[glib/gvariant-utils: 2/2] Finish implementations in gvariant.c
- From: Ryan Lortie <ryanl src gnome org>
- To: svn-commits-list gnome org
- Cc:
- Subject: [glib/gvariant-utils: 2/2] Finish implementations in gvariant.c
- Date: Thu, 11 Feb 2010 23:02:20 +0000 (UTC)
commit dee0b3e0af92a4c65067a17cb276a45db50d18d5
Author: Ryan Lortie <desrt desrt ca>
Date: Thu Feb 11 16:52:47 2010 -0500
Finish implementations in gvariant.c
Also, add printer and hashtable functions, lots of comments.
glib/gvariant.c | 842 +++++++++++++++++++++++++++++++++++++++++++++++++++----
glib/gvariant.h | 11 +
2 files changed, 791 insertions(+), 62 deletions(-)
---
diff --git a/glib/gvariant.c b/glib/gvariant.c
index 529218c..7211d1a 100644
--- a/glib/gvariant.c
+++ b/glib/gvariant.c
@@ -26,6 +26,7 @@
#include <glib/gvariant-core.h>
#include <glib/gtestutils.h>
#include <glib/gstrfuncs.h>
+#include <glib/ghash.h>
#include <glib/gmem.h>
#include <string.h>
@@ -73,15 +74,214 @@
* There is a Python-inspired text language for describing #GVariant
* values. #GVariant includes a printer for this language and a parser
* with type inferencing.
+ *
+ * <refsect2>
+ * <title>Memory Use</title>
+ * <para>
+ * #GVariant tries to be quite efficient with respect to memory use.
+ * This section gives a rough idea of how much memory is used by the
+ * current implementation. The information here is subject to change
+ * in the future.
+ * </para>
+ * <para>
+ * The memory allocated by #GVariant can be grouped into 4 broad
+ * purposes: memory for serialised data, memory for the type
+ * information cache, buffer management memory and memory for the
+ * #GVariant structure itself.
+ * </para>
+ * <refsect3>
+ * <title>Serialised Data Memory</title>
+ * <para>
+ * This is the memory that is used for storing GVariant data in
+ * serialised form. This is what would be sent over the network or
+ * what would end up on disk.
+ * </para>
+ * <para>
+ * The amount of memory required to store a boolean is 1 byte. 16,
+ * 32 and 64 bit integers and double precision floating point numbers
+ * use their "natural" size. Strings (including object path and
+ * signature strings) are stored with a nul terminator, and as such
+ * use the length of the string plus 1 byte.
+ * </para>
+ * <para>
+ * Maybe types use no space at all to represent the null value and
+ * use the same amount of space (sometimes plus one byte) as the
+ * equivalent non-maybe-typed value to represent the non-null case.
+ * </para>
+ * <para>
+ * Arrays use the amount of space required to store each of their
+ * members, concatenated. Additionally, if the items stored in an
+ * array are not of a fixed-size (ie: strings, other arrays, etc)
+ * then an additional framing offset is stored for each item. The
+ * size of this offset is either 1, 2 or 4 bytes depending on the
+ * overall size of the container. Additionally, extra padding bytes
+ * are added as required for alignment of child values.
+ * </para>
+ * <para>
+ * Tuples (including dictionary entries) use the amount of space
+ * required to store each of their members, concatenated, plus one
+ * framing offset (as per arrays) for each non-fixed-sized item in
+ * the tuple, except for the last one. Additionally, extra padding
+ * bytes are added as required for alignment of child values.
+ * </para>
+ * <para>
+ * Variants use the same amount of space as the item inside of the
+ * variant, plus 1 byte, plus the length of the type string for the
+ * item inside the variant.
+ * </para>
+ * <para>
+ * As an example, consider a dictionary mapping strings to variants.
+ * In the case that the dictionary is empty, 0 bytes are required for
+ * the serialisation.
+ * </para>
+ * <para>
+ * If we add an item "width" that maps to the int32 value of 500 then
+ * we will use 4 byte to store the int32 (so 6 for the variant
+ * containing it) and 6 bytes for the string. The variant must be
+ * aligned to 8 after the 6 bytes of the string, so that's 2 extra
+ * bytes. 6 (string) + 2 (padding) + 6 (variant) is 14 bytes used
+ * for the dictionary entry. An additional 1 byte is added to the
+ * array as a framing offset making a total of 15 bytes.
