 0: case 2: return +tan (xr);
+ case 1: case 3: return -cos (xr) / sin (xr);
+ }
+}
+
+#endif
+
+/* ------------------------------------------------------------------------- */
diff --git a/src/sf-trig.h b/src/sf-trig.h
new file mode 100644
index 0000000..c9ad770
--- /dev/null
+++ b/src/sf-trig.h
@@ -0,0 +1,18 @@
+#ifndef GNM_SF_TRIG_H_
+#define GNM_SF_TRIG_H_
+
+#include <numbers.h>
+
+gnm_float gnm_cot (gnm_float x);
+gnm_float gnm_acot (gnm_float x);
+gnm_float gnm_coth (gnm_float x);
+gnm_float gnm_acoth (gnm_float x);
+
+gnm_float gnm_sinpi (gnm_float x);
+gnm_float gnm_cospi (gnm_float x);
+
+#ifdef GNM_REDUCES_TRIG_RANGE
+/* gnm_sin, gnm_cos, gnm_tan prototyped in numbers.h */
+#endif
+
+#endif
[
Date Prev][
Date Next] [
Thread Prev][
Thread Next]
[
Thread Index]
[
Date Index]
[
Author Index]