
Effecting changeEffecting change
through localisationthrough localisation

Localisation guide for Free and Open Source Software

Friedel Wolff

Introduction
Computers are amazing tools. They can help us in so many ways, yet we are often frustrated when
they don’t work the way we want them to. We are frequently in interaction with technology where
we change the way they work, and they change the way we work. A lot of this change is good, but
we are not always aware how it changes us.

A lot of technologies we work with often, such as software, web sites and cell phones, contain text
which is in some language or another. Today, it is often in one of the major languages of the world,
such as English or French. Those of us who understand the language of the technology are able to
use it, while other people might be entirely locked out, or unable to fully enjoy the benefits that the
technology brings.

This book explains how software can be localised – the process whereby software is translated or
adapted in some other way. It will empower the user with knowledge of the issues and tools
involved in translating software into new languages to ensure that technology is usable for more
people, and to ensure that more languages become used in information technology.

It is important to realise that even if we are able to use technology in our second or third language,
the constant exposure to this language doesn’t only allow us to use the technology, but it also
slowly degrades our ability to use our own language. It is my belief that languages who are not
used in all the important spheres of our lives will have a hard time surviving the onslaught of
globalisation. Software localisation can therefore not only help with access to information and
useful technology, but also with language revival and cultural preservation.

This book specifically discusses the localisation of so-called Free and Open Source Software
(FOSS) – software that we are able to localise and distribute freely. Many such software projects
are leading the industry in language support. Although this book is about FOSS, it will also be
useful to learn about software localisation in general, and about contributing to FOSS projects in
more ways than just localisation.

While several topics are discussed in this book, the scope is obviously limited to keep it at a
manageable size. Many more topics might be relevant to localisation in a specific language, or with
certain tools. We limit the discussion to topics of general interest to most FOSS localisation, and
we limit the discussion on tools mostly to Virtaal and Pootle.

Acknowledgements
This book is developed as part of the African Network for Localisation (ANLoc) sponsored by the
International Development Research Centre (IDRC).

Some of the content of this book is based on material from the website of the Translate project:
http://translate.sourceforge.net/

Thank you to Samuel Murray for his material that is used in the section on terminology. The
original Afrikaans article is available here: http://leuce.com/translate/termhelp.html

Thank you to Khaled Hosny suggesting guidelines on transliteration. The original Arabic article
from the Arabeyes project is available here: http://wiki.arabeyes.org/ _الأسماء تعريب

License
This book is licensed under the Creative Commons license called “Attribution Non-Commercial
Share Alike”:

http://creativecommons.org/licenses/by-nc-sa/3.0

p. 1

http://translate.sourceforge.net/
http://wiki.arabeyes.org/%D8%AA%D8%B9%D8%B1%D9%8A%D8%A8_%D8%A7%D9%84%D8%A3%D8%B3%D9%85%D8%A7%D8%A1
http://leuce.com/translate/termhelp.html
http://creativecommons.org/licenses/by-nc-sa/3.0
kennethn
Boble
be

kennethn
Boble
to a particular locality

kennethn
Understreget

kennethn
Boble
I think this sentence is a bit confusing. Your are talking both about what the book wil give the users and what the localisation does for everything else.

kennethn
Boble
I think is a customary to not use contractions in written english. I will not comment any further on it, you can search for it if you agree

kennethn
Streget ud

kennethn
Boble
in/for learning

kennethn
Streget ud

kennethn
Boble
for

kennethn
Boble
"localisations" or "localisation work"

kennethn
Streget ud

kennethn
Boble
for

Content
Introduction..1

Acknowledgements..1

License...1

Chapter 1: Background...4

Software localisation..4

Open Source localisation...5

Differences from normal translation..5

Differences from commercial localisation...6

Chapter 2: Orientation..7

What do you want to achieve?...7

Some principles to keep in mind..7

Your environment..8

Chapter 3: Before you start...11

The tools that we’ll use..11

Viewing your language..11

Typing your language..12

Codes and locales – initial support for your language...12

Useful extras..13

Chapter 4: Style..14

Orthography...14

Grammatical style..15

Be true to the source text...16

Be true to the target language..16

Chapter 5: Terminology...18

Why develop terminology?..18

Which terms should be developed?...19

Available resources..19

General principles..20

Acronyms, abbreviations, brand names, product names...21

Terminology assistance in translation tools...22

Chapter 6: Reuse...23

When should translations be reused?...23

Some available sources..24

Some techniques and tools...24

p. 2

Translation memory, terminology and machine translation..25

Reuse in Virtaal...26

Chapter 7: Technical issues..27

Things to leave untranslated..27

Escapes...28

Markup...29

Simple plurals..31

Variables..31

Proper plurals...33

Accelerators...34

Advanced handling of variables..36

Chapter 8: Localisation tools..38

Virtaal..38

Pootle...40

Chapter 9: Localisation projects...43

A simple localisation process..43

Finding the relevant files...43

Project communication..44

Version control systems...46

Project schedule...46

FOSS issues...47

Chapter 10: Beyond mere translation...49

Testing and review...49

Prioritisation (when you can't do everything)..51

Non-textual localisation...53

Chapter 11: Project case studies...55

Tux Paint..55

GTK+ and xdg-user-dirs..55

Firefox..56

The Debian installer...57

p. 3

Chapter 1: Chapter 1: BackgroundBackground

Software localisation
Computer software is often created to communicate with the user in a certain language, such as
English. For the software to be usable by people who speak a different language, the software
messages would have to be translated. This process is at the heart of software localisation.
Localisation really refers to all the changes made to a product to adapt it to a new language,
country, culture or even legislation.

Example

Look at how this text editor is completely adapted for Arabic:

Although translation is the most prominent part of software localisation, there are many other
changes to software that might be considered to adapt it to a new set of users. Maybe some images
should be replaced, references to money should be adapted to the local currency, and dates and
numbers might be formatted in a different way depending on the writing tradition of the new users.

Software companies often consider software localisation when they are trying to find new clients in
a country they didn’t operate in before, and localisation is a huge industry. Whereas even the most
popular software was only available in a few languages during the 1990s, it is common these days
for some software to be available in more than 30 languages, with some even available in more than
50.1

Making software available in a new language allows a whole new group of people to use software
who might not have been able to do so before. Localised software might be a crucial requirement
for someone to be able to take part in the digital world. As we spend more time with computers,
and more people do their jobs with computers, the need increases for everyone to be able to use

1 Mozilla Firefox version 3.6 was released in 65 localised versions, with more languages available as extensions.

p. 4

kenneth
Streget ud

kenneth
Boble
maybe "designed"

kenneth
Understreget

kenneth
Boble
Confusing sentence about two things.

computers, even if they only know one language well. By localising software, you can empower
users to be first-class citizens of the digital world, without being slowed down by a language barrier
or needing to feel as if their language is unimportant. Using your language in the realm of
information technology is part of keeping it alive and relevant to the things that people do.

Open Source localisation
Although lots of companies sell computer software or only give you a license to use their software
under many restrictions, lots of software is available without such restrictions and often at no cost.
Such software is often called Free Software or Open Source Software. Great emphasis is placed on
the freedoms given to users of the software, and to the availability of the software for any purpose.
The localisation of this type of software is the focus of this book.

Read more about Free Software: http://www.gnu.org/philosophy/free-sw.html

Read more about Open Source Software: http://opensource.org/docs/osd

Free and Open Software is often abbreviated as FOSS – an abbreviation that is also used in this
book. Software released under stricter licenses which is not Free and Open Source Software, is
often called proprietary software. Although some proprietary software is aimed at the global market
and available in many languages, it is usually entirely up to the software developer to decide which
languages to support, and whether or not to release the localised versions at the same time as the
official version.

Because Free Software allows modification, anyone is allowed to adapt the software to their needs.
If we believe software localisation is important, Free Software allows us to localise the software
and to distribute the modified version. In reality, Free Software is usually created by a community
with an interest in seeing the software succeed in many ways, and welcome localisers to take part in
the project to improve the software and contribute translations and other improvements necessary to
make it more suited for a wider audience.

Since FOSS is valuable because it allows us to do more, and because it is usually available at little
or no cost, we might want to localise FOSS simply as a way to support these projects, and to make
them more popular.

Therefore we see many reasons for localising FOSS:

• Anyone is free to contribute and cause the change they want to see for their language

• You can promote software that values your freedom

• You can influence developers of proprietary software by improving their competition

• You can gain experience in localisation and translation

Differences from normal translation
Any professional translator will tell you that translation isn’t just some mechanical process. It is a
creative process, a topic of academic research, and students can study translation at many
institutions. When we see how software struggles to translate from one language to another, we see
that a translation requires attention to detail to really feel right. The principles of document
translation apply to software localisation as well, and you will definitely benefit from any
knowledge of translation. Don’t think that any computer programmer can translate software well
just because they understand computers.

However, there are several areas in which software translation is different from other types of
translation. Although the text is often of a more technical nature, that is not the only issue.

p. 5

http://opensource.org/docs/osd
http://www.gnu.org/philosophy/free-sw.html
kenneth
Understreget

kenneth
Boble
I'm unsure what you mean here

kenneth
Streget ud

kenneth
Boble
and to the fact that users may often use it for any purpose they can think of, without restrictions.

kenneth
Understreget

kenneth
Boble
Maybe "All this sum up to quite a few reasons for loc.."

kenneth
Understreget

kenneth
Streget ud

kenneth
Boble
I don't think you can really say this, I don't think the software thinks anything at all. How about: "...that gives you more freedom", ".. that is built around priciples of freedom", "...that gives you more freedom to use it the way that you want to" or something similar.

Different tools are used, and there are different constraints on what you can do in a translation.
Furthermore we devote a whole chapter in this book to some of the technical issues that appear in
software localisation (see page 27). Therefore, keep in mind that very skilled translators will still
need to be trained in the issues particular to software translation.

An interesting thing to keep in mind is that a translated document is usually read in a predictable
way, from top to bottom, and seen in the same way it left the hands of the translator. With
software, it is impossible to know exactly what a user will see, and in which order. Some of the text
is changed when the software is running. A user might use software differently from you and
therefore experience your translation in a different way than you do when using the translated
software!

Differences from commercial localisation
If you are familiar with commercial localisation, you probably already saw that FOSS localisation
can be quite different. Whether or not money is involved, can obviously make a big difference to
the motivations that participants have. It means that a translator might have much more freedom.
Workflows are usually not dictated.

There is often much closer contact between developers and localisers in FOSS projects, and
therefore you can usually get quick feedback on any questions or problems with the source text.
Users and translators are also often in more direct contact, allowing feedback to reach you more
directly.

Many FOSS projects are really welcoming to localisers, and realise that they need to be attractive to
volunteers, and often work hard to make things easy for volunteers to contribute translations. For
this reason, it often happens that popular FOSS projects get contributions in many languages, even
for languages not yet commercially viable outside the FOSS world.

In terms of tools and file formats, obviously FOSS CAT tools are the preferred tools to use for
FOSS localisation. The PO format is by far the most popular file format. Since this format
contains both source and target text (similar to XLIFF), there is a lesser focus on retranslation and
the exchange of translation memories. An example workflow is discussed in the section on “A
simple localisation process” on page 43.

p. 6

kenneth
Streget ud

kenneth
Boble
Well, that depends on what you mean by workflows. We (danish gnome) have a pretty strict workflow concerning proofreading, which is absolutely essential if you want to ensure quality.

kenneth
Understreget

kenneth
Boble
Nice, good point.

kenneth
Boble
CAT??

Chapter 2: Chapter 2: OrientationOrientation

What do you want to achieve?

Formulating objectives

As we saw in the previous section, there are many reasons to localise FOSS. Your reasons might be
different than other contributors, but that usually won’t be a problem. What you should always keep
in mind is this question:

What do you want to achieve?

If you just want to localise software because it is fun, it probably doesn’t matter much which
software you localise or how you do it. However, many people might have a specific goals. Maybe
your main goal is to empower people of your country. Maybe you have language preservation in
mind. Maybe you just want to promote some software. All of these are valid and noble goals, but it
is useful to articulate them and keep your goals in mind, since they can influence your decisions.

Whether you work on your own or in a group or even a formal organisation, clear goals will help to
motivate and to keep your focus on what you want to achieve. Many companies work towards
formulating a vision and mission as part of their strategic planning. Knowing what you are trying
to achieve not only helps you to keep an eye on the target, but also makes it easier to know when
you succeeded!

If you are working as a volunteer, you should try to make your localisation work as much fun as
possible. Set it as a secondary goal if you want.

Setting goals to reach objectives

At Translate.org.za in South Africa we wanted to empower people and uplift their languages. At
least, that is what we told ourselves, but initially we were not working along the best path to
achieve that goal – we were translating software that we liked, instead of software that people are
actually likely to use. Since we couldn’t possibly translate all software, we had to choose, which
means we had to prioritise. If you understand your goals better, you will find more constructive
ways to prioritise different projects, and hopefully, reach your goals faster or more successfully.

Since you will try to reach your goals with limited resources (volunteers, money, time, etc.) you
should plan for continuity and sustainability. Think of how you will motivate volunteers. If money
is involved, set up a budget and see how well you keep to it. Measure the work so that you become
good at time planning. We discussed some techniques for evaluating projects and prioritising your
work in the section on “Prioritisation (when you can't do everything)” on page 51.

Some principles to keep in mind
There are many things to learn about localisation and translation, and it might seem like a big
undertaking. However, you can do good localisation while avoiding some important mistakes, and
have fun while learning. Here are a few principles to keep in mind.

Start small. Don’t think that you need to start with the biggest and most popular pieces of software.
Choose a task that you can complete easily, and fits in your available time. You will get a lot of
reward and motivation from completing something small.

Read the instructions. You can often find a lot of advice to help you in a given situation. The

p. 7

kenneth
Understreget

kenneth
Boble
singular plural mix

kenneth
Streget ud

kenneth
Boble
maybe "or"

kenneth
Streget ud

kenneth
Understreget

kenneth
Boble
I don't think "We discussed" works for something later in the book. How about "We will discuss .." ?

specific software you are translating might have instructions to help with the difficult parts. Maybe
a certain sentence has a comment from the programmer to explain a difficult concept. A spelling
guide for your language might clear up some difficulty you have with spelling or grammar.

Stay consistent. Consistency is an important goal in localisation. You want to make sure that you
use terminology consistently, as well as using a consistent style in an application. Furthermore you
should aim to harmonise your terminology and style with other applications on the same platform
that the application will run on (Windows, KDE, GNOME, OS X, etc.). Then you should aim for
consistency with the language use outside cyberspace – what people use at universities, newspapers,
magazines, etc. Eventually you will develop your own style, and you don’t need to follow other
people’s mistakes blindly, but don’t do things differently without a reason.

