
Comparison of indexers

Beagle, JIndex, metaTracker, Strigi

Michal Pryc, Xusheng Hou

Sun Microsystems Ltd., Ireland

November, 2006

Updated: December, 2006

Table of Contents
1. Introduction...3
2. Indexers...4
3. Test environment ..5

3.1 Machine..5
3.2 CPU..5
3.3 RAM...5
3.4 Disk..5
3.5 Kernel...5
3.6 GCC..5
3.7 libc..5

4. Supported data sources..6
5. IDLE Daemon...8

5.1 Daemon memory..8
5.2 Daemon startup times..10

6. Indexing...11
6.1 Data set...11
6.2 Indexing TXT files...11
6.3 CPU usage - indexing PDF...14

7. Searching...15
7.1 Terms..16

7.1.1 Searching fields...17
7.1.2 Term modifiers...19
7.1.3 Boolean operators...20
7.1.4 Grouping, Field Grouping and Term order...21
7.1.5 Special characters...21

8. Install, build and support...22
8.1 Building & Installing..22
8.2 Documentation...22

9. Summary...23
9.1 Beagle...24
9.2 JIndex...24
9.3 Tracker..25
9.4 Strigi...25

10. Update...26
11. Appendixes..26

11.1 CPU usage script..26
12. References...27

2

1. Introduction
There has been a great deal of interest in providing desktop search to users in recent years. You only

have to look at Microsoft's Vista and Mac OS X to see how popular such features are in commercial

desktop environments. The reason is obvious, with the increase in hard drive space on the users

machines, the proliferation of email, web browsing, the use of on line chat and so on, desktop users are

drowning in a sea of information. We need to support our users by providing them with powerful

desktop search facilities, capable of indexing and searching all these information sources.

A number of search engines are available for the Gnome and KDE desktop environments, many based

around the open source Lucene search engine. It would be tremendous if we could adopt one of these

search engines for the Gnome platform, so we can provide the type of integrated search experience for

our users that they really need, irrespective of which distort they are using. So to help in this assessment

we have carried out an comparison of four different Unix based indexers. Some of the key features we

are looking at assessing are:

Performance – indexes should be small, indexing itself should have minimal impact on CPU, memory

footprint should be as small as possible, searching should be very fast.

Usable – search clients should be easy to use and intuitive, at the same time should allow powerful

search.

Extensible – must be able to easily add in new information sources and document filters to extend the

indexer.

Shareable – should be possible to share indices if users want to search across multiple indices on a

network, both local and remote.

Integrated– should support appropriate API's to allow it to be fully integrated into the desktop and key

desktop applications.

Note: Some of the indexers we tested are in very active development and are changing rapidly. We have

included an update section to reflect these changes.

3

2. Indexers
Index search tools, that were tested

● Beagle - version 0.2.7

Homepage: http://beagle-project.org

IRC: #dashboard on irc.gimp.org

Mailing list: http://mail.gnome.org/mailman/listinfo/dashboard-hackers

License: A mix of the X11/MIT License and the Apache License

● JIndex - Internally (Sun Microsystems) modified version 0.1

Homepage: http://jindex.berlios.de,

Modified version: is available on SWAN internal network:

 http://jdswiki.ireland.sun.com/twiki/bin/view/JDS/JIndexProject

License: LGPL

● Meta Tracker - version 0.5.0 - CVS from 08 November 2006

Homepage: http://www.gnome.org/projects/tracker/

IRC: #tracker on irc.gnome.org

Mailing list: http://mail.gnome.org/mailman/subscribe/tracker-list

License: GPL

● Strigi - version 0.3.8

Homepage: http://www.vandenoever.info/software/strigi

IRC: #strigi on irc.freenode.net

Wiki page: http://strigi.sf.net

License: LGPL

Mailing lists:

■ http://lists.sourceforge.net/mailman/listinfo/strigi-user

■ http://lists.sourceforge.net/mailman/listinfo/strigi-devel

4

3. Test environment

3.1 Machine

• Vendor/Model: IBM / Thinkpad T23

3.2 CPU

• Vendor: INTEL
• Model: Intel(R) Pentium(R) III Mobile CPU 1133MHz
• Core Clock: 1130.500 MHz
• Motherboard vendor: IBM
• Mbd. model: 2647-8RU
• Mbd. chipset: Intel 830MP
• Bus type / clock: PCI / 133 MHz
• Cache total: 512 KB
• SMP (number of processors): 1

3.3 RAM

• Total: 256 MB
• Type: SDRAM - non-ECC - 133MHz

3.4 Disk

• Vendor/Model: SAMSUNG / MP0603H 60.0 GB
• Interface: IDE / EIDE
• Driver/Settings: udma5
• Timing cached reads: 864 MB in 2.00 seconds = 432 MB/sec
• Timing buffered disk reads: 74 MB in 3.06 seconds = 24.18 MB/sec

3.5 Kernel

• Version: 2.6.17-gentoo-r8
• Swap size: 1028.16 MB

3.6 GCC

• Version: (Gentoo 4.1.1)
• Options:
 /var/tmp/portage/gcc-4.1.1/work/gcc-4.1.1/configure --prefix=/usr --bindir=/usr/i686-pc-linux-gnu/gcc\
-bin/4.1.1 --includedir=/usr/lib/gcc/i686-pc-linux-gnu/4.1.1/include --datadir=/usr/share/gcc-data/i686-pc-\
linux-gnu/4.1.1 --mandir=/usr/share/gcc-data/i686-pc-linux-gnu/4.1.1/man --infodir=/usr/share/gcc-data/i686\
-pc-linux-gnu/4.1.1/info --with-gxx-include-dir=/usr/lib/gcc/i686-pc-linux-gnu/4.1.1/include/g++-v4 --host=\
i686-pc-linux-gnu --build=i686-pc-linux-gnu --disable-altivec --enable-nls --without-included-gettext --with\
-system-zlib --disable-checking --disable-werror --disable-libunwind-exceptions --disable-multilib --disable\
-libmudflap --disable-libssp --disable-libgcj --enable-languages=c,c++,fortran --enable-shared --enable\
-threads=posix --enable-__cxa_atexit --enable-clocale=gnu

3.7 libc

• Version: 2.4-r3

5

4. Supported data sources
The table is based on the information taken from the project home pages and from the mailing lists. It

shows, what can be indexed and which type of the data types are supported. The comments column,

contains more precise information about data source.