+ * </para>
+ * <para>
+ * If we add another entry, "title" that maps to a nullable string
+ * that happens to have a value of null, then we use 0 bytes for the
+ * null value (and 3 bytes for the variant to contain it along with
+ * its type string) plus 6 bytes for the string. Again, we need 2
+ * padding bytes. That makes a total of 6 + 2 + 3 = 11 bytes.
+ * </para>
+ * <para>
+ * We now require extra padding between the two items in the array.
+ * After the 14 bytes of the first item, that's 2 bytes required. We
+ * now require 2 framing offsets for an extra two bytes. 14 + 2 + 11
+ * + 2 = 29 bytes to encode the entire two-item dictionary.
+ * </para>
+ * </refect3>
+ * <refect3>
+ * <title>Type Information Cache</title>
+ * <para>
+ * For each GVariant type that currently exists in the program a type
+ * information structure is kept in the type information cache. The
+ * type information structure is required for rapid deserialisation.
+ * </para>
+ * <para>
+ * Continuing with the above example, if a #GVariant exists with the
+ * type "a{sv}" then a type information struct will exist for
+ * "a{sv}", "{sv}", "s", and "v". Multiple uses of the same type
+ * will share the same type information. Additionally, all
+ * single-digit types are stored in read-only static memory and do
+ * not contribute to the writable memory footprint of a program using
+ * #GVariant.
+ * </para>
+ * <para>
+ * Aside from the type information structures stored in read-only
+ * memory, there are two forms of type information. One is used for
+ * container types where there is a single element type: arrays and
+ * maybe types. The other is used for container types where there
+ * are multiple element types: tuples and dictionary entries.
+ * </para>
+ * <para>
+ * Array type info structures are 6 * sizeof (void *), plus the
+ * memory required to store the type string itself. This means that
+ * on 32bit systems, the cache entry for "a{sv}" would require 30
+ * bytes of memory (plus malloc overhead).
+ * </para>
+ * <para>
+ * Tuple type info structures are 6 * sizeof (void *), plus 4 *
+ * sizeof (void *) for each item in the tuple, plus the memory
+ * required to store the type string itself. A 2-item tuple, for
+ * example, would have a type information structure that consumed
+ * writable memory in the size of 14 * sizeof (void *) (plus type
+ * string) This means that on 32bit systems, the cache entry for
+ * "{sv}" would require 61 bytes of memory (plus malloc overhead).
+ * </para>
+ * <para>
+ * This means that in total, for our "a{sv}" example, 91 bytes of
+ * type information would be allocated.
+ * </para>
+ * <para>
+ * The type information cache, additionally, uses a #GHashTable to
+ * store and lookup the cached items and stores a pointer to this
+ * hash table in static storage. The hash table is freed when there
+ * are zero items in the type cache.
+ * </para>
+ * <para>
+ * Although these sizes may seem large it is important to remember
+ * that a program will probably only have a very small number of
+ * different types of values in it and that only one type information
+ * structure is required for many different values of the same type.
+ * </para>
+ * </refect3>
+ * <refsect3>
+ * <title>Buffer Management Memory</title>
+ * <para>
+ * #GVariant uses an internal buffer management structure to deal
+ * with the various different possible sources of serialised data
+ * that it uses. The buffer is responsible for ensuring that the
+ * correct call is made when the data is no longer in use by
+ * #GVariant. This may involve a g_free() or a g_slice_free() or
+ * even g_mapped_file_unref().
+ * </para>
+ * <para>
+ * One buffer management structure is used for each chunk of
+ * serialised data. The size of the buffer management structure is 4
+ * * (void *). On 32bit systems, that's 16 bytes.
+ * </para>
+ * </refect3>
+ * <refsect3>
+ * <title>GVariant structure</title>
+ * <para>
+ * The size of a #GVariant structure is 6 * (void *). On 32 bit
+ * systems, that's 24 bytes.
+ * </para>
+ * <para>
+ * #GVariant structures only exist if they are explicitly created
+ * with API calls. For example, if a #GVariant is constructed out of
+ * serialised data for the example given above (with the dictionary)
+ * then although there are 9 individual values that comprise the
+ * entire dictionary (two keys, two values, two variants containing
+ * the values, two dictionary entries, plus the dictionary itself),
+ * only 1 #GVariant instance exists -- the one refering to the
+ * dictionary.
