

GNOME 3 Application Development
Beginner's Guide

Step-by-step practical guide to get to grips with GNOME
application development

Mohammad Anwari

BIRMINGHAM - MUMBAI

GNOME 3 Application Development Beginner's Guide

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2013

Production Reference: 1080213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-942-7

www.packtpub.com

Cover Image by Duraid Fatouhi (duraidfatouhi@yahoo.com)

Credits

Author

Mohammad Anwari

Reviewers

Dhi Aurrahman

Joaquim Rocha

Acquisition Editor

Mary Jasmine

Lead Technical Editor

Ankita Shashi

Technical Editors

Charmaine Pereira

Dominic Pereira

Copy Editors

Laxmi Subramanian

Aditya Nair

Alfida Paiva

Ruta Waghmare

Insiya Morbiwala

Project Coordinator

Abhishek Kori

Proofreader

Mario Cecere

Indexer

Tejal Soni

Graphics

Aditi Gajjar

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

 About the Author

Mohammad Anwari is a software hacker from Indonesia with more than 13 years of
experience in software development. He has been working with Linux-based systems,
applications in GNOME, and Qt platforms. The projects he has worked on range from the
development of constrained devices and desktop applications, to high traffic server systems
and applications.

He worked for his own startup company during the dotcom era before moving to Finland
to work for Nokia/MeeGo. Now he's back in Indonesia, regaining his entrepreneurship by
establishing a new startup company that focuses on Node.js and Linux-based projects. In his
free time, he serves as an executive director for BlankOn, one of the biggest open source
projects in Indonesia.

In the past, he has published a couple of books on Linux in the Indonesian language.

This book would have been impossible to write without the great and
continuous support from my family: Rini, Alif, and Abil.

About the Reviewers

Dhi Aurrahman is a Project Manager at Labtek Indie, where he leads the development
of custom-tailored interactive applications for various installations and platforms. Prior
to this, he worked on various projects based on real-time computer vision systems with
Samsung Electronics in South Korea. He has proven skills in C++ programming; application
development using Qt for various platforms, including desktop and mobile; and JavaScript
programming. Dhi has done his B.Sc in Computational Physics from Bandung Institute of
Technology, Indonesia, and his M.Eng in Computer Engineering, focused on computer vision
and machine learning, from Chonnam National University, South Korea.

Joaquim Rocha is a Portuguese software developer with an M.Sc. degree in Computer
Science. He has over six years of experience in developing graphical user interfaces and has
been involved in a number of Free Software projects.

He is also a member of the GNOME Foundation and is the author of the most complete OCR
application, OCRFeeder, which was developed for the GNOME desktop.

As part of his work for the Free Software consultancy Igalia, Joaquim has created the world's
first Free Software skeleton-tracking library, completely written with GNOME technologies.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 � Fully searchable across every book published by Packt

 � Copy and paste, print and bookmark content

 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface 1

Chapter 1: Installing GNOME 3 and SDK 7
System requirements 8

The GNOME Shell 8
GNOME Panel/Fallback 8
Development requirements 9

GNOME 3 desktop architecture 9
GNOME and the SDK 12
Time for action – installing GNOME and SDK in Fedora 17 12

Marking packages to be installed 14
Ready to install the packages 15

Time for action – installing GNOME and SDK in openSUSE 12 15
Marking SDK packages 17
Starting the installation 18

Time for action – installing GNOME and SDK in Debian Testing 18
Marking SDK packages 19
Applying the installation 20

Time for action – installing GNOME and SDK in Ubuntu 12.04 20
Continue installing the SDK 21

Summary 21

Chapter 2: Preparing Our Weapons 23
Firing up Anjuta 24
Time for action – creating a new Vala project 24

The IDE layout 25
Bookmarks 26
Files 26
Project 26
Symbols 26
Watches 26

Table of Contents

[ii]

Breakpoints 26
Messages 26
Terminal 27

Navigation between tabs 27
Time for action – navigating between tabs 27
Comment block 28
Time for action – commenting/uncommenting a block 28
Time for action – running the program for the first time 29

Make an error and see how it works 32
Editing UI 33
Time for action – editing UI 33

Palette 34
Widgets 34

Time for action – adding a label and a button 35
Time for action – changing widget properties 36
A responsive button 37
Time for action – making the button responsive 37
Tracking symbols 40
Time for action – finding a symbol 40
Getting help 41
Summary 41

Chapter 3: Programming Languages 43
Programming GNOME with JavaScript 44
Time for action – saying hello to Seed 44
Time for action – running our program with Seed 45

Loosely typed language 47
Time for action – playing with data types 47

Controlling iteration 49
Time for action – controlling Iteration 49
Time for action – manipulating an array 51

Object-oriented programming (OOP) with JavaScript 52
Time for action – using the JavaScript object 52

With great power comes great responsibility 54
Constructing objects 54

Time for action – playing with constructors 55
Class and object 56
Using prototypes 56

Time for action – adding prototypes 57
Time for action – modifying the prototype of an object 59

Modularization 61
Time for action – modularizing our program 61

Table of Contents

[iii]

Getting to know Vala 63
Time for action – entry point to our program 64

Member access specifier 65
Time for action – defining member access 65

The access specifiers 68
Basic data types 68

Time for action – experiment with data types 68
Gee, what is it? 71

Time for action – adding the Gee library 71
Time for action – Gee in action 72

Initializing members when declaring 75
Time for action – watching for signals 75
Summary 78

Chapter 4: Using GNOME Core Libraries 79
Before we start 80
The GLib main loop 80
Time for action – playing with the GLib main loop 80
GObject signals 84
Time for action – handling GObject signals 84
GLib properties 86
Time for action – accessing properties 86
Configuration files 91
Time for action – reading configuration files 91
GIO, the input/output library 94
Time for action – accessing files 94
Network access with GIO 97
Time for action – accessing a network 98
Understanding GSettings 102
Time for action – learning GSettings 102
GSettings API 103
Time for action – accessing GSettings programmatically 104
Summary 106

Chapter 5: Building Graphical User Interface Applications 107
Before we start 107
Creating a basic GTK+ application 108
Time for action – implementing the mockup 109
Time for action – adding icons to the buttons 115
Porting the code without GtkBuilder 117
Time for action – programming with raw GTK+ 117
GUI programming with Clutter 121

Table of Contents

[iv]

Time for action – implementing the mockup with Clutter 121
Summary 129

Chapter 6: Creating Widgets 131
Before we take off 132
Overriding the widget's standard functions 132
Time for action – overriding the set_title function 132
Adding new functionalities 136
Time for action – making a composite widget 136
Maintaining compatibility 144
Implementing a GTK+ custom widget 144
Time for action – implementing the custom widget 145
Maintaining widgets in a library 151
Time for action – creating a library 152
Summary 157

Chapter 7: Having Fun with Multimedia 159
Packages required 159
Understanding the basic concept of GStreamer 160
Accessing the GStreamer pipeline with the command line 162
Time for action – testing the pipeline 162
Time for action – programmatically playing the audio 164
Time for action – handling the events 168
Playing a video media 170
Time for action – playing video 171
Time for action – programmatically playing the video 173
Summary 178

Chapter 8: Playing with Data 179
Presenting data with TreeView 180
Time for action – using TreeView 181
The Evolution Data Server (EDS) architecture 188
Time for action – setting up the address book and the calendar data source 188
Time for action – accessing the address book 189
Have a go hero – saving data to the address book 198
Summary 199

Chapter 9: Deploying HTML5 Applications with GNOME 201
Before we start 202
Embedding WebKit 202
Time for action – embedding WebKit 202
Runtime with JavaScriptCore 204
Time for action – calling the Vala object from the frontend 205

Table of Contents

[v]

Time for action – connecting GNOME with client-side JavaScript 211
Summary 224

Chapter 10: Desktop Integration 225
Talking to each other with D-Bus 225
Time for action – listening to D-Bus 226
The GNOME session manager 228
Time for action – talking to the session manager 228
Launcher 240
Time for action – putting our application in the launcher 240
GNOME keyring 243
Time for action – storing passwords securely 243
Notification system 249
Time for action – sending notifications 249
Summary 252

Chapter 11: Making Our Applications Go International 253
Understanding locale 254
Time for action – getting the available locales 255
Time for action – adding a locale 256
Time for action – getting different outputs with different locales 257
i18n in a Vala project 258
Time for action – bootstrapping the infrastructure 258
Time for action – creating a UI 263
Time for action – translating UI texts 267
The localization process 271
Summary 272

Chapter 12: Quality Made Easy 273
Reasons for performing unit testing 274
Time for action – creating our first unit test 274

Stubbing our tests 283
Time for action – creating stubs 283
Testing GUI modules 290
Time for action – testing a GTK+ module 290
Summary 299

Chapter 13: Exciting Projects 301
Part I – web browser 301
Time for action – designing our UI 302

Browser interaction 304
Time for action – preparing the build infrastructure 305
Time for action – finishing up 315

Table of Contents

[vi]

Part II – A Twitter client 326
Time for action – implementing the Twitter client 327
Summary 337

Appendix: Pop Quiz Answers 339

Index 343

Preface
This book is about developing GNOME 3 applications with the Vala and JavaScript
programming languages. It guides you to build GTK+, Clutter, and HTML5 applications on the
GNOME 3 platform. It covers GNOME 3 specific subsystems such as data access, multimedia,
networking, and filesystem. It also covers good software engineering practices such as
localization and testing.

What this book covers
Chapter 1, Installing GNOME 3 and SDK, discusses installing GNOME 3 and the Software
Development Kit in some popular Linux distributions.

Chapter 2, Preparing Our Weapons, talks about the basic usage of the Integrated
Development Environment and User Interface Designer used in this book: Anjuta and Glade.
This chapter also touches on the development reference tool – Devhelp.

Chapter 3, Programming Languages, covers the basics of Vala and programming JavaScript
with Seed. This chapter will be the foundation to understand the following chapters if you
are yet not familiar with Vala and JavaScript.

Chapter 4, Using GNOME Core Libraries, guides you to exploit the commonly used features
of the GNOME core libraries.

Chapter 5, Building Graphical User Interface Applications explains the steps of building GUI
applications with GTK+ and Clutter.

Chapter 6, Creating Widgets, explains how to create GTK+ widgets from scratch. This chapter
also talks about extending and customizing widgets.

Chapter 7, Having Fun with Multimedia, contains lots of information on GStreamer. It covers
both playing multimedia stream and applying filters to the stream.

Preface

[2]

Chapter 8, Playing with Data, explains presenting data with the TreeView API family. While
showing the data presentation, it also talks about getting data from Evolution Data Server.

Chapter 9, Deploying HTML5 Applications with GNOME, explains how to embed WebKit into
a GTK+ application. It also talks about the JavaScriptCore library, which makes it possible to
get the JavaScript running in WebKit to talk with the backend system written in Vala.

Chapter 10, Desktop Integration, discusses about creating applications that integrate nicely
with the GNOME 3 desktop. It talks about D-Bus, session management, keyring, launcher,
and notification services.

Chapter 11, Making Our Applications Go International, discusses about internationalization
and localization in GNOME 3 applications. It also provides a proposal of the localization
process as a bonus.

Chapter 12, Quality Made Easy, talks about performing unit testing and stubbing. This covers
both testing GTK+ and non-GUI applications.

Chapter 13, Exciting Projects, offers two exciting projects to build a web browser and a
Twitter client. It covers many aspects learned in the preceding chapters and uses them in
these two projects.

What you need for this book
This book requires a basic level of object-oriented programming. Prior experience with
Vala or JavaScript will make your experience more enjoyable. In order to follow the book,
you must install the latest version of Fedora, openSUSE, Ubuntu, or (preferably)
any Debian-based Linux distribution.

Who this book is for
This book is suitable for software developers who target GNOME 3 as one of the
deployment platforms. This book is also beneficial for developers who want to create
multiplatform applications, as many of the GNOME 3 libraries are also available in Linux,
OSX, and Windows.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Preface

[3]

Time for action – heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple-choice questions intended to help you test your own understanding.

Have a go hero – heading
These are practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Modify configure.ac to include WebKitGTK+
into the project."

A block of code is set as follows:

using GLib;
using Gtk;
using WebKit;

public class Main : WebView
{
 public Main ()
 {
load_html_string("<h1>Hello</h1>","/");
 }

Preface

[4]

 static int main (string[] args)
 {
Gtk.init (ref args);
varwebView = new Main ();
var window = new Gtk.Window();
window.add(webView);
window.show_all ();

Gtk.main ();

 return 0;
 }
}

Any command-line input or output is written as follows:

LANGUAGE=id LC_ALL=id_ID.utf8 src/hello-i18n

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Click Continue, finish the
setup of GTranslator and go ahead and open the id.po file using its menu."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the erratasubmissionform link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website, or added to any list of existing errata, under the Errata
section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Installing GNOME 3 and SDK

GNOME 3 is the latest and greatest version of GNOME since it was released
for the first time in 1999. GNOME 3 delivers a breakthrough desktop user
experience compared to its previous versions. While providing smooth user
interface with fluid animations, it uses a different metaphor of how a modern
desktop would work by introducing GNOME Shell as its new user experience
(UX). However, the traditional user experience still persists as a fallback
whenever the hardware configuration is not supported.

GNOME is known for its simplicity and has been chosen as the default desktop environment
in many popular Linux distributions. It is also one of the first free types of software that has
user interface guidelines, hence securing itself as usable and user friendly.

During its evolution, the architecture also changed and was extended, making it one of the
most advanced freely available desktops in the world. With that, it requires more and more
advanced technology to be available in the system to be able to maximize the usage of the
hardware and at the same time give users an enjoyable time when using computers.

Before we go any further, a proper installation of GNOME as well as the development
environment should be available in our computer. And as a starter, we will talk about the
installation in a few popular Linux distributions. Specifically, we will cover these topics
in this chapter:

 � Understanding the system requirements

 � The basic GNOME 3 architecture that we will cover in this book

 � Installing GNOME 3 and the SDK on various Linux distributions

So let's get started.

Installing GNOME 3 and SDK

[8]

System requirements
GNOME 3 provides two sets of User Experience (UX) that target different types of installed
hardware—GNOME Shell and GNOME Panel/Fallback. These two UX have different
requirements, but they share the basic ones:

 � 800 MHz CPU power (at least 1 GHz for optimal performance)

 � 512 MB of RAM (at least 1 GB for optimal performance)

 � More than 2 GB of available hard drive storage (more, if you want to install
more applications)

The GNOME Shell
This is the latest addition in GNOME 3, and provides slick user experience. This UX requires
3D acceleration through an OpenGL-capable video card properly installed in your system. On
a safer note, most of the video cards from Intel, ATI, and nvidia brands would work nicely.

However, even though you know that you have a video card that is capable of doing OpenGL,
make sure that your video card is really activated with the proper drivers, otherwise the
system will not let you use this UX.

You can check whether your video card would work with this UX
by checking the h-node page at http://www.h-node.org/
videocards/catalogue/en and check whether it has the
works with 3D acceleration verdict stated there.

GNOME Panel/Fallback
This is the good old GNOME desktop, which provides a basic and less attractive user
experience. The system will fall back into this UX whenever it cannot activate the OpenGL.
This UX is similar to the older versions of GNOME, but the user interface is modified a bit so
that it will look similar to a state of GNOME Shell user interface. For example, the main UI is
totally different but the lock screen is pretty similar in both.

Fortunately, only a few parts of this book will make use of the GNOME Shell UX in great
depth, so we can safely work with GNOME Panel/Fallback UX in order to follow this book.

Chapter 1

[9]

Development requirements
As we are doing software development on top of these requirements, obviously we will
need more computing power, RAM, and storage. Fulfilling at least the following requirements
would make our development time enjoyable:

 � Multicore 2 GHz CPU

 � 4 GB of RAM

 � 500 GB of hard drive storage, preferably SSD

The good news is that we can easily develop GNOME 3 applications using virtualization. By
installing the Linux distributions in virtual machines, we can switch between them and tackle
the issues found there so that we can make sure that our applications will be built smoothly
in GNOME 3 regardless of the distributions. In case of GNOME Shell, you need to make sure
that you have enabled the 3D acceleration option in your favorite virtual machine program.

For example, in VirtualBox, we can go to the Settings dialog of a virtual machine, click on the
Display option, and then tick on the Enable 3D Acceleration option. Remember, though, that
you will not be able to activate this option if your host machine is not capable of doing 3D
acceleration by itself.

GNOME 3 desktop architecture
When talking about GNOME 3, usually many people refer only to the GNOME Shell. This is
incorrect. GNOME Shell is just a part of the whole GNOME desktop architecture. It can be
replaced (as in the case of GNOME Panel/Fallback UX) or even removed.

Installing GNOME 3 and SDK

[10]

In fact, GNOME is more than GNOME Shell. It provides the infrastructure of the applications
so they can talk to the system, render text nicely, flow the animation, read data, and so on.
We need to understand the architecture better before starting any development. This would
help us to know which parts need to be installed, too. Let's start with looking at the following
simplified GNOME architecture diagram:

As we can see from the diagram, the GNOME Shell, along with the applications, sits on top of
the GNOME platform architecture stack. This book covers the platform architecture and will
touch on some parts of the upper layer.

The GNOME platform reference can be studied in more depth in the
GNOME developer website, http://developer.gnome.org.

The following are the specific components of the GNOME platform that we will cover in
this book:

 � Core libraries: These are the lowest interface in the architecture. It includes
the following:

 � GObject: This is the object system in GNOME. It is the GNOME's
object-oriented programming approach with the C language.

 � GLib: This is a general purpose library that contains the infrastructure used
by all the parts in the architecture.

 � GIO: This is a virtual filesystem library that provides access to files, volumes,
and drives in an abstracted manner.

Chapter 1

[11]

 � User interface libraries: This is the toolkit for building graphical applications,
and includes:

 � GTK+: Historically named as the GIMP toolkit, this is the default toolkit
to build graphical applications in GNOME. It provides a set of widgets
and tools.

 � Cairo: This is a library that helps us draw on the canvas. It is mainly used
for creating new widgets or extending the existing ones.

 � Pango: This is a library that helps us to do text rendering.

 � ATK: This is the accessibility toolkit. It provides ways to offer a good
experience for special users of GNOME that have different needs.

 � Clutter: This is a toolkit that is used for creating applications with rich
and fluid animations. This requires OpenGL.

 � WebKit: This is the web toolkit. It provides full-featured engines capable
of displaying HTML5 documents.

 � Multimedia libraries: Provides playing and authoring multimedia files, and includes:

 � GStreamer: This is a powerful multimedia library

 � Data storage: Provides libraries of accessing data:

 � Evolution Data Storage (EDS): This contains libebook and libecal, and
provides access to the address book and the calendar managed in
your Evolution.

We will also use several tools in this book; they are as follows:

 � seed: This is a JavaScript interpreter in the GNOME world. We will use this when we
develop our GNOME application scripts. We will have seed automatically installed
when installing the GNOME Shell, so we will not see this explicitly later when we do
the installation.

 � vala: This is an emerging object-oriented programming language, mainly used for
developing GNOME applications.

 � Anjuta: This is an integrated development environment software for GNOME.

 � Glade: This is a graphical application layout designer for GTK+.

 � Gtranslator: This is a tool for translating our application user interface
to local languages.

 � Devhelp: This is a reference lookup tool; really handy when developing applications.

Installing GNOME 3 and SDK

[12]

Note that the actual package names of these parts are not
standardized, so you will find that the package names are slightly
different from the preceding list. These will be specifically
covered in each section.

GNOME and the SDK
We will go through installing GNOME and the Software Development Kit (SDK) in our
favorite Linux distribution. A few popular distributions are covered. However, we are not
going to talk about installing any of these distributions, so it is expected that we already
have it up and running. We just need to install several additional packages to get the
GNOME and the SDK.

You can directly go ahead to the section discussing your distribution without bothering to
read the other distribution's installation descriptions. And if your distribution is not listed
here, no need to be worried, just pick the closest distribution variant and adjust the package
names as we will use the search function in the distributions when we are installing. Now
let's pull our sleeves up and jump right into the action.

Time for action – installing GNOME and SDK in Fedora 17
Fedora 17 uses GNOME 3 by default, so our focus here is to install the SDK. To install
packages in Fedora 17, we are going to use the Add/Remove Software tool. This is
how we do it:

1. Click on the Activities button on upper-left corner of the screen.

2. Click on the Applications button.

3. Click on the Add/Remove Software button.

Chapter 1

[13]

4. The following tool shows up:

What just happened?
The Add/Remove Software tool shows the database of Fedora 17 packages that we can
browse and select. The left-hand side of the screen displays a search textbox, and below
it we can see the collection packages. The collection package is a group of packages that
serve similar functionalities. On the upper-left corner we can see the place where the
search results or the contents of a collection will be displayed, and below it we can see
the description box of a selected package we choose in the above area.

The SDK comes in the form of so-called development packages. In Fedora, the development
packages use -devel as its postfix on their names. The actual libraries are inside the
package without the -devel postfix and they are by default installed when the devel
packages are installed. For example, GLib is available inside the glib2 package and the
supporting development package is available in the glib2-devel package. Whenever the
glib2-devel package is installed, the glib2 package is automatically installed.

The development package means that it contains header files and
other files needed only when you do development, but not needed
when you are only running it.

So let's start finding them.

Installing GNOME 3 and SDK

[14]

Marking packages to be installed
Before a package can be installed with this tool, it must be marked for installation. Head
on to the search box and type glib2-devel. Click on the Find button and we will see the
search results. It should be a couple of lines with one of them showing the glib2-devel
string followed by a long version number (glib2-devel-2.32.1-1.fc17, in my case). Tick
on the checkbox to its left. We should see that the tool stamps the icon with a big plus sign,
meaning that it is marked for installation. If you don't see a checkbox, it is already installed.

The following table provides a mapping between the package names in Fedora 17 and the
GNOME components described in the architecture section earlier. We also want to install
the documentation packages (the names are inconsistently postfixed with -doc or -docs).
We also will install the tools and basic development packages that we are going to use
throughout this book. So let's go ahead with marking these packages in the tool by
searching and ticking the checkbox.

Subsystem Package names

Core libraries glib2-devel (GIO and GObject are already
inside this package)

User interface libraries gtk3-devel

gtk3-devel-docs

cairo-devel

pango-devel

atk-devel

clutter-devel

clutter-doc

webkitgtk3-devel

webkitgtk3-doc

Multimedia libraries gstreamer-devel

gstreamer-devel-docs

Data storage evolution-data-server-devel

evolution-data-server-doc

Tools and basic development
packages

vala

vala-doc

vala-tools

anjuta

glade (don't mix up with glade3!)

glade-libs

gtranslator

devhelp

Chapter 1

[15]

Ready to install the packages
After we mark the packages, we are ready to install them. Just click on the Apply button at
the bottom of the screen. We will get a dialog popping up and asking whether we want to
install additional packages required by the packages we selected previously. Make a nod
gesture to agree by clicking on the Continue button. Then enter the root password and
relax for a while as the tool will download and install all the packages into the system. After
everything is installed, we will get a new window, as shown in the next screenshot, that
displays that there are newly installed applications that we can run; let's keep this dialog
for the next chapter.

Time for action – installing GNOME and SDK in openSUSE 12
openSUSE 12 ships GNOME by default, so we don't need to worry about it and can just
concentrate on getting the SDK installed. To manage applications, openSUSE provides the
Yet another Setup Tool (YaST) tool. Follow these steps to install the SDK in openSUSE 12:

1. Click on the Activities button on the upper-left corner of the screen.

2. Click on the Applications button.

3. Click on YaST (or type YaST in the text field).

4. YaST is now opened; to continue, click on the Software Management icon.

Installing GNOME 3 and SDK

[16]

5. After a while taken for contacting the servers and refreshing the package database,
it is ready to use. This is how it will appear:

What just happened?
YaST is a collection of system management tools in openSUSE, and Software Manager is
one of the tools. As the name suggests, we will use this tool to install the GNOME SDK. As
you can see, the tool has two main columns, with each column having two sections each.
The left-hand side column shows package categories whereas the right-hand side column
shows the content of the selected categories (or the search results) and the description of
the package. We will use this tool only by using the search functionality and not touching
the categories to the left.

Chapter 1

[17]

Similar to the Add/Remove Software tool in Fedora, YaST uses a mark-and-install paradigm,
meaning we need to mark a software before installing it. With this concept, we can first
select the software we want and then make the final move by just pressing a button to get
the selections installed. Let's do it.

Marking SDK packages
SDK are scattered in many different development packages. Similar to Fedora, which uses
the RPM package management system, the development package names are postfixed
with -devel, and the corresponding library will get automatically installed when the
development package is installed.

The following table provides a mapping between the openSUSE package names and the
GNOME components described in the architecture section earlier. We can go ahead and
type these names (one at a time) in the search box and tick a checkbox situated to the left
of the search results entry. By ticking this checkbox, it means that the package is put into
an installing queue. If you see that the checkbox is already ticked, it means the package is
already installed.

Subsystem Package names

Core libraries glib2-devel (GIO and GObject are already
inside this package)

User interface libraries gtk3-devel

gtk3-devel-docs

libseed-gtk3-devel

cairo-devel

pango-devel

atk-devel

clutter-devel

libwebkitgtk3-devel

Multimedia libraries gstreamer-0_10-devel

gstreamer-0_10-doc

gstreamer-0_10-fluendo-mp3

Data storage evolution-data-server-devel

evolution-data-server-doc

Tools and basic development packages vala

anjuta

glade (don't mix up with glade3!)

gtranslator

devhelp

Installing GNOME 3 and SDK

[18]

Starting the installation
After marking the packages, let's now hit the Apply button to start the installation. Let's wait
a while until all the packages are installed; after this, we are good to go to the next chapter.

Time for action – installing GNOME and SDK in Debian Testing
Debian Testing (also called Wheezy) uses GNOME 3 as its default desktop, so our focus now
is to get the SDK installed. Same as Fedora, Debian Testing uses the Add/Remove Software
tool to do the package management. So let's get started by running the tool:

1. Click on the Activities button on the upper-left corner of the screen.

2. Click on the Applications button.

3. Click on the Add/Remove Software button.

4. The following tool shows up:

What just happened?
The Add/Remove Software tool is a mark-and-install package management tool. It means
that before doing any real installation, we are given a chance to select the packages we want
to install. The installation is postponed until the time we provide confirmation by pressing
the Apply button. With this installation style, we can keep browsing the packages without
getting bothered by the installation process.

As you can see in the previous screenshot, the tool has two main columns. The left-hand
side column shows the search box and the package categories. The right-hand side column
shows the search results (or the category contents), and below it there is a box showing the
package description.

Chapter 1

[19]

Marking SDK packages
The SDK packages come in many development packages. The development packages
contain the header and all the supporting files required during compilation and linking. It
is not necessary for them to be installed when we just need to run the applications linked
to a library.

These packages are named with the lib prefix and the -dev postfix. They have internal
dependencies to the actual library needed by the applications; so whenever we install a
development package, the package containing the actual library goes with it automatically.

Here is a map of the Debian packages and GNOME components described in the
architecture section. Let's type the names of the packages into the search box and
mark them for installation.

Subsystem Package names
Core libraries libglib2.0-dev 9 (GIO and GObject

are already inside this package)
libglib2.0-doc

User interface libraries libgtk-3-dev

libgtk-3-doc

libcairo2-dev

libcairo2-doc

libpango1.0-dev

libpango1.0-doc

libatk1.0-dev

libatk1.0-doc

libclutter-1.0-dev

libclutter-1.0-doc

libwebkitgtk-3.0-dev

libwebkitgtk-3.0-doc

Multimedia libraries libgstreamer0.10-dev

Data storage libecal1.2-dev

Tools and basic development packages valac-0.16

anjuta

glade

gtranslator

devhelp

Installing GNOME 3 and SDK

[20]

Applying the installation
After marking the packages, let's now hit the Apply button to start the installation. Let's
sit back and relax. Wait a while until all the packages are installed. After that, we are clear
to go to the next chapter.

Time for action – installing GNOME and SDK in Ubuntu 12.04
Ubuntu ships with its own desktop, called Unity. Our focus here is to install the GNOME 3
desktop as well as the SDK with the Ubuntu Software Center tool; let's see how this is done:

1. Click on the Ubuntu Software Center icon on the left-hand side of the screen.
The next screenshot shows this tool.

2. Click within the search box and type gnome-shell.

3. Click on the Install button of the first search result.

4. GNOME Shell is installed.

Chapter 1

[21]

What just happened?
What we have done is install the GNOME Shell desktop. Because the GNOME Panel is also
coupled with the GNOME Shell in form of package dependencies specified internally, we
will get both the UXs installed.

The Ubuntu Software Center tool doesn't use the mark-and-install paradigm, so we need to
do installation on every search result. The installation process is done in the background, but
unfortunately we can't search while installing. However, if some other package that we want
to install appears on the same result page, we can click on the Install button to queue it in
the installation process.

Continue installing the SDK
Ubuntu gets its root from Debian, hence the package naming system is the same. Let's see
the mapping of the Ubuntu package names and GNOME components in the Debian section
explained earlier. Get all the packages mentioned in the map installed one by one.

After all of the packages are installed, we are ready to go to the next chapter!

Summary
We learned a lot in this chapter about system requirements, basic architecture, and
installing GNOME and the SDK. Specifically, we learned that GNOME 3 provides two UXs.
We understood their system requirements for running as well as for developing on top of
them. Also, we learned a small tip for getting it to work in a virtualization environment.
We discussed the basic GNOME desktop architecture and the description of each of the
components inside it, along with the tools that we are going to use in this book.

We also now know where certain GNOME components sit in the architecture diagram.
We also know the tools we are going to use and how they are packaged in popular Linux
distributions. We also learned how to install them. The advantage of this is that it will
give us insight into how Linux distributions ship the system.

This is a good start for us to learn how to develop applications on top of GNOME 3. The next
step is to prepare our development tools. We are going to learn how to use them and touch
on a little bit of Vala, one of the programming languages we will use in this book.

2
Preparing Our Weapons

One of the great factors that contributes to a successful software project is
familiarity with the tools used in the project. The tools we are using in this book
can be considered as our weapons. If we use them correctly, not only could they
take down our targets (which is the software we are creating) nicely, but we
could also save time by using them efficiently. Otherwise, they could backfire
and hurt us.

In this chapter, we want to master the main tools that we are going to use throughout the
book. They are the Integrated Development Environment (IDE) called Anjuta, the user
interface layout designer called Glade, and the development reference browser called
Devhelp. These tools are a great help for beginners, and even if we become experts after
finishing this book, we would still benefit from using them.

As a quick outline for this chapter, we will take a look at these topics:

 � Creating a project in Anjuta

 � The IDE layout

 � Source code navigation and manipulation

 � Managing project building

 � Using mockup to design application layout using Glade

 � Reading reference books with Devhelp

So let's start!

Preparing Our Weapons

[24]

Firing up Anjuta
We are going to use Anjuta in this chapter. Let's do that by invoking Anjuta by navigating
to Activities | Anjuta in GNOME Shell or Applications | Programming | Anjuta in
GNOME Panel.

Time for action – creating a new Vala project
We are going to create a simple Vala project to warm up. We will use this project to go
through the features of Anjuta. So here we go:

1. In Anjuta's main screen click on Create a new project.

2. In the dialog box that appears, click on the Vala tab.

3. Click on the GTK+ (Simple) option and then click on Continue.

4. Fill in the project information dialog, type hello-world in the Project Name field,
and fill the rest with your own preference and click on Continue.

5. Leave the next few questions as they are (except if you really want to make changes,
for example, to the path of the project). Make sure that the Use GtkBuilder for user
interface checkbox is ticked. Click on Continue.

6. If you are happy with the information shown in the confirmation dialog, hit Apply.

7. A new project has now been created, as shown in the following screenshot:

Chapter 2

[25]

What just happened?
In Anjuta, we will create a project that is a container of all the files and resources that
collectively make a software. We will add source codes, files, images, and so on, which are
required for project building and deployment. What we have just done is that we have
created a simple GTK+ project using the Vala programming language. Don't worry if you
don't know what Vala is at this point and the code presented here does not make sense
to you, because you are going to learn about it after this chapter.

The wizard that we just ran created a set of files, including generated source code and a user
interface. These files can be considered as templates, and we will make changes to these
files when we do the development.

As an IDE, Anjuta is quite full featured. It has a source code and general files' editor, a
debugger, and Glade, a user interface layout designer. If you are familiar with other IDEs,
you may find the view a bit different; so let's dissect this further.

The IDE layout
The layout of the IDE is quite simple and is composed of a toolbar, an editor, and arrangeable
docks. The toolbar is quite straightforward and is a familiar element. It is a shortcut of
certain functions, such as file and editing operation, project running and building, and
debugging operations.

There are two kinds of editors in Anjuta. The source code editor and Glade, the user
interface editor. Let's talk about the first one.

Like other advanced source code editors, Anjuta provides quite a powerful editor.
The notable features are:

 � Line numbering: You see the line number on the left side of the editor. The line
number on the current line is emboldened so it is easy for us to know where we are.

 � Syntax highlighting: The tokens in source code are colored so we can easily
distinguish variables, classes, comments, and so on.

 � Code completion: Anjuta provides decent code completion. A candidate list of class
members or methods are displayed when we type an object instance.

Docks are a set of tools that contain specific functions. We can decide whether we want to
show or hide the docks by toggling them individually in the View menu. Let's see a quick
introduction of each dock.

Preparing Our Weapons

[26]

Bookmarks
This tool enables us to bookmark places inside the files that we are editing. When our source
code becomes larger and more complex, this tool would come in handy. Whenever we edit
more than one file and they are cross referenced with each other, we can go back and forth
between the files quickly by just clicking on the bookmark entry.

Files
This tool lists all the files in the project. It is a quick view of the files inside the project folder.
If we want to edit the file, we just need to double-click on the file we are interested in, and
the editor will pop up.

Project
This tool acts as our view to the project. It categorically lists the contents of the project.
We can easily see which files are user interface files, which files are source code, and so on.
A double-click on the project item would either bring up the editor (for the user interface
layout files or the source code) or a dialog (for other project items). Here we can control
Anjuta and many aspects of the project items, such as the installation path, compiler
switches, and so on.

Symbols
This tool shows all the symbols inside our project. The File, Project, and Search tabs
represent the scope of the symbol that we are interested in. When we double-click
on the symbol, the editor will immediately go to the line where the symbol resides.

Watches
This is a debugger tool that shows the values of all the variables that we are interested
in. If you are a "debugging-by-doing-printf" person, you may find that this tool is better.
Unfortunately, this tool only works when we develop with the C language. However, we
can still use this with C code that is generated from Vala.

Breakpoints
This is also a debugger tool that manages the breakpoints. Breakpoints are places in the
source code that we want to pause at when we run the program. Breakpoints and Watches
are really useful and powerful tools that will make our life easier. It's the same with the
Watches dock; this tool only works when we develop with the C language.

Messages
This dock displays the compiler's, linker's, and other build tools' messages. This dock is
activated when we start building a project.

Chapter 2

[27]

Terminal
This dock embeds a terminal shell. We can invoke commands to the shell directly. This dock
is activated when we have built a project successfully.

Navigation between tabs
The editor is capable of editing multiple files at the same time. The files we are editing are
displayed in tabs, and we can easily switch between them.

Time for action – navigating between tabs
Let's try to open a couple of files from our project and see how we can navigate between
the files. One scenario we can imagine is that we are editing a complex project and one file
depends on the other, so editing one file would require us to change the other file.

1. Click on the View menu and make sure that the Files dock is active.

2. Click on the Files dock and navigate through the list until you find src/.

3. Expand the list by clicking on the plus button.

4. Double-click on hello_world.vala.

5. Double-click on config.vapi.

6. Now we have two files open, and we can switch between these tabs by pressing
the Alt + 1 and Alt + 2 combination keys on the keyboard. If you open more files,
go ahead with using Alt + 3, Alt + 4, and so on to navigate.

Preparing Our Weapons

[28]

What just happened?
Whenever we open a file, Anjuta will put it inside a tab. Tabs are quite useful during
development involving many files. Usually, we will open more than one file at the same
time. The feature discussed here makes it easier for us to switch between these files.

Comment block
Anjuta provides a quick way to enclose a block of text in the source code into a comment
block. It can also do the opposite and remove the comment markers from a block of text.
Imagine that we have a block of code that we are doubtful of or of which we want to see the
effect when they are commented out. This functionality helps us comment and uncomment
them, especially when the block is large.

Time for action – commenting/uncommenting a block
We can follow these steps to learn how to comment/uncomment blocks of text:

1. Open the hello_world.vala file or activate it from our previous activity.

2. In the source code text, search for the following two lines:
using Glib;
using Gtk:

3. Highlight these two lines with your mouse cursor.

4. Activate the Edit menu and choose Comment/Uncomment.

5. The text will be commented out. See the /* */ pairs enclosing the selected text?
They have automatically been created by this command.