Y = yes; P = in progress; F = planned in the next few months

data source comments Beagle JIndex Tracker Strigi

Plain text Y Y Y Y

File system Y Y

Evolution mail, calendar, and addressbook Y P

Thunderbird mail, news, RSS feeds, and addressbook Y P

Gaim and Kopete Instant messaging Y Y F Y

Firefox and Epiphany web pages Y F Y

Konqueror web pages Y Y

Blam, Liferea and
Akregator

RSS Feeds Y

Tomboy notes Y Y F Y

KMail mail Y Y

KNotes notes Y Y

OpenOffice.org documents, presentations, spreadsheets Y Y- (v1.4) Y

OpenDocument odt, ods, odp Y Y

Microsoft Office doc, xls, ppt Y Y Y

AbiWord abw Y Y Y

Rich Text Format rtf Y Y Y

PDF pdf Y Y Y Y

HTML xhtml, html, htm Y Y Y Y

Source code C, C++, C#, Fortran, Java, JavaScript, Lisp, Matlab,
Pascal, Perl, PHP, Python, Ruby, Scilab and Shell scripts

Y Y
(java only)

Y Y

Texinfo Y Y

Man pages Y Y

Docbook Y F Y

Monodoc Y F Y

Windows help files chm Y

Images jpeg, png, bmp, tiff, gif Y Y Y Y
(png only)

Audio mp3, ogg, flac Y Y
(mp3 only)

Y Y

Video mpeg, asf, wmv, mng, mp4, quicktime and other formats
supported by mplayer

Y Y

Application launchers Y Y F Y

Linux packages ebuild, rpm Y F Y

Generic XSLT files Y Y Y

Table 1: Supported data sources

6

The architecture of Beagle, Strigi and metaTracker allows one to use plug ins for additional sources.

It would be great to see all of the indexers agree on a common plug-in API to allow plug-ins to be

shared across the different indexers. This would allow the number of supported data sources to grow

much more quickly for all the indexers. The first discussion on the common searching API over DBUS

was started by the maintainer of the Strigi project1, but maybe now is the time to start discussion on the

common data source plugin API.

The Table 2 presents external libraries or programs that are used to index the data

data source Beagle JIndex Tracker Strigi

Emails gmime-sharp (attachments and nested
files) using jstream

MS Word wv1, optionally gsf-sharp (ole2) based on code
from libgsf

wvWare

MS Excel ssindex - external program
from gnumeric

(ole2) based on code
from libgsf

MS Powerpoint gsf-sharp (ole2) based on code
from libgsf

PDF pdfinfo, pdftotex -external
program from xpdf

PDFBox-0.7.2.jar
itext-1.4.4.jar

With code from xpdf
0.93
www.foolabs.com/xpdf/

pdftotext
Poppler-utils
(based on libpoppler)

HTML modified HtmlAgilityPack
included in the Beagle
source tree

htmlparser.jar
itext-1.4.4.jar

Code from libhtmlparse
0.1.13
http://msalem.translator.
cx/libhtmlparse.html

Windows help files chmlib

Image files custom code, mostly
copied from F-Spot

Audio files entagged-sharp, included
in the Beagle source tree

(mp3) sabercat.jar (ogg) using ogg-vorbis

Video files MPlayer or Totem -
external programs

(asp) based on code
from xine
(avi,mpeg) based on
code from avinfo 1.0.0
alpha 11 and bitcollider
0.6.0

RPM rpm

Compressed files (tar, tar.gz,deb)Using
zlib

libz, libbz2

Table 2: External libraries used to index data

1 http://lists.kde.org/?l=kde-core-devel&m=116163130325537&w=2

7

http://www.foolabs.com/xpdf/
http://msalem.translator.cx/libhtmlparse.html
http://msalem.translator.cx/libhtmlparse.html

5. IDLE Daemon

5.1 Daemon memory

The Linux top command was used to produce the charts below. For each daemon, three measurements

were made. First was the first start of the daemon after system startup, second was made just after

stopping the daemon and third, after the second stop of the daemon.

Those charts shows that Strigi uses the smallest amount of memory, quite the same is Tracker. JIndex is

written in Java, so running JVM consumes a lot more memory, but Beagle which is running on top of

Mono is not much better.

The top command is not very good for those types of comparison, cause it takes data from the /proc.

Exmap is a tool that allows accurately determine how much physical memory is used by individual

process and shared libraries. It counts number of processes that uses shared libraries and with this

information can calculate the effective memory usage of the process. In the memory tests swap partition

was not used. The chart below shows effective resident size of the processes, which means that this is

the “corrected” version of the resident memory size.

8

First run Second run Third run

0.00%
1.00%
2.00%
3.00%
4.00%
5.00%
6.00%
7.00%
8.00%
9.00%

10.00%
11.00%
12.00%
13.00%
14.00%
15.00%
16.00%

The non-swapped physical
memory a task has used - [%]

Beagle
JIndex

Tracker
Strigi

First run Second run Third run

0
2500
5000
7500

10000
12500
15000
17500
20000
22500
25000
27500
30000
32500
35000
37500
40000

33792

25600 25600

34816

37888
35840

2652 2484 24842448 2448 2456

The non-swapped physical
memory a task has used - [kb]

Beagle

JIndex

Tracker

Strigi

First run Second run Third run

0

25

50

75

100

125

150

175

200

225

51
39 39

210
216

209

35
26 26

11 11 11

The swapped out portion of a task’s
total virtual memory image - [MB]

Beagle

JIndex

Tracker
Strigi

We can see that Strigi(strigid) uses the smallest amount of physical memory. Tracker,which has three

mode Normal mode(trackerd), Turbo mode(trackerd-t) and low-memory mode(trackerd-m), also use

very small amount of the memory, but JIndex and Beagle are really consuming a lot of it.