Be careful, but be bold. This advice might sound like a contradiction, but try to balance these two
opposing goals. You should be careful in what you do, and strive for good quality. Review your
translations, and don’t be lazy to do your research. Maybe you should leave a translation that you
can’t do well yet until you have the required information. However, sometimes it might just help
your progress if you go ahead and coin the new term, or change a bad habit that has formed in your
team. In FOSS you can usually fix your mistakes quite easily, and if you learn from your mistakes,
you might gain a lot from not being too careful. Find a balance between being careful and being
bold.

Expect criticism. Unfortunately, not everyone will always appreciate your hard work. If you are
breaking new ground you stand the chance of attracting criticism. This is to be expected, and isn’t
necessarily bad. Criticism means that someone paid attention to what you did. Constructive
criticism might help to improve your work, to fine-tune your terminology, or to reduce your errors.
Especially if you are doing localisation that is entirely new for your language, take into
consideration that users sometimes need a bit of time to get used to new terms in a localised user
interface. Your audience will develop with you, and new terminology might become established
and accepted even if they were criticised initially. Don’t ignore criticism, but realise that new
localisations usually look surprising and might attract comments.

Enjoy it. Don’t get so caught up in the work that you don’t enjoy it. Most FOSS localisation is
done by volunteers for fun. If the work isn’t rewarding in some way, you might not be able to
sustain your work, and you might not reach your goals. Translate software that you use and enjoy.
Give compliments to the programmers. If you like to get credit for your work, ensure that you work
hard on publicity and marketing for your work.

Your environment
The localisation work you do will take place in a certain environment. Not all advice is equally
suitable for all situations. If you are aware of your resources, your users and the world they live in,
it will help you do better localisation, and work more effectively.

Target audience: speakers of your language

In all translation work it is important to know who you are translating for. Who will read the text
that you are writing? How old are they? What level of literacy is expected? If your target audience
is young children from a rural school, you will probably translate differently than for university
professors! If you are localising into your language, remember that the speakers of that language are
also your primary audience for marketing and the promotion of your work. Don’t unnecessarily use
another language like English for supporting users or for discussions about terminology.

p. 8

kenneth
Streget ud

kenneth
Boble
maybe "language" or change the sentence in some other way, now it is a bit confusing, a spelling guide that helps you with grammar?

kenneth
Streget ud

kenneth
Boble
..be to lazy to..

kenneth
Boble
or review others and have someone else review your, but maybe you come to proofreading later

kenneth
Streget ud

kenneth
Boble
maybe "make sure"

kenneth
Boble
One could argue, that at least to some extend, then level of the laguage used in a piece of software should have been appropriately choosen by the developers. So that the english strings in Tuxpaint and Anjuta should reflect some consideration already from the developers, otherwise it should be reported as a bug. Adopting that view, and acting on it, relieves the translator for some the taget audience consederations, but add some extra duties concerning bug reporting.

Target audience: users of open source software

Users of Open Source Software tend to have a stronger community orientation, and like to stay up
to date with software news. You might also be able to find volunteers to help with terminology,
reviewing, or testing of the translated software. Someone might be willing to help with promotion.
People might be more willing to volunteer their time because you are providing localised software
that respects the user’s freedom.

Keep in mind that while it might be easy to contribute by complaining, few people will really help
with substantial contributions. Realise that users might have high expectations, and you might not
impress them with bad work.

Your localisation team

If you have big goals you might need lots of help to get there. Building a strong team will help you
do more work, and improve the work by bringing in different skills. Always try to contact previous
translators that might have done work you are building on. Document what you do, and make sure
that people know about it. Think about ways to promote the work you do amongst the people you
are trying to reach. Think about newspapers, radio, television, blogging, and social networks.

Try to train newcomers so that they can become useful contributors. Create awareness of
localisation. At Translate.org.za, we have often held events called Translate@thons where we get
people together for a day or two to translate a piece of software. It is a great way to show people
what software localisation is, train people in the basics, while having fun in a group and working
towards a common goal.

Read more about hosting a Translate@thon:

http://translate.sourceforge.net/wiki/guide/translateathon

If you are working alone, don’t let all the references to teams upset you. A lot of FOSS localisation
(especially for smaller languages) are done by single volunteers mostly working alone. If
localisation is new in your language, keep in mind that someone needs to be first – it could just as
well be you. Some people join an existing project more easily than creating a new one.

The role of English

When talking about the environment in which you do software localisation, it is important to say
something about the special role of English. English has become a dominant language in the world
of software, and this affects the way we do our work. Most software is translated from English into
other languages. Some of your users and fellow translators might be very used to English
terminology and style and might prefer that.

In FOSS projects, you will find that a lot of communication amongst participants usually takes
place in English. If you are able to work comfortably in English, you will take part more easily in
such projects, and should also be able to interpret the English texts more easily. When
communicating in English with other people, try to clearly explain your points, and review your text
to avoid misunderstandings due to spelling or other mistakes.

However, there are many ways to help someone who doesn’t know English well. Some software
(like Pootle) can show you another language while translating to help you understand the text
better. Machine translation systems on the web might help you to communicate with other team
members in a language you don’t understand well. People who don’t know a second language can
still be valuable contributors – even if just for marketing and testing.

p. 9

http://translate.sourceforge.net/wiki/guide/translateathon
kenneth
Understreget

kenneth
Boble
same comment as before

kenneth
Streget ud

kenneth
Boble
might as well

Orientate yourself

When you are ready to start to translate a specific piece of software, ensure that you are familiar
with it first. In the FOSS world, you can usually get the software and try it out without too much
trouble. Visit the project website, read through some of the documentation, and try to run the
software on your own computer. It will provide you with useful background information on what
the software can do, and what it is that you will be translating. Another useful source of
information is the help files that might be available inside the application.

If you are starting with a new translation for the software in your language, even an older version of
the software should give you a very good idea of how the software works, and what the terms mean
that are used. Always try to approach your translation with good knowledge of the software rather
than relying on the text only.

p. 10

kenneth
Streget ud

Chapter 3: Chapter 3: Before you startBefore you start

The tools that we’ll use
There are many tools that you could use for translation. It would be impossible to discuss them all
here. We will provide most of the explanations with reference to Pootle and Virtaal. They have
been developed to help localisers work more productively, manage their teams better, and increase
their quality.

Pootle is a popular web-based system for translation and translation management. It is used by
several FOSS projects to manage their localisation work. Pootle allows online translation, and it
has several features to help with review and team organisation. It is ideal for team work, casual
contributions, and translation sprints (Translate@thons). Visit the official Pootle server to see what
it is all about:

http://pootle.locamotion.org/

While online translation is useful, we realise that internet connectivity is still a problem for many
people. Virtaal is a program for translating on your computer, even if you don’t have internet
access. It provides many powerful features to improve productivity without sacrificing quality.
Installation instructions and more information is available on the Virtaal website:

http://virtaal.org/

You don’t need to choose between these two tools – they complement each other. Pootle allows for
offline translation, and gives you the choice to use whatever tool you prefer. These tools are
described in more detail in the section on “Localisation tools” on page 38. Several sections will
refer to specific features of the tools, so it would be good if you can ensure that you have Virtaal
installed, and maybe have an account on a Pootle server for you to follow the discussion in the
book. Virtaal will provide the most help during your translation with colour highlighting of
important things, and integration with helpful resources if you have an internet connection.

Viewing your language
Before you can do any work, you need to know that you can view your language on screen. For
many languages this is not a problem any more, but you need to know that you have the necessary
fonts installed on your computer. Maybe there is a version of Wikipedia with your language, or a
local newspaper, and you can verify that you can view all the characters correctly. If you are having
any problems, these sites might provide some links to fonts and instructions to be able to view your
language on screen.

Since you might be spending most of your time in a translation program, you might want to paste
some text in the translation to check that you can view the text there as well, and not just in your
web browser. Some applications (like Virtaal) allow you to customise the font settings. You might
want to adjust settings for the best display while working.

It is important to know that you must work with so-called Unicode fonts. It is beyond the scope of
this section to explain that in detail, but if you are installing extra fonts, you might want to confirm
that they are Unicode fonts.

Furthermore, if you don’t have the necessary font on your system by default, it could very likely be
true for users of your localised software as well. You might want to ensure that there are good
instructions available for users, customised for their operating system if they need to install an extra
font. Keep in mind that users without fonts won’t be able to read a website written in your
language without that font, unless you publish instructions in a PDF document with the fonts

p. 11

http://virtaal.org/
http://pootle.locamotion.org/

embedded. (This way the users don’t need the font on their computers.) Some emerging web
technologies allow a website to supply a font, but you should probably not count on that.

In some cases software can be distributed with fonts to ensure that your language can be viewed
correctly in the application. The software developers will be able to tell you if that is a solution for
their specific project.

Typing your language
Now that you are able to view your language on screen, it is important to know that you can type
the language. In the system configuration you should be able to select the correct keyboard layout
or input method for your language. Make sure that you know how to type all the characters of your
language that you will need.

If you are not yet used to typing in your language, it might be worthwhile to practice to improve
your speed. The faster you can type, the more work you can do, and the more you will enjoy
translation.

Codes and locales – initial support for your language
Whenever you contribute the first translation or support for your language to an application, you
will need to identify your language accurately to the software developers. When referring to your
language, remember to use the English name of your language, and keep in mind that the
developers might not know about about your country and relevant dialects. Identifying the
language properly is usually done by means of a two or three letter code for your language. For
example, the two letter code for English is ‘en’, and the two letter code for Russian is ‘ru’. It is
common in FOSS projects to use two letter codes whenever they are available, and to use three
letter language codes when no two letter code exists. These codes come from a standard called ISO
639. More information is available on Wikipedia:

http://en.wikipedia.org/wiki/ISO_639

If your language is spoken in multiple countries, it might be customary to do separate localisations
for the different variants of the language in the respective countries. In such a case, the code is
augmented with a country code, such as ‘fr_CA’ for French in Canada, or en_GB for English in
Great Britain. Note that the country is usually only specified if there is a need to do separate
localisation for each country where the language is spoken. Only specify a country if needed by the
software project, or if you know that your localisation is part of a set of different localisations for
your language.

For some applications to work correctly in your language, your operating system will need a locale.
A locale provides information to software about a language and some of its customs, such as the
proper way to write dates and times in your language, the correct formatting of numbers, etc. The
list of available locales usually indicate which languages are supported on the system. In some
cases, some software also maintain their own locale information in order not to rely on the
operating system.

For Linux and certain other software that require locales, you can create a locale if it doesn’t yet
exist. In the case of Linux locales, you really want a locale for the project called “glibc”. This page
provides more information:

http://translate.sourceforge.net/wiki/guide/locales/glibc

Although not all applications on Linux require a glibc locale, many do, and it is a very good idea to
create one if it doesn’t exist yet for your language. Hundreds already exist, so most people wouldn’t
need to worry about this.

p. 12

http://translate.sourceforge.net/wiki/guide/locales/glibc
http://en.wikipedia.org/wiki/ISO_639

Useful extras
With the previously mentioned things in place, you can localise almost any application, but there
are several other tools that might help you with quality, or might make you more productive. See if
you can find any of the following to help you during translation:

• spell checker – see if you have a working spell checker in your web browser (for online
translation) or in Virtaal, depending on where you will do your work

• rules of spelling, orthography or grammar for your language

• bilingual dictionaries, especially related to the field you are translating in

• English dictionary

Even if these are only available online, they might help you when you get stuck.

p. 13

Chapter 4: Chapter 4: StyleStyle
Any piece of writing will show some aspects of style. The original language of the software will
also have a certain style. It might be characterised by being formal or informal, for being technical
or very accessible, and respects the rules of spelling and grammar to some degree.

When we translate, we will create a work with a certain style, and should think about what we want
to achieve. Should the work be as formal as the original? Can we use loan words, or should we
strictly use well-known words from our language? There might be several such questions that
could affect how we approach a translation. Think of your goals and your target audience.

It is advisable to form some guidelines for software localisation in your language. Where there is
more than one way of doing something, different translators might choose differently, and the
inconsistency might reduce the quality. Having to make hard choices can also break the spirit of a
newcomer to your team and reduce productivity. This section describes some aspects of style that
you might want to consider. You might want to discuss this with other translators and interested
people and work on documenting your recommendations as these rules develop in your team.

Also keep in mind that users will probably get used to the style used in software, as long as it is
consistent and in line with your cultural conventions.

Orthography
Most languages have standardised some aspects of writing, such as the alphabet, spelling, use of
capitalisation and punctuation. These rules form the orthography of the language. Some languages
have multiple orthographies (for example using the Latin and Arabic script), or might have newer
versions of the same orthography – if spelling or other writing rules change.

You should be certain about the orthography you are following in your localisation work. You will
benefit from publications by institutions for language standardisation, or even good textbooks if you
are not very informed about the writing rules of the language. Furthermore, dictionaries will help
with issues of spelling, although spelling is not a big problem in all languages. If your language is
not well standardised, you might have a lot of freedom to decide how to do things. See your work
as part of the task to standardise the writing in the language.

There are some aspects of orthography that might be well standardised, but different from English.
When new members of your team translate, they might forget what the true writing tradition is in
your language, and therefore it might be useful to write about any problematic issues in your team
documentation.

A common mistake when starting with localisation, is to ignore the capitalisation in the source text,
and always or never using capital letters. If your language should use capital letters, this can create
a bad impression and affect readability of the text. If your language doesn’t use capital letters, this
mostly doesn’t affect you. However, capitalisation can possibly give a hint about the meaning or
use of a message in front of you. Capitalisation could indicate proper names (like brands or product
names) and a complete lack of capitalisation might indicate that the translation is part of a bigger
sentence.

Another common mistake, is to follow the English capitalisation too closely. A writing style called
“Title Case” is very common in English software. When something is written in Title Case, most
words start with a capital letter. This is not very common in other languages (German and
languages with similar orthographies being notable exceptions). Ensure that you follow your
language's rules and customs with regards to capitalisation. In most cases, we will write brand
names and product names unchanged.

p. 14

Examples

Here are some examples from Northern Sotho where capital letters are only used for the start of
sentences and proper names. The English is followed for capitalisation at the start of each message,
but otherwise the title case is avoided for proper writing according to the rules of Northern Sotho.

English Not good Recommended

Help thušo Thušo

Save As…. Boloka E le... Boloka e le...