+ * </para>
+ * <para>
+ * If calls are made to start accessing the other values then
+ * #GVariant instances will exist for those values only for as long
+ * as they are in use (ie: until you call g_variant_unref()). The
+ * type information is shared. The serialised data and the buffer
+ * management structure for that serialised data is shared by the
+ * child.
+ * </para>
+ * </refect3>
+ * <refsect3>
+ * <title>Summary</title>
+ * <para>
+ * To put the entire example together, for our dictionary mapping
+ * strings to variants (with two entries, as given above), we are
+ * using 91 bytes of memory for type information, 29 byes of memory
+ * for the serialised data, 16 bytes for buffer management and 24
+ * bytes for the #GVariant instance, or a total of 160 bytes, plus
+ * malloc overhead. If we were to use g_variant_get_child_value() to
+ * access the two dictionary entries, we would use an additional 48
+ * bytes. If we were to have other dictionaries of the same type, we
+ * would use more memory for the serialised data and buffer
+ * management for those dictionaries, but the type information would
+ * be shared.
+ * </para>
+ * </refsect3>
+ * </refsect2>
*/
/* definition of GVariant structure is in gvariant-core.c */
+/* this is a g_return_val_if_fail() for making
+ * sure a (GVariant *) has the required type.
+ */
#define TYPE_CHECK(value, TYPE, val) \
if G_UNLIKELY (!g_variant_is_of_type (value, TYPE)) { \
g_return_if_fail_warning (G_LOG_DOMAIN, __PRETTY_FUNCTION__, \
"g_variant_is_of_type (" #value \
- ", G_VARIANT_TYPE_" #TYPE ")"); \
+ ", " #TYPE ")"); \
return val; \
}
@@ -147,57 +347,17 @@ g_variant_get_boolean (GVariant *value)
return data != NULL ? *data != 0 : FALSE;
}
-/**
- * g_variant_new_handle:
- * @handle: a #gint32 value
- * @returns: a new handle #GVariant instance
- *
- * Creates a new handle #GVariant instance.
- *
- * By convention, handles are indexes into an array of file descriptors
- * that are sent alongside a DBus message. If you're not interacting
- * with DBus, you probably don't need them.
- **/
-GVariant *
-g_variant_new_handle (gint32 value)
-{
- return g_variant_new_from_trusted (G_VARIANT_TYPE_HANDLE,
- &value, sizeof value);
-}
-
-/**
- * g_variant_get_handle:
- * @value: a handle #GVariant instance
- * @returns: a #gint32
- *
- * Returns the 32-bit signed integer value of @value.
- *
- * It is an error to call this function with a @value of any type other
- * than %G_VARIANT_TYPE_HANDLE.
- *
- * By convention, handles are indexes into an array of file descriptors
- * that are sent alongside a DBus message. If you're not interacting
- * with DBus, you probably don't need them.
- **/
-gint32
-g_variant_get_handle (GVariant *value)
-{
- const gint32 *data;
-
- TYPE_CHECK (value, G_VARIANT_TYPE_HANDLE, -1);
-
- data = g_variant_get_data (value);
-
- return data != NULL ? *data : 0;
-}
-
-#define NUMERIC_TYPE(TYPE, type) \
- GVariant *g_variant_new_##type (g##type value) { \
+/* the constructors and accessors for byte, int{16,32,64}, handles and
+ * doubles all look pretty much exactly the same, so we reduce
+ * copy/pasting here.
+ */
+#define NUMERIC_TYPE(TYPE, type, ctype) \
+ GVariant *g_variant_new_##type (ctype value) { \
return g_variant_new_from_trusted (G_VARIANT_TYPE_##TYPE, \
&value, sizeof value); \
} \
- g##type g_variant_get_##type (GVariant *value) { \
- const g##type *data; \
+ ctype g_variant_get_##type (GVariant *value) { \
+ const ctype *data; \
TYPE_CHECK (value, G_VARIANT_TYPE_ ## TYPE, 0); \
data = g_variant_get_data (value); \
return data != NULL ? *data : 0; \
@@ -221,8 +381,7 @@ g_variant_get_handle (GVariant *value)
* It is an error to call this function with a @value of any type
* other than %G_VARIANT_TYPE_BYTE.
