GTK+ Graphics

The Future! Or some ideas anyway
Very rough draft notes



Where do people seek GTK+
alternatives?

e Custom visual design of desktop applications (or parts of
them)
o WebKit
o GtkDrawingArea
o HippoCanvas
e Devices with custom Ul (phones, etc.)
o Hacked-up GTK+ (theming, other patches)
o Clutter
e Compositing Manager
o Compiz object system
o Clutter



Stuff GTK+ makes hard

e Pixel-precise control of visual design

e Animations and transitions

e 3D effects: shader effects, rotate in/out, etc.

e Nonrectangular or overlapping elements

e Embedding in a nonstandard context (GTK+ insists all
widgets are inside a GtkWindow, not some other canvas or
composite overlay window, for example)



Goals

e Allow custom visual design, whether for desktop apps or
embedded devices; trust people to use tool responsibly

e Support convenient retained-mode graphics, classic
example is "Fifteen Game”

e Support smooth animated transitions and effects, including
fast transform of images and windows

e 3D effects including shaders and rotation

e Support hardware acceleration for both 2D and 3D in the
same layout

e Cleanly make use of existing widgets (Entry, Button,
TextView, TreeView, etc.) and don't create a need to
reinvent these



Non-goals

e API should support basic 3D effects and use of 3D APIs, but
iIn @ somewhat 2D-centric context; not designed for "virtual
reality” type of Ul

e Model-view should be for special cases (GtkTextBuffer,
GtkTreeModel) but generic model-view support is not
needed

e Not necessary to support "untrusted" API users (as with X
server or Compiz objects); too hard/specialized, GtkWidget
does not support this anyhow

e Canvas APIs also add some conveniences and cleanups
such as border/padding/alignment for all items, height-for-
width, IF_FITS packing, etc.; table these features for later
work and focus on more fundamental reasons people are
using a canvas rather than GTK



Proposal

Create a new "scene graph" APIl. Make widgets one kind of
scene graph object.
e "Scene graph"” seems like a less confusing way to describe
this than "canvas" ?
e For this presentation, let's call the scene graph objects
"actors" for short, rather than "canvas item"”
e "Scene graph” and "actors" intended to emphasize that the
new API will have graphics primitives, not interactive Ul
primitives - GTK+ will continue to provide widgets



What's in the scene graph API?

e An Actor interface
o paint() method which can use either 2D or 3D operations
o allocate() method allocates a 2D area
e Per-actor transform
o Includes scale, rotate, translate
o Includes z-axis transformation
o Transform is post-allocate/layout but pre-paint
e Event picking and bubbling
e A Container interface defining the tree of Actor
e Layout-and-paint operation: Request, Allocate, Apply
Transforms, Paint to Buffer, Wait for VSync, Swap Buffer
e Replacement for GdkWindow - clipping, scrolling, events
e Fixed-position layout manager and interface to get min and
natural size request



Effect on GDK

e \What stays

o Toplevel GdkWindow and related operations

o Event queue and dispatch of same

o Display and Screen objects
e \What becomes obsolete, replaced by scene graph

o Child GdkWindows

o Double-buffer approach used by GTK+ may change
e \What remains obsolete

o X11 leakage (colormaps, etc.)

o non-Cairo drawing API



Effect on GtkWidget

e Implements the Actor interface

e GtkContainer becomes somewhat obsolete; walking
hierarchy with GtkContainer "skips" all non-widget actors, as
it does in HippoCanvas

e GtkContainer modified to implement the scene graph's
Container interface as well

e child GdkWindow deprecated; back compat is complicated,
but ideally there's some way for stock widgets to use scene
graph equivalent instead (alternatively, some hack with
composite redirection?)

e redraw/repaint idles and double-buffering unified with scene
graph

e \Widgets can be "composite" (be made up of child actors), or
can just paint; maybe all widgets are containers as in
Hippo?