Chapter 2

[29]

What just happened?
Anjuta wraps the text selection block with a C-style comment. It puts the /* characters in
front of the text and */ at the end. This means that this trick will also be applicable to our
Vala and JavaScript projects later on.

Have a go hero – uncommenting the block
Now try to uncomment the block by repeating the previous steps. We have to do this now,
otherwise our next activity will not work!

Time for action – running the program for the first time
As we have not yet changed anything in the project (You have uncommented the text in the
previous section, right?), let's try to run it.

1. Click on the Run menu and choose Execute.

2. A pop-up dialog will open; let's go ahead and click on the Execute button without
making any changes.

3. Wait for a moment while Anjuta builds the program.

4. An empty window pops up on the screen like in the following screenshot:

Congratulations! This is one small milestone for us!

Preparing Our Weapons

[30]

What just happened?
What we see now is a small grayish window without anything in it. That is because we have
not yet added anything to it. Actually, the window itself was added by the Create a new
project wizard that we started earlier. The wizard created a class called Main inside the
hello_world.vala file. Inside it we see the following snippet:

var builder = new Builder ();
builder.add_from_file (UI_FILE);
builder.connect_signals (this);

This code opens the hello-world.ui file and loads it into memory. But before we load the
file, we have these lines that we defined earlier in the source code:

/*
 *Uncomment this line when you are done testing and building a tarball
 * or installing
 */
// const string UI_FILE = Config.PACKAGE_DATA_DIR + "/" + "hello_
world.ui";
const string UI_FILE = "src/hello_world.ui";

This means that the UI_FILE file mentioned previously comes from src/hello_world.
ui, which is inside our project directory. The comment placed there seems suspicious, but
that is actually required to remove the comment on the first line of code and comment out
the last line, because the hello_world.ui file's location during deployment is not inside
the src/ subdirectory anymore.

var window = builder.get_object ("window" as Window;
window.show_all ();

And, this code finds the window instance from the hello-world.ui definition and then
displays it on the screen.

The point here is that the program uses a separate file, which is hello-world.ui, as the UI
layout definition and displays the content on the screen. This means that we do not create
the widgets manually in the code.

When we start the execution of the program, Anjuta first saves the project, builds the
executable binary by compiling the source code, and then runs it. The whole build process
is visible in the Messages dock. For compiled languages, such as Vala that we are using now,
the build is made up of two steps, namely the configure step and the make step. These
two steps are shown in the Messages dock in tabs.

Chapter 2

[31]

The build status in each step is shown as an icon in the respective build step tab. We can see
whether the build is failing by looking at this icon. When everything is OK, we can see the
green tick icon.

By default, Anjuta shows the output of the build process inside the tab. However, you can
suppress the output by pressing the message suppression toggle buttons. These buttons are
used to show or hide normal information, warnings, and error messages. Sometimes it is
quite useful just to hide all the messages except the error and warning messages so we can
focus on what is wrong and not get confused because of other messages being received from
the build tools.

Preparing Our Weapons

[32]

Make an error and see how it works
Go ahead and modify the source code, for example, by typing I'm an error on top of
most of the code in the hello_world.vala file. Save it and try running it again. You will
find that the build is broken as shown by the build indicator icon. Let's try to suppress the
messages presented by Anjuta by pressing the suppression buttons one at a time. You will
find these buttons useful for filtering out unnecessary messages.

Now let's try to disable all messages except the error messages. When you see the error, try
double-clicking it.

Do you see what happens? Yes, the editor immediately shows you the place where the
error occurred.

Before continuing, remember to undo your changes.

Chapter 2

[33]

Editing UI
In Anjuta, we can edit not only the source code but also the UI. Earlier, we saw only a plain
window with nothing in it. It is now time to make some progress.

Time for action – editing UI
Let's now try to edit the user interface:

1. Activate the Project dock and click on the hello_world folder.

2. After it has been expanded, further expand the src folder.

3. Expand the ui object further.

4. There is a hello_world.ui item listed there; double-click it.

5. The user interface editor is opened.

Preparing Our Weapons

[34]

If your Linux distribution pops up a dialog mentioning that the
hello_world.ui file requires GTK+ Version 2, no need to
worry. This is harmless so just go ahead; these messages will
go away once you save it. This happens because the initial code
generator invoked by New application wizard wrongly put the
Version 2 definition inside the hello_world.ui file. When
we save it later, this definition is replaced with Version 3.

What just happened?
The user interface editor is Glade and it is embedded inside Anjuta. This is a desirable feature
as it ensures that Anjuta is fully integrated. We will find the exact same editor if we run it
individually from the GNOME system menu.

Glade provides two additional docks to Anjuta. Let's look at them now.

Palette
This dock contains selectable GTK+ stock widgets as well as third-party widgets. We can
choose these available widgets and put it inside our project. The widgets are represented
with icons and laid out categorically. We can show or hide the widgets inside a category just
by clicking on the category name. The widget name is visible by hovering our mouse over the
widget icon.

If you haven't changed the layout, this dock usually resides on the left side of the
Anjuta window.

Widgets
This dock has two parts, namely the widget tree and the widget properties. The widget tree
shows the hierarchy of the widgets, and by clicking on a widget in the tree, the properties of
the selected widget are shown in the widget properties. If you haven't changed the layout,
this dock usually resides on the right side of the Anjuta window.

Let's now try using these tools.

Downloading the example code

You can download the example code fi les for all Packt books you
have purchased from your account at http://www.packtpub.com
. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the fi les e-mailed
directly to you.

Chapter 2

[35]

Time for action – adding a label and a button
We are going to follow a UI mockup as our guideline when editing the UI layout. A mockup
is a rough design of the UI and is usually created by the application designers. This mockup
is then proposed to the development team to be implemented. Now let's consider
this mockup:

Based on the mockup, we see that two widgets, a label and a button, are required. The label
is laid out on top of the button. Now we are going to put these widgets inside our window.
Follow these steps to do it:

1. In the Palette dock, find the Container category.

2. Choose Box by clicking on the box icon (remember that we can find the Box object
by hovering over the icon list).

3. Click on the window object, which was created by Anjuta, in the center.

4. A dialog will pop up and ask how many items are preserved inside the box. Type 2
for the label and button.

5. The box would be inserted on the window object, even though it is hardly
noticeable, but we can see that the window is now split into two parts.

6. Inspect Box Properties on the right-hand side. In the Orientation option, make sure
we have the Vertical value; if the value is Horizontal, change it.

7. From the mockup, we can see that the label is at the top and the button is at
the bottom.

8. Find the label widget in the Control and Display category in Palette, and click on it.

9. Click on the top part of the box in the center. We will see that the top part shrinks
according to the size of the label. Let it be like that.

10. Find the button widget in the Control and Display category in Palette, and click
on it.

11. Click on the bottom part of the box, which is now the only place that is vacant.

Preparing Our Weapons

[36]

12. We now have all widgets in place!

What just happened?
We have successfully added widgets into our window. Unfortunately, we can't just add a
button and label into our window directly because of how GTK+ works. A window can only
contain one widget. Therefore, we need a container that is capable of hosting more than
one widget. That is why we need to add it before adding the button and label.

Understanding the hierarchy is very important when developing GTK+ applications. Let's
look at the top part of the Widgets dock on the right-hand side; we can see how the widgets
appear in the hierarchy. The topmost is the window object. The window object has a child
that is box1. And box1 has two children, namely label1 and button1. The widgets are not
placed in any specific place in the coordinate system, but rather packed one after another
following the hierarchy.

Now go ahead and run this program to see what it looks like. Make sure you can click on
the button.

Time for action – changing widget properties
As we can see, the result from our last activity is not satisfying. It does not look like what we
expected in our mockup design. Now let's do something to fix this.

1. Click on the label widget on the top part of the box. Note that the label has
been highlighted.

Chapter 2

[37]

2. In the Label Properties section in the Widgets dock, click on the Packing tab.

3. Find the Expand option and choose Yes.

4. Finally, it now looks like our mockup!

A responsive button
At this point we have the program that does nothing except show itself. Let's change it so the
button responds to the click event. For example, suppose we want to print something when
the button is clicked.

Time for action – making the button responsive
Now let's add some code to make this happen:

1. Click on the button object, which we created earlier, to get it highlighted.

2. Check Button Properties and find the Signals tab in it. If you can't see it, click on
the > button on the right side of the tabs. Keep clicking on it until you find Signals.
Click on Signals.

3. Our button is essentially a Gtk button, so expand the GtkButton entry on the list.
There are few columns and rows. Find the clicked signal on the list.

Preparing Our Weapons

[38]

4. On the handler column, click on the clicked signal so that a text entry is activated.
Type main_on_button1_clicked in it.

5. Go back to the source code of hello_world.vala, and look within the body of the
Main class. Add this code anywhere inside the class scope, or, to make it easier for
you, find the public void on_destroy method inside the Main class and put
this code above it:

[CCode (instance_pos = -1)]
public void on_button1_clicked(Button button) {
 stdout.printf("OK\n");
}

6. Now go ahead and run the program and click on the button.

7. We should be able to see OK being printed on the Terminal dock when we click
the button.

Chapter 2

[39]

What just happened?
We have just connected a signal handler written in the source code with the named signal
in the button1 widget created in Glade. The signal name we connected is clicked, so
whenever the button is clicked, the signal handler specified in the Handler column is called.
We specify main_on_button1_clicked, which correlates with the function we wrote in
hello_world.vala earlier, in the Handler column.

We named our handler function as on_button1_clicked and put it inside a class called
Main. This is why we use main_on_button1_clicked in the signal handler name.
One convention shown here is the use of the class name, which is written in lowercase,
concatenated with the function name, separated by an underscore. The function name
itself should give the impression that an event has occurred.

Ok, let's back up to our previous inspection of the hello_world.vala file. We have this
piece of code:

var builder = new Builder ();
builder.add_from_file (UI_FILE);
builder.connect_signals (this);

The last line now makes sense here. The connect_signals method in the builder
object is responsible for the signal's connection. Without this line, even with the previous
instructions and writing of the handler function, the whole program will not work. This line
basically ties all signals emitted by the user interface widgets into the this object, which is
the Main object. So that is why we put our handler function inside Main.

Pop quiz – naming a signal
Good programming practices can make our life easier. One of them is to stick to a
convention. One of the advantages is that when debugging, our mind can immediately
trace the code. The convention can vary between organizations and even between projects.
The developer must stick to one convention, especially in a project, and they can switch
to another convention in another project, if necessary.

Imagine that we have a Server class and a function that handle the event when a
connection is started.

Q1. Based on the convention we discussed earlier, what do you think is the best name we
can give to the function?

1. server_on_connection_started.

2. server_connection.

3. start_connecting.

Preparing Our Weapons

[40]

Tracking symbols
Symbols, be it a variable, a method, a constant, or something similar, can easily be tracked in
Anjuta. Remember the UI_FILE constant we discussed before? Imagine that we are deep
inside a source code file and stumble upon the following piece of code:

builder.add_from_file (UI_FILE);

We may be wondering what the value of UI_FILE is, who defined it, and so on.

Time for action – finding a symbol
Let's practice finding it out:

1. Activate the Symbols dock by clicking on it; if it is not available on the screen, go to
the View menu and activate it from there.

2. We should immediately see UI_FILE listed there. However, imagine that our
project is so big that the constant is buried inside. Let's go to the Search tab in
the dock.

3. Type UI_FILE there. Note that it has a nice code completion to avoid mistyping.

4. UI_FILE is shown on the list along with the place where it is defined.

5. Double-click on the search result. The editor will show us the exact place where it is
defined. Neat, eh?

Chapter 2

[41]

Getting help
When developing a software, we need a good reference tool to get some help. Devhelp is
the tool that we are going to talk about. It is an offline Application Programming Interface
(API) reference tool, which is used here because it is simple and fast. It opens a collection
of manuals (called "books") that we can read and search from.

The usage is quite straightforward. The books are displayed on the left-hand side. To read
a book, we can either follow the internal links shown on the body of the page on the
right-hand side or we can expand it and see the chapters for quick navigation.

Summary
We have introduced ourselves to Vala programming by easily creating a Vala project in
Anjuta with a wizard. We found that the IDE layout is quite simple to use; we can hide
and show elements that we do not want to see. We also know the steps for building an
application and how to find more information when the building has failed. When something
is wrong with the build, we can filter out messages in order to avoid confusion.

Source code navigation is easy to do in Anjuta. Manipulating code is also easy as Anjuta
provides some shortcuts for it (for example, when commenting and uncommenting
blocks of code).

Preparing Our Weapons

[42]

We managed to implement a UI based on a mockup design with Glade. We also know that
Glade is deeply integrated into Anjuta, and we know that we can run Glade as a separate
application. We saw how the UI is crafted in Glade and then read and used by our program,
including how it works by connecting the signals of the UI objects into handler code.

When we need help during development, we know that Devhelp will be there for us by
providing access to API reference documentation.

At this point, we should be ready to start learning GNOME application development. The
basic skill needed is now in our hands. After our first exposure with Vala, let's take another
step in GNOME application development by learning it in depth along with JavaScript in the
next chapter.

3
Programming Languages

Long before GNOME 3, C was the first programming language for creating
GNOME applications, and after it came C++, C#, Python, and the others.
When GNOME was evolving close to Version 3, Vala and JavaScript became
more and more popular and even became an important part of it. JavaScript
has been around for a long time and people are familiar with it. Vala is quite
new, but because the program written with it is fast and has a familiar syntax
adopted from Java and C#, it is gaining popularity among GNOME application
developers.

This chapter talks about these two programming languages. We will quickly look at the
essentials of JavaScript and Vala, making sure that we have enough knowledge to make
our applications with these languages.

In this chapter we shall learn about:

 � Playing with data types in JavaScript

 � Controlling iteration in JavaScript

 � Basic object-oriented programming in JavaScript

 � Constructing JavaScript objects

 � Using JavaScript prototypes

 � Modularizing a JavaScript program

 � A Vala member access specifier

 � Basic data types in Vala

 � Gee collection library

Let's start first with implementing JavaScript with Seed.

Programming Languages

[44]

Programming GNOME with JavaScript
There are actually two competing JavaScript implementations in GNOME, with differences in
the engines used. The first one is Gjs, which is based on Spidermonkey, a JavaScript engine
created by Mozilla. The second one, which we will use, is Seed. It is based on WebKit's
JavaScript core engine. We chose Seed because it is used officially in GNOME 3.

Time for action – saying hello to Seed
Now it is time to see how Seed works.

1. Run the terminal from the Terminal menu in Activities in GNOME Shell or from
Applications | Accessories | Terminal.

2. Run Seed by typing seed within the terminal console.

$ seed

3. We are entering the Seed prompt:

>

4. Type the following code, followed by the return key:

print("Hello, world")

5. The text is printed out.

Hello, world

What just happened?
Seed is an interpreter. When running Seed like this, we are entering the Seed interactive
mode, which means that it interactively gives the result of the code that we typed. In this
mode, we can type any valid JavaScript code in this shell. However, for those of you who
are used to JavaScript programming, you can't type code like we do when coding for web
applications. For example, you can't type the following code:

console.log("Hello, world")

This is because Seed does not provide objects such as document or console. So, only basic
JavaScript is acceptable unless we can import the required objects.

Chapter 3

[45]

Have a go hero – trying more JavaScript code here
While we are at it, let's try entering some JavaScript code, such as additions, subtractions,
and variable assignment, in the shell. For example:

var a=1
var b=2
b+a
a-b

The list goes on. This is just to grasp the basic idea of the shell. If you have experience with
using JavaScript but your skills are a bit rusty, you can use this as a warmup. We can also
think of using this as a calculator, a smart one.

Say we give an unfinished line, for example:

var c=

We will see the prompt change into this:

..

This means that we need to finish it or else Seed will spew a syntax error message.

If done with this, feel free to quit by pressing the Ctrl + C key combination, and it will bring us
back to the system's terminal console.

Time for action – running our program with Seed
Interactive mode is not the approach that we would use in our real applications. What we
are going to do now is to put our code in a file and then run it. Are you ready?

1. Fire up Anjuta.

2. Create a new file by via File | New.

3. Fill the editor with this piece of code:

#!/usr/bin/env seed

print("Hello, world")

4. Save this file as hello-world.js. It is better to create a new directory for this (say,
hello-worldjs) and put this file inside it.

You can click on the Create folder button, type
hello-worldjs, and click on the newly created folder.

Programming Languages

[46]

5. Click on the Run menu and choose Execute. A small dialog will appear; fill the
Program field with /usr/bin/seed and the Arguments field with hello-world.
js. Make sure that the Run in terminal option is checked.

What just happened?
We call this method of program invocation as scripting. With this approach, the file itself is
loaded and run by Seed directly. It uses a similar method with other scripts such as Bash,
Perl, and Python. We can see from the first line that we use the hash bang (#!) sign to
indicate the program that is used as the interpreter of the script. We used /usr/bin/
env followed by seed instead of directly putting /usr/bin/seed there. We do it this way
because we don't want to strictly tighten the location of seed. With env, the system will
honor the system path setting to find the exact location of Seed. For example, if we have
seed in /usr/local/bin instead of in /usr/bin, the program will still work.

You might wonder why we still need to put /usr/bin/seed in the Run dialog rather than
entering hello-world.js directly. This is because we have not yet set the executable
property of the script. Let's bring out our Linux administration skill and go to the directory
where we placed hello-world.js and invoke this command in the terminal:

chmod +x hello-world.js

Chapter 3

[47]

After this, we can put hello-world.js immediately in the Program field of the Run dialog.
You may notice that we can no longer see this dialog when accessing the Run menu and
Execute menu. This is because Anjuta now thinks that we already set the program arguments
and are ready to execute. If we want to change this again, we can go to the Run menu and
choose the Program Parameters... menu. Alternatively, we can run the script directly from
the system console like this:

./hello-world.js

Loosely typed language
JavaScript is known as a loosely (weakly) typed programming language. It means that we can
use a variable without declaring its type whether it is a number, string, or array. We simply
use the var directive (or not) to declare a variable. We will soon find out how this works.

Time for action – playing with data types
Now, let's discuss the basic data types in JavaScript and see how we can interact with them.
After this, we should be able to choose which type we should use depending on our needs.

1. Create a new file called hello-world-data-types.js and fill it with this:

#!/usr/bin/env seed

print("Hello world")

var number = 1;
print(number);
number = number + 0.5;
print(number);
print(number.length);
number = number + " is a number? no, it is now a string";
print(number.length);
print(number);
number = (number.length == 0)
print(number);
number = undefined
print(number);

2. Run it.

Programming Languages

[48]

3. The number variable is printed, thus:

Hello world

1

1.5

[undefined]

1.5 is a number? no, it is now a string

39

0

[undefined]

What just happened?
We can now see two interesting things. First, that JavaScript can juggle between data
types. We can change the type of one variable into another by just assigning a new value.
The second, which we have talked about is that we do not need to declare the type of the
variable. In this code, we have the number variable that we initially set with the value of 1.

var number = 1;
print(number);

Now the number variable is just a plain integer.

number = number + 0.5;
print(number);

Then we add 0.5 into it, making it a floating point data type. JavaScript accepts this without
any problem and we have 1.5 as the value now.

print(number.length);

Then we try to access the .length property of the number. Because the type of the number
variable at this moment is a number, and because it does not have any length, the value of
number.length is [undefined].

We see now that JavaScript has the unknown value concept, which is described as
[undefined]. If a variable is undefined, we can't access anything inside it and it
will cause JavaScript to think that this is an error.

number = number + " is a number? no, it is now a string";
print(number);

Now we concatenated number with a string, effectively making it a string as a whole. Now
number.length is defined by the interpreter and has a value of 39, showing that it has
39 characters in it.

number = (number.length == 0)
print(number);

Chapter 3

[49]

Here we assign number with a Boolean value coming from the (number.length == 0)
expression. Because number.length is not 0, the expression returns false, and it is
printed as 0. If it was true , it would be printed as 1.

number = undefined
print(number);

Now we set number to undefined; it is a reserved word, so we can just set it as
shown previously.

It is fun, isn't it?

Pop quiz – what is the value now?
Q1. After the assignment of all data types that was performed earlier, at the very end of our
code, what is the value of number.length now? Choose from the following (remember
that just after we assigned it as a string, it had a value of 39):

1. 0, because we set number to undefined.

2. undefined, because we set number to undefined.

3. JavaScript will think this is an error because we try to access .length from an
undefined value.

Controlling iteration
In programming, we almost always need to repeat certain parts of the code to be run. We do
this by having an iteration control (also known as loop or repetition control) inside our code.
In JavaScript it is quite easy.

Time for action – controlling Iteration
 We can follow these steps to control iteration:

1. Create a new file called hello-world-iteration.js and put this code in it:

#!/usr/bin/env seed

print("Hello, world")
for (i = 0; i < 10; i ++) {
 print("Iteration number #" + i);
}

2. Run it.

Programming Languages

[50]

3. We can see that the text is printed 10 times.

What just happened?
In the code, we tell JavaScript to do 10 iterations using the for loop. We can see that
JavaScript starts the index from 0, and not from 1, as we initially set the value of i (i = 0
in the code). In each iteration we add 1 to i (see the i++ expression in the for loop, which
means "increase the value of i by 1"). The loop stops immediately when the i value breaks
the constraint, which is 10. At the end of the loop, the value of i is 10. But because 10 is not
lesser than 10 (in the code we put i < 10), it breaks the loop. Hence the text displays 0 to 9
instead of up to 10.

Have a go hero – counting down
We have done the counting up. Now how about counting down?

Chapter 3

[51]

Time for action – manipulating an array
We can imagine an array as a collection of boxes that can hold a number of items with the
same type. Let's try to fill those boxes.

1. Create a new script called hello-world-array.js and fill it to look like this:

#!/usr/bin/env seed

print("Hello world")
var boxes = []
for (i = 0; i < 10; i ++) {
 boxes[i] = i * 2;
}

for (i = 0; i < boxes.length; i ++) {
 print("Box content #" + i + " is " + boxes[i])
}

2. Run it.

3. We will see the text specifying the box number and its content.

.

Programming Languages

[52]

What just happened?
The first thing we do is to declare boxes as an array:

var boxes = []

Note that we did not set the size of the array; we just say that it is an array and let JavaScript
do the magic. This is because the array can shrink or grow at any time whenever we modify
its content. Then we fill in the boxes:

for (i = 0; i < 10; i ++) {
 boxes[i] = i * 2;
}

Then, on each box, we set the value to be the index of the array times two. We just set
the content on the index i directly, without allocating anything, like in the C programming
language. It's super easy. Then we print out the content of the array:

for (i = 0; i < boxes.length; i ++) {
 print("Box content #" + i + " is " + boxes[i])
}

The length of the array can be obtained from the length variable within an object. In this
case, we can get the length from boxes.length. So whenever we fill an array, the length
is adjusted automatically.

Have a go hero – fill with anything you want
We have filled the boxes with numbers in the previous section; how about other data types?
Try to fill boxes with string or even mixed string and integer. Are you surprised?

Object-oriented programming (OOP) with JavaScript
If you are already familiar with object-oriented programming, be prepared that OOP in
JavaScript is somewhat limited and does not follow the usual OOP practice. This is because
the language itself is not a full OOP language. What we are trying to do here is to adapt the
OOP concept within the limitations that JavaScript has.

Time for action – using the JavaScript object
Now it is time to eat the meat, the JavaScript object. We will use objects extensively in this
book. Let's do that by first introducing to ourselves a simple one.

1. Create a new script called hello-world-object.js and fill with this code:

#!/usr/bin/env seed

print("Hello world")

Chapter 3

[53]

var book = {};
print(book);
print(book.isbn);

book.isbn = "xxxx-1234-1234";
book.title = "A somewhat interesting book"
print(book);
print(book.isbn);
print(book.title);

2. Run it.

3. See the values printed:

Hello world

[object Object]

[undefined]

[object Object]

xxxx-1234-1234

A somewhat interesting book

What just happened?
Like any other data type, we can assign a variable with an object easily.

var book = {};

In this line, we define book as an empty object. Here, the object is initialized with curly
brackets. This is the simplest form of an object.

print(book);

This prints [object Object] saying that this is an object of type Object.

print(book.isbn);

We try to access the .isbn property of the object here, but as it is empty, it is initially
[undefined].

book.isbn = "xxxx-1234-1234";
book.title = "A somewhat interesting book"

Here, we try to assign the property of the object with some values. At this point, we are free
to put anything inside the object, and we don't have to initialize or declare it before using it.

print(book);

Programming Languages

[54]

Here, we print the book variable again; it still says that it is an object of type Object.

print(book.isbn);
print(book.title);

But here the situation changes as the values are assigned and can be printed.

With great power comes great responsibility
As you may have noticed, in JavaScript, we are practically free to do anything with the data
types. However, with this power, we have to thoroughly check our code for correctness.
Sloppy programming with JavaScript will end up in disaster, because as the code grows, it
becomes harder to track where the error is.

Because JavaScript is case sensitive, it will become even harder to track errors. Imagine if we
have set this line somewhere in our code:

book.authorFirstName = "Random Joe"

Then, in other parts of the code, we try to modify the variable with this line:

book.authorFirstname = "Another Joe"

JavaScript will not complain about this because we are free to set anything inside our object.
We must take responsibility for this error by double, no, triple checking our code so that we
do not make typos like the previous one. Wait a second; have you spotted the bug that we
are talking about?

Have a go hero – another way to fill the object
Try to modify a part of the previous code to look like this and see what happens:

var book = {
 isbn:"xxxx-1234-1234",
 title:"A somewhat interesting book"
}

We are now defining the ISBN and the title inside the object in a different way. Here we use
a colon instead of the equals sign, and we put a comma in between the definitions. This
notation is called JSON (JavaScript Object Notation).

Constructing objects
After using the simplest form of a JavaScript object, let's now have a more sophisticated
object. This marks our adventure with object-oriented programming with JavaScript.

Chapter 3

[55]

Time for action – playing with constructors
When we talk about constructing an object, it means that we call a special function called a
constructor. Let's see how to do it.

1. Create a new file called hello-world-constructor.js and fill it with this code:

#!/usr/bin/env seed

print("Hello world")

var Book = function(isbn, title) {
 this.isbn = isbn;
 this.title = title;
}

book = new Book("1234", "A good title");
print(book.isbn);
print(book.title);

2. Run it.

3. See the values printed:

Hello world

1234

A good title

What just happened?
This is actually similar to our previous code, with the difference that now we define it as a
class, and then later instantiate it as an object.

var Book = function(isbn, title) {
 this.isbn = isbn;
 this.title = title;
}

This is our constructor of the Book class. Within it, we assign the .isbn property with the
isbn variable passed as an argument in the constructor function. The same thing happens
with the .title property.

book = new Book("1234", "A good title");

Programming Languages

[56]

Here we create a new variable called book (note the lowercase!) by instantiating a Book
class with the supplied arguments.

print(book.isbn);
print(book.title);

Now we can see the value of .isbn and .title as printed.

Class and object
The class is only a definition such as var Book = function(..) {...} in the previous
code; it is not an object until we really instantiate it later with the new operator. When it
becomes an object, we also call it an instance of a class. Previously, we did the instantiation
differently by just using the curly brackets without any class definition.

By convention, we usually name our classes with CamelCase, which has a mix of uppercase
and lowercase characters, where the first character in the first word is started with
uppercase (for example, Book). In contrast, for object instances or variables, we used
lowercase for the first character in the first word (for example, book).

Pop quiz – can you see the difference now?
Let's take a look at this code:

var Circle = function(radiusInPixel) {
 this.radius = radiusInPixel
}

var circle = new Circle(100);

Q1. What is circle and what is Circle? Which one of the following statements is correct?

1. Circle is a class because it has the definition, and circle is an object, instantiated
from the Circle class.

2. circle is an object because it has the definition, and Circle is an instance of the
circle object.

Using prototypes
In OOP, we can have methods or functions attached to an object. This means that the
function is specific to a particular object in memory. If we call a function in one object, it
does not interfere with another object of the same type that also has the same function.
In JavaScript we use prototypes to achieve this feature.

Chapter 3

[57]

Time for action – adding prototypes
Let's now add some methods to our class. Here we will use the prototype object to
define them.

1. Create a new script called hello-world-prototype.js and fill it with this:

#!/usr/bin/env seed

print("Hello world")

var Book = function(isbn, title) {
 this.isbn = isbn;
 this.title = title;
}

Book.prototype = {
 printTitle: function(){
 print("Title is " + this.title);
 },

 printISBN: function() {
 print("ISBN is " + this.isbn);
 }
}

var book = new Book("1234", "A good title");
book.printTitle();
book.printISBN();

2. Run it.

3. See the values printed:

Hello world

Title is A good title

ISBN is 1234

What just happened?
In a JavaScript object, prototype is a special object that holds all the properties and
methods inside a class or an object. So what we do here is to fill in the prototype with
our own methods.

var Book = function(isbn, title) {
 this.isbn = isbn;
 this.title = title;
}

Programming Languages

[58]

In this code, we have our constructor like before:

Book.prototype = {

Then, we start the declaration of the prototype, ready to fill it in with our own
method definitions:

 printTitle: function(){
 print("Title is " + this.title);
 },

Here, we put our first method as described with a function body:

 printISBN: function() {
 print("ISBN is " + this.isbn);
 }

We use a colon instead of an equals sign to define the method, and
we put a comma at the end of our method, meaning that there
will come another method or member declaration after this line.
Remember our experience from the previous code when defining
the book object in a different way?

Then, our next method comes along. Here we end the definition without putting a comma.

var book = new Book("1234", "A good title");

After that, we declare a book variable by constructing the Book object with
specified arguments.

book.printTitle();
book.printISBN();

Finally, we use our method by just calling it (note the brackets after the name of
the method).

Have a go hero – adding more methods
Why don't we add more methods? Let's say we need these methods:

 � getISBN(), which returns the isbn

 � getTitle(), which returns the title of the book

Don't forget about the colon and the comma!

Chapter 3

[59]

Time for action – modifying the prototype of an object
As mentioned previously, we can also put something inside the prototype of an object
directly and not in the class. This is not something that we will do on an everyday basis, but
we will learn it here just for our knowledge; it may come in handy later. Imagine that we
want to replace a function defined in our prototype with another function at runtime!

1. Create a new script called hello-world-proto.js and fill with this:

#!/usr/bin/env seed

print("Hello world")

var Book = function(isbn, title) {
 this.isbn = isbn;
 this.title = title;
}

Book.prototype = {
 printTitle: function(){
 print("Title is " + this.title);
 },

 printISBN: function() {
 print("ISBN is " + this.isbn);
 }
}

var book = new Book("1234", "A good title");

book.printTitle();
book.printISBN();

book.__proto__ = {
 author: "Joe Random",
 printAuthor: function() {
 print("Author is " + this.author);
 }
}

book.printAuthor();

var anotherBook = new Book("4567", "A more better title");

anotherBook.printTitle();
anotherBook.printISBN();
anotherBook.printAuthor(); // this is invalid

Programming Languages

[60]

2. Run it.

3. Note that it prints the author of the first book, but it fails to do so for the
second one.

Hello world

Title is A good title

ISBN is 1234

Author is Joe Random

Title is A more better title

ISBN is 4567

** (seed:4911): CRITICAL **: Line 39 in hello-world.js:
TypeError 'undefined' is not a function (evaluating 'anotherBook.
printAuthor()')

What just happened?
To modify the prototype at runtime, we need to know a little secret. It's no longer accessible
with the prototype property but rather with __proto__. In this line, we instantiate the
book object:

var book = new Book("1234", "A good title");

And here, we add two properties inside the prototype which we access with __proto__:

book.__proto__ = {
 author: "Joe Random",
 printAuthor: function() {
 print("Author is " + this.author);
 }
}

Then, we try to use it immediately:

book.printAuthor();

However, we were not able to do this in another instance. Do you know why? Yes, because
we only modify the book object, and this does not affect the anotherBook object.

var anotherBook = new Book("4567", "A more better title");

anotherBook.printAuthor(); // this is invalid

Chapter 3

[61]

Pop quiz – how to make it global then?
Q1. What is the best way to add the printAuthor method in all objects created from the
Book class?

1. Add printAuthor to __proto__ in every object created, and then we will have
the function available in all objects.

2. Just add printAuthor in the Book class prototype, and then all objects created
from Book will have the function.

Have a go hero – changing the implementation details
Imagine that we want the anotherBook object to be used only for declaring special
books. Because it is so special, we want to print <book-title> is a really good title in the
printTitle function, with <book-title> being the actual title of the book.

Just redefine the function within __proto__ in
the anotherBook object.

Modularization
Imagine that we implemented a big project and we put it inside a single script. That would
be a nightmare as it would be very difficult to debug. Hence, we should discuss this now,
before our code gets bigger.

Time for action – modularizing our program
Now we are going to modularize our software.

1. Let's create a new file called hello-world-module.js and fill it with this:

#!/usr/bin/env seed

print("Hello world")

var BookModule = imports.book

var book = new BookModule.Book("1234", "A good title");
book.printTitle();
book.printISBN();

Programming Languages

[62]

2. Create another new script called book.js and fill it with this:

var Book = function(isbn, title) {
 this.isbn = isbn;
 this.title = title;
}

Book.prototype = {
 printTitle: function(){
 print("Title is " + this.title);
 },

 printISBN: function() {
 print("ISBN is " + this.isbn);
 }
}

3. Then run hello-world-module.js (not book.js).

4. See the printouts.

What just happened?
From the output, we can see that it is exactly the same as the previous code. But here we
split the code into two files.

var BookModule = imports.book

var book = new BookModule.Book("1234", "A good title");

Here, we ask Seed to attach the BookModule variable with the evaluation of book with the
imports command. Here it is expected that we have book.js inside our current directory.
With this, all objects in book.js are accessible from the BookModule variable. Hence, we
construct the book object with the previous line.

Also note that, in book.js, we no longer have the hashbang line. This is not required because
we don't use book.js as our entry point, but rather we use hello-world-module.js.

With this approach, we can lay out our objects in files and import them whenever necessary.
This not only makes the memory usage efficient but also keeps the code structure clean.

This concludes our quick introduction to JavaScript as a GNOME application development
programming language. Now let's move on to Vala.

Chapter 3

[63]

Getting to know Vala
When compared to JavaScript, Vala is fairly new and is the only language being used
in GNOME development since its conception. It has quite an interesting concept: the
programmers are exposed to C# and Java-like syntax, but underneath, the code will be
translated into pure C and then compiled to binary.

This approach will make GNOME programming more accessible, because developing a
GNOME application with C is quite hard to understand for beginners. It involves many
boilerplate code snippets that you must copy and paste into your source code tree and
then modify according to the guidelines. This step is totally hidden by Vala.

Similar to our adventure with JavaScript, we will now learn the basics of the Vala language
without implementing any graphical elements. As Vala is a full-blown object-oriented
programming language, we will immediately use the OOP concept in our journey with Vala.

Let's now prepare a project that will be used as our experiment. Remember the steps from
Chapter 2, Preparing Our Weapons? Good! Let's do it again with some changes. We will use
hello-vala as the project name.

In the preceding screenshot, we can see in Project options that we choose No license to
minimize modifications that we are going to do next. We also uncheck the Use GtkBuilder
for user interface option because we want to do a simple text-based application to grasp
the essentials of Vala.

Programming Languages

[64]

Time for action – entry point to our program
We are now going to replace all the generated code with our own so that we understand
what makes an application from the ground up.

1. Edit the generated hello_vala.vala file and fill it with this:

using GLib;

public class Main : Object
{
 public Main ()
 {
 }

 static int main (string[] args)
 {
 stdout.printf ("Hello, world\n");
 return 0;
 }
}

2. Click on the Run menu and choose Execute.

3. See the text that is printed:

Hello, world

What just happened?
Here we start by looking at the Book class.

using GLib;

This line says that we are using the GLib namespace.

public class Main : Object

This is the definition of the Main class. It is stated here that it is derived from the
GLib.Object class. We don't put the full name GLib.Object but only Object
because we already stated in the first line that we are using the GLib namespace.

 public Main ()
 {
 }

Chapter 3

[65]

The preceding structure is the constructor of the class. Here we have an empty one.

 static int main (string[] args)
 {
 stdout.printf ("Hello, world\n");
 return 0;
 }
}

This is our entry point to the program. If declared as static, the main function will be
considered as the first function that will be run in the application. Without this function,
we can't run the application.

And one more thing; there must be one and only one static main function, otherwise your
program will not compile.

Have a go hero – look at the generated C code
Now we should have the generated C code available in the src/ directory. Navigate the
filesystem using the Files dock and find hello_vala.c. Let's open it and see how Vala
transforms the Vala code into C code.

We can modify the C code, but your changes will be overwritten whenever you change the
Vala code, and the C code will get regenerated.

Member access specifier
Vala defines a set of member access specifiers, which we can use to define which member of
the class can be accessed by another class or by its inheriting classes. This idiom provides us
a way to make a clean set of application programming interfaces (API), which is easy to use.

