[goffice] Compilation: grand rename, part 8.
- From: Morten Welinder <mortenw src gnome org>
- To: svn-commits-list gnome org
- Cc:
- Subject: [goffice] Compilation: grand rename, part 8.
- Date: Mon, 24 Aug 2009 00:53:08 +0000 (UTC)
commit d4f2ad2a6023dc7cbdeeac754a6c42636488c3f4
Author: Morten Welinder <terra gnome org>
Date: Sun Aug 23 20:42:24 2009 -0400
Compilation: grand rename, part 8.
docs/reference/tmpl/go-regression.sgml | 34 ------
docs/reference/tmpl/gog-object.sgml | 22 ++--
goffice/app/go-plugin-service.c | 2 +-
goffice/app/go-plugin-service.h | 10 +-
goffice/math/go-regression.c | 192 ++++++++++++++++----------------
goffice/math/go-regression.h | 56 +++++-----
plugins/reg_linear/gog-lin-reg.c | 4 +-
plugins/reg_linear/gog-lin-reg.h | 2 +-
plugins/reg_logfit/gog-logfit.c | 4 +-
9 files changed, 146 insertions(+), 180 deletions(-)
---
diff --git a/docs/reference/tmpl/go-regression.sgml b/docs/reference/tmpl/go-regression.sgml
index 3e4b23b..c9dd91d 100644
--- a/docs/reference/tmpl/go-regression.sgml
+++ b/docs/reference/tmpl/go-regression.sgml
@@ -17,19 +17,6 @@ Regressions
<!-- ##### SECTION Stability_Level ##### -->
-<!-- ##### ENUM RegressionResult ##### -->
-<para>
-
-</para>
-
- REG_ok:
- REG_invalid_dimensions:
- REG_invalid_data:
- REG_not_enough_data:
- REG_near_singular_good:
- REG_near_singular_bad:
- REG_singular:
-
<!-- ##### STRUCT go_regression_stat_t ##### -->
<para>
@@ -129,27 +116,6 @@ Regressions
@Returns:
-<!-- ##### MACRO LOGFIT_C_ACCURACY ##### -->
-<para>
-
-</para>
-
-
-
-<!-- ##### MACRO LOGFIT_C_STEP_FACTOR ##### -->
-<para>
-
-</para>
-
-
-
-<!-- ##### MACRO LOGFIT_C_RANGE_FACTOR ##### -->
-<para>
-
-</para>
-
-
-
<!-- ##### FUNCTION go_logarithmic_fit ##### -->
<para>
diff --git a/docs/reference/tmpl/gog-object.sgml b/docs/reference/tmpl/gog-object.sgml
index 69a0b86..dc3cd3e 100644
--- a/docs/reference/tmpl/gog-object.sgml
+++ b/docs/reference/tmpl/gog-object.sgml
@@ -54,53 +54,53 @@ Base class for all objects of graph model
</para>
- gogobject: the object which received the signal.
- arg1:
+@:
+@:
<!-- ##### SIGNAL GogObject::child-added ##### -->
<para>
</para>
- gogobject: the object which received the signal.
- arg1:
+@:
+@:
<!-- ##### SIGNAL GogObject::child-name-changed ##### -->
<para>
</para>
- gogobject: the object which received the signal.
- arg1:
+@:
+@:
<!-- ##### SIGNAL GogObject::child-removed ##### -->
<para>
</para>
- gogobject: the object which received the signal.
- arg1:
+@:
+@:
<!-- ##### SIGNAL GogObject::children-reordered ##### -->
<para>
</para>
- gogobject: the object which received the signal.
+@:
<!-- ##### SIGNAL GogObject::name-changed ##### -->
<para>
</para>
- gogobject: the object which received the signal.
+@:
<!-- ##### SIGNAL GogObject::update-editor ##### -->
<para>
</para>
- gogobject: the object which received the signal.
