[glib/gvariant: 26/27] merge the GVariant serialiser
- From: Ryan Lortie <ryanl src gnome org>
- To: commits-list gnome org
- Cc:
- Subject: [glib/gvariant: 26/27] merge the GVariant serialiser
- Date: Thu, 25 Feb 2010 08:09:40 +0000 (UTC)
commit d0961d291dab1719fa88e72310c5a6e7b8d7e02d
Author: Ryan Lortie <desrt desrt ca>
Date: Thu Feb 4 21:18:53 2010 -0500
merge the GVariant serialiser
glib/Makefile.am | 2 +
glib/gvariant-serialiser.c | 1649 ++++++++++++++++++++++++++++++++++++++++++++
glib/gvariant-serialiser.h | 75 ++
glib/tests/gvariant.c | 1243 +++++++++++++++++++++++++++++++++
4 files changed, 2969 insertions(+), 0 deletions(-)
---
diff --git a/glib/Makefile.am b/glib/Makefile.am
index 20daa80..f4d4a0f 100644
--- a/glib/Makefile.am
+++ b/glib/Makefile.am
@@ -172,6 +172,8 @@ libglib_2_0_la_SOURCES = \
gunicodeprivate.h \
gurifuncs.c \
gutils.c \
+ gvariant-serialiser.h \
+ gvariant-serialiser.c \
gvarianttypeinfo.h \
gvarianttypeinfo.c \
gvarianttype.c \
diff --git a/glib/gvariant-serialiser.c b/glib/gvariant-serialiser.c
new file mode 100644
index 0000000..c69edbd
--- /dev/null
+++ b/glib/gvariant-serialiser.c
@@ -0,0 +1,1649 @@
+/*
+ * Copyright © 2007, 2008 Ryan Lortie
+ * Copyright © 2010 Codethink Limited
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 02111-1307, USA.
+ *
+ * Author: Ryan Lortie <desrt desrt ca>
+ */
+
+/* Prologue {{{1 */
+#include "gvariant-serialiser.h"
+
+#include <glib/gtestutils.h>
+#include <glib/gstrfuncs.h>
+#include <glib/gtypes.h>
+
+#include <string.h>
+
+#include "galias.h"
+
+/* GVariantSerialiser
+ *
+ * After this prologue section, this file has roughly 2 parts.
+ *
+ * The first part is split up into sections according to various
+ * container types. Maybe, Array, Tuple, Variant. The Maybe and Array
+ * sections are subdivided for element types being fixed or
+ * variable-sized types.
+ *
+ * Each section documents the format of that particular type of
+ * container and implements 5 functions for dealing with it:
+ *
+ * n_children:
+ * - determines (according to serialised data) how many child values
+ * are inside a particular container value.
+ *
+ * get_child:
+ * - gets the type of and the serialised data corresponding to a
+ * given child value within the container value.
+ *
+ * needed_size:
+ * - determines how much space would be required to serialise a
+ * container of this type, containing the given children so that
+ * buffers can be preallocated before serialising.
+ *
+ * serialise:
+ * - write the serialised data for a container of this type,
+ * containing the given children, to a buffer.
+ *
+ * is_normal:
+ * - check the given data to ensure that it is in normal form. For a
+ * given set of child values, there is exactly one normal form for
+ * the serialised data of a container. Other forms are possible
+ * while maintaining the same children (for example, by inserting
+ * something other than zero bytes as padding) but only one form is
+ * the normal form.
+ *
+ * The second part contains the main entry point for each of the above 5
+ * functions and logic to dispatch it to the handler for the appropriate
+ * container type code.
+ *
+ * The second part also contains a routine to byteswap serialised
+ * values. This code makes use of the n_children() and get_child()
+ * functions above to do its work so no extra support is needed on a
+ * per-container-type basis.
+ *
+ * There is also additional code for checking for normal form. All
+ * numeric types are always in normal form since the full range of
+ * values is permitted (eg: 0 to 255 is a valid byte). Special checks
+ * need to be performed for booleans (only 0 or 1 allowed), strings
+ * (properly nul-terminated) and object paths and signature strings
+ * (meeting the DBus specification requirements).
+ */
+
+/* < private >
+ * GVariantSerialised:
+ * @type_info: the #GVariantTypeInfo of this value
+ * @data: the serialised data of this value, or %NULL
+ * @size: the size of this value
+ *
+ * A structure representing a GVariant in serialised form. This
+ * structure is used with #GVariantSerialisedFiller functions and as the
+ * primary interface to the serialiser. See #GVariantSerialisedFiller
+ * for a description of its use there.
+ *
+ * When used with the serialiser API functions, the following invariants
+ * apply to all #GVariantTypeSerialised structures passed to and
+ * returned from the serialiser.
+ *
+ * @type_info must be non-%NULL.
+ *
+ * @data must be properly aligned for the type described by @type_info.
+ *
+ * If @type_info describes a fixed-sized type then @size must always be
+ * equal to the fixed size of that type.
+ *
+ * For fixed-sized types (and only fixed-sized types), @data may be
+ * %NULL even if @size is non-zero. This happens when a framing error
+ * occurs while attempting to extract a fixed-sized value out of a
+ * variable-sized container. There is no data to return for the
+ * fixed-sized type, yet @size must be non-zero. The effect of this
+ * combination should be as if @data were a pointer to an
+ * appropriately-sized zero-filled region.
+ */
+
+/* < private >
+ * g_variant_serialised_check:
+ * @serialised: a #GVariantSerialised struct
+ *
+ * Checks @serialised for validity according to the invariants described
+ * above.
+ */
+static void
+g_variant_serialised_check (GVariantSerialised serialised)
+{
+ gsize fixed_size;
+ guint alignment;
+
+ g_assert (serialised.type_info != NULL);
+ g_variant_type_info_query (serialised.type_info, &alignment, &fixed_size);
+
+ if (fixed_size)
+ g_assert_cmpint (serialised.size, ==, fixed_size);
+ else
+ g_assert (serialised.size == 0 || serialised.data != NULL);
+
+ g_assert_cmpint (alignment & (gsize) serialised.data, ==, 0);
+}
+
+/* < private >
+ * GVariantSerialisedFiller:
+ * @serialised: a #GVariantSerialised instance to fill
+ * @data: data from the children array
+ *
+ * This function is called back from g_variant_serialiser_needed_size()
+ * and g_variant_serialiser_serialise(). It fills in missing details
+ * from a partially-complete #GVariantSerialised.
+ *
+ * The @data parameter passed back to the function is one of the items
+ * that was passed to the serialiser in the @children array. It
+ * represents a single child item of the container that is being
+ * serialised. The information filled in to @serialised is the
+ * information for this child.
+ *
+ * If the @type_info field of @serialised is %NULL then the callback
+ * function must set it to the type information corresponding to the
+ * type of the child. No reference should be added. If it is non-%NULL
+ * then the callback should assert that it is equal to the actual type
+ * of the child.
+ *
+ * If the @size field is zero then the callback must fill it in with the
+ * required amount of space to store the serialised form of the child.
+ * If it is non-zero then the callback should assert that it is equal to
+ * the needed size of the child.
+ *
+ * If @data is non-%NULL then it points to a space that is properly
+ * aligned for and large enough to store the serialised data of the
+ * child. The callback must store the serialised form of the child at
+ * @data.
+ *
+ * If the child value is another container then the callback will likely
+ * recurse back into the serialiser by calling
+ * g_variant_serialiser_needed_size() to determine @size and
+ * g_variant_serialiser_serialise() to write to @data.
+ */
+
+/* PART 1: Container types {{{1
+ *
+ * This section contains the serialiser implementation functions for
+ * each container type.
+ */
+
+/* Maybe {{{2
+ *
+ * Maybe types are handled depending on if the element type of the maybe
+ * type is a fixed-sized or variable-sized type. Although all maybe
+ * types themselves are variable-sized types, herein, a maybe value with
+ * a fixed-sized element type is called a "fixed-sized maybe" for
+ * convenience and a maybe value with a variable-sized element type is
+ * called a "variable-sized maybe".
+ */
+
+/* Fixed-sized Maybe {{{3
+ *
+ * The size of a maybe value with a fixed-sized element type is either 0
+ * or equal to the fixed size of its element type. The case where the
+ * size of the maybe value is zero corresponds to the "Nothing" case and
+ * the case where the size of the maybe value is equal to the fixed size
+ * of the element type corresponds to the "Just" case; in that case, the
+ * serialised data of the child value forms the entire serialised data
+ * of the maybe value.
+ *
+ * In the event that a fixed-sized maybe value is presented with a size
+ * that is not equal to the fixed size of the element type then the
+ * value must be taken to be "Nothing".
+ */
+
+static gsize
+gvs_fixed_sized_maybe_n_children (GVariantSerialised value)
+{
+ gsize element_fixed_size;
+
+ g_variant_type_info_query_element (value.type_info, NULL,
+ &element_fixed_size);
+
+ return (element_fixed_size == value.size) ? 1 : 0;
+}
+
+static GVariantSerialised
+gvs_fixed_sized_maybe_get_child (GVariantSerialised value,
+ gsize index_)
+{
+ /* the child has the same bounds as the
+ * container, so just update the type.
+ */
+ value.type_info = g_variant_type_info_element (value.type_info);
+ g_variant_type_info_ref (value.type_info);
+
+ return value;
+}
+
+static gsize
+gvs_fixed_sized_maybe_needed_size (GVariantTypeInfo *type_info,
+ GVariantSerialisedFiller gvs_filler,
+ const gpointer *children,
+ gsize n_children)
+{
+ if (n_children)
+ {
+ gsize element_fixed_size;
+
+ g_variant_type_info_query_element (type_info, NULL,
+ &element_fixed_size);
+
+ return element_fixed_size;
+ }
+ else
+ return 0;
+}
+
+static void
+gvs_fixed_sized_maybe_serialise (GVariantSerialised value,
+ GVariantSerialisedFiller gvs_filler,
+ const gpointer *children,
+ gsize n_children)
+{
+ if (n_children)
+ {
+ GVariantSerialised child = { NULL, value.data, value.size };
+
+ gvs_filler (&child, children[0]);
+ }
+}
+
+static gboolean
+gvs_fixed_sized_maybe_is_normal (GVariantSerialised value)
+{
+ if (value.size > 0)
+ {
+ gsize element_fixed_size;
+
+ g_variant_type_info_query_element (value.type_info,
+ NULL, &element_fixed_size);
+
+ if (value.size != element_fixed_size)
+ return FALSE;
+
+ /* proper element size: "Just". recurse to the child. */
+ value.type_info = g_variant_type_info_element (value.type_info);
+
+ return g_variant_serialised_is_normal (value);
+ }
+
+ /* size of 0: "Nothing" */
+ return TRUE;
+}
+
+/* Variable-sized Maybe
+ *
+ * The size of a maybe value with a variable-sized element type is
+ * either 0 or strictly greater than 0. The case where the size of the
+ * maybe value is zero corresponds to the "Nothing" case and the case
+ * where the size of the maybe value is greater than zero corresponds to
+ * the "Just" case; in that case, the serialised data of the child value
+ * forms the first part of the serialised data of the maybe value and is
+ * followed by a single zero byte. This zero byte is always appended,
+ * regardless of any zero bytes that may already be at the end of the
+ * serialised ata of the child value.