**/
-#define gbyte guchar
-NUMERIC_TYPE (BYTE, byte)
+NUMERIC_TYPE (BYTE, byte, guchar)
/**
* g_variant_new_int16:
@@ -241,7 +400,7 @@ NUMERIC_TYPE (BYTE, byte)
* It is an error to call this function with a @value of any type
* other than %G_VARIANT_TYPE_INT16.
**/
-NUMERIC_TYPE (INT16, int16)
+NUMERIC_TYPE (INT16, int16, gint16)
/**
* g_variant_new_uint16:
@@ -260,7 +419,7 @@ NUMERIC_TYPE (INT16, int16)
* It is an error to call this function with a @value of any type
* other than %G_VARIANT_TYPE_UINT16.
**/
-NUMERIC_TYPE (UINT16, uint16)
+NUMERIC_TYPE (UINT16, uint16, guint16)
/**
* g_variant_new_int32:
@@ -279,7 +438,7 @@ NUMERIC_TYPE (UINT16, uint16)
* It is an error to call this function with a @value of any type
* other than %G_VARIANT_TYPE_INT32.
**/
-NUMERIC_TYPE (INT32, int32)
+NUMERIC_TYPE (INT32, int32, gint32)
/**
* g_variant_new_uint32:
@@ -298,7 +457,7 @@ NUMERIC_TYPE (INT32, int32)
* It is an error to call this function with a @value of any type
* other than %G_VARIANT_TYPE_UINT32.
**/
-NUMERIC_TYPE (UINT32, uint32)
+NUMERIC_TYPE (UINT32, uint32, guint32)
/**
* g_variant_new_int64:
@@ -317,7 +476,7 @@ NUMERIC_TYPE (UINT32, uint32)
* It is an error to call this function with a @value of any type
* other than %G_VARIANT_TYPE_INT64.
**/
-NUMERIC_TYPE (INT64, int64)
+NUMERIC_TYPE (INT64, int64, gint64)
/**
* g_variant_new_uint64:
@@ -336,7 +495,34 @@ NUMERIC_TYPE (INT64, int64)
* It is an error to call this function with a @value of any type
* other than %G_VARIANT_TYPE_UINT64.
**/
-NUMERIC_TYPE (UINT64, uint64)
+NUMERIC_TYPE (UINT64, uint64, guint64)
+
+/**
+ * g_variant_new_handle:
+ * @handle: a #gint32 value
+ * @returns: a new handle #GVariant instance
+ *
+ * Creates a new handle #GVariant instance.
+ *
+ * By convention, handles are indexes into an array of file descriptors
+ * that are sent alongside a DBus message. If you're not interacting
+ * with DBus, you probably don't need them.
+ **/
+/**
+ * g_variant_get_handle:
+ * @value: a handle #GVariant instance
+ * @returns: a #gint32
+ *
+ * Returns the 32-bit signed integer value of @value.
+ *
+ * It is an error to call this function with a @value of any type other
+ * than %G_VARIANT_TYPE_HANDLE.
+ *
+ * By convention, handles are indexes into an array of file descriptors
+ * that are sent alongside a DBus message. If you're not interacting
+ * with DBus, you probably don't need them.
+ **/
+NUMERIC_TYPE (HANDLE, handle, gint32)
/**
* g_variant_new_double:
@@ -355,7 +541,7 @@ NUMERIC_TYPE (UINT64, uint64)
* It is an error to call this function with a @value of any type
* other than %G_VARIANT_TYPE_DOUBLE.