+@:
<!-- ##### ARG GogObject:alignment ##### -->
<para>
diff --git a/goffice/app/go-plugin-service.c b/goffice/app/go-plugin-service.c
index 4aa6e4d..266e936 100644
--- a/goffice/app/go-plugin-service.c
+++ b/goffice/app/go-plugin-service.c
@@ -1146,7 +1146,7 @@ _go_plugin_services_init (void)
}
void
-go_plugin_services_shutdown (void)
+_go_plugin_services_shutdown (void)
{
g_return_if_fail (services != NULL);
g_hash_table_destroy (services);
diff --git a/goffice/app/go-plugin-service.h b/goffice/app/go-plugin-service.h
index 48b30dc..34526f7 100644
--- a/goffice/app/go-plugin-service.h
+++ b/goffice/app/go-plugin-service.h
@@ -1,5 +1,5 @@
-#ifndef PLUGIN_SERVICE_H
-#define PLUGIN_SERVICE_H
+#ifndef GO_PLUGIN_SERVICE_H
+#define GO_PLUGIN_SERVICE_H
#include <goffice/app/goffice-app.h>
#include <goffice/app/go-plugin.h>
@@ -103,10 +103,10 @@ void go_plugin_service_unload (GOPluginService *service, GOErrorInfo **ret_erro
typedef GType (*GOPluginServiceCreate) (void);
void _go_plugin_services_init (void);
-void go_plugin_services_shutdown (void);
+void _go_plugin_services_shutdown (void);
void go_plugin_service_define (char const *type_str,
- GOPluginServiceCreate ctor);
+ GOPluginServiceCreate ctor);
G_END_DECLS
-#endif /* PLUGIN_SERVICE_H */
+#endif /* GO_PLUGIN_SERVICE_H */
diff --git a/goffice/math/go-regression.c b/goffice/math/go-regression.c
index 36047b8..63807d2 100644
--- a/goffice/math/go-regression.c
+++ b/goffice/math/go-regression.c
@@ -142,7 +142,7 @@ SUFFIX(backsolve) (DOUBLE **LU, int *P, DOUBLE *b, int n, DOUBLE *res)
}
}
-static RegressionResult
+static GORegressionResult
SUFFIX(rescale) (DOUBLE **A, DOUBLE *b, int n, DOUBLE *pdet)
{
int i;
@@ -155,7 +155,7 @@ SUFFIX(rescale) (DOUBLE **A, DOUBLE *b, int n, DOUBLE *pdet)
(void)SUFFIX(go_range_maxabs) (A[i], n, &max);
if (max == 0)
- return REG_singular;
+ return GO_REG_singular;
/* Use a power of 2 near sqrt (max) as scale. */
(void)SUFFIX(frexp) (SUFFIX(sqrt) (max), &expn);
@@ -170,7 +170,7 @@ SUFFIX(rescale) (DOUBLE **A, DOUBLE *b, int n, DOUBLE *pdet)
for (j = 0; j < n; j++)
A[i][j] /= scale;
}
- return REG_ok;
+ return GO_REG_ok;
}
@@ -185,7 +185,7 @@ SUFFIX(rescale) (DOUBLE **A, DOUBLE *b, int n, DOUBLE *pdet)
* A rescaling of rows is done and the b_scaled vector is scaled
* accordingly.
*/
-static RegressionResult
+static GORegressionResult
SUFFIX(LUPDecomp) (DOUBLE **A, DOUBLE **LU, int *P, int n, DOUBLE *b_scaled,
DOUBLE *pdet)
{
@@ -207,8 +207,8 @@ SUFFIX(LUPDecomp) (DOUBLE **A, DOUBLE **LU, int *P, int n, DOUBLE *b_scaled,
PRINT_MATRIX (LU, n, n);
#endif
{
- RegressionResult err = SUFFIX(rescale) (LU, b_scaled, n, &det);
- if (err != REG_ok)
+ GORegressionResult err = SUFFIX(rescale) (LU, b_scaled, n, &det);
+ if (err != GO_REG_ok)
return err;
}
@@ -227,7 +227,7 @@ SUFFIX(LUPDecomp) (DOUBLE **A, DOUBLE **LU, int *P, int n, DOUBLE *b_scaled,
i, max, mov);
#endif
if (max == 0)
- return REG_singular;
+ return GO_REG_singular;
if (max > highest)
highest = max;
if (max < lowest)
@@ -266,44 +266,44 @@ SUFFIX(LUPDecomp) (DOUBLE **A, DOUBLE **LU, int *P, int n, DOUBLE *b_scaled,
/* FIXME: make some science out of this. */
if (cond > DOUBLE_MANT_DIG * 0.75)
- return REG_near_singular_bad;
+ return GO_REG_near_singular_bad;
else if (cond > DOUBLE_MANT_DIG * 0.50)
- return REG_near_singular_good;
+ return GO_REG_near_singular_good;
else
- return REG_ok;
+ return GO_REG_ok;
}
-static RegressionResult
+static GORegressionResult
SUFFIX(linear_solve) (DOUBLE **A, DOUBLE *b, int n, DOUBLE *res)
{
- RegressionResult err;
+ GORegressionResult err;
DOUBLE **LU, *b_scaled;
int *P;
DOUBLE det;
if (n < 1)
- return REG_not_enough_data;
+ return GO_REG_not_enough_data;
/* Special case. */
if (n == 1) {
DOUBLE d = A[0][0];
if (d == 0)
- return REG_singular;
+ return GO_REG_singular;
res[0] = b[0] / d;
- return REG_ok;
+ return GO_REG_ok;
}
/* Special case. */
if (n == 2) {
DOUBLE d = SUFFIX(go_matrix_determinant) (A, n);
if (d == 0)
- return REG_singular;
+ return GO_REG_singular;
res[0] = (A[1][1] * b[0] - A[1][0] * b[1]) / d;
res[1] = (A[0][0] * b[1] - A[0][1] * b[0]) / d;