+ */
+
+static gsize
+gvs_variable_sized_maybe_n_children (GVariantSerialised value)
+{
+ return (value.size > 0) ? 1 : 0;
+}
+
+static GVariantSerialised
+gvs_variable_sized_maybe_get_child (GVariantSerialised value,
+ gsize index_)
+{
+ /* remove the padding byte and update the type. */
+ value.type_info = g_variant_type_info_element (value.type_info);
+ g_variant_type_info_ref (value.type_info);
+ value.size--;
+
+ /* if it's zero-sized then it may as well be NULL */
+ if (value.size == 0)
+ value.data = NULL;
+
+ return value;
+}
+
+static gsize
+gvs_variable_sized_maybe_needed_size (GVariantTypeInfo *type_info,
+ GVariantSerialisedFiller gvs_filler,
+ const gpointer *children,
+ gsize n_children)
+{
+ if (n_children)
+ {
+ GVariantSerialised child = { };
+
+ gvs_filler (&child, children[0]);
+
+ return child.size + 1;
+ }
+ else
+ return 0;
+}
+
+static void
+gvs_variable_sized_maybe_serialise (GVariantSerialised value,
+ GVariantSerialisedFiller gvs_filler,
+ const gpointer *children,
+ gsize n_children)
+{
+ if (n_children)
+ {
+ GVariantSerialised child = { NULL, value.data, value.size - 1 };
+
+ /* write the data for the child. */
+ gvs_filler (&child, children[0]);
+ value.data[child.size] = '\0';
+ }
+}
+
+static gboolean
+gvs_variable_sized_maybe_is_normal (GVariantSerialised value)
+{
+ if (value.size == 0)
+ return TRUE;
+
+ if (value.data[value.size - 1] != '\0')
+ return FALSE;
+
+ value.type_info = g_variant_type_info_element (value.type_info);
+ value.size--;
+
+ return g_variant_serialised_is_normal (value);
+}
+
+/* Arrays {{{2
+ *
+ * Just as with maybe types, array types are handled depending on if the
+ * element type of the array type is a fixed-sized or variable-sized
+ * type. Similar to maybe types, for convenience, an array value with a
+ * fixed-sized element type is called a "fixed-sized array" and an array
+ * value with a variable-sized element type is called a "variable sized
+ * array".
+ */
+
+/* Fixed-sized Array {{{3
+ *
+ * For fixed sized arrays, the serialised data is simply a concatenation
+ * of the serialised data of each element, in order. Since fixed-sized
+ * values always have a fixed size that is a multiple of their alignment
+ * requirement no extra padding is required.
+ *
+ * In the event that a fixed-sized array is presented with a size that
+ * is not an integer multiple of the element size then the value of the
+ * array must be taken as being empty.
+ */
+
+static gsize
+gvs_fixed_sized_array_n_children (GVariantSerialised value)
+{
+ gsize element_fixed_size;
+
+ g_variant_type_info_query_element (value.type_info, NULL,
+ &element_fixed_size);
+
+ if (value.size % element_fixed_size == 0)
+ return value.size / element_fixed_size;
+
+ return 0;
+}
+
+static GVariantSerialised
+gvs_fixed_sized_array_get_child (GVariantSerialised value,
+ gsize index_)
+{
+ GVariantSerialised child = { };
+
+ child.type_info = g_variant_type_info_element (value.type_info);
+ g_variant_type_info_query (child.type_info, NULL, &child.size);
+ child.data = value.data + (child.size * index_);
+ g_variant_type_info_ref (child.type_info);
+
+ return child;
+}
+
+static gsize
+gvs_fixed_sized_array_needed_size (GVariantTypeInfo *type_info,
+ GVariantSerialisedFiller gvs_filler,
+ const gpointer *children,
+ gsize n_children)
+{
+ gsize element_fixed_size;
+
+ g_variant_type_info_query_element (type_info, NULL, &element_fixed_size);
+
+ return element_fixed_size * n_children;
+}
+
+static void
+gvs_fixed_sized_array_serialise (GVariantSerialised value,
+ GVariantSerialisedFiller gvs_filler,
+ const gpointer *children,
+ gsize n_children)
+{
+ GVariantSerialised child = { };
+ gsize i;
+
+ child.type_info = g_variant_type_info_element (value.type_info);
+ g_variant_type_info_query (child.type_info, NULL, &child.size);
+ child.data = value.data;
+
+ for (i = 0; i < n_children; i++)
+ {
+ gvs_filler (&child, children[i]);
+ child.data += child.size;
+ }
+}
+
+static gboolean
+gvs_fixed_sized_array_is_normal (GVariantSerialised value)
+{
+ GVariantSerialised child = { };
+
+ child.type_info = g_variant_type_info_element (value.type_info);
+ g_variant_type_info_query (child.type_info, NULL, &child.size);
+
+ if (value.size % child.size != 0)
+ return FALSE;
+
+ for (child.data = value.data;
+ child.data < value.data + value.size;
+ child.data += child.size)
+ {
+ if (!g_variant_serialised_is_normal (child))
+ return FALSE;
+ }
+
+ return TRUE;
+}
+
+/* Variable-sized Array {{{3
+ *
+ * Variable sized arrays, containing variable-sized elements, must be
+ * able to determine the boundaries between the elements. The items
+ * cannot simply be concatenated. Additionally, we are faced with the
+ * fact that non-fixed-sized values do not neccessarily have a size that
+ * is a multiple of their alignment requirement, so we may need to
+ * insert zero-filled padding.
+ *
+ * While it is possible to find the start of an item by starting from
+ * the end of the item before it and padding for alignment, it is not
+ * generally possible to do the reverse operation. For this reason, we
+ * record the end point of each element in the array.
+ *
+ * GVariant works in terms of "offsets". An offset is a pointer to a
+ * boundary between two bytes. In 4 bytes of serialised data, there
+ * would be 5 possible offsets: one at the start ('0'), one between each
+ * pair of adjacent bytes ('1', '2', '3') and one at the end ('4').
+ *
+ * The numeric value of an offset is an unsigned integer given relative
+ * to the start of the serialised data of the array. Offsets are always
+ * stored in little endian byte order and are always only as big as they
+ * need to be. For example, in 255 bytes of serialised data, there are
+ * 256 offsets. All possibilities can be stored in an 8 bit unsigned
+ * integer. In 256 bytes of serialised data, however, there are 257
+ * possible offsets so 16 bit integers must be used. The size of an
+ * offset is always a power of 2.
+ *
+ * The offsets are stored at the end of the serialised data of the
+ * array. They are simply concatenated on without any particular
+ * alignment. The size of the offsets is included in the size of the
+ * serialised data for purposes of determining the size of the offsets.
+ * This presents a possibly ambiguity; in certain cases, a particular
+ * value of array could have two different serialised forms.
+ *
+ * Imagine an array containing a single string of 253 bytes in length
+ * (so, 254 bytes including the nul terminator). Now the offset must be
+ * written. If an 8 bit offset is written, it will bring the size of
+ * the array's serialised data to 255 -- which means that the use of an
+ * 8 bit offset was valid. If a 16 bit offset is used then the total
+ * size of the array will be 256 -- which means that the use of a 16 bit
+ * offset was valid. Although both of these will be accepted by the
+ * deserialiser, only the smaller of the two is considered to be in
+ * normal form and that is the one that the serialiser must produce.
+ */
+
+static inline gsize
+gvs_read_unaligned_le (guchar *bytes,
+ guint size)
+{
+ union
+ {
+ guchar bytes[GLIB_SIZEOF_SIZE_T];
+ gsize integer;
+ } tmpvalue;
+
+ tmpvalue.integer = 0;
+ memcpy (&tmpvalue.bytes, bytes, size);
+
+ return GSIZE_FROM_LE (tmpvalue.integer);
+}
+
+static inline void
+gvs_write_unaligned_le (guchar *bytes,
+ gsize value,
+ guint size)
+{
+ union
+ {
+ guchar bytes[GLIB_SIZEOF_SIZE_T];
+ gsize integer;
+ } tmpvalue;
+
+ tmpvalue.integer = GSIZE_TO_LE (value);
+ memcpy (bytes, &tmpvalue.bytes, size);
+}
+
+static guint
+gvs_get_offset_size (gsize size)
+{
+ if (size > G_MAXUINT32)
+ return 8;
+
+ else if (size > G_MAXUINT16)
+ return 4;
+
+ else if (size > G_MAXUINT8)
+ return 2;
+
+ else if (size > 0)
+ return 1;
+
+ return 0;
+}
+
+static gsize
+gvs_calculate_total_size (gsize body_size,
+ gsize offsets)
+{
+ if (body_size + 1 * offsets <= G_MAXUINT8)
+ return body_size + 1 * offsets;
+
+ if (body_size + 2 * offsets <= G_MAXUINT16)
+ return body_size + 2 * offsets;
+
+ if (body_size + 4 * offsets <= G_MAXUINT32)
+ return body_size + 4 * offsets;
+
+ return body_size + 8 * offsets;
+}
+
+static gsize
+gvs_variable_sized_array_n_children (GVariantSerialised value)
+{
+ gsize offsets_array_size;
+ gsize offset_size;
+ gsize last_end;
+
+ if (value.size == 0)
+ return 0;
+
+ offset_size = gvs_get_offset_size (value.size);
+
+ last_end = gvs_read_unaligned_le (value.data + value.size -
+ offset_size, offset_size);
+
+ if (last_end > value.size)
+ return 0;
+
+ offsets_array_size = value.size - last_end;
+
+ if (offsets_array_size % offset_size)
+ return 0;
+
+ return offsets_array_size / offset_size;
+}
+
+static GVariantSerialised
+gvs_variable_sized_array_get_child (GVariantSerialised value,
+ gsize index_)
+{
+ GVariantSerialised child = { };
+ gsize offset_size;
+ gsize last_end;
+ gsize start;
+ gsize end;
+
+ child.type_info = g_variant_type_info_element (value.type_info);
+ g_variant_type_info_ref (child.type_info);
+
+ offset_size = gvs_get_offset_size (value.size);
+
+ last_end = gvs_read_unaligned_le (value.data + value.size -
+ offset_size, offset_size);
+
+ if (index_ > 0)
+ {
+ guint alignment;
+
+ start = gvs_read_unaligned_le (value.data + last_end +
+ (offset_size * (index_ - 1)),
+ offset_size);
+
+ g_variant_type_info_query (child.type_info, &alignment, NULL);
+ start += (-start) & alignment;
+ }
+ else
+ start = 0;
+
+ end = gvs_read_unaligned_le (value.data + last_end +
+ (offset_size * index_),
+ offset_size);
+
+ if (start < end && end <= value.size)
+ {
+ child.data = value.data + start;
+ child.size = end - start;
+ }
+
+ return child;
+}
+
+static gsize
+gvs_variable_sized_array_needed_size (GVariantTypeInfo *type_info,
