
GTK+ Graphics

The Future! Or some ideas anyway
Very rough draft notes



Where do people seek GTK+ 
alternatives?

Custom visual design of desktop applications (or parts of 
them)

WebKit
GtkDrawingArea
HippoCanvas

Devices with custom UI (phones, etc.)
Hacked-up GTK+ (theming, other patches)
Clutter

Compositing Manager
Compiz object system
Clutter



Stuff GTK+ makes hard

Pixel-precise control of visual design
Animations and transitions
3D effects: shader effects, rotate in/out, etc.
Nonrectangular or overlapping elements
Embedding in a nonstandard context (GTK+ insists all 
widgets are inside a GtkWindow, not some other canvas or 
composite overlay window, for example)



Goals

Allow custom visual design, whether for desktop apps or 
embedded devices; trust people to use tool responsibly
Support convenient retained-mode graphics, classic 
example is "Fifteen Game"
Support smooth animated transitions and effects, including 
fast transform of images and windows
3D effects including shaders and rotation
Support hardware acceleration for both 2D and 3D in the 
same layout
Cleanly make use of existing widgets (Entry, Button, 
TextView, TreeView, etc.) and don't create a need to 
reinvent these



Non-goals

API should support basic 3D effects and use of 3D APIs, but 
in a somewhat 2D-centric context; not designed for "virtual 
reality" type of UI
Model-view should be for special cases (GtkTextBuffer, 
GtkTreeModel) but generic model-view support is not 
needed
Not necessary to support "untrusted" API users (as with X 
server or Compiz objects); too hard/specialized, GtkWidget 
does not support this anyhow
Canvas APIs also add some conveniences and cleanups 
such as border/padding/alignment for all items, height-for-
width, IF_FITS packing, etc.; table these features for later 
work and focus on more fundamental reasons people are 
using a canvas rather than GTK



Proposal

Create a new "scene graph" API. Make widgets one kind of 
scene graph object.

"Scene graph" seems like a less confusing way to describe 
this than "canvas" ?
For this presentation, let's call the scene graph objects 
"actors" for short, rather than "canvas item"
"Scene graph" and "actors" intended to emphasize that the 
new API will have graphics primitives, not interactive UI 
primitives - GTK+ will continue to provide widgets



What's in the scene graph API?

An Actor interface
paint() method which can use either 2D or 3D operations
allocate() method allocates a 2D area

Per-actor transform
Includes scale, rotate, translate
Includes z-axis transformation
Transform is post-allocate/layout but pre-paint

Event picking and bubbling
A Container interface defining the tree of Actor
Layout-and-paint operation: Request, Allocate, Apply 
Transforms, Paint to Buffer, Wait for VSync, Swap Buffer
Replacement for GdkWindow - clipping, scrolling, events
Fixed-position layout manager and interface to get min and 
natural size request



Effect on GDK

What stays
Toplevel GdkWindow and related operations
Event queue and dispatch of same
Display and Screen objects

What becomes obsolete, replaced by scene graph
Child GdkWindows
Double-buffer approach used by GTK+ may change

What remains obsolete
X11 leakage (colormaps, etc.)
non-Cairo drawing API



Effect on GtkWidget

Implements the Actor interface
GtkContainer becomes somewhat obsolete; walking 
hierarchy with GtkContainer "skips" all non-widget actors, as 
it does in HippoCanvas
GtkContainer modified to implement the scene graph's 
Container interface as well
child GdkWindow deprecated; back compat is complicated, 
but ideally there's some way for stock widgets to use scene 
graph equivalent instead (alternatively, some hack with 
composite redirection?)
redraw/repaint idles and double-buffering unified with scene 
graph
Widgets can be "composite" (be made up of child actors), or 
can just paint; maybe all widgets are containers as in 
Hippo?



Defining GTK+ vs. Scene Graph Layer

GTK+ contains what we'd normally consider a widget
Entry, TextView, TreeView, Button
Widgets are rectangular and themed by standard 
desktop theme

GTK+ defines input methods since those assume a lot 
about desktop environment
GTK+ defines printing, file selector, color picker, etc.
GTK+ defines toplevel window handling (GtkWindow)
GTK+ defines keyboard navigation (but scene graph has to 
do focus, so non-widget actors can be focused)
GTK+ does not contain the "graphics primitive" actors 
(image, line, rectangle, etc.), those are in scene graph
Themes are a property of GTK+ widgets only, not actor in 
general, so e.g. a Line or Rectangle actor has no theme



What gets passed to paint()?

Want to be able to draw with Cairo, but also GL
GL does not support a clean paint() method since there's no 
equivalent of the Cairo context with a transform stack; lots of 
GL state is flat-out global - glEnable(FOO) - and where it 
has a stack, it's a global stack with limited size 
(glPushMatrix())
Suggest that some possibly-thin new API defines a paint 
context that includes both Cairo context and GL state
GL could also use abstraction for regular vs. ES, and for 
presence or absence of various extensions
COGL does some abstraction of GL details but does not 
provide a context object, uses global state like plain GL
Need a single double buffer for entire toplevel window and 
all drawing APIs
Actors should deal only with their own coordinate system, 
not global ("window") or parent-actor-relative coordinates



Practicalities

Evolve the scene graph API as an add-on library, a la 
Clutter and HippoCanvas
The add-on should not depend on GTK since it will be a 
GTK dependency
The add-on should potentially depend on GDK, though... 
using GdkEvent would be nice... though both Clutter and 
HippoCanvas chose to avoid this maybe for good reason
There should be a "canvas widget" to embed a scene graph
Allow a scene graph to embed widgets. Maybe just add the 
Actor interface to GTK_TYPE_WIDGET from the outside 
library? Otherwise do a HippoCanvasWidget kind of 
approach (actor containing a widget).



Clutter - where it stands
Clutter is roughly along the same lines as scene graph API 
described here; having GL (or other hardware-oriented API) 
at core seems correct, with Cairo layered in
Needs request/allocation split apart; patch in bugzilla
Need to solve problem of what to pass to paint()
Has ClutterEntry, etc. - should just use GtkEntry
Currently supports "GDK-free" operation; GTK's scene 
graph should perhaps depend on GDK, but Clutter would not 
want to afaik
Does not support multiple scene graphs in a single process, 
inherits single global state from GL, but should be simple to 
fix this
No child GdkWindow replacement
No damage region, always repaints everything
Needs a pass to improve API naming, consistency



Path forward

Get some consensus on overall approach
Become familiar with Clutter; decide whether to start with it, 
if so lay out a roadmap for Clutter changes and seek 
approval from Clutter maintainers
Overall if using Clutter, large and incompatible Clutter 
changes would be expected. Be sure this is acceptable to 
all.
Begin or continue work on a Cairo backend that can draw to 
same double buffer as OpenGL and can employ hardware 
accel
Begin work on some kind of context object to pass to paint()
... do all the other work



Compositing Manager Footnote

Have been talking about apps (inside a toplevel) so far
How should effects and features spanning toplevels work?

xsnow type hacks
dashboard widget type things
window manager features (transitions, drop shadows)

X server model: object graph with untrusted clients
Web browser model: clients provide javascript
Would be an advantage to share scene graph API and 
widgets with normal apps; could have GtkEntry, etc. in CM
What about a stack of fullscreen scene graphs as children 
of composite overlay; each fullscreen overlay hosts a scene 
graph scripted by JavaScript from some client; when a client 
exits, destroy JS context and its scene graph
Proof-of-concept CM with Clutter seems to work nicely