- return REG_ok;
+ return GO_REG_ok;
}
/*
@@ -318,7 +318,7 @@ SUFFIX(linear_solve) (DOUBLE **A, DOUBLE *b, int n, DOUBLE *res)
err = SUFFIX(LUPDecomp) (A, LU, P, n, b_scaled, &det);
- if (err == REG_ok || err == REG_near_singular_good)
+ if (err == GO_REG_ok || err == GO_REG_near_singular_good)
SUFFIX(backsolve) (LU, P, b_scaled, n, res);
FREE_MATRIX (LU, n, n);
@@ -331,7 +331,7 @@ SUFFIX(linear_solve) (DOUBLE **A, DOUBLE *b, int n, DOUBLE *res)
gboolean
SUFFIX(go_matrix_invert) (DOUBLE **A, int n)
{
- RegressionResult err;
+ GORegressionResult err;
DOUBLE **LU, *b_scaled, det;
int *P;
int i;
@@ -353,7 +353,7 @@ SUFFIX(go_matrix_invert) (DOUBLE **A, int n)
err = SUFFIX(LUPDecomp) (A, LU, P, n, b_scaled, &det);
- if (err == REG_ok || err == REG_near_singular_good) {
+ if (err == GO_REG_ok || err == GO_REG_near_singular_good) {
int i, j;
DOUBLE *b = g_new (DOUBLE, n);
DOUBLE *w = g_new (DOUBLE, n);
@@ -381,7 +381,7 @@ SUFFIX(go_matrix_invert) (DOUBLE **A, int n)
DOUBLE
SUFFIX(go_matrix_determinant) (DOUBLE **A, int n)
{
- RegressionResult err;
+ GORegressionResult err;
DOUBLE **LU, *b_scaled, det;
int *P;
@@ -415,7 +415,7 @@ SUFFIX(go_matrix_determinant) (DOUBLE **A, int n)
/* ------------------------------------------------------------------------- */
-static RegressionResult
+static GORegressionResult
SUFFIX(general_linear_regression) (DOUBLE **xss, int xdim,
const DOUBLE *ys, int n,
DOUBLE *result,
@@ -423,13 +423,13 @@ SUFFIX(general_linear_regression) (DOUBLE **xss, int xdim,
{
DOUBLE *xTy, **xTx;
int i,j;
- RegressionResult regerr;
+ GORegressionResult regerr;
if (regression_stat)
memset (regression_stat, 0, sizeof (SUFFIX(go_regression_stat_t)));
if (xdim > n)
- return REG_not_enough_data;
+ return GO_REG_not_enough_data;
xTy = g_new (DOUBLE, xdim);
for (i = 0; i < xdim; i++) {
@@ -475,8 +475,8 @@ SUFFIX(general_linear_regression) (DOUBLE **xss, int xdim,
regerr = SUFFIX(linear_solve) (xTx, xTy, xdim, result);
if (regression_stat &&
- (regerr == REG_ok || regerr == REG_near_singular_good)) {
- RegressionResult err2;
+ (regerr == GO_REG_ok || regerr == GO_REG_near_singular_good)) {
+ GORegressionResult err2;
DOUBLE *residuals = g_new (DOUBLE, n);
DOUBLE **LU, *one_scaled, det;
int *P;
@@ -535,7 +535,7 @@ SUFFIX(general_linear_regression) (DOUBLE **xss, int xdim,
err2 = SUFFIX(LUPDecomp) (xTx, LU, P, xdim, one_scaled, &det);
regression_stat->se = g_new (DOUBLE, xdim);
- if (err2 == REG_ok || err2 == REG_near_singular_good) {
+ if (err2 == GO_REG_ok || err2 == GO_REG_near_singular_good) {
DOUBLE *e = g_new (DOUBLE, xdim); /* Elementary vector */
DOUBLE *inv = g_new (DOUBLE, xdim);
for (i = 0; i < xdim; i++)
@@ -549,7 +549,7 @@ SUFFIX(general_linear_regression) (DOUBLE **xss, int xdim,
* If this happens, something is really
* wrong, numerically.
*/
- regerr = REG_near_singular_bad;
+ regerr = GO_REG_near_singular_bad;
}
regression_stat->se[i] =
SUFFIX(sqrt) (regression_stat->var * inv[i]);
@@ -634,7 +634,7 @@ SUFFIX(transform_x_and_linear_regression_log_fitting) (DOUBLE *xs,
*point_cloud)
{
int i;
- int result = REG_ok;
+ int result = GO_REG_ok;
DOUBLE mean_transf_x, diff_x, resid_y;
DOUBLE sum1 = 0;
DOUBLE sum2 = 0;
@@ -662,7 +662,7 @@ static int
SUFFIX(log_fitting) (DOUBLE *xs, const DOUBLE *ys, int n,
DOUBLE *res, SUFFIX(point_cloud_measure_type) *point_cloud)
{
- int result = REG_ok;
+ int result = GO_REG_ok;
gboolean sign_plus_ok = 1, sign_minus_ok = 1;
DOUBLE x_range, c_step, c_accuracy_int, c_offset, c_accuracy;
DOUBLE c_range, c_start, c_end, c_dist;
@@ -682,7 +682,7 @@ SUFFIX(log_fitting) (DOUBLE *xs, const DOUBLE *ys, int n,
SUFFIX(modf) (c_accuracy, &c_accuracy_int);
c_accuracy = c_accuracy_int;
c_accuracy = SUFFIX(pow) (10, c_accuracy);
- c_accuracy *= LOGFIT_C_ACCURACY;
+ c_accuracy *= GO_LOGFIT_C_ACCURACY;
/* Determine sign. Take a c which is ``much to small'' since the part
* of the curve cutting the point cloud is almost not bent.
@@ -690,8 +690,8 @@ SUFFIX(log_fitting) (DOUBLE *xs, const DOUBLE *ys, int n,
* assume that we have to change the direction of curve bending
* by changing sign.