Font Size Bogolo Bja Fonte Bogolo bja fonte

Online Help Thušo ya Inthaneteng Thušo ya inthaneteng

Select All Kgetha Tšohle Kgetha tšohle

Print PDF File gatiša faele ya pdf Gatiša faele ya PDF

Print Acrobat File Gatiša Faele ya Acrobat Gatiša faele ya Acrobat

no selection Ga go kgetho ga go kgetho

Another area where guidelines for your team might help, is to ensure that attention is paid to
punctuation and spacing. If the use of punctuation and spacing is similar to English in your
language, it might still be useful to specify that translators should pay attention to whether a
message ends with a colon (:), question mark (?), exclamation mark (!) or an ellipse (…) . Also
keep in mind that an ellipse can be represented with three separate dots, or a special ellipse
character which might be hard to type. Virtaal makes it easy to insert the special ellipse character
by highlighting it as a placeable in the source text (see page 39 for working with placeables).

If your language uses different punctuation to English, it might be good to remind translators of the
differences, and to provide examples. Also note the cases that are the same, to avoid confusion.
The original punctuation usually indicates something important, but you don’t always need to
follow it blindly. For example, you might want to avoid the exclamation mark (!) if it is not so
commonly used in your language.

Unusual spacing in the source text might be important, such as a space start or at the end of a
message. It might be used to align text, or to implement spacing between different controls in a
program, or when parts of a sentence is joined together. This is often a programming mistake
which you should report, but you will still encounter this. The use of two spaces between sentences
is usually not very important to follow, although it might help to ensure consistency. The quality
checks performed by software (such as Pootle) will try to indicate any difference between the
source text and your translation.

If your language uses a different alphabet than English, it might be important to decide when and if
transliteration should be used. Also ensure that there is agreement on how transliteration is done in
the team.

Grammatical style
There are often more than one way to say the same thing. You can be formal, polite, informal,
demanding, verbose, and even rude! The appropriate wording to use in your software translation
could depend on several things. Ask yourself some of these questions:

• How old are the users of the software?

p. 15

• In what kind of setting will they be using this? At home or at work?

• Are there any wordings which might be offensive or impolite?

While we obviously want to write in the correct grammar, we additionally want to choose the ways
of saying something that won’t offend a user, and will feel appropriate for the particular program.
Using business language in software for kids might be unsuitable. Being very informal and casual
in accounting software might make a user uncomfortable. Asking the user for information in an
impolite way might reduce the user’s spontaneity and leave a bad impression of the software.

Some things you might want to describe in your team documentation include:

• How formal should the software be? Should the user be addressed as an older or respected
person? You might want to stay on the safe side to avoid giving offence.

• How should you translate questions? You will often encounter the word “please” in
English. What is the appropriate way to word such requests in your language? A direct
translation of “please” in your language might sound as if the software is desperately
pleading for something, while it intended to politely encourage the user to go ahead and do
something. Software also often asks for confirmation. A bad translation for “Are you
sure … ?” might sound as if the software doubts the user’s ability.

• How should you translate commands? In English software, the text on buttons and links are
often command verbs. Many languages don’t translate these as commands, but use the
infinitive form of the verb. Think about what is most appropriate for your language. Think
about if there might be ambiguity about whether the command is addressed to the user or to
the computer. If your language clearly distinguishes causative verbs, you might want to
ensure fine attention to such detail in these cases.

Be true to the source text
While your writing culture might encourage you to always take a more formal approach than the
English software, you might want to vary your level of formality by looking at the source text. The
software used for social networking and instant messaging might feel more natural with a little
more relaxed tone.

It is important to always try to convey the correct meaning as intended in the source text. While
you might feel you can translate something to sound much better than the original text, you should
ensure that you are not changing the intended message of the text. Refer to some of the principles
in “General principles” on page 20. For example, a translation shouldn’t be more specific or more
general than the original text. The text might be used in unexpected ways, and a translation too far
from the original meaning might be inappropriate for some situations.

Be true to the target language
Earlier we encouraged both being careful and being bold. This section might similarly seem to
contradict the previous section by encouraging conformance to the target language where the
previous section encouraged conformance to the original text. These are both important goals, and
won’t usually conflict with each other. We want to translate so that the result is both well written in
the target language, and conveys the same message as the source text.

Your translation should always be true to the style of your language. Don’t fall into the trap of
using the word order of the English text if it isn’t the most natural way to say it in your language.
Don’t translate expressions literally. Change cultural references where it makes sense. Be aware of
taboo words or words with unintended meanings that might distract the user from the message.

You might read in the developer documentation that the use of the passive voice is discouraged.

p. 16

This might only apply to English. Unless this is specifically meant to apply to translations, feel free
to ignore this advice if the passive voice is a good style to use in your language.

p. 17

Chapter 5: Chapter 5: TerminologyTerminology
Terms are words or short phrases with specific meaning. If we want to do good translation, we are
obviously interested in terms and their translations. We can consider short phrases under
terminology work, partly because they are often defined in similar ways, and we can usually handle
them in dictionaries and translation tools in the same way. They also provide an opportunity to
capture some aspects of style.

Examples

• file

• download

• network connection

• secure

• Are you sure you want

As you can see, a term can consist of one or several words. They can also be nouns, verbs, or any
other type of word, or even a short phrase that we might find in translation work.

Why develop terminology?
Developing terminology is an important and ongoing task while translating software. Of course, this
is also true of most aspects of translation style. Using good, consistent terminology and style will
help users to be comfortable with the software, and will give them pride in using translated software
rather than being ashamed of bad quality. Bad translations can also damage the image of the
software.

New terms are constantly used in software that will need to be translated. Terminology creation will
therefore never finish while you translate software. However, if you have good translations for
common terms, it will help all your team members to translate more productively, and will of
course help with the consistency. You don’t need a dictionary with thousands of terms before you
can do useful localisation work.

Translation with lots of difficult terms can be frustrating for new translators, and they might make
lots of errors if they are not familiar with the computer terms. Therefore it is important for the
motivation of especially new team members to have some existing terms specified, so that they
have some help from the start. A good term list is a big help in a Translat@thon for motivation and
quality.

Another reason why good terminology is important, is to ensure that it is actually correct. Some
terms are hard to understand, and might be very specific to the software involved. If a translator
misunderstands some English term, it can badly affect quality. You will get a lot of benefit if you
continually work on terminology as a separate part of your project. Good terminology can ensure
that the translated version of the program isn’t misleading the users, or giving the wrong
impression. Remember that you don’t just want any translation, and in cases where a term should
be translated in two different ways depending on the context, you want to capture that as part of
your terminology development.

Short phrases might give the opportunity to unify some stylistic aspects of a translation, such as
how requests to a user is made (as we see in the examples above, “Are you sure you want”).

p. 18

Example

Are you sure you want to download the file over the secure network connection?

In this example sentence, there are some possibilities for making terminology mistakes. Maybe the
translation of “secure” isn’t standardised, or the translation of “network connection” is not obvious.
The sentence starts with a phrase “Are you sure you want to ...” which can probably be translated in
different ways, but inconsistent translations might give a bad impression of the software.

Let’s indicate which terms might be recognised from our term list by underlining them:

Are you sure you want to download the file over the secure network connection?

As you can see, it will be quick and easy to translate this with all of these terms available to use.
The translation should be consistent with other translations as well as the prescribed terminology
and style, and the translator will also be much more productive if the translation tool makes it easy
to insert these terms without actually having to type them. Of course this example is artificial, but
you can expect real benefits from even a small list with a few hundred relevant terms.

Which terms should be developed?
If you are motivated to translate software, it might feel very demotivating to think about doing a lot
of terminology work. You want to translate software, not write a dictionary, right? (Of course,
writing a dictionary is also very useful.) In the previous section we explained why good
terminology is useful and important, but obviously you want to prioritise your work to the most
frequently used terms, especially at the start of your work.

You may only want to work on a smaller list of terms initially. Therefore it will be useful to know
you are working on the most important ones. You might know of some common terms that should
perhaps be in your list, but trying to create the list of terms by yourself is not a good use of your
time. It is also more useful to work on terms actually occurring in your translation work, rather
than some terms that might be useful, but aren’t needed for your current work. A good way to
tackle this problem is to use a terminology extraction program, such as poterminology from the
Translate Toolkit. The same feature is also available in Pootle (see page 41). Such software
analyses the text for frequently occurring terms and produces a list for you to translate. Some of the
suggested terms might not be important or meaningful to work on, but see the list of terms as a
suggestion to save you time.

One disadvantage of a terminology extraction program, is that it probably has no knowledge of
which terms are most used in the very visible parts of the software. For example, you might get
some terms used very frequently in error messages. Of course these are very useful to standardise if
you will be translating the error messages, and has all the advantages it offers to the team in terms
of productivity and motivation. Do what you think is most useful with the time you have available.

Available resources
There might be many resources available to help you with your terminology work. Remember that
you probably want to use an existing, known term rather than creating something new. Therefore it
is a good idea to always look at existing sources of terminology, even if just using it for inspiration.
Even if you can look at terms in languages related to yours, it could help you.

Here are some places that might be useful:

p. 19

Open-Tran.eu

The website Open-Tran.eu collects many translations from FOSS projects, and provides a way of
searching these translations. Although this can never be an authoritative resource for terminology,
you will be able to get a good idea of which terms might already be in use in FOSS projects. If your
language does not yet have a lot of useful suggestions in Open-Tran.eu, keep in mind that the latest
translations from several projects are imported from time to time, and if you are creating new
translations, you will help to make this service more useful over time.

The results from Open-Tran.eu indicate from which project a suggestion originates. Keep in mind
that you might want to align your current style and terminology with similar projects. For example,
if your current translation is part of the GNOME project, you might want to pay particular attention
to the suggestions coming from the GNOME project.

http://open-tran.eu/

Microsoft language portal

The Microsoft language portal contains style guides, terminology lists, and existing translations for
many languages, and this might be very useful. If the software you are translating will be running
on Microsoft Windows, it might be a good idea to be aware of the terminology used in the
Microsoft products that your users might be used to.

http://www.microsoft.com/language/

Wikipedia

Although Wikipedia is not primarily intended as a terminology resource, it covers a very wide
range of topics in many languages, and you might be able to see how a term is already translated by
another translator at Wikipedia. Of course an article at Wikipedia, even if it is not in your language,
might help you to properly understand a concept, which in turn will help to properly define and
translate it into your language.

http://www.wikipedia.org/

General principles

Technical correctness

Terms must actually convey the correct meaning. Watch out for a translation that is more general
than the original term, or only refers to part of the original concept. Keep in mind that there might
be similar but distinct terms used in the source language that might need to be translated differently,
whereas your first guess at a translation might lead you to translating them all in the same way. For
example, you might want to make sure your translated terms reflect the differences between
“photo”, “drawing”, and “diagram”. Think how the terms “file”, “directory”, and “document” are
different and how to properly translate these terms.

Always ensure that you really understand the source concept correctly. Use dictionaries and read up
on the web to ensure that you know the exact meaning of a term before trying to translate it. Also
check your target terms to ensure that you are not using them incorrectly, or maybe conveying an
unintended meaning associated with the term.

Check that you aren’t translating two different terms the same way in your language. Ensure the
correct spelling and orthography of your term.

p. 20

http://www.wikipedia.org/
http://www.microsoft.com/language/
http://open-tran.eu/

Concept recognisability

Remember that you want ordinary users to understand the terms that you use. It might sound
impossible to coin technical terms that ordinary users will understand, but keep in mind that terms
are often built from plain words, and that users get used to all sorts of terms that might have been
strange a few years ago (also in English).

Existing terms from engineering, mathematics or office administration might help you to create a
term that is much more recognisable than something entirely new.

Back-translatability

Ideally you want to use terms that users will be able to “translate back” to the original term. This is
particularly useful in cases where users would already be used to the English terms. An added
benefit of being able to translate terms back, is that users can guess more easily for which terms to
look for on the web or in untranslated product documentation.

For example: in cases where two terms are closely associated in English, such as “log in/log out” or
“enable/disable” it is useful if your translated terms can translate back to such an associated term
pair. Ideally your translations should form a similar associated pair. Also try to translate a positive
action (such as “enable”) with a positive action, and a negative action (such as “disable”) with a
negative action.

Acronyms, abbreviations, brand names, product names
As a localiser you will often see acronyms, abbreviations and brand names in your translations.
Acronyms and abbreviations are things like “e.g.”, “i.e.”, “SQL”, “FTP”. Brand names include the
names of products, companies and some technologies, such as “Firefox”, “OpenType”, “Google”,
“Windows” and “iPhone”.

Some of these are almost never part of normal conversational language, and therefore it might seem
as if the only solution is to leave them unchanged as they occur in the source text. This will often
be the correct decision, but let us be aware of a few of the issues.

Many languages don’t have a writing tradition of abbreviation. You might want to simply translate
some abbreviations in full form. If the abbreviation is the name of a technology, such as “XML” it
is often best left unchanged, since the target audience might know what it is, and only know this
name. In document translation (such as help files or web sites) you might have space to also add a
translated name for reference.

Some companies and products might have local names in your language, and it might be
appropriate to use them. However, some names may be trade marks, and you might not be allowed
or encouraged to change it. Special exceptions are sometimes made for languages that don’t use the
Latin script, such as Japanese and Arabic. It is always best to ask in this case.

Some product names are plain words, and you might even be encouraged to translate them. Don’t
blindly keep the original name of the software if it might be intended to be understandable in your
language and readable in your script. Utility applications like the calculator and text editor are often
referred to by general words – not names specifically associated with the specific application.

Always take care to follow the capitalisation of the original product name. Using capitalisation in
unusual places (or not at all) might be part of the brand identity of the company or product.

Transliteration

If your language doesn’t use the Latin script (like Chinese or Arabic), a policy on transliteration

p. 21

will be useful. Here are some guidelines that might help your team:

• If the name is a word explaining what it does, simply translate the name.

• If the name is obscure or very technical in nature, you can consider using it without
transliteration if it doesn’t occur very often.

• If the name has no obvious meaning, transliterate the pronunciation of the name. If this is
too long for an acronym (such as HTML), you might want to transcribe each letter with an
equivalent letter in your script, possibly separating them with dots or spaces if it might be
confused with a word.

Terminology assistance in translation tools
A good dictionary can be very useful for your work. However, it can be cumbersome to look up
words very often. Furthermore, someone might not know when it is important to check in a
dictionary and could make incorrect assumptions.

If a translation tool provides terminology assistance, it can be a great help, since the translators can
check the prescribed terminology more often, and might be confronted with it even when they
didn’t consider checking. It should also make it easy to insert a term without typing, which can
save time and avoid typing errors.