Time for action – defining member access
 Let's take a look at how to specify the access to our class member.

1. Create a new file and save it as book.vala inside the src/ directory. Fill it
with this:

using GLib;

public class Book : Object {
 private string title;
 private string isbn;

 public Book(string isbn, string title) {
 this.isbn = isbn;

Programming Languages

[66]

 this.title = title;
 }

 public void printISBN() {
 stdout.printf("%s\n", isbn);
 }

 public void printTitle() {
 stdout.printf("%s\n", title);
 }
}

2. We need to add this to the project. Click on the Project menu and choose
Add Source File....

3. In the next dialog, click on the Target option, find hello_vala inside src/,
and then, in the file selection box below it, choose book.vala.

4. Modify the main function of hello_vala.vala to look like this:

using GLib;

public class Main : Object
{
 public Main ()
 {
 var book = new Book("1234", "A new book");
 book.printISBN ();
 }

 static int main (string[] args)
 {
 stdout.printf ("Hello, world\n");
 var main = new Main();
 return 0;
 }
}

5. Run it.

Chapter 3

[67]

6. Note that the program cannot be built.

What just happened?
From the error message, we see that it rejects our access to call Book.printISBN
(we read this dot notation as the printISBN member from the Book class).

 var book = new Book("1234", "A new book");
 book.printISBN ();

This is what we have in the Main class constructor. There we instantiate Book into the book
variable, and call printISBN there.

 void printISBN() {
 stdout.printf(isbn);
 }

However, this is what we have in the Book class. It looks innocent, but it turns out that we
missed something crucial that makes this function inaccessible from outside the class.

Programming Languages

[68]

The access specifiers
Here is a list of access specifiers that are recognized by Vala:

 � private: The access is limited within the class or struct.

 � public: The access is unlimited

 � protected: The access is limited within the class and any class that inherits from
the class

 � internal: The access is limited within the classes inside the package

When we don't specify anything, the access is set to private by default. That is why our
program cannot be built.

Pop quiz – how to fix this?
As mentioned previously, we don't put any specifiers in front of the printISBN function,
so it is considered private. We can fix this by putting the correct access specifier in the
printISBN function.

Q1. Which specifier from the following options do you think is correct?

1. public, because we want to access it from Main class which is outside the
Book class.

2. None; we just need to fix how we call printISBN in the Main constructor.

Basic data types
Let's now move on, learning the basic data types available in Vala, meaning that we will take
a look at how to interact with strings, numbers, and Boolean.

Time for action – experiment with data types
We will now create an imaginary BookStore program to explore the data types in Vala.

1. Create a new file called bookstore.vala and put it in src/. Fill it with these lines:

using GLib;

public class BookStore {
 private Book book;
 private double price = 0.0;
 private int stock = 0;

Chapter 3

[69]

 public BookStore (Book book, double price, int stock) {
 this.book = book;
 this.price = price;
 this.stock = stock;
 }

 public int getStock() {
 return stock;
 }

 public void removeStock(int amount) {
 stock = stock - amount;
 }

 public void addStock(int amount) {
 stock = stock + amount;
 }

 public double getPrice() {
 return price;
 }

 public void setPrice(double price) {
 this.price = price;
 }

 public bool isAvailable() {
 return (stock > 0);
 }
}

2. Add this file to our project.

3. Modify our Main class to look like this:

using GLib;

public class Main : Object
{
 public Main ()
 {
 var book = new Book("1234", "A new book");
 book.printISBN ();

 var store = new BookStore(book, 4.2, 10);
 stdout.printf ("Initial stock is %d\n", store.getStock());
 stdout.printf ("Initial price is $ %f\n", store.getPrice());
 store.removeStock(4);
 store.setPrice(5.0);

Programming Languages

[70]

 stdout.printf ("Stock is %d\n", store.getStock());
 stdout.printf ("and price is now $ %f\n", store.getPrice());
 var status = "still available";
 if (store.isAvailable() == false) {
 status = "not available";
 }
 stdout.printf ("And the book is %s\n", status);
 }

 static int main (string[] args)
 {
 stdout.printf ("Hello, world\n");
 var main = new Main();
 return 0;
 }
}

4. Run it.

5. See how the data is manipulated and printed:

Hello, world

1234

Initial stock is 10

Initial price is $ 4.200000

Stock is 6

and price is now $ 5.000000

And the book is still available

What just happened?
Let's start analyzing from the calling code, the Main constructor.

 var store = new BookStore(book, 4.2, 10);

Here, we instantiate a new store object from the BookStore class. We initialize it with
a book object, a floating point number, and an integer.

 public BookStore (Book book, double price, int stock) {

In the BookStore constructor, we have to specify the data types in the argument list as
previously done. Then we say that we want to accept a Book object, a number in double
precision, and an integer.

 this.book = book;
 this.price = price;
 this.stock = stock;

Chapter 3

[71]

And then, we assign our private members of book, price, and stock with the arguments.
Here we use this. to denote that we want to assign the book member from the private
member with the book member from the argument. If we name our argument variable
with a different name, for example, bookObject, we can omit this because it is no longer
ambiguous; we know that bookObject must be coming from the argument list and not
from our member. The same happens with price and stock.

 stdout.printf ("Initial stock is %d\n", store.getStock());

This is how we print an integer with printf. We use %d as a placeholder for an integer.

 stdout.printf ("Initial price is $ %f\n", store.getPrice());

And this is how we print a real number with printf. We use %f as a placeholder for it.

 store.removeStock(4);

Then, we remove 4 books from the stock. Internally, this is defined in BookStore.
removeStock, as follows:

 stock = stock - amount;

There we just subtract using a mathematical expression because it is simply an integer.

 var status = "still available";
 if (store.isAvailable() == false) {
 status = "not available";
 }

Next, we have a Boolean expression evaluation. If the value is false, we change the value
of status. The type for status is string, and we can just assign the value.

 stdout.printf ("And the book is %s\n", status);

Finally, we use %s as a placeholder in printf to put our string value there.

Gee, what is it?
Gee is a collection library written in Vala. The basic types of the collection are list, set,
and maps. These are similar to array but with more powerful features.

Time for action – adding the Gee library
Let's take a look at Gee more closely. But first, let's try adding it to our project:

1. Click on the Project menu and choose Add Library....

2. In Select the target for the library, find hello_vala under src/.

Programming Languages

[72]

3. Then click on the New library... button.

4. Find gee from the list and check it in the Module option at the bottom of the dialog,
and then find HELLO_VALA. This means that we add Gee into the C compilation
step. Under the hood, this step modifies the configure.ac file to add Gee
into the build system.

5. Then, from the Files dock, find Makefile.am in the src/ directory and open it.
Find the hello_vala_VALAFLAGS stanza and modify it to look like this:

hello_vala_VALAFLAGS = \
 --pkg gtk+-3.0 \
 --pkg gee-1.0

6. Then, save and close the Makefile.am file. This step means that we add Gee into
the Vala compilation step.

7. Then click on Build and choose Clean Project. This would clean the project from all
the generated code and scripts prepared by the build system to make sure we pick
up changes that we made in Makefile.am and configure.ac.

8. Try running our previous code again. There should be no error anymore.

What just happened?
We just added Gee into the project. Anjuta support for Vala is not yet perfect as we need to
perform two actions (as we just did) to add a library into a project, one for C compilation and
another for Vala compilation. Without these two steps, our program cannot be built because
either Vala would not recognize the Gee namespace or the C compiler would not find the
Gee header files and library.

Time for action – Gee in action
After installing Gee in our project, let's quickly check what capabilities Gee has to offer. Let's
start from the simple ones, the array list.

1. Modify our book.vala file to look like this:

using GLib;
using Gee;

public class Book : Object {
 private string title;
 private string isbn;
 private ArrayList<string> authors;

 public Book(string isbn, string title) {
 this.isbn = isbn;
 this.title = title;

Chapter 3

[73]

 authors = new ArrayList<string>();
 }

 public void addAuthor(string author) {
 authors.add(author);
 }

 public void printISBN() {
 stdout.printf("%s\n", isbn);
 }

 public void printTitle() {
 stdout.printf("%s\n", title);
 }

 public void printAuthors() {
 foreach (var author in authors) {
 stdout.printf("Author name: %s\n", author);
 }
 }
}

2. Modify the Main class constructor to include these lines:

var book = new Book("1234", "A new book");
book.printISBN ();
book.addAuthor("Joe Random");
book.addAuthor("Joe Random Jr.");
book.printAuthors();

3. Run it.

4. See that it prints all of the authors of the book.

Hello, world

1234

Author name: Joe Random

Author name: Joe Random Jr.

Initial stock is 10

Initial price is $ 4.200000

Stock is 6

and price is now $ 5.000000

And the book is still available

Programming Languages

[74]

What just happened?
Here we try to utilize the array list, which is one of many collection data structures provided
by Gee.

using Gee;

In order to use Gee, first we declare that we are using the Gee namespace.

We can actually omit this, but we need to always put the
Gee. prefix in front of all Gee classes.

Now look at the member declaration in the Book class:

public class Book : Object {
 private string title;
 private string isbn;
 private ArrayList<string> authors;

The construct with angle brackets is called generics programming. This means that the data
contained in the data structure (which is ArrayList in this context) is generic. If we have an
array of type integer, we will put it as ArrayList<int>, and so on. Hence, in this particular
line, we have ArrayList, which has content with type string, and we call the list with the
name authors. In the constructor, we have to initialize the array list with this syntax:

 public Book(string isbn, string title) {
 this.isbn = isbn;
 this.title = title;
 authors = new ArrayList<string>();
 }

It means that we need to allocate an ArrayList object, which has content of type string.
Note that only a declaration is not enough. If we forget this part, the program will crash.

 public void addAuthor(string author) {
 authors.add(author);
 }

Here, we use an add function, which is provided by the ArrayList class. As the name
suggests, it will add the data into the array list; note that it can only accept string because
we declare and initialize it with string content.

 public void printAuthors() {
 foreach (var author in authors) {
 stdout.printf("Author name: %s\n", author);
 }
 }
}

Chapter 3

[75]

Here we iterate the content of the array list. We use the foreach command to iterate while
assigning the value obtained on each iteration to the author variable. Note that we use
the var author in authors expression. We don't specify the author variable to be
string, but instead we use an automatic variable construction with the var keyword. In
this line, var will get assigned a type depending on the content of the authors variable.
Because the authors content type is string, the author variable bound to the var
keyword will be also string. This kind of construction is really useful if we generalize a
class to be able to handle any kind of data types depending on the data type stored in the
collection or data structure.

Initializing members when declaring
In our previous code, we initialize the array list in the constructor. Another alternative is to
initialize it while declaring in the declaration area, without initializing it in the constructor.
We can do it like this:

 private ArrayList<string> authors = new ArrayList<string>();

When your code grows and you have more than one constructor, this alternative is better
than initializing in the constructor because you must copy all of the initialization code to
all constructors.

Time for action – watching for signals
Vala has a construct for emitting and watching signals, which is a mechanism of subscribing
to information when something happens in the code. We can subscribe to a signal by
connecting the function that will perform some action into the signal. Let's see how it works.

1. Modify our bookstore.vala file ad add two new declarations:

public class BookStore {
 ...
 public signal void stockAlert();
 public signal void priceAlert();

2. Modify our removeStock and setPrice functions in bookstore.vala to be
like this:

 public void removeStock(int amount) {
 stock = stock - amount;
 if (stock < 5) {
 stockAlert();
 }
 }
 public void setPrice(double price) {
 this.price = price;

Programming Languages

[76]

 if (price < 1) {
 priceAlert();
 }
 }

3. Modify our Main constructor to be like this:

public Main ()
 {
 var book = new Book("1234", "A new book");
 book.printISBN ();
 book.addAuthor("Joe Random");
 book.addAuthor("Joe Random Jr.");
 book.printAuthors();

 var store = new BookStore(book, 4.2, 10);

 store.stockAlert.connect(() => {
 stdout.printf ("Uh oh, we are going to run out stock
soon!\n");
 });

 store.priceAlert.connect(() => {
 stdout.printf ("Uh oh, price is too low\n");
 });
 stdout.printf ("Initial stock is %d\n", store.getStock());
 stdout.printf ("Initial price is $ %f\n", store.getPrice());
 store.removeStock(4);

 store.setPrice(5.0);
 stdout.printf ("Stock is %d\n", store.getStock());
 stdout.printf ("and price is now $ %f\n", store.getPrice());

 store.removeStock(4);

 var status = "still available";
 if (store.isAvailable() == false) {
 status = "not available";
 }
 stdout.printf ("And the book is %s\n", status);
 store.setPrice(0.2);

4. Run it.

5. See the printed message:

Hello, world

1234

Author name: Joe Random

Chapter 3

[77]

Author name: Joe Random Jr.

Initial stock is 10

Initial price is $ 4.200000

Stock is 6

and price is now $ 5.000000

Uh oh, we are going to run out stock soon!

And the book is still available

Uh oh, price is too low

What just happened?
The warning message printed that the stock is running out and the price is too low is not
printed by BookStore class but rather by the Main class. This assumes a scenario where
the Main class subscribes to the signals and will do something about it when Main receives
the information from the signals.

 public signal void stockAlert();
 public signal void priceAlert();

First, we have to define the signal in the class that we want to publish the signal from. In
BookStore, we declare these two signals. Note that we only declare the method signature
with the signal keyword. We don't declare the body of the function. It is essential of
the signal that the object that subscribes to these signals provides functions to handle the
emitted signals.

 if (stock < 5) {
 stockAlert();
 }
 ...
 if (price < 1) {
 priceAlert();
 }

These two snippets show how we emit the signal. When stock is less than 5, we emit
the stockAlert signal, and if price is less than 1, we emit the priceAlert signal. The
BookStore class doesn't care about what happens next; it only announces the signals, and
that's it.

 store.stockAlert.connect(() => {
 stdout.printf ("Uh oh, we are going to run out stock soon!\n");
 });

 store.priceAlert.connect(() => {
 stdout.printf ("Uh oh, price is too low\n");
 });

Programming Languages

[78]

While here, the Main class constructor connects itself with these two signals. We can see
the construct for providing a function body by using the => operator. This construct is called
closure or anonymous function. The parameter of this function is defined before =>, which
in this context is indicating that no parameters were supplied. This is shown by empty
parentheses.

Inside the function body, we declare what should happen when the signal is emitted by
the store object. Here, we just print some alert text. In reality, we could do anything
from disconnecting network and displaying images to any other actions we want.

 store.removeStock(4);
 ...
 store.setPrice(0.2);

Here the actual signals are emitted and the text is printed.

Have a go hero – putting parameters in signals
We can put parameters in our signal, too. We can just put the parameters we want in the
signal declaration. Then, when connecting to a signal, put the parameters before the =>
operator. Now how about modifying the priceAlert signal to have one parameter, which
is the price of the book?

Summary
It is fairly easy and quick to create an application and get it up and running with both Seed
and Vala. So why do we want to learn both and use them in this book?

JavaScript is an interpreted language; we can see the guts of the program and modify it
directly without recompilation. Vala, on the other hand, is a compiled language. We need
to have access to the source code to modify it. If we want to make a commercial software
on top of the GNOME platform, Vala makes a pretty good choice.

Making a program with JavaScript in Seed is pretty straightforward and does not require
project management in Anjuta, while in Vala, we need to take care of the dependencies
manually. Let's hope this can be fixed in the future version of Anjuta.

Now we know the basic construct of the JavaScript and Vala code, from manipulating basic
data types to using the object-oriented programming concept.

We see that JavaScript programming is pretty relaxed, while Vala is strict. A better code
structure using modularization would help simplify development and make debugging easier.

After knowing all of this, now we are ready to go to the next chapter, which uses the GNOME
platform libraries, which is the foundation of creating a GNOME application.

4
Using GNOME Core Libraries

GNOME core libraries are a collection of foundation utility classes and
functions. It covers many things from simple date-conversion functions to
virtual filesystem access management. GNOME would not be as powerful as it
is now without its core libraries. There are a lot of UI libraries out there that are
not successful because of the lack of this kind of power. No wonder there are
many libraries outside GNOME that also use GNOME core libraries to support
their functionalities.

GNOME core libraries are composed from GLib and GIO, which are non-UI libraries for
supporting our UI applications. These libraries connect our programs with files, networks,
timers, and other important aspects in the operating system. Without this knowledge, we
can probably make a beautiful program, but we would be incapable of interacting with the
rest of the system.

In this chapter we shall learn about:

 � The GLib main loop and basic functions

 � The GObject signaling system and properties

 � The GIO files, stream and networking

 � The GSettings configuration system

Ok, let's get started.

Using GNOME Core Libraries

[80]

Before we start
There are a few exercises in this chapter that need access to the Internet or the local
network. Make sure you have a good connection before running the program. Another
exercise requires access to removable hardware and mountable filesystems.

In this chapter, we will do something different regarding the Vala exercises. Because the
nature of the discussions are independent of each other, each Vala exercise is done in its
own project instead of continuously modifying a file in a single project. So, in each Vala
exercise we will create a new project and work inside that project. The name of the project
will be noted so you can easily compare your project with the source code that accompanies
this book. Similar to the previous chapter, the project we create here is a Vala GTK+ (simple)
project. In the project properties, we should not tick on the GtkBuilder support for user
interface option and should pick No license in the License option.

In each exercise, the JavaScript code follows the Vala code and it is kept inside one file per
exercise. The functionalities of the JavaScript code would be exactly the same. So you can
opt to choose whether you want to use either the Vala or the JavaScript code, or both.

The GLib main loop
GLib provides a main event loop, which takes care of the events coming from various
sources. With this event loop, we can catch these events and do the necessary processing.

Time for action – playing with the GLib main loop
Here, we will introduce ourselves to the GLib main loop.

1. Create a new Vala project called core-mainloop and use this code in the
Main class:

using GLib;

public class Main : Object
{
 int counter = 0;

 bool printCounter() {
 stdout.printf("%d\n", counter++);
 return true;
 }

 public Main ()
 {

Chapter 4

[81]

 Timeout.add(1000, printCounter);
 }

 static int main (string[] args)
 {
 Main main = new Main();
 var loop = new MainLoop();
 loop.run ();
 return 0;
 }
}

2. And this is the JavaScript code's counterpart; you can name the script as
core-mainloop.js:

#!/usr/bin/env seed

GLib = imports.gi.GLib;
GObject = imports.gi.GObject;

Main = new GType({
 parent: GObject.Object.type,
 name: "Main",
 init: function() {
 var counter = 0;
 this.printCounter = function() {
 Seed.printf("%d", counter++);
 return true;
 };
 GLib.timeout_add(0, 1000, this.printCounter);
 }
});
var main = new Main();
var context = GLib.main_context_default();
var loop = new GLib.MainLoop.c_new(context);
loop.run();

3. Run it. Do you notice that the program prints the counter and stays running?
You can do nothing except press the Ctrl + C key combination to kill it.

What just happened?
We have set up a GLib main loop with a single source of events, a timeout.

Initially, we set the counter variable to 0.

 int counter = 0;

Using GNOME Core Libraries

[82]

We prepare a function called printCounter to print the counter variable's value, and
increase its value by one immediately after printing. Then we return true to indicate that
we want the counter to continue.

 bool printCounter() {
 stdout.printf("%d\n", counter++);
 return true;
 }

In the constructor, we create a Timeout object with a 1000 ms interval pointing to our
printCounter function. This means that printCounter will be called at every 1-second
interval, and it will be repeatedly called as long as printCounter returns true.

 public Main ()
 {
 Timeout.add(1000, printCounter);
 }

In the main function, we instantiate the Main class, create a MainLoop object, and call run.
This will cause the program to stay running until we manually terminate it. When the loop
is running, it can accept events submitted to it. The Timeout object that we created earlier
produces such an event. Whenever the timer interval expires, it notifies the main loop,
which in turn calls the printCounter function.

 static int main (string[] args)
 {
 Main main = new Main();
 var loop = new MainLoop();
 loop.run ();
 return 0;
 }

Now, let's take a look at the JavaScript code. If you notice, the class structure is a bit different
from what we learned in the previous chapter. Here we use Seed Runtime's construction
of class.

GLib = imports.gi.GLib;
GObject = imports.gi.GObject;

Here, we import GLib and GObject. Then we construct a class called Main, which is based
on GObject.

Here is how we do it. The following code says that we subclass GType into a new class called
Main and pass the object structure into the argument.

Main = new GType({
 parent: GObject.Object.type,
 name: "Main",

Chapter 4

[83]

The first member of the object is parent, which is the parent of our class. We assign it with
GObject.Object.type to denote that our class is derived from Object in the GObject
module that we imported previously. Then we name our class as Main. After that, we put
the functions inside the init function, which is also the constructor of the class.

The content of the class member is similar to what we've seen in the Vala code and it is quite
straightforward.

 init: function() {
 var counter = 0;
 this.printCounter = function() {
 Seed.printf("%d", counter++);
 return true;
 };
 GLib.timeout_add(0, 1000, this.printCounter);
 }
});

Then we have the code that is analogous to what we have in Vala's static main function.
Here we create our Main object and create the GLib's main loop.

var main = new Main();
var context = GLib.main_context_default();
var loop = new GLib.MainLoop.c_new(context);
loop.run();

Have a go hero – stopping the timeout
Our program counts forever. Can you make it stop after the counter reaches 10?

You can just play with the printCounter return value.

Or even better, can you make it stop totally, meaning that the program would exit after the
counter reaches 10?

You can ignore the return value and rearrange the code, and
somehow pass the loop object into the Main class. In the
printCounter function, you can call loop.quit()
whenever it reaches 10 to make the program break the main
loop programmatically.

Using GNOME Core Libraries

[84]

GObject signals
GObject provides a signaling mechanism that we can hook into. In the previous chapter, we
have discussed the Vala signaling system. Internally, it is actually using the GObject signaling
system, but it is so transparent that it is seamlessly integrated into the language itself.

Time for action – handling GObject signals
Let us see how to do it in JavaScript:

1. Create a new script called core-signals.js and fill it with the following code:

#!/usr/bin/env seed

GLib = imports.gi.GLib;
GObject = imports.gi.GObject;

Main = new GType({
 parent: GObject.Object.type,
 name: "Main",
 signals: [
 {
 name: "alert",
 parameters: [GObject.TYPE_INT]
 }
],
 init: function(self) {
 var counter = 0;

 this.printCounter = function() {
 Seed.printf("%d", counter++);
 if (counter > 9) {
 self.signal.alert.emit(counter);
 }
 return true;
 };

 GLib.timeout_add(0, 1000, this.printCounter);
 }
});

var main = new Main();

var context = GLib.main_context_default();
var loop = new GLib.MainLoop.c_new(context);

Chapter 4

[85]

main.signal.connect('alert', function(object, counter) {
 Seed.printf("Counter is %d, let's stop here", counter);
 loop.quit();
});
loop.run();

2. Run it and notice the messages printed:

0

1

2

3

4

5

6

7

8

9

Counter is 10, let's stop here

What just happened?
With the GObject signaling system, we can subscribe for notifications that are emitted by
an object. We just need to provide a handler that will perform some action upon receiving
the signal.

Here, we declare our signal in an array by putting an object with names and parameters as
the content of the object. The parameter type is the type that is known by the GLib system.
If our signal does not have any parameters, we can omit it.

signals: [
 {
 name: "alert",
 parameters: [GObject.TYPE_INT]
 }
],

main.signal.connect('alert', function(object, counter) {
 Seed.printf("Counter is %d, let's stop here", counter);
 loop.quit();
});

Using GNOME Core Libraries

[86]

Then we subscribe to the signal and provide a closure that just prints the counter value and
breaks the main loop. Note that the parameter is defined in the second parameter of the
closure. The first parameter is reserved for the object itself.

Finally, we emit the signal by calling the signal by its name. self is the Main class we pass in
the init function.

if (counter > 9) {
 self.signal.alert.emit(counter);
}

As soon as we call this, the signal will be processed in the main loop and will be delivered
to the objects that subscribe to it.

Have a go hero – writing it in Vala
Compared with the previous code, signal declaration, emission, and subscription are easier
in Vala, as we've seen it the last time. How about trying to write the previous code in Vala?

GLib properties
Properties are key-value pairs in a storage system that are available in all instances of
GObject, which is the base class for all objects in the GNOME system. One useful feature
of properties is that we can subscribe for changes when the value is changed.

Time for action – accessing properties
We are going to learn how to set and get a value to and from a property as well as monitor
the changes.

1. Create a new script called core-properties.js and fill it with this code:

#!/usr/bin/env seed

GLib = imports.gi.GLib;
GObject = imports.gi.GObject;

Main = new GType({
 parent: GObject.Object.type,
 name: "Main",
 properties: [
 {
 name: 'counter',
 type: GObject.TYPE_INT,

Chapter 4

[87]

 default_value: 0,
 minimum_value: 0,
 maximum_value: 1024,
 flags: (GObject.ParamFlags.CONSTRUCT
 | GObject.ParamFlags.READABLE
 | GObject.ParamFlags.WRITABLE),
 }
],
 init: function(self) {
 this.print_counter = function() {
 Seed.printf("%d", self.counter++);
 return true;
 }

 this.monitor_counter = function(obj, gobject, data) {
 Seed.print("Counter value has changed to " + obj.counter);
 }

 GLib.timeout_add(0, 1000, this.print_counter);
 self.signal.connect("notify::counter", this.monitor_counter);
 }
});

var main = new Main();
var context = GLib.main_context_default();
var loop = new GLib.MainLoop.c_new(context);
loop.run();

2. And this is the Vala counterpart (you can create a new project called
core-properties and fill core_properties.vala with this code):

using GLib;

public class Main : Object
{
 public int counter {
 set construct;
 get;
 default = 0;
 }

 public bool print_counter() {
 stdout.printf("%d\n", counter ++);
 return true;
 }

Using GNOME Core Libraries

[88]

 public void monitor_counter() {
 stdout.printf ("Counter value has changed to %d\n", counter);
 }

 public Main ()
 {
 }

 construct {
 Timeout.add(1000, print_counter);
 notify["counter"].connect ((obj)=> {
 monitor_counter ();
 });
 }

 static int main (string[] args)
 {
 Gtk.init (ref args);
 var app = new Main ();

 Gtk.main ();
 return 0;
 }
}

3. Run it and notice the messages printed. Note that you can press the Ctrl + C
combination keys to stop the program.

Counter value has changed to 0

Counter value has changed to 1

0

Counter value has changed to 2

1

Counter value has changed to 3

2

Counter value has changed to 4

3

Counter value has changed to 5

4

Counter value has changed to 6

5..

Chapter 4

[89]

What just happened?
In the JavaScript code, we need to declare the properties inside the properties array, and
fill it with the property's object.

Here we describe that our property has the name counter and is of type integer. It needs
to declare the default, minimum, and maximum values. It also needs the flags. From the
flags, we can see GObject.ParamFlags.CONSTRUCT, which means that the property is
initialized in the construction phase. It means that the default value is set when the object is
created. We also see that it is readable and writable.

properties: [
 {
 name: 'counter',
 type: GObject.TYPE_INT,
 default_value: 0,
 minimum_value: 0,
 maximum_value: 1024,
 flags: (GObject.ParamFlags.CONSTRUCT
 | GObject.ParamFlags.READABLE
 | GObject.ParamFlags.WRITABLE),
 }
]

In the following code, we subscribe for changes. We use the signaling system and the name
of the signal is constructed with the notify:: keyword followed by the property's name.
After this, every change that happens to the property will trigger the signal handler.

self.signal.connect("notify::counter", this.monitor_counter);

Here we set the value of the property by increasing its value. Note that here we modify the
value; hence the value monitor will be triggered first, and then the actual value is printed
by printf.

this.print_counter = function() {
 Seed.printf("%d", self.counter++);
 return true;
}

And the following code shows how to read the value:

this.monitor_counter = function(obj, gobject, data) {
 Seed.print("Counter value has changed to " + obj.counter);
}

Using GNOME Core Libraries

[90]

In contrast with the JavaScript code, the properties declaration in Vala is very simple. The
declaration is similar to the normal variable declaration with some additions.

In the following code, the set construct expression means that it is writable and the
default value is initialized in the construction phase. get means that it is readable, and
default defines the default value.

public int counter {
 set construct;
 get;
 default = 0;
}

However, there is no mechanism to set the minimum and maximum value.

Then we see how reading and writing the property are done like reading and writing a
normal variable. From outside the class, we can use the normal way to refer a member
variable, which is by using an object name followed by a dot and the property name.

public bool print_counter() {
 stdout.printf("%d\n", counter ++);
 return true;
}

public void monitor_counter() {
 stdout.printf ("Counter value has changed to %d\n", counter);
}

Subscribing for changes also uses the usual signaling mechanism, with the exception that we
insert the property name in square brackets following the signal name, notify.

notify["counter"].connect ((obj)=> {
 monitor_counter ();
}

There is something new in the code; something we have not seen before. It is the
construct keyword. It is basically an alternative way to construct an object similar to the
normal constructors. This style of construction is close to how GObject construction is being
carried out in the actual generated C code.

Despite the differences between these JavaScript and Vala codes, both allow the use of a
property just like a plain member of the class. So, in both languages, you can access the
counter property as main.counter (assuming that the object's name is main).

Chapter 4

[91]

Pop quiz – why the value of zero is printed out
From the output, we saw this:

Counter value has changed to 0

Q1. We did not set the counter to 0 explicitly, did we? So, why did it happen?

1. Because the property has the set construct keyword defined.

2. Because 0 is the default value.

Have a go hero – making a property read-only
When a property is read-only, we can no longer set its value. Now, let's try to make the
counter property read-only. Hint: Play with the property flag.

Configuration files
In many cases we need to somehow read from a configuration file in order to customize
how our program should behave. Here, we will learn how to use the simplest configuration
mechanism in GLib using a configuration file. Imagine that we have a configuration file and
it contains the name and version of our application so that we can print it somewhere inside
our program.

Time for action – reading configuration files
Here's how to do it:

1. Create a configuration file; let's call it core-keyfile.ini. Its content is as follows:

[General]
name = "This is name"
version = 1

2. Create a new Vala project and name it core-keyfile. Put the core-keyfile.
ini file inside the project directory (but not in src).

3. Edit core_keyfile.vala to look like this:

using GLib;

public class Main : Object
{
 KeyFile keyFile = null;
 public Main ()

Using GNOME Core Libraries

[92]

 {
 keyFile = new KeyFile();
 keyFile.load_from_file("core-keyfile.ini", 0);
 }

 public int get_version()
 {
 return keyFile.get_integer("General", "version");
 }

 public string get_name()
 {
 return keyFile.get_string("General", "name");
 }

 static int main (string[] args)
 {
 var app = new Main ();
 stdout.printf("%s %d\n", app.get_name(), app.get_version());

 return 0;
 }
}

4. The JavaScript code (let's call it core-keyfile.js) looks like this (remember to
put the .ini file in the same directory as the script):

#!/usr/bin/env seed

GLib = imports.gi.GLib;
GObject = imports.gi.GObject;

Main = new GType({
 parent: GObject.Object.type,
 name: "Main",
 init: function(self) {

 this.get_name = function() {
 return this.keyFile.get_string("General", "name");
 }

 this.get_version = function() {
 return this.keyFile.get_integer("General", "version");
 }

Chapter 4

[93]

 this.keyFile = new GLib.KeyFile.c_new();
 this.keyFile.load_from_file("core-keyfile.ini");
 }
});

var main = new Main();
Seed.printf("%s %d", main.get_name(), main.get_version());

5. Run the program and look at the output:

"This is name" 1

What just happened?
The configuration file we are using has a key-value pairs structure conforming to the
Desktop Entry Specification document of freedesktop.org. In the GNOME platform,
this structure is commonly used, mainly in the .desktop files, which are used by the
launcher. People using Windows might find this similar to the .ini format, which is also
used for configuration.

GLib provides the KeyFile class to access this type of configuration file. In our constructor,
we have this snippet:

keyFile = new KeyFile();
keyFile.load_from_file("core-keyfile.ini", 0);

It initializes an object of KeyFile, and loads the core-keyfile.ini file into the object.

If we jump a bit in our core-keyfile.ini file, we have a section, as shown, written inside
a pair of square brackets.

[General]

And then all the entries following it can be accessed by specifying the section name. Here we
provide two methods, get_version() and get_name(), as shortcuts to get the value of
the name and version entries in the configuration file.

public int get_version()
{
 return keyFile.get_integer("General", "version");
}

public string get_name()
{
 return keyFile.get_string("General", "name");
}

Using GNOME Core Libraries

[94]

Inside the methods, we just get the integer value from the version entry and get the string
value from the name entry. We also see that we obtain the entries under the General
section. And in these methods we just return the value immediately.

As shown in the following code, we consume the values from the methods and print them:

stdout.printf("%s %d\n", app.get_name(), app.get_version());

Quite easy, isn't it? The JavaScript code is also easy and straightforward; so it does not need
to be explained further.

Have a go hero – multi-section configuration
Let's try adding more sections inside the configuration file and accessing the values. Imagine
that we have a specific section called License that has license_file and customer_id
as the entries. Imagine that we will use this information later to check whether the customer
has the right to use the software.

GIO, the input/output library
In real life, our program must be able to access files wherever they are stored, locally or
remotely. Imagine that we have a set of files that we need to read. The files are spread both
locally and remotely. GIO will make it easy for us to manipulate these files as it provides an
API to interact with our files in an abstract way.

Time for action – accessing files
Let's see how it works:

1. Let's create a new script called core-files.js, and fill it with these lines:

#!/usr/bin/env seed

GLib = imports.gi.GLib;
Gio = imports.gi.Gio;
GObject = imports.gi.GObject;

Main = new GType({
 parent: GObject.Object.type,
 name: "Main",
 init: function(self) {
 this.start = function() {
 var file = null;
 var files = ["http://en.wikipedia.org/wiki/Text_file",
"core-files.js"];

Chapter 4

[95]

 for (var i = 0; i < files.length; i++) {
 if (files[i].match(/^http:/)) {
 file = Gio.file_new_for_uri(files[i]);
 } else {
 file = Gio.file_new_for_path(files[i]);
 }

 var stream = file.read();
 var data_stream = new Gio.DataInputStream.c_new(stream);
 var data = data_stream.read_until("", 0);

 Seed.print(data)
 }
 }
 }
});

var main = new Main();
main.start();

2. Alternatively, you can create a Vala project called core-files. Fill
src/core_files.vala with this code:

using GLib;

public class Main : Object
{
 public Main ()
 {
 }

 public void start ()
 {
 File file = null;
 string[] files = {"http://en.wikipedia.org/wiki/Text_file",
"src/core_files.vala"};

 for (var i = 0; i < files.length; i++) {
 if (files[i].has_prefix("http:")) {
 file = File.new_for_uri(files[i]);
 } else {
 file = File.new_for_path(files[i]);
 }

 var stream = file.read();
 var data_stream = new DataInputStream(stream);

Using GNOME Core Libraries

[96]

 size_t data_read;
 var data = data_stream.read_until("", out data_read);
 stdout.printf(data);
 }
 }

 static int main (string[] args)
 {
 var app = new Main ();
 app.start();
 return 0;
 }
}

3. Run the program, and notice that it fetches the Wikipedia page from the Internet as
well as the source code of the program from the local directory.

What just happened?
GIO aims to provide a set of powerful virtual filesystem APIs. It provides a set of interfaces
that serve as a foundation to be extended by the specific implementation. For example, here
we use the GFile interface that defines the functions for a file. The GFile API does not tell
us where the file is located, how the file is read, or other such details. It just provides the
functions and that's it. The specific implementation that is transparent to the application
developers will do all the hard work. Let's see what this means.

Chapter 4

[97]

In the following code, we get the file location from the array files. Then we check if the
location has an HTTP protocol identifier or not; if yes, we create the GFile object using
file_new_for_uri, otherwise we use file_new_for_path. We can, of course, use
file_new_for_uri even for the local file, but we need to prepend the file:// protocol
identifier to the filename.

if (files[i].match(/^http:/)) {
 file = Gio.file_new_for_uri(files[i]);
} else {
 file = Gio.file_new_for_path(files[i]);
}

This is the only difference between handling the remote file and the local file. And after
that we can access files either from the local drive or from a web server by using the same
function with GIO.

var stream = file.read();
var data_stream = new Gio.DataInputStream.c_new(stream);
var data = data_stream.read_until("", 0);

Here we use the read function to get the GFileInputStream object. Notice here that the
API provides the same function wherever the file is.

The resulting object is a stream. A stream is a sequence of data that flows from one end
to the other. The stream can be passed to an object and can transform it to become another
stream or just consume it.

In our case, we get the stream initially from the file.read function. We transfer this
stream into GDataInputStream in order to easily read the data. With the new stream, we
ask GIO to read the data until we find nothing, which means it has reached the end of the
file. And then we spit the data out onto the screen.