*/
- c_step = x_range * LOGFIT_C_STEP_FACTOR;
- c_range = x_range * LOGFIT_C_RANGE_FACTOR;
+ c_step = x_range * GO_LOGFIT_C_STEP_FACTOR;
+ c_range = x_range * GO_LOGFIT_C_RANGE_FACTOR;
res[0] = 1; /* sign */
res[3] = point_cloud->min_x - c_range;
temp_res[0] = 1;
@@ -721,7 +721,7 @@ SUFFIX(log_fitting) (DOUBLE *xs, const DOUBLE *ys, int n,
else if (sign_minus_ok && !sign_plus_ok)
res[0] = -1;
else {
- result = REG_invalid_data;
+ result = GO_REG_invalid_data;
goto out;
}
@@ -743,7 +743,7 @@ SUFFIX(log_fitting) (DOUBLE *xs, const DOUBLE *ys, int n,
SUFFIX(transform_x_and_linear_regression_log_fitting) (xs, transf_xs, ys, n,
temp_res, point_cloud);
if (temp_res[4] >= res[4]) {
- result = REG_invalid_data;
+ result = GO_REG_invalid_data;
goto out;
}
/* After the above check, any minimum reached will be NOT at
@@ -783,7 +783,7 @@ SUFFIX(log_fitting) (DOUBLE *xs, const DOUBLE *ys, int n,
/* Allowing for some inaccuracy, we are at the end of the
* range, so this is probably no local minimum.
* The start of the range has been checked above. */
- result = REG_invalid_data;
+ result = GO_REG_invalid_data;
goto out;
}
@@ -806,19 +806,19 @@ SUFFIX(log_fitting) (DOUBLE *xs, const DOUBLE *ys, int n,
* Performs multi-dimensional linear regressions on the input points.
* Fits to "y = b + a1 * x1 + ... ad * xd".
*
- * Returns: #RegressionResult as above.
+ * Returns: #GORegressionResult as above.
**/
-RegressionResult
+GORegressionResult
SUFFIX(go_linear_regression) (DOUBLE **xss, int dim,
const DOUBLE *ys, int n,
gboolean affine,
DOUBLE *res,
SUFFIX(go_regression_stat_t) *regression_stat)
{
- RegressionResult result;
+ GORegressionResult result;
- g_return_val_if_fail (dim >= 1, REG_invalid_dimensions);
- g_return_val_if_fail (n >= 1, REG_invalid_dimensions);
+ g_return_val_if_fail (dim >= 1, GO_REG_invalid_dimensions);
+ g_return_val_if_fail (n >= 1, GO_REG_invalid_dimensions);
if (affine) {
DOUBLE **xss2;
@@ -851,9 +851,9 @@ SUFFIX(go_linear_regression) (DOUBLE **xss, int dim,
* Fits to "y = b * m1^x1 * ... * md^xd " or equivalently to
* "log y = log b + x1 * log m1 + ... + xd * log md".
*
- * Returns: #RegressionResult as above.
+ * Returns: #GORegressionResult as above.
**/
-RegressionResult
+GORegressionResult
SUFFIX(go_exponential_regression) (DOUBLE **xss, int dim,
const DOUBLE *ys, int n,
gboolean affine,
@@ -861,18 +861,18 @@ SUFFIX(go_exponential_regression) (DOUBLE **xss, int dim,
SUFFIX(go_regression_stat_t) *regression_stat)
{
DOUBLE *log_ys;
- RegressionResult result;
+ GORegressionResult result;
int i;
- g_return_val_if_fail (dim >= 1, REG_invalid_dimensions);
- g_return_val_if_fail (n >= 1, REG_invalid_dimensions);
+ g_return_val_if_fail (dim >= 1, GO_REG_invalid_dimensions);
+ g_return_val_if_fail (n >= 1, GO_REG_invalid_dimensions);
log_ys = g_new (DOUBLE, n);
for (i = 0; i < n; i++)
if (ys[i] > 0)
log_ys[i] = SUFFIX(log) (ys[i]);
else {
- result = REG_invalid_data;
+ result = GO_REG_invalid_data;
goto out;
}
@@ -914,9 +914,9 @@ SUFFIX(go_exponential_regression) (DOUBLE **xss, int dim,
* Fits to "y = b * x1^m1 * ... * xd^md " or equivalently to
* "log y = log b + m1 * log x1 + ... + md * log xd".
*
- * Returns: #RegressionResult as above.
+ * Returns: #GORegressionResult as above.
**/
-RegressionResult
+GORegressionResult
SUFFIX(go_power_regression) (DOUBLE **xss, int dim,
const DOUBLE *ys, int n,
gboolean affine,
@@ -924,18 +924,18 @@ SUFFIX(go_power_regression) (DOUBLE **xss, int dim,
SUFFIX(go_regression_stat_t) *regression_stat)
{
DOUBLE *log_ys, **log_xss = NULL;
- RegressionResult result;
+ GORegressionResult result;
int i, j;
- g_return_val_if_fail (dim >= 1, REG_invalid_dimensions);
- g_return_val_if_fail (n >= 1, REG_invalid_dimensions);
+ g_return_val_if_fail (dim >= 1, GO_REG_invalid_dimensions);
+ g_return_val_if_fail (n >= 1, GO_REG_invalid_dimensions);
log_ys = g_new (DOUBLE, n);
for (i = 0; i < n; i++)
if (ys[i] > 0)
log_ys[i] = SUFFIX(log) (ys[i]);
else {
- result = REG_invalid_data;
+ result = GO_REG_invalid_data;
goto out;
}
@@ -945,7 +945,7 @@ SUFFIX(go_power_regression) (DOUBLE **xss, int dim,
if (xss[i][j] > 0)
log_xss[i][j] = SUFFIX(log) (xss[i][j]);
else {
- result = REG_invalid_data;
+ result = GO_REG_invalid_data;
goto out;
}
@@ -990,9 +990,9 @@ SUFFIX(go_power_regression) (DOUBLE **xss, int dim,
*
* (Errors: less than two points, all points on a vertical line, non-positive x data.)
*
- * Returns: #RegressionResult as above.