Pootle can host a terminology project on the server with project specific terminology lists. For
more information see page 41.

Virtaal can provide terminology suggestions from multiple sources, including terminology files on
your computer, and certain network based services. It also provides easy access to look up phrases
on websites. For more information see page 39 and the Virtaal preferences.

p. 22

Chapter 6: Chapter 6: ReuseReuse
During translation, a translator creates valuable information – terminology and translations that can
be useful later when translating something similar. Being able to reuse previous work is a crucial
part of becoming more productive, and ensuring good consistency between different versions of a
product, and between different products.

Example

Here you can see how similar translations can be shown to a translator during translation.

Storing and reusing previous translations is called translation memory. This is different from
terminology in that complete translations or sentences are handled, and software might provide a
suggestion even if it isn’t quite the same as what you are translating. So while complete words
might be wrong in the suggestion, it provides a way to save a lot of typing, and ensure a consistent
sentence structure between similar translations.

When should translations be reused?
Any existing translations of sufficient quality should normally be considered for reuse. You might
want to give preference to related translations, such as those for the desktop environment you are
translating for. For example, you might prefer GNOME translations when translating a GNOME
application, rather than KDE translations. In reality the style of translations between different
desktop environments won’t differ substantially for most languages, and you will probably benefit
from using all available translations in your translation memory.

Short messages are more likely to be ambiguous. Translations consisting of single terms such as
“view” and “alert” probably have different translations depending on context. Even longer entries
like “Empty trash” is ambiguous (it could describe the state of the trash, or be a command to make
the trash empty). Blindly reusing old translations in cases like these are obviously dangerous. All
reuse of existing translations should be reviewed to ensure that they are suitable for the current
application in terms of style and terminology. Reviewing the suggestions might also provide an

p. 23

opportunity to find errors that might exist in previous translations. Use the opportunity to fix the
original source of the error if a suggestion contains a mistake.

Some available sources
The most important source of translation memory, is any existing translations for the project you
are working on. You also want to combine any translations for the software, help files, web site,
etc. to speed up your work and ensure better consistency.

Next you should look for files of related applications. Files from the same desktop environment
(such as GNOME or KDE) is easily available for reuse. This is one of the powerful aspects of
FOSS localisation – you can usually easily get existing work.

Next you might want to look for translations of similar programs. If you are translating an e-mail
program, look for translations of other e-mail programs to use. If you are translating a graphics
editor, maybe translations from a picture viewer will provide some help.

Finally you can also consult existing services where many translations are collected:

• Open-Tran.eu collects translations from several FOSS projects and provides a website to
access it. It is also integrated in some translation tools such as Virtaal.

 http://open-tran.eu/

• Microsoft also has a website for their translation memory. Be sure to review the terms of
use, and remember that there might be different conventions in the FOSS world in terms of
style and terminology.

 http://microsoft.com/language/

Some techniques and tools
The best ways to access existing translations is different for each project, and might change over
time. Here are a few useful tips that might save you some time:

GNOME

Existing translations of GNOME is easily available from the website at http://l10n.gnome.org – also
known as Damned Lies. Find your language, and select any release set from the list. A link at the
bottom of the page provides an archive with all the latest translations.

KDE

Currently there is no single trivial way to find existing KDE translations. Look on the KDE mirrors
where the package downloads are available. There might be a directory called “kde-l10n” with the
existing translation packages.

Debian

The Debian project develops several pieces of software, such as the Debian Installer and the ISO
codes package (with translations of language and country names). A single file with the translation
memory of all projects developed by the Debian project is available here:

http://i18n.debian.net/compendia/

Translations of almost all packages distributed with the Debian project is available here:

p. 24

http://i18n.debian.net/compendia/
http://l10n.gnome.org/
http://microsoft.com/language/
http://open-tran.eu/

http://i18n.debian.net/material/po/

Although it might be better to obtain translations from the specific projects directly, this might be
more convenient, while possibly being a bit out of date.

Pootle servers

Pootle is used to manage the translations of many projects such as OpenOffice.org, and you can
usually obtain the translations easily from a Pootle server.

Visit the page for your language in a specific project on the server, and go to the “Translate” tab.
You should see a link to download a ZIP file with all the files inside. If it isn’t visible, you might
need to log in, or ask for permission from the site administrator.

Mozilla

The current Mozilla localisation process makes it non-trivial to obtain translations, although they
are usually available through Open-Tran.eu. While no official source of translation memory is
available, unofficial TMX files are published. It isn’t clear which products are involved, and how
accurate they would be for languages without official product releases, or during the development
phases of upcoming versions of Mozilla projects:

http://www.frenchmozilla.fr/glossaire/TMX/

If you maintain your Mozilla translations in PO format using the Translate Toolkit, you can easily
reuse your translations in the PO files.

Collection of translation files

If you have some translation files and want to combine them into a single file as a translation
memory, you can use some tools from the Translate Toolkit to do that. With pocompendium there
are several options for customisation (for how to handle accelerators, for example) and with po2tmx
you can create a TMX file used by some translation tools.

For translations in other formats than the popular Gettext PO, there might be converters in the
Translate Toolkit.

Translation memory, terminology and machine translation
Machine translation refers to translation suggestions automatically generated by software. It is
often based on some rules of how to translate between languages or a big collection of existing
translations. Suggestions from machine translation software could be unnatural, inaccurate and
contain grammar errors. It should be said very clearly that machine translation can’t replace
human translators, but are sometimes useful to help translators save time. In reality some
machine translation services can provide very useful results in certain cases, although results vary a
lot between different languages and topics.

By contrast, suggestions from a translation memory is the result of software suggesting previous
work done by human translators. It might be a translation of a different piece of text, and
translation software should indicate the difference between your current source text and the source
text of the suggestion. Virtaal highlights these differences to help make a judgement of how
relevant a suggestion is and where it should be edited.

Whereas a translation memory will not always have relevant suggestions, machine translation
software might always be able to provide some suggestion, even if it is not very good. In some
cases it might require less editing to use a suggestion from machine translation software than
editing a less relevant suggestion from translation memory. Human judgement is required in both

p. 25

http://translate.sourceforge.net/wiki/toolkit/po2tmx
http://translate.sourceforge.net/wiki/toolkit/pocompendium
http://www.frenchmozilla.fr/glossaire/TMX/
http://i18n.debian.net/material/po/

cases to review the usefulness of a suggestion and to correct any possible errors.

Many people are pessimistic about the usefulness of machine translation, and caution in this area is
required. It is important for users of machine translation to understand the limitations and to realise
that using these suggestions might desensitise them to the proper style required for their language.
However, machine translation can be a big help, especially for users who can’t type fast.

Reuse in Virtaal
Virtaal can provide suggestions for reuse from multiple sources. It can give suggestions from the
current file, previously saved translations, and certain network based services. Some of these might
be translation memory, and some of these might be machine translation. Make sure that you
understand the value of each source of suggestions. For more information see page 40 and the
Virtaal preferences.

p. 26

Chapter 7: Chapter 7: Technical issuesTechnical issues
Translating software is different from translating documents, and this section will discuss several of
the most common issues that a localiser should be familiar with. Although a background in
programming is very useful, it is not required at all to do good software localisation. Although
some of these issues might seem complicated at first, you can rest assured that you will get used to
them quite quickly, and that most translation doesn’t involve a lot of such technical issues.

Things to leave untranslated
It is common to find things in translations that should be left untranslated. Easy examples include
things like e-mail addresses and website addresses that should be left unchanged. Ensure that
everyone on your team knows what e-mail addresses and URLs look like. There are exceptions:
example addresses such as http://example.com or user@business.com might simply be intended to
show the user what type of input they should provide to the software. If you are sure that these are
only examples, it might make them more accessible if they are translated, since a user might realise
that it is only an example. In the case where a URL points to a website or documentation that is
available in different languages, you might want to change the address to point to the version in
your language (if it is available).

We mentioned brand names and product names on page 21. Ensure that you know what the
appropriate handling of these are in your translation.

A slightly more obscure one, is references to function calls or other aspects of a network protocol,
or programming or query language. Error messages sometimes mention the specific command that
caused some error, and these should almost never be translated2. Spreadsheet software might refer
to the COUNT() function – an entry in a spreadsheet cell to count something. There are two clues
that this is a function – the fact that it is in capital letters, and the two brackets after the word.
Another clue to indicate that something should not be translated, is when some term is enclosed in
quotation marks.

Example

• Incorrect range passed to COUNT().

• Syntax error in SELECT.

• Wrong number of arguments to printf().

• Network time-out during POST.

• Invalid “errno” value.

Of course, there could be other reasons why something is written in capital letters or with quotation
marks, but hopefully this will help to identify several cases.

Another thing that might be unfamiliar to many translators, is command-line options. When a
program is started by typing its name rather than clicking on an icon or menu, it is often possible to
specify extra options to influence its behaviour. Although this is hidden from most users,
documentation might refer to such options. These options should not be translated, since a
translated version won’t be recognised by the program. Users therefore should see the untranslated
option as they should use it untranslated as mentioned in the original text.

2 For some languages spreadsheet functions are translated. You should know if this is the case in your language.

p. 27

mailto:user@business.com
http://example.com/

Example

See the program version by running with --version.

In the case where an option can receive an argument, documentation referring to the argument can
usually translate the argument, since it is usually just a place-holder for something else.

Example

Source text Translation

--playlist=PLAYLIST --playlist=SPEELLYS

--add-to=ARCHIVE --add-to=ARGIEF

There is a convention to write the argument in capital letters, which should help you to recognise it.
Having the argument (such as “PLAYLIST”) translated should help the user to realise that the
option (such as “--add-to”) should be used unchanged, and that the argument (the translated
placeholder) should be changed to the relevant value. When other help text refers the argument, it
is also customary to use it capitalised in a similar way. If your language doesn’t use capitalisation,
you might want to put the argument in quotes to emphasise its role as a placeholder.

Escapes
Escaping is a way to represent special text. An escaped sequence consists of an escape marker
followed by one or more reserved characters. Translators don’t need to work with this frequently,
but it is good to be aware of them. The most common is the backslash (\) followed by a single
letter. In most cases you will see from the original source text when these should be used, and in
many cases you can follow the example of the source text closely.

Types of escape characters

These escaped characters have a special meaning:

p. 28

Escape
sequence

Effect Description

\n newline
A new line in the text (similar to pressing Enter). It might be shown
with the ¶ in your translation program.

\t tab
Add a tab marker at that point in the text. This is sometimes used to
align text in columns.

\r
carriage
return

This is usually used with \n in software for Windows.

\\ real backslash
If you need a real backslash then you need to escape the backslash.
The computer will only print one backslash.

\"
double quote
(")

In some cases a double quote has a special meaning, and should be
escaped if you really want a double quote.

\uxxxx
special
character

Special characters like © or ™. Programmers might use \u to refer to
the special character. Here xxxx is the hexadecimal or decimal value
for the specific Unicode character. You probably want to leave it as
is.

' apostrophe (')
In some XML documents, you might need to represent the apostrophe
and some other characters with XML entities. For example:
link

Example

What you see What it means What you do

…server active.\n
Do you want…

The newline appears between
two sentences. When the
program runs the sentences
will appear on different lines.

Pace your \n escape in the same place between
the sentences.

… print jobs or\n
other actions…

This is harder to recognise.
There will be a line break
between “or” and “other”.

Look at the structure of the whole translation. In
this case the author is probably using newlines
to balance the text (make the lines appear to be
equal in length). Balance your translations in a
similar way.

You can usually just copy the escape character exactly as you see it. Check that you have the same
number of escapes as the original. If your language doesn’t use double quotes or single quotes like
English, you can ignore those (\" \' '). In the case of quotation marks, place the quotes
around the same concept as in the English.

Don’t unnecessarily change the escape. For example, do not use /n instead of \n just because you
can't find \ on your keyboard. Be careful for cases like “File \ Open \ New”. This is not escaping.
If they are not in the list above, then they are most likely not escape characters. Also be careful to
use the same spacing around the escape characters.

Markup
HTML is used to create web pages. You will also see XML (which looks very much like HTML) in
GUI translations. They are both examples of markup languages used to specify some information

p. 29

about text. Be aware of which parts of HTML you can safely translate and which you should leave
unchanged. HTML is recognised by tags between angle brackets:

<tag>

A tag can also contain extra information:

Here the img (image) tag contains an extra attribute to specify the file name of the picture to show.
Furthermore, tags often occur in pairs:

<p> </p>

Note the difference between the opening and closing tag.

What not to translate

Do not translate the actual tags. HTML consists of tags which indicate the start and end of a section
of text. This text could be a heading, a paragraph, a hyperlink or just a piece of text to display in
bold:

• <h1>A heading</h1>

• <p>A paragraph</p>

• A hyperlink

• This is normal and this is bold

Some markers just beg to be translated, such as these: <title>, <center>, <body>. Do not be
tempted – these need to remain in English.

Reordering or changing tags

In some cases, it might be necessary to reorder the tags. If tags surround some text, it means that the
translation representing the text inside the tags should probably also be surrounded with the same
tags.

Some inline tags can represent something that should be positioned in the translation, such as an
image or a footnote. Take care where you put this in the translation to have the same effect as the
original text.

Whenever you work with tags, always ensure that opening and closing tags go together in pairs, and
that the closing tags always follow the opening tags.

Attributes – which to translate

An attribute is extra information associated with a tag.

Example

<body bgcolor=blue>

Here “bgcolor” is an attribute and “blue” is its value. Attributes, like tags, are never translated.
However some values can be translated. In the example above the value “blue” should not be
translated.

There are only a few values that can be translated:

p. 30

Attribute Meaning

alt
A textual description of a picture, often used in img (image) tags. This is essential
for people with disabilities.

title A text title that pops up when you hover something, exactly like a tooltip.

In some cases you might also need to change the “lang” or “dir” attributes. This is best left to
people with good knowledge of HTML.

Tags that should be translated

Some things that look like tags are not really tags and should be translated. For example: <Error>,
<File not found>, etc.

If you are experienced with HTML, you will immediately know which are real tags. If you don’t
know, use this rule: If its all in lower case or upper case then it is very likely a tag. If it combines
case, it is most likely not a tag. If it contains any attribute such as it is definitely
a tag. And lastly if it's the only text in the message like in “<None>” then it is most probably not a
tag.

Simple plurals
English adds s to the end of most words to form a plural. You will often see that a programmer
simply added (s) to the word to indicate that it can be both singular and plural. Here is an example
in Tsonga, in this case plurals add/change text at the beginning of the word, not the end. This often
simply looks ugly.