It is very hard to compare JIndex and Beagle with the other two indexers, because JIndex uses java

virtual machine while Beagle uses the mono VM. This means that many system resources are taken just

to create running environment for those daemons, however we will try to take shots from memory heap

for both of them.

For Jindex, JConsole from Java Development Kit was used. To connect to the process we need to

specify variable “-Dcom.sun.management.jmxremote”. The results of the modified version are

presented in the screen-shots below. We can see, that in Idle the daemon is using between 1.5Mb to

2.3Mb of the memory. It uses pooling method instead of FAM for getting information about the files,

which causes those “jumps” visible on the chart and also some CPU usage.

9

beagled jindex-java trackerd strigid trackerd -m trackerd -t

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

27500

24727.49

26609.55

1608.09 1389.47 1605.3 1605.3

Effective Resident memory usage - IDLE
[k

b]

Tracking down memory for Beagle was done with heap-shot application. To use it we have to start

mono application with heap-shot profile “mono --profile=heap-shot application.exe” and than voila,

ready. We can see that for all objects around 0.137 Mb was used, which is less than JIndex, but of

course we can not compare it like this, because for the user, system resources used by all processes

required to run application are valuable, which means that we should look at the chart presenting

Effective Resident memory usage.

5.2 Daemon startup times

To determine daemon start times, strace was used. Traced output was reviewed and calculations resulted

in the chart below.

10

First run Second run Third run

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

Daemon start time

Beagle
JIndex

Tracker

Strigi

[s
]

6. Indexing
This section shows, how indexers behave during indexing different type of the data and how they

influence the system resources.

6.1 Data set

Table 3 lists the Data set used for testing. It consists of different types of files that all of the indexers can

handle. The results and tests are described below.

HTML JAVA PNG MP3 PDF TXT TOTAL

Number of files 205 208 6 180 79 164 842

Size of the files 7.9M 1.9M 6.4M 761M 60M 2.8M 834M

Table 3: Data set for testing

Table 4 Shows the results for times and index sizes after indexing the entire data set.

Beagle JIndex Tracker2 Strigi

Time of indexing [min:sec] 16:47 19:12 Normal mode:
12:37

 Turbo mode:
9:34

5:18

Size of the index database 5.7M 6.1M 6.3M 6.3M

Table 4: Times and index size for after indexing all data set

6.2 Indexing TXT files

This test shows how the indexers indexed a set of 10,000 text files. For each indexer the same set of

files was provided. A small script to measure average CPU usage was written. It is attached in the

appendices section. Every 0.5 seconds it retrieved the current CPU usage for the running indexer. The

list that was generated from the script was used to calculate average CPU usage. For Beagle both

beagled and beagled-helper processes were measured, since both are running while indexing.

The charts below represent CPU usage over a period of 2 minutes, while daemons were indexing text

files. We can see that every few seconds beagled-helper daemon was sleeping, Strigi performed the

indexing much faster, but the average CPU usage was the highest. JIndex allows the user to perform

other system tasks almost without noticing that the indexer is running, however it's memory usage is

very high. Tracker can run in three different modes, allowing you to save some resources. Turbo mode

really kills our CPU, while low memory mode does not seem to be much better in managing system

resources than normal mode.

2 Tracker daemon allows to use “-t” or “-m” flag, which enables turbo or low memory mode.

11

The size of the indexed database for text files differs for all indexers. Beagle produced the smallest

database, 50% bigger was JIndex, Strigi 92% bigger and the biggest produced Tracker, which was

almost 126% bigger than beagle database (Table 5).

Beagle JIndex Tracker Strigi

Number/size of TXT files 10 000 / 168MB 10 000 / 168MB 10 000 / 168MB 10 000 / 168MB

Size of the index database 62MB 93MB 140MB 119MB

Time of indexing [hr:min:sec] 02:18:05 03:02:55 03:03:14 00:04:26

CPU TIME [hr:min:sec] 00:12:05 00:09:15 02:22:40 00:03:44

Average CPU usage 8.79%
(beagled process)

0.46%
(beagled-helper process)

5% 77.73% 82.75%

Table 5: Indexing 10 000 text files

Average CPU usage, was calculated, while indexers were performing text indexing. Beagle uses two

processes while indexing text files, so the average CPU usage is for both processes.

The CPU TIME, which is taken from the top command, shows total CPU time that indexer has used

since it started. In fact CPU TIME should equals the time, which indexing process used for the task,

multiplied by average CPU usage. It differs, but differences are very small, and might be caused by

human factor. This tests shows that Tracker have some serious problems with text files, because CPU

TIME was really huge comparing to other indexers (Table 5).

12

0,
5

4,
5

8,
5

12
,5

16
,5

20
,5

24
,5

28
,5

32
,5

36
,5

40
,5

44
,5

48
,5

52
,5

56
,5

60
,5

64
,5

68
,5

72
,5

76
,5

80
,5

84
,5

88
,5

92
,5

96
,5

10
0,

5
10

4,
5

10
8,

5
11

2,
5

11
6,

5

0

10

20

30

40

50

60

70

80

90

100

Beagle indexing TXT files

Time [s]

C
P

U
 u

sa
g

e
 [

%
]

0
,5

4
,5

8
,5

1
2

,5
1

6
,5

2
0

,5
2

4
,5

2
8

,5
3

2
,5

3
6

,5
4

0
,5

4
4

,5
4

8
,5

5
2

,5
5

6
,5

6
0

,5
6

4
,5

6
8

,5
7

2
,5

7
6

,5
8

0
,5

8
4

,5
8

8
,5

9
2

,5
9

6
,5

1
0

0
,5

1
0

4
,5

1
0

8
,5

1
1

2
,5

1
1

6
,5

0

10

20

30

40

50

60

70

80

90

100

Tracker indexing TXT files

Time [s]

C
P

U
 u

sa
ge

 [%
]