+ GVariantSerialisedFiller gvs_filler,
+ const gpointer *children,
+ gsize n_children)
+{
+ guint alignment;
+ gsize offset;
+ gsize i;
+
+ g_variant_type_info_query (type_info, &alignment, NULL);
+ offset = 0;
+
+ for (i = 0; i < n_children; i++)
+ {
+ GVariantSerialised child = { };
+
+ offset += (-offset) & alignment;
+ gvs_filler (&child, children[i]);
+ offset += child.size;
+ }
+
+ return gvs_calculate_total_size (offset, n_children);
+}
+
+static void
+gvs_variable_sized_array_serialise (GVariantSerialised value,
+ GVariantSerialisedFiller gvs_filler,
+ const gpointer *children,
+ gsize n_children)
+{
+ guchar *offset_ptr;
+ gsize offset_size;
+ guint alignment;
+ gsize offset;
+ gsize i;
+
+ g_variant_type_info_query (value.type_info, &alignment, NULL);
+ offset_size = gvs_get_offset_size (value.size);
+ offset = 0;
+
+ offset_ptr = value.data + value.size - offset_size * n_children;
+
+ for (i = 0; i < n_children; i++)
+ {
+ GVariantSerialised child = { };
+
+ while (offset & alignment)
+ value.data[offset++] = '\0';
+
+ child.data = value.data + offset;
+ gvs_filler (&child, children[i]);
+ offset += child.size;
+
+ gvs_write_unaligned_le (offset_ptr, offset, offset_size);
+ offset_ptr += offset_size;
+ }
+}
+
+static gboolean
+gvs_variable_sized_array_is_normal (GVariantSerialised value)
+{
+ GVariantSerialised child = { };
+ gsize offsets_array_size;
+ guchar *offsets_array;
+ guint offset_size;
+ guint alignment;
+ gsize last_end;
+ gsize length;
+ gsize offset;
+ gsize i;
+
+ if (value.size == 0)
+ return TRUE;
+
+ offset_size = gvs_get_offset_size (value.size);
+ last_end = gvs_read_unaligned_le (value.data + value.size -
+ offset_size, offset_size);
+
+ if (last_end > value.size)
+ return FALSE;
+
+ offsets_array_size = value.size - last_end;
+
+ if (offsets_array_size % offset_size)
+ return FALSE;
+
+ offsets_array = value.data + value.size - offsets_array_size;
+ length = offsets_array_size / offset_size;
+
+ if (length == 0)
+ return FALSE;
+
+ child.type_info = g_variant_type_info_element (value.type_info);
+ g_variant_type_info_query (child.type_info, &alignment, NULL);
+ offset = 0;
+
+ for (i = 0; i < length; i++)
+ {
+ gsize this_end;
+
+ this_end = gvs_read_unaligned_le (offsets_array + offset_size * i,
+ offset_size);
+
+ if (this_end < offset || this_end > last_end)
+ return FALSE;
+
+ while (offset & alignment)
+ {
+ if (!(offset < this_end && value.data[offset] == '\0'))
+ return FALSE;
+ offset++;
+ }
+
+ child.data = value.data + offset;
+ child.size = this_end - offset;
+
+ if (child.size == 0)
+ child.data = NULL;
+
+ if (!g_variant_serialised_is_normal (child))
+ return FALSE;
+
+ offset = this_end;
+ }
+
+ g_assert (offset == last_end);
+
+ return TRUE;
+}
+
+/* Tuples {{{2
+ *
+ * Since tuples can contain a mix of variable- and fixed-sized items,
+ * they are, in terms of serialisation, a hybrid of variable-sized and
+ * fixed-sized arrays.
+ *
+ * Offsets are only stored for variable-sized items. Also, since the
+ * number of items in a tuple is known from its type, we are able to
+ * know exactly how many offsets to expect in the serialised data (and
+ * therefore how much space is taken up by the offset array). This
+ * means that we know where the end of the serialised data for the last
+ * item is -- we can just subtract the size of the offset array from the
+ * total size of the tuple. For this reason, the last item in the tuple
+ * doesn't need an offset stored.
+ *
+ * Tuple offsets are stored in reverse. This design choice allows
+ * iterator-based deserialisers to be more efficient.
+ *
+ * Most of the "heavy lifting" here is handled by the GVariantTypeInfo
+ * for the tuple. See the notes in gvarianttypeinfo.h.
+ */
+
+static gsize
+gvs_tuple_n_children (GVariantSerialised value)
+{
+ return g_variant_type_info_n_members (value.type_info);
+}
+
+static GVariantSerialised
+gvs_tuple_get_child (GVariantSerialised value,
+ gsize index_)
+{
+ const GVariantMemberInfo *member_info;
+ GVariantSerialised child = { };
+ gsize offset_size;
+ gsize start, end;
+
+ member_info = g_variant_type_info_member_info (value.type_info, index_);
+ child.type_info = g_variant_type_info_ref (member_info->type_info);
+ offset_size = gvs_get_offset_size (value.size);
+
+ /* tuples are the only (potentially) fixed-sized containers, so the
+ * only ones that have to deal with the possibility of having %NULL
+ * data with a non-zero %size if errors occured elsewhere.
+ */
+ if G_UNLIKELY (value.data == NULL && value.size != 0)
+ {
+ g_variant_type_info_query (child.type_info, NULL, &child.size);
+
+ /* this can only happen in fixed-sized tuples,
+ * so the child must also be fixed sized.
+ */
+ g_assert (child.size != 0);
+ child.data = NULL;
+
+ return child;
+ }
+
+ if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET)
+ {
+ if (offset_size * (member_info->i + 2) > value.size)
+ return child;
+ }
+ else
+ {
+ if (offset_size * (member_info->i + 1) > value.size)
+ return child;
+ }
+
+ if (member_info->i + 1)
+ start = gvs_read_unaligned_le (value.data + value.size -
+ offset_size * (member_info->i + 1),
+ offset_size);
+ else
+ start = 0;
+
+ start += member_info->a;
+ start &= member_info->b;
+ start |= member_info->c;
+
+ if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_LAST)
+ end = value.size - offset_size * (member_info->i + 1);
+
+ else if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_FIXED)
+ {
+ gsize fixed_size;
+
+ g_variant_type_info_query (child.type_info, NULL, &fixed_size);
+ end = start + fixed_size;
+ child.size = fixed_size;
+ }
+
+ else /* G_VARIANT_MEMEBER_ENDING_OFFSET */
+ end = gvs_read_unaligned_le (value.data + value.size -
+ offset_size * (member_info->i + 2),
+ offset_size);
+
+ if (start < end && end <= value.size)
+ {
+ child.data = value.data + start;
+ child.size = end - start;
+ }
+
+ return child;
+}
+
+static gsize
+gvs_tuple_needed_size (GVariantTypeInfo *type_info,
+ GVariantSerialisedFiller gvs_filler,
+ const gpointer *children,
+ gsize n_children)
+{
+ const GVariantMemberInfo *member_info = NULL;
+ gsize fixed_size;
+ gsize offset;
+ gsize i;
+
+ g_variant_type_info_query (type_info, NULL, &fixed_size);
+
+ if (fixed_size)
+ return fixed_size;
+
+ offset = 0;
+
+ for (i = 0; i < n_children; i++)
+ {
+ guint alignment;
+
+ member_info = g_variant_type_info_member_info (type_info, i);
+ g_variant_type_info_query (member_info->type_info,
+ &alignment, &fixed_size);
+ offset += (-offset) & alignment;
+
+ if (fixed_size)
+ offset += fixed_size;
+ else
+ {
+ GVariantSerialised child = { };
+
+ gvs_filler (&child, children[i]);
+ offset += child.size;
+ }
+ }
+
+ return gvs_calculate_total_size (offset, member_info->i + 1);
+}
+
+static void
+gvs_tuple_serialise (GVariantSerialised value,
+ GVariantSerialisedFiller gvs_filler,
+ const gpointer *children,
+ gsize n_children)
+{
+ gsize offset_size;
+ gsize offset;
+ gsize i;
+
+ offset_size = gvs_get_offset_size (value.size);
+ offset = 0;
+
+ for (i = 0; i < n_children; i++)
+ {
+ const GVariantMemberInfo *member_info;
+ GVariantSerialised child = { };
+ guint alignment;
+
+ member_info = g_variant_type_info_member_info (value.type_info, i);
+ g_variant_type_info_query (member_info->type_info, &alignment, NULL);
+
+ while (offset & alignment)
+ value.data[offset++] = '\0';
+
+ child.data = value.data + offset;
+ gvs_filler (&child, children[i]);
+ offset += child.size;
+
+ if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET)
+ {
+ value.size -= offset_size;
+ gvs_write_unaligned_le (value.data + value.size,
+ offset, offset_size);
+ }
+ }
+
+ while (offset < value.size)
+ value.data[offset++] = '\0';
+}
+
+static gboolean
+gvs_tuple_is_normal (GVariantSerialised value)
+{
+ guint offset_size;
+ gsize offset_ptr;
+ gsize length;
+ gsize offset;
+ gsize i;
+
+ offset_size = gvs_get_offset_size (value.size);
+ length = g_variant_type_info_n_members (value.type_info);
+ offset_ptr = value.size;
+ offset = 0;
+
+ for (i = 0; i < length; i++)
+ {
+ const GVariantMemberInfo *member_info;
+ GVariantSerialised child;
+ gsize fixed_size;
+ guint alignment;
+ gsize end;
+
+ member_info = g_variant_type_info_member_info (value.type_info, i);
+ child.type_info = member_info->type_info;
+
+ g_variant_type_info_query (child.type_info, &alignment, &fixed_size);
+
+ while (offset & alignment)
+ {
+ if (offset > value.size || value.data[offset] != '\0')
+ return FALSE;
+ offset++;
+ }
+
+ child.data = value.data + offset;
+
+ switch (member_info->ending_type)
+ {
+ case G_VARIANT_MEMBER_ENDING_FIXED:
+ end = offset + fixed_size;
+ break;
+
+ case G_VARIANT_MEMBER_ENDING_LAST:
+ end = offset_ptr;
+ break;
+
+ case G_VARIANT_MEMBER_ENDING_OFFSET:
+ offset_ptr -= offset_size;
+
+ if (offset_ptr < offset)
+ return FALSE;
+
+ end = gvs_read_unaligned_le (value.data + offset_ptr, offset_size);
+ break;
+ }
+
+ if (end < offset || end > offset_ptr)
+ return FALSE;
+
+ child.size = end - offset;
+
+ if (child.size == 0)
+ child.data = NULL;
+
+ if (!g_variant_serialised_is_normal (child))
+ return FALSE;
+
+ offset = end;
+ }
+
+ {
+ gsize fixed_size;
+ guint alignment;
+
+ g_variant_type_info_query (value.type_info, &alignment, &fixed_size);
+
+ if (fixed_size)
+ {
+ g_assert (fixed_size == value.size);
+ g_assert (offset_ptr == value.size);
+
+ if (i == 0)
+ {
+ if (value.data[offset++] != '\0')
+ return FALSE;
+ }
+ else
+ {
+ while (offset & alignment)
+ if (value.data[offset++] != '\0')
+ return FALSE;
+ }
+
+ g_assert (offset == value.size);
+ }
+ }
+
+ return offset_ptr == offset;
+}
+
+/* Variants {{{2
+ *
+ * Variants are stored by storing the serialised data of the child,
+ * followed by a '\0' character, followed by the type string of the
+ * child.