Network access with GIO
GIO provides adequate functions to access the network. Here we will learn how to create
socket client and server programs. Imagine that we are building a simple chat program that
can send data from one end to another.

Using GNOME Core Libraries

[98]

Time for action – accessing a network
For brevity, we will do it only in JavaScript now; you can look at the Vala program in
core-server and core-client projects code that accompany this book. Ok, so let's see
what are the steps needed to access the network.

1. Create a new script called core-server.js and fill it with these lines:

#!/usr/bin/env seed

GLib = imports.gi.GLib;
Gio = imports.gi.Gio;
GObject = imports.gi.GObject;

Main = new GType({
 parent: GObject.Object.type,
 name: "Main",
 init: function(self) {
 this.process = function(connection) {
 var input = new Gio.DataInputStream.c_new (connection.get_
input_stream());
 var data = input.read_upto("\n", 1);
 Seed.print("data from client: " + data);
 var output = new Gio.DataOutputStream.c_new (connection.get_
output_stream());
 output.put_string(data.toUpperCase());
 output.put_string("\n");
 connection.get_output_stream().flush();
 }

 this.start = function() {
 var service = new Gio.SocketService();
 service.add_inet_port(9000, null);
 service.start();
 while (1) {
 var connection = service.accept(null);
 this.process(connection);
 }
 }
 }
});

var main = new Main();
main.start();

Chapter 4

[99]

2. Run this script. The program will stay running until we press Ctrl + C.

3. Then create another script called core-client.js; here is the code:

#!/usr/bin/env seed

GLib = imports.gi.GLib;
Gio = imports.gi.Gio;
GObject = imports.gi.GObject;

Main = new GType({
 parent: GObject.Object.type,
 name: "Main",
 init: function(self) {

 this.start = function() {
 var address = new Gio.InetAddress.from_string("127.0.0.1");
 var socket = new Gio.InetSocketAddress({address: address,
port: 9000});
 var client = new Gio.SocketClient ();
 var conn = client.connect (socket);

 Seed.printf("Connected to server");

 var output = conn.get_output_stream();
 var output_stream = new Gio.DataOutputStream.c_new(output);

 var message = "Hello\n";
 output_stream.put_string(message);
 output.flush();

 var input = conn.get_input_stream();
 var input_stream = new Gio.DataInputStream.c_new(input);
 var data = input_stream.read_upto("\n", 1);
 Seed.printf("Data from server: " + data);
 }
 }
});

var main = new Main();
main.start();

Using GNOME Core Libraries

[100]

4. Run this program and notice the output of both the server and the client programs.
They can talk to each other!

What just happened?
GIO provides high-level as well as low-level networking APIs that are really easy to use.
Let's take a look at the server first.

Here we open a service in port number 9000. It is an arbitrary number; you can use your
own number if you want, with some restrictions:

 var service = new Gio.SocketService();
 service.add_inet_port(9000, null);
 service.start();

You can't run the service if there is already another service running with a port number that
is the same as yours. Also, you have to run your program as root if you want to use a port
number below 1024.

And then we enter an infinite loop that is called when the service is accepting an incoming
connection. Here, we just call our process function to handle the connection. That's it.

 while (1) {
 var connection = service.accept(null);
 this.process(connection);
 }

The server's basic activity is defined as easily as that. The details of the processing is
another story.

Chapter 4

[101]

Then, we create a GDataInputStream object based on the input stream coming from the
connection. And then we read the data in until we find the end of line character which is \n.
It is one character, so we put 1 there as well. And then we print the incoming data.

 var input = new Gio.DataInputStream.c_new (connection.get_
input_stream());
 var data = input.read_upto("\n", 1);
 Seed.print("data from client: " + data);

To make things interesting, we want to return something to the client. Here we create an
object of the GDataOutputStream class that is coming from the connection object. We
change the data coming from the client to uppercase, and we send it back through the
stream. In the end, we make sure everything is sent by flushing down the pipe. That's all
on the server side.

 var output = new Gio.DataOutputStream.c_new (connection.get_output_
stream());
 output.put_string(data.toUpperCase());
 output.put_string("\n");
 connection.get_output_stream().flush();

On the client side, initially, we make an object of GInetAddress. The object is then fed
into GInetSocketAddress so we can define the port of the address that we want to
connect to.

var address = new Gio.InetAddress.from_string("127.0.0.1");
var socket = new Gio.InetSocketAddress({address: address, port:
9000});

Then we connect the socket object with SocketClient into GSocketClient. After this,
if everything is OK, the connection to the server is established.

var client = new Gio.SocketClient ();
var conn = client.connect (socket);

On the client side, in principle, the process occurs in the opposite way as it would occur on
the server side. Here we create GDataOutputStream first, based on the stream coming
from the connection object. Then we just send the message into it. We also want to flush it
so all the remaining data in the pipeline is flushed out.

var output = conn.get_output_stream();
var output_stream = new Gio.DataOutputStream.c_new(output);

var message = "Hello\n";
output_stream.put_string(message);
output.flush();

Using GNOME Core Libraries

[102]

Then, we expect to get something from the server; so we create an input stream object.
We read from it until we find a newline, and we print the data.

var input = conn.get_input_stream();
var input_stream = new Gio.DataInputStream.c_new(input);
var data = input_stream.read_upto("\n", 1);
Seed.printf("Data from server: " + data);

Have a go hero – making an echo server
Echo server is a service that returns everything that is sent to it as it is, without any
modifications. For example, if we send "Hello", the server will also send back "Hello".
Sometimes it is used for checking whether the connection between two hosts is working.
How about modifying the server program to be an echo server?

We can put it in an infinite loop, but if we type "quit", the server disconnects.

Understanding GSettings
Previously, we have used the GLib configuration parser to read our application configuration.
Now we will try to use a more advanced settings system with GSettings. With this, we can
access configurations throughout the GNOME platform, including all the applications that
use the system.

Time for action – learning GSettings
Let's see what the GSettings configuration system looks like as visualized by the
dconf-editor tool:

1. Launch a terminal.

2. Run dconf-editor from the terminal.

Chapter 4

[103]

3. Navigate through the org tree on the left-hand side of the application, and go
through gnome, desktop, and then background.

What just happened?
GSettings is a new introduction in GNOME 3. Before, the configuration was handled with
GConf. In GNOME 3, every shipped GNOME application has been migrated to use GSettings.
The concept of storing the settings in GConf and GSettings remains the same, that is, by
using key-value pairs. However, GSettings contains improvements in many aspects, including
more restrictive usage by enforcing schema as metadata. With GConf, we can freely store
and read any values from the system.

GSettings is actually only a top-level layer. Underneath, there is a low-level system called
dconf, which handles the actual storing and reading of the values. The tool we discuss here
shows the keys and values in a hierarchy so we can browse, read, and even write a new value
(if the schema says it's writable, of course).

In the screenshot we can see that org.gnome.desktop.background has many entries;
one of them is picture-uri, which contains the URI of the desktop's background image.

GSettings API
In this book, the API is more interesting than the administrative tools. After we see GSettings
visually, it is time to access GSettings through API.

Using GNOME Core Libraries

[104]

Time for action – accessing GSettings programmatically
Imagine that we create a tool to set the background image of our GNOME desktop. Here is
how to do it:

1. Create a new Vala project called core-settings, and modify core_settings.
vala with the following:

using GLib;

public class Main : Object
{
 Settings settings = null;
 public Main ()
 {
 settings = new Settings("org.gnome.desktop.background");
 }

 public string get_bg()
 {
 if (settings == null) {
 return null;
 }

 return settings.get_string("picture-uri");
 }

 public void set_bg(string new_file)
 {
 if (settings == null) {
 return;
 }
 if (settings.set_string ("picture-uri", new_file)) {
 Settings.sync ();
 }
 }

 static int main (string[] args)
 {
 var app = new Main ();
 stdout.printf("%s\n", app.get_bg());
 app.set_bg ("file:///usr/share/backgrounds/gnome/Wood.jpg");
 return 0;
 }
}

Chapter 4

[105]

2. The JavaScript code is quite straightforward; here we have a snippet of it just to see
the adaptation needed from the Vala code:

init: function(self) {
 this.settings = null;

 this.get_bg = function() {
 if (this.settings == null)
 return null;

 return this.settings.get_string("picture-uri");
 }

 this.set_bg = function(new_file) {
 if (this.settings == null)
 return;

 if (this.settings.set_string("picture-uri", new_file)) {
 Gio.Settings.sync();
 }
 }

 this.settings = new Gio.Settings({schema: 'org.gnome.desktop.
background'});
}

3. Run it and see the change in your current desktop background image. Your current
desktop background will change to the file specified in the code.

What just happened?
In this exercise, we use the already installed schema owned by the desktop, which is
org.gnome.desktop.background, so we can just use the API to access the settings.
Let's take a look at the details.

First, we initiate the connection to GSettings by specifying the schema name, which is
org.gnome.desktop.background, and it returns a GSettings object.

settings = new Settings("org.gnome.desktop.background");

Then we put a simple safety net just in case the initialization fails. In the real world, we can
perform reinitialization rather than just a simple return.

if (settings == null) {
 return null;
}

Using GNOME Core Libraries

[106]

After that, we obtain a value of type string under the key picture-uri, and we can
consume it in any way we want.

return settings.get_string("picture-uri");

Finally, we set the value using the same key. If it is successful, we ask GSettings to save it to
the disk by calling the sync function. Easy, right?

if (settings.set_string ("picture-uri", new_file)) {
 Settings.sync ();
}

Summary
In this chapter, we learned a lot about the GNOME core libraries. Even though we did not
touch everything in the libraries, we managed to tackle all the basics and essentials needed
to build our GNOME application.

We know now that GLib provides a main loop that handles all the events from various
sources. We discussed the GObject property and the signaling system. We also tried to look
into the events processed by the main loop by posting with the timeouts, and signals when
a value of a property has changed. Regarding the programming languages, we found out
that Vala is more integrated with GNOME, and JavaScript requires more code to use GObject
properties or signals.

We had an exercise of accessing files both locally and remotely, and we found out that the
API provided by GIO is very easy to use because it abstracts the way we access those files
wherever they are.

With GIO, we also did an experiment of building a simple client and server chat program and
we found out that to create such an interesting program requires quite a minimal amount
of code, both in JavaScript and Vala.

Finally, we had a discussion about GSettings and tried to read and write the GNOME
desktop's background image with it.

After we master the foundation of the GNOME application, the next step is to learn the
basics of a graphical program in the next chapter.

5
Building Graphical User

Interface Applications

GTK+ has been the de facto graphical user interface (GUI) toolkit for
GNOME since the project's inception. Lately, Clutter joined as the alternative,
providing a fluid animating user interface powered by OpenGL. These two make
a good set of base toolkits to choose from when developing a GUI application
for GNOME.

In this chapter, we will learn how to create applications with GTK+ and Clutter. Specifically,
we will take a look at:

 � Creating a basic GTK+ application

 � Programming with plain GTK+

 � GUI programming with Clutter

Before we start
Developing an application with Clutter requires that you have a working OpenGL-enabled
environment as mentioned in Chapter 1, Installing GNOME 3 and SDK. If your environment
is not supported, the program will not start at all. However, GTK+ application development
does not require any hardware support.

Building Graphical User Interface Applications

[108]

Creating a basic GTK+ application
Let's start by using the basic widgets of GTK+: label and button. We saw a mockup once in
Chapter 2, Preparing Our Weapons, and here again, we will use a mockup as our blueprint
to create an application. But now, we will add a feature to the mockup to make our plan
more concrete. Imagine that we want to create an application, which is shown by the
following mockup:

Chapter 5

[109]

Each image on the mockup shows a particular state of the application. By following the
state from one image to the next, it makes the whole sequence flow, which is called the
interaction flow. Concretely, this shows us the interaction by the user immediately followed
by the response of the application. The user interaction is represented by a graphical icon,
which is drawn on top of the item on the application screen that the user is interacting with.
In this mockup we only have click interaction, which is represented by a dotted circle to
indicate that a mouse click is performed on the item.

Let's see the mockup closely. The first application state is shown by image number 1. It
shows a label that is aligned to the center, and three buttons with the middle one in the
pressed state. The image number 2 shows that the user clicks on the first button. The image
number 3 shows the application's response. We see that the image is moved to the left and
the button state is changed to the pressed state. Also shown there is the middle button's
state, which is set to the normal state. If we follow the next image until the end, we have the
complete possible interaction in our application.

From here we can try to plan what widgets need to be used. For the window, we could use
a simple GtkWindow. We can use a GtkLabel for the label in the center of the application.
If we use a normal GtkButton for the buttons, we need to reset all the buttons when one of
the buttons is pressed. So here we can use a special button called GtkRadioButton to get the
feature of setting all the buttons to the inactive state except the button that we press. When
we know what widgets to use, then we can start doing the implementation.

Time for action – implementing the mockup
We briefly did a GUI application with Vala in Chapter 2, Preparing Our Weapons, so now we
will create an application in JavaScript to experiment with labels and buttons according to
the mockup.

1. Run Glade as a standalone program and create a new file called gtk-basic-
widgets.ui and put it into a dedicated directory called gtk-basic-widgets.

2. On the Palette dock, find a Box object inside the Containers section. Click on it and
click on the blank window on the right. When asked, the Number of items value
is 2. You can use the – and + buttons or just enter the number 2 inside it.

Building Graphical User Interface Applications

[110]

3. Now we can see that the box on the window is divided into two boxes; let's call
them top and bottom box.

4. Again, click on the Box object inside the Containers section and click on the bottom
box. Our bottom box will be divided into three boxes.

5. Our second group of boxes here is named automatically as box2. Check the
Orientation value in the General tab of box2. Change this to Horizontal.

6. In the General tab, set the Homogeneous value to Yes.

7. Now we have our bottom box divided horizontally into three boxes. Let's remember
these new boxes as left, center, and right boxes.

8. Find the label on the Control and Display section in the Palette dock. Click on it, and
then click on the top box. Now we have the label put into the top box.

9. Find label1 on the Widgets dock, and click on the Packing tab. Change the value of
Expand to Yes, by just clicking on its value.

10. Now our label expands the area on the top box.

11. Find Toggle Button on the Control and Display section in the Palette dock. Click on
it and click on the left box. Continue to click on Toggle Button and then click on the
middle box, and then the right box.

12. For the middle and right buttons, we need to specify the button group so that they
can be selected. In the General tab of these buttons, find the Group option. Click on
the ellipsis button (shown with three dots) and select radiobutton1.

13. Now we have all buttons filling the bottom boxes.

14. Click on the middle button, set the Active value (it can be found in the General tab)
as Yes.

15. Click on the label, open the General tab, and set the value of Label to in the center.

16. Click on the left button, click on the Label on optional image option, and fill Label
with Go Left. Repeat the same actions with the middle and right button, and set the
labels to Go Center and Go Right respectively.

17. For all the buttons, we go to the General tab on each button and set the value of
Draw indicator to No, and Horizontal alignment for child to 0.5.

18. Create a new script called gtk-basic-widgets.js with code that looks like this:

#!/usr/bin/env seed

Gtk= imports.gi.Gtk;
GObject = imports.gi.GObject;
Main = new GType({
 parent: GObject.Object.type,
 name: "Main",
 init: function(self) {

Chapter 5

[111]

 this.go_left = function(object) {
 if (object.active) {
 self.label.set_label("going left");
 self.label.set_alignment(0, 0.5);
 }
 }

 this.go_center = function(object) {
 if (object.active) {
 self.label.set_label("in the center");
 self.label.set_alignment(0.5, 0.5);
 }
 }

 this.go_right = function(object) {
 if (object.active) {
 self.label.set_label("going right");
 self.label.set_alignment(1, 0.5);
 }
 }

 var ui = new Gtk.Builder()
 this.ui = ui;
 ui.add_from_file("gtk-basic-widgets.ui");
 var window = ui.get_object("window1");
 window.resize(300, 400);
 window.show_all();
 window.signal.destroy.connect(Gtk.main_quit);

 this.label = ui.get_object("label1");
 ui.get_object("radiobutton1").signal.toggled.
connect(this.go_left);
 ui.get_object("radiobutton2").signal.toggled.
connect(this.go_center);
 ui.get_object("radiobutton2").set_active(true);
 ui.get_object("radiobutton3").signal.toggled.
connect(this.go_right);
 }
});

Gtk.init(Seed.argv);
var main = new Main();
Gtk.main();

Building Graphical User Interface Applications

[112]

19. Run the application. Try to press the buttons and see whether we fulfill the mockup.

What just happened?
As we saw in Chapter 2, Preparing Our Weapons, we can't just add the widgets (buttons
and a label) directly into a window because the window can only take one widget. Hence,
we need a container widget that can hold more than one widget. Because of the desired
appearance, we first divide the window into two parts: top and bottom. Then we put
another container inside the bottom part. With these containers set, we can then put
our widgets inside.

In this example, we use GtkBox (shown as Box in Glade) as the container and set the
orientation to indicate how we want to divide the parts. GtkBox does not have a visible part.
It lets the widgets that are placed inside to cover the whole area that is allocated to it. When
we pack a widget inside Box, the widget gives a hint to Box about its preferred height, then
Box will calculate and allocate an area according to the height and let the widget draw itself
into the area. Box automatically arranges the widgets that are added into it according to the
orientation that we have specified. So, we don't put the widgets with certain coordinates but
rely on how Box arranges them.

Our first box is a vertical box and we want the bottom part to be of a rather constant size and
the top part to adjust its size according to the size of the window. To do that, we specifically
make the label1 widget, which is placed inside the top box, expand by setting the Expand
packing option to Yes when it is packed, so the label will give extra space that it can get when
the parent's size grows. Together with the Fill option, which is already set to Yes by default,
Box will give maximal height instead of giving the actual height of the label.

Chapter 5

[113]

What happened here is that Box will calculate the preferred size for all widgets inside the
top and bottom parts and find out the remaining size available according to the size of the
window. After that, it maximizes the size of the label1 widget, which is inside the top part,
by adding the remaining size to the original size of the label.

We can't split the bottom part directly because a Box object can only have one orientation.
In order to do that, we add a new horizontal Box widget inside the bottom part. Now, the
situation is a bit different. Here, our Box orientation is horizontal and what we want is to
split it into three parts equally, so we need to enable the Homogeneous option.

In our toggle buttons, we use radiobutton1 as our group leader. With this, when one
of the buttons is pressed then all other buttons are made inactive. We also make the
appearance to look like normal buttons by disabling the Draw indicator option and
making the labels inside the buttons be aligned to the center.

In this example, we have put many widgets in the hierarchy, meaning that some widgets
have parents and children. For example, the window contains the children of all widgets
attached to it and its children. The vertical Box widget has children of label and the
horizontal Box widget and its children. The horizontal Box widget has all buttons as its
children, and so on. Understanding the hierarchy is very important so we can know the
structure of the application. The hierarchy is visible in Glade in the Inspector dock.

Gtk.init(Seed.argv);
 var main = new Main();
 Gtk.main();

Here we have the initialization code of GTK+. Gtk.init prepares the graphical environment
so that our application is run as a GUI application. Seed.argv provides a list of arguments
that are passed into our application. In this example it is an empty list. Then we initialize our
Main class. After that, we enter the GTK+ main loop by calling Gtk.main.

In this part of the code, we load the gtk-basic-widgets.ui file with a
Gtk.Builder object:

this.ui = new Gtk.Builder()
this.ui.add_from_file("gtk-basic-widgets.ui");

Make sure that the path is correct.

Then we get the reference of our window by just finding its name, which is window1.

 var window = this.ui.get_object("window1");

If you change the name to something else, then you need to change it in this code too.

We can use the get_object function to find any widgets that we use in Glade as long as
the name is correct.

Building Graphical User Interface Applications

[114]

Then we resize the window and show everything in it on the screen.

window.resize(300, 400);
 window.show_all();

This part will terminate the application whenever the window is closed.

 window.signal.destroy.connect(Gtk.main_quit);

If we don't have this code, the application will still be running even if the window is closed.
One way to check whether your application is still running is to run the ps command in
a terminal.

In the following code, we connect the toggled signal of all the buttons to their respective
handler. A toggled signal is emitted by a button whenever the state is changed, either from
the active to inactive state or vice versa.

this.label = ui.get_object("label1");
 ui.get_object("radiobutton1").signal.toggled.
connect(this.go_left);
 ui.get_object("radiobutton2").signal.toggled.
connect(this.go_center);
ui.get_object("radiobutton2").set_active(true);

 ui.get_object("radiobutton3").signal.toggled.connect(this.go_
right);

When the radiobutton1 button is toggled, the signal handler go_left function is
called. For radiobutton2, it is go_center, and for radiobutton3, it is go_right. For
radiobutton2, we initialize it to be active so that it matches with the mockup's initial state.

In the go_left function, we set the label to going left, and we make the label to be left
aligned by setting the first variable of the set_alignment function to 0. The second
variable is for the vertical alignment.

this.go_left = function(object) {
 if (object.active) {
 self.label.set_label("going left");
 self.label.set_alignment(0, 0.5);
 }
 }

It is always set to 0.5. The alignment value range is from 0 (left) to 1 (right). The vertical
alignment value is also from 0 (top) to 1 (bottom). Remember also that when we set
Horizontal alignment for child for all buttons to 0.5 in Glade, it means that the label
inside the button is set to be center aligned.

Chapter 5

[115]

What we really want is to set these settings only when the button is active, and not
otherwise. Hence, we guard the function with if (object.active) in order to avoid the
label and alignment setting to be called twice. In this example, the guard does not make
any difference if we don't have it. But in a real live application, the guard is sometimes
necessary in order to avoid duplicate calls, which can lead to confusion and even make
the performance slower if there are some heavy calculations inside the handler.

A similar thing happens to the go_center and go_right functions. But there, we set the
alignment to be centered with an argument of 0.5 and right alignment with an argument
of 1.

Pop quiz
Q1. If we have the value of horizontal alignment as 0.3, where is the place of a
widget visually?

1. Center

2. Slightly to the right

3. Slightly to the left

Q2. If we have the value of vertical alignment as 0.3, where is the place of a widget visually?

1. Center

2. Slightly to the right

3. Slightly to the left

Have a go hero – creating a Vala version
Now you can try to port this simple code to a Vala version by using the example we've used
in Chapter 2, Preparing Our Weapons. The port should be straightforward and pretty easy.

Time for action – adding icons to the buttons
Now imagine that we want to add icons to our buttons. Icons are usually added into buttons
to explain more about the intended functionality represented by the button. This will
become more important if the label on the button is short or ambiguous. Let's go through
the following steps to add icons to the buttons:

1. While still on gtk-basic-widgets.ui, click on the left button.

2. Navigate to the General tab and find the image widget option just under the
Label with optional image option.

Building Graphical User Interface Applications

[116]

3. Click on the ellipsis button and it will bring up a dialog.

4. Click on the New button and it will create an image widget.

5. Now find this widget on the widget list. It should be initially named image1.

6. Click on the image, navigate to the General tab, and find Stock ID under Edit image.
Click on it and find the Left icon. The icon name is gtk-justify-left.

7. Repeat the process, but now use the Center (gtk-justify-center) and Right
(gtk-justify-right) icons for the middle and right buttons.

8. In the code, add these lines in the constructor:

 var s = Gtk.Settings.get_default();
 s.gtk_button_images = true;

9. Run it.

What just happened?
The images were created outside the widget hierarchy in the application. It means that it
neither has parent widgets nor children. It is just created "somewhere" in the code. We use
these images by tying them to the buttons. By default, these images will not be displayed.

 var s = Gtk.Settings.get_default();
 s.gtk_button_images = true;

With this code, the images are then displayed by GTK+.

Chapter 5

[117]

Have a go hero – adjusting the icon placement
Go on, explore the available properties visible in the General tab in the Widgets dock. There
is the Image position property that can be used to adjust the placement of the icon. With
that property, we can set the right alignment icon to be placed on the right and the center
alignment icon to be placed at the center of the button. What you need to do is just activate
that switch and that's it!

Porting the code without GtkBuilder
We've always been using Glade to design our UI, and GtkBuilder to load the design at
runtime. We will use Glade in the rest of our book, but now let's try to do GTK+ programming
at a lower level to grasp the essentials of GTK+, which is not obvious when using Glade. This
knowledge becomes more important when our project becomes larger and larger, and at
some point will stumble upon performance problems, layout problems, and so on.

Time for action – programming with raw GTK+
Now we will execute a JavaScript code that uses raw GTK+ programming to implement the
mockup and the interaction flow.

1. Create a JavaScript file named gtk-basic-widgets-sans-glade.js inside
a directory with a similar name without the .js extension.

2. Use this code for the script:

#!/usr/bin/env seed

Gtk = imports.gi.Gtk;
GObject = imports.gi.GObject;

Main = new GType({
 parent: GObject.Object.type,
 name: "Main",
 init: function(self) {
 this.go_left = function(object) {
 if (object.active) {
 self.label.set_label("going left");
 self.label.set_alignment(0, 0.5);
 }
 }

 this.go_center = function(object) {
 if (object.active) {

Building Graphical User Interface Applications

[118]

 self.label.set_label("in the center");
 self.label.set_alignment(0.5, 0.5);
 }
 }

 this.go_right = function(object) {
 if (object.active) {
 self.label.set_label("going right");
 self.label.set_alignment(1, 0.5);
 }
 }

 var window = new Gtk.Window();
 window.signal.destroy.connect(Gtk.main_quit);

 var topBottomBox = new Gtk.Box();
 topBottomBox.orientation = Gtk.Orientation.VERTICAL;
 topBottomBox.set_homogeneous(false);

 window.add(topBottomBox);

 var label = new Gtk.Label();
 this.label = label;
 label.set_text("in the center");
 topBottomBox.pack_start(label, true, true, 0);

 var buttonBox = new Gtk.Box();
 buttonBox.set_homogeneous(true);

 topBottomBox.pack_start(buttonBox, false, false, 0);

 var leftButton = new Gtk.RadioButton.with_label(null, "Go
left");
 var centerButton = new Gtk.RadioButton.with_label_from_
widget(leftButton, "Go center");
 var rightButton = new Gtk.RadioButton.with_label_from_
widget(leftButton, "Go right");

 leftButton.signal.clicked.connect(this.go_left);
 centerButton.signal.clicked.connect(this.go_center);
 rightButton.signal.clicked.connect(this.go_right);

 leftButton.draw_indicator = centerButton.draw_indicator =
rightButton.draw_indicator = false;

 centerButton.active = true;

 leftButton.xalign = 0.5;
 centerButton.xalign = 0.5;
 rightButton.xalign = 0.5;

Chapter 5

[119]

 buttonBox.pack_start(leftButton, false, true, 0);
 buttonBox.pack_start(centerButton, false, true, 0);
 buttonBox.pack_start(rightButton, false, true, 0);

 window.show_all();
 window.resize(300, 400);
 }
});

Gtk.init(Seed.argv);
var main = new Main();

Gtk.main();

3. Run it; it should have the exact same visual as the version that uses Glade
and GtkBuilder.

What just happened?
We won't discuss the part of the code that is similar to our previous experiment, but rather
look at the manual widgets' declarations more closely.

First we create a GtkWindow and connect the destroy signal so that the application will
terminate gracefully whenever the window is closed.

var window = new Gtk.Window();
 window.signal.destroy.connect(Gtk.main_quit);

In this part, we prepare a box that splits the window into top and bottom parts. In here, we
explicitly say that our box is a vertical and non-homogeneous box. Then we add it into the
window, which is a single-child container widget.

var topBottomBox = new Gtk.Box();
topBottomBox.orientation = Gtk.Orientation.VERTICAL;
topBottomBox.set_homogeneous(false);
 window.add(topBottomBox);

Next, we prepare a label and pack it into the top box. In Glade, we explicitly specify the
number of items to be placed into the box, while in manual GTK+ programming, we just
pack it into the box, one by one without any possibilities to declare in advance the number
of items. Glade requires the number just to prepare the placeholders where we can put
our items.

var label = new Gtk.Label();
this.label = label;
label.set_text("in the center");
topBottomBox.pack_start(label, true, true, 0);

Building Graphical User Interface Applications

[120]

In this code, we pack the label variable with the Fill and Expand properties' values set
to true. 0 there means that we should not add any padding during packing.

After that, we prepare the box for the buttons. We only set the homogeneous property
without touching the orientation as it is already horizontal by default. And here, we just
pack it without the Fill and Expand values set:

var buttonBox = new Gtk.Box();
buttonBox.set_homogeneous(true);
 topBottomBox.pack_start(buttonBox, false, false, 0);

In this part, we create the first button:

 var leftButton = new Gtk.RadioButton.with_label(null, "Go left");

And next, two buttons are added with leftButton as the group leader:

var centerButton = new Gtk.RadioButton.with_label_from_
widget(leftButton, "Go center");
 var rightButton = new Gtk.RadioButton.with_label_from_
widget(leftButton, "Go right");

This part just connects the clicked signals of these buttons:

leftButton.signal.clicked.connect(this.go_left);
centerButton.signal.clicked.connect(this.go_center);
rightButton.signal.clicked.connect(this.go_right);

In here, we set the draw_indicator property to false so that our radio button will look
like a plain button:

 leftButton.draw_indicator = centerButton.draw_indicator =
rightButton.draw_indicator = false;

This part is for activating the middle button as shown in the first state of the mockup:

 centerButton.active = true;

These parts are to set the alignment of the labels inside the buttons. The value of 0.5 means
that all of them are aligned to the center:

leftButton.xalign = 0.5;
centerButton.xalign = 0.5;
 rightButton.xalign = 0.5;

After that, we pack the buttons with only the Fill property to be set to true.

Chapter 5

[121]

The rest of the code looks similar to the GtkBuilder-enabled code. What we can see from this
is that manual GTK+ programming will give you more knowledge on GTK+ API.

buttonBox.pack_start(leftButton, false, true, 0);
buttonBox.pack_start(centerButton, false, true, 0);
 buttonBox.pack_start(rightButton, false, true, 0);

If your .ui file in your project becomes larger and larger, loading the file during startup
may take a while. In this case, you can consider doing the packing manually, especially if
your .ui file is stable enough, in that it has not changed a lot during the development. On
the other hand, if your .ui file keeps changing, using Glade and GtkBuilder may be worth a
consideration because manual GTK+ can sometimes make your head dizzy. This is because,
unfortunately, the API itself is not really intuitive and can be easily misused.

However, it is a very good idea to keep your user interface clean and well structured, so you
can go ahead in either way. Planning in advance about what widgets to use by using the
mockup is one good practice.

GUI programming with Clutter
Clutter is usually used for creating more compelling GUI applications as it provides rich
animation and effective features, and is also used for rendering with OpenGL. Yet, it hides all
OpenGL-specific programming from the developers. Different from GTK+, Clutter is a scene
graph based canvas, which we can put anything into in any place we want. Every object on
the stage is a 2D surface, while the stage itself is a 3D space.

Time for action – implementing the mockup with Clutter
Let's introduce ourselves to Clutter by implementing the mockup and its interaction flow
with Clutter.

1. Create a new JavaScript file called clutter-basic.js in a directory called
clutter-basic-vala.

2. Fill the script with this code:

#!/usr/bin/env seed

Clutter = imports.gi.Clutter;
Pango = imports.gi.Pango;
GObject = imports.gi.GObject;

Main = new GType({
 parent: GObject.Object.type,
 name: "Main",

Building Graphical User Interface Applications

[122]

 init: function(self) {
 var stageColor = new Clutter.Color();
 stageColor.from_string("#b0b0b0");

 var labelColor = new Clutter.Color();
 labelColor.from_string("#000000");

 var buttonColor = new Clutter.Color();
 buttonColor.from_string("#505050");

 var buttonPressedColor = new Clutter.Color();
 buttonPressedColor.from_string("#a0a0a0");

 var buttonTextColor = new Clutter.Color();
 buttonTextColor.from_string("#000000");

 var buttonLeft = new Clutter.Rectangle();
 buttonLeft.width = 100;
 buttonLeft.height = 40;
 buttonLeft.x = 0;
 buttonLeft.y = 360;
 buttonLeft.color = buttonColor;
 buttonLeft.set_border_color(stageColor);
 buttonLeft.set_border_width(1);

 var buttonCenter = new Clutter.Rectangle();
 buttonCenter.width = 100;
 buttonCenter.height = 40;
 buttonCenter.x = 100;
 buttonCenter.y = 360;
 buttonCenter.color = buttonColor;
 buttonCenter.set_border_color(stageColor);
 buttonCenter.set_border_width(1);

 var buttonRight = new Clutter.Rectangle();
 buttonRight.width = 100;
 buttonRight.height = 40;
 buttonRight.x = 200;
 buttonRight.y = 360;
 buttonRight.color = buttonColor;
 buttonRight.set_border_color(stageColor);
 buttonRight.set_border_width(1);

 var s = Clutter.Stage.get_default();
 s.color = stageColor;
 this.s = s;
 s.width = 300;
 s.height = 400;

Chapter 5

[123]

 var fd = Pango.FontDescription.from_string("Sans 16");
 var label = new Clutter.Text();
 label.set_font_description(fd);
 label.set_text("in the center");
 label.color = labelColor;
 label.x = (s.width - label.width)/2;
 label.y = 100;

 var buttonFd = Pango.FontDescription.from_string("Sans 12");

 var buttonLeftText = new Clutter.Text();
 buttonLeftText.set_font_description(buttonFd);
 buttonLeftText.set_text("Go Left");
 buttonLeftText.color = buttonTextColor;
 buttonLeftText.x = (buttonLeft.width - buttonLeftText.width)
/2;
 buttonLeftText.y = (buttonLeft.height - buttonLeftText.height)
/2 + buttonLeft.y;

 var buttonCenterText = new Clutter.Text();
 buttonCenterText.set_font_description(buttonFd);
 buttonCenterText.set_text("Go Center");
 buttonCenterText.color = buttonTextColor;
 buttonCenterText.x = (buttonCenter.width - buttonCenterText.
width) /2 + buttonLeft.width;
 buttonCenterText.y = (buttonCenter.height - buttonCenterText.
height) /2 + buttonCenter.y;

 var buttonRightText = new Clutter.Text();
 buttonRightText.set_font_description(buttonFd);
 buttonRightText.set_text("Go Right");
 buttonRightText.color = buttonTextColor;
 buttonRightText.x = (buttonRight.width - buttonRightText.
width) /2 + buttonLeft.width + buttonCenter.width;
 buttonRightText.y = (buttonRight.height - buttonRightText.
height) /2 + buttonRight.y;

 buttonLeft.set_reactive(true);
 buttonLeft.signal.button_press_event.connect(function(self) {
 buttonLeft.color = buttonPressedColor;
 buttonRight.color = buttonCenter.color = buttonColor;
 label.save_easing_state();
 label.set_text("going left");
 label.set_x(0);
 label.restore_easing_state();

Building Graphical User Interface Applications

[124]

 return true;
 });

 buttonCenter.set_reactive(true);
 buttonCenter.signal.button_press_event.connect(function(self)
{
 buttonCenter.color = buttonPressedColor;
 buttonRight.color = buttonLeft.color = buttonColor;
 label.save_easing_state();
 label.set_text("in the center");
 label.set_x((s.width - label.width)/2);
 label.restore_easing_state();

 return true;
 });

 buttonRight.set_reactive(true);
 buttonRight.signal.button_press_event.connect(function(self) {
 buttonRight.color = buttonPressedColor;
 buttonLeft.color = buttonCenter.color = buttonColor;
 label.save_easing_state();
 label.set_text("going right");
 label.set_x(s.width - label.width);
 label.restore_easing_state();

 return true;
 });

 buttonCenter.color = buttonPressedColor;

 s.add_actor(buttonLeft);
 s.add_actor(buttonRight);
 s.add_actor(buttonCenter);
 s.add_actor(buttonLeftText);
 s.add_actor(buttonRightText);
 s.add_actor(buttonCenterText);

 s.add_actor(label);
 s.show_all();
 }
});

Clutter.init(Seed.argv);
var main = new Main();

Clutter.main();

Chapter 5

[125]

3. If you want Vala instead of JavaScript code, let's create a new Vala project using a
similar setting with non-GUI application settings when creating a project in Anjuta.
Let's create a new project called clutter-basic-vala.

4. Edit the src/Makefile.am file and find this part:

clutter_basic_vala_VALAFLAGS = \
 --pkg gtk+-3.0

Replace the two lines and edit it to look exactly like this:

clutter_basic_vala_VALAFLAGS = \
 --pkg clutter-1.0

5. Edit the configure.ac file and find this line:

PKG_CHECK_MODULES(CLUTTER_BASIC_VALA, [gtk+-3.0])

Replace the whole line with this line:

PKG_CHECK_MODULES(CLUTTER_BASIC_VALA, [clutter-1.0])

6. To avoid repeating codes in our book, let's try to port the JavaScript code to Vala; it
is pretty straightforward and based on our previous exposure to both programming
languages, this would be an easy task.