0
,5

4
,5

8
,5

1
2

,5
1

6
,5

2
0

,5
2

4
,5

2
8

,5
3

2
,5

3
6

,5
4

0
,5

4
4

,5
4

8
,5

5
2

,5
5

6
,5

6
0

,5
6

4
,5

6
8

,5
7

2
,5

7
6

,5
8

0
,5

8
4

,5
8

8
,5

9
2

,5
9

6
,5

1
0

0
,5

1
0

4
,5

1
0

8
,5

1
1

2
,5

1
1

6
,5

0

10

20

30

40

50

60

70

80

90

100

JIndex indexing TXT files

Time [s]

C
P

U
 u

sa
ge

 [%
]

0
,5

3
,5

6
,5

9
,5

1
2

,5
1

5
,5

1
8

,5
2

1
,5

2
4

,5
2

7
,5

3
0

,5
3

3
,5

3
6

,5
3

9
,5

4
2

,5
4

5
,5

4
8

,5
5

1
,5

5
4

,5
5

7
,5

6
0

,5
6

3
,5

6
6

,5
6

9
,5

7
2

,5
7

5
,5

7
8

,5
8

1
,5

8
4

,5
8

7
,5

9
0

,5
9

3
,5

9
6

,5
9

9
,5

1
0

2
,5

1
0

5
,5

1
0

8
,5

1
1

1
,5

1
1

4
,5

1
1

7
,5

0

10

20

30

40

50

60

70

80

90

100

Strigi indexing TXT files

Time [s]

C
P

U
 u

sa
ge

 [%
]

All tests for the Tracker were made using normal mode. However, the Tracker daemon can run in three

different modes (normal, turbo, low-memory): turbo, which enables faster indexing that may degrade

performance of the rest of the system; or low-memory which uses less memory, but results in slower

indexing. Tests showed that the modes only affect flushing data to the inverted word index, which is

made during indexing. The table below presents tests of these modes on a set of 500 text files (8.5MB).

The size of the index database after indexing was the same for all modes, as one would expect

(7MB).The turbo mode can index text files about 22% faster than the normal mode and 27% faster than

low memory mode (Table 6). Of course nothing is for free and average CPU usage increase dramatically

in turbo mode. This is more suitable for indexing files when the user is not using computer, such as over

night.

trackerd trackerd -t (turbo) trackerd -m (low mem)

Time of indexing [min:sec] 8:35 6:42 9:08

CPU TIME [min:sec] 6:36 6:39 6:31

Average CPU usage 76,71% 99,38% 70,56%

Table 6: Three Tracker modes - indexing 500 text files

To see how indexers were using memory during indexing txt files, again exmap tool was used. From the

10 memory snapshots average was calculated. For Beagle, both processes beagled and beagle-helper

were used for calculations.

13

Beagle Tracker JIndex Strigi

0

10

20

30

40

50

60

70

80

90

100

Average CPU usage
indexing TXT files

A
ve

ra
ge

 C
P

U
 u

sa
g

e
[%

]

Beagle JIndex Tracker Strigi

0

5000

10000

15000

20000

25000

30000

35000

40000

45000
41288.69

35818.354

4726.19333333333 4118.16166666667

Average effective resident memory usage
 during indexing 10 000 text files

[k
b]

JIndex is running in a JVM. To see what memory impact the JIndex program is having on memory,

separated from the effect of having to run a JVM instance on the system, we used JConsole. The

average Heap Memory size for JIndex alone [excluding the memory requirements for the JVM] is

around 12MB, and it shows very low CPU usage.

6.3 CPU usage - indexing PDF

CPU usage is more difficult to measure here, because a lot of child processes like pdftotext, pdfinfo, are

open. So Average CPU usage was calculated for each process and child running. The calculations were

done by measuring each process for some period of time and then the percentage for each process

calculated over this time period. The results, shows that Strigi is the fastest indexing PDF files and the

resultant database index is quite small. However, does it contain the same amount of information that

Tracker and Beagle? Section 7 of this document tries to get answers for this question.

Again CPU usage is the smallest for JIndex (Table 7) and allows one to perform other tasks on the

system at the same time. Tracker (88,06%+10,51%=98,57%) does not allow anything except indexing.

We can see that effective resident memory usage is the best for tracker and the second best for Strigi

which are much better than Beagle and JIndex. The process pdftotext uses almost the same effective

resident memory for all processes, it is obvious, because it is the same application. The same is for the

Average CPU usage per process for pdftotext, the differences are rather small and can be caused by

some flag that the indexer is using while invoking pdftotext or just measurement inaccuracy.

14

Beagle JIndex Tracker Strigi

Number/size of PDF files 50 / 61MB 50 / 61MB 50 / 61MB 50 / 61MB

Size of the index database 1.6MB 0.8MB 2.6MB 1.2MB

Time of indexing [min:sec] 4:24 3:56 4:29 3:20

Average CPU usage per process beagled
0.13%

beagled-helper
2.41%

pdftotext
85.77%
pdfinfo
0.47%

JIndex (java)
70.02%

pdftotext
88.06%
trackerd
10.51%

pdftotext
91.11%
strigid
1.95%

Effective resident memory usage
per process

beagled-helper
20969.28 kb

beagled
19419.80 kb

pdftotext
2940.03 kb

JIndex (java)
55245.35 kb

trackerd
2214.65 kb

pdftotext
2954.12 kb

strigid
4086.3 kb
pdftotext

2934.33 kb

Table 7: Indexing PDF files

7. Searching
The result from the search is not simple comparison of the strings. The way of indexing and querying

the index database affect the result. Two drawings below, presents simplified way of indexing and

searching using the analyzers. In the indexing process those analyzers are responsible for parsing and

tokenizing the input text. During searching analyzer is parsing the query and modifying it to allow

better result. This chapter will compare indexers regarding to different queries and searching algorithms.

15

Index
database

Analyzer

Source
Text Text

Indexing

Query

 Result

Analyzer

Index
database

Searching

Modified query

7.1 Terms

Term queries consists of a single word or a single phase. Those type of queries are the typical for daily

use, and should give the best results. As a default Beagle and Tracker are using stemming algorithms

during search, which basically means that morphological variants of the terms are searched3. It reduces

the words for their stem form of the word – the base.

Beagle have a results limit of 100 which can not be overridden by any flag. So all the queries were

specified to gives results < 100. The table presents the number of files found by each client.