+ *
+ * In the case that a value is presented that contains no '\0'
+ * character, or doesn't have a single well-formed definite type string
+ * following that character, the variant must be taken as containing the
+ * unit tuple: ().
+ */
+
+static inline gsize
+gvs_variant_n_children (GVariantSerialised value)
+{
+ return 1;
+}
+
+static inline GVariantSerialised
+gvs_variant_get_child (GVariantSerialised value,
+ gsize index_)
+{
+ GVariantSerialised child = { };
+
+ /* NOTE: not O(1) and impossible for it to be... */
+ if (value.size)
+ {
+
+ /* find '\0' character */
+ for (child.size = value.size - 1; child.size; child.size--)
+ if (value.data[child.size] == '\0')
+ break;
+
+ /* ensure we didn't just hit the start of the string */
+ if (value.data[child.size] == '\0')
+ {
+ const gchar *type_string = (gchar *) &value.data[child.size + 1];
+ const gchar *limit = (gchar *) &value.data[value.size];
+ const gchar *end;
+
+ if (g_variant_type_string_scan (type_string, limit, &end) &&
+ end == limit)
+ {
+ const GVariantType *type = (GVariantType *) type_string;
+
+ if (g_variant_type_is_definite (type))
+ {
+ gsize fixed_size;
+
+ child.type_info = g_variant_type_info_get (type);
+
+ if (child.size != 0)
+ /* only set to non-%NULL if size > 0 */
+ child.data = value.data;
+
+ g_variant_type_info_query (child.type_info,
+ NULL, &fixed_size);
+
+ if (!fixed_size || fixed_size == child.size)
+ return child;
+
+ g_variant_type_info_unref (child.type_info);
+ }
+ }
+ }
+ }
+
+ child.type_info = g_variant_type_info_get (G_VARIANT_TYPE_UNIT);
+ child.data = NULL;
+ child.size = 1;
+
+ return child;
+}
+
+static inline gsize
+gvs_variant_needed_size (GVariantTypeInfo *type_info,
+ GVariantSerialisedFiller gvs_filler,
+ const gpointer *children,
+ gsize n_children)
+{
+ GVariantSerialised child = { };
+ const gchar *type_string;
+
+ gvs_filler (&child, children[0]);
+ type_string = g_variant_type_info_get_type_string (child.type_info);
+
+ return child.size + 1 + strlen (type_string);
+}
+
+static inline void
+gvs_variant_serialise (GVariantSerialised value,
+ GVariantSerialisedFiller gvs_filler,
+ const gpointer *children,
+ gsize n_children)
+{
+ GVariantSerialised child = { };
+ const gchar *type_string;
+
+ child.data = value.data;
+
+ gvs_filler (&child, children[0]);
+ type_string = g_variant_type_info_get_type_string (child.type_info);
+ value.data[child.size] = '\0';
+ memcpy (value.data + child.size + 1, type_string, strlen (type_string));
+}
+
+static inline gboolean
+gvs_variant_is_normal (GVariantSerialised value)
+{
+ GVariantSerialised child;
+ gboolean normal;
+
+ child = gvs_variant_get_child (value, 0);
+
+ normal = (child.data != NULL || child.size == 0) &&
+ g_variant_serialised_is_normal (child);
+
+ g_variant_type_info_unref (child.type_info);
+
+ return normal;
+}
+
+
+
+/* PART 2: Serialiser API {{{1
+ *
+ * This is the implementation of the API of the serialiser as advertised
+ * in gvariant-serialiser.h.
+ */
+
+/* Dispatch Utilities {{{2
+ *
+ * These macros allow a given function (for example,
+ * g_variant_serialiser_serialise) to be dispatched to the appropriate
+ * type-specific function above (fixed/variable-sized maybe,
+ * fixed/variable-sized array, tuple or variant).
+ */
+#define DISPATCH_FIXED(type_info, before, after) \
+ { \
+ gsize fixed_size; \
+ \
+ g_variant_type_info_query_element (type_info, NULL, \
+ &fixed_size); \
+ \
+ if (fixed_size) \
+ { \
+ before ## fixed_sized ## after \
+ } \
+ else \
+ { \
+ before ## variable_sized ## after \
+ } \
+ }
+
+#define DISPATCH_CASES(type_info, before, after) \
+ switch (g_variant_type_info_get_type_char (type_info)) \
+ { \
+ case G_VARIANT_TYPE_INFO_CHAR_MAYBE: \
+ DISPATCH_FIXED (type_info, before, _maybe ## after) \
+ \
+ case G_VARIANT_TYPE_INFO_CHAR_ARRAY: \
+ DISPATCH_FIXED (type_info, before, _array ## after) \
+ \
+ case G_VARIANT_TYPE_INFO_CHAR_DICT_ENTRY: \
+ case G_VARIANT_TYPE_INFO_CHAR_TUPLE: \
+ { \
+ before ## tuple ## after \
+ } \
+ \
+ case G_VARIANT_TYPE_INFO_CHAR_VARIANT: \
+ { \
+ before ## variant ## after \
+ } \
+ }
+
+/* Serialiser entry points {{{2
+ *
+ * These are the functions that are called in order for the serialiser
+ * to do its thing.
+ */
+
+/* < private >
+ * g_variant_serialised_n_children:
+ * @serialised: a #GVariantSerialised
+ * @returns: the number of children
+ *
+ * For serialised data that represents a container value (maybes,
+ * tuples, arrays, variants), determine how many child items are inside
+ * that container.
+ */
+gsize
+g_variant_serialised_n_children (GVariantSerialised serialised)
+{
+ g_variant_serialised_check (serialised);
+
+ DISPATCH_CASES (serialised.type_info,
+
+ return gvs_/**/,/**/_n_children (serialised);
+
+ )
+ g_assert_not_reached ();
+}
+
+/* < private >
+ * g_variant_serialised_get_child:
+ * @serialised: a #GVariantSerialised
+ * @index_: the index of the child to fetch
+ * @returns: a #GVariantSerialised for the child
+ *
+ * Extracts a child from a serialised data representing a container
+ * value.
+ *
+ * It is an error to call this function with an index out of bounds.
+ *
+ * If the result .data == %NULL and .size > 0 then there has been an
+ * error extracting the requested fixed-sized value. This number of
+ * zero bytes needs to be allocated instead.
+ *
+ * In the case that .data == %NULL and .size == 0 then a zero-sized
+ * item of a variable-sized type is being returned.
+ *
+ * .data is never non-%NULL if size is 0.
+ */
+GVariantSerialised
+g_variant_serialised_get_child (GVariantSerialised serialised,
+ gsize index_)
+{
+ GVariantSerialised child;
+
+ g_variant_serialised_check (serialised);
+
+ if G_LIKELY (index_ < g_variant_serialised_n_children (serialised))
+ {
+ DISPATCH_CASES (serialised.type_info,
+
+ child = gvs_/**/,/**/_get_child (serialised, index_);
+ g_assert (child.size || child.data == NULL);
+ g_variant_serialised_check (child);
+ return child;
+
+ )
+ g_assert_not_reached ();
+ }
+
+ g_error ("Attempt to access item %"G_GSIZE_FORMAT
+ " in a container with only %"G_GSIZE_FORMAT" items",
+ index_, g_variant_serialised_n_children (serialised));
+}
+
+/* < private >
+ * g_variant_serialiser_serialise:
+ * @serialised: a #GVariantSerialised, properly set up
+ * @gvs_filler: the filler function
+ * @children: an array of child items
+ * @n_children: the size of @children
+ *
+ * Writes data in serialised form.
+ *
+ * The type_info field of @serialised must be filled in to type info for
+ * the type that we are serialising.
+ *
+ * The size field of @serialised must be filled in with the value
+ * returned by a previous call to g_variant_serialiser_needed_size().
+ *
+ * The data field of @serialised must be a pointer to a properly-aligned
+ * memory region large enough to serialise into (ie: at least as big as
+ * the size field).
+ *
+ * This function is only resonsible for serialising the top-level
+ * container. @gvs_filler is called on each child of the container in
+ * order for all of the data of that child to be filled in.
+ */
+void
+g_variant_serialiser_serialise (GVariantSerialised serialised,
+ GVariantSerialisedFiller gvs_filler,
+ const gpointer *children,
+ gsize n_children)
+{
+ g_variant_serialised_check (serialised);
+
+ DISPATCH_CASES (serialised.type_info,
+
+ gvs_/**/,/**/_serialise (serialised, gvs_filler,
+ children, n_children);
+ return;
+
+ )
+ g_assert_not_reached ();
+}
+
+/* < private >
+ * g_variant_serialiser_needed_size:
+ * @type_info: the type to serialise for
+ * @gvs_filler: the filler function
+ * @children: an array of child items
+ * @n_children: the size of @children
+ *
+ * Determines how much memory would be needed to serialise this value.
+ *
+ * This function is only resonsible for performing calculations for the
+ * top-level container. @gvs_filler is called on each child of the
+ * container in order to determine its size.
+ */
+gsize
+g_variant_serialiser_needed_size (GVariantTypeInfo *type_info,
+ GVariantSerialisedFiller gvs_filler,
+ const gpointer *children,
+ gsize n_children)
+{
+ DISPATCH_CASES (type_info,
+
+ return gvs_/**/,/**/_needed_size (type_info, gvs_filler,
+ children, n_children);
+
+ )
+ g_assert_not_reached ();
+}
+
+/* Byteswapping {{{2 */
+
+/* < private >
+ * g_variant_serialised_byteswap:
+ * @value: a #GVariantSerialised
+ *
+ * Byte-swap serialised data. The result of this function is only
+ * well-defined if the data is in normal form.
+ */
+void
+g_variant_serialised_byteswap (GVariantSerialised serialised)
+{
+ gsize fixed_size;
+ guint alignment;
+
+ g_variant_serialised_check (serialised);
+
+ if (!serialised.data)
+ return;
+
+ /* the types we potentially need to byteswap are
+ * exactly those with alignment requirements.
+ */
+ g_variant_type_info_query (serialised.type_info, &alignment, &fixed_size);
+ if (!alignment)
+ return;
+
+ /* if fixed size and alignment are equal then we are down
+ * to the base integer type and we should swap it. the
+ * only exception to this is if we have a tuple with a
+ * single item, and then swapping it will be OK anyway.