+ * Returns: #GORegressionResult as above.
**/
-RegressionResult
+GORegressionResult
SUFFIX(go_logarithmic_regression) (DOUBLE **xss, int dim,
const DOUBLE *ys, int n,
gboolean affine,
@@ -1000,11 +1000,11 @@ SUFFIX(go_logarithmic_regression) (DOUBLE **xss, int dim,
SUFFIX(go_regression_stat_t) *regression_stat)
{
DOUBLE **log_xss;
- RegressionResult result;
+ GORegressionResult result;
int i, j;
- g_return_val_if_fail (dim >= 1, REG_invalid_dimensions);
- g_return_val_if_fail (n >= 1, REG_invalid_dimensions);
+ g_return_val_if_fail (dim >= 1, GO_REG_invalid_dimensions);
+ g_return_val_if_fail (n >= 1, GO_REG_invalid_dimensions);
ALLOC_MATRIX (log_xss, dim, n);
for (i = 0; i < dim; i++)
@@ -1012,7 +1012,7 @@ SUFFIX(go_logarithmic_regression) (DOUBLE **xss, int dim,
if (xss[i][j] > 0)
log_xss[i][j] = SUFFIX(log) (xss[i][j]);
else {
- result = REG_invalid_data;
+ result = GO_REG_invalid_data;
goto out;
}
@@ -1065,10 +1065,10 @@ SUFFIX(go_logarithmic_regression) (DOUBLE **xss, int dim,
*
* (Requires: at least 3 different x values, at least 3 different y values.)
*
- * Returns: #RegressionResult as above.
+ * Returns: #GORegressionResult as above.
*/
-RegressionResult
+GORegressionResult
SUFFIX(go_logarithmic_fit) (DOUBLE *xs, const DOUBLE *ys, int n, DOUBLE *res)
{
SUFFIX(point_cloud_measure_type) point_cloud_measures;
@@ -1078,7 +1078,7 @@ SUFFIX(go_logarithmic_fit) (DOUBLE *xs, const DOUBLE *ys, int n, DOUBLE *res)
/* Store useful measures for using them here and in subfunctions.
* The checking of n is paranoid -- the calling function should
* have cared for that. */
- g_return_val_if_fail (n > 2, REG_invalid_dimensions);
+ g_return_val_if_fail (n > 2, GO_REG_invalid_dimensions);
result = SUFFIX(go_range_min) (xs, n, &(point_cloud_measures.min_x));
result = SUFFIX(go_range_max) (xs, n, &(point_cloud_measures.max_x));
result = SUFFIX(go_range_min) (ys, n, &(point_cloud_measures.min_y));
@@ -1090,7 +1090,7 @@ SUFFIX(go_logarithmic_fit) (DOUBLE *xs, const DOUBLE *ys, int n, DOUBLE *res)
point_cloud_measures.max_y) &&
(point_cloud_measures.min_x !=
point_cloud_measures.max_x)),
- REG_invalid_data);
+ GO_REG_invalid_data);
/* less than 3 different ys */
for (i=0; i<n; i++) {
if ((ys[i] != point_cloud_measures.min_y) &&
@@ -1099,7 +1099,7 @@ SUFFIX(go_logarithmic_fit) (DOUBLE *xs, const DOUBLE *ys, int n, DOUBLE *res)
break;
}
}
- g_return_val_if_fail (more_2_y, REG_invalid_data);
+ g_return_val_if_fail (more_2_y, GO_REG_invalid_data);
/* less than 3 different xs */
for (i=0; i<n; i++) {
if ((xs[i] != point_cloud_measures.min_x) &&
@@ -1108,7 +1108,7 @@ SUFFIX(go_logarithmic_fit) (DOUBLE *xs, const DOUBLE *ys, int n, DOUBLE *res)
break;
}
}
- g_return_val_if_fail (more_2_x, REG_invalid_data);
+ g_return_val_if_fail (more_2_x, GO_REG_invalid_data);
/* no errors */
result = SUFFIX(log_fitting) (xs, ys, n, res, &point_cloud_measures);
@@ -1162,7 +1162,7 @@ SUFFIX(go_regression_stat_destroy) (SUFFIX(go_regression_stat_t) *regression_sta
*
* See the header file for more information.
*/
-static RegressionResult
+static GORegressionResult
SUFFIX(derivative) (SUFFIX(GORegressionFunction) f,
DOUBLE *df,
DOUBLE *x, /* Only one point, not the whole data set. */
@@ -1170,19 +1170,19 @@ SUFFIX(derivative) (SUFFIX(GORegressionFunction) f,
int index)
{
DOUBLE y1, y2;
- RegressionResult result;
+ GORegressionResult result;
DOUBLE par_save = par[index];
par[index] = par_save - DELTA;
result = (*f) (x, par, &y1);
- if (result != REG_ok) {
+ if (result != GO_REG_ok) {
par[index] = par_save;
return result;
}
par[index] = par_save + DELTA;
result = (*f) (x, par, &y2);
- if (result != REG_ok) {
+ if (result != GO_REG_ok) {
par[index] = par_save;
return result;
}
@@ -1195,7 +1195,7 @@ SUFFIX(derivative) (SUFFIX(GORegressionFunction) f,
*df = (y2 - y1) / (2 * DELTA);
par[index] = par_save;
- return REG_ok;
+ return GO_REG_ok;
}
/*
@@ -1216,7 +1216,7 @@ SUFFIX(derivative) (SUFFIX(GORegressionFunction) f,
* This value is not very meaningful without the sigmas. However, it is
* still useful for the fit.