**/
-NUMERIC_TYPE (DOUBLE, double)
+NUMERIC_TYPE (DOUBLE, double, gdouble)
/**
* g_variant_get_type:
@@ -822,21 +1008,91 @@ g_variant_new_array (const GVariantType *child_type,
GVariant * const *children,
gsize n_children)
{
- g_assert_not_reached ();
+ GVariantType *array_type;
+ GVariant **my_children;
+ gboolean trusted;
+ GVariant *value;
+ gsize i;
+
+ g_return_val_if_fail (n_children > 0 || child_type != NULL, NULL);
+ g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
+
+ my_children = g_new (GVariant *, n_children);
+ trusted = TRUE;
+
+ if (child_type == NULL)
+ child_type = g_variant_get_type (children[0]);
+ array_type = g_variant_type_new_array (child_type);
+
+ for (i = 0; i < n_children; i++)
+ {
+ TYPE_CHECK (children[i], child_type, NULL);
+ my_children[i] = g_variant_ref_sink (children[i]);
+ trusted &= g_variant_is_trusted (children[i]);
+ }
+
+ value = g_variant_new_from_children (array_type, my_children,
+ n_children, trusted);
+ g_variant_type_free (array_type);
+
+ return value;
}
GVariant *
g_variant_new_tuple (GVariant * const *children,
gsize n_children)
{
- g_assert_not_reached ();
+ const GVariantType **types;
+ GVariantType *tuple_type;
+ GVariant **my_children;
+ gboolean trusted;
+ GVariant *value;
+ gsize i;
+
+ g_return_val_if_fail (n_children == 0 || children != NULL, NULL);
+
+ types = g_new (const GVariantType *, n_children);
+ my_children = g_new (GVariant *, n_children);
+ trusted = TRUE;
+
+ for (i = 0; i < n_children; i++)
+ {
+ types[i] = g_variant_get_type (children[i]);
+ my_children[i] = g_variant_ref_sink (children[i]);
+ trusted &= g_variant_is_trusted (children[i]);
+ }
+
+ tuple_type = g_variant_type_new_tuple (types, n_children);
+ value = g_variant_new_from_children (tuple_type, my_children,
+ n_children, trusted);
+ g_variant_type_free (tuple_type);
+ g_free (types);
+
+ return value;
}
GVariant *
g_variant_new_dict_entry (GVariant *key,
GVariant *value)
{
- g_assert_not_reached ();
+ GVariantType *dict_type;
+ GVariant **children;
+ gboolean trusted;
+
+ g_return_val_if_fail (key != NULL && value != NULL, NULL);
+ g_return_val_if_fail (!g_variant_is_container (key), NULL);
+
+ children = g_new (GVariant *, 2);
+ children[0] = g_variant_ref_sink (key);
+ children[1] = g_variant_ref_sink (value);
+ trusted = g_variant_is_trusted (key) && g_variant_is_trusted (value);
+
+ dict_type = g_variant_type_new_dict_entry (g_variant_get_type (key),
+ g_variant_get_type (value));
+ value = g_variant_new_from_children (dict_type, children, 2, trusted);
+ g_variant_type_free (dict_type);
+
+ return value;
}
gconstpointer
@@ -908,6 +1164,468 @@ g_variant_classify (GVariant *value)
return *g_variant_get_type_string (value);
}
+/**
+ * g_variant_print_string:
+ * @value: a #GVariant
+ * @string: a #GString, or %NULL
+ * @type_annotate: %TRUE if type information should be included in
+ * the output
+ * @returns: a #GString containing the string
+ *
+ * Behaves as g_variant_print(), but operates on a #GString.
+ *
+ * If @string is non-%NULL then it is appended to and returned. Else,
+ * a new empty #GString is allocated and it is returned.
+ **/
+GString *
+g_variant_print_string (GVariant *value,
+ GString *string,
+ gboolean type_annotate)
+{
+ if G_UNLIKELY (string == NULL)
+ string = g_string_new (NULL);
+
+ switch (g_variant_classify (value))
+ {
+ case G_VARIANT_CLASS_MAYBE:
+ if (type_annotate)
+ g_string_append_printf (string, "@%s ",
+ g_variant_get_type_string (value));
+
+ if (g_variant_n_children (value))
+ {
+ gchar *printed_child;
+ GVariant *element;
+
+ /* Nested maybes:
+ *
+ * Consider the case of the type "mmi". In this case we could
+ * write "Just Just 4", but "4" alone is totally unambiguous,
+ * so we try to drop "Just" where possible.
+ *
+ * We have to be careful not to always drop "Just", though,
+ * since "Nothing" needs to be distinguishable from "Just
+ * Nothing". The case where we need to ensure we keep the
+ * "Just" is actually exactly the case where we have a nested
+ * Nothing.
+ *
+ * Instead of searching for that nested Nothing, we just print
+ * the contained value into a separate string and see if we
+ * end up with "Nothing" at the end of it. If so, we need to
+ * add "Just" at our level.
+ */
+ element = g_variant_get_child_value (value, 0);
+ printed_child = g_variant_print (element, FALSE);
+ g_variant_unref (element);
+
+ if (g_str_has_suffix (printed_child, "Nothing"))
+ g_string_append (string, "Just ");
+ g_string_append (string, printed_child);
+ g_free (printed_child);
+ }
+ else
+ g_string_append (string, "Nothing");
+
+ break;
+
+ case G_VARIANT_CLASS_ARRAY:
+ /* it's an array so the first character of the type string is 'a'
+ *
+ * if the first two characters are 'a{' then it's an array of
+ * dictionary entries (ie: a dictionary) so we print that
+ * differently.