+ */
+ if (alignment + 1 == fixed_size)
+ {
+ switch (fixed_size)
+ {
+ case 2:
+ {
+ guint16 *ptr = (guint16 *) serialised.data;
+
+ g_assert_cmpint (serialised.size, ==, 2);
+ *ptr = GUINT16_SWAP_LE_BE (*ptr);
+ }
+ return;
+
+ case 4:
+ {
+ guint32 *ptr = (guint32 *) serialised.data;
+
+ g_assert_cmpint (serialised.size, ==, 4);
+ *ptr = GUINT32_SWAP_LE_BE (*ptr);
+ }
+ return;
+
+ case 8:
+ {
+ guint64 *ptr = (guint64 *) serialised.data;
+
+ g_assert_cmpint (serialised.size, ==, 8);
+ *ptr = GUINT64_SWAP_LE_BE (*ptr);
+ }
+ return;
+
+ default:
+ g_assert_not_reached ();
+ }
+ }
+
+ /* else, we have a container that potentially contains
+ * some children that need to be byteswapped.
+ */
+ else
+ {
+ gsize children, i;
+
+ children = g_variant_serialised_n_children (serialised);
+ for (i = 0; i < children; i++)
+ {
+ GVariantSerialised child;
+
+ child = g_variant_serialised_get_child (serialised, i);
+ g_variant_serialised_byteswap (child);
+ g_variant_type_info_unref (child.type_info);
+ }
+ }
+}
+
+/* Normal form checking {{{2 */
+
+/* < private >
+ * g_variant_serialised_is_normal:
+ * @serialised: a #GVariantSerialised
+ *
+ * Determines, recursively if @serialised is in normal form. There is
+ * precisely one normal form of serialised data for each possible value.
+ *
+ * It is possible that multiple byte sequences form the serialised data
+ * for a given value if, for example, the padding bytes are filled in
+ * with something other than zeros, but only one form is the normal
+ * form.
+ */
+gboolean
+g_variant_serialised_is_normal (GVariantSerialised serialised)
+{
+ DISPATCH_CASES (serialised.type_info,
+
+ return gvs_/**/,/**/_is_normal (serialised);
+
+ )
+
+ /* some hard-coded terminal cases */
+ switch (g_variant_type_info_get_type_char (serialised.type_info))
+ {
+ case 'b': /* boolean */
+ return serialised.data[0] < 2;
+
+ case 's': /* string */
+ return g_variant_serialiser_is_string (serialised.data,
+ serialised.size);
+
+ case 'o':
+ return g_variant_serialiser_is_object_path (serialised.data,
+ serialised.size);
+
+ case 'g':
+ return g_variant_serialiser_is_signature (serialised.data,
+ serialised.size);
+
+ default:
+ /* all of the other types are fixed-sized numerical types for
+ * which all possible values are valid (including various NaN
+ * representations for floating point values).
+ */
+ return TRUE;
+ }
+}
+
+/* Validity-checking functions {{{2
+ *
+ * Checks if strings, object paths and signature strings are valid.
+ */
+
+/* < private >
+ * g_variant_serialiser_is_string:
+ * @data: a possible string
+ * @size: the size of @data
+ *
+ * Ensures that @data is a valid string with a nul terminator at the end
+ * and no nul bytes embedded.
+ */
+gboolean
+g_variant_serialiser_is_string (gconstpointer data,
+ gsize size)
+{
+ const gchar *string = data;
+
+ if (size == 0)
+ return FALSE;
+
+ if (string[size - 1] != '\0')
+ return FALSE;
+
+ return strlen (string) == size - 1;
+}
+
+/* < private >
+ * g_variant_serialiser_is_object_path:
+ * @data: a possible DBus object path
+ * @size: the size of @data
+ *
+ * Performs the checks for being a valid string.
+ *
+ * Also, ensures that @data is a valid DBus object path, as per the DBus
+ * specification.
+ */
+gboolean
+g_variant_serialiser_is_object_path (gconstpointer data,
+ gsize size)
+{
+ const gchar *string = data;
+ gsize i;
+
+ if (!g_variant_serialiser_is_string (data, size))
+ return FALSE;
+
+ /* The path must begin with an ASCII '/' (integer 47) character */
+ if (string[0] != '/')
+ return FALSE;
+
+ for (i = 1; string[i]; i++)
+ /* Each element must only contain the ASCII characters
+ * "[A-Z][a-z][0-9]_"
+ */
+ if (g_ascii_isalnum (string[i]) || string[i] == '_')
+ ;
+
+ /* must consist of elements separated by slash characters. */
+ else if (string[i] == '/')
+ {
+ /* No element may be the empty string. */
+ /* Multiple '/' characters cannot occur in sequence. */
+ if (string[i - 1] == '/')
+ return FALSE;
+ }
+
+ else
+ return FALSE;
+
+ /* A trailing '/' character is not allowed unless the path is the
+ * root path (a single '/' character).
+ */
+ if (i > 1 && string[i - 1] == '/')
+ return FALSE;
+
+ return TRUE;
+}
+
+/* < private >
+ * g_variant_serialiser_is_signature:
+ * @data: a possible DBus signature
+ * @size: the size of @data
+ *
+ * Performs the checks for being a valid string.
+ *
+ * Also, ensures that @data is a valid DBus type signature, as per the
+ * DBus specification.
+ */
+gboolean
+g_variant_serialiser_is_signature (gconstpointer data,
+ gsize size)
+{
+ const gchar *string = data;
+ gsize first_invalid;
+
+ if (!g_variant_serialiser_is_string (data, size))
+ return FALSE;
+
+ /* make sure no non-definite characters appear */
+ first_invalid = strspn (string, "ybnqiuxthdvasog(){}");
+ if (string[first_invalid])
+ return FALSE;
+
+ /* make sure each type string is well-formed */
+ while (*string)
+ if (!g_variant_type_string_scan (string, NULL, &string))
+ return FALSE;
+
+ return TRUE;
+}
+
+/* vim:set foldmethod=marker: */
diff --git a/glib/gvariant-serialiser.h b/glib/gvariant-serialiser.h
new file mode 100644
index 0000000..d6a89b5
--- /dev/null
+++ b/glib/gvariant-serialiser.h
@@ -0,0 +1,75 @@
+/*
+ * Copyright © 2007, 2008 Ryan Lortie
+ * Copyright © 2010 Codethink Limited
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 02111-1307, USA.
+ *
+ * Author: Ryan Lortie <desrt desrt ca>
+ */
+
+#ifndef __G_VARIANT_SERIALISER_H__
+#define __G_VARIANT_SERIALISER_H__
+
+#include "gvarianttypeinfo.h"
+
+typedef struct
+{
+ GVariantTypeInfo *type_info;
+ guchar *data;
+ gsize size;
+} GVariantSerialised;
+
+/* deserialisation */
+G_GNUC_INTERNAL
+gsize g_variant_serialised_n_children (GVariantSerialised container);
+G_GNUC_INTERNAL
+GVariantSerialised g_variant_serialised_get_child (GVariantSerialised container,
+ gsize index);
+
+/* serialisation */
+typedef void (*GVariantSerialisedFiller) (GVariantSerialised *serialised,
+ gpointer data);
+
+G_GNUC_INTERNAL
+gsize g_variant_serialiser_needed_size (GVariantTypeInfo *info,
+ GVariantSerialisedFiller gsv_filler,
+ const gpointer *children,
+ gsize n_children);
+
+G_GNUC_INTERNAL
+void g_variant_serialiser_serialise (GVariantSerialised container,
+ GVariantSerialisedFiller gsv_filler,
+ const gpointer *children,
+ gsize n_children);
+
+/* misc */
+G_GNUC_INTERNAL
+gboolean g_variant_serialised_is_normal (GVariantSerialised value);
+G_GNUC_INTERNAL
+void g_variant_serialised_byteswap (GVariantSerialised value);
+
+/* validation of strings */
+G_GNUC_INTERNAL
+gboolean g_variant_serialiser_is_string (gconstpointer data,
+ gsize size);
+G_GNUC_INTERNAL
+gboolean g_variant_serialiser_is_object_path (gconstpointer data,
+ gsize size);
+G_GNUC_INTERNAL
+gboolean g_variant_serialiser_is_signature (gconstpointer data,
+ gsize size);
+
+#endif /* __G_VARIANT_SERIALISER_H__ */
diff --git a/glib/tests/gvariant.c b/glib/tests/gvariant.c
index e69d7ef..4d52942 100644
--- a/glib/tests/gvariant.c
+++ b/glib/tests/gvariant.c
@@ -649,6 +649,7 @@ test_gvarianttype (void)
#define G_GNUC_INTERNAL static
#define DISABLE_VISIBILITY
+#define GLIB_COMPILATION
#include <glib/gvarianttypeinfo.c>
#define ALIGNED(x, y) (((x + (y - 1)) / y) * y)
@@ -1029,13 +1030,1255 @@ test_gvarianttypeinfo (void)
assert_no_type_infos ();
}
+#include <glib/gvariant-serialiser.c>
+
+#define MAX_FIXED_MULTIPLIER 256
+#define MAX_INSTANCE_SIZE 1024
+#define MAX_ARRAY_CHILDREN 128
+#define MAX_TUPLE_CHILDREN 128
+
+/* this function generates a random type such that all characteristics
+ * that are "interesting" to the serialiser are tested.