Defining GTK+ vs. Scene Graph Layer

e GTK+ contains what we'd normally consider a widget
o Entry, TextView, TreeView, Button
o Widgets are rectangular and themed by standard

desktop theme

e GTK+ defines input methods since those assume a lot
about desktop environment

o G
o G

o G

'K+ defines printing, file selector, color picker, etc.
K+ defines toplevel window handling (GtkWindow)

K+ defines keyboard navigation (but scene graph has to

do focus, so non-widget actors can be focused)

e GTK+ does not contain the "graphics primitive" actors
(image, line, rectangle, etc.), those are in scene graph

e Themes are a property of GTK+ widgets only, not actor in
general, so e.g. a Line or Rectangle actor has no theme



What gets passed to paint()?

e \Want to be able to draw with Cairo, but also GL

e GL does not support a clean paint() method since there's no
equivalent of the Cairo context with a transform stack; lots of
GL state is flat-out global - glEnable(FOQ) - and where it
has a stack, it's a global stack with limited size
(gIPushMatrix())

e Suggest that some possibly-thin new API defines a paint
context that includes both Cairo context and GL state

e GL could also use abstraction for regular vs. ES, and for
presence or absence of various extensions

e COGL does some abstraction of GL details but does not
provide a context object, uses global state like plain GL

e Need a single double buffer for entire toplevel window and
all drawing APls

e Actors should deal only with their own coordinate system,
not alobal ("window") aor narent-actar-relative coordinatac



Practicalities

e Evolve the scene graph API as an add-on library, a la
Clutter and HippoCanvas

e The add-on should not depend on GTK since it will be a
GTK dependency

e The add-on should potentially depend on GDK, though...
using GdkEvent would be nice... though both Clutter and
HippoCanvas chose to avoid this maybe for good reason

e There should be a "canvas widget" to embed a scene graph

e Allow a scene graph to embed widgets. Maybe just add the
Actor interface to GTK_TYPE_WIDGET from the outside
library? Otherwise do a HippoCanvasWidget kind of
approach (actor containing a widget).



Clutter - where it stands

e Clutter is roughly along the same lines as scene graph API
described here; having GL (or other hardware-oriented API)
at core seems correct, with Cairo layered in

e Needs request/allocation split apart; patch in bugzilla

e Need to solve problem of what to pass to paint()

e Has ClutterEntry, etc. - should just use GtkEntry

e Currently supports "GDK-free" operation; GTK's scene
graph should perhaps depend on GDK, but Clutter would not
want to afaik

e Does not support multiple scene graphs in a single process,
inherits single global state from GL, but should be simple to
fix this

e No child GdkWindow replacement

e No damage region, always repaints everything

e Needs a pass to improve AP| nhaming, consistency



Path forward

e Get some consensus on overall approach

e Become familiar with Clutter; decide whether to start with it,
If so lay out a roadmap for Clutter changes and seek
approval from Clutter maintainers

e Overall if using Clutter, large and incompatible Clutter
changes would be expected. Be sure this is acceptable to
all.

e Begin or continue work on a Cairo backend that can draw to
same double buffer as OpenGL and can employ hardware
accel

e Begin work on some kind of context object to pass to paint()

e ... do all the other work



Compositing Manager Footnote

e Have been talking about apps (inside a toplevel) so far
e How should effects and features spanning toplevels work?
o Xsnhow type hacks
o dashboard widget type things
o window manager features (transitions, drop shadows)
e X server model: object graph with untrusted clients
e WWeb browser model: clients provide javascript
e \Would be an advantage to share scene graph APl and
widgets with normal apps; could have GtkEntry, etc. in CM
e \What about a stack of fullscreen scene graphs as children
of composite overlay; each fullscreen overlay hosts a scene
graph scripted by JavaScript from some client; when a client
exits, destroy JS context and its scene graph
e Proof-of-concept CM with Clutter seems to work nicely