Query Beagle JIndex Tracker Strigi

A Single Term in quote: “bug” 7 8 6 1

A Single Term with big letter in quote: “Bug” 7 8 6 0

A Phrase in quote: “big bug” 1 1 3 0

A Phrase with big letters: “Big bug” 1 1 3 0

A Phase without quote: big bug 3 14 3 1

A Single Term in quote: “acknowledge” 9 8 9 1

Table 8: Sample terms query results - number results found [test set contained 164 text files].

So where those differences comes from? After some research it was found that Strigi does not have

encoding detection and it only indexes files with UTF-8 character encoding.

JIndex had the best results searching for a single term in quotes, it found one file more than Beagle, that

contained an embedded word in a line with different characters “ BUG ”.

The Tracker does not support some encoding like Chinese one, that is why there is difference in search

results. For the Tracker searching phrases in quotes gives more results, because it uses stemming as the

default dropping quotes, so asking for “big bug” will search for stemmed terms “big” AND stemmed

term “bug”. Tracker will not search for exact phrases such as “big bug”, while it simply does not care

about quotes in queries.

After searching for the “acknowledge” term, Beagle and Tracker found the same set of the files, both are

using stemming and both found the file containing “acknowledgment”. What about exact phrases in

quotes?? We attempted to have a precise query for an exact phrase, as indicated by quoting the phrase,

but got back results that should only happen with a query without quotes. So Beagle like Tracker does

not support exact phrase searches.

JIndex found exactly those files that contain the “acknowledge” term. As JIndex does not have

stemming implemented it did not finding variants such as “acknowledgment”. JIndex does have some

other algorithms for fuzzy search, but more about this later.

So now time for a handicap race! To even the odds we will index 100 text files, with a UTF-8 encoding

3 More about steeming: http://en.wikipedia.org/wiki/Stemming

16

that all the indexers including Strigi can handle. No doubt Strigi will have encoding detection in the

next release, but for now lets simplify things a little.

Query Beagle JIndex Tracker Strigi

A Single Term in quote: “quick” 8 8 8 6

A Single Term in quote: “introduction” 13 12 13 11

A Single Term with big letter in quote:
“Quick”

8 8 8 0

A Phrase in quote: “quick introduction” 1 1 1 0

A Phrase in quote: “introduction quick” 0 0 1 0

A Phrase with big letters: “Quick
Introduction”

1 1 1 0

A Phase without quote: quick introduction 1 19 1 1

A Phase without quote: introduction quick 1 19 1 1

A Single Term in quote: “acknowledge” 11 3 11 2

Table 9: Sample terms query results - number results found [test set that all the indexers can handle].

So now we have really confusing set of results. After investigation it was found that Strigi has problems

with indexing files with the terms “quick...” or “introduction.”, so a dot at the end of the word gives two

results less for each query. Again Beagle and Tracker used word stemming to find exactly one more file

(does Tracker uses the same algorithm that Beagle does??) than JIndex. The word in question was

slightly misspelled which is awesome. Strigi does not like big letters in quotes while searching for two

or more terms. Tracker simply ignores quotes that is why it gets a hit for “introduction quick”, with and

without quotes, whereas none of the other indexers do. It is searching for “introduction” AND “quick”,

irrespective of word order. For phrases without quotes JIndex got result 19, because it places OR instead

of AND between terms which is different from the other search clients. Looking at the JIndex results

one could say. “Hang on 8+12 != 19 or I had better go to school again!”, that is correct, but one file

contains both words “quick” AND “introduction” and everyone knows that

f A∨B = f A f B− f A∧B , which gives our combined result of 19 instead of 20.

7.1.1 Searching fields

So searching terms is a piece of cake (yes, I do like cakes), but what about searching for terms and

metadata fields? Where metadata fields contain information about the file being indexed rather than the

content terms, such as date of creation, file type and so on. For example say we want to search for all the

text files that were indexed. We can do so using the Unix find command of course, but with a lot of data

this can be rather time consuming. Searching metadata fields gives us an opportunity to do it in just a

few seconds!

All clients have different syntax for searching these metadata fields, Unfortunately there is no

standardized syntax nor do they have good documentation to explain how to search with these fields.

17

Beagle has a small howto on the web page, JIndex uses the Lucene syntax (this is documented), tracker

is able to use RDF scripts, but again with no standardized name convention, and Strigi is using

something that is similar to CLucene. Strigi and Tracker developers are talking about common query

syntax standardization which would be great4!

To make it a little bit more complicated for the indexers, we carried out our test on 100 text files that

had extensions some of which contained small and big letters. The command: find ./ -name

“*.[tT][xX][tT]”|wc -l printed the result of 100, which should be the same for indexers. The table

below shows the number of documents found, and below that the number query syntax that was used to

get those results, so let's try to find all text files:

Beagle JIndex Tracker Strigi

Result: 100

beagle-query command:
beagle-query --mime text/plain

Result:100

filemimetype:”text/plain”

Result:100

RDF FILE:
<rdfq:Condition>
<rdfq:inSet>
<rdfq:Property
name="File.Format" />
<rdf:String>text/plain</rdf:String>
</rdfq:inSet>
</rdfq:Condition>

Result:87

mimetype:text/plain

Table 10: Sample fields query results , looking for text files in a test set of 100 text files.

Does 13 means bad luck for Strigi? Where are the missing 13 text/plain files, that were indexed? Strigi

uses the Unix file command to check the mime type, so let's use the command:

 for f in `ls` ; do file -i $f ; done

and see what happens. So, file checked all the files, and returned results of text/plain, image/x-3ds,

text/x-c and text/x-java. The strange thing is that files with mime type image/x-3ds contained ASCII

drawings, text/x-java in fact contained some source inside, etc. etc. So, after counting all text/plain files

the result of 89 appeared. This is a little different than 87, but I will not go deeper in this problem. The

Strigi developers should do something about it.

With regard to Tracker, result was good, but which end user would want to learn and write scripts for

searching different types of files? I don't. But it can be a very powerful advanced feature. If they could

wrap up canned field queries in a suitable GUI and allow users to write scripts if they wanted more

complex queries then they could have the best of both worlds.