+ *
+ * this basically means:
+ * - test different alignments
+ * - test variable sized items and fixed sized items
+ * - test different fixed sizes
+ */
+static gchar *
+random_type_string (void)
+{
+ const guchar base_types[] = "ynix";
+ guchar base_type;
+
+ base_type = base_types[g_test_rand_int_range (0, 4)];
+
+ if (g_test_rand_bit ())
+ /* construct a fixed-sized type */
+ {
+ char type_string[MAX_FIXED_MULTIPLIER];
+ guint multiplier;
+ guint i = 0;
+
+ multiplier = g_test_rand_int_range (1, sizeof type_string - 1);
+
+ type_string[i++] = '(';
+ while (multiplier--)
+ type_string[i++] = base_type;
+ type_string[i++] = ')';
+
+ return g_strndup (type_string, i);
+ }
+ else
+ /* construct a variable-sized type */
+ {
+ char type_string[2] = { 'a', base_type };
+
+ return g_strndup (type_string, 2);
+ }
+}
+
+typedef struct
+{
+ GVariantTypeInfo *type_info;
+ guint alignment;
+ gsize size;
+ gboolean is_fixed_sized;
+
+ guint32 seed;
+
+#define INSTANCE_MAGIC 1287582829
+ guint magic;
+} RandomInstance;
+
+static RandomInstance *
+random_instance (GVariantTypeInfo *type_info)
+{
+ RandomInstance *instance;
+
+ instance = g_slice_new (RandomInstance);
+
+ if (type_info == NULL)
+ {
+ gchar *str = random_type_string ();
+ instance->type_info = g_variant_type_info_get (G_VARIANT_TYPE (str));
+ g_free (str);
+ }
+ else
+ instance->type_info = g_variant_type_info_ref (type_info);
+
+ instance->seed = g_test_rand_int ();
+
+ g_variant_type_info_query (instance->type_info,
+ &instance->alignment,
+ &instance->size);
+
+ instance->is_fixed_sized = instance->size != 0;
+
+ if (!instance->is_fixed_sized)
+ instance->size = g_test_rand_int_range (0, MAX_INSTANCE_SIZE);
+
+ instance->magic = INSTANCE_MAGIC;
+
+ return instance;
+}
+
+static void
+random_instance_free (RandomInstance *instance)
+{
+ g_variant_type_info_unref (instance->type_info);
+ g_slice_free (RandomInstance, instance);
+}
+
+static void
+append_instance_size (RandomInstance *instance,
+ gsize *offset)
+{
+ *offset += (-*offset) & instance->alignment;
+ *offset += instance->size;
+}
+
+static void
+random_instance_write (RandomInstance *instance,
+ guchar *buffer)
+{
+ GRand *rand;
+ gint i;
+
+ g_assert_cmpint ((gsize) buffer & instance->alignment, ==, 0);
+
+ rand = g_rand_new_with_seed (instance->seed);
+ for (i = 0; i < instance->size; i++)
+ buffer[i] = g_rand_int (rand);
+ g_rand_free (rand);
+}
+
+static void
+append_instance_data (RandomInstance *instance,
+ guchar **buffer)
+{
+ while (((gsize) *buffer) & instance->alignment)
+ *(*buffer)++ = '\0';
+
+ random_instance_write (instance, *buffer);
+ *buffer += instance->size;
+}
+
+static gboolean
+random_instance_assert (RandomInstance *instance,
+ guchar *buffer,
+ gsize size)
+{
+ GRand *rand;
+ gint i;
+
+ g_assert_cmpint ((gsize) buffer & instance->alignment, ==, 0);
+ g_assert_cmpint (size, ==, instance->size);
+
+ rand = g_rand_new_with_seed (instance->seed);
+ for (i = 0; i < instance->size; i++)
+ {
+ guchar byte = g_rand_int (rand);
+
+ g_assert (buffer[i] == byte);
+ }
+ g_rand_free (rand);
+
+ return i == instance->size;
+}
+
+static gboolean
+random_instance_check (RandomInstance *instance,
+ guchar *buffer,
+ gsize size)
+{
+ GRand *rand;
+ gint i;
+
+ g_assert_cmpint ((gsize) buffer & instance->alignment, ==, 0);
+
+ if (size != instance->size)
+ return FALSE;
+
+ rand = g_rand_new_with_seed (instance->seed);
+ for (i = 0; i < instance->size; i++)
+ if (buffer[i] != (guchar) g_rand_int (rand))
+ break;
+ g_rand_free (rand);
+
+ return i == instance->size;
+}
+
+static void
+random_instance_filler (GVariantSerialised *serialised,
+ gpointer data)
+{
+ RandomInstance *instance = data;
+
+ g_assert (instance->magic == INSTANCE_MAGIC);
+
+ if (serialised->type_info == NULL)
+ serialised->type_info = instance->type_info;
+
+ if (serialised->size == 0)
+ serialised->size = instance->size;
+
+ g_assert (serialised->type_info == instance->type_info);
+ g_assert (serialised->size == instance->size);
+
+ if (serialised->data)
+ random_instance_write (instance, serialised->data);
+}
+
+static gsize
+calculate_offset_size (gsize body_size,
+ gsize n_offsets)
+{
+ if (body_size == 0)
+ return 0;
+
+ if (body_size + n_offsets <= G_MAXUINT8)
+ return 1;
+
+ if (body_size + 2 * n_offsets <= G_MAXUINT16)
+ return 2;
+
+ if (body_size + 4 * n_offsets <= G_MAXUINT32)
+ return 4;
+
+ /* the test case won't generate anything bigger */
+ g_assert_not_reached ();
+}
+
+static gpointer
+flavoured_malloc (gsize size, gsize flavour)
+{
+ g_assert (flavour < 8);
+
+ if (size == 0)
+ return NULL;
+
+ return g_malloc (size + flavour) + flavour;
+}
+
+static void
+flavoured_free (gpointer data)
+{
+ g_free ((gpointer) (((gsize) data) & ~7));
+}
+
+static void
+append_offset (guchar **offset_ptr,
+ gsize offset,
+ guint offset_size)
+{
+ union
+ {
+ guchar bytes[sizeof (gsize)];
+ gsize integer;
+ } tmpvalue;
+
+ tmpvalue.integer = GSIZE_TO_LE (offset);
+ memcpy (*offset_ptr, tmpvalue.bytes, offset_size);
+ *offset_ptr += offset_size;
+}
+
+static void
+prepend_offset (guchar **offset_ptr,
+ gsize offset,
+ guint offset_size)
+{
+ union
+ {
+ guchar bytes[sizeof (gsize)];
+ gsize integer;
+ } tmpvalue;
+
+ *offset_ptr -= offset_size;
+ tmpvalue.integer = GSIZE_TO_LE (offset);
+ memcpy (*offset_ptr, tmpvalue.bytes, offset_size);
+}
+
+static void
+test_maybe (void)
+{
+ GVariantTypeInfo *type_info;
+ RandomInstance *instance;
+ gsize needed_size;
+ guchar *data;
+
+ instance = random_instance (NULL);
+
+ {
+ const gchar *element;
+ gchar *tmp;
+
+ element = g_variant_type_info_get_type_string (instance->type_info);
+ tmp = g_strdup_printf ("m%s", element);
+ type_info = g_variant_type_info_get (G_VARIANT_TYPE (tmp));
+ g_free (tmp);
+ }
+
+ needed_size = g_variant_serialiser_needed_size (type_info,
+ random_instance_filler,
+ NULL, 0);
+ g_assert_cmpint (needed_size, ==, 0);
+
+ needed_size = g_variant_serialiser_needed_size (type_info,
+ random_instance_filler,
+ (gpointer *) &instance, 1);
+
+ if (instance->is_fixed_sized)
+ g_assert_cmpint (needed_size, ==, instance->size);
+ else
+ g_assert_cmpint (needed_size, ==, instance->size + 1);
+
+ {
+ guchar *ptr;
+
+ ptr = data = g_malloc (needed_size);
+ append_instance_data (instance, &ptr);
+
+ if (!instance->is_fixed_sized)
+ *ptr++ = '\0';
+
+ g_assert_cmpint (ptr - data, ==, needed_size);
+ }
+
+ {
+ guint alignment;
+ guint flavour;
+
+ alignment = instance->alignment + 1;
+
+ for (flavour = 0; flavour < 8; flavour += alignment)
+ {
+ GVariantSerialised serialised;
+ GVariantSerialised child;
+
+ serialised.type_info = type_info;
+ serialised.data = flavoured_malloc (needed_size, flavour);
+ serialised.size = needed_size;
+
+ g_variant_serialiser_serialise (serialised,
+ random_instance_filler,
+ (gpointer *) &instance, 1);
+ child = g_variant_serialised_get_child (serialised, 0);
+ g_assert (child.type_info == instance->type_info);
+ random_instance_assert (instance, child.data, child.size);
+ g_variant_type_info_unref (child.type_info);
+ flavoured_free (serialised.data);
+ }
+ }
+
+ g_variant_type_info_unref (type_info);
+ random_instance_free (instance);
+ g_free (data);
+}
+
+static void
+test_maybes (void)
+{
+ guint i;
+
+ for (i = 0; i < 1000; i++)
+ test_maybe ();
+
+ assert_no_type_infos ();
+}
+
+static void
+test_array (void)
+{
+ GVariantTypeInfo *element_info;
+ GVariantTypeInfo *array_info;
+ RandomInstance **instances;
+ gsize needed_size;
+ gsize offset_size;
+ guint n_children;
+ guchar *data;
+
+ {
+ gchar *element_type, *array_type;
+
+ element_type = random_type_string ();
+ array_type = g_strdup_printf ("a%s", element_type);
+
+ element_info = g_variant_type_info_get (G_VARIANT_TYPE (element_type));
+ array_info = g_variant_type_info_get (G_VARIANT_TYPE (array_type));
+ g_assert (g_variant_type_info_element (array_info) == element_info);
+
+ g_free (element_type);
+ g_free (array_type);
+ }
+
+ {
+ guint i;
+
+ n_children = g_test_rand_int_range (0, MAX_ARRAY_CHILDREN);
+ instances = g_new (RandomInstance *, n_children);
+ for (i = 0; i < n_children; i++)
+ instances[i] = random_instance (element_info);
+ }
+
+ needed_size = g_variant_serialiser_needed_size (array_info,
+ random_instance_filler,
+ (gpointer *) instances,
+ n_children);
+
+ {
+ gsize element_fixed_size;
+ gsize body_size = 0;
+ guint i;
+
+ for (i = 0; i < n_children; i++)
+ append_instance_size (instances[i], &body_size);
+
+ g_variant_type_info_query (element_info, NULL, &element_fixed_size);
+
+ if (!element_fixed_size)
+ {
+ offset_size = calculate_offset_size (body_size, n_children);
+
+ if (offset_size == 0)
+ offset_size = 1;
+ }
+ else
+ offset_size = 0;
+
+ g_assert_cmpint (needed_size, ==, body_size + n_children * offset_size);
+ }
+
+ {
+ guchar *offset_ptr, *body_ptr;
+ guint i;
+
+ body_ptr = data = g_malloc (needed_size);
+ offset_ptr = body_ptr + needed_size - offset_size * n_children;
+
+ for (i = 0; i < n_children; i++)
+ {
+ append_instance_data (instances[i], &body_ptr);
+ append_offset (&offset_ptr, body_ptr - data, offset_size);