7. Run the program and it will look like the following screenshot:

Building Graphical User Interface Applications

[126]

What just happened?
We can immediately see that the code size is huge. This is because Clutter is more
low-level than GTK+. It only has very basic widgets and we need to create our own widgets
from scratch. We can also see that the interaction is more fluid and pleasing because of
the implicit animations provided by Clutter.

In the technical aspect, we can see that the objects can be placed anywhere on the stage.
We call the objects in Clutter actors. We can apply a role of animation or effects to them
and move them around the stage.

Compared to JavaScript, coding Clutter with Vala requires a bit of setting up in the
beginning. We need to adjust the build system by modifying the configure.ac and
Makefile.am files.

The adjustment enables the build system to pick up the Clutter library both during
compilation in the Vala and during the building of the generated C-code files. What we did
was we removed the GTK+ library by removing the gtk+-3.0 settings both in Makefile.am
and configure.ac and we replaced it instead with clutter-1.0. This is because we don't
need GTK+ at all in this example. With JavaScript, it is far more easier as we don't need to do
anything and it will work automatically.

Let's see the code more in depth to get a better understanding of how Clutter works.

The main code is pretty simple and similar to the GTK+ counterpart. We have init and the
main loop function.

Clutter.init(Seed.argv);
var main = new Main();
Clutter.main();

First, we define a few colors that are used in the application. We can see that it parses the
hexadecimal RGB color format and then we store that into a variable:

 var stageColor = new Clutter.Color();
 stageColor.from_string("#b0b0b0");

Imagine this as our button widget. We hardcode the size and location to simplify the code,
and then set the color to one of the colors we defined earlier.

In real applications, the size and location should be coming from either a calculation or
pre-defined settings.

 var buttonLeft = new Clutter.Rectangle();
 buttonLeft.width = 100;
 buttonLeft.height = 40;
 buttonLeft.x = 0;

Chapter 5

[127]

 buttonLeft.y = 360;
 buttonLeft.color = buttonColor;
 buttonLeft.set_border_color(stageColor);
 buttonLeft.set_border_width(1);

This part defines a stage to place all the widgets. The stage is comparable to the GtkWindow
widget that we had earlier.

 var s = Clutter.Stage.get_default();
 s.color = stageColor;
 this.s = s;
 s.width = 300;
 s.height = 400;

This part of the code defines a font description. It takes the description from a string and
returns a logical representation of a font, which is then used by the labels:

 var fd = Pango.FontDescription.from_string("Sans 16");

After that, we define the label's text, font, color, and location:

 var label = new Clutter.Text();
 label.set_font_description(fd);
 label.set_text("in the center");
 label.color = labelColor;
 label.x = (s.width - label.width)/2;
 label.y = 100;

And here we define the text of a button. A quite good improvement can be seen here,
that is, we no longer hardcode the position of the text:

var buttonFd = Pango.FontDescription.from_string("Sans 12");
var buttonLeftText = new Clutter.Text();
buttonLeftText.set_font_description(buttonFd);
buttonLeftText.set_text("Go Left");
buttonLeftText.color = buttonTextColor;
buttonLeftText.x = (buttonLeft.width - buttonLeftText.width) /2;
buttonLeftText.y = (buttonLeft.height - buttonLeftText.height) /2 +
buttonLeft.y;

Then, we set the button to be reactive. Without this code, the button would not be able
to react to an event coming into it.

buttonLeft.set_reactive(true);

Building Graphical User Interface Applications

[128]

This defines the handler of the button-press-event event. In the handler, we set the
pressed button and reset the color of other buttons to achieve a pressed feeling. Then, we
ask for an implicit animation by saving the easing state before changing the label's property
and restoring it afterwards. Implicit animations mean that we don't specifically ask for a
certain type of animation in our code. Instead, we rely on Clutter to do animation whenever
we change a property in an actor.

buttonLeft.signal.button_press_event.connect(function(self) {
 buttonLeft.color = buttonPressedColor;
 buttonRight.color = buttonCenter.color = buttonColor;
 label.save_easing_state();
 label.set_text("going left");
 label.set_x(0);
 label.restore_easing_state();

 return true;
});

As soon as we change the value, Clutter will treat that value as the target value, and it
will set up a timer and on each frame of the timer, it increases (or decreases) the current
value of the property towards the target. All of this happens in the background and
happens automatically.

Here in our actor label, we make two changes that may be transformed with animations by
Clutter, which are changing the text and changing the position of the text. Please note here
that we set the text first before changing the position because the position requires the new
width of the text, which is available until we set the text value. If we put this in a reverse
sequence, then the label position will not be correct.

One more thing to observe is that our function must return true whenever we have done
something when reacting to the signal. If, somehow, we skip or refuse to do something about
the signal, we have to return false so another event handler in the queue will take care of
the signal.

 s.add_actor(buttonLeft);
 s.add_actor(buttonRight);
 s.add_actor(buttonCenter);
 s.add_actor(buttonLeftText);
 s.add_actor(buttonRightText);
 s.add_actor(buttonCenterText);
 s.add_actor(label);

In here, we add all the actors into the stage so it can be shown as follows:

 s.show_all();

Ultimately, we show all actors and the stage together.

Chapter 5

[129]

Have a go hero – playing with the animations
There are numerous transformations that we can apply to the buttons or the label. For
example, when the button is pressed we can scale up the button so it will be bigger, and
when we release the button we scale it back down to the original size. And all of this will
be animated. We can add more closures to handle the button-release-event event
to restore the original values of the actors that we want to animate.

Summary
In this chapter, we have learnt about creating GUI applications using both GTK+ and Clutter.
We know that the system requirements for each toolkit are different and we also learnt
about the kind of applications that can be created using these toolkits.

With GTK+, we have learnt that GTK+ provides ready-to-use widgets. We have also learnt
to use some of them, such as Button, Box, Window, and Label. We know how to set the
alignment of the widgets and manage them by setting their properties. We know how
to connect an event to a handler that will react to the event and do something useful.

With Clutter we learnt that it can create an application with pleasing visual animations. But
we also know the limitations. One of them being it only provides a very basic foundation
before we can easily use them to make an application.

We also learnt that the development of a GUI application can be made a lot easier by using
mockup and interaction flow. We know that we can plan in advance by selecting what
widgets to use in our application.

In the next chapter, we will learn to extend GTK+ by creating our own widgets.

6
Creating Widgets

As we have seen from our experience in the previous chapter, GTK+ provides
standard widgets. In some cases, we can survive using GTK+ standard widgets
in our applications. But when our application design and requirements
become more and more complex, implementing our own widgets is inevitable.
Especially so when we do several projects which share similar design and
requirements. Otherwise, we will end up with copying code and this will
become a maintenance nightmare.

Implementing our own widget can also mean customizing widgets, which is adding or
removing functionalities that are not available in the original widgets. In this chapter, we
will learn how to create GTK+ widgets from scratch and also extend them. We will also talk
about how to paint or draw the widget internally using the Cairo canvas API.

Specifically, we will discuss the following topics:

 � Overriding widgets

 � Adding new functionalities to a widget

 � Implementing a custom widget

 � Maintaining widgets in a compiled library

So let's get started.

Creating Widgets

[132]

Before we take off
We are going to use the raw GTK+ programming instead of using Glade in this chapter.
Hence, our Vala projects will use the same settings that we used in Chapter 3, Programming
Languages and Chapter 4, Using GNOME Core Libraries. The project we create here is a Vala
GTK+ (simple) project; disable GtkBuilder support for the user interface and enable the No
license option.

Overriding the widget's standard functions
Usually, we customize how a widget behaves and change how it looks by simply putting
different default values in one of its properties. This is not a problem if we just want to
customize the widget once or twice. We can just instantiate it as an object and customize
the properties. But if we want to reuse the widget, we need to subclass the widget and
customize the subclass further. Subclassing means that we create a new widget class based
on a particular existing widget class.

Time for action – overriding the set_title function
Now let's subclass GtkWindow and imagine that we want to change the behavior of
the set_title function of GtkWindow. The function is used to set the window's title
with the specified string passed in the argument. The new behavior that we want to
introduce here is to always add a special word into the window's title whenever we
set the set_title function.

1. Create a new Vala project called custom-overriding.

2. In the src/custom_overriding.vala file, use the following code:

using GLib;
using Gtk;

public class CustomWindow : Window
{
 public CustomWindow ()
 {
 }

 public new void set_title(string newTitle)
 {
 title = "Custom: " + newTitle;
 }

Chapter 6

[133]

 static int main (string[] args)
 {
 Gtk.init (ref args);
 var window = new CustomWindow ();
 window.set_title ("My window");
 window.show_all ();
 window.destroy.connect(Gtk.main_quit);

 Gtk.main ();

 return 0;
 }
}

3. Our JavaScript equivalent code looks like the following. Put it inside a script file
called custom-overriding.js:

#!/usr/bin/env seed

Gtk = imports.gi.Gtk;
GObject = imports.gi.GObject;

CustomWindow = new GType({
 parent: Gtk.Window.type,
 name: "CustomWindow",
 class_init: function(klass, prototype) {
 prototype.set_title = function(newTitle) {
 this.title = "Custom: " + newTitle;
 }
 },
});

Gtk.init(Seed.argv);
var window = new CustomWindow();
window.set_title("My window");
window.signal.destroy.connect(Gtk.main_quit);
window.show_all();
Gtk.main();

Creating Widgets

[134]

4. Run it and see that the title is automatically prepended with Custom: word as
shown in the following screenshot:

What just happened?
Let's take a look at the Vala code first.

In the following declaration, we tell Vala that we have a new class called CustomWindow and
it is a derivative of Window:

public class CustomWindow : Window

There is no need to explicitly say GtkWindow here because we are using the Gtk and GLib
namespaces with these lines:

using GLib;
using Gtk;

With the previous code, we have the possibility of the full name of Window being either
Gtk.Window or GLib.Window. But because there is no such thing as GLib.Window, we are
now pretty sure that we are subclassing this new CustomWindow class from Gtk.Window.

We then have an empty constructor here; because it is empty, we can omit this if we want:

 public CustomWindow ()
 {
 }

In the following part, we declare a function called set_title. Here, we override the
set_title function with our own function:

 public void set_title(string newTitle)
 {
 title = "Custom: " + newTitle;
 }

Chapter 6

[135]

In order to do this, the function arguments (also called method signatures) must be exactly
the same, otherwise Vala will issue a warning message when we call the function with the
following line of code:

window.set_title ("My window");

This function is called instead of the original Gtk.Window class' set_title function. Inside
the body of our set_title function, we set the value of the title property with the
Custom: string and concatenate it with newTitle, which is being provided as the argument
of the function.

The next time we want to reuse this in our applications, we need to instantiate our
CustomWindow class instead of the normal Window class by just issuing the following code:

var window = new CustomWindow ();

Then our newly defined window object will have all the functionalities coming from
Gtk.Window as well as the new behavior set in the set_title function.

With Seed, we define the new behavior in set_title by using the following
JavaScript code:

class_init: function(klass, prototype) {
 prototype.set_title = function(newTitle) {
 this.title = "Custom: " + newTitle;
 }
}

This is a bit different from what we have learned in Chapter 4, Using GNOME Core Libraries,
where we put a new function directly inside the init function. In the previous code,
we put the function inside prototype, a bit similar to what we have seen in Chapter 3,
Programming Languages, even though it is conceptually different.

Actually, we can directly use it inside the init function. However, to make it more readable
and clearly identify that it is an overridden function, we put this declaration inside the
prototype parameter of class_init. This mimics how GObject works in a C-language
code that we connect to the virtual functions (in short, the functions that can be overridden
in the derived class) in the class_init function.

This is how we do it in JavaScript because the language itself, as we discussed in Chapter
4, Using GNOME Core Libraries, is not a real OOP language. Actually, we can define the
function in both the places at the same time, but only the function defined inside the init
function will be used. This is because all the functions created in class_init are created
when the class is created; and the functions created in init are created when the object
is instantiated. Therefore, the functions that we declare in class_init are overridden in
init when the object is created later on as both have the same name.

Creating Widgets

[136]

Adding new functionalities
Let's now imagine that we want to add new functionalities in our widget, not only new
behaviors of some old functionality. Imagine that we want to implement a window which
has an internal text entry to perform live searches. This widget would display a text entry
immediately after we press any key on the keyboard. The text inside the text entry would
then be used by another entity in our application to perform a live search.

Time for action – making a composite widget
We knew earlier that a window can't add more than one child into it, so how are we going to
add a text entry and the actual content of the window? Let's discuss it:

1. Create a script called custom-composite.js and fill it with the following code:

#!/usr/bin/env seed

Gtk = imports.gi.Gtk;
GObject = imports.gi.GObject;

CustomWindow = new GType({
 parent: Gtk.Window.type,
 name: "CustomWindow",
 signals: [
 {
 name: "search-updated",
 parameters: [GObject.TYPE_STRING]
 }
],

 class_init: function(klass, prototype) {
 prototype.show_search_box = function() {
 this.entry.show();
 this.entry.has_focus = true;
 }
 prototype.hide_search_box = function() {
 this.entry.hide();
 }
 prototype.super_add = prototype.add;
 prototype.add = function(widget) {
 if (widget != this.box) {
 this.box.pack_start(widget, true, true);
 } else {
 this.super_add(widget);

Chapter 6

[137]

 }
 }
 },
 init: function(self) {
 this.box = new Gtk.Box();
 this.box.orientation = Gtk.Orientation.VERTICAL;
 this.entry = new Gtk.Entry();
 this.add(this.box);
 this.box.pack_start(this.entry, false, true);
 this.box.show();

 this.entry.signal.key_release_event.connect(function(obj,
event) {
 self.signal.search_updated.emit(self.entry.text);
 return false;
 });

 this.signal.key_press_event.connect(function(obj, event) {
 if (!self.entry.get_visible()) {
 self.show_search_box();
 }
 return false;
 });
 }
});

Gtk.init(Seed.argv);
var window = new CustomWindow();
var label = new Gtk.Label({label:'This is a text'});
window.add(label);
window.resize(400, 400);

window.signal.connect('search-updated', function(object, value) {
 label.set_text('Searching for keyword: ' + value);
});

label.show();
window.show();

Gtk.main();

Creating Widgets

[138]

2. Alternatively, you can create a Vala project called custom-composite and fill
src/custom_composite.vala with the following code snippet:

using GLib;
using Gtk;

public class CustomWindow : Window
{
 Entry entry;
 Box box;
 public signal void search_updated(string value);

 void show_search_box() {
 entry.show();
 entry.has_focus = true;
 }

 void hide_search_box() {
 entry.hide();
 }

 public override void add(Widget widget) {
 if (widget != box) {
 box.pack_start(widget, true, true);
 } else {
 base.add(widget);
 }
 }

 public CustomWindow ()
 {
 box = new Box(Orientation.VERTICAL, 0);
 entry = new Entry();
 box.pack_start (entry, false, true);
 box.show();

 add(box);

 key_release_event.connect((event) => {
 search_updated(entry.text);
 return false;
 });

 key_press_event.connect((event) => {
 if (!entry.get_visible()) {
 show_search_box();
 }

Chapter 6

[139]

 return false;
 });
 }

 static int main (string[] args)
 {
 Gtk.init (ref args);
 var window = new CustomWindow();
 var label = new Label("This is a text");

 window.add(label);
 window.resize(400,400);
 window.search_updated.connect((value) => {
 label.set_text("Searching for keyword " + value);
 });

 label.show();
 window.show();
 Gtk.main ();

 return 0;
 }
}

3. Run the program and start typing as shown in the following screenshot:

What just happened?
We have just created a composite widget, that is, a widget that is composed from a few
widgets. Our new CustomWindow widget is built using GtkWindow, GtkBox, and GtkEntry
and the only interface exposed to the application is the one that is coming from GtkWindow.
This is because the widget that we want to extend is the GtkWindow class and not the
GtkEntry class or the GtkBox class, so we pick GtkWindow to be our base class.

Creating Widgets

[140]

We also add a new signal that is triggered when the user types something into the text entry.
The signal outputs the content of the text entry, making it useful to provide the data into
something such as a search engine.

Let's see the JavaScript code first:

CustomWindow = new GType({
 parent: Gtk.Window.type,
 name: "CustomWindow",

The preceding class definition tells Seed that our new CustomWindow class is a subclass of
GtkWindow and we name this as CustomWindow.

Next, we declare a new signal of type string called search-updated:

 signals: [{
 name: "search-updated",
 parameters: [GObject.TYPE_STRING]
 }],

We use this signal to tell that our text entry contains a new data that can be used for
further processing.

To make it easier to tell the whole story, let's start with the init function first:

 init: function(self) {
 this.box = new Gtk.Box();
 this.box.orientation = Gtk.Orientation.VERTICAL;
 this.entry = new Gtk.Entry();

Here, we declare two supporting objects inside our window GtkBox and GtkEntry inside
init. At this point, our CustomWindow object is about to be created. We must not put
this inside class_init because the class_init function is called only once when the
class is created. What we want is that these two supporting objects be created when the
CustomWindow object is created, hence we put it inside the init function.

Back to the idea, what we want is to put GtkEntry inside CustomWindow. But because
of the limitation of a window that it can't have more than a single child widget, we use
GtkBox to take over the container's role in our CustomWindow class. We lay the widgets
out vertically, with GtkEntry positioned on the top.

In the following line, we add the box directly into our window:

 this.add(this.box);

Chapter 6

[141]

But what happens if, in our application, we want to add another widget to our window?
Isn't the CustomWindow content now already filled with the box object? That is correct. So
we need to come up with something that would put the added widget inside the box object,
instead of putting it into the CustomWindow class. We will do this in class_init
by redefining the add function. We will see it shortly.

The next step is to pack the GtkEntry class and show the box object:

 this.box.pack_start(this.entry, false, true);
 this.box.show();

We add a key-release-event event handler in the following code snippet. So, whenever
a key is released, we emit the signal stating that some data is available in the text entry:

 this.entry.signal.key_release_event.connect(function(obj, event) {
 self.signal.search_updated.emit(self.entry.text);
 return false;
 });

We trigger the signal by passing the text entry's content. We do this in the key release
event instead of doing it in the key press event for performance reasons. We know that
when we type something, the text is only ready when we finish typing, that is, after the
key is released. If we trigger the signal in the key press event, consider a case when we do
a long press to input multiple duplicate characters into the text entry, the signal will be
continuously emitted and if we use a not-so-effective search engine, the process could
make the application run slower.

Here, we use the key-press-event event to initially show the text entry whenever a
key is pressed in our application:

 this.signal.key_press_event.connect(function(obj, event) {
 if (!self.entry.get_visible()) {
 self.show_search_box();
 }
 return false;
 });

Let's move to class_init, which contains our method declarations:

 class_init: function(klass, prototype) {
 prototype.show_search_box = function() {
 this.entry.show();
 this.entry.has_focus = true;
 }
 prototype.hide_search_box = function() {
 this.entry.hide();
 }

Creating Widgets

[142]

We add new utility functions inside our class_init function, so that it will be already
available when the object is created later on. The previous functions are about displaying
(including grabbing a keyboard focus) and hiding the text entry. This part that follows is
about modifying the add function of GtkWindow:

 prototype.super_add = prototype.add;
 prototype.add = function(widget) {
 if (widget != this.box) {
 this.box.pack_start(widget, true, true);
 } else {
 this.super_add(widget);
 }
 }

As we've seen in the init function, we add a box into our CustomWindow class. In our
previous function we have a special treatment that if the added widget is our own box
object, we simply call the function in the base class, which is basically the original add
function of GtkWindow. We do it by first saving the original function in the super_add
variable. After saving the function, we redefine the add function by packing the added
widget into our box.

Let's see how to utilize our new CustomWindow widget in an application. In the following
code, we just declare a new object from our CustomWindow class:

Gtk.init(Seed.argv);
var window = new CustomWindow();

Then, we create a new label and add it into our window. Note that here the label is packed
into our internal box object:

var label = new Gtk.Label({label:'This is a text'});
window.add(label);

Then we have the following line:

window.resize(400, 400);

You can see in the preceding code line that we did not declare the resize function, but we
get this for free from our base class, which is the GtkWindow class. It also means that this is
not necessarily declared inside GtkWindow, but it can be declared in the GtkWindow class'
parent class, or even in the parent class of GtkWindow class' parent, and so on.

This part of the code shows how to use our new signal:

window.signal.connect('search-updated', function(object, value) {
 label.set_text('Searching for keyword: ' + value);
});

Chapter 6

[143]

Whenever our signal is emitted, we display the content of the text entry inside the label. In
real-world applications, we would provide the value to a search engine, which can either
search the document for the word or search from some data in a database.

Next, let's dissect the Vala code. Here, we simply say that our CustomWindow class is
subclassed from the Window class:

public class CustomWindow : Window

Now, we declare the entry and box widgets; note that we have not done anything
with these:

 Entry entry;
 Box box;

Then, we declare the new signal. Remember that we use an underscore instead of a dash
as a word separator for signals in Vala:

 public signal void search_updated(string value);

We define the add function here and pack the widget if the widget is not our box:

 public override void add(Widget widget) {
 if (widget != box) {
 box.pack_start(widget, true, true);
 } else {
 base.add(widget);
 }
 }

And if it is, we use the original GtkWindow class' add function. Here, we simply use
base.add() and are not doing any magic trick like we did with the JavaScript code.

We use the override keyword to indicate that this function
overrides the original add function from the parent class.
Without this keyword, the function is considered as a totally new
function and not related to the parent class' add function.

The rest of the code is quite straightforward and similar to what we have in the JavaScript
code, which was covered earlier.

Creating Widgets

[144]

Maintaining compatibility
If we look closely at our CustomWindow class, we actually break a compatibility with
GtkWindow. GtkWindow can only take a single child widget, but our CustomWindow class
can take more than one widget because they will be packed into our internal box. If we want
to maintain compatibility with GtkWindow, then we must handle this issue by rejecting the
subsequent add requests whenever our CustomWindow class already has a child inside.

We also forgot to redefine the remove function, so whenever we want to remove the child
widget, we will always fail because the child widget is stored inside our internal box object,
and not inside the CustomWindow class. The GtkWindow class' remove function will reject
this, because the parent of the child (which is our internal box) is not the same anymore
(which is CustomWindow).

We can fix this. For the first problem, we can check the number of children in our internal
box object. If it is more than two (the GtkEntry class and the child itself) after we add a
new widget, reject the request. For the second problem, we can just redefine the remove
function and remove the child widget from our internal box object.

We can use this.box.get_children().length to get
the number of children inside the internal box object.

Have a go hero – hiding the entry after use
We have prepared the hide_search_box function but we have not used it anywhere. Here
is an idea: how about hiding the search box when we press the Esc key?

We can check the Esc key by checking the value of event.key.
keyval in the key-press-event handler.

Implementing a GTK+ custom widget
The next step is to implement a custom widget, which is not extending from a currently
existing widget, but rather creates a widget from scratch. We will need to do this if we really
can't find any similar widgets from GTK+ standard widgets, which can do what we require
from the widget that we want to implement.

We can only do this with Vala; unfortunately, as the version of Seed used during the
writing of this book can't handle the overriding of a function properly when called from
within a class.

Chapter 6

[145]

Our example does not really reflect the real life situation just discussed because you can
easily search a widget which can be readily used, instead of implementing it from scratch.
However, the example is provided to simply show the effort involved and how to do it.

Imagine that we need a widget which fulfills the following requirements:

 � The widget should be be able to draw a decoration, such as a rectangle, inside
its area

 � When we click the widget with a mouse, the color changes, indicating that it is
being pressed

 � When we release the mouse, the color goes back to the normal state's color

 � When we click the widget with a mouse, there would be a signal telling that the
widget is activated, and when we release the mouse, another signal would be
triggered telling that it is now deactivated

Time for action – implementing the custom widget
Ok, let's do an implementation according to our previous design:

1. Create a new Vala project called custom-new; edit src/custom_new.vala and
fill it with the following code:

using GLib;
using Gtk;

public class CustomWidget : DrawingArea
{
 StateFlags state;
 const int MARGIN = 20;
 public signal void activated();
 public signal void deactivated();

 void update_state (int newState)
 {
 switch (newState) {
 case 1: state = StateFlags.SELECTED;
 break;
 case 0:
 default:
 state = StateFlags.NORMAL;
 break;
 }

Creating Widgets

[146]

 queue_draw ();
 }

 public override bool draw(Cairo.Context cr) {
 StyleContext style = get_style_context ();
 style.set_state (state);

 int w = get_allocated_width ();
 int h = get_allocated_height ();

 Gtk.render_background (style, cr, 0, 0, w, h);

 cr.rectangle (MARGIN, MARGIN,
 w - (MARGIN * 2),
 h - (MARGIN * 2));
 cr.stroke ();
 return true;
 }

 public CustomWidget()
 {
 update_state (0);
 add_events (Gdk.EventMask.BUTTON_PRESS_MASK
 | Gdk.EventMask.BUTTON_RELEASE_MASK);

 button_press_event.connect((e) => {
 update_state (1);
 activated();
 return true;
 });

 button_release_event.connect((e) => {
 update_state (0);
 deactivated();
 return true;
 });
 }

 static int main (string[] args)
 {
 Gtk.init (ref args);
 var window = new Window();
 var widget = new CustomWidget();

 window.add (widget);
 window.show_all ();

Chapter 6

[147]

 Gtk.main ();

 return 0;
 }
}

2. Run the program and try testing it with the requirements that we set earlier.

What just happened?
From the code, we can see that it is quite simple to implement our own widget from scratch.
Let's dig it up more.

public class CustomWidget : DrawingArea

Our class declaration shows that we are using GtkDrawingArea as our base class. The
GtkDrawingArea class is a blank widget, doing nothing and showing nothing. The feature
of this widget is that we can draw something on top of it. In GTK+ terminology, we call this
widget as drawable. We choose GtkDrawingArea because it fits with our requirements
and it is the usual widget that developers use to implement a new widget from scratch.

 StateFlags state;

The following is a variable which will hold the state of the widget, whether it is pressed
or not:

 const int MARGIN = 20;

This is a constant called MARGIN which holds a value of 20. It will be used as the margin of
the rectangle from the edge of the widget. Writing the name of a constant with all uppercase
letters is the convention used in the whole GNOME project, so it's good to always follow this
convention when we do GNOME application development.

Creating Widgets

[148]

These are the two signals that we provide in our widget:

public signal void activated();
 public signal void deactivated();

This is a utility function which saves the state of the widget and then calls queue_draw:

 void update_state (int newState)
 {
 switch (newState) {
 case 1: state = StateFlags.SELECTED;
 break;
 case 0:
 default:
 state = StateFlags.NORMAL;
 break;
 }
 queue_draw ();
 }

The state variable basically holds our own interpretation of the state and maps it to the
condition of the widget. From the requirements, we want the color to change when the
widget is clicked upon or the mouse is released from it. Here, we map the color with the
state. Whenever nothing is pressed (or when the mouse is released), we set the state to be
in the NORMAL state. Conversely, when the mouse is pressed, we set the state to be in the
SELECTED state. These two states are part of an enumeration of many possible states, such
as NORMAL, SELECTED, ACTIVE, INSENSITIVE, and so on.

We can learn more about the different possible states by looking
for GtkStateFlags in DevHelp.

We have the freedom to map these states, but we should apply common sense when doing
this. It means that when the widget is pressed, we would think that the widget is now either
active or selected or focused instead of being insensitive or disabled. Then we find the
closest meaning of this hypothetical state with the previous flags. Hence, in our widget, for
the pressed state, we map it with SELECTED and when it is not pressed, we map it with the
NORMAL state.

At the end of the function, we call queue_draw to make the widget refresh the drawings of
the widget. What it basically does is ask GTK+ to call our draw function as soon as possible.

Chapter 6

[149]

The following is our draw function, which is responsible for the visual appearance of
our widget:

 public override bool draw(Cairo.Context cr) {

We can draw anything on the top of our widget in this function. What we get from the
system passed in the argument is the Cairo Context object. Cairo is the vector-based
canvas system used by GTK+ for drawing the widgets. Context is a handle object created
by GTK+ with which we can control what to draw, where to draw, and so on. This is similar
to the canvas in HTML5.

From the requirements, we must fill the widget with a color depending on the state. So what
is the color that we should use? We don't need (and we must not do it!) to declare a color in
our widget directly. Instead, we should rely on the GTK+ theming system.

The first thing we do in this function is to get a style context:

 StyleContext style = get_style_context ();
 style.set_state (state);

The context controls, among other things, the color or pattern that is used in certain states.
This is the state that we set in the update function. Then we set the context with the
state information. And after doing this, the style context would automatically switch
to the specified state.

We call the render_background function, which will fill the color or pattern into our
widget in the specified area:

 int w = get_allocated_width ();
 int h = get_allocated_height ();
 Gtk.render_background (style, cr, 0, 0, w, h);

In this case, we fill the whole area with our color or pattern, starting from the 0,0
coordinates along with the full width and full height of the allocated size of the widget. So
we expect that the color or pattern will fill the widget entirely. The actual color or pattern
used is specified in the GTK+ theme. If the theme says that the color for the NORMAL state is
blue, GTK+ will use blue color to fill the widget, and so on.

After drawing a background according to the requirements, we should draw a foreground
with a rectangle. Here, we simply draw a rectangle with the size of the widget reduced
almost to the value of MARGIN which is 20 pixels. Here, we expect that the rectangle is
drawn within the widget area:

 cr.rectangle (MARGIN, MARGIN,
 w - (MARGIN * 2),
 h - (MARGIN * 2));

Creating Widgets

[150]

In Cairo, we can give many commands, but nothing will be rendered before we really commit
them. For drawing stroke commands such as the preceding rectangle command, we use
the stroke function to commit the drawing to the canvas.

 cr.stroke ();

After this, the rectangle is really drawn to the widget.

We return a true value from the function, indicating that there should be no more
processing needed from other parts of the GTK+ system.

 return true;

So, what would trigger the draw function to be called? Many of them, including
queue_draw that we discussed earlier. Another possibility is when we resize the window
which hosts the widget, or when some other window is obscuring part of the widget, and
so on. Concretely, anything that makes GTK+ think that the widget must be redrawn, will
trigger the draw function. Because the draw function may be called repeatedly all the time,
we must carefully design the content of this function to be as minimal as possible. In order
to get a pleasing visual appearance of the widget, we should avoid heavy computations or
call functions, which process slowly, in the draw function. For example, if our widget shows
an animation, in order to get a smooth and fluid animation, we must have a frame rate
of 60 frames per second (fps). This means that we would expect the draw function to be
called 60 times a second. This also means that the draw function must be executed within
16.67 milliseconds. If we can't achieve this, the animation would stutter, and the whole user
experience could be jeopardized.

Now let's see the constructor:

 public CustomWidget()
 {
 update_state (0);

Here, we initialize the state variable to 0, meaning that the widget is expected to be drawn
with the NORMAL state because no mouse press would occur initially.

The following code is essential to be called inside the constructor. This asks the GTK+ system
to pass the button press and release events to the widget whenever they occur:

 add_events (Gdk.EventMask.BUTTON_PRESS_MASK
 | Gdk.EventMask.BUTTON_RELEASE_MASK);

Chapter 6

[151]

If we don't do this, the widget will not know whether it is pressed or not, hence the following
two event handlers would not be called at all:

 button_press_event.connect((e) => {
 update_state (1);
 activated();
 return true;
 });

 button_release_event.connect((e) => {
 update_state (0);
 deactivated();
 return true;
 });

In these event handlers, we return true to indicate that the processing is final and we don't
want GTK+ to pass the event to other widgets that are possibly in the event pipeline.

We should now notice in our example that the major differences between creating a widget
from scratch and subclassing an existing widget in our previous example is in the draw
function and the event subscription in the constructor. Actually, we could also subclass an
existing widget and also implement our own drawing functions. In some particular cases, we
could even mix our own drawing with the original drawing function by calling base.draw()
in our draw function.

Maintaining widgets in a library
When we have quite a few custom widgets that are used in many projects, it is important to
make a library out of them so that we don't copy the source code around and then lose track
of whether we have modified one of them or not. By collecting them into a library, we only
have a single source code and a single library that we can use for those projects.

In Chapter 3, Programming Languages, we talked about modularization of the JavaScript
code, which is conceptually the same as the preceding principle. With Vala, the process
needs more efforts; but at the end of the day, we can reap the benefits of collecting our
widgets in a library.

Creating Widgets

[152]

Time for action – creating a library
Let's concentrate on how we should do it in Vala. We will create two projects, one as the
example library and the other as the user of that library, using the following steps:

1. First, let's create a Vala project called custom-library.

2. In src/custom_library.vala, we fill the code from the custom_new.vala file
from the custom-new project. We can just copy and paste the code and make some
slight adjustments as follows:

1. Wrap the class declaration with a namespace declaration, so that our code
will look like the following:

namespace CustomWidget {
public class CustomWidget : DrawingArea

2. Don't forget to put the closing curly bracket at the end of the code.

3. Remove the static main function from the class.

4. Using the Files dock, replace the src/Makefile.am file's whole code with
the following code:

AM_CPPFLAGS = \
 -DPACKAGE_LOCALE_DIR=\""$(localedir)"\" \
 -DPACKAGE_SRC_DIR=\""$(srcdir)"\" \
 -DPACKAGE_DATA_DIR=\""$(pkgdatadir)"\" \
 $(CUSTOM_LIBRARY_CFLAGS)

AM_CFLAGS =\
 -Wall\
 -g

lib_LTLIBRARIES = libcustomwidget.la

libcustomwidget_la_SOURCES = \
 custom_library.vala config.vapi

libcustomwidget_la_VALAFLAGS = \
 --pkg gtk+-3.0 --library=libcustomwidget -X -fPIC -X
-shared -H custom_widget.h

libcustomwidget_la_LDFLAGS = \
 -Wl,--export-dynamic

Chapter 6

[153]

3. Build the project by pressing the Shift + F7 key combination. Make sure there are no
errors and you should find custom_widget.h and libcustomwidget.vapi in
the src directory, and a set of library files in the .libs directory. This means that
the library is now ready to be used.

4. Create another project called custom-library-client as an example on how
to use the library we created previously. Fill the src/custom_library_client.
vala file with the following code:

using GLib;
using Gtk;
using CustomWidget;

public class Main : Object
{
 public Main ()
 {
 Window window = new Window();
 var w = new CustomWidget.CustomWidget();
 window.set_title ("Hello custom widget");

 window.add(w);
 window.show_all();
 window.destroy.connect(on_destroy);
 }

 public void on_destroy (Widget window)
 {
 Gtk.main_quit();
 }

 static int main (string[] args)
 {
 Gtk.init (ref args);
 var app = new Main ();
 Gtk.main ();
 return 0;
 }
}

5. Create a lib/ directory inside our project, and get these files from the
custom-library project: src/custom_widget.h, src/libcustomwidget.
vapi, and all files with a .libs/libcustomwidget.so prefix. Copy the files
into the lib/ directory which was just created.

Creating Widgets

[154]

6. Replace and fill src/Makefile.am with the following:

AM_CPPFLAGS = \
 -DPACKAGE_LOCALE_DIR=\""$(localedir)"\" \
 -DPACKAGE_SRC_DIR=\""$(srcdir)"\" \
 -DPACKAGE_DATA_DIR=\""$(pkgdatadir)"\" \
 $(CUSTOM_LIBRARY_CLIENT_CFLAGS)

AM_CFLAGS =\
 -Wall\
 -g -I../lib/

bin_PROGRAMS = custom_library_client

custom_library_client_SOURCES = \
 custom_library_client.vala config.vapi

custom_library_client_VALAFLAGS = \
 --pkg gtk+-3.0 --pkg libcustomwidget --vapidir ../lib

custom_library_client_LDFLAGS = \
 -Wl,--export-dynamic -lcustomwidget -L../lib

custom_library_client_LDADD = $(CUSTOM_LIBRARY_CLIENT_LIBS)

7. Open the Run menu and choose Program Parameters. In the upcoming dialog,
expand the Environment Variables box.

8. Create a new entry LD_LIBRARY_PATH and fill the value field with the full path of
the lib/ directory, which we have created. For example, in my computer, I have the
custom-library-client project in /home/gnome/src/ custom-library-
client, so I entered /home/gnome/src/ custom-library-client/lib in
the value field.

9. After this, we can run the application. We should see a similar application as
the previous example, but now with the window's title set as shown in the
following screenshot:

Chapter 6

[155]

What just happened?
In the library project, we enclosed the class with the CustomWidget namespace. This
enables us to put this line in the client application:

Using CustomWidget;

In the library, we remove the static main function. This is mandatory since a library
should never have a main function. As we knew earlier that there must be exactly one
main function as the entry point to our application, and in this case, the entry point is
in the custom-library-client project.

Then we make modifications to Makefile.am to tell both Vala and C compilers that we
want to create a library instead of making an application.