Other tests were performed using different fields. It showed up some issues with mp3 field data. Only

JIndex could successfully perform searching for mp3 files through the song title field. Although Tracker

have the fields in place, there was no data from mp3 file tags in the database. The same was true for

Beagle and Strigi. These filters should be corrected for the various indexers. Also none of the indexers

4 http://www.mail-archive.com/xdg@lists.freedesktop.org/msg01765.html

18

could find pdf file through the title field.

Strigi's field searches are not case sensitive, which they should be. So searching for filename:*3 will

give the same result as searching for filename:*MP3 or filename:*mp3 or filename:*mP3 or

filename:*Mp3

This shows that Strigi distinguish case sensitive search through the terms, so why not through the fields?

7.1.2 Term modifiers

Term modifiers allows to make more flexible queries. If we don't quite remember the exact term then

we might use one of these modifiers. In the computer world there is a standard regular expression

syntax5, which should be supported by the search clients. We will check if this is supported by the

indexers.

The star “*”, means that we want to search for the term that contains zero or multiple “unknown”

characters. The query “old *man” should give results for the files that contain both “old man” and “old

woman”. Question mark “?” in the query replaces only one character, so you can use “te?t” to search for

the “text” or “test”.

Fuzzy search is more complicated. Only JIndex supports it and the search is based on the Levenshtein

Distance, or Edit Distance algorithm6. So you need to add “~” at the end of the searching term.

Searching returns results that might be relevant, even if the searched term does not appear anywhere in

the text. So searching for “band~” will also find “sand”, “sands” and other relevant words. Fuzzy

search finds one or more substrings of a term or similar terms. On the other hand, stemming results are

quite similar, but uses different types of algorithms and the concept is slightly different. It reduces word

to the base form “stem” and then searches for it. There are many stemming algorithms like Paice/Husk,

Porter, Lovins, Dawson or Krovetz, for more information please refer to the references.

Beagle and Tracker have support for the operator “TO”. Beagle supports only date search, for Tracker

we can write scripts that will allow this type of search. Strigi developers are working to support it.

Boosting, which is supported only by JIndex is important when query contains more than one terms. It is

used to tell the search engine which term is more relevant. It uses “^” in the searching terms.

Query Beagle JIndex Tracker
search client

Tracker
RDF scripts

Strigi

Support for: * NO7 YES
(* can not be at
the beginning)

NO NO YES

5 http://en.wikipedia.org/wiki/Regular_expression
6 http://en.wikipedia.org/wiki/Levenshtein_distance
7 Beagle behaves a little strangely, when asking for “te*s” some files were found and some not, from 130 files which Strigi

and JIndex found, Beagle found only 9. The same problem is with the “?” modifier.

19

Query Beagle JIndex Tracker
search client

Tracker
RDF scripts

Strigi

Support for: ? NO7 YES NO NO YES

Fuzzy search: ~ NO YES NO NO NO

Stemming search YES
(by default)

NO YES
(by default)

YES NO

Support for: TO
date:[20060101 TO 20060201]

[anna TO annb]

date only
(--start <date>
--end <date>)

NO NO YES NO

Support for boosting: ^
ski^5 italy

NO YES NO NO NO

Table 11: Support for query term modifiers

7.1.3 Boolean operators

If we want to go skiing and enjoy plenty of apes ski Guinness, we'll need to use Boolean operators or

we'll get lots of hits for Ireland, which is a little short for snow! So, we can find all the documents that

must have both “ski” AND “Guinness” terms. Or we might be happy with drinking Guinness if there's

no skiing so we could use “ski” OR “Guinness”. Operator “+” tells us that this term must exists

somewhere in the text as in the example where we know that we want go skiing to Italy and drink

Guinness, we could use: +ski +Italy +Guinness. These operators help to give much more precise results.

Each indexer supports at several boolean operators. By default, all indexers except JIndex are using

AND between terms while JIndex uses OR which means that a query for ski france will give the same

results as ski OR france.

Query Beagle JIndex Tracker
search client

Tracker
RDF scripts

Strigi

Support for: AND
(ski AND switzerland)

YES
(by default)

YES YES
(by default)

YES
(rdfq:and)

YES
(by default)

Support for: OR
(ski OR france)

YES YES
(by default)

NO YES
(rdfq:or)

NO

Support for: NOT/-
(ski NOT denmark)

(ski -ireland)

YES YES NO NO YES

Support for: +
(ski +rent +italy)

YES YES NO NO NO

Table 12: Support for Boolean query operators

7.1.4 Grouping, Field Grouping and Term order

Sub queries are useful when we want to control many Boolean operators in a single query and are

supported by JIndex. Tracker also can group fields, but only when using RDF queries.

Term order is only supported by JIndex. It means that first term in the query is the most important and it

20

sorts results in proper order, which is very nice feature.

Query Beagle JIndex Tracker
search client

Tracker RDF
scripts

Strigi

Parentheses for expression grouping
(spain AND party) OR siesta

NO YES NO YES NO

Parentheses for fields grouping
filename:(png OR mp3)

NO YES NO YES NO

Term order NO8 YES NO NO NO

Table 13: Support for query grouping and query field grouping

7.1.5 Special characters

During the indexing and searching, applications are using analyzers to transform the query. Those

transforms might use stop words and omit them. This simply means that the query “the big sandwich”

will be transformed to “big sandwich”. Those stop words might differ and it is important to use the same

set of stop words for indexing and searching, otherwise it will be not possible to get proper result. All

the indexers are using analyzers to support stop words. On the other hand none of the indexers is able to

search through the stop word, so queries like “to”, “or”, “and” does not gives any results.

Sometimes we may want to search for certain special characters, such as those in a math equation, then

the only choice is JIndex, which allows you to search for special characters.