*/
-static RegressionResult
+static GORegressionResult
SUFFIX(chi_squared) (SUFFIX(GORegressionFunction) f,
DOUBLE ** xvals, /* The entire data set. */
DOUBLE *par,
@@ -1226,13 +1226,13 @@ SUFFIX(chi_squared) (SUFFIX(GORegressionFunction) f,
DOUBLE *chisq) /* Chi Squared */
{
int i;
- RegressionResult result;
+ GORegressionResult result;
DOUBLE tmp, y;
*chisq = 0;
for (i = 0; i < x_dim; i++) {
result = f (xvals[i], par, &y);
- if (result != REG_ok)
+ if (result != GO_REG_ok)
return result;
tmp = (yvals[i] - y ) / (sigmas ? sigmas[i] : 1);
@@ -1240,7 +1240,7 @@ SUFFIX(chi_squared) (SUFFIX(GORegressionFunction) f,
*chisq += tmp * tmp;
}
- return REG_ok;
+ return GO_REG_ok;
}
@@ -1252,7 +1252,7 @@ SUFFIX(chi_squared) (SUFFIX(GORegressionFunction) f,
* This is a simple adaptation of the derivative() function specific to
* the Chi Squared.
*/
-static RegressionResult
+static GORegressionResult
SUFFIX(chi_derivative) (SUFFIX(GORegressionFunction) f,
DOUBLE *dchi,
DOUBLE **xvals, /* The entire data set. */
@@ -1263,19 +1263,19 @@ SUFFIX(chi_derivative) (SUFFIX(GORegressionFunction) f,
int x_dim)
{
DOUBLE y1, y2;
- RegressionResult result;
+ GORegressionResult result;
DOUBLE par_save = par[index];
par[index] = par_save - DELTA;
result = SUFFIX(chi_squared) (f, xvals, par, yvals, sigmas, x_dim, &y1);
- if (result != REG_ok) {
+ if (result != GO_REG_ok) {
par[index] = par_save;
return result;
}
par[index] = par_save + DELTA;
result = SUFFIX(chi_squared) (f, xvals, par, yvals, sigmas, x_dim, &y2);
- if (result != REG_ok) {
+ if (result != GO_REG_ok) {
par[index] = par_save;
return result;
}
@@ -1288,7 +1288,7 @@ SUFFIX(chi_derivative) (SUFFIX(GORegressionFunction) f,
*dchi = (y2 - y1) / (2 * DELTA);
par[index] = par_save;
- return REG_ok;
+ return GO_REG_ok;
}
/*
@@ -1319,7 +1319,7 @@ SUFFIX(chi_derivative) (SUFFIX(GORegressionFunction) f,
* r -> Positive constant. It's value is altered during the LM procedure.
*/
-static RegressionResult
+static GORegressionResult
SUFFIX(coefficient_matrix) (DOUBLE **A, /* Output matrix. */
SUFFIX(GORegressionFunction) f,
DOUBLE **xvals, /* The entire data set. */
@@ -1331,7 +1331,7 @@ SUFFIX(coefficient_matrix) (DOUBLE **A, /* Output matrix. */
DOUBLE r)
{
int i, j, k;
- RegressionResult result;
+ GORegressionResult result;
DOUBLE df_i, df_j;
DOUBLE sum, sigma;
@@ -1342,12 +1342,12 @@ SUFFIX(coefficient_matrix) (DOUBLE **A, /* Output matrix. */
for (k = 0; k < x_dim; k++) {
result = SUFFIX(derivative) (f, &df_i, xvals[k],
par, i);
- if (result != REG_ok)
+ if (result != GO_REG_ok)
return result;
result = SUFFIX(derivative) (f, &df_j, xvals[k],
par, j);
- if (result != REG_ok)
+ if (result != GO_REG_ok)
return result;
sigma = (sigmas ? sigmas[k] : 1);
@@ -1359,7 +1359,7 @@ SUFFIX(coefficient_matrix) (DOUBLE **A, /* Output matrix. */
}
}
- return REG_ok;
+ return GO_REG_ok;
}
@@ -1382,7 +1382,7 @@ SUFFIX(coefficient_matrix) (DOUBLE **A, /* Output matrix. */
*/
/* FIXME: I am not happy with the behaviour with infinite errors. */
-static RegressionResult
+static GORegressionResult
SUFFIX(parameter_errors) (SUFFIX(GORegressionFunction) f,
DOUBLE **xvals, /* The entire data set. */
DOUBLE *par,
@@ -1392,7 +1392,7 @@ SUFFIX(parameter_errors) (SUFFIX(GORegressionFunction) f,
int p_dim, /* Number of parameters. */
DOUBLE *errors)
{
- RegressionResult result;
+ GORegressionResult result;
DOUBLE **A;
int i;
@@ -1400,7 +1400,7 @@ SUFFIX(parameter_errors) (SUFFIX(GORegressionFunction) f,
result = SUFFIX(coefficient_matrix) (A, f, xvals, par, yvals, sigmas,
x_dim, p_dim, 0);
- if (result == REG_ok) {
+ if (result == GO_REG_ok) {
for (i = 0; i < p_dim; i++)
/* FIXME: these were "[i][j]" which makes no sense. */
errors[i] = (A[i][i] != 0
@@ -1437,7 +1437,7 @@ SUFFIX(parameter_errors) (SUFFIX(GORegressionFunction) f,
* chi -> Chi Squared of the final result. This value is not very
* meaningful without the sigmas.