The following line tells that we want to create a library with the name of
libcustomwidget.la:

lib_LTLIBRARIES = libcustomwidget.la

In practice, this will produce libcustomwidget.la and a set of libcustomwidget.so
library files.

Then, the following line tells that our libcustomwidget library is built from the
following files:

libcustomwidget_la_SOURCES = \
 custom_library.vala config.vapi

The following line of code tells us that when compiling the Vala code into a C-language
source code and finally the Binary executable file, we want to make a library with the
mentioned name, and pass -fPIC -shared into the C compiler (-X is the option to pass
any flag stated after -X to the C compiler).

libcustomwidget_la_VALAFLAGS = \
 --pkg gtk+-3.0 --library=libcustomwidget -X -fPIC -X -shared -H
custom_widget.h

The preceding two flags are the most important flags when creating a library, which
enables the library to be shared and to be loaded into any location in the memory (PIC itself
stands for Position-independent Code). At last, we tell the compiler that we have generated
a C header file called custom_widget.h. This file is needed by the C compiler in the
client project.

Creating Widgets

[156]

We then build the project instead of running it because we don't have the main function
in this project. The resulting files must be copied either system-wide in /usr/include
(for custom_widget.h), /usr/lib (for the libcustomwidget.so.* files), and /usr/
share/vala/vapi (for the libcustomwidget.vapi file) or simply copy all of them into
the lib directory in the client project.

Let's move to the client project.

The only interesting part in the client project is in the src/Makefile.am file.

We specify --pkg libcustomwidget as an additional library. We also specify that the
libcustomwidget.vapi would be available in the ../lib directory:

custom_library_client_VALAFLAGS = \
 --pkg gtk+-3.0 --pkg libcustomwidget --vapidir ../lib

Without this, Vala would not know where to find the .vapi file, except if we install it
system-wide.

This part of the file that follows is for the linker, that it should resolve the symbol using the
libcustomwidget library found in ../lib/libcustomwidget.so*:

custom_library_client_LDFLAGS = \
 -Wl,--export-dynamic -lcustomwidget -L../lib

While running the application, we set LD_LIBRARY_PATH to the full path which contains
the libcustomwidget.so.* files. We don't need to do this when we have the libraries
installed system-wide.

At the end of the day, we should ship the .vapi file, the .h file, and the library files and
install them system-wide so the application can easily find and use them, as it is now very
easy to use the GTK+ libraries. One big advantage of this library approach is that the library is
not only usable by Vala programs, but also can be directly used with C programs or any other
programming languages, provided that the header file and the library can be bound into the
programming languages in question.

Chapter 6

[157]

Summary
In this chapter we have learned how to extend an existing widget, combine existing widgets
into a new widget, as well as create a new widget. We see that it is quite easy to add or
remove functionalities of an existing widget. We also know that it is very important to make
our widget backward compatible with the original interface when we extend a widget.

When we created the custom widget, we discussed a bit about painting with Cairo canvas.
We touched on the GTK+ styling API so that we can rely on the theming system for the
coloring and other paint styles, and avoid hardcoding in our program. We also talked
about the importance of keeping the painting function optimal, so that we can keep
the performance in a good shape.

Finally, creating widgets is essentially also creating a library. We talked about how to do this
with Vala. With this experience so far, we now have more confidence to develop a GNOME
application not only by picking already-made widgets, but also extending and creating new
ones, and integrating them in our application.

In the next chapter, we will talk about multimedia programming with GStreamer. We will
discuss how to utilize the GStreamer framework to play and manipulate media files.

7
Having Fun with Multimedia

Multimedia capabilities are one of the strong points of GNOME. It provides
numerous APIs for developers to easily present multimedia content. This opens
quite a broad spectrum of application ideas that can be implemented; for
example, a simple audio/video conversion tool, a music or video stream player,
CCTV monitoring, or a full-blown education application, to name a few.

In this chapter, we will take a look at the basic usage of GStreamer by presenting audio and
video content with the GStreamer API. Specifically, we will discuss the following:

 � The GStreamer concept

 � Playing audio and video

 � Applying filters to stream

Let's get into more detail now.

Packages required
This chapter uses software, namely the MPEG codecs, which are not freely available in the
default Linux distribution repositories. Fedora users need to add a third-party repository in
order to be able to use the software. Type the following command on the terminal to add
this third-party library:

su -c 'yum localinstall --nogpgcheck http://download1.rpmfusion.org/
free/fedora/rpmfusion-free-release-stable.noarch.rpm http://download1.
rpmfusion.org/nonfree/fedora/rpmfusion-nonfree-release-stable.noarch.rpm'

Having Fun with Multimedia

[160]

The following packages need to be installed:

 � Fedora: gstreamer-plugins-bad, gstreamer-plugins-ugly,
gstreamer-ffmpeg, and gstreamer-tools

 � Ubuntu/Debian: gstreamer0.10-plugins-bad, gstreamer0.10-plugins-
ugly, gstreamer0.10-plugins-ffmpeg, gstreamer0.10-tools, and
libgstreamer-plugins-base0.10-dev

Understanding the basic concept of GStreamer
GStreamer is a media-processing framework used by GNOME to support its multimedia
feature. It has a plugin infrastructure which provides an abstraction layer for opening,
encoding, decoding, and filtering media streams. It means that as long as there is a plugin for
a certain multimedia format, we can open or write files or play media with that format. The
following diagram shows the simplified architecture of the GStreamer API:

As we can see from the diagram, the application can just use the APIs provided by GStreamer
and the implementation of a particular codec or filter can also use the API. The application
does not need to know the details of a codec or a filter and vice versa. Unfortunately, in the
real world, there are still audio and video player applications which implement everything
shown in the diagram by themselves and they differ between each other.

GStreamer has the concept of elements. It is the basic part of the entities involved in a
media stream. There is an element where the stream originates, there is another element
where the stream ends, and also additional elements in between where the stream is
manipulated while being passed through it.

Chapter 7

[161]

We can imagine the data as water. Water flows into a system where the elements are
connected with pipes. They are put into the system by an element such as a water gallon,
a glass, a respiratory system, or even a reactor, which hypothetically produces water from
oxygen and hydrogen molecules.

Inside the system, the water can be manipulated so that the color or smell can be changed
by the filter elements. We can even combine these filters.

After that, the water exits the system through an element such as a bucket, a glass, a spray,
or even a vaporizer.

Each element at least has a door, which is source, sink, or both. Source is where the data
flows from and sink is where the data flows into. These doors are called pads. An element
could have more than one pad, for example, for elements which can produce both audio
and video streams. These pads can be both statically or dynamically created.

We can see the visualization of the elements as shown in the following diagram:

Each element has it own states, which is either of the following:

 � Null: The default state of an element

 � Ready: The state where the stream is ready and waiting to be flown

 � Paused: The state where the stream is open but the flow is frozen

 � Playing: The state where the stream is open and is flowing

The data is passed into the system by using buffers as the pipes pass the water into
the system. The whole system is orchestrated by employing events which carry control
information. The events are sent to the elements so they can react according to the
events delivered.

The events—or in GStreamer terms, messages—are delivered through a bus. The bus is
created by the pipeline. And by tapping into the bus, we can subscribe to the messages
posted there.

Having Fun with Multimedia

[162]

Accessing the GStreamer pipeline with the
command line
GStreamer provides a tool to help us test the pipeline just by using a command line. This is a
very handy tool to quickly see whether the pipeline is correct or not. Let's imagine a concrete
example. Suppose that we want to play a stereo MP3 file. The source element would be the
MP3 file opener, which is filesrc, and we pass the stream to the next element to mad,
which is the MP3 decoder. The decoded stream can be then passed to the audioconvert
element, which converts the raw audio stream into, say, a mono channel.

This newly-modified stream, when passed to audioresample, for example, converts it into
an audio stream of 8 KHz. Then the final stream is passed to alsasink to play the stream
into the sound card.

Time for action – testing the pipeline
We can implement this pipeline by using the command line and by using the GStreamer tool,
gst-launch. Let us see how we can achieve this:

1. Open a terminal and type this command in a single line:

$ gst-launch-0.10 filesrc location=bass.mp3 ! mad ! audioconvert
! audio/x-raw-int,channels=1 ! audioresample ! audio/x-raw-int,
rate=8000 ! alsasink

2. Listen to the audio being played and see the following output printed on the screen:

Setting pipeline to PAUSED ...

Pipeline is PREROLLING ...

Pipeline is PREROLLED ...

Setting pipeline to PLAYING ...

New clock: GstAudioSinkClock

Got EOS from element "pipeline0".

Execution ended after 9311663370 ns.

Setting pipeline to PAUSED ...

Setting pipeline to READY ...

Setting pipeline to NULL ...

Freeing pipeline ...

Chapter 7

[163]

What just happened?
We can visualize the pipeline as shown in the following diagram:

The gst-launch tool establishes the pipeline as specified in the command line. We connect
the elements involved by using an exclamation mark in between them.

First, we start the pipeline with filesrc and specify the property of the location by typing
the filename which we want to play, as shown here:

filesrc location=bass.mp3 !

Then we pass the stream to the mad element, which is a MP3 decoder, by using the
mad library:

mad !

Then we pass it to the audioconvert element:

audioconvert ! audio/x-raw-int,channels=1 !

Here, we specify the source pad to transform the stream into an integer-format audio with
only one channel. Then we pass it to audioresample element:

audioresample ! audio/x-raw-int, rate=8000 !

We specify the source pad to transform the stream into an 8-KHz audio stream.

Finally, we pass the stream to the alsasink element, which outputs the stream into the
soundcard via the Advanced Linux Sound Architecture (ALSA).

alsasink

Finally, we hear the audio being played!

Having Fun with Multimedia

[164]

Time for action – programmatically playing the audio
Knowing how to interact with GStreamer elements using the command-line tool is very
useful to check whether your pipeline design would work or not. Now let's try to do
this programmatically:

1. Create a new script called audio.js and fill it with the following code:

#!/usr/bin/env seed

GLib = imports.gi.GLib;
Gst = imports.gi.Gst;
GObject = imports.gi.GObject;

Main = new GType({
 parent: GObject.Object.type,
 name: "Main",
 init: function() {
 var pipeline = new Gst.Pipeline({ name: 'pipe' });
 var filesrc = Gst.ElementFactory.make ('filesrc',
'source');
 var mad = Gst.ElementFactory.make ('mad',
'decoder');
 var converter = Gst.ElementFactory.make
('audioconvert', 'converter');
 var resampler = Gst.ElementFactory.make
('audioresample', 'resampler');
 var alsasink = Gst.ElementFactory.make
('alsasink', 'sink');

 pipeline.add (filesrc);
 pipeline.add (mad);
 pipeline.add (converter);
 pipeline.add (resampler);
 pipeline.add (alsasink);

 filesrc.location = "bass.mp3";
 filesrc.link(mad);
 mad.link(converter);

 var caps = Gst.caps_from_string("audio/x-raw-
int,channels=1")
 converter.link_filtered(resampler, caps);

 caps = Gst.caps_from_string("audio/x-raw-
int,rate=8000")
 resampler.link_filtered(alsasink, caps);

Chapter 7

[165]

 this.play = function() {
 pipeline.set_state (Gst.State.PLAYING);
 };
 }
});

Gst.init(Seed.argv);
var main = new Main();
main.play();

var context = GLib.main_context_default();
var loop = new GLib.MainLoop.c_new(context);

loop.run();

2. Alternatively, you can also create a Vala project without UI and a license, called
audio.vala. Fill the src/audio.vala file with the following code:

using Gst;
using GLib;

public class Main : GLib.Object
{
 Pipeline pipeline;

 public Main ()
 {
 pipeline = Gst.parse_launch ("filesrc location=bass.mp3 !
mad ! audioconvert ! audio/x-raw-int,channels=1 ! audioresample !
audio/x-raw-int, rate=4000 ! alsasink") as Gst.Pipeline;
 }

 public void play() {
 pipeline.set_state (State.PLAYING);
 }

 static int main (string[] args)
 {
 Gst.init (ref args);
 var app = new Main ();
 app.play();

 new MainLoop().run();

 return 0;
 }
}

Having Fun with Multimedia

[166]

3. Modify configure.ac from the following code:

PKG_CHECK_MODULES(AUDIO, [gtk+-3.0])

to this:

PKG_CHECK_MODULES(AUDIO, [gstreamer-0.10])

4. Modify src/Makefile.am from this:

audio_VALAFLAGS = \
 --pkg gtk+-3.0

to this:

audio_VALAFLAGS = \
 --pkg gstreamer-0.10

5. Don't forget to copy the bass.mp3 file in the same directory where you run
the program.

6. Run it, and you will hear the same audio being played from the previous experiment.

What just happened?
If we take a look at both versions of the code written in Vala and JavaScript, there is quite a
significant difference between them. This is not because of the nature of the language but
rather because both are using alternative ways to interact with GStreamer.

Let's start with the JavaScript code. In the following code, we define all the elements
involved and the pipeline:

var pipeline = new Gst.Pipeline({ name: 'pipe' });
var filesrc = Gst.ElementFactory.make ('filesrc', 'source');
var mad = Gst.ElementFactory.make ('mad', 'decoder');
var converter = Gst.ElementFactory.make ('audioconvert', 'converter');
var resampler = Gst.ElementFactory.make ('audioresample',
'resampler');
var alsasink = Gst.ElementFactory.make ('alsasink', 'sink');

In each element we need to declare the name of the element we want and the name by
which we want to refer to it. After that we keep it in a local variable for easy access.

We then add all the elements to the pipeline:

pipeline.add (filesrc);
pipeline.add (mad);
pipeline.add (converter);
pipeline.add (resampler);
pipeline.add (alsasink);

Chapter 7

[167]

At this point, the elements are just added but not connected to each other. Then, we specify
the location property of the filesrc element as shown here:

filesrc.location = "bass.mp3";
filesrc.link(mad);
mad.link(converter);

This is to tell the element that we want to open the bass.mp3 file. After that we connect the
filesrc element to the mad element. The next step is to continue the wiring by connecting
the mad element to the converter element.

The following code sets the capabilities of the converter element, that is, to process the
integer-format raw audio stream using just a single channel.

var caps = Gst.caps_from_string("audio/x-raw-int,channels=1")
converter.link_filtered(resampler, caps);

With the capabilities in hand, we connect the converter element to resampler with
the link_filtered function instead of using the link function.

This code reuses the caps variable and resets it with the new value:

caps = Gst.caps_from_string("audio/x-raw-int,rate=8000")
resampler.link_filtered(alsasink, caps);

In the preceding code, we set the bit rate to 8000 Hertz. Then we connect the resampler
element with the caps variable to the alsasink element. The alsasink element is used
to command the sound card to play the audio. At this point, we do not need to do more
connection, so that's it.

When we need to play the audio, what we need to do is to trigger the state of the pipeline
with the Gst.State.PLAYING value.

pipeline.set_state (Gst.State.PLAYING);

When this is set, the flow starts and ends up in the sound card, so we can hear the audio.

In the Vala version, we slightly change the code to show that there is more than one way
to achieve the result. But first let's review the build infrastructure.

We modified configure.ac to include the gstreamer-0.10 pkgconfig build flag into
our build infrastructure so that the C compiler recognizes and knows where to pick up the
header files and the required libraries. Here is the code:

PKG_CHECK_MODULES(AUDIO, [gstreamer-0.10])

Then, we modify the Makefile.am file to let the Vala compiler know that we want to use
the Gst namespace, which comes from gstreamer-0.10 package.

audio_VALAFLAGS = \
 --pkg gstreamer-0.10

Having Fun with Multimedia

[168]

Notice that we only have a single line of code to construct the pipeline as shown here:

pipeline = Gst.parse_launch ("filesrc location=bass.mp3 ! mad !
audioconvert ! audio/x-raw-int,channels=1 ! audioresample ! audio/x-
raw-int, rate=4000 ! alsasink") as Gst.Pipeline;

In the preceding code, we just copy and paste the command-line code version into the
Gst.parse_launch function. This function returns Gst.Element, but we need to convert
that into Gst.Pipeline by just appending as Gst.Pipeline to specify the casting at the
end of the line. After that, we start the flow by setting the state.

pipeline.set_state (State.PLAYING);

Notice that in both the versions, we use the GLib main loop so that the system knows about
the events and does not quit immediately. The result is that we need to press Ctrl + C to exit
the program because we don't handle the any event notifying the end of the stream.

Time for action – handling the events
Now let's continue learning about getting events from the stream so that we can react
properly to each event. Imagine that we need to terminate the application after the stream
ends. Unfortunately, we can only do this with Vala as the current version of the GObject
introspection library used by Seed does not contain the necessary functions to establish
our goal. Execute the following steps to handle these events:

1. We can use the audio project and modify the audio.vala file to be like the
following snippet of code:

public class Main : GLib.Object
{
 Pipeline pipeline;
 public signal void eos();

 bool bus_handler (Bus bus, Message message) {
 if (message.type == MessageType.EOS) {
 stdout.printf("End of stream!\n");
 eos();
 }
 return true;
 }

 public Main ()
 {
 pipeline = Gst.parse_launch ("filesrc location=bass.mp3 !
mad ! audioconvert ! audio/x-raw-int,channels=1 ! audioresample !
audio/x-raw-int, rate=4000 ! alsasink") as Gst.Pipeline;
 var bus = pipeline.get_bus ();
 bus.add_watch(bus_handler);

Chapter 7

[169]

 }

 public void play() {
 pipeline.set_state (State.PLAYING);
 }

 static int main (string[] args)
 {
 Gst.init (ref args);
 var loop = new MainLoop();
 var app = new Main ();
 app.play();

 app.eos.connect(() => {
 loop.quit();
 });

 loop.run();

 return 0;
 }
}

2. Build and run it. We will see that the program just terminates after printing the
following output:

End of stream!

What just happened?
What we want is just to react whenever we know that the stream ends. So, we can think of
calling a callback upon receiving the event and need to figure out how to trigger the event.

This part of the code gets a GStreamer bus from the pipeline:

 var bus = pipeline.get_bus ();
 bus.add_watch(bus_handler);

As we discussed earlier, the bus carries all the messages posted into it. So we just need
to tap the bus by using the add_watch function.

After that, we set up the other parts; first, our own signal:

 public signal void eos();

And the second one is a signal handler:

 bool bus_handler (Bus bus, Message message) {
 if (message.type == MessageType.EOS) {
 stdout.printf("End of stream!\n");

Having Fun with Multimedia

[170]

 eos();
 }
 return true;
 }

In the preceding code, we set up our own signal to relay the GStreamer message as an event
to the client of our class. We do it like this because our client may not know anything about
the GStreamer messages, so we simplify the signal by wrapping the GStreamer event with
our own event.

The message handler is quite simple, we check whether the message type is an End Of
Stream (EOS) message or not. If it is, then we just print out a text and emit our own signal.

The following code shows how the client is connected to our signal:

 app.eos.connect(() => {
 loop.quit();
 });

Upon receiving the signal, it just exits the main loop and our objective is achieved.

Playing a video media
Now let's play a video. But first, we need to come up with the stream design. The design
shown in the following diagram should fulfill our needs:

Chapter 7

[171]

From the preceding diagram, we see that the stream from the file is split into two parts by
an Ogg demultiplexer. The results are source streams containing both, audio and video. The
video stream is passed into a theora decoder and a color space converter. This plugin is for
decoding video content from the media. After that it is passed to the ximage sink. This is
for displaying the decoded material to the screen. The audio stream is passed into a vorbis
decoder and then to the audio converter and the resampler element. The vorbis plugin is
to decode the audio content in the media. After that we pass it to the alsa sink, which is for
playing the audio into the soundcard.

Time for action – playing video
We will play the Ap17_spill.ogg file obtained from Wikipedia. It is an OggTheora video
stream with audio. Execute the following steps to play this video:

1. Type the following into the command-line terminal:

gst-launch-0.10 filesrc location="Ap17_spill.ogg" ! oggdemux
name=demux demux. ! queue ! theoradec ! ffmpegcolorspace
! ximagesink demux. ! queue ! vorbisdec ! audioconvert !
audioresample ! alsasink

2. As shown in the following screenshot, a small window will be displayed showing the
video being played along with the audio:

What just happened?
The command-line code strictly follows the design shown earlier. We open the
Ap17_spill.ogg file here:

filesrc location="Ap17_spill.ogg" !

Having Fun with Multimedia

[172]

We create an Ogg demuxer that is connected to filesrc, and we name this demuxer
as demux.

oggdemux name=demux demux. !

Here, we branch the source of the Ogg demuxer:

queue !

The first branch is connected to the theora decoder to get the video stream from the
theora stream.

theoradec !

Then we pass it to ffmpegcolorspace to get the color space suitable for displaying
to the screen:

ffmpegcolorspace !

Finally, we pass the video stream to ximagesink to display it to the screen:

ximagesink demux. !

We put demux with a period to state that this path, which was connected to the element
called demux ends here.

queue !

Here, we put another path in the second branch:

vorbisdec !

In the following line of code, we use the stream to get the audio stream:

audioconvert ! audioresample ! alsasink

This sequence is similar to what we have seen earlier when we play only the audio stream.

It does not matter which stream you want to put first in the command line, whether it is
audio or video, as long as you state the end of the queue with the branch name ending
with a period as demonstrated previously.

Have a go hero – defining the audio first
How about giving it a try? Define the audio first in the pipeline, and after that define the
video using the command line. There should be no difference in the result though, visually
or audibly.

Chapter 7

[173]

Time for action – programmatically playing the video
Now imagine that we want to use our preceding stream flow design and implement it in our
program. The UI of our program can be very simple, just a video box with a Play/Stop button
below it. Let's do this now:

1. Create a new Vala project, called video. This time, let's use the GtkBuilder
functionality.

2. Edit our video.ui file and put a vertical box with two items. For the top item, we
put a DrawingArea widget and use a button at the bottom. Make sure to have the
DrawingArea widget expandable.

3. Modify src/Makefile.am to contain the following:

video_VALAFLAGS = \
 --pkg gtk+-3.0 --pkg gstreamer-0.10 --pkg gstreamer-
interfaces-0.10 --pkg gdk-x11-3.0

4. Modify configure.ac to contain the following line:

PKG_CHECK_MODULES(VIDEO, [gtk+-3.0 gstreamer-0.10 gstreamer-
interfaces-0.10 gstreamer-plugins-base-0.10 gdk-x11-3.0])

5. Include a video.vala file, which is available in the code bundle of this book.
The main part of the functionalities is shown here:

public class Main : GLib.Object
{
 const string UI_FILE = "src/video.ui";

 public Main ()
 {
 Builder builder;

 pipeline = new Pipeline ("video");
 src = ElementFactory.make ("filesrc", "filesrc");
 demux = ElementFactory.make ("oggdemux", "demux");
 queue1 = ElementFactory.make ("queue", "queue1");
 queue2 = ElementFactory.make ("queue", "queue2");
 theoraDecoder = ElementFactory.make ("theoradec", "theora");
 vorbisDecoder = ElementFactory.make ("vorbisdec", "vorbis");
 colorConverter = ElementFactory.make ("ffmpegcolorspace",
"colorspace");
 audioConverter = ElementFactory.make ("audioconvert",
"audio");
 audioResampler = ElementFactory.make ("audioresample",
"resampler");

Having Fun with Multimedia

[174]

 audioSink = ElementFactory.make ("alsasink", "audiosink");
 videoSink = ElementFactory.make ("ximagesink", "videosink");

 pipeline.add_many (src, demux,
 theoraDecoder, vorbisDecoder,
 queue1, queue2,
 colorConverter, audioConverter,
audioResampler,
 audioSink, videoSink);

 src.link (demux);

 demux.link_many(queue1, queue2);
 demux.pad_added.connect((element, src_pad) => {
 var caps = src_pad.get_caps();
 var name = caps.get_structure(0).get_name();

 Pad sink_pad = null;

 if (name == "video/x-theora") {
 ink_pad = queue1.get_pad("sink");
 } else if (name == "audio/x-vorbis") {
 sink_pad = queue2.get_pad("sink");
 } else {
 return;
 }
 if (sink_pad != null && sink_pad.is_linked() == false) {
 src_pad.link (sink_pad);
 }
 });

 queue1.link_many (theoraDecoder, colorConverter, videoSink);
 queue2.link_many (vorbisDecoder, audioConverter,
audioResampler, audioSink);

 try
 {
 builder = new Builder ();
 builder.add_from_file (UI_FILE);
 builder.connect_signals (this);

 videoArea = builder.get_object ("drawingarea1") as Widget;
 videoArea.draw.connect(() => {
 var xoverlay = videoSink as XOverlay;
 var xid = (ulong)Gdk.X11Window.get_xid(videoArea.get_
window());
 overlay.set_xwindow_id(xid);

Chapter 7

[175]

 return false;
 });

 var window = builder.get_object ("window") as Window;
 window.show_all ();
 }
 catch (Error e) {
 stderr.printf ("Could not load UI: %s\n", e.message);
 }

 var bus = pipeline.get_bus ();
 bus.add_signal_watch ();
 bus.message.connect((bus, message) => {

 if (message.type == Gst.MessageType.EOS) {
 stop();
 pipeline.set_state (State.READY);
 reopen();
 }
 });

 playButton = builder.get_object("button1") as Button;
 playButton.clicked.connect(() => {
 if (playing) {
 stop();
 } else {
 play();
 }
 });
 reopen ();
 stop ();

 }

}

6. Make sure that we have the Ap17_spill.ogg file in our project's folder.

Having Fun with Multimedia

[176]

7. Build and run the program. As shown in the following screenshot, we should now be
able to play and stop the video, and also can exit the program:

What just happened?
We have several essential parts in this exercise to which we need to pay attention.

The first one is how to connect the audio and video stream sources to the sink in the next
element in the queue. We can't link the demultiplexer with the queue before the stream
is played. So what we need to do is attach the elements to the pad_added signal in the
demultiplexer. In this case, the audio and video stream pads are created whenever the
stream is played:

demux.pad_added.connect((element, src_pad) => {
 var caps = src_pad.get_caps();
 var name = caps.get_structure(0).get_name();

 pad sink_pad = null;

Chapter 7

[177]

What we then do in the signal handler is to check whether the stream contains a
video stream (by checking against video/x-theora), then we link the pad with
the queue1 element.

 if (name == "video/x-theora") {
 sink_pad = queue1.get_pad("sink");
 }

Conversely, if we get the audio stream, we link the pad with queue2. Otherwise we do
nothing. After this, everything should be connected from the filesrc element until
audiosink and videosink, as shown in the following code snippet:

 else if (name == "audio/x-vorbis") {
 sink_pad = queue2.get_pad("sink");
 } else {
 return;
 }
 if (sink_pad != null && sink_pad.is_linked() == false) {
 src_pad.link (sink_pad);
 }
});

The next important thing is how to display the video frames. The ximagesink sink has its
own window to display the video. To attach the video into our videoArea widget, we need
to hook up the draw signal (or any other signal which tells that the widget is ready, which
means that the window object is valid).

Our handler gets videoSink as XOverlay, which is a special interface to draw the video
frame onto the window we specify. Before doing any drawing, we need to find out the xid
value, which is the handle number of the window that we want to draw into; this is done
using the following code snippet:

videoArea.draw.connect(() => {
 var xoverlay = videoSink as XOverlay;
 var xid = (ulong)Gdk.X11Window.get_xid(videoArea.get_window());
 xoverlay.set_xwindow_id(xid);
 return false;
 });

This window is the videoArea widget's X11 window. We first get the xid value by calling
the Gdk.X11Window.get_xid function against our videoArea widget. After getting the
value of xid, we then tell xoverlay to use this xid value whenever it receives a frame,
and render it inside the videoArea widget.

Having Fun with Multimedia

[178]

Next, our attention turns to how to interact with the stream. When we want to play,
obviously we just set the state of the pipeline to PLAYING. When we want to pause, we
set it to PAUSE. And when we receive the end of stream notification, or when we close the
window, we set it to NULL. After setting it to NULL, we need to again set the location of the
filesrc element to be able to replay the video.

Summary
In this chapter, we have learned how to play both audio and video files using GStreamer. We
also discussed the basics of GStreamer. We know how it works and we know how to wire
the elements of GStreamer in order to play our media. We can prototype the stream flow
design with command line and then implement it afterwards. Finally, we learned how to put
GStreamer together with GTK+ widgets.

Our next stop in Chapter 8, Playing with Data, is to play with data. It does not mean data
only from databases, but data that comes from various sources.

8
Playing with Data

When we talk about data, it is not only about databases, but data from other
sources as well. It is about accessing and manipulating data and presenting
them to the users. Better access to data also means better integration, and
GNOME is good at this. It provides many APIs to get the job done; we will
discuss them in this chapter.

What we want to concentrate on in this chapter is how to get data from multiple sources
and how to present it on the screen. To present data on the screen, we will utilize the
GTK+ TreeView widget. Also, we will introduce Evolution Data Server libraries with which
we can collect data from address books. To keep the chapter simple, we will only use Seed
and Glade.

In this chapter, we will study the following topics in greater detail:

 � Presenting data with TreeView

 � The Evolution Data Server architecture

 � Accessing an address book with Evolution Data Server

So let's fetch the data!

Playing with Data

[180]

Presenting data with TreeView
GTK+ TreeView is a widget used to display both the tree and list types of data. The design
of the widget uses the Model-View-Controller (MVC) design pattern to logically separate the
implementation of the data model, how the data is presented, and how the data is accessed
and manipulated.

The preceding diagram explains the design pattern visually. To explain this diagram, let's
imagine a search engine on the Web. The user, either the end user or a piece of code,
triggers something in the controller. In practice, this step could be the end user pressing
a Search button or a code submitting a search query to the Web, or anything that directly
triggers the controller to do something. The controller then modifies the model according
to the trigger.

In our search engine story, this could be the search engine on the server. It takes the query,
forms them as parameters, and passes them into the model as input. The model then
produces new data. This new data replaces and refreshes the presentation on the view
object. The user can then view this new presentation. Concretely, the presentation
could be the screen that is now displaying the search results.

With this approach, we can have different kinds of presentations while still having the same
implementation of the model and controller. In the web browser, our search engine can
display detailed results, while in a smartphone, the results can only be displayed in a
simple form.

Chapter 8

[181]

In GTK+, the model is defined in the TreeModel interface, which needs to be implemented
by the model provider. However, GTK+ provides two simple, ready-to-use models, so
we don't need to implement the TreeModel interface by ourselves. These models are
ListStore and TreeStore. ListStore is used for a simple list data structure while
TreeStore is used to provide a tree data structure. In the model, we define the columns
of the data that we want to keep.

When we want to access the model, we need help from the Iter object to iterate the
model. The Iter object points to a specific record in the data model. We can move this
object around while we travel through the data.

Time for action – using TreeView
Suppose that we want to make a simple application that can list data on a table. We
also want to remove data from and add new data into it. This can be done by following
these steps:

1. Create a new Glade UI file called treeview.ui.

2. Insert a window into it.

3. In the window, insert a Box control with two items. Make it a vertical box.

4. Place a ScrollableWindow window into the upper part of the UI and make
it expandable.

5. Put another Box, which is capable of containing two items, into the bottom part;
this time the box should be a horizontal box.

6. Add two buttons to each column of the vertical box, and name them btnRemove
and btnAdd with Remove and Add labels respectively.

7. Add a TreeView widget (available in Control and Display) to the
ScrollableWindow window.

8. A dialog will pop up asking for the model; press the ellipsis button and click New.

9. The model dialog is now automatically filled with liststore1.

10. Click on the Create button.

11. On the widget list, select liststore1.

12. In the General tab, rename the selected liststore to store.

13. In the Columns data below it, click on <define a new column>; it will be converted
into a text entry of the type gchararray.

14. Do it one more time so we will have two entries with the type gchararray.

15. Rename the treeview1 object to view.

Playing with Data

[182]

16. Find the treeselection1 object under view and rename it to selection.

17. At the moment, our Glade file should look like the one shown in the following
screenshot:

18. Create a new Seed script file named treeview.js.

19. Fill it with the following code:

#!/usr/bin/env seed

Gtk = imports.gi.Gtk;
GObject = imports.gi.GObject;

Main = new GType({
 parent: GObject.Object.type,
 name: "Main",
 init: function(self) {
 var columns = {
 NAME: 0,
 ADDRESS: 1,
 }

 var ui = new Gtk.Builder()
 this.ui = ui;
 ui.add_from_file("treeview.ui");
 var window = ui.get_object("window1");
 window.resize(300, 400);
 window.show_all();
 window.signal.destroy.connect(Gtk.main_quit);

 this.clients = {};

Chapter 8

[183]

 var view = ui.get_object("view");
 var selection = ui.get_object("selection");
 selection.signal.changed.connect(function(s) {
 var btnRemove = ui.get_object("btnRemove");
 btnRemove.sensitive = true;
 });

 var btnRemove = ui.get_object("btnRemove");
 btnRemove.signal.clicked.connect(function() {
 var selection = view.get_selection();
 if (selection) {
 var selected = {};
 var valid = selection.get_selected(selected);
 if (valid && selected.iter) {
 var model = view.get_model();
 model.remove(selected.iter);
 }
 }
 });

 var btnAdd = ui.get_object("btnAdd");
 btnAdd.signal.clicked.connect(function() {
 var selection = view.get_selection();
 if (selection) {
 var selected = {};
 var valid = selection.get_selected(selected);
 if (valid && selected.iter) {
 var model = view.get_model();
 model.insert(selected.iter, 1);
 }
 }
 });

 column = new Gtk.TreeViewColumn({title:'Name'});
 cell = new Gtk.CellRendererText();
 cell.editable = true;
 column.pack_start(cell);
 column.add_attribute(cell, 'text', columns.NAME);
 cell.signal.edited.connect(function(obj, path, text) {
 var store = view.get_model();
 var path = new Gtk.TreePath.from_string(path);
 var iter = {};
 store.get_iter(iter, path);
 store.set_value(iter.iter, columns.NAME, text);
 });
 view.append_column(column);

 column = new Gtk.TreeViewColumn({title:'Address'});

Playing with Data

[184]

 cell = new Gtk.CellRendererText();
 cell.editable = true;
 column.pack_start(cell);
 column.add_attribute(cell, 'text', columns.ADDRESS);
 cell.signal.edited.connect(function(obj, path, text) {
 var store = view.get_model();
 var path = new Gtk.TreePath.from_string(path);
 var iter = {};
 store.get_iter(iter, path);
 store.set_value(iter.iter, columns.ADDRESS, text);
 });
 view.append_column(column);

 var store = view.get_model();
 var iter = {};
 store.append(iter);

 store.set_value(iter.iter, columns.NAME, "Robert");
 store.set_value(iter.iter, columns.ADDRESS, "North Pole");
 }
});

Gtk.init(Seed.argv);
var main = new Main();
Gtk.main();

20. Run the application; we can edit the data by clicking on the field. We can add new
rows one after another by selecting one row and clicking Add. We can remove a
selected row as well. The output is shown in the following screenshot:

Chapter 8

[185]

What just happened?
In this exercise, we learn about how TreeView works. We have TreeView as the view,
along with two CellRendererText widgets and the associated TreeView columns.
For this model, we use ListStore.

We first define the data that we want to maintain. It is a two-column data, with each column
having the type string. We use constants to refer to the column number. We use NAME for
column number 0 and ADDRESS for column number 1, shown as follows:

 var columns = {
 NAME: 0,
 ADDRESS: 1,
 }

We keep the TreeView reference in the view variable for quick access.

 var view = ui.get_object("view");

We subscribe to the selection's changed signal. Whenever a row is selected, this code will be
called. At the moment, it does not have anything useful, but in a real project this could be
something such as enabling some buttons, showing a notification, and so on. Following is
the selection code:

 var selection = ui.get_object("selection");
 selection.signal.changed.connect(function(s) {
 var btnRemove = ui.get_object("btnRemove");
 btnRemove.sensitive = true;
 });

We attach the removing of a record to the Remove button's clicked signal in this part of
the code:

 var btnRemove = ui.get_object("btnRemove");
 btnRemove.signal.clicked.connect(function() {

First, we get the current selection object by executing this code:

 var selection = view.get_selection();
 if (selection) {
 var selected = {};
 var valid = selection.get_selected(selected);

If the selection object is valid, we get the selected row object. If there is a record,
the iter object inside the selected object will be obtained.