+ }
+
+ g_assert (body_ptr == data + needed_size - offset_size * n_children);
+ g_assert (offset_ptr == data + needed_size);
+ }
+
+ {
+ guint alignment;
+ gsize flavour;
+ guint i;
+
+ g_variant_type_info_query (array_info, &alignment, NULL);
+ alignment++;
+
+ for (flavour = 0; flavour < 8; flavour += alignment)
+ {
+ GVariantSerialised serialised;
+
+ serialised.type_info = array_info;
+ serialised.data = flavoured_malloc (needed_size, flavour);
+ serialised.size = needed_size;
+
+ g_variant_serialiser_serialise (serialised, random_instance_filler,
+ (gpointer *) instances, n_children);
+
+ g_assert (memcmp (serialised.data, data, serialised.size) == 0);
+ g_assert (g_variant_serialised_n_children (serialised) == n_children);
+
+ for (i = 0; i < n_children; i++)
+ {
+ GVariantSerialised child;
+
+ child = g_variant_serialised_get_child (serialised, i);
+ g_assert (child.type_info == instances[i]->type_info);
+ random_instance_assert (instances[i], child.data, child.size);
+ g_variant_type_info_unref (child.type_info);
+ }
+
+ flavoured_free (serialised.data);
+ }
+ }
+
+ {
+ guint i;
+
+ for (i = 0; i < n_children; i++)
+ random_instance_free (instances[i]);
+ g_free (instances);
+ }
+
+ g_variant_type_info_unref (element_info);
+ g_variant_type_info_unref (array_info);
+ g_free (data);
+}
+
+static void
+test_arrays (void)
+{
+ guint i;
+
+ for (i = 0; i < 100; i++)
+ test_array ();
+
+ assert_no_type_infos ();
+}
+
+static void
+test_tuple (void)
+{
+ GVariantTypeInfo *type_info;
+ RandomInstance **instances;
+ gboolean fixed_size;
+ gsize needed_size;
+ gsize offset_size;
+ guint n_children;
+ guint alignment;
+ guchar *data;
+
+ n_children = g_test_rand_int_range (0, MAX_TUPLE_CHILDREN);
+ instances = g_new (RandomInstance *, n_children);
+
+ {
+ GString *type_string;
+ guint i;
+
+ fixed_size = TRUE;
+ alignment = 0;
+
+ type_string = g_string_new ("(");
+ for (i = 0; i < n_children; i++)
+ {
+ const gchar *str;
+
+ instances[i] = random_instance (NULL);
+
+ alignment |= instances[i]->alignment;
+ if (!instances[i]->is_fixed_sized)
+ fixed_size = FALSE;
+
+ str = g_variant_type_info_get_type_string (instances[i]->type_info);
+ g_string_append (type_string, str);
+ }
+ g_string_append_c (type_string, ')');
+
+ type_info = g_variant_type_info_get (G_VARIANT_TYPE (type_string->str));
+ g_string_free (type_string, TRUE);
+ }
+
+ needed_size = g_variant_serialiser_needed_size (type_info,
+ random_instance_filler,
+ (gpointer *) instances,
+ n_children);
+ {
+ gsize body_size = 0;
+ gsize offsets = 0;
+ guint i;
+
+ for (i = 0; i < n_children; i++)
+ {
+ append_instance_size (instances[i], &body_size);
+
+ if (i != n_children - 1 && !instances[i]->is_fixed_sized)
+ offsets++;
+ }
+
+ if (fixed_size)
+ {
+ body_size += (-body_size) & alignment;
+
+ g_assert ((body_size == 0) == (n_children == 0));
+ if (n_children == 0)
+ body_size = 1;
+ }
+
+ offset_size = calculate_offset_size (body_size, offsets);
+ g_assert_cmpint (needed_size, ==, body_size + offsets * offset_size);
+ }
+
+ {
+ guchar *body_ptr;
+ guchar *ofs_ptr;
+ guint i;
+
+ body_ptr = data = g_malloc (needed_size);
+ ofs_ptr = body_ptr + needed_size;
+
+ for (i = 0; i < n_children; i++)
+ {
+ append_instance_data (instances[i], &body_ptr);
+
+ if (i != n_children - 1 && !instances[i]->is_fixed_sized)
+ prepend_offset (&ofs_ptr, body_ptr - data, offset_size);
+ }
+
+ if (fixed_size)
+ {
+ while (((gsize) body_ptr) & alignment)
+ *body_ptr++ = '\0';
+
+ g_assert ((body_ptr == data) == (n_children == 0));
+ if (n_children == 0)
+ *body_ptr++ = '\0';
+
+ }
+
+
+ g_assert (body_ptr == ofs_ptr);
+ }
+
+ {
+ gsize flavour;
+ guint i;
+
+ alignment++;
+
+ for (flavour = 0; flavour < 8; flavour += alignment)
+ {
+ GVariantSerialised serialised;
+
+ serialised.type_info = type_info;
+ serialised.data = flavoured_malloc (needed_size, flavour);
+ serialised.size = needed_size;
+
+ g_variant_serialiser_serialise (serialised, random_instance_filler,
+ (gpointer *) instances, n_children);
+
+ g_assert (memcmp (serialised.data, data, serialised.size) == 0);
+ g_assert (g_variant_serialised_n_children (serialised) == n_children);
+
+ for (i = 0; i < n_children; i++)
+ {
+ GVariantSerialised child;
+
+ child = g_variant_serialised_get_child (serialised, i);
+ g_assert (child.type_info == instances[i]->type_info);
+ random_instance_assert (instances[i], child.data, child.size);
+ g_variant_type_info_unref (child.type_info);
+ }
+
+ flavoured_free (serialised.data);
+ }
+ }
+
+ {
+ guint i;
+
+ for (i = 0; i < n_children; i++)
+ random_instance_free (instances[i]);
+ g_free (instances);
+ }
+
+ g_variant_type_info_unref (type_info);
+ g_free (data);
+}
+
+static void
+test_tuples (void)
+{
+ guint i;
+
+ for (i = 0; i < 100; i++)
+ test_tuple ();
+
+ assert_no_type_infos ();
+}
+
+static void
+test_variant (void)
+{
+ GVariantTypeInfo *type_info;
+ RandomInstance *instance;
+ const gchar *type_string;
+ gsize needed_size;
+ guchar *data;
+ gsize len;
+
+ type_info = g_variant_type_info_get (G_VARIANT_TYPE_VARIANT);
+ instance = random_instance (NULL);
+
+ type_string = g_variant_type_info_get_type_string (instance->type_info);
+ len = strlen (type_string);
+
+ needed_size = g_variant_serialiser_needed_size (type_info,
+ random_instance_filler,
+ (gpointer *) &instance, 1);
+
+ g_assert_cmpint (needed_size, ==, instance->size + 1 + len);
+
+ {
+ guchar *ptr;
+
+ ptr = data = g_malloc (needed_size);
+ append_instance_data (instance, &ptr);
+ *ptr++ = '\0';
+ memcpy (ptr, type_string, len);
+ ptr += len;
+
+ g_assert (data + needed_size == ptr);
+ }
+
+ {
+ /* variants are 8-aligned, so no extra flavouring */
+ GVariantSerialised serialised;
+ GVariantSerialised child;
+
+ serialised.type_info = type_info;
+ serialised.data = flavoured_malloc (needed_size, 0);
+ serialised.size = needed_size;
+
+ g_variant_serialiser_serialise (serialised, random_instance_filler,
+ (gpointer *) &instance, 1);
+
+ g_assert (memcmp (serialised.data, data, serialised.size) == 0);
+ g_assert (g_variant_serialised_n_children (serialised) == 1);
+
+ child = g_variant_serialised_get_child (serialised, 0);
+ g_assert (child.type_info == instance->type_info);
+ random_instance_check (instance, child.data, child.size);
+
+ g_variant_type_info_unref (child.type_info);
+ flavoured_free (serialised.data);
+ }
+
+ g_variant_type_info_unref (type_info);
+ random_instance_free (instance);
+}
+
+static void
+test_variants (void)
+{
+ guint i;
+
+ for (i = 0; i < 100; i++)
+ test_variant ();
+
+ assert_no_type_infos ();
+}
+
+static void
+test_strings (void)
+{
+ struct {
+ guint flags;
+ guint size;
+ gconstpointer data;
+ } test_cases[] = {
+#define is_nval 0
+#define is_string 1
+#define is_objpath is_string | 2
+#define is_sig is_string | 4
+ { is_sig, 1, "" },
+ { is_nval, 0, NULL },
+ { is_string, 13, "hello world!" },
+ { is_nval, 13, "hello world\0" },
+ { is_nval, 13, "hello\0world!" },
+ { is_nval, 12, "hello world!" },
+
+ { is_objpath, 2, "/" },
+ { is_objpath, 3, "/a" },
+ { is_string, 3, "//" },
+ { is_objpath, 11, "/some/path" },
+ { is_string, 12, "/some/path/" },
+ { is_nval, 11, "/some\0path" },
+ { is_string, 11, "/some\\path" },
+ { is_string, 12, "/some//path" },
+ { is_string, 12, "/some-/path" },
+
+ { is_sig, 2, "i" },
+ { is_sig, 2, "s" },
+ { is_sig, 5, "(si)" },
+ { is_string, 4, "(si" },
+ { is_string, 2, "*" },
+ { is_sig, 3, "ai" },
+ { is_string, 3, "mi" },
+ { is_string, 2, "r" },
+ { is_sig, 15, "(yyy{sv}ssiai)" },
+ { is_string, 16, "(yyy{yv}ssiai))" },
+ { is_string, 15, "(yyy{vv}ssiai)" },
+ { is_string, 15, "(yyy{sv)ssiai}" }
+ };
+ guint i;
+
+ for (i = 0; i < G_N_ELEMENTS (test_cases); i++)
+ {
+ guint flags;
+
+ flags = g_variant_serialiser_is_string (test_cases[i].data,
+ test_cases[i].size)
+ ? 1 : 0;
+
+ flags |= g_variant_serialiser_is_object_path (test_cases[i].data,
+ test_cases[i].size)
+ ? 2 : 0;
+
+ flags |= g_variant_serialiser_is_signature (test_cases[i].data,
+ test_cases[i].size)
+ ? 4 : 0;
+
+ g_assert (flags == test_cases[i].flags);
+ }
+}
+
+typedef struct _TreeInstance TreeInstance;
+struct _TreeInstance
+{
+ GVariantTypeInfo *info;
+
+ TreeInstance **children;
+ gsize n_children;
+
+ union {
+ guint64 integer;
+ gchar string[32];
+ } data;
+ gsize data_size;
+};
+
+static GVariantType *
+make_random_definite_type (int depth)
+{
+ GString *description;
+ GString *type_string;
+ GVariantType *type;
+
+ description = g_string_new (NULL);
+ type_string = g_string_new (NULL);
+ type = append_type_string (type_string, description, TRUE, depth);
+ g_string_free (description, TRUE);
+ g_string_free (type_string, TRUE);
+
+ return type;
+}
+
+static void
+make_random_string (gchar *string,
+ gsize size,
+ const GVariantType *type)
+{
+ gint i;
+
+ /* create strings that are valid signature strings */
+#define good_chars "bynqiuxthdsog"
+
+ for (i = 0; i < size - 1; i++)
+ string[i] = good_chars[g_test_rand_int_range (0, strlen (good_chars))];
+ string[i] = '\0';
+
+ /* in case we need an object path, prefix a '/' */