Show/Hide Axis Description(s)

Kombisa/Fihla (ti)nhlamuselo ya tikhona

Furthermore, the grammar in other parts of the sentence might need to agree with either the singular
or the plural case, but can't agree with both.

Here are the options available to you to deal with these type of plurals:

1. If your language does not use plurals, you can just translate it disregarding the embedded
plural.

2. Contact the programmer and hear if it can be improved to use proper plurals (see page 33).
3. Use a similar construct if it works in your language.
4. Abandon the singular and use only the plural form. This is what is done in languages where

the singular and plural look too different, and the brackets will just make the translation
ugly.

Variables
Variables are placeholders for numbers or some text that will be filled into a message when the
program is running. For the software to be able to show a message such as “There are 3 files
remaining” it has to have a generic message that will also allow it to say “There are 4 files
remaining”, “There are 5 files remaining”, etc. This often looks like this:

There are %d files remaining

Here we see that “%d” is a variable that serves as a placeholder for the number that will be filled in

p. 31

later. There are many other ways in which the same effect can be achieved. Here are a few
examples:

• There are {} files remaining

• There are %(number)d files remaining

• There are &number; files remaining

• There are $n files remaining

These are all equivalent and will appear the same way in the running program: something like
“There are 2 files remaining”. In these examples, the variable always represents a number written
in digits. The number will therefore never appear in words such as “There are two files remaining”.

Variables can also be placeholders for other things, not just numbers. Here the variable is a
placeholder for the name of a program to open a file with:

Open with “%s”

which will display something like

Open with “OpenOffice.org”

or

Open with “Virtaal”

Sometimes programmers might comment on what the variable represents, or you might need to
work it out from context. If the variable has a name (like “number” in some of the examples above)
you will usually know exactly what will be filled in. It is useful to remember that “%d” will always
represent a number written in digits, and that “%s” usually refers to some text that will be filled in.
Messages can contain more than one variable, and could mix number variables and string variables.

Because variables sometimes give special meaning to certain characters, you might need to use an
unusual way if you really want this character in your translation. In some of the examples above,
the percentage sign (%) is used at the start of a variable. This is part of the variable and disappears
when the program is running. If you really want a percentage sign to show, you have to use the
special placeholder “%%” which will display as a single percentage sign in the translated program.
This is similar to escaping that was discussed on page 28.

Example

The work is %d%% complete.

This message will display something like “The work is 40% complete” or “The work is 100%
complete” with a single percentage sign shown to the user. In your translation, you have to realise
that the “%d” is the placeholder for the numeric value (such as 40 or 100 in the examples above),
and that the “%%” represents the single percentage sign in the translated software.

If you are unsure how to deal with these cases, don’t worry: they are rare and a developer for the
project should be able help you.

There are three important things to keep in mind here:

• The variable itself should not be translated or changed in any way, unless you really know
what you are doing.

p. 32

• It is your responsibility to move the variable in your translation to the correct position in the
message to ensure that it will read naturally and correctly in your language. You might also
need to adapt other parts of the translation with reference to what will eventually replace the
placeholder. Don’t follow the word order of the original sentence blindly.

• When there is more than one variable in the string, you might need to reorder them.
Variables with names can usually be reordered and positioned freely, whereas symbolic
variables might need to be handled with more care, or might not allow reordering.

• Since variables might contain things unusual to your language, such as file names or
untranslated error messages, consider surrounding a variable with quotation marks if this is
a good way to indicate the unusual text in your language.

There are many smaller issues related to variables. Read more in the section on “Advanced
handling of variables” on page 36, and also this article:

http://translate.sourceforge.net/wiki/guide/translation/variables

Proper plurals
Programs do have the ability handle plurals correctly. When the application runs it will determine
which plural form to use based on the number that is being displayed. So in English it would
display:

• 0 files
• 1 file
• 2 files
• 3 files
• 100 files
• 109 files

• etc.

Here you see that the text is different depending on the number of items. Languages will vary the
word form depending on the number in different ways. You need to know exactly how this works
in your language for all numbers. In the case of English, the translation is stored as two strings –
one for the singular case (“1 file”) and one for the plural case (“files” – all numbers except 1).

Example

• %d file was added to the archive.

• %d files were added to the archive.

Notice how the noun is different, and the grammar adapts to agree with the noun (“was” / “were”).

If your language does not have plurals, you will simply translate the two English strings with one
string. This is common for some languages in Asia. If your language uses singular and plural
nouns like English, you will make a translation of the two strings by also entering two strings – one
with the singular and one with the plural. If your language uses more than two noun forms, a
separate string for each noun form should be entered to allow a correct message to be displayed to
the user depending on the number of things mentioned.

Since an unknown number of things are involved, proper plural messages always make use of
variables (see page 31). In the example above, the variable “%d” represents the unknown number.
Always remember what the placeholder stands for, and consider reordering things in the sentence to
correctly reflect your language.

p. 33

http://translate.sourceforge.net/wiki/guide/translation/variables

On rare occasions developers might ask you for more information about how plural forms work in
your language. The following page probably contains what is needed:

http://translate.sourceforge.net/wiki/l10n/pluralforms

Accelerators
An accelerator key is a key on your keyboard that you can press to quickly access a menu or
function. It is also sometimes called a hot key, access key or mnemonic. If you look at the menu bar
on any application you will see that the first letter of each entry is underlined. Notice that File, Edit
and View each have the first letter underlined. To quickly open the File menu press Alt+F. You will
notice that most of the menu entries also have accelerator keys, to access Open simply type o after
typing Alt+F.

An accelerator marker is the special character we use to mark accelerator keys when we translate.

Identifying the accelerator

In translations accelerator keys are shown by various marker characters:

Application Marker Name Source Text Example Displays As Note

KDE and QT & ampersand Save &As… Save As…
GNOME and GTK _ underscore Save _As… Save As…

OpenOffice.org ~ tilde Save ~As… Save As…
Mozilla & ampersand Save &As… Save As… Using moz2po

Windows .rc & ampersand Save &As… Save As… Also used in Wine

In all of the above examples pressing A would take you to the Save As dialogue box.

What happens if you want to use the & character without making it an accelerator? In this case the
accelerator is usually escaped by using && (for KDE) or & (for Mozilla): “Mail && News” or
“Mail & News”. As a translator you would be free to drop the & and use the equivalent of the
word “and” in your language.

Selecting

How do you select an accelerator key for your languages? Keep these principles in mind:

1. Try to keep it similar to the English. This makes it easier for users to switch to localised
interfaces.

2. Accelerators should not degrade readability too much.
3. Avoid duplication. Ideally, in any menu, window or dialogue box, a letter should only be

used as an accelerator for one string. If the letter 'T' is used for two menu entries, it is
usually not a big problem, but the software isn't as usable as it could be.

We usually follow these simple rules.

1. Try to keep the same letter as the original. “&File” → “I&fayile”
2. Try to keep the same position as the original. “&File” → ”&Ifayile”
3. Select an uncommon letter. This might avoid clashing accelerators.
4. Try to use a letter that is close on the keyboard to the original letter, therefore being easier

for the user to adapt to.
5. Avoid narrow letters like i and l. It might be too hard to see the underlining under them.

p. 34

http://translate.sourceforge.net/wiki/toolkit/rc
http://translate.sourceforge.net/wiki/toolkit/moz2po
http://translate.sourceforge.net/wiki/l10n/pluralforms

6. Avoid adding accelerators under characters with descenders such as lower case g, j, p, q or
y. The underlining might strike through the character and cause the character to look odd
and not be immediately recognisable. For example in KDE, &g would appear as g which
looks messy. It is best to confirm with an actual test, since some rendering systems actually
support underlining clearly when the letter contains a descender.

7. Try to avoid the letter next to a descender for similar reasons as above.
8. Make sure the character is actually available on the user's keyboard. Accented characters

such as ä might or might not be present on a keyboard in the language. It might even be
difficult for some users to type unaccented characters like ɔ and ɛ.

9. If your language uses diacritics under certain letters such as ț, ḓ or ọ, avoid these characters
as well, as the underline might run through the diacritic. Avoid letters with diacritics entirely
unless you are very sure that they will be usable by the end-users.

10.If you can’t use any character (like in Asian languages using input methods to type),
translate the word into your language and use the original English accelerator. I.e. “&File”
→ “XXXX(&F)”. In some software you can ignore defining the accelerator in which case it
will default to the English version.

11.Non-letters like numbers and punctuation marks can be used if they are present on a
standard keyboard as is common amongst the speakers of your language. This will usually
only be a relevant choice if it was chosen for the source text as well.

Accelerator Clashes

If we have two accelerator keys using the same letter, we say that we have a clash. Assume that the
following list are the top three entries in a menu:

• A uthor
• A ddress
• Available Actions…

You will notice that all the accelerators use the A key – this is a clash. Fortunately most
applications will cycle through the options as you press A repeatedly.

Here is a better choice of accelerators for the same menu:

• A uthor
• Address
• Available Actions…

We now use A, d and v – there are no conflicts.

Examples

English text Good translation Bad translation Appearance
in original

Appearance in
translation

Notes

&File &Faele F&aele File Faele Rule 1, 2

&View Le&belela &Lebelela View Lebelela Rule 3, 4

~Tools Di~tlabela ~Ditlabela Tools Ditlabela Rule 1, 3

&Help T&hušo &Thušo Help Thušo Rule 1

_Move Š_uthiša _Šuthiša Move Šuthiša Rule 8

Zoom &100% Godiša &100% &Godiša 100% Zoom 100% Godiša 100% Rule 11

~Font Size Bogola bja ~fonte Bogola bja~fonte Font Size Bogola bja fonte Spaces

p. 35

Review

Review your choices in the running application. Clashes are not a big a problem, and can sort
themselves out over time. Refer to the section on “In-product review” on page 50.

Advanced handling of variables
A slightly more advanced use of variables occurs in some cases to allow the translator to customise
the way that the variables are displayed. The examples and techniques in this section is a little bit
more advanced. It isn’t important to understand all of these immediately, but understanding these
issues might help you to solve some problems in your translation and improve the quality of your
localisation work.

Reordering

Your translation might just work best with the variables in a different order than the original text.
Doing this is easy if variables have names, but it is common for developers to use unnamed or
symbolic variables such as “%d” and “%s”.

There are %d photos on the device %s

This might display as “There are 55 photos on the device Nikon XYZ”. In your translation, you
might prefer to reorder the variables, to say the equivalent of “The device Nikon XYZ has 55
photos”. You might be able to do it this way:

The device %2$s has %1$d photos

The variables are now changed to reflect their order in the original English string. The variable
“%d” was initially first, so now it is represented by “%1$d” now that it isn’t used first any more. In
lots of software (especially in C like languages using the printf() function) you are able to do this.
The project developers would be able to confirm.

Omitting

In some cases it might be possible to entirely leave out a variable in the translation. This can be
useful for the correct translation of certain plural forms, or if an entirely different wording will be
used in the translation. This won’t be possible in all situations, so check with the developers if it is
safe to do.

In some cases where it isn’t possible to entirely leave out a variable, it can be added in a way that
will prohibit it from displaying. A “%s” variable can sometimes be represented with “%.0s” which
would stop it from displaying at all.

Times and dates

Variables are sometimes used to customise the display format for times and dates. Check the
section on “Number and date formats” on page 53 for more information. In this case, you might
need to use different variables from what was used in the original text.

Example

Here is a string used to format time to look something like “8:15 pm”:

%I:%M %p

p. 36

This is the usual American 12 hour format with the extra “pm” or “am” indicating if it is in the
morning or not. In a language where a 24 hour format is more appropriate, the translation should
contain the following:

%H:%M

This will display the same time as “20:15” with no “am” or “pm” at the end. Different variables are
used, and there are even a different number of variables. In the case of such time and date
formatting strings, this is correct.

The exact details of how these variables work might depend on the programming language used by
the project, although they are often the same. Here are a few pages for popular programming
languages in FOSS projects:

• C / C++ http://opengroup.org/onlinepubs/007908799/xsh/strftime.html

• PHP http://php.net/manual/en/function.strftime.php or http://www.php.net/date

• Python http://docs.python.org/library/datetime.html#strftime-strptime-behavior

• .NET http://msdn.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.aspx

On some systems you might also be able to consult the manual for strftime, which should
correspond to the first link above.

Formatting

In some cases you can specify the exact format in which variables should display. This might be
useful for the correct formatting of numbers in accounting software, for example. You can control
if the sign (+/-) should show, if some zeros should be added to the front, etc.

This is not frequently required, and you might never need to bother with such formatting. For more
information, see the possible choices for formatting variables:

http://opengroup.org/onlinepubs/007908799/xsh/fprintf.html

p. 37

http://msdn.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.aspx
http://docs.python.org/library/datetime.html#strftime-strptime-behavior
http://opengroup.org/onlinepubs/007908799/xsh/fprintf.html
http://www.php.net/date
http://php.net/manual/en/function.strftime.php
http://opengroup.org/onlinepubs/007908799/xsh/strftime.html

Chapter 8: Chapter 8: Localisation toolsLocalisation tools
We introduced the two main localisation tools discussed in this book earlier on page 11. Virtaal
and Pootle complement each other and together fulfil most of the functionality a translation team
should need. Pootle allows translation online and offline with a focus on volunteer contribution.
Virtaal is a powerful translation tool focused on simplicity and productivity, and works well with or
without an internet connection. You can always download files from Pootle for translating offline
in Virtaal if you prefer.

Virtaal
Virtaal is a powerful translation tool, yet simple to
use. You can increase your productivity by ensuring
you know all the shortcuts and tricks and without
being distracted by a cluttered interface.

Although most features are available using the mouse,
Virtaal is designed to encourage you to work as much
as possible with your keyboard to increase your speed
and keep the translation fun.

Opening a file

Mostly you should be able to simply open a translation file by clicking on the file in your file
manager. The file might be associated with another program in which case you can look for Virtaal
in the context menu by right-clicking on the file.

You can also run Virtaal and open a file with File→Open or Ctrl+O.

Supported file formats include:

• Gettext PO
• XLIFF (.xlf)
• TMX
• TBX
• WordFast TM (.txt)
• OmegaT glossaries
• Qt Linguist (.ts)
• Qt Phrase Book (.qph)

Normal translation

After opening a file, the first translation unit will be shown with your cursor in the field below the
source text. You can simply type your translation and press <Enter> when finished - just like in
your word processor. Note that <Enter> moves you to the next position where you want to type. In
the case of units with plurals, enter will take you to the next line in the same unit.

If you have the correct spell checkers installed, spell checking should be active for both the source
and the target text.