+ */
+ if (g_variant_get_type_string (value)[1] == '{')
+ /* dictionary */
+ {
+ const gchar *comma = "";
+ gsize n, i;
+
+ if ((n = g_variant_n_children (value)) == 0)
+ {
+ if (type_annotate)
+ g_string_append_printf (string, "@%s ",
+ g_variant_get_type_string (value));
+ g_string_append (string, "{}");
+ break;
+ }
+
+ g_string_append_c (string, '{');
+ for (i = 0; i < n; i++)
+ {
+ GVariant *entry, *key, *val;
+
+ g_string_append (string, comma);
+ comma = ", ";
+
+ entry = g_variant_get_child_value (value, i);
+ key = g_variant_get_child_value (entry, 0);
+ val = g_variant_get_child_value (entry, 1);
+ g_variant_unref (entry);
+
+ g_variant_print_string (key, string, type_annotate);
+ g_variant_unref (key);
+ g_string_append (string, ": ");
+ g_variant_print_string (val, string, type_annotate);
+ g_variant_unref (val);
+ type_annotate = FALSE;
+ }
+ g_string_append_c (string, '}');
+ }
+ else
+ /* normal (non-dictionary) array */
+ {
+ const gchar *comma = "";
+ gsize n, i;
+
+ if ((n = g_variant_n_children (value)) == 0)
+ {
+ if (type_annotate)
+ g_string_append_printf (string, "@%s ",
+ g_variant_get_type_string (value));
+ g_string_append (string, "[]");
+ break;
+ }
+
+ g_string_append_c (string, '[');
+ for (i = 0; i < n; i++)
+ {
+ GVariant *element;
+
+ g_string_append (string, comma);
+ comma = ", ";
+
+ element = g_variant_get_child_value (value, i);
+
+ g_variant_print_string (element, string, type_annotate);
+ g_variant_unref (element);
+ type_annotate = FALSE;
+ }
+ g_string_append_c (string, ']');
+ }
+
+ break;
+
+ case G_VARIANT_CLASS_TUPLE:
+ {
+ gsize n, i;
+
+ n = g_variant_n_children (value);
+
+ g_string_append_c (string, '(');
+ for (i = 0; i < n; i++)
+ {
+ GVariant *element;
+
+ element = g_variant_get_child_value (value, i);
+ g_variant_print_string (element, string, type_annotate);
+ g_string_append (string, ", ");
+ }
+
+ /* for >1 item: remove final ", "
+ * for 1 item: remove final " ", but leave the ","
+ * for 0 items: there is only "(", so remove nothing
+ */
+ g_string_truncate (string, string->len - (n > 0) - (n > 1));
+ g_string_append_c (string, ')');
+ }
+ break;
+
+ case G_VARIANT_CLASS_DICT_ENTRY:
+ {
+ GVariant *element;
+
+ g_string_append_c (string, '{');
+
+ element = g_variant_get_child_value (value, 0);
+ g_variant_print_string (element, string, type_annotate);
+ g_variant_unref (element);
+
+ g_string_append (string, ", ");
+
+ element = g_variant_get_child_value (value, 1);
+ g_variant_print_string (element, string, type_annotate);
+ g_variant_unref (element);
+
+ g_string_append_c (string, '}');
+ }
+ break;
+
+ case G_VARIANT_CLASS_VARIANT:
+ {
+ GVariant *child = g_variant_get_variant (value);
+
+ /* Always annotate types in nested variants, because they are
+ * (by nature) of variable type.