+ if (*g_variant_type_peek_string (type) == 'o')
+ string[0] = '/';
+
+#undef good_chars
+}
+
+static TreeInstance *
+make_tree_instance (const GVariantType *type,
+ int depth)
+{
+ const GVariantType *child_type = NULL;
+ GVariantType *mytype = NULL;
+ TreeInstance *instance;
+ gboolean is_tuple_type;
+
+ if (type == NULL)
+ type = mytype = make_random_definite_type (depth);
+
+ instance = g_slice_new (TreeInstance);
+ instance->info = g_variant_type_info_get (type);
+ instance->children = NULL;
+ instance->n_children = 0;
+ instance->data_size = 0;
+
+ is_tuple_type = FALSE;
+
+ switch (*g_variant_type_peek_string (type))
+ {
+ case G_VARIANT_TYPE_INFO_CHAR_MAYBE:
+ instance->n_children = g_test_rand_int_range (0, 2);
+ child_type = g_variant_type_element (type);
+ break;
+
+ case G_VARIANT_TYPE_INFO_CHAR_ARRAY:
+ instance->n_children = g_test_rand_int_range (0, MAX_ARRAY_CHILDREN);
+ child_type = g_variant_type_element (type);
+ break;
+
+ case G_VARIANT_TYPE_INFO_CHAR_DICT_ENTRY:
+ case G_VARIANT_TYPE_INFO_CHAR_TUPLE:
+ instance->n_children = g_variant_type_n_items (type);
+ child_type = g_variant_type_first (type);
+ is_tuple_type = TRUE;
+ break;
+
+ case G_VARIANT_TYPE_INFO_CHAR_VARIANT:
+ instance->n_children = 1;
+ child_type = NULL;
+ break;
+
+ case 'b':
+ instance->data.integer = g_test_rand_int_range (0, 2);
+ instance->data_size = 1;
+ break;
+
+ case 'y':
+ instance->data.integer = g_test_rand_int ();
+ instance->data_size = 1;
+ break;
+
+ case 'n': case 'q':
+ instance->data.integer = g_test_rand_int ();
+ instance->data_size = 2;
+ break;
+
+ case 'i': case 'u': case 'h':
+ instance->data.integer = g_test_rand_int ();
+ instance->data_size = 4;
+ break;
+
+ case 'x': case 't': case 'd':
+ instance->data.integer = g_test_rand_int ();
+ instance->data.integer <<= 32;
+ instance->data.integer |= (guint32) g_test_rand_int ();
+ instance->data_size = 8;
+ break;
+
+ case 's': case 'o': case 'g':
+ instance->data_size = g_test_rand_int_range (10, 20);
+ make_random_string (instance->data.string, instance->data_size, type);
+ break;
+ }
+
+ if (instance->data_size == 0)
+ /* no data -> it is a container */
+ {
+ guint i;
+
+ instance->children = g_new (TreeInstance *, instance->n_children);
+
+ for (i = 0; i < instance->n_children; i++)
+ {
+ instance->children[i] = make_tree_instance (child_type, depth - 1);
+
+ if (is_tuple_type)
+ child_type = g_variant_type_next (child_type);
+ }
+
+ g_assert (!is_tuple_type || child_type == NULL);
+ }
+
+ g_variant_type_free (mytype);
+
+ return instance;
+}
+
+static void
+tree_instance_free (TreeInstance *instance)
+{
+ gint i;
+
+ g_variant_type_info_unref (instance->info);
+ for (i = 0; i < instance->n_children; i++)
+ tree_instance_free (instance->children[i]);
+ g_free (instance->children);
+ g_slice_free (TreeInstance, instance);
+}
+
+static gboolean i_am_writing_byteswapped;
+
+static void
+tree_filler (GVariantSerialised *serialised,
+ gpointer data)
+{
+ TreeInstance *instance = data;
+
+ if (serialised->type_info == NULL)
+ serialised->type_info = instance->info;
+
+ if (instance->data_size == 0)
+ /* is a container */
+ {
+ if (serialised->size == 0)
+ serialised->size =
+ g_variant_serialiser_needed_size (instance->info, tree_filler,
+ (gpointer *) instance->children,
+ instance->n_children);
+
+ if (serialised->data)
+ g_variant_serialiser_serialise (*serialised, tree_filler,
+ (gpointer *) instance->children,
+ instance->n_children);
+ }
+ else
+ /* it is a leaf */
+ {
+ if (serialised->size == 0)
+ serialised->size = instance->data_size;
+
+ if (serialised->data)
+ {
+ switch (instance->data_size)
+ {
+ case 1:
+ *serialised->data = instance->data.integer;
+ break;
+
+ case 2:
+ {
+ guint16 value = instance->data.integer;
+
+ if (i_am_writing_byteswapped)
+ value = GUINT16_SWAP_LE_BE (value);
+
+ *(guint16 *) serialised->data = value;
+ }
+ break;
+
+ case 4:
+ {
+ guint32 value = instance->data.integer;
+
+ if (i_am_writing_byteswapped)
+ value = GUINT32_SWAP_LE_BE (value);
+
+ *(guint32 *) serialised->data = value;
+ }
+ break;
+
+ case 8:
+ {
+ guint64 value = instance->data.integer;
+
+ if (i_am_writing_byteswapped)
+ value = GUINT64_SWAP_LE_BE (value);
+
+ *(guint64 *) serialised->data = value;
+ }
+ break;
+
+ default:
+ memcpy (serialised->data,
+ instance->data.string,
+ instance->data_size);
+ break;
+ }
+ }
+ }
+}
+
+static gboolean
+check_tree (TreeInstance *instance,
+ GVariantSerialised serialised)
+{
+ if (instance->info != serialised.type_info)
+ return FALSE;
+
+ if (instance->data_size == 0)
+ /* is a container */
+ {
+ gint i;
+
+ if (g_variant_serialised_n_children (serialised) !=
+ instance->n_children)
+ return FALSE;
+
+ for (i = 0; i < instance->n_children; i++)
+ {
+ GVariantSerialised child;
+ gpointer data = NULL;
+ gboolean ok;
+
+ child = g_variant_serialised_get_child (serialised, i);
+ if (child.size && child.data == NULL)
+ child.data = data = g_malloc0 (child.size);
+ ok = check_tree (instance->children[i], child);
+ g_variant_type_info_unref (child.type_info);
+ g_free (data);
+
+ if (!ok)
+ return FALSE;
+ }
+
+ return TRUE;
+ }
+ else
+ /* it is a leaf */
+ {
+ switch (instance->data_size)
+ {
+ case 1:
+ g_assert (serialised.size == 1);
+ return *(guint8 *) serialised.data ==
+ (guint8) instance->data.integer;
+
+ case 2:
+ g_assert (serialised.size == 2);
+ return *(guint16 *) serialised.data ==
+ (guint16) instance->data.integer;
+
+ case 4:
+ g_assert (serialised.size == 4);
+ return *(guint32 *) serialised.data ==
+ (guint32) instance->data.integer;
+
+ case 8:
+ g_assert (serialised.size == 8);
+ return *(guint64 *) serialised.data ==
+ (guint64) instance->data.integer;
+
+ default:
+ if (serialised.size != instance->data_size)
+ return FALSE;
+
+ return memcmp (serialised.data,
+ instance->data.string,
+ instance->data_size) == 0;
+ }
+ }
+}
+
+static void
+serialise_tree (TreeInstance *tree,
+ GVariantSerialised *serialised)
+{
+ GVariantSerialised empty = { };
+
+ *serialised = empty;
+ tree_filler (serialised, tree);
+ serialised->data = g_malloc (serialised->size);
+ tree_filler (serialised, tree);
+}
+
+static void
+test_byteswap (void)
+{
+ GVariantSerialised one, two;
+ TreeInstance *tree;
+
+ tree = make_tree_instance (NULL, 3);
+ serialise_tree (tree, &one);
+
+ i_am_writing_byteswapped = TRUE;
+ serialise_tree (tree, &two);
+ i_am_writing_byteswapped = FALSE;
+
+ g_variant_serialised_byteswap (two);
+
+ g_assert_cmpint (one.size, ==, two.size);
+ g_assert (memcmp (one.data, two.data, one.size) == 0);
+
+ tree_instance_free (tree);
+ g_free (one.data);
+ g_free (two.data);
+}
+
+static void
+test_byteswaps (void)
+{
+ int i;
+
+ for (i = 0; i < 200; i++)
+ test_byteswap ();
+
+ assert_no_type_infos ();
+}
+
+static void
+test_fuzz (gdouble *fuzziness)
+{
+ GVariantSerialised serialised;
+ TreeInstance *tree;
+
+ /* make an instance */
+ tree = make_tree_instance (NULL, 3);
+
+ /* serialise it */
+ serialise_tree (tree, &serialised);
+
+ g_assert (g_variant_serialised_is_normal (serialised));
+ g_assert (check_tree (tree, serialised));
+
+ if (serialised.size)
+ {
+ gboolean fuzzed = FALSE;
+ gboolean a, b;
+
+ while (!fuzzed)
+ {
+ gint i;
+
+ for (i = 0; i < serialised.size; i++)
+ if (randomly (*fuzziness))
+ {
+ serialised.data[i] += g_test_rand_int_range (1, 256);
+ fuzzed = TRUE;
+ }
+ }
+
+ /* at least one byte in the serialised data has changed.
+ *
+ * this means that at least one of the following is true:
+ *
+ * - the serialised data now represents a different value:
+ * check_tree() will return FALSE
+ *
+ * - the serialised data is in non-normal form:
+ * g_variant_serialiser_is_normal() will return FALSE
+ *
+ * we always do both checks to increase exposure of the serialiser
+ * to corrupt data.
+ */
+ a = g_variant_serialised_is_normal (serialised);
+ b = check_tree (tree, serialised);
+
+ g_assert (!a || !b);
+ }
+
+ tree_instance_free (tree);
+}
+
+
+static void
+test_fuzzes (gpointer data)
+{
+ gdouble fuzziness;
+ int i;
+
+ fuzziness = GPOINTER_TO_INT (data) / 100.;
+
+ for (i = 0; i < 200; i++)
+ test_fuzz (&fuzziness);
+
+ assert_no_type_infos ();
+}
+
int
main (int argc, char **argv)
{
+ gint i;
+
g_test_init (&argc, &argv, NULL);
g_test_add_func ("/gvariant/type", test_gvarianttype);
g_test_add_func ("/gvariant/typeinfo", test_gvarianttypeinfo);
+ g_test_add_func ("/gvariant/serialiser/maybe", test_maybes);
+ g_test_add_func ("/gvariant/serialiser/array", test_arrays);
+ g_test_add_func ("/gvariant/serialiser/tuple", test_tuples);
+ g_test_add_func ("/gvariant/serialiser/variant", test_variants);
+ g_test_add_func ("/gvariant/serialiser/strings", test_strings);
+ g_test_add_func ("/gvariant/serialiser/byteswap", test_byteswaps);
+
+ for (i = 1; i <= 20; i += 4)
+ {
+ char *testname;
+
+ testname = g_strdup_printf ("/gvariant/serialiser/fuzz/%d%%", i);
+ g_test_add_data_func (testname, GINT_TO_POINTER (i),
+ (gpointer) test_fuzzes);
+ g_free (testname);
+ }
return g_test_run ();
}
[
Date Prev][
Date Next] [
Thread Prev][
Thread Next]
[
Thread Index]
[
Date Index]
[
Author Index]