You can undo normally using Ctrl+Z.

p. 38

Time savers

Auto-completion

Virtaal will save you some time by trying to complete some long words for you. You will see the
auto-completion suggesting a possible word, and the suggestion can be accepted by pressing <Tab>.
If the suggestion is not what you want, you can simply continue typing the word you had in mind. If
you accepted a suggestion that you don't want, you can simply undo normally with Ctrl+Z.

Auto-correction

Virtaal will save you some time by fixing certain common typing mistakes or spelling errors. How
mistakes are corrected depends on your language, and there might possibly not be information for
your language yet. Feel free to get involved in the project to improve this feature for your language.

If Virtaal automatically corrected something which you didn't want, you can simply undo the step
with Ctrl+Z.

Copy original to target

Sometimes it is easier to have the original string as a start to only replace a few translatable
elements. Translations containing XML markup or many variables might be more work to type
again than to just start with the source text. You can easily copy the original text into your
translation area by pressing <Alt+Down>.

For some languages, you will see how Virtaal automatically changes the punctuation marks to fit
the conventions of your language. This could involve quotation or other punctuation marks, or the
spacing between certain elements. For example, a “quotation” automatically becomes a
« quotation » in French, without the translator having to change the quote characters or the spacing.

If you don't want the changes to the source text that Virtaal automatically did, you can simply undo
the step with Ctrl+Z.

Copy a placeable to the target

Placeables are special parts of the text that can be automatically highlighted and easily inserted into
the translation. You will see that certain parts of the source text will be highlighted. To select which
placeable to insert, press <Alt+Right> to move the highlighting to the correct placeable. You can
insert the currently highlighted placeable by pressing <Alt+Down>. After you have inserted a
placeable, the next placeable will be highlighted.

Copy a term to the target

Highlighted text will show which terms Virtaal recognised, and allow you to handle them as
placeables. You can use <Alt+Right> and <Alt+Down> the same way as with other placeables. If
there is more than one suggestion for a term, Virtaal will display the choices in a menu. Select the
translation you want, or press <Escape> to continue typing.

p. 39

Use a suggestion from TM or MT

If Virtaal has a suggestion obtained from translation memory or machine translation, it is displayed
underneath the editing area. You can put the first suggestion into the target text with Ctrl+1, or use
Ctrl+2, etc. to select the others. You can also double click the suggestion to obtain the same effect.

Navigation

Above we saw how we can easily advance to the next point of translation by pressing <Enter>. You
can also move around easily between rows with <Ctrl+Down> and <Ctrl+Up>. To move in large
steps, use <Ctrl+PgDown> and <Ctrl+PgUp>.

Virtaal will move you between certain rows. Normally it will move between all rows, but other
ways of navigation can be selected at the top of the Virtaal window.

Incomplete mode

If you activate the “Incomplete” mode, Virtaal will move between untranslated and fuzzy units.
This allows you to quickly find the places where you need to work. Translations will still appear up
between the same rows in the file so that you can see the context that you are translating in.

Searching mode

If you activate “Search” mode or simply press <F3>, Virtaal will move between all the rows that
correspond to your search query. Translations will still appear between the same rows in the file so
that you can see the context that you are translating in.

To move back from the search box to your translation, simply press <Enter>, or go back to another
mode.

Pootle
Pootle is a popular web-based system for translation and translation management. It is used by
several FOSS projects to manage their localisation work. Pootle allows online translation, and it
has several features to help with review and team organisation. It is ideal for team work, casual
contributions, and translation sprints (Translate@thons).

p. 40

A Pootle server can host one or several projects for any number of languages. Some servers are
used to translate the software of one project into many languages, whereas others are used for
coordinating the team work for a single language team on several localisation projects. Pootle
allows team work with different roles for different team members. Pootle users can also make use
of several features to help them improve their quality, such as terminology assistance, and quality
checks.

Since Pootle is a web-based system, it is installed by server administrators, and the activity allowed
on a Pootle server, is determined by them. To translate anything not yet on the server, contact the
administrators. Realise that each Pootle server might have its own purpose and way of assigning
permissions to volunteers.

Most Pootle functionality require you to log in with an account.

Finding your work

From the front page of a Pootle server, you can discover the available projects and languages on the
server. A summary of the progress is shown to get an impression of the completeness and activity
for a specific project or language. Once you have selected the language and project, you will see
more detailed statistics about every file in the project, and have access to more functions for
translation and review.

If you want to translate, the “Translate” tab provides access to the features for both online and
offline translation. To quickly go to the incomplete parts of the project, choose “Quick Translate”
for the file or directory. To translate offline, download the appropriate file or files. After
completing the work offline in Virtaal, use the upload form at the bottom of the page to submit the
work back to the Pootle server.

To review work (even your own work), visit the “Review” tab. It provides access to suggestions
left by team members as well as quality checks that might indicate possible places of improvement
in the translation.

If you are the administrator for this project or language, you might also be able to configure
permissions and perform certain file management work. Refer to the Pootle documentation for
more information on these features.

Server administrators can add languages, projects, and also provide translation templates (refer to
the section on “A simple localisation process” on page 43 to understand the role of templates).
There should be contact details to allow Pootle users to contact the server administrators.

Terminology

Pootle can help translators with terminology. Terminology can be specified to be global per
language, and can be overridden per project for each language. A project called “terminology” can
contain any files that will be used for terminology matching.

Project administrators can generate a list of frequently occurring terms from the “Translate” tab in
the Pootle interface, which can help to quickly standardise some frequently occurring terms. It is
also possible to add extra entries.

http://translate.sourceforge.net/wiki/pootle/terminology_matching

Suggestions

Pootle has the ability to optionally allow users to provide suggestions that need to be reviewed
before they are accepted into the real translation files. Who is allowed to do what is determined by
the configuration of permissions for the project or the server.

p. 41

http://translate.sourceforge.net/wiki/pootle/terminology_matching

This allows for a team to form with different roles for different team members, and makes it
possible to have a more explicit review step that requires suggestions to be checked before they
become the real translations. This also allows the collection of alternative translations.

http://translate.sourceforge.net/wiki/pootle/suggestions

Quality checks

Pootle provides a powerful way of reviewing translations for quality by testing for several issues
that can affect the quality of your translations. Refer to the section about “Automated review” on
page 49.

If Pootle indicates a possible problem with a translation, it doesn't mean that the translation is
necessarily wrong, just that you might want to review it. Pootle administrators should indicate the
correct project type (GNOME, KDE, Mozilla, etc.) in the administration pages. This will improve
the accuracy of the quality checks.

http://translate.sourceforge.net/wiki/pootle/checks

Searching

Pootle provides a searching functionality that allows translators and reviewers to search through
translations for some text. The search box is shown close to the top of the page. Searching can be
used to find specific things you want to work on, see how issues were solved before, or to verify
consistency in your translations.

Search results are up to date, and will reflect the current translations in Pootle.

p. 42

http://translate.sourceforge.net/wiki/pootle/checks
http://translate.sourceforge.net/wiki/pootle/suggestions

Chapter 9: Chapter 9: Localisation projectsLocalisation projects

A simple localisation process
In the simplest case, you might be offered a single file to translate, open it in your translation
program such as Virtaal, and send it back to the project. Although things are usually more complex
than that, this is realistic for some projects, especially when the program is translated into your
language for the first time. You can also keep things simple initially by working on projects with a
simpler process. In our case studies, you will find a description of the project Tux Paint, which is
very simple and an ideal starting point (see page 55).

In the general case, however, you might need to perform extra steps, or you might need to create
your own files to translate following some prescribed steps. In the case where there is an existing
translation, you will need to update the translation file to contain all the newest strings to translate,
so that it corresponds to the program version you are translating.

A lot of projects follow a process similar to this:

 … TODO: a diagram to show template upgrade process …

• A translation template is generated from the source code (programming files) containing all
the translatable text.

• New translations simply start from this template. Existing translations are upgraded to
conform to the new template.

• Translators translate the file, often also performing some review stages.

• The finalised version is submitted to the project, and will form the start of any future work
in this language.

Note that you should never need to start translating from scratch if some previous translation is
available.

Finding the relevant files
To translate an application, you will need to find the files to work on. Hopefully the project has
documentation specifically for translators explaining exactly what to do, including how to submit
your work to the project. For a project that use a Pootle server, this might be absolutely straight
forward. However, even if they don’t, things might be quite predictable.

Many projects might simply make a single file per language available for download. Maybe all you
need to do is to download the file, translate and test, and e-mail it to a developer. There might be
more specific instructions about submitting, such as creating a bug report and attaching your
translation.

Some projects might expect that you interact with their version control system. A version control
system is a system used to keep all files for the projects, and therefore usually also the translation
files. Most software is developed with such a system in use, and in the case of FOSS, it will usually
be publicly accessible. This might be the preferred way to obtain files, and to submit them back to
the project. In order to submit a file to the version control system, you will need to be authorised to
do so, and each project might have its own way of doing this. In most projects it isn’t compulsory to
understand the version control system in order to localise the application, but in some cases it might
simply be best for you to become familiar with some of the basics of how it works. The developers

p. 43

should be able to help you get started and recommend any required documentation. Some basics are
explained on page 46 in the section on “Version control systems”.

In whatever way you obtain your files, it is important to know whether the files are already up to
date, or whether you are required to “upgrade” them to contain the newest work. This is one of the
reasons why you should usually not start by translating from a released version of the software,
since that won’t give you up to date files.

For most FOSS projects you will be required to translate a single file. The most common format
is .po, although several others exist, such as .ts, .properties and .php. The files are likely found in a
directory called “po”, “locales”, “lang”, or something similar.

Many projects are dependent on translations done outside of the main project, such as those done by
software libraries. For a fully translated application, it might be necessary to complete these
translations as well. Ask the software developers if you are in doubt.

In some cases there might be a special procedure for adding a new translation. For example, it is
common to put a line with your language code in a file called LINGUAS. There might also be a
convention to add an entry to the ChangeLog for each change to the software. This differs from
project to project, so check the project documentation.

In the case where the project provides files that can’t be opened directly in translation tools, you
might need to look into converting these files into a translation format. In many cases, this is
important, and have many advantages. Read more here:

http://translate.sourceforge.net/wiki/guide/monolingual

The Translate Toolkit has several converters used by many FOSS projects to translate their files.
Several other packages also exist, such as po4a and xml2po.

http://translate.sourceforge.net/wiki/toolkit/index

http://po4a.alioth.debian.org/

Project communication
You will be required to interact with people while you are involved in a project. This section
describes some of the ways that FOSS projects commonly communicate and transfer information
between people.

E-mail

A mailing list is a system that distributes e-mail to subscribers to facilitate group discussion by e-
mail. Any e-mail sent to the mailing list address is automatically distributed to all subscribers. A
lot of projects use mailing lists for communication between project contributors. There might be a
single list for programmers, users and translators, or several mailing lists each with its own purpose.
You will often need to join a mailing list to meaningfully take part in a project. It might be the best
way to be notified of upcoming releases, have your questions answered, and get the know more
about the project.

Note that a lot of FOSS projects prefer such mailing lists to keep to the intended topic. Any off-
topic discussion, advertisements or purely social use of a mailing list will be unacceptable in many
projects. There might also be conventions about whether attachments are allowed in messages to
the list, etc. As you receive some messages from the list, you might notice some of the
conventions. You should never add the mailing list address to other services like social networks.

Remember that most of these mailing lists are usually archived and publicly available. Any e-mail
you send will show your e-mail address, and the content will be available to anybody with web
access. Always stay polite and refrain from arguments. Keep in mind that the members of these

p. 44

http://po4a.alioth.debian.org/
http://translate.sourceforge.net/wiki/toolkit/index
http://translate.sourceforge.net/wiki/guide/monolingual

lists are usually from different backgrounds, and people will have different cultural values and
abilities in English. Do your best to be very clear in what you say or ask.

It is usually not considered a good idea to contact any specific project member directly by e-mail,
unless this is an indicated way to do something (like submitting your translation) or if you get to
know the person involved well. Therefore you should always use the mailing list address for
answering, and thereby ensure that relevant discussions stay on the mailing list for everyone’s
benefit.

Chat channels

Several FOSS projects use chat services such as IRC as an additional communication medium. It is
sometimes used for user support, or for more interactive discussions. It might the best way to get a
quick answer to a question, or to learn some procedure that might involve a few questions and
answers. Although chat programs are often the recommended way to join these channels, you
might also be able to use your web browser.

Although several people might seem to be in a channel, it might be that they are not actually at their
computer and reading your message. Always be patient for an answer, and stay in the channel
while waiting for an answer. It is not uncommon for people to get back to their computer after
lunch or a meeting and answer you after an hour of waiting. People might even be in another time
zone than you are, and might only see your question after waking up.

Just as with mailing lists, you should be polite, and it is possible that communication in the channel
is logged and publicly available. When you have a question to ask, simply ask it. It isn’t necessary
to ask if you can ask a question. In most channels the participants would prefer that you state your
question up front with all relevant information.

Never paste large amounts of text in a channel. Some servers might cut your connection, and it is
not a pleasant way to work with many lines of text. Better ways might be e-mail, or a pastebin – a
web site where you can paste text and then only use the link in the chat channel.

Bug trackers

Many projects make use of a bug tracker such as Bugzilla or Trac – a web based system where
problems, requests, and improvements to the software are planned and discussed. A link is usually
provided on the project’s web site.

You might be expected to submit your translations in such a system. Additionally, this might be the
best place to report any errors you find in the original source text that you translate. Although there
are often many fields, don’t worry about them. You can usually just leave any difficult ones at their
default values. In time you might learn each project’s preferred way of filling in these forms.

Wikis and forums

Wikis are sometimes used to build a project’s website, project documentation, or even instructions
for participants. The idea of a wiki has become well known due to Wikipedia. You might want to
get involved in translating the project documentation or website, and some of this might happen in
wikis. Spend a little bit of time to ensure that you are familiar with the wiki syntax (how to format
the text).

Forums are not very common in FOSS projects, but are sometimes used for user support or
discussions among participants. You might want to help out with user support in your language
when you are familiar with the software.

If we believe that software localisation is important, obviously documentation and support in the
user’s language is also important. For small languages there might never be enough people to help

p. 45

with all these things, so remember to prioritise your work and keep your goals in mind.