+ */
+ g_string_append_c (string, '<');
+ g_variant_print_string (child, string, TRUE);
+ g_string_append_c (string, '>');
+
+ g_variant_unref (child);
+ }
+ break;
+
+ case G_VARIANT_CLASS_BOOLEAN:
+ if (g_variant_get_boolean (value))
+ g_string_append (string, "true");
+ else
+ g_string_append (string, "false");
+ break;
+
+ case G_VARIANT_CLASS_STRING:
+ {
+ const gchar *str = g_variant_get_string (value, NULL);
+ gchar *escaped = g_strescape (str, NULL);
+
+ g_string_append_printf (string, "\"%s\"", escaped);
+
+ g_free (escaped);
+ }
+ break;
+
+ case G_VARIANT_CLASS_BYTE:
+ if (type_annotate)
+ g_string_append (string, "byte ");
+ g_string_append_printf (string, "0x%02x",
+ g_variant_get_byte (value));
+ break;
+
+ case G_VARIANT_CLASS_INT16:
+ if (type_annotate)
+ g_string_append (string, "int16 ");
+ g_string_append_printf (string, "%"G_GINT16_FORMAT,
+ g_variant_get_int16 (value));
+ break;
+
+ case G_VARIANT_CLASS_UINT16:
+ if (type_annotate)
+ g_string_append (string, "uint16 ");
+ g_string_append_printf (string, "%"G_GUINT16_FORMAT,
+ g_variant_get_uint16 (value));
+ break;
+
+ case G_VARIANT_CLASS_INT32:
+ /* Never annotate this type because it is the default for numbers
+ * (and this is a *pretty* printer)
+ */
+ g_string_append_printf (string, "%"G_GINT32_FORMAT,
+ g_variant_get_int32 (value));
+ break;
+
+ case G_VARIANT_CLASS_HANDLE:
+ if (type_annotate)
+ g_string_append (string, "handle ");
+ g_string_append_printf (string, "%"G_GINT32_FORMAT,
+ g_variant_get_handle (value));
+ break;
+
+ case G_VARIANT_CLASS_UINT32:
+ if (type_annotate)
+ g_string_append (string, "uint32 ");
+ g_string_append_printf (string, "%"G_GUINT32_FORMAT,
+ g_variant_get_uint32 (value));
+ break;
+
+ case G_VARIANT_CLASS_INT64:
+ if (type_annotate)
+ g_string_append (string, "int64 ");
+ g_string_append_printf (string, "%"G_GINT64_FORMAT,
+ g_variant_get_int64 (value));
+ break;
+
+ case G_VARIANT_CLASS_UINT64:
+ if (type_annotate)
+ g_string_append (string, "uint64 ");
+ g_string_append_printf (string, "%"G_GUINT64_FORMAT,
+ g_variant_get_uint64 (value));
+ break;
+
+ case G_VARIANT_CLASS_DOUBLE:
+ {
+ gchar buffer[100];
+ gint i;
+
+ g_ascii_dtostr (buffer, sizeof buffer, g_variant_get_double (value));
+
+ for (i = 0; buffer[i]; i++)
+ if (buffer[i] == '.' || buffer[i] == 'e' ||
+ buffer[i] == 'n' || buffer[i] == 'N')
+ break;
+
+ /* if there is no '.' or 'e' in the float then add one */
+ if (buffer[i] == '\0')
+ {
+ buffer[i++] = '.';
+ buffer[i++] = '0';
+ buffer[i++] = '\0';
+ }
+
+ g_string_append (string, buffer);
+ }
+ break;
+
+ case G_VARIANT_CLASS_OBJECT_PATH:
+ if (type_annotate)
+ g_string_append (string, "objectpath ");
+ g_string_append_printf (string, "\"%s\"",
+ g_variant_get_string (value, NULL));
+ break;
+
+ case G_VARIANT_CLASS_SIGNATURE:
+ if (type_annotate)
+ g_string_append (string, "signature");
+ g_string_append_printf (string, "\"%s\"",
+ g_variant_get_string (value, NULL));
+ break;
+
+ default:
+ g_assert_not_reached ();
+ }
+
+ return string;
+}
+
+/**
+ * g_variant_print:
+ * @value: a #GVariant
+ * @type_annotate: %TRUE if type information should be included in
+ * the output
+ * @returns: a newly-allocated string holding the result.
+ *
+ * Pretty-prints @value in the format understood by g_variant_parse().
+ *
+ * If @type_annotate is %TRUE, then type information is included in
+ * the output.