*/
-RegressionResult
+GORegressionResult
SUFFIX(go_non_linear_regression) (SUFFIX(GORegressionFunction) f,
DOUBLE **xvals, /* The entire data set. */
DOUBLE *par,
@@ -1453,11 +1453,11 @@ SUFFIX(go_non_linear_regression) (SUFFIX(GORegressionFunction) f,
DOUBLE *dpar;
DOUBLE *tmp_par;
DOUBLE chi_pre, chi_pos, dchi;
- RegressionResult result;
+ GORegressionResult result;
int i, count;
result = SUFFIX(chi_squared) (f, xvals, par, yvals, sigmas, x_dim, &chi_pre);
- if (result != REG_ok)
+ if (result != GO_REG_ok)
return result;
ALLOC_MATRIX (A, p_dim, p_dim);
@@ -1478,7 +1478,7 @@ SUFFIX(go_non_linear_regression) (SUFFIX(GORegressionFunction) f,
*/
result = SUFFIX(chi_derivative) (f, &dchi, xvals, par, i,
yvals, sigmas, x_dim);
- if (result != REG_ok)
+ if (result != GO_REG_ok)
goto out;
b[i] = - dchi;
@@ -1486,11 +1486,11 @@ SUFFIX(go_non_linear_regression) (SUFFIX(GORegressionFunction) f,
result = SUFFIX(coefficient_matrix) (A, f, xvals, par, yvals,
sigmas, x_dim, p_dim, r);
- if (result != REG_ok)
+ if (result != GO_REG_ok)
goto out;
result = SUFFIX(linear_solve) (A, b, p_dim, dpar);
- if (result != REG_ok)
+ if (result != GO_REG_ok)
goto out;
for(i = 0; i < p_dim; i++)
@@ -1498,7 +1498,7 @@ SUFFIX(go_non_linear_regression) (SUFFIX(GORegressionFunction) f,
result = SUFFIX(chi_squared) (f, xvals, tmp_par, yvals, sigmas,
x_dim, &chi_pos);
- if (result != REG_ok)
+ if (result != GO_REG_ok)
goto out;
#ifdef DEBUG
@@ -1524,7 +1524,7 @@ SUFFIX(go_non_linear_regression) (SUFFIX(GORegressionFunction) f,
result = SUFFIX(parameter_errors) (f, xvals, par, yvals, sigmas,
x_dim, p_dim, errors);
- if (result != REG_ok)
+ if (result != GO_REG_ok)
goto out;
*chi = chi_pos;
diff --git a/goffice/math/go-regression.h b/goffice/math/go-regression.h
index 31e47e7..b4bac60 100644
--- a/goffice/math/go-regression.h
+++ b/goffice/math/go-regression.h
@@ -6,14 +6,14 @@
G_BEGIN_DECLS
typedef enum {
- REG_ok,
- REG_invalid_dimensions,
- REG_invalid_data,
- REG_not_enough_data,
- REG_near_singular_good, /* Probably good result */
- REG_near_singular_bad, /* Probably bad result */
- REG_singular
-} RegressionResult;
+ GO_REG_ok,
+ GO_REG_invalid_dimensions,
+ GO_REG_invalid_data,
+ GO_REG_not_enough_data,
+ GO_REG_near_singular_good, /* Probably good result */
+ GO_REG_near_singular_bad, /* Probably bad result */
+ GO_REG_singular
+} GORegressionResult;
typedef struct {
double *se; /* SE for each parameter estimator */
@@ -38,50 +38,50 @@ typedef struct {
go_regression_stat_t *go_regression_stat_new (void);
void go_regression_stat_destroy (go_regression_stat_t *regression_stat);
-RegressionResult go_linear_regression (double **xss, int dim,
+GORegressionResult go_linear_regression (double **xss, int dim,
const double *ys, int n,
gboolean affine,
double *res,
go_regression_stat_t *stat);
-RegressionResult go_exponential_regression (double **xss, int dim,
+GORegressionResult go_exponential_regression (double **xss, int dim,
const double *ys, int n,
gboolean affine,
double *res,
go_regression_stat_t *stat);
-RegressionResult go_power_regression (double **xss, int dim,
+GORegressionResult go_power_regression (double **xss, int dim,
const double *ys, int n,
gboolean affine,
double *res,
go_regression_stat_t *stat);
-RegressionResult go_logarithmic_regression (double **xss, int dim,
+GORegressionResult go_logarithmic_regression (double **xss, int dim,
const double *ys, int n,
gboolean affine,
double *res,
go_regression_stat_t *stat);
/* Final accuracy of c is: width of x-range rounded to the next smaller
- * (10^integer), the result times LOGFIT_C_ACCURACY.
+ * (10^integer), the result times GO_LOGFIT_C_ACCURACY.
* If you change it, remember to change the help-text for LOGFIT.
* FIXME: Is there a way to stringify this macros value for the help-text? */
-#define LOGFIT_C_ACCURACY 0.000001
+#define GO_LOGFIT_C_ACCURACY 0.000001
/* Stepwidth for testing for sign is: width of x-range
- * times LOGFIT_C_STEP_FACTOR. Value is tested a bit. */
-#define LOGFIT_C_STEP_FACTOR 0.05
+ * times GO_LOGFIT_C_STEP_FACTOR. Value is tested a bit. */
+#define GO_LOGFIT_C_STEP_FACTOR 0.05
/* Width of fitted c-range is: width of x-range
- * times LOGFIT_C_RANGE_FACTOR. Value is tested a bit.