Query Beagle JIndex Tracker
search client

Tracker
RDF scripts

Strigi

Stop words: a, the, and, or NO NO NO NO NO

Special characters:
-+ && || ! () [] {} ^ ~ “ * ? : \

NO with the \
before

the character

NO NO NO

Table 14: Support for special characters in the query

8 Beagle client allows to sort results by relevance, name or modification date

21

8. Install, build and support

8.1 Building & Installing

Beagle JIndex Tracker Strigi

Language C#, which runs on top of
the Mono frame-work

Java C C++

Requirements - Mono >= 1.1.13.5
- gtk-sharp2 >= 2.4.0
- gmime >= 2.2.0
- Sqlite with mono-data-
 sqlite
- libexif >= 0.5
- X header files
 (scrnsaver.h)
- zip for mozilla
 extension
- glib >= 2.6 and libxml
 >= 2.6.19 for libbeagle
 (C bindings)
- libgeale and pygtk2 >=
 2.6 for pybeagle
 (Python bindings)

- Java >= 1.5.0
- Java-Gnome bindings

- Provided with JIndex
 jar libraries:
commons-codec-1.3.jar
commons-lang-2.1.jar
db-4.3.jar
gnumail.jar
htmlparser.jar
itext-1.4.4.jar
jdic.jar
jxl.jar
log4j-1.2.13.jar
lucene-1.4.3.jar
PDFBox-0.7.2.jar
sabercat.jar
xalan.jar
xstream-1.2.jar

- Sqlite >= 3.2
- libdbus >= 0.50
- dbus-glib bndings >=
 0.50
- glib >= 2.6
- zlib
- GMime

- CLucene >= 0.9.15
- CMake >= 2.4.2
- ZLib >= 1.2.3
- BZip2 >= 1.0.3
- OpenSSL

Optional - kernel >= 2.6.13
 (for inotify support and
 extended attributes)
- evolution-sharp >= 0.9
- galago-sharp 0.5
- wv1 1.2.0
- pdfinfo
- ssindex
- gsf-sharp >= 0.6
- Firefox
- MPlayer

- wv >= 1.0.2
- poppler (pdftotext)
- libvorbis
- GTK and Gnome stack
 for GUI tools

- Qt4 >= 4.1.2
- libxml2
- magic-dev
- kernel >= 2.6.13
 (for inotify support)
- log4cxx >= 0.9.7
- Xerces-C >= 2.6.0

Supported
database
backends

- DotLucene - Lucene - Sqlite3 - CLucene
- Hyper Estraier
- Sqlite3
- Xapian

Table 15: Building & Installing indexers

8.2 Documentation

Documentation is very important for ordinary users as well for developers. Every programmer knows

that it is painful, but few hours spend on documenting, can save many hours of others. During these

indexer tests, especially when trying to find proper syntax, the author had no other option but to look

into the source code. And we are not talking about having to write the book “Query syntax for

dummies”, because in many cases there was no documentation at all! Beagle seems to have the best on

line help, which is not perfect. It does not describe how to write more complex queries nor does it give

22

you a list of possible keywords to use for example. Tracker uses RDF queries. There are five examples

in the source code, but they are not explained enough though they do have a very good and active

mailing list. JIndex uses standard Lucene queries, which were the most “user friendly” and are

documented, but there was no help documentation at all from the JIndex side. Strigi, which uses

Clucene as an database backend, does not support all of the Clucene query features, what was a bit

confusing. The Strigi community uses mailing lists as well active IRC channels, where we could find a

lot of answers, but some users don't want to be on IRC or on mailing lists just to find out how to use an

application. You can imagine asking your granny to drop onto an IRC channel to find out how to search

for her Christmas shopping list that she wrote on her home PC months ago, no I don't think so.

Beagle JIndex Tracker Strigi

Manual Good - Average, some basic
things explained

-

--help Good - Good -

Explanation of the
query syntax

“How to search data”
The Beagle homepage
- average.

Lucene query syntax RDF query syntax
Complex for normal
users, not explained
enough

Poor – only in the
source code

Table 16: Documentation

9. Summary
After reviewing those projects it is hard to say which is the best choice. If we would take all the bests

from those indexers and put into one, then we would have great application. In this chapter we will try

to summarize and point the strengthens and weakness of those indexers, which might help developers to

improve indexers. The really good news are, that developers from two communities (strigi,

metaTracker) started thinking on the common search API, which will rise the number of search clients,

but a common plug-ins API would really speed up the developing process and functionality.

Standardized queries is another thing, that should take place. Most of the users wouldn't like to learn

new query syntax just for the indexer, so why not to go for something that is widely used, something

similar to google? It is good time for the developers to think about it and made the best choice having

users in theirs mind.

The memory race, causing indexers to use as less memory as possible is quite exciting, but on the other

hand we've got CPU usage, which is also very important. Brand new computers have lot's of memory, so

if we want to do something else than just indexing, and we are not memory constrained, JIndex would

seem to do the best job for us, because it have very good CPU resources usage.

All the indexers produced databases, with acceptable size and we should not put an effort to change it so

far. At the date of updating this documentation, all indexers except Beagle were successfully compiled

23

on the SunOS 5.11 operating system with the forte compiler.

9.1 Beagle

Beagle is very mature application, which have the greatest amount of supported data types. Developers

have also easier live, because of the clear documentation and the online API docs.

✔ Very mature project

✔ Documentation

✔ Amount of supported data types

✔ IMAP support (unfortunately only, when e-mail client have offline viewing switched on)

✔ Clear GUI client

✔ Stemming search algorithm

✗ CPU usage (for the PDF documents)

✗ Memory usage

✗ Limit for search results, that can not be overridden

✗ Programming language (C# that runs on top of the Mono VM)

9.2 JIndex

This is quite new project, that uses Java as a programming language, with a little of C native code,

which is used with JNI. A lot of the things need to be changed in this project, but it shows how the CPU

resources should be used, as well query was the most similar to the google.

✔ Query standards

✔ Query operators, term modifiers and fuzzy search

✔ CPU usage

✔ Clear GUI client

✗ Memory usage

✗ Pooling instead of notification system

✗ Threading problem

24

✗ No community and active developers

9.3 Tracker

The Tracker is not just indexer, as Tracker developers says, that it is metadata database and indexer

framework, which have indexing and searching facilities. With the RDF queries it might be a powerful

tool, but lack of documentation and standards neither good GUI, makes this tool hard to use by the

users.