+ */
+gchar *
+g_variant_print (GVariant *value,
+ gboolean type_annotate)
+{
+ return g_string_free (g_variant_print_string (value, NULL, type_annotate),
+ FALSE);
+};
+
+guint
+g_variant_hash (gconstpointer value_)
+{
+ GVariant *value = (GVariant *) value_;
+
+ switch (g_variant_classify (value))
+ {
+ case G_VARIANT_CLASS_STRING:
+ case G_VARIANT_CLASS_OBJECT_PATH:
+ case G_VARIANT_CLASS_SIGNATURE:
+ return g_str_hash (g_variant_get_string (value, NULL));
+
+ case G_VARIANT_CLASS_BOOLEAN:
+ /* this is a very odd thing to hash... */
+ return 0;
+
+ case G_VARIANT_CLASS_BYTE:
+ return g_variant_get_byte (value);
+
+ case G_VARIANT_CLASS_INT16:
+ case G_VARIANT_CLASS_UINT16:
+ {
+ const guint16 *ptr;
+
+ ptr = g_variant_get_data (value);
+
+ if (ptr)
+ return *ptr;
+ else
+ return 0;
+ }
+
+ case G_VARIANT_CLASS_INT32:
+ case G_VARIANT_CLASS_UINT32:
+ case G_VARIANT_CLASS_HANDLE:
+ {
+ const guint *ptr;
+
+ ptr = g_variant_get_data (value);
+
+ if (ptr)
+ return *ptr;
+ else
+ return 0;
+ }
+
+ case G_VARIANT_CLASS_INT64:
+ case G_VARIANT_CLASS_UINT64:
+ case G_VARIANT_CLASS_DOUBLE:
+ /* need a separate case for these guys because otherwise
+ * performance could be quite bad on big endian systems
+ */
+ {
+ const guint *ptr;
+
+ ptr = g_variant_get_data (value);
+
+ if (ptr)
+ return ptr[0] + ptr[1];
+ else
+ return 0;
+ }
+
+ default:
+ g_return_val_if_fail (!g_variant_is_container (value), 0);
+ g_assert_not_reached ();
+ }
+}
+
+gboolean
+g_variant_equal (gconstpointer one,
+ gconstpointer two)
+{
+ gboolean equal;
+
+ g_return_val_if_fail (one != NULL && two != NULL, FALSE);
+
+ if (g_variant_get_type_info ((GVariant *) one) !=
+ g_variant_get_type_info ((GVariant *) two))
+ return FALSE;
+
+ /* if both values are trusted to be in their canonical serialised form
+ * then a simple memcmp() of their serialised data will answer the
+ * question.
+ *
+ * if not, then this might generate a false negative (since it is
+ * possible for two different byte sequences to represent the same
+ * value). for now we solve this by pretty-printing both values and
+ * comparing the result.
+ */
+ if (g_variant_is_trusted ((GVariant *) one) &&
+ g_variant_is_trusted ((GVariant *) two))
+ {
+ gconstpointer data_one, data_two;
+ gsize size_one, size_two;
+
+ size_one = g_variant_get_size ((GVariant *) one);
+ size_two = g_variant_get_size ((GVariant *) two);
+
+ if (size_one != size_two)
+ return FALSE;
+
+ data_one = g_variant_get_data ((GVariant *) one);
+ data_two = g_variant_get_data ((GVariant *) two);
+
+ equal = memcmp (data_one, data_two, size_one) == 0;
+ }
+ else
+ {
+ gchar *strone, *strtwo;
+
+ strone = g_variant_print ((GVariant *) one, FALSE);
+ strtwo = g_variant_print ((GVariant *) two, FALSE);
+ equal = strcmp (strone, strtwo);
+ g_free (strone);
+ g_free (strtwo);
+ }
+
+ return equal;
+}
+
#define __G_VARIANT_C__
#include "galiasdef.c"
-
diff --git a/glib/gvariant.h b/glib/gvariant.h
index 9a2f326..19da9cb 100644
--- a/glib/gvariant.h
+++ b/glib/gvariant.h
@@ -24,6 +24,7 @@
#define __G_VARIANT_H__
#include <glib/gvarianttype.h>
+#include <glib/gstring.h>
G_BEGIN_DECLS
@@ -124,6 +125,16 @@ gconstpointer g_variant_get_data (GVarian
void g_variant_store (GVariant *value,
gpointer data);
+gchar * g_variant_print (GVariant *value,
+ gboolean type_annotate);
+GString * g_variant_print_string (GVariant *value,
+ GString *string,
+ gboolean type_annotate);
+
+guint g_variant_hash (gconstpointer value);
+gboolean g_variant_equal (gconstpointer one,
+ gconstpointer two);
+
G_END_DECLS
#endif /* __G_VARIANT_H__ */
[
Date Prev][
Date Next] [
Thread Prev][
Thread Next]
[
Thread Index]
[
Date Index]
[
Author Index]