Playing with Data

[186]

When we get the iter object, we can remove the record with this code snippet:

 var model = view.get_model();
 model.remove(selected.iter);

Then, we do the same for the Add button. But now, instead of removing a record, we insert
a new record:

 var btnAdd = ui.get_object("btnAdd");
 btnAdd.signal.clicked.connect(function() {
 var selection = view.get_selection();
 if (selection) {
 var selected = {};
 var valid = selection.get_selected(selected);
 if (valid && selected.iter) {
 var model = view.get_model();
 model.insert(selected.iter, 1);
 }
 }
 });

Then we set up the columns. Each column is represented with a TreeViewColumn widget.
Each TreeViewColumn is attached with a CellRenderer class. Because our data is a plain
string, the renderer we use is CellRendererText.

 column = new Gtk.TreeViewColumn({title:'Name'});
 cell = new Gtk.CellRendererText();

Then, we make the cell editable so we can edit the data, after which we pack it into
the column.

 cell.editable = true;
 column.pack_start(cell);

We associate the column, cell, and data in our ListStore model with the add_attribute
function. The following code shows that we will modify the text property of the cell
object with the data obtained from column number 0 (which is the value of columns.
NAME). After everything is set, we append the column into the view variable:

 column.add_attribute(cell, 'text', columns.NAME);
 view.append_column(column);

Remember in Anjuta we created two columns in the liststore1 widget so it contains two
gchararray items? This is to indicate that both the columns are of the type gchararray
(which is another name for the string). The first column is for holding the column.NAME
values and the second one for the column.ADDRESS values.

Chapter 8

[187]

Then we connect the edited signal of the cell. What we do in the handler is simply get the
new edited text and put it back into our model.

 cell.signal.edited.connect(function(obj, path, text) {
 var store = view.get_model();

We first get the path that is shown in the argument by the path variable. We get a path
representation that can be interpreted by ListStore.

 var path = new Gtk.TreePath.from_string(path);
 var iter = {};

In order to set the data, we need to get the iter object of the currently edited object. We
use the path variable and convert it into an iter object. After we get the iter object, we
set the model with the set_value function. In set_value, we also need to specify the
columns that we want to edit.

 store.get_iter(iter, path);
 store.set_value(iter.iter, columns.NAME, text);

We add another column for the address; the code for this is the same as the one for the
name column.

We add initial data to the model. We add just one line. To add the data, we first need
to get the model.

 var store = view.get_model();

Then, we append the iter object into the model.

 var iter = {};
 store.append(iter);

After this, we put the values using the iter object:

 store.set_value(iter.iter, columns.NAME, "Robert");
 store.set_value(iter.iter, columns.ADDRESS, "North Pole");

The process of getting and manipulating data seems straightforward. First, we get the model,
then the Iter object, and then get new values from or add new ones into the model by
specifying the column we want to interact with.

Next, instead of using fake data, we use live data by utilizing Evolution Data Server.

Playing with Data

[188]

The Evolution Data Server (EDS) architecture
EDS abstracts the access and manipulation of an address book, a calendar, and a task. It has
a plugin architecture that enables developers to write plugins to access a particular address
book, calendar, or task service. An EDS user uses the abstracted API and does not need to
know about the details of the service in question. With this approach, GNOME theoretically
supports any kind of address book, calendar, or task service. The following diagram briefly
shows the structure of the EDS architecture:

EDS provides a daemon that stays in the memory to serve the users of EDS, which are usually
e-mail clients, instant messaging applications, or any applications that need to access data. If
the service requires authentication or authorization, GNOME will pop up a dialog so the end
user can act upon it, for example, fill in the password, grant access, and so on.

In EDS, an address book has a concept of a data source group, which represents the source
of the data, such as a local or remote data source. It is logically represented in the EBook.
SourceGroup object. Each SourceGroup group could have many sources, which represent
the actual data source. It is described in the EBook.Source object.

Time for action – setting up the address book and the calendar
data source

Before you can access the address book and calendar data, we need to set up the data
source first. Now we will discuss how to set up a Google account in GNOME. Make sure you
already have an active Google account before continuing. Let's see how we can do this:

1. Open GNOME System Settings.

2. Open Online Accounts.

3. Click on the + button in the bottom-left corner of the window.

4. Choose the account type we want to use with GNOME. In this exercise, we choose
Google services.

5. We will be presented with the login page of the service.

6. Make sure to successfully log in to the service.

Chapter 8

[189]

7. Grant access to GNOME, notifying it that we want to use this service.

8. After all the online steps have been completed, enable the service we want to use
in our computer. In particular, enable the Contacts service, which is shown in the
following screenshot:

What just happened?
We just connected to our online Google account. It means that the data residing in the
Google account is available for us to consume using the GNOME APIs. That is what we
are going to do next.

Time for action – accessing the address book
Suppose that we want to create a simple address book program. The data could come from
an address book in our local computer or remotely from Google. Follow these steps to do so:

1. Create a new Glade .ui file called address-book.ui.

2. Add a horizontal box containing two items.

3. Place a TreeView widget in the left-hand side of the box. Rename it to
bookView. When asked for the model, create a new ListStore model
and rename it to books.

4. Rename the TreeSelection object, which is created automatically for the
TreeView widget, to selection.

Playing with Data

[190]

5. Put a ScrollableWindow window on the right-hand side of the box.

6. Then, put another TreeView widget inside ScrollableWindow. Create another
ListStore model for it and rename it to contacts. Rename TreeView
to contactView.

7. Edit the ListStore model named books. Add two columns inside this model, both
with the type gchararray.

8. Edit the ListStore model named contact. Again, add two columns inside the
model, both with the type gchararray.

9. Our UI design should look similar to the one shown in the following screenshot:

10. Create a new Seed script called address-book.js.

11. Following is a block of code that plays a very important part in the execution
of the script:

Main = new GType({
 parent: GObject.Object.type,
 name: "Main",
 init: function(self) {

 var bookColumn = {
 UID: 0,
 NAME: 1,
 }

 var contactColumn = {
 NAME: 0,
 EMAIL: 1,
 }

 this.listContacts = function(e) {
 var c = {};

Chapter 8

[191]

 var q = EBook.BookQuery.any_field_contains("");
 var r = e.get_contacts_sync(q.to_string(), c, null);
 if (r && c && c.contacts && c.contacts.length > 0) {
 var store = self.contact_view.get_model();
 c.contacts.forEach(function(contact) {
 var iter = {};
 store.append(iter);

 var name = contact.full_name;
 if (!name) {
 name = contact.nickname;
 }
 store.set_value(iter.iter, contactColumn.NAME, name);
 store.set_value(iter.iter, contactColumn.EMAIL, contact.
email_1);

 });
 }
 }

 this.clients = {};

 var book_view = ui.get_object("bookView");
 var selection = ui.get_object("selection");
 selection.signal.changed.connect(function(s) {
 var selected = {}
 s.get_selected(selected);
 var book = selected.model.get_value(selected.iter,
bookColumn.UID);

 var uid = book.value.get_string();
 if (uid == "") {
 return;
 }
 source = self.sources.peek_source_by_uid(uid);
 var e = null;
 if (typeof(self.clients[uid]) !== "undefined") {
 e = self.clients[uid];
 if (e) {
 self.clients[uid] = e;
 self.listContacts(e);
 }
 } else {
 var e = new EBook.BookClient.c_new(source);
 var r = e.open(false, null, function() {

Playing with Data

[192]

 if (e) {
 self.clients[uid] = e;
 self.listContacts(e);
 }
 });
 }

 });

 var cell = new Gtk.CellRendererText();
 var column = new Gtk.TreeViewColumn({title:'Book'});
 column.pack_start(cell);

 column.add_attribute(cell, 'markup', bookColumn.NAME);
 book_view.append_column(column);

 var contact_view = ui.get_object("contactView");
 this.contact_view = contact_view;
 cell = new Gtk.CellRendererText();
 column = new Gtk.TreeViewColumn({title:'Name'});
 column.pack_start(cell);
 column.add_attribute(cell, 'text', contactColumn.NAME);
 contact_view.append_column(column);

 cell = new Gtk.CellRendererText();
 column = new Gtk.TreeViewColumn({title:'E-mail'});
 column.pack_start(cell);
 column.add_attribute(cell, 'text', contactColumn.EMAIL);
 contact_view.append_column(column);

 var s = {};
 var e = EBook.BookClient.get_sources(s);
 this.sources = s.sources;

 var groups = this.sources.peek_groups();
 if (groups && groups.length > 0) {
 var store = book_view.get_model();
 groups.forEach(function(item) {
 var iter = {};
 store.append(iter);

 store.set_value(iter.iter, bookColumn.UID, "");
 store.set_value(iter.iter, bookColumn.NAME, "<i>"
+item.peek_name()+ "</i>");

 var sources = item.peek_sources();
 if (sources && sources.length > 0) {

Chapter 8

[193]

 sources.forEach(function(source) {
 store.append(iter);
 store.set_value(iter.iter, bookColumn.UID, source.
peek_uid());
 store.set_value(iter.iter, bookColumn.NAME, source.
peek_name());
 });

 }
 });
 }

 }
});

12. Run the code. The application is executed and a window is displayed, as shown in
the following screenshot:

What just happened?
Depending on your settings, the result of our previous exercise might not look the same.
(Also pardon the blurry text; they are real e-mail addresses and I want to obfuscate them for
privacy reasons.) In the preceding screenshot, EDS returns four sources of address books,
namely On This Computer, On LDAP Servers, WebDAV, and Google. Out of these sources,
only two have the real data; these are On This Computer and Google. The names of the
address books listed in the preceding screenshot are Personal and Contacts.

Playing with Data

[194]

When we click on Contacts, a list of all the contacts is displayed on the right-hand side
of the window. Here we only display two columns, the name and e-mail address.

Let's dig into the source code.

First we define the constants for the columns. Here we have two models, one for address
book collection (we call it books) and one for contacts collection (we call it contacts).
Each book has a unique identifier and name. Hence, we use this data for the columns.

 var bookColumn = {
 UID: 0,
 NAME: 1,
 }

For the contact, we only display the name and e-mail address, so we will need only
two columns.

 var contactColumn = {
 NAME: 0,
 EMAIL: 1,
 }

We keep a reference of the bookView variable in the .ui file and save it in the book_view
variable in the following line of code:

 var book_view = ui.get_object("bookView");

We also get the selection object of the bookView variable and put it in the
selection variable.

 var selection = ui.get_object("selection");

The behavior we want for the selection is that when we select a book, we should get the
content of that book. To do that, we need to hook the changed signal to a function, as is
shown here:

 selection.signal.changed.connect(function(s) {

What we need to do in the handler first is get the selected object from the selection.

 var selected = {}
 s.get_selected(selected);

Chapter 8

[195]

In the selected object, we get the Iter object, which is kept in the iter member. We
immediately get the value of column number 0 (which is symbolized with bookColumn.
UID). The value is in the type string, so we use the get_string() function. One specific
behavior we set is that whenever the uid value is empty, it means that the row does not
point to a specific book. It is used by the program to display the address' book source.

 var book = selected.model.get_value(selected.iter, bookColumn.
UID);

 var uid = book.value.get_string();
 if (uid == "") {
 return;
 }

If uid does have some value, we ask EDS to get EBook.Source directly, which is
identified by the uid value. This will return an EBook.Source type that has been
saved in the e variable.

We keep the sources obtained in the client's cache, so we don't need to reopen the source
every time we click on the book. When the cache has the source defined with a uid value,
we just call the listContacts function; otherwise, we need to open it first. After that we
will keep it in the cache. Then we list the contents using listContacts, as shown in the
following code snippet:

 source = self.sources.peek_source_by_uid(uid);
 var e = null;
 if (typeof(self.clients[uid]) !== "undefined") {
 e = self.clients[uid];
 if (e) {
 self.clients[uid] = e;
 self.listContacts(e);
 }
 } else {
 var e = new EBook.BookClient.c_new(source);
 var r = e.open(false, null, function() {

 if (e) {
 self.clients[uid] = e;
 self.listContacts(e);
 }
 });
 }

 });

Playing with Data

[196]

Note that we asynchronously open the source by supplying a callback as the argument of
the function. With this approach, we can give time for the opening of the source without
blocking our application and making it unresponsive to the user. If our source needs to be
authorized and needs our attention, a dialog window will pop up at this point.

Here, we define the columns for bookView. Visually, we display only a single column, which
is the book's title or the book's source group.

 var cell = new Gtk.CellRendererText();
 var column = new Gtk.TreeViewColumn({title:'Book'});
 column.pack_start(cell);

We use a Pango markup as described in the next part of the code. So we don't use the text
property of CellRendererText but instead use markup and map it to column 1 (which is
denoted with bookColumn.NAME).

 column.add_attribute(cell, 'markup', bookColumn.NAME);
 book_view.append_column(column);

In the following code snippet, we define the columns for the contacts. We have two visual
columns, and we'll assign them with the contactColumn.NAME and contactColumn.
EMAIL column names respectively:

 var contact_view = ui.get_object("contactView");
 this.contact_view = contact_view;
 cell = new Gtk.CellRendererText();
 column = new Gtk.TreeViewColumn({title:'Name'});
 column.pack_start(cell);
 column.add_attribute(cell, 'text', contactColumn.NAME);
 contact_view.append_column(column);

 cell = new Gtk.CellRendererText();
 column = new Gtk.TreeViewColumn({title:'E-mail'});
 column.pack_start(cell);
 column.add_attribute(cell, 'text', contactColumn.EMAIL);
 contact_view.append_column(column);

During initialization, we get the address book's sources with the get_sources function.
After that, we find the available groups on the system with the peek_groups function.

 var s = {};
 var e = EBook.BookClient.get_sources(s);
 this.sources = s.sources;

 var groups = this.sources.peek_groups();
 if (groups && groups.length > 0) {
 var store = book_view.get_model();

Chapter 8

[197]

For each group, we add the book ID and the book name into the table, but we won't fill the
uid value because we only want to keep the uid value of the actual address book source.
For the name of the group, we enclose it with a markup of bold and italic style, as shown
in the following snippet of code:

 groups.forEach(function(item) {
 var iter = {};
 store.append(iter);

 store.set_value(iter.iter, bookColumn.UID, "");
 store.set_value(iter.iter, bookColumn.NAME, "<i>" +item.peek_
name()+ "</i>");

Note that we used something that looks like HTML markups in the preceding code snippet. In
fact, they are Pango markups, the text rendering engine used in the GNOME framework that
is similar to HTML, but with comparatively fewer features. The reason we put the markups
here is because we want to style the widget on the presentation layer. Hence, we shouldn't
both touch the data and add the style here, but only style it when it is displayed. However,
the previous approach is not correct because we modify the data before putting it into the
store. If we search inside the data, we may not find the data because it is already cluttered
with markups. The correct implementation would be to style it in the rendering widget. It
means we will no longer be able to use Gtk.CellRendererWidget, but we will rather use
a custom renderer widget that styles the data before displaying it.

We also try to get the actual address book source for each group with the peek_sources
function, and put each source that is available in the table. And now we place uid in column
0 (bookColumn.UID); this is shown in the following code snippet:

 var sources = item.peek_sources();
 if (sources && sources.length > 0) {
 sources.forEach(function(source) {
 store.append(iter);
 store.set_value(iter.iter, bookColumn.UID, source.peek_uid());
 store.set_value(iter.iter, bookColumn.NAME, source.peek_name());
 });

Note that column 0 is not visible in the table because we did not add TreeViewColumn
to it.

What the listContacts function does first is prepare the query to the address book.
EDS provides the EBook.BookQuery object to convey the query to EDS. In the following
code snippet, we'll ask EDS to get all the data by creating the query with the any_field_
contains("") function:

 this.listContacts = function(e) {
 var c = {};

Playing with Data

[198]

 var q = EBook.BookQuery.any_field_contains("");
 var r = e.get_contacts_sync(q.to_string(), c, null);
 if (r && c && c.contacts && c.contacts.length > 0) {

The contacts member of the object that we passed to get_contacts_sync will be
populated with the contacts from the address book. For each contact that we get (it is in the
form of EBook.Contact), we get an interesting property (we want only the full_name,
nickname, and email_1 properties) and put it into the model.

 var store = self.contact_view.get_model();
 c.contacts.forEach(function(contact) {
 var iter = {};
 store.append(iter);

 var name = contact.full_name;
 if (!name) {
 name = contact.nickname;
 }
 store.set_value(iter.iter, contactColumn.NAME, name);
 store.set_value(iter.iter, contactColumn.EMAIL, contact.
email_1);

 });
 }
 }

Have a go hero – saving data to the address book
The previous exercise only displays the contents of the address book. How about making it
more advanced by adding an edit button?

Whenever we get the edited signal to do this, make sure that the new text is saved back in
the EBook.Contact structure. When we can call the e.modify_contact_sync function,
the skeleton could look like this:

modifiedContact.full_name = newName;
// and/or
modifiedContact.email_1 = newEmail;
// then save it with
e.modify_contact_sync(modifiedContact, null);

We also need to refresh the model by rereading the source.

Chapter 8

[199]

Summary
The centerpoint of data programming in GNOME is the TreeView widgets family. The design
of the application should also follow the MVC design pattern of the TreeView widget. It is
important to keep the model up-to-date, so the user always sees the real data instead of the
already obsolete, rendered data. The view is represented primarily by the TreeViewColumn
object and the CellRenderer class. We have many ready-to-use CellRenderer classes
available in GTK+, but if we need a custom one, we could always make a new one by
implementing the interface.

One data source that we examined in this chapter was the EDS. It not only includes the
address book but also a calendar, a task, and an e-mail. One prominent application that
was created for it was the Evolution program.

Next, we will enable our HTML5 application to be integrated with GNOME 3. Let's see how
we will do it in the next chapter.

9
Deploying HTML5 Applications

with GNOME

In a mobile world, there is still a debate about whether to develop HTML5 or
native applications. People who favor HTML5 will develop an application with
HTML5 and then run the application with a UI wrapper written in native code,
while the opposite approach is to write the application completely with native
code. But how about the desktop world? We will try the HTML5 approach in
this chapter, and you can have your own opinion about this debate yourself!

The concept of running HTML5 applications is like running the application in a stripped-down
web browser as a wrapper. The UI wrapper for our HTML5 application will be written in Vala,
using the GTK+ flavor of the famous WebKit layout engine, which is called WebKitGTK+. In
this chapter, we will not only learn how to run our HTML5 applications inside a UI wrapper,
but will also learn to use GNOME platform as the middleware. Specifically, our topics for this
chapter are as follows:

 � Embedding WebKit inside our GTK+ application

 � Introducing JavaScriptCore

 � Interfacing with JavaScriptCore

Let's do this right now!

Deploying HTML5 Applications with GNOME

[202]

Before we start
Most of the discussions in this chapter require a moderate knowledge of HTML5, JSON, and
common client-side JavaScript programming. One particular exercise uses JQuery and JQuery
Mobile to show how a real HTML5 application will be implemented.

Embedding WebKit
What we need to learn first is how to embed a WebKit layout engine inside our GTK+
application. Embedding WebKit means we can use HTML and CSS as our user interface
instead of GTK+ or Clutter.

Time for action – embedding WebKit
With WebKitGTK+, this is a very easy task to do; just follow these steps:

1. Create an empty Vala project without GtkBuilder and no license. Name
it hello-webkit.

2. Modify configure.ac to include WebKitGTK+ into the project. Find the following
line of code in the file:

PKG_CHECK_MODULES(HELLO_WEBKIT, [gtk+-3.0])

3. Remove the previous line and replace it with the following one:

PKG_CHECK_MODULES(HELLO_WEBKIT, [gtk+-3.0 webkitgtk-3.0])

4. Modify Makefile.am inside the src folder to include WebKitGTK into the Vala
compilation pipeline. Find the following lines of code in the file:

hello_webkit_VALAFLAGS = \
 --pkg gtk+-3.0

5. Remove it and replace it completely with the following lines:

hello_webkit_VALAFLAGS = \
 --vapidir . --pkg gtk+-3.0 --pkg webkit-1.0 --pkg
libsoup-2.4

6. Fill the hello_webkit.vala file inside the src folder with the following lines:

using GLib;
using Gtk;
using WebKit;

public class Main : WebView
{

Chapter 9

[203]

 public Main ()
 {
 load_html_string("<h1>Hello</h1>","/");
 }

 static int main (string[] args)
 {
 Gtk.init (ref args);
 var webView = new Main ();
 var window = new Gtk.Window();
 window.add(webView);
 window.show_all ();

 Gtk.main ();

 return 0;
 }
}

7. Copy the accompanying webkit-1.0.vapi file into the src folder. We need to
do this, unfortunately, because the webkit-1.0.vapi file distributed with many
distributions is still using GTK+ Version 2.

8. Run it, you will see a window with the message Hello, as shown in the
following screenshot:

What just happened?
What we need to do first is to include WebKit into our namespace, so we can use all the
functions and classes from it.

using WebKit;

Deploying HTML5 Applications with GNOME

[204]

Our class is derived from the WebView widget. It is an important widget in WebKit, which is
capable of showing a web page. Showing it means not only parsing and displaying the DOM
properly, but that it's capable to run the scripts and handle the styles referred to by the
document. The derivation declaration is put in the class declaration as shown next:

public class Main : WebView

In our constructor, we only load a string and parse it as an HTML document. The string is
Hello, styled with level 1 heading. After the execution of the following line, WebKit will
parse and display the presentation of the HTML5 code inside its body:

 public Main ()
 {
 load_html_string("<h1>Hello</h1>","/");
 }

In our main function, what we need to do is create a window to put our WebView widget
into. After adding the widget, we need to call the show_all() function in order to display
both the window and the widget.

 static int main (string[] args)
 {
 Gtk.init (ref args);
 var webView = new Main ();
 var window = new Gtk.Window();
 window.add(webView);

The window content now only has a WebView widget as its sole displaying widget. At this
point, we no longer use GTK+ to show our UI, but it is all written in HTML5.

Runtime with JavaScriptCore
An HTML5 application is, most of the time, accompanied by client-side scripts that are
written in JavaScript and a set of styling definition written in CSS3. WebKit already provides
the feature of running client-side JavaScript (running the script inside the web page) with a
component called JavaScriptCore, so we don't need to worry about it.

But how about the connection with the GNOME platform? How to make the client-side script
access the GNOME objects? One approach is that we can expose our objects, which are
written in Vala so that they can be used by the client-side JavaScript. This is where we will
utilize JavaScriptCore.

Chapter 9

[205]

We can think of this as a frontend and backend architecture pattern. All of the code of
business process which touch GNOME will reside in the backend. They are all written in
Vala and run by the main process. On the opposite side, the frontend, the code is written in
JavaScript and HTML5, and is run by WebKit internally. The frontend is what the user sees
while the backend is what is going on behind the scene.

Consider the following diagram of our application. The backend part is grouped inside a
grey bordered box and run in the main process. The frontend is outside the box and run and
displayed by WebKit. From the diagram, we can see that the frontend creates an object and
calls a function in the created object. The object we create is not defined in the client side,
but is actually created at the backend. We ask JavaScriptCore to act as a bridge to connect
the object created at the backend to be made accessible by the frontend code.

To do this, we wrap the backend objects with JavaScriptCore class and function definitions.
For each object we want to make available to frontend, we need to create a mapping in the
JavaScriptCore side. In the following diagram, we first map the MyClass object, then the
helloFromVala function, then the intFromVala, and so on:

Time for action – calling the Vala object from the frontend
Now let's try and create a simple client-side JavaScript code and call an object defined at
the backend:

1. Create an empty Vala project, without GtkBuilder and no license. Name
it hello-jscore.

2. Modify configure.ac to include WebKitGTK+ exactly like our previous experiment.

Deploying HTML5 Applications with GNOME

[206]

3. Modify Makefile.am inside the src folder to include WebKitGTK+ and JSCore into
the Vala compilation pipeline. Find the following lines of code in the file:

hello_jscore_VALAFLAGS = \
 --pkg gtk+-3.0

4. Remove it and replace it completely with the following lines:

hello_jscore_VALAFLAGS = \
 --vapidir . --pkg gtk+-3.0 --pkg webkit-1.0 --pkg
libsoup-2.4 --pkg javascriptcore

5. Fill the hello_jscore.vala file inside the src folder with the following lines
of code:

using GLib;
using Gtk;
using WebKit;
using JSCore;

public class Main : WebView
{
 public Main ()
 {
 load_html_string("<h1>Hello</h1>" +
 "<script>alert(HelloJSCore.hello())</
script>","/");

 window_object_cleared.connect ((frame, context) => {
 setup_js_class ((JSCore.GlobalContext) context);
 });
 }

 public static JSCore.Value helloFromVala (Context ctx,
 JSCore.Object function,
 JSCore.Object thisObject,
 JSCore.Value[] arguments,
 out JSCore.Value exception) {

 exception = null;

 var text = new String.with_utf8_c_string ("Hello from
JSCore");

 return new JSCore.Value.string (ctx, text);
 }

 static const JSCore.StaticFunction[] js_funcs = {
 { "hello", helloFromVala, PropertyAttribute.ReadOnly },

Chapter 9

[207]

 { null, null, 0 }
 };

 static const ClassDefinition js_class = {
 0, // version
 ClassAttribute.None, // attribute
 "HelloJSCore", // className
 null, // parentClass

 null, // static values
 js_funcs, // static functions

 null, // initialize
 null, // finalize

 null, // hasProperty
 null, // getProperty
 null, // setProperty
 null, // deleteProperty

 null, // getPropertyNames
 null, // callAsFunction
 null, // callAsConstructor
 null, // hasInstance
 null // convertToType
 };

 void setup_js_class (GlobalContext context) {
 var theClass = new Class (js_class);
 var theObject = new JSCore.Object (context, theClass,
context);
 var theGlobal = context.get_global_object ();
 var id = new String.with_utf8_c_string ("HelloJSCore");
 theGlobal.set_property (context, id, theObject,
PropertyAttribute.None, null);
 }

 static int main (string[] args)
 {
 Gtk.init (ref args);
 var webView = new Main ();
 var window = new Gtk.Window();
 window.add(webView);
 window.show_all ();

 Gtk.main ();

 return 0;
 }
}

Deploying HTML5 Applications with GNOME

[208]

6. Copy the accompanied webkit-1.0.vapi and javascriptcore.vapi files
into the src folder. The javascriptcore.vapi file is needed because some
distributions do not have this .vapi file in their repositories.

7. Run the application. The following output will be displayed:

What just happened?
The first thing we do is include the WebKit and JavaScriptCore namespaces. Note, in the
following code snippet, that the JavaScriptCore namespace is abbreviated as JSCore:

using WebKit;
using JSCore;

In the Main function, we load HTML content into the WebView widget. We display a level 1
heading and then call the alert function. The alert function displays a string returned by
the hello function inside the HelloJSCore class, as shown in the following code:

 public Main ()
 {
 load_html_string("<h1>Hello</h1>" +
 "<script>alert(HelloJSCore.hello())</script>","/");

In the preceding code snippet, we can see that the client-side JavaScript code is as follows:

alert(HelloJSCore.hello())

And we can also see that we call the hello function from the HelloJSCore class as a
static function. It means that we don't instantiate the HelloJSCore object before
calling the hello function.

In WebView, we initialize the class defined in the Vala class when we get the
window_object_cleared signal. This signal is emitted whenever a page is cleared. The
initialization is done in setup_js_class and this is also where we pass the JSCore global
context into. The global context is where JSCore keeps the global variables and functions. It
is accessible by every code.

Chapter 9

[209]

 window_object_cleared.connect ((frame, context) => {
 setup_js_class ((JSCore.GlobalContext)
context);
 });

The following snippet of code contains the function, which we want to expose to the client-
side JavaScript. The function just returns a Hello from JSCore string message:

 public static JSCore.Value helloFromVala (Context ctx,
 JSCore.Object function,
 JSCore.Object thisObject,
 JSCore.Value[] arguments,
 out JSCore.Value exception) {

 exception = null;

 var text = new String.with_utf8_c_string ("Hello from JSCore");

 return new JSCore.Value.string (ctx, text);
 }

Then we need to put a boilerplate code that is needed to expose the function and other
members of the class. The first part of the code is the static function index. This is the
mapping between the exposed function and the name of the function defined in the
wrapper. In the following example, we map the hello function, which can be used in the
client side, with the helloFromVala function defined in the code. The index is then ended
with null to mark the end of the array:

 static const JSCore.StaticFunction[] js_funcs = {
 { "hello", helloFromVala, PropertyAttribute.ReadOnly },
 { null, null, 0 }
 };

The next part of the code is the class definition. It is about the structure that we have to fill,
so that JSCore would know about the class. All of the fields are filled with null, except for
those we want to make use of. In this example, we use the static function for the hello
function. So we fill the static function field with js_funcs, which we defined in the
preceding code snippet:

 static const ClassDefinition js_class = {
 0, // version
 ClassAttribute.None, // attribute
 "HelloJSCore", // className
 null, // parentClass

 null, // static values
 js_funcs, // static functions

Deploying HTML5 Applications with GNOME

[210]

 null, // initialize
 null, // finalize

 null, // hasProperty
 null, // getProperty
 null, // setProperty
 null, // deleteProperty

 null, // getPropertyNames
 null, // callAsFunction
 null, // callAsConstructor
 null, // hasInstance
 null // convertToType
 };

After that, in the the setup_js_class function, we set up the class to be made available
in the JSCore global context. First, we create JSCore.Class with the class definition
structure we filled previously. Then, we create an object of the class, which is created in
the global context. Last but not least, we assign the object with a string identifier, which is
HelloJSCore. After executing the following code, we will be able to refer HelloJSCore on
the client side:

void setup_js_class (GlobalContext context) {
 var theClass = new Class (js_class);
 var theObject = new JSCore.Object (context, theClass,
context);
 var theGlobal = context.get_global_object ();
 var id = new String.with_utf8_c_string ("HelloJSCore");
 theGlobal.set_property (context, id, theObject,
PropertyAttribute.None, null);
}

The real use case of calling Vala code would be more interesting than just calling a static
function. Let's see how to call a non-static function from an object created in Vala.

Have a go hero – using a separate HTML file
In our previous section, we put the HTML5 code inside our Vala code. Whenever the code
gets lengthier, it will get messier and will be impossible to maintain anymore. How about
putting it outside the Vala code, say, in a dedicated file?

Don't continue to our next section just yet before finishing this task!

Chapter 9

[211]

Time for action – connecting GNOME with client-side JavaScript
Imagine that we want to create a GNOME launcher. We display the available programs in our
system with HTML5 and then will be able to launch them. Let us see how this can be done:

1. Create an empty Vala project, without GtkBuilder and no license. Name it
html5-launcher.

2. Modify configure.ac to include WebKitGTK+ and Gee into the project. Find the
following line in the file:

PKG_CHECK_MODULES(HTML5_LAUNCHER, [gtk+-3.0])

3. Remove it and replace it completely with the following line:

PKG_CHECK_MODULES(HTML5_LAUNCHER, [gtk+-3.0 gee-1.0
webkitgtk-3.0])

4. Modify Makefile.am inside the src folder to include WebKitGKT+, Gio, and
JavaScriptCore into the Vala compilation pipeline. Find the following lines of
code in the file:

html5_launcher_VALAFLAGS = \
 --pkg gtk+-3.0

5. Remove it and replace it completely with the following lines:

html5_launcher_VALAFLAGS = \
 --vapidir . --pkg gee-1.0 --pkg gio-unix-2.0 --pkg gtk+-
3.0 --pkg webkit-1.0 --pkg libsoup-2.4 --pkg javascriptcore

6. Fill the html5_launcher.vala file inside the src folder. For brevity, the
shortened content of this file is shown in the following code just to show the
important parts of the entire code:

public class Main : WebView
{
 public Main ()
 {
 load_uri("file:///%s/index.html".printf(Environment.get_
current_dir()));

 window_object_cleared.connect ((frame, context) => {
 LauncherJSCore.setup_js_class ((JSCore.
GlobalContext) context);
 });
 }
}

// our Vala class
public class Launcher

Deploying HTML5 Applications with GNOME

[212]

{
 IconTheme icon = null;
 int ICON_SIZE = 80;
 public HashMap<string,DesktopAppInfo> applications {
 get;
 private set;
 }

 public void launch(string name) {
 var app = applications.get(name);
 if (app != null) {
 app.launch(null, new AppLaunchContext());
 }
 }

 public Launcher ()
 {
 icon = IconTheme.get_default ();
 applications = new HashMap<string,DesktopAppInfo>();
 var dir = Dir.open("/usr/share/applications");
 if (dir != null) {
 string entry;
 while (true) {
 entry = dir.read_name();
 if (entry == null) {
 break;
 }
 var appInfo = new DesktopAppInfo.from_filename("/usr/
share/applications/" + entry);
 if (appInfo != null) {
 applications.set(entry, appInfo);
 }
 }
 }
 }

}

// Our JSCore wrapper
public class LauncherJSCore
{
 public static JSCore.Object js_constructor (Context ctx,
 JSCore.Object constructor,
 JSCore.Value[] arguments,
 out JSCore.Value exception) {

 exception = null;

Chapter 9

[213]

 var c = new Class (js_class);
 var newObject = new JSCore.Object (ctx, c, null);

 // register function launch
 var functionName = new String.with_utf8_c_string ("launch");
 var newFunction = new JSCore.Object.function_with_callback
(ctx, functionName, js_launch);
 newObject.set_property (ctx, functionName, newFunction, 0,
null);

 // register function getApplications
 functionName = new String.with_utf8_c_string
("getApplications");
 newFunction = new JSCore.Object.function_with_callback
(ctx, functionName, js_getApplications);
 newObject.set_property (ctx, functionName, newFunction, 0,
null);

 Launcher* launcher = new Launcher ();
 newObject.set_private (launcher);
 return newObject;
 }

 public static JSCore.Value js_getApplications(Context ctx,
 JSCore.Object function,
 JSCore.Object thisObject,
 JSCore.Value[] arguments,
 out JSCore.Value exception) {

 exception = null;

 var launcher = thisObject.get_private() as Launcher;
 StringBuilder json = new StringBuilder("[");

 if (launcher.applications != null) {
 foreach (var key in launcher.applications.keys) {
 var entry = launcher.applications.get(key) as
DesktopAppInfo;
 var name = entry.get_display_name();
 if (entry.get_icon() != null) {
 var icon = launcher.getIconPath(entry.get_icon().to_
string());
 json.append(("{desktop: '%s', name: '%s', icon: '%s'},").
printf (key, name, icon));
 } else {
 json.append(("{desktop: '%s', name: '%s'},").printf (key,
name));
 }
 }

Deploying HTML5 Applications with GNOME

[214]

 }
 if (json.str [json.len - 1] == ',') {
 json.erase (json.len - 1, 1); // Remove trailing comma
 }
 json.append("]");

 var text = new String.with_utf8_c_string (json.str);
 var obj = ctx.evaluate_script (text, null, null, 0, null);

 return obj;
 }

 public static JSCore.Value js_launch (Context ctx,
 JSCore.Object function,
 JSCore.Object thisObject,
 JSCore.Value[] arguments,
 out JSCore.Value exception) {

 exception = null;

 var launcher = thisObject.get_private() as Launcher;
 if (arguments.length == 1 && arguments[0].is_string(ctx)) {
 var parameter = arguments[0].to_string_copy (ctx, null);
 char buffer[1024];
 parameter.get_utf8_c_string (buffer, buffer.length - 1);
 launcher.launch((string) buffer);
 }
 return new JSCore.Value.undefined (ctx);
 }

 static const ClassDefinition js_class = {
 0, // version
 ClassAttribute.None, // attribute
 "Launcher", // className
 null, // parentClass

 null, // static values
 null, // static functions

 null, // initialize
 null, // finalize

 null, // hasProperty
 null, // getProperty
 null, // setProperty
 null, // deleteProperty

 null, // getPropertyNames
 null, // callAsFunction

Chapter 9

[215]

 null, // callAsConstructor
 null, // hasInstance
 null // convertToType
 };

 public static void setup_js_class (GlobalContext context) {
 var theClass = new Class (js_class);
 var theConstructor = new JSCore.Object.constructor
(context, theClass, js_constructor);
 var theGlobal = context.get_global_object ();
 var id = new String.with_utf8_c_string ("Launcher");
 theGlobal.set_property (context, id, theConstructor,
PropertyAttribute.None, null);
 }

7. Create an HTML5 file with the name of index.html and put it in the src folder. Fill
it with the following lines:

<!DOCTYPE HTML>
<html>
<head>
<link rel="stylesheet" href="http://code.jquery.com/mobile/1.1.1/
jquery.mobile-1.1.1.min.css" />
<script src="http://code.jquery.com/jquery-1.7.1.min.js"></script>
<script src="http://code.jquery.com/mobile/1.1.1/jquery.mobile-
1.1.1.min.js"></script>
</head>
<body>
<div data-role="page">
<div data-role="header">
<h1>My Launcher</h1>
</div>
<div data-role="content">
<ul data-role="listview" data-theme="a">

</div>

</div>
<script>
$(document).ready(function() {
 var launcher = new Launcher();
 var apps = launcher.getApplications();
 if (apps != null) {
 for (var i = 0; i < apps.length; i ++) {
 var image = $("").addClass("ui-li-icon").attr("src",
apps[i].icon);
 var link = $("<a/>").attr("href", "#")

Deploying HTML5 Applications with GNOME

[216]

 .text(apps[i].name)
 .attr("data-desktop", apps[i].desktop)
 .addClass("desktop-launcher")
 .append(image)
 var entry = $("")
 .append(link)
 $("[data-role=listview]").append(entry);
 }
 $("[data-role=listview]").listview('refresh')
 }
 $(".desktop-launcher").click(function() {
 var desktopFile = $(this).attr("data-desktop");
 if (desktopFile) {
 launcher.launch(desktopFile);
 }
 });
});
</script>
</body>
</html>

8. Copy the accompanying webkit-1.0.vapi and javascriptcore.vapi files
into the src folder.

9. Build and run the application. We should see a launcher as shown in the
following screenshot:

Chapter 9

[217]

What just happened?
GNOME uses a freedesktop.org desktop system. In this system, an application is
accompanied with at least one desktop file. This file has a .desktop extension and contains
information about the application title, icon name, the command which the system must call
in order to launch this application, and a set of translations of the application title in many
languages when available. What we do in this example is get all the desktop files from the
system and display the information contained in them in a menu. And when we click on one
of the menu items, our application launches it. The desktop files usually reside in /usr/
share/applications. So in our simple example, we just get all the files from this folder.
Let's see how we do this in detail now.