Version control systems
We briefly mentioned version control systems in an earlier section. Although there are many things
to learn about version control systems, you will probably only need to know a few basic operations
to contribute translations. Find out which version control system is used in the project, and find out
how to do the following:

• Get the complete project with all files from version control

• How to update the files at a later stage to the newest changes made by others

• How to submit a file

If you can do these things, you will probably be able to do most of what is expected from you.
Although all changes can be undone in a version control system, you shouldn’t be careless or make
any unnecessary changes. Ensure that you know the following:

• When you are allowed to submit a file

• If any specific commit message is expected

• Whether there are any other changes you might need to make (such as a LINGUAS file)

• If you need to do any specific preparation before you commit, such as switching to a
different branch

Branches are usually a way of doing work on two different versions of a product at the same time.
You might need to only submit your translation to one version of the product, and therefore only to
one branch in the version control system. Ask the developers if you are unsure.

Some of the principles of version control systems are explained here:

http://betterexplained.com/articles/a-visual-guide-to-version-control/

Project schedule
Each software project has its own schedule and pace of development. If a project releases new
versions very often and accepts translations at any time, you can probably contribute your
translation whenever it suits you. For projects that only release on certain occasions, you want to
ensure that your work will be useful to as many people as possible, so you should try to think
strategically about your participation in the project.

It is common for projects to announce their release plans in advance and ask translators to update
their translations. This is an excellent time to contribute your translation, as it is probably an
indication that the developer is actually thinking about translators, and is trying to create good
circumstances for them to do their work in. If you are starting with a new translation of a project,
you should take extra care to ensure you have enough time to complete the whole task and do the
testing. Read more in the section on “Counting and estimating” on page 51 and about “Testing and
review” on page 49.

If you are translating a really large project for the first time, you probably need to start long before
such an announcement anyway, which means that you are somewhat less affected by it for the
biggest part of your work.

Such an announcement from a developer coincides with a phase called the string freeze. This means
that the text that needs to be translated is finalised for the release, and no further changes are
planned for the text. This means that you can do your translation work knowing that you are
translating the final text and probably won’t need to adapt your translations to changes in the

p. 46

http://betterexplained.com/articles/a-visual-guide-to-version-control/

original text until the release happens. Such an announcement might also specify which software
version will be released, and maybe which branch in the version control system should be used. If
you are unsure, ask the relevant developers – you don’t want to spend your time translating the
wrong version!

If you start too late, you might not complete the work, or you might be too late for your contribution
to be accepted into the release. Starting earlier is usually safer, but not necessarily better. If you
start before the string freeze, you might need to make extra changes when the final string freeze is
announced. If you stay up to date with the news in the project, you can avoid disappointment.

FOSS issues

Motivations

As mentioned earlier, people will have different motivations to contribute to FOSS projects. Some
developers do it as a hobby, or to solve some problem that they wanted to solve. Some contributors
work for companies who contribute to FOSS projects for several reasons. The important thing to
realise is that many of the people you encounter in a FOSS project, might be involved there for
different reasons than you are. If you want to get help from someone, it might demand some of
their time, and they might not be able to help you right away because they are at work. Someone
might not be interested to help you because they are not interested in the specific issue you need
help with. Usually people are quite helpful, but it is useful to keep in mind that very few people
have an obligation to help you. Therefore always be polite, especially when asking for help. Also
try to help other people in the project when you can. There is a big culture of doing favours in
FOSS projects, so remember that they are favours, and try to do the same to others.

Licenses

Software is distributed under certain conditions which determines what you are allowed to do with
the software. These conditions form the license which is often shown when installing software, or
maybe in a file in the source code of the software. Of course Free and Open Source Software is
distributed under very attractive licenses allowing us to do many things with it, including
localisation. There are a few issues that deal with licensing and copyright that might be relevant to
localisers.

Firstly, you have to understand that your contributions to the project will be distributed under the
terms of the license used for the rest of the software. You might want to familiarise yourself with
these terms to ensure that you know what other people are allowed to do with your translation. For
example, most FOSS licenses allow people to sell copies of the software, and it is best if you are not
surprised when you see this for the first time!

To contribute to some projects, they might require you to sign a copyright assignment form. The
project might do this for different reasons such as wanting to know your real identity, enabling them
to relicence the software at another stage, or to be able to act on your behalf in legal disputes.
While this is not very common, it can be encountered in some projects.

In some cases, you might not have the rights to distribute your own translated version while
maintaining the original branding (like the name and logos) of the software. Enquire if the project
has any requirements with regards to branding.

Keep in mind that projects are free to reuse your translation according to the terms of the license,
and that you can’t retract the rights you gave to the project when you submitted the translation. It is
even possible that the project could appoint someone else for translation in your language which
will change some of your work without your permission. Although this is very rare, this is possible

p. 47

because of the freedoms that FOSS licenses give, and protects the project in many ways. This
should almost never impact your work.

For more reading, see Free/Open Source Software Licensing by Shun-ling Chen.

http://www.iosn.net/licensing/foss-licensing-primer/foss-licensing-final.pdf

http://en.wikibooks.org/wiki/FOSS_Licensing

Wider involvement

An interesting aspect of FOSS projects is that contributions are usually welcome in all activities of
the project. Translation, documentation, testing, marketing, programming, design – these are all
useful ways of contributing to a project. You might only be interested in translation, but you might
find that your involvement in many other activities can be very useful; not only for the project, but
also for your localisation work.

Reviewing English text is very important for English users, but also to ensure that translators are
working from clear source text. If your English is not very good, you might still be able to point
out which things are hard or impossible to translate, thereby helping to improve the source text for
your own translation work. As a translator you are probably one of the people who read the English
text with the most attention, thereby making yourself a good proof reader of the English text. You
can usually report errors with the source text in the bug tracker for the project.

Testing the software with the translated interface is an important part of your localisation work.
Testing is discussed later on page 49. A valuable side-effect of this is that you can make a useful
contribution to testing the software itself in preparation for a release. You are also the best person
to test compatibility with anything related to your language or country, such as handling of text in
your language, compatibility with local websites, font support, etc.

Designing the software for a diverse user group all over the world isn’t always easy, and this is
another way where you can help the project to ensure that the designs take your language and
culture into account. It could be as simple as asking for more space for a string with a very long
translation in your language. It could also include more far reaching design decisions such as
features that are required for your language that the developers might not have been aware of.

Marketing the software all over the world sounds like a lot of work for a small group of
volunteers, except if a project has contributors in many countries. You can become an ambassador
for the project in your country or geographical area, and even in this case, it could often involve
translation. Marketing material, websites, brochures, etc. might be available for translation, and the
project might depend on you to ensure their success in the place where you live.

Involvement in events is not a frequent activity for many contributors to FOSS projects, but you
might get an opportunity to represent a project you are very familiar with at a local event. This is a
great way to promote the software, and maybe to gain more contributors for your localisation work.

p. 48

http://en.wikibooks.org/wiki/FOSS_Licensing
http://www.iosn.net/licensing/foss-licensing-primer/foss-licensing-final.pdf

Chapter 10: Chapter 10: Beyond mere translationBeyond mere translation
In earlier sections several important issues in FOSS localisation is discussed. With some time and
practice, these should all become easy and natural for you to do. You can improve your localisation
work even more with some of the topics discussed in this section. This should help you to spend
your time more effectively, and work at higher quality.

Testing and review
Testing your localisation is very important. It is natural to make mistakes, but too many mistakes in
your localisation will leave a bad impression with the users, and put them at a disadvantage for
using the localised version of the software. This section explains some different ways of testing.

Automated review

For the purposes of this book, automated testing refers to using software to automatically review
our translations. Since software is really good at simple repetitive tasks, it is ideal to help us
discover things like spelling mistakes, errors in capitalisation, unwanted spaces, as well as mistakes
with variables and markup. Several of the issues we discussed in “Technical issues” on page 27
might be detected by automated review tools.

Pootle and Virtaal incorporates several quality checks that will help you to find certain types of
errors. Some of these are only of a cosmetic nature (such as spaces and punctuation). Others are a
bit more serious (such as missing numbers or suspicious translation length). Some tests might
indicate serious issues that could crash the software or prevent some functionality from working
(such as errors with variables).

Read more about all these quality checks here:

http://translate.sourceforge.net/wiki/toolkit/pofilter_tests

It is important to realise that these tests could suggest that some translations contain mistakes when
they are indeed valid. Don’t follow the advice of these tests blindly, and don’t let their results
encourage you to do something incorrect or unusual for your language. The tests are just tools
intended to help you. We have found them of crucial importance in our work, especially with
inexperienced translators, although even the most experienced translators sometimes make
mistakes.

Automated testing is cheap in the sense that it doesn’t require much of your time. It quickly shows
you where to spend your time to fix a possible problem. Always review the quality checks – it is an
easy way to avoid certain errors.

Software written using the Gettext translation system usually use a program called msgfmt to
convert the translation file in to the file needed by the software. It also does some basic checks,
such as checking the file format, invalid use of variables, etc. Any serious error reported by this
tool must be fixed. Usually the translation will not be used if there are any errors reported by
msgfmt. Software written using the Qt translation system, has a similar program called lrelease.

Manual review

Although automated review tools can help us a lot, there will always be room for review by another
human translator. If you join an existing team, the existing team coordinator might review all
submissions from other team members. You might be able to ask someone to read over your
translation file and check for possible areas of improvement. Another pair of eyes can often help to
improve the quality. A translation program with spell checker and quality checks is probably the

p. 49

http://translate.sourceforge.net/wiki/toolkit/pofilter_tests

best software to use for this task.

Mature translation teams usually have an arrangement of how work will flow between translators
and reviewers, and might even have rules that all files have to be checked by a reviewer. In some
projects there are tools available to help you implement such workflows, and to help in
communication in the team. The localisation website of the GNOME project is a great example in
this regard.

When you are working with PO files, it might be easy enough to simply mark translations as fuzzy
when you still want someone to review them. The reviewer can then approve the translation by
removing the fuzzy marker. Although this might be a bit limiting in some cases, it is a simple way
to incorporate manual review into your localisation process.

During review, reviewers should pay attention to spelling, grammar, terminology, consistency, and
all the other things that might be important. When you review someone else’s work, always try to
provide polite feedback to serve as encouragement.

In-product review

A very important step in your localisation process is to review the translations in the running
application. This will allow you to see the result of your translation work, and is always exciting to
see for the first time. The basic principles of testing is the same, regardless of how the translated
application is executed or built. The ways of how to do this can be very different for different
programs, therefore we’ll discuss only the most common case in the next section.

The purpose of in-product review is to review the translation in the way that the user will
experience it. Now it is not just about the language issues, but about the whole experience of the
user. To ensure that you test the translation well, you have to try to find every part of the program.
Go systematically through every menu, look at every option in every dialogue box. Look for
tooltips when you keep the mouse over some part of the program. You can even try to do unusual
things, like opening unsupported files or entering invalid values in the configuration to try to see
error messages. Even the error messages should be translated and reviewed!

Important issues to check for include things like consistent style and terminology, whether
references to buttons use the same text as the buttons themselves, and if translations make sense in
the context where they are used on the screen. Remember that programs might sometimes combine
translations from several files, so consistency isn’t just about the translation quality in a single file.

Another important thing to check for is any strange layout caused by very long or very short
translations. It could be that the programmer didn’t anticipate a translation as long or as short as
yours, and the user interface might not appear neatly any more. Most software in the FOSS world
will try to adapt automatically to changes in the translation by resizing things as necessary. In a few
remaining projects it is still necessary to resize these things yourself. This is a time consuming task
that requires you to spend much more time on testing, and might also require that you test the
software on multiple platforms.

Another important thing to test in the running application is the use of access keys. We discussed
access keys earlier on page 34. Now you need to check that the access keys were chosen well, and
make any necessary corrections. In each menu, and each dialogue box, it is important to test every
access key. It is usually activated by pressing Alt and the underlined letter. It might be necessary
to press Alt to see the characters underlined. Does the relevant letter activate the control correctly?
What happens when you press the letter again? If two controls on the screen use the same letter as
access key, it often happens that they are alternately activated when you press that key. This is not
a big problem, but should be corrected in your translation if possible. In big menus and dialogue
boxes, you might need to plan carefully to select unique access keys for each control. However,
remember that the most important functions, especially in the main application window is probably

p. 50

the most important for you to review, and to ensure that they work well. Also try to keep the access
keys consistent for common things (like “File” and “Help”) between applications.

If you translated documentation, you should review it in the help viewer. Check that page titles and
links between pages are correct, and that any search features show the correctly translated entries.
Ensure that the help text uses the same terminology as the application. Reviewing the translated
content itself is similar to reviewing translated documents.

Testing a program using Gettext

Many FOSS projects make use of Gettext to support many languages in their project. In such
projects you would have translated a PO file, and need to generate an MO file for testing. Some
translation programs might be able to do this easily. Otherwise you can use the program msgfmt
from the command-line like this:

msgfmt -c current_translation.po -o program_name.mo

This will perform some basic tests on your translation file (refer to page 49) and mention any
serious issues that still need to be fixed. If nothing serious was detected, it will generate the file
“program_name.mo”. The correct name will depend on the application (look for the current MO
file in your or other languages), but is usually just the name of the application in lower letters,
followed by “.mo”.

Now copy the file over the existing file (after making a backup), or create the new file in the correct
location. Here are some of the most common places it should go (replace ‘xx’ with your language
code):

• /usr/share/locale/xx/LC_MESSAGES/ (most Linux-based systems)

• C:\Program Files\Program Name\share\locale\xx\LC_MESSAGES\ (Windows)

You might need to create the directories if they are missing (especially on Windows). Remember
that your system language should be correctly set.

Prioritisation (when you can't do everything)
As much as we might want to have all software in our own language, we will always have too little
time, too few people to help us, and the amount of software will just get more and more. Does that
mean we should give up? Of course not. It has been shown many times in the FOSS world that a
small team or even an individual person can do a lot of good localisation work and have a lot of
translated software available. This section explores some ideas of how to maximise your impact,
and tries to provide an idea of what to do if you can’t do everything. Remember to keep your goals
in mind!

Counting and estimating

If there is too much work to do, or you think there is too much work to do, it is very useful to know
exactly how much work is involved in translating a certain file or piece of software. It is common
in many FOSS projects to count the number of strings (messages), but in reality this doesn’t give a
very complete view of how much work is required to finish a certain task. Counting the number of
words is a very good indication of the amount of work required to complete a translation.

Some projects might give a summary of the progress in each language. Always check if the
numbers they mention are messages or words. Most translation tools can also give such a
summary. Pootle and Virtaal prefers to mention word counts rather than message counts. You can
also count many files easily on the command line with pocount from the Translate Toolkit.

p. 51

Of course this doesn’t say anything about the difficulty, the amount of reuse you might get from a
translation memory, or the quality of the English. These and other issues will still influence how
long a translation takes, but the information will help you to make better decisions.