+ * times GO_LOGFIT_C_RANGE_FACTOR. Value is tested a bit.
* Point clouds with a local minimum of squared residuals outside the fitted
* c-range are very weakly bent. */
-#define LOGFIT_C_RANGE_FACTOR 100
+#define GO_LOGFIT_C_RANGE_FACTOR 100
-RegressionResult go_logarithmic_fit (double *xs,
+GORegressionResult go_logarithmic_fit (double *xs,
const double *ys, int n,
double *res);
-typedef RegressionResult (*GORegressionFunction) (double * x, double * params, double *f);
+typedef GORegressionResult (*GORegressionFunction) (double * x, double * params, double *f);
-RegressionResult go_non_linear_regression (GORegressionFunction f,
+GORegressionResult go_non_linear_regression (GORegressionFunction f,
double **xvals,
double *par,
double *yvals,
@@ -119,33 +119,33 @@ typedef struct {
go_regression_stat_tl *go_regression_stat_newl (void);
void go_regression_stat_destroyl (go_regression_stat_tl *regression_stat);
-RegressionResult go_linear_regressionl (long double **xss, int dim,
+GORegressionResult go_linear_regressionl (long double **xss, int dim,
const long double *ys, int n,
gboolean affine,
long double *res,
go_regression_stat_tl *stat);
-RegressionResult go_exponential_regressionl (long double **xss, int dim,
+GORegressionResult go_exponential_regressionl (long double **xss, int dim,
const long double *ys, int n,
gboolean affine,
long double *res,
go_regression_stat_tl *stat);
-RegressionResult go_power_regressionl (long double **xss, int dim,
+GORegressionResult go_power_regressionl (long double **xss, int dim,
const long double *ys, int n,
gboolean affine,
long double *res,
go_regression_stat_tl *stat);
-RegressionResult go_logarithmic_regressionl (long double **xss, int dim,
+GORegressionResult go_logarithmic_regressionl (long double **xss, int dim,
const long double *ys, int n,
gboolean affine,
long double *res,
go_regression_stat_tl *stat);
-RegressionResult go_logarithmic_fitl (long double *xs,
+GORegressionResult go_logarithmic_fitl (long double *xs,
const long double *ys, int n,
long double *res);
-typedef RegressionResult (*GORegressionFunctionl) (long double * x, long double * params, long double *f);
+typedef GORegressionResult (*GORegressionFunctionl) (long double * x, long double * params, long double *f);
-RegressionResult go_non_linear_regressionl (GORegressionFunctionl f,
+GORegressionResult go_non_linear_regressionl (GORegressionFunctionl f,
long double **xvals,
long double *par,
long double *yvals,
diff --git a/plugins/reg_linear/gog-lin-reg.c b/plugins/reg_linear/gog-lin-reg.c
index 1ee2cc4..612ec43 100644
--- a/plugins/reg_linear/gog-lin-reg.c
+++ b/plugins/reg_linear/gog-lin-reg.c
@@ -61,10 +61,10 @@ gog_lin_reg_curve_update (GogObject *obj)
used = (GOG_LIN_REG_CURVE_GET_CLASS(rc))->build_values (rc, x_vals, y_vals, nb);
if (used > 1) {
go_regression_stat_t *stats = go_regression_stat_new ();
- RegressionResult res =
+ GORegressionResult res =
(GOG_LIN_REG_CURVE_GET_CLASS(rc))->lin_reg_func (rc->x_vals, rc->dims,
rc->y_vals, used, rc->affine, rc->base.a, stats);
- if (res == REG_ok) {
+ if (res == GO_REG_ok) {
rc->base.R2 = stats->sqr_r;
} else for (nb = 0; nb <= rc->dims; nb++)
rc->base.a[nb] = go_nan;
diff --git a/plugins/reg_linear/gog-lin-reg.h b/plugins/reg_linear/gog-lin-reg.h
index 160ad15..53368d3 100644
--- a/plugins/reg_linear/gog-lin-reg.h
+++ b/plugins/reg_linear/gog-lin-reg.h
@@ -37,7 +37,7 @@ typedef struct {
typedef struct {
GogRegCurveClass base;
- RegressionResult (*lin_reg_func) (double **xss, int dim,
+ GORegressionResult (*lin_reg_func) (double **xss, int dim,
const double *ys, int n,
gboolean affine,
double *res,
diff --git a/plugins/reg_logfit/gog-logfit.c b/plugins/reg_logfit/gog-logfit.c
index 0bf94c6..12cd6f2 100644
--- a/plugins/reg_logfit/gog-logfit.c
+++ b/plugins/reg_logfit/gog-logfit.c
@@ -64,9 +64,9 @@ gog_log_fit_curve_update (GogObject *obj)
used++;
}
if (used > 4) {
- RegressionResult res = go_logarithmic_fit (tx_vals, ty_vals,
+ GORegressionResult res = go_logarithmic_fit (tx_vals, ty_vals,
used, rc->a);
- if (res == REG_ok) {
+ if (res == GO_REG_ok) {
go_range_devsq (ty_vals, used, &x);
rc->R2 = (x - rc->a[4]) / x;
} else for (nb = 0; nb < 5; nb++)
[
Date Prev][
Date Next] [
Thread Prev][
Thread Next]
[
Thread Index]
[
Date Index]
[
Author Index]