In this example, we use Gee to make use of the HashMap data structure. This means that
we need to include the Gee namespace.

using Gee;

In order to make our Vala code cleaner, we load the HTML5 file from an external file. We
also put the object, which needs to be used at the client side, in a separate class, and finally,
we put the code needed to set up JSCore in another class. With this separation, our code is
better and easy to maintain.

In the constructor of the Main class, we load the index.html file from the current
folder. In real world implementations, the location of the HTML5 file must not be
hardcoded and should be flexible. Using a hardcoded location of the file would result
in deployment difficulties.

 public Main ()
 {
 load_uri("file:///%s/index.html".printf(Environment.get_current_
dir()));

Then, we connect the LauncherJSCore.setup_js_class function in the
window_object_cleared signal.

 window_object_cleared.connect ((frame, context) => {
 LauncherJSCore.setup_js_class ((JSCore.GlobalContext)
context);
 });

Next, we define our Vala class. This class should not use any JSCore type system. We call
our class Launcher.

public class Launcher

Deploying HTML5 Applications with GNOME

[218]

We have a data structure created with a HashMap type. It contains the mapping between the
desktop filename and the object containing the desktop data structure. The desktop file is
represented with the DesktopAppInfo object, which is provided by the Gio namespace.

 public HashMap<string,DesktopAppInfo> applications {
 get;
 private set;
 }

In the Launcher constructor, we initialize the icon object from IconTheme in order to
translate the icon name obtained from the DesktopAppInfo object into an actual path in
the filesystem. We need this because HTML can't display an icon just by its name, but we
need to specify the full URI. After this, we initialize the HashMap object.

 public Launcher ()
 {
 icon = IconTheme.get_default ();
 applications = new HashMap<string,DesktopAppInfo>();

Then we populate the object with all the desktop files found in /usr/share/
applications. We first create a Dir object pointing to the folder mentioned previously,
then iterate its read_name() function. When the function returns null, it means it no
longer finds a file and we must exit the while loop. If we don't do this, we will end up in
an infinite loop and our application would be not responsive. There is no other cure for
this than killing the frozen application.

 var dir = Dir.open("/usr/share/applications");
 if (dir != null) {
 string entry;
 while (true) {
 entry = dir.read_name();
 if (entry == null) {
 break;
 }

For each filename we get from the read_name() function, we must create a
DesktopAppInfo object of that file. We just instantiate the object by using the
from_filename()constructor and pass the full path of the desktop file. If the file is not
a desktop file, then the instantiation will fail and the value will be null. If the value is not
null, we immediately put the object into the HashMap data structure.

 var appInfo = new DesktopAppInfo.from_filename("/usr/share/
applications/" + entry);
 if (appInfo != null) {
 applications.set(entry, appInfo);
 }

Chapter 9

[219]

Then we prepare a function that does the actual translation of the icon name into the full
path of the icon in the filesystem. We use the lookup_icon() function and try to find the
icon in the current active theme. When we find it, we get the full path of the icon, otherwise
we just use the original icon name.

 public string getIconPath(string name) {
 var i = icon.lookup_icon (name, ICON_SIZE, IconLookupFlags.
GENERIC_FALLBACK);
 if (i != null) {
 return i.get_filename();
 } else {
 return name;
 }
 }

At last, we have a function to launch an application. What we do first is to get the
DesktopAppInfo object from the HashMap type and call the launch() function,
which is supplied by DesktopAppInfo. For each launched application, we create a new
AppLaunchContext object, which defines the environment setting of the application.

 public void launch(string name) {
 var app = applications.get(name);
 if (app != null) {
 app.launch(null, new AppLaunchContext());
 }
 }

Now, let's shift to our JSCore wrapper. The wrapper only contains static functions and by
itself is not an object.

// Our JSCore wrapper
public class LauncherJSCore

The first part of the wrapper is the constructor. This is the constructor of our object
whenever we call a new Launcher object in our client-side JavaScript. In our constructor,
we first create a JSCore class based on the class definition we will see later:

 public static JSCore.Object js_constructor (Context ctx,
 JSCore.Object constructor,
 JSCore.Value[] arguments,
 out JSCore.Value exception) {

 exception = null;
 var c = new Class (js_class);
 var newObject = new JSCore.Object (ctx, c, null);

Deploying HTML5 Applications with GNOME

[220]

Then, we register the functions that we want to expose to the client side. Here, we register
the launch and getApplications functions. What we do here is to create a JSCore
string containing the name of the function, then create a JSCore object mapped to the
function, which we will wrap the Vala function into. In this case, we create a newFunction
object from the js_launch function. Then we use the set_property() function to assign
the newFunction function object with the functionName parameter. After this, our
function called launch is recognized in the Launcher object. We need to do this for
each function that we want to expose to the client-side JavaScript.

 // register function helloFromVala
 var functionName = new String.with_utf8_c_string ("launch");
 var newFunction = new JSCore.Object.function_with_callback
(ctx, functionName, js_launch);
 newObject.set_property (ctx, functionName, newFunction, 0,
null);

Finally, we create and keep the reference of our Launcher object and set it as private in
the JSCore object. So, whenever we want to call the Vala function, we just get this object
back from the private area and call it from there.

 Launcher* launcher = new Launcher ();
 newObject.set_private (launcher);
 return newObject;
 }

Let's see each of the wrapping functions we expose to the client-side script. First is the
getApplications() function.

 public static JSCore.Value js_getApplications(Context ctx,
 JSCore.Object function,
 JSCore.Object thisObject,
 JSCore.Value[] arguments,
 out JSCore.Value exception) {

We set the exception value to null stating that we don't generate a JavaScript exception.

 exception = null;

As discussed earlier, we can get the Vala object by getting it from the private area with
the get_private() function and immediately cast it into Launcher. Also, we prepare a
StringBuilder object to keep a JSON representation of the application list. The string is
initialized with [because we will use JSON as the array of applications. We will concatenate
all JSON representations of the desktop files inside this string.

 var launcher = thisObject.get_private() as Launcher;
 StringBuilder json = new StringBuilder("[");

Chapter 9

[221]

At this point, we must check whether the list's value is null or not. If not, we iterate
by getting all the keys from the HashMap data structure. As we already know, the key
contains the name of the desktop file and the value contains the DesktopAppInfo
object. So, by using the get() function in the HashMap data structure, we can get the
DesktopAppInfo object.

 if (launcher.applications != null) {
 foreach (var key in launcher.applications.keys) {
 var entry = launcher.applications.get(key) as DesktopAppInfo;

After we get the DesktopAppInfo object, which we put into the entry variable, we get the
name of the application with the get_display_name() function, and get the icon with the
get_icon() function. Whenever we can get the actual path of the icon in the filesystem,
we create a JSON similar to the following:

{desktop: '%s', name: '%s', icon: '%s'}

And if we cannot get the actual path of the icon in the filesystem, we create the JSON as
shown here:

{desktop: '%s', name: '%s'}

We do this until all the desktop files are handled and put into the JSON string.

 var name = entry.get_display_name();
 if (entry.get_icon() != null) {
 var icon = launcher.getIconPath(entry.get_icon().to_string());
 json.append(("{desktop: '%s', name: '%s', icon: '%s'},").
printf (key, name, icon));
 } else {
 json.append(("{desktop: '%s', name: '%s'},").printf (key,
name));

At the end of the loop, we must remove any trailing commas, otherwise the JSCore will fail
during the conversion of our JSON string into a JSCore object, which we will return in this
JSCore function.

 if (json.str [json.len - 1] == ',') {
 json.erase (json.len - 1, 1); // Remove trailing comma
 }

We terminate the string with], which marks the end of the array.

 json.append("]");

Deploying HTML5 Applications with GNOME

[222]

Afterwards, we convert the JSON string into a JSCore string. Then convert the JSON string
into a JSCore object with the evaluate_script() function. Finally, we return that object.

 var text = new String.with_utf8_c_string (json.str);
 var obj = ctx.evaluate_script (text, null, null, 0, null);

 return obj;

The next one is the launch() function. In this function, we have an arguments
parameter in our JavaScript code, which can simply be obtained from the arguments
parameter in this JSCore function. If the arguments parameter's length property is
equal to 1 and the content of the arguments variable is a string, then we can say that
this is a valid call to this function. In this case, we just call the launch() function in the
launcher object and pass the contents of the arguments variable to the function. But
before doing so, we need to convert the string coming from the arguments variable, that
is, the JSCore string, into the C string, which is recognized by the Vala function by using the
get_utf8_c_string() function.

 public static JSCore.Value js_launch (Context ctx,
 JSCore.Object function,
 JSCore.Object thisObject,
 JSCore.Value[] arguments,
 out JSCore.Value exception) {

 exception = null;

 var launcher = thisObject.get_private() as Launcher;
 if (arguments.length == 1 && arguments[0].is_string(ctx)) {
 var parameter = arguments[0].to_string_copy (ctx, null);
 char buffer[1024];
 parameter.get_utf8_c_string (buffer, buffer.length - 1);
 launcher.launch((string) buffer);
 }

In case the call is invalid, then we just return an undefined value to the caller.

 return new JSCore.Value.undefined (ctx);

And the following code contains our JSCore class definition structure. We fill everything
with null, except the name of the class with the Launcher value and the constructor
field pointing to the js_constructor function, which we discussed earlier.

 static const ClassDefinition js_class = {
 0, // version
 ClassAttribute.None, // attribute
 "Launcher", // className
 null, // parentClass

Chapter 9

[223]

 null, // static values
 null, // static functions

 null, // initialize
 null, // finalize

 null, // hasProperty
 null, // getProperty
 null, // setProperty
 null, // deleteProperty

 null, // getPropertyNames
 null, // callAsFunction
 null, // callAsConstructor
 null, // hasInstance
 null // convertToType
 };

At last, the following code snippet shows our setup_js_class function, which is called
from the WebView widget explained earlier. Here, we create an JSCore object constructor
that points to our js_constructor function. Then, we connect the constructor object with
the Launcher name in the global context. So, whenever the code at the client side mentions
new Launcher(), the constructor will be called.

 public static void setup_js_class (GlobalContext context) {
 var theClass = new Class (js_class);
 var theConstructor = new JSCore.Object.constructor (context,
theClass, js_constructor);
 var theGlobal = context.get_global_object ();
 var id = new String.with_utf8_c_string ("Launcher");
 theGlobal.set_property (context, id, theConstructor,
PropertyAttribute.None, null);
 }

We will not go too deep into the index.html file, but just look at the following lines
of code:

var launcher = new Launcher();
var apps = launcher.getApplications();

These are the lines that actually call our wrapped Vala code. Nice, isn't it?

Actually, this HTML-based launcher was really implemented for GNOME.
Manokwari. This is a desktop shell for GNOME 3 and is developed
with the techniques that we just discussed. Check it out at http://
manokwari.blankonlinux.or.id and study the source code.

http://manokwari.blankonlinux.or.id/
http://manokwari.blankonlinux.or.id/

Deploying HTML5 Applications with GNOME

[224]

Have a go hero – where to put index.html
It would be nice if we can put the index.html file in a different folder that does not contain
the html5-launcher executable file, for example, if you not only have HTML files, but
also CSS, image files, and other files as well. What we can do here is to put a string constant
where we can put these assets into and deploy them nicely in the real environment. During
development, we can use src/ or some other folder, but while deploying them, we can use
a different folder, for example, /usr/share/html5-launcher/.

Summary
In this chapter, we learned how to create an application written in HTML5 that can also
communicate with the GNOME platform underneath by utilizing JSCore. To display an HTML5
page, we use the WebKit's WebView widget. When there is no communication with the main
process, we can display any HTML5 page only by using this widget.

Then we added a business process in our Vala code. We connected the objects created in
the Vala code with the client-side JavaScript code, which is defined in the HTML5 page.
Unfortunately, we need to use Boilerplate code to start with, and fill the code with our
implementation. We need to wrap every function that we want to expose to the client-side
code with the JSCore function.

With this approach, we can create a full HTML5 application without a web server and do
the business process inside our Vala code. This does not stop here as it is only limited by
your imagination. For example, if you find that a certain HTML5 feature is not supported by
GtkWebKit, you can create your own extension with the same API using Vala.

We will learn how to integrate our application with the GNOME desktop in the next chapter.

10
Desktop Integration

One of the signs that an application is a good application is that it integrates
nicely with the platform. Integration means that it can access the platform
seamlessly without re-implementing the features just to fake the look and feel
instead it gets the features directly from the platform.

In this chapter, the context of the platform is the GNOME desktop. This is one of the central
points in the GNOME platform, hence it needs a dedicated chapter. Our main goal is to learn
how to utilize some of the the desktop features, namely the session management, launcher,
keyring, and notification system. Specifically, this is what we are going to discuss:

 � Talking with the GNOME session management

 � Launcher installation

 � Storing secret data to GNOME Keyring

 � The notification system

 � Let's start by studying the D-Bus, one of our tools to get the integration done nicely

Talking to each other with D-Bus
D-Bus is an interprocess communication (IPC) and a remote procedure call (RPC) system
used by freedesktop.org desktop implementations. GNOME is one of the implementers
of this software. D-Bus makes it possible for the applications to talk to each other. It uses
a bus system where a party can post a command or query on a bus, and the other parties
which listen to the bus can take action upon the requested command. It has three separate
channels: system bus, session bus, and private bus.

Desktop Integration

[226]

System bus is dedicated for system-wide messages, such as creating a user and hardware
notifications. The bus is run by the system and every D-Bus-aware application run by any
user in the system may listen and react to the bus. The second type is the session bus, which
is run by the user of the running desktop. Every application which is run by the same user in
the same session may listen and react to the bus. The third one is the private bus, which is a
point-to-point bus and only the connected parties can talk to each other.

Each application can establish a connection to the bus. Each connection has a name which
looks like an inverted internet domain name, for example, org.gnome.SettingsDaemon.
Power. The application then can expose some services in the bus with an identifier called path.
The path looks like a filesystem path, for example, /org/gnome/SettingsDaemon/Power.

The application can either expose the services according to a common interface, for
example, the org.freedesktop interfaces or provide its own interfaces. An interface is
exactly like an API that must be implemented properly according to the specification, both by
the publisher and by the user of the interface.

Concretely, an application can post a message containing a command to the bus by
specifying the connection name and path of the recipient. The application which owns the
connection name and exposes the specified path would then react and reply with another
message if necessary, depending on the interface.

In another case, an application could also broadcast a message that a signal has been
emitted with a specified path. Another application which is interested in the signal can just
tap the bus, listen for the emission, and perform something upon receiving the signal.

D-Bus is one of the primary tools to achieve a very good integration with the GNOME
desktop. Many features available in the platform are accessible using D-Bus. To get an
intuition on how D-Bus helps the integration with GNOME desktop, let's try to listen
to the D-Bus session.

You can find more information about D-Bus here:
http://www.freedesktop.org/wiki/Software/dbus.

Time for action – listening to D-Bus
To see what is going on over the D-Bus session bus, let's try this experiment:

1. Open the terminal.

2. Type dbus-monitor and hit Enter.

3. Our screen would be then full of messages coming from D-Bus. Try to increase the
sound volume, or access a GNOME main menu, or activate an application. Each of
your actions would be broadcasted on the bus.

Chapter 10

[227]

What just happened?
The dbus-monitor command listens to whatever is posted to the session bus. If you are
using a laptop computer and it is charging, you may see something like this:

signal sender=:1.6 -> dest=(null destination) serial=192 path=/org/
gnome/SettingsDaemon/Power; interface=org.freedesktop.DBus.Properties;
member=PropertiesChanged

 string "org.gnome.SettingsDaemon.Power"

 array [

 dict entry(

 string "Tooltip"

 variant string "Laptop battery 1 hour 10 minutes
until charged (44%)"

)

]

 array [

]

The output says that it is displaying a PropertiesChanged signal in the org.
freedesktop.DBus.Properties interface. According to the interface, the signal has
three arguments: a string, an array, and another array. This particular signal is exposed in
the /org/gnome/SettingsDaemon/Power path and broadcasted to everybody. It
sends org.gnome.SettingsDaemon.Power in the first argument, an array containing a
dictionary record, and an empty array.

If we are interested in what is happening on the system bus, give the system argument.

Pop quiz – a good example application?
Q1. With the previous data being posted all the time to the bus, what would be the best
example of an application that is suitable to consume the data?

1. A battery system tray applet

2. A battery checker application

Desktop Integration

[228]

The GNOME session manager
The GNOME session manager is responsible for a user's desktop environment session. It
runs the startup applications and the desktop shell, enables a user to log out, and shut down
the computer. The application can even ask the manager to cancel the logout or shutdown.
For example, when a user wants to log out but there is an application that has an unsaved
document, the logout can be stopped temporarily until the user saves the document or
explicitly quits the application.

The session also keeps track of the user's presence, whether the user is available, busy, idle,
or invisible. The user can also set a text as the presence status.

Time for action – talking to the session manager
Let's now try to talk to the session manager:

1. Create a script called session.js, (available in the source code distribution).
The important parts are as follows:

var SessionManagerInterface = {
 name: "org.gnome.SessionManager",
 methods: [
 { name: 'CanShutdown', inSignature: '', outSignature: 'b' },
 { name: 'Logout', inSignature: 'u', outSignature: '' },
 { name: 'Shutdown', inSignature: '', outSignature: '' },
 { name: 'Inhibit', inSignature: 'susu', outSignature: 'u' },
 { name: 'Uninhibit', inSignature: 'u', outSignature: '' }
]
}

Presence.prototype = {
 _init: function() {
 DBus.session.proxifyObject(this,
 'org.gnome.SessionManager',
 '/org/gnome/SessionManager/Presence');
 }
}

var PresenceInterface = {
 name: "org.gnome.SessionManager.Presence",
 methods: [
 { name: 'SetStatus', inSignature: 'u', outSignature: '' },
 { name: 'SetStatusText', inSignature: 's', outSignature: '' },
]
}

Chapter 10

[229]

Main = new GType({
 parent: GObject.Object.type,
 name: "Main",
 init: function(self) {
 DBus.proxifyPrototype(SessionManager.prototype,
SessionManagerInterface);
 DBus.proxifyPrototype(Presence.prototype, PresenceInterface);
 this.manager = new SessionManager();
 this.presence = new Presence();
 ...

 var combo = ui.get_object("presenceStatus");
 cell = new Gtk.CellRendererText();
 combo.pack_start(cell);
 combo.add_attribute(cell, "text", 1);

 combo.signal.changed.connect(function(s) {
 var selected = {}
 s.get_active_iter(selected);
 var id = s.model.get_value(selected.iter, 0);
 self.presence.SetStatusRemote(id.value.get_int());

 });

 var textStatus = ui.get_object("textStatus");
 textStatus.signal.changed.connect(function(b) {
 self.presence.SetStatusTextRemote(textStatus.text);
 });

 var logout = ui.get_object("logOut");
 logout.signal.clicked.connect(function(b) {
 self.manager.LogoutRemoteSync(0);
 });

 var shutdown = ui.get_object("powerOff");
 shutdown.signal.clicked.connect(function(b) {
 self.manager.ShutdownRemoteSync();
 });

 var inhibit = ui.get_object("inhibit");
 inhibit.signal.toggled.connect(function(b) {
 if (inhibit.active == 1) {
 inhibit.label = "Uninhibit";
 var window = ui.get_object("window1");
 var xid = window.get_window().get_xid();
 self.inhibitCookie = self.manager.InhibitRemoteSync(applic
ationId,

Desktop Integration

[230]

 xid,
 "I forbid you to logout",
 1);

 } else {
 self.manager.UninhibitRemoteSync(self.inhibitCookie);
 inhibit.label = "Inhibit";
 }
 });
 window.show_all();
 }
});

2. Alternatively, create a Vala project with GtkBuilder support, and name it
session-vala.

3. Find this line in src/Makefile.am.

session_vala_VALAFLAGS = \
 --pkg gtk+-3.0 --pkg gdk-x11-3.0

4. Edit it to be like this:

session_vala_VALAFLAGS = \
 --pkg gtk+-3.0

5. Create src/session_vala.vala with the most important parts as shown in the
following code:

using GLib;
using Gtk;

[DBus (name = "org.gnome.SessionManager")]
interface SessionManager : GLib.Object {
 public abstract bool can_shutdown () throws IOError;
 public abstract void logout (uint32 mode) throws IOError;
 public abstract void shutdown () throws IOError;
 public abstract uint32 inhibit (string appId, uint32 xid,
string reason, uint32 flags) throws IOError;
 public abstract void uninhibit (uint32 cookie) throws IOError;
}

[DBus (name = "org.gnome.SessionManager.Presence")]
interface Presence: GLib.Object {
 public abstract void set_status_text (string text) throws
IOError;
 public abstract void set_status (uint32 mode) throws IOError;
}

Chapter 10

[231]

public class Main : Object
{
 ...

 public Main ()
 {
 manager = Bus.get_proxy_sync(BusType.SESSION,
 "org.gnome.SessionManager",
 "/org/gnome/SessionManager");

 presence = Bus.get_proxy_sync(BusType.SESSION,
 "org.gnome.SessionManager",
 "/org/gnome/SessionManager/Presence");

 ...
 var combo = builder.get_object("presenceStatus") as ComboBox;
 var cell = new CellRendererText();
 combo.pack_start(cell, true);
 combo.add_attribute(cell, "text", 1);

 combo.changed.connect((object) => {
 TreeIter iter;
 object.get_active_iter(out iter);
 Value value;
 object.model.get_value(iter, 0, out value);
 presence.set_status(value.get_int());
 });

 var textStatus = builder.get_object("textStatus") as Entry;
 textStatus.changed.connect(() => {
 presence.set_status_text(textStatus.text);
 });

 var logout = builder.get_object("logOut") as Button;
 logout.clicked.connect(() => {
 manager.logout(0);
 });

 var shutdown = builder.get_object("powerOff") as Button;
 shutdown.clicked.connect(() => {
 manager.shutdown();
 });

 var inhibit = builder.get_object("inhibit") as ToggleButton;
 inhibit.toggled.connect((object) => {
 if (object.active == true) {
 object.label = "Uninhibit";

Desktop Integration

[232]

 var window = builder.get_object("window1") as Window;
 var xid = Gdk.X11Window.get_xid(window.get_window());
 cookie = manager.inhibit("MyApplication",
 (uint32) xid,
 "I forbid you to logout",
 1);
 } else {
 manager.uninhibit(cookie);
 object.label = "Inhibit";
 }
 });

 }

}

6. Create a UI with Glade, call it session.ui.

7. Put Entry, ComboBox, and a set of buttons. The first button is ToggleButton and the
rest are plain buttons.

8. Give the name textStatus to Entry, presenceStatus to ComboBox, inhibit
to ToggleButton, and logOut and powerOff names to the rest of the Button objects
respectively.

9. In ComboBox, create a new model by clicking on the ellipsis button, and call it
as liststore1.

10. Following the steps we learned when we did the interaction with data source in
Chapter 8, Playing With Data, put two fields in liststore1. The first data is an
integer, which is noted as gint and the second one is string, which is gchararray.

11. Prefill liststore1 with these data pairs:

0 Available
1 Invisible
2 Busy
3 Idle

12. Back to the presenceStatus widget, set the Active item with 0 value.

13. Save the UI and run the application. We should see the following screenshot:

Chapter 10

[233]

14. We can put a status text by entering text into the textbox. We can change the status
of presence by selecting it from the combobox. If we press the Log Out button, the
session will be closed as soon as we agree to log out, and the same with the Power
Off button, with the difference that Power Off will turn off the computer. If we
activate the inhibit button, the logout and power off action will be cancelled.

What just happened?
What we did was, we interacted with the GNOME session manager using the D-Bus API.
Our first step is to create a proxy object. What this object does is to act as a bridge to the
D-Bus API. So instead of calling the real D-Bus API, which is inaccessible in Seed, we call it
through a proxy.

To prepare a proxy, we simply create a JavaScript object with a prototype. We define an
initialization function in the object, which in turn calls the DBus.session.proxifyObject
function. This function creates the connection between the JavaScript function with the
D-Bus function calls.

In this experiment, we access two sets of API from the session manager. The first one is
SessionManager and the second one is Presence. This means that we would have two
proxy objects installed in our application.

The first proxy is created by specifying the connection name, which is org.gnome.
SessionManager and the path where the functions are defined and exposed, which
is /org/gnome/SessionManager.

function SessionManager() {
 this._init();
}

SessionManager.prototype = {
 _init: function() {
 DBus.session.proxifyObject(this,
 'org.gnome.SessionManager',
 '/org/gnome/SessionManager');
 }
}

Desktop Integration

[234]

After that, we define the interface that we want to map with this object. The interface lists
all methods, signals, and properties from the D-Bus world, which we want to access. For our
purpose in this example, we only define the connection name and the methods. Note that
we have inSignature and outSignature in the method descriptions. inSignature
denotes the parameters which we pass into the function and outSignature denotes the
variables which are returned by the function.

var SessionManagerInterface = {
 name: "org.gnome.SessionManager",
 methods: [
 { name: 'CanShutdown', inSignature: '', outSignature: 'b' },
 { name: 'Logout', inSignature: 'u', outSignature: '' },
 { name: 'Shutdown', inSignature: '', outSignature: '' },
 { name: 'Inhibit', inSignature: 'susu', outSignature: 'u' },
 { name: 'Uninhibit', inSignature: 'u', outSignature: '' }
]
}

Based on the previous description, we have five functions, CanShutdown, Logout,
Shutdown, Inhibit and Uninhibit. These are the functions defined in the
org.gnome.SessionManager connection.

Not all functions exposed in the connection need to be defined in our
proxy. We only need to define the functions that we want to use.

The parameters are passed as a single string, where each character denotes the variable type
according to the D-Bus convention. The following table lists the types as copied from the
D-Bus specification Version 0.19:

Conventional
name

Code Description

INVALID 0 (ASCII NUL) Not a valid type code, used to terminate signatures.

BYTE 121 (ASCII "y") 8-bit unsigned integer.

BOOLEAN 98 (ASCII "b")
Boolean value, 0 is FALSE and 1 is TRUE. Everything else is
invalid.

INT16 110 (ASCII "n") 16-bit signed integer.

UINT16 113 (ASCII "q") 16-bit unsigned integer.

INT32 105 (ASCII "i") 32-bit signed integer.

UINT32 117 (ASCII "u") 32-bit unsigned integer.

INT64 120 (ASCII "x") 64-bit signed integer.

Chapter 10

[235]

Conventional
name

Code Description

UINT64 116 (ASCII "t") 64-bit unsigned integer.

DOUBLE 100 (ASCII "d") IEEE 754 double.

STRING 115 (ASCII "s")
UTF-8 string (must be valid UTF-8). Must be null terminated and
contain no other null bytes.

OBJECT_PATH 111 (ASCII "o") Name of an object instance.

SIGNATURE 103 (ASCII "g") A type signature.

ARRAY 97 (ASCII "a") An array.

STRUCT
114 (ASCII "r"),
40 (ASCII "("),
41 (ASCII ")")

Struct, type code 114 "r", is reserved for use in bindings and
implementations to represent the general concept of a struct,
and must not appear in signatures that are used on D-Bus.

VARIANT 118 (ASCII "v") Variant type (the type of the value is part of the value itself).

DICT_ENTRY
101 (ASCII "e"),
123 (ASCII "{"),
125 (ASCII "}")

Entry in a dict or map (array of key-value pairs). Type code 101
"e" is reserved for use in bindings and implementations to
represent the general concept of a dict or dict entry, and must
not appear in signatures used on D-Bus.

UNIX_FD 104 (ASCII "h") Unix file descriptor.

(reserved) 109 (ASCII "m")
Reserved for a "maybe" type compatible with the one in
GVariant, and must not appear in signatures used on D-Bus until
specified here.

(reserved) 42 (ASCII "*")
Reserved for use in bindings/implementations to represent any
single complete type, and must not appear in signatures used on
D-Bus.

(reserved) 63 (ASCII "?")
Reserved for use in bindings/implementations to represent any
basic type, and must not appear in signatures used on D-Bus.

(reserved)
64 (ASCII "@"),
38 (ASCII "&"),
94 (ASCII "^")

Reserved for internal use by bindings/implementations, and
must not appear in signatures used on D-Bus. GVariant uses
these type codes to encode calling conventions.

The second proxy object is for the Presence API. The API is used for setting the status, both
textual and numeric. The numeric status corresponds to the following constants:

 � 0 is for available

 � 1 is for invisible

 � 2 is for busy

 � 3 is for idle

Desktop Integration

[236]

The complete specification of the API can be read at http://
people.gnome.org/~mccann/gnome-session/docs/
gnome-session.html.

The API is defined in the org.gnome.SessionManager.Presence connection.

Presence.prototype = {
 _init: function() {
 DBus.session.proxifyObject(this,
 'org.gnome.SessionManager',
 '/org/gnome/SessionManager/Presence');
 }
}

The interface is shorter, as we only need two functions, SetStatus for the numerical status
and SetStatusText for the textual status.

var PresenceInterface = {
 name: "org.gnome.SessionManager.Presence",
 methods: [
 { name: 'SetStatus', inSignature: 'u', outSignature: '' },
 { name: 'SetStatusText', inSignature: 's', outSignature: '' },
]
}

After we map the functions with the proxy objects, we can't just call the function as we
normally do. Seed adds Remote and RemoteSync as a postfix to all the functions that we
defined in the interface in the setup process. So, what our application does is it calls the
function name appended with Remote or RemoteSync. The RemoteSync version is the
synchronous call while the Remote call is the asynchronous version of the function.

The setup process is done when we call the proxifyPrototype functions as we do here:

 DBus.proxifyPrototype(SessionManager.prototype,
SessionManagerInterface);
 DBus.proxifyPrototype(Presence.prototype, PresenceInterface);

It means that based on the interface defined in the interface object, Seed would populate
the Remote and RemoteSync function calls in the prototype. As we learned in Chapter 3,
Programming Languages, in JavaScript we can add functions as members of an object.

Chapter 10

[237]

Next, we initialize some variables to be an instance of the newly created proxy objects:

 this.manager = new SessionManager();
 this.presence = new Presence();

In our previous experience of handling a data source in Chapter 8, Playing With Data, we
used a ListStore as a model to keep our data. Now, we do it again. But instead of using a
TreeView, here we have a ComboBox. The ComboBox also uses the MVC design pattern and
uses the ListStore as the model. Same with TreeView, we need a renderer to actually display
the data on the screen. Again, we use CellRendererText to do this task as shown in the
following code snippet:

 var combo = ui.get_object("presenceStatus");
 cell = new Gtk.CellRendererText();
 combo.pack_start(cell);
 combo.add_attribute(cell, "text", 1);

After that, we connect the changed signal of the ComboBox to a handler. In this handler,
what we do is to get the current Iter object of the ComboBox, get the integer value of the
iter object, and call SetStatusRemote of the Presence proxy object. As we discussed
previously, the SetStatusRemote function in Seed code is actually the SetStatus
function in the D-Bus side. We pass an integer in SetStatusRemote, this matches with
the value of u that we defined in the SetStatus function's inSignature member of the
interface object.

 combo.signal.changed.connect(function(s) {
 var selected = {}
 s.get_active_iter(selected);
 var id = s.model.get_value(selected.iter, 0);
 self.presence.SetStatusRemote(id.value.get_int());
 });

Then, we connect the changed signal of the textStatus widget, and upon receiving the
signal we call the SetStatusTextRemote function. We pass textStatus.text, which
is a string, and it matches with the s value inSignature of the SetStatus function we
defined in the interface object.

 var textStatus = ui.get_object("textStatus");
 textStatus.signal.changed.connect(function(b) {
 self.presence.SetStatusTextRemote(textStatus.text);
 });

Desktop Integration

[238]

The next widget on our list is the logOut widget. We handle the clicked signal by
calling LogoutRemoteSync by passing a 0 value into it. In the GNOME Session Manager
documentation, 0 means that we simply want to log out. 1 means that the logout process
is done without prompting the user. Finally, a value of 2 means that the logout process is
forcefully done, without prompt and ignoring any inhibitors.

 var logout = ui.get_object("logOut");
 logout.signal.clicked.connect(function(b) {
 self.manager.LogoutRemoteSync(0);
 });

Next one is the powerOff widget. When this button is pressed, what we want is to initiate
the shutdown process. To do this, we call the ShutdownRemoteSync function:

 var shutdown = ui.get_object("powerOff");
 shutdown.signal.clicked.connect(function(b) {
 self.manager.ShutdownRemoteSync();
 });

Finally, we need to handle the inhibit ToggleButton. We handle the two states of the
button, when it is active and when it is in normal state. In the active state, we change
the label to Uninhibit to show that the behavior has now changed, and we ask
SessionManager to register ourselves as the inhibitor. When there is an inhibitor, any
logout process will be cancelled. To do this, we call InhibitRemoteSync. The return
value is a cookie which we must pass to inhibit. We use this cookie when calling
UninhibitRemoteSync in the opposite state of the ToggleButton. After calling this,
the logout process would be normal again.

 var inhibit = ui.get_object("inhibit");
 inhibit.signal.toggled.connect(function(b) {
 if (inhibit.active == 1) {
 inhibit.label = "Uninhibit";
 var window = ui.get_object("window1");
 var xid = window.get_window().get_xid();
 self.inhibitCookie = self.manager.InhibitRemoteSync(application
Id,
 xid,
 "I forbid you to logout",
 1);

 } else {
 self.manager.UninhibitRemoteSync(self.inhibitCookie);
 inhibit.label = "Inhibit";
 }
 });

Chapter 10

[239]

Now let's inspect the Vala code. How it works is the same with the Seed code, but take a look
at how we call the D-Bus functions. First, we need to create the interface of the classes and
methods that we want to use.

We have a DBus attribute mentioned, followed with the name of the connection:

[DBus (name = "org.gnome.SessionManager")]

Then we define the interface and derive GLib.Object so that we can also handle signals.
For each method, we convert the original function name, which is written in camel case (the
first character of each word is written in uppercase and the words are concatenated together
without any delimiters), into lowercase words joined together with underscores. For
example, the CanShutdown function must be converted to can_shutdown. Each method
must be declared to throw the IOError exception, and the arguments are written in Vala
style using Vala-native data types.

interface SessionManager : GLib.Object {
 public abstract bool can_shutdown () throws IOError;
 public abstract void logout (uint32 mode) throws IOError;
 public abstract void shutdown () throws IOError;
 public abstract uint32 inhibit (string appId, uint32 xid, string
reason, uint32 flags) throws IOError;
 public abstract void uninhibit (uint32 cookie) throws IOError;
}

We declare all interfaces first before using them, so the Presence interface and
SessionManager must be declared as shown here:

[DBus (name = "org.gnome.SessionManager.Presence")]
interface Presence: GLib.Object {
 public abstract void set_status_text (string text) throws IOError;
 public abstract void set_status (uint32 mode) throws IOError;
}

Then we need to create the proxy objects of these interfaces. We use get_proxy_sync,
mapping the connection names and the paths of these interfaces. If the results are not null,
then they are ready to use.

 manager = Bus.get_proxy_sync(BusType.SESSION,
 "org.gnome.SessionManager",
 "/org/gnome/SessionManager");

 presence = Bus.get_proxy_sync(BusType.SESSION,
 "org.gnome.SessionManager",
 "/org/gnome/SessionManager/Presence");

Desktop Integration

[240]

At this point, the manager and presence objects should be already connected to the
D-Bus objects.

Compared with the Seed counterpart, calling the methods in Vala is simpler. One can just
call the function name directly and pass the arguments if any. For example, the shutdown
function can be called using just the following code snippet:

 manager.shutdown();

Have a go hero – checking all nulls
As discussed previously, all proxy objects are not guaranteed to be connected to D-Bus. For
example, when a service provider of a certain connection or path is not installed, then the
connection will fail and the variable value will be null.

Go ahead, revisit our code and check on every occurrence of the proxy objects