Choosing the product or project

Depending on your goals, you might already know what software you want to translate. However,
very often you might consider translating some software, but might re-evaluate if the amount of
work is too large, or difficult. Therefore you should try to find a bit of information about a project
to help you make your decision:

• How much translation work is required?

• How easy is it to submit a new translation?

• Does the software support any special needs of your language, such as right to left display
for languages like Arabic, or special fonts?

• Are you able to use your preferred translation tools?

• Is this end-user software? Specialised software might not help you to have big impact.

• Does it run on multiple platforms like Windows and Linux? Are versions for all supported
operating systems available at the same time?

• Will users be able to activate the localised interface easily, or will some configuration be
required?

• Does the software require translations of other software like software libraries? If so, you
should probably ask all these same questions about the other pieces of software.

Obviously you don’t need to restrict your involvement to projects that are ideal in all regards. You
might simply want to do something because it is fun or because you personally use that piece of
software. But any software that is harder than necessary might break your speed, or might be
demotivating.

Partial localisation

While we would usually want to translate everything in a given piece of software, there are
definitely some parts of the software that is more important than others to translate. If we can’t
translate everything, we can look for ways to take some short cuts, especially for the first translation
in our language. We should therefore look for ways of maximising our coverage while reducing the
scope of the work.

In some cases, especially for very technical text, it might even be better to leave certain things
untranslated. If things like error messages contain many new terms that are not well established
yet, users who are very familiar with the English might be put off using the translated version.
Remember that your audience will develop with you – you can expect people to gradually become
more used to localised software if they didn’t use it before. If you are starting with new
localisation, skipping things like the technical error messages in the internals of the software just
makes sense, and provides you with an opportunity to work on things that more users will see. You
will also get more satisfaction initially from more visible parts of the software.

An easy way to reduce the number of words, is to only translate certain files in a project with
several files. If it is easy to identify the more important files, this could help you get started. If the
project has only one file, or the important work is in all the files of the project, we might want to
look for a way to extract the important things to work on. A tool from the Translate Toolkit called
pogrep is a great help in this regard. You could for example only extract short strings, or only
strings that don’t come from programming files with the word “admin” in them. Read more about

p. 52

pogrep here:

http://translate.sourceforge.net/wiki/toolkit/pogrep

Non-textual localisation
Although we discuss a lot of issues relating to translation, some projects might contain more than
just translation work. A typing program might need information about the characters in your
language and words for the typing exercises sorted by difficulty. Some games allow you to create
sound files in your language. A word processor might allow you to specify a list of common typing
mistakes to correct.

While you are translating you might notice some mistakes in the original text, or realise that it can’t
be translated properly because of the programmers made certain assumptions about languages or
cultures that aren’t true in your case. Help the programmers by reporting these issues and thereby
make translation easier for other people as well.

Discussing all of these issues are outside the scope of this book, but in this section we discuss some
non-textual localisation that are a little more common.

Number and date formats

There are different traditions for writing numbers and dates around the world. Some languages
have their own digits – an entirely different set of symbols to represent 0,1,2...9. Even in languages
that use the same digits as English, there are different conventions about how to show fractions, and
how to show large numbers. The same number and date is written differently in different places
around the world.

Number example

10509 (unformatted – ten thousand five hundred and nine)

10,509 (USA)

10.509 (Germany)

൧൦, ൫൦൯ (India – Malayalam)

Date example

15 March 2010 (2010-03-15)

March 15, 2010, 03/15/2010 (USA)

15. März 2010 (Germany)

Ensure that you are familiar with the correct custom for writing numbers and dates in your
language. Some projects might ask you to specify how numbers should be formatted by the
software. This is usually done as part of locales (refer to page 12), although it might be duplicated
in a piece of software, and might even be indicated with special variables in the translation file.
Refer to the section on date and time variables on page 36.

Currency and units of measurement

When software displays amounts of money (such as accounting software), it should not only format
numbers correctly, but also indicate the correct currency for the relevant country. Similarly,

p. 53

http://translate.sourceforge.net/wiki/toolkit/pogrep

countries might have different customs with regards to measuring physical amounts such as
distance, weight, etc. Always be on the lookout for places where software is not doing the correct
thing for your customs. In some cases it might be necessary to convert the unit of measurement.
You will find some websites or software that can help you do a conversion from miles to
kilometres, for example. However, when a physical quantity is only used as an example (usually
with a nice round number), consider simply leaving it at a round number and changing the unit. For
example, when a game talks about some gold weighing 100 pounds, changing it to 100 kg might
make it easier to read without impacting the message. Make sure that it is 100% safe to do this. If
you are unsure, translate it more literally or convert the unit.

Images

Images are a good tool to help with understanding. However two people from different cultures can
look at the same image and react differently or understand it differently. This has a lot to do with
the background, culture and the environment an individual lives in. Images might make references
to geographical features, activities, brand names, etc. that are not well known to the target audience,
or which might not convey the intended meaning.

You might do localisation for years without ever needing to change an image, but it is good to be
aware of the fact that images aren’t necessarily suitable for your target audience. Always consider
if an image might have a negative connotation, or if it might not succeed in communicating the
correct message.

In some cases images might contain text which might need to be localised. This is usually bad
practice by the developers, but there might be valid reasons to do this.

Images can be edited in a number of different programs, but it is best to check with the
programmers of the project which files should be used, and if there is any support for alternate
images for your localisation. You don’t want to spend time working on images with no result.
Take extra care to review any text you have to place in images – since you are probably not editing
this in a translation program, it is easier for spelling mistakes or other inconsistencies to happen.

Sorting and lists

Many languages have their own rules to describe the desired order in which words are sorted
alphabetically. Even languages that use the Latin alphabet might have specific rules on how to sort
specific words or character patterns due to the nature of the language, or due to historical practices.
Check for places where sorting might be relevant, and check that the correct rules are used for your
language. This is usually obtained from a locale or a programming library.

p. 54

Chapter 11: Chapter 11: Project case studiesProject case studies
In this section, we show a few case studies of well known FOSS projects, and how you might want
to evaluate them. You might want to refer back to the section on “Choosing the product or project”
on page 52. We will be using some of the criteria mentioned in that section to evaluate these
projects here.

Tux Paint
Tux Paint is a drawing program for kids.

• A translation of the application only is about 1500 words.

• It is trivial to submit new translations – an e-email to the programmer is enough.

• It has some support for advanced text layout, but each language would have to check for any
special requirements. It supports right to left languages, several Asian languages, and
languages needing complex text layout..

• Plain Gettext PO files are used, supported by Virtaal and a wide selection of translation
tools.

• It is aimed at end users, and specifically children who might not know any second language.

• It is cross-platform software, available for many types of computers.

• A small change is required to test the localised interface. However, it is usually easy to
replace an existing language’s file to test. There is a configuration program to select the
language as soon as it is one of the official languages.

• No other software needs to be translated, although the website and stamps can also be
translated.

From the list it should be obvious that Tux Paint is a very attractive program for localisation. The
text isn’t very technical, although you might have to think a bit about some of the colours and
shapes. It is an ideal project for someone who is new to localisation. It is fun, and the work pays
off quite easily.

http://www.tuxpaint.org/

GTK+ and xdg-user-dirs
GTK+ is an underlying platform used for building a lot of software, but maybe best known for its
use in the GNOME project. GTK+ provides software with several things that are common in
software: dialogue boxes to open and save files, print options, and most importantly for this part of
the book, some commonly used strings for common things like “OK”, “Cancel”, “Preferences”,
“Copy”, “Paste”, etc. Since many programs use these strings from GTK+, it is useful to look at
translating the strings from the GTK+ project for the benefit of all these programs. Although the
translation file for GKT+ is a bit big, it is mostly quite easy to identify the most interesting strings
in the file from sight, or by looking for the strings marked as “stock items”.

A project called xdg-user-dirs has a small translation file for the names of the common directories
in each user’s account. “Desktop”, “Documents”, “Music”, “Pictures” – these directories are
commonly seen when opening and saving files, so it provides another way to have an impact in
many pieces of software without a lot of work.

Let’s repeat our evaluation based on our earlier questions:

p. 55

http://www.tuxpaint.org/

• GTK+ contains many words, but the stock items are only about 100 words. Xdg-user-dirs is
less than 50 words.

• GTK+ translations are submitted at the GNOME project, which is quite easy with several
ways of submitting possible. Xdg-user-dirs is submitted with the “Translation Project”
which is a bit harder, but you might also be able to ask someone else to help you with that.

• No special considerations should be necessary for your language.

• Plain Gettext PO files are used, supported by Virtaal and a wide selection of translation
tools.

• GTK+ is used with software running on several platforms. Xdg-user-dirs is mostly used on
Linux-based systems.

• These translations mostly rely on your system’s language selection.

• Xdg-user-dirs doesn’t dependent on external libraries. Small parts of GTK+ use translations
from Glib, which won’t be very important initially. Glib can also be translated at the
GNOME project.

These two projects present a very small amount of work to start having a positive impact in several
applications that use them. The GTK+ translation will be especially effective for the GNOME
desktop where most applications will use at least some of these strings.

Firefox
Firefox is a popular web browser from the Mozilla project.

• Firefox is a humongous project to translate, with over 20 thousand words for the application
alone, and several other things necessary to become an official translation. Incomplete
translations are not accepted.

• Submitting new translations to the Mozilla project is extraordinarily hard, with many
technical steps, several of them involving encryption keys and version control systems. Only
already complete translations are accepted.

• Firefox has good support for many languages, including complex text layout, and bundling
of fonts for specific localised versions.

• The Translate Toolkit has converters that allow translating Mozilla software with PO files.
However, these are not endorsed by the Mozilla project, and require translation teams to do
it themselves. Other software is available, but nothing that translators would be used to
from other projects.

• Firefox is end-user software, and very popular.

• It is cross-platform software, available for several operating systems.

• Official Firefox localisations have separate downloads. Alternatively language packs can be
installed, but needs an additional add-on to activate the new interface language.

• No other software needs translation, but several product pages and marketing material needs
to be translated.

Firefox is very popular, and a good target for localisation in very experienced teams. The text is
quite technical in places. It is a humongous amount of work with no reward while you are doing the
translation. If you can make the investment, the rewards can be big, since Firefox is used by many
people, and Mozilla marketing will in effect also help you to promote your work.

p. 56

The Debian installer
The Debian project is a big FOSS project well known for their Linux distribution. It is also the
basis used for building Ubuntu Linux. The installer could be the first software that people see when
installing Debian or Ubuntu, and is a well managed project with a big focus on supporting
languages.

• It is not required to translate the complete installer, but at least two files need to be at 100%.
This is more than 10 thousand words.

• The project is very welcoming and accepts contributions in a few different ways, among
them through their Pootle server.

• The Debian installer has good support for many languages, including complex text layout,
and bundling of fonts for specific localised versions.

• Plain Gettext PO files are used, supported by Virtaal and a wide selection of translation
tools. They also host a Pootle server.

• The installer is not really end-user software, and more likely to be used by technically
inclined people. The installer is used infrequently.

• This software is only relevant to certain Linux distributions.

• Once you are an official language, the users will select the language easily from a list.
Testing might be a bit harder.

• The translation of some country names are necessary, and several other files are available to
translate the installer more completely. These are not strict requirements, however.

The Debian installer might be a nice target for technically inclined translators, but it will not reach
many users, and the text is quite technical in places. The requirements for entering are quite high,
and involves translating a lot of strings that don’t have high impact (such as time zones). The
project is well managed, and values translations. With a well-resourced team, you might want to
consider this eventually.

p. 57

	Introduction
	Acknowledgements
	License
	Chapter 1: Background
	Software localisation
	Example

	Open Source localisation
	Differences from normal translation
	Differences from commercial localisation

	Chapter 2: Orientation
	What do you want to achieve?
	Formulating objectives
	Setting goals to reach objectives

	Some principles to keep in mind
	Your environment
	Target audience: speakers of your language
	Target audience: users of open source software
	Your localisation team
	The role of English
	Orientate yourself

	Chapter 3: Before you start
	The tools that we’ll use
	Viewing your language
	Typing your language
	Codes and locales – initial support for your language
	Useful extras

	Chapter 4: Style
	Orthography
	Examples

	Grammatical style
	Be true to the source text
	Be true to the target language

	Chapter 5: Terminology
	Examples
	Why develop terminology?
	Example

	Which terms should be developed?
	Available resources
	Open-Tran.eu
	Microsoft language portal
	Wikipedia

	General principles
	Technical correctness
	Concept recognisability
	Back-translatability

	Acronyms, abbreviations, brand names, product names
	Transliteration

	Terminology assistance in translation tools

	Chapter 6: Reuse
	Example
	When should translations be reused?
	Some available sources
	Some techniques and tools
	GNOME
	KDE
	Debian
	Pootle servers
	Mozilla
	Collection of translation files

	Translation memory, terminology and machine translation
	Reuse in Virtaal

	Chapter 7: Technical issues
	Things to leave untranslated
	Example
	Example
	Example

	Escapes
	Types of escape characters
	Example

	Markup
	What not to translate
	Reordering or changing tags
	Attributes – which to translate
	Example

	Tags that should be translated

	Simple plurals
	Variables
	Example

	Proper plurals
	Example

	Accelerators
	Identifying the accelerator
	Selecting
	Accelerator Clashes
	Examples
	Review

	Advanced handling of variables
	Reordering
	Omitting
	Times and dates
	Example

	Formatting

	Chapter 8: Localisation tools
	Virtaal
	Opening a file
	Normal translation
	Time savers
	Auto-completion
	Auto-correction
	Copy original to target
	Copy a placeable to the target
	Copy a term to the target
	Use a suggestion from TM or MT

	Navigation
	Incomplete mode
	Searching mode

	Pootle
	Finding your work
	Terminology
	Suggestions
	Quality checks
	Searching

	Chapter 9: Localisation projects
	A simple localisation process
	Finding the relevant files
	Project communication
	E-mail
	Chat channels
	Bug trackers
	Wikis and forums

	Version control systems
	Project schedule
	FOSS issues
	Motivations
	Licenses
	Wider involvement

	Chapter 10: Beyond mere translation
	Testing and review
	Automated review
	Manual review
	In-product review
	Testing a program using Gettext

	Prioritisation (when you can't do everything)
	Counting and estimating
	Choosing the product or project
	Partial localisation

	Non-textual localisation
	Number and date formats
	Number example
	Date example

	Currency and units of measurement
	Images
	Sorting and lists

	Chapter 11: Project case studies
	Tux Paint
	GTK+ and xdg-user-dirs
	Firefox
	The Debian installer