✔ RDF search scripts

✔ Stemming search algorithm

✔ Memory usage

✔ Common search API with Strigi in the future

✔ Manual pages / help

✗ CPU usage

✗ Problems indexing lot's of text files

✗ Query operators and term modifiers

✗ Not well documented RDF queries

✗ GUI without advanced search

✗ Tracker deleted all the *.java and *.txt files while indexing, because they were in the /tmp folder.

✗ Troubles with queries like “simple text” - it finds all the text files.

9.4 Strigi

All the indexers, except strigi are designed to index files, not streams. The new concept that uses Strigi

allows to index data other than just the local files, which might be valuable in the future for example

when indexing IMAP folders. Strigi comes also with two nice tools deepfind and deepgrep, that are

tuned version of the find and grep commands. They allows to find the files, which contains specified

text in the data sources supported by strigi (e.g. compressed sources).

✔ Uses streams not files as a data source

✔ Memory usage

✔ Time of indexing

25

✔ Calculating sha1sum for the files (finding duplicates on the system)

✔ Common API with Tracker in the future

✔ Indexing compressed files that contains other compressed files

✔ Includes deepgrep and deepfind tools

✗ CPU usage (for the PDF documents)

✗ CMake make system

✗ Zombie pdftotext processes after indexing

✗ Problems with some search queries

✗ Problems with small and big letters while searching

✗ Query standards

✗ Deletes database

✗ Fields standards

✗ Problems with some data types (mp3tags)

✗ Documentation

✗ Not clear ANSI C / POSIX source code

✗ Not well designed GUI

10. Update
Those projects are under the heavy development, which means that during writing this document, many

things might change. Strigi is one of those that should be mentioned in this chapter. In the new release

(0.3.11) the encoding problem seems to be solved, documentation is also slightly better and what is the

most important, the patches were applied to allow building it on the Solaris platform with forte

compiler.

11. Appendixes

11.1 CPU usage script

Example of usage: $./cpu.sh 46512 0.5 /tmp/output.cpu

#!/bin/bash
#script for generating current cpu usage times for specified pid
if ["$1" = --help]; then

26

 echo Script for generating cpu usage for process
 echo
 echo $0 PID time filename
 echo
 exit 0
elif [-z "$1"] || [-z "$2"] || [-z "$3"]; then
 echo $0: missing argument
 echo Try \'$0 --help\' for more information.
 exit 1
elif [`ps --pid $1|wc -l` -lt 2]; then
 echo There is no process with PID $1
 exit 1
fi
echo
echo Started, to stop, hit Ctrl^C
while :
 do
 top -b -n 1 -p $1|cat -|grep $1|cut -c 41-46 >> $3
 sleep $2
 done

12. References
Checked on the 3rd of the January 2007

Searchable data sources:

Mail, calendar and address book:
Evolution http://gnome.org/projects/evolution
Thunderbird http://www.mozilla.com/thunderbird
KMail http://kmail.kde.org

Instant messaging (IM):
Gaim http://gaim.sourceforge.net
Kopete http://kopete.kde.org

Web browser:
Epiphany http://www.gnome.org/projects/epiphany
Konqueror http://www.konqueror.org
Firefox http://www.mozilla.com/en-US/firefox/

News feeds:
Blam http://www.imendio.com/projects/blam
Liferea http://liferea.sourceforge.net
Akregator http://akregator.kde.org/

Note-taking:
Tomboy http://www.beatniksoftware.com/tomboy
KNotes http://kontact.kde.org/components.php#notes

Office suite:
OpenOffice.org http://www.openoffice.org
AbiWord http://www.abisource.com

Libraries:

PDF:
Xpdf http://www.foolabs.com/xpdf/about.html
PDFBox http://www.pdfbox.org/
itext http://www.lowagie.com/iText/
Poppler http://conference2005.kde.org/slides/poppler/index.html

E-mail:
gmime-sharp http://rpm.pbone.net/index.php3/stat/4/idpl/3509129/com/gmime-sharp-2.1.16-1mdk.noarch.rpm.html

Office suite:

27

wvWare http://wvware.sourceforge.net/
libgsf http://directory.fsf.org/All/libgsf.html

HTML:
htmlparser http://htmlparser.sourceforge.net/
HtmlAgilityPack http://www.codeplex.com/htmlagilitypack
libhtmlparse http://www.linux.org/apps/AppId_7266.html

Windows help files:
chmlib http://www.jedrea.com/chmlib/

Audio files:
ogg-vorbis http://www.vorbis.com/

Video files
xine http://xinehq.de/index.php/about

Compressed files
zlib http://www.zlib.net/

Xml
Xalan http://xml.apache.org/xalan-j/

Tools:

Exmap--A memory analysis tool to measure memory usage of processes and libraries:
http://www.berthels.co.uk/exmap/

heap-shot-- A memory profiler
http://primates.ximian.com/~lluis/blog/

Other:

Information Retrieval (IR) using stemming algorithms to reduce the word to its stem:
http://www.comp.lancs.ac.uk/computing/research/stemming/general/

28

	1. Introduction
	2. Indexers
	3. Test environment
	3.1 Machine
	3.2 CPU
	3.3 RAM
	3.4 Disk
	3.5 Kernel
	3.6 GCC
	3.7 libc

	4. Supported data sources
	5. IDLE Daemon
	5.1 Daemon memory
	5.2 Daemon startup times

	6. Indexing
	6.1 Data set
	6.2 Indexing TXT files
	6.3 CPU usage - indexing PDF

	7. Searching
	7.1 Terms
	7.1.1 Searching fields
	7.1.2 Term modifiers
	7.1.3 Boolean operators
	7.1.4 Grouping, Field Grouping and Term order
	7.1.5 Special characters

	8. Install, build and support
	8.1 Building & Installing
	8.2 Documentation

	9. Summary
	9.1 Beagle
	9.2 JIndex
	9.3 Tracker
	9.4 Strigi

	10. Update
	11. Appendixes
	11.1 CPU usage script

	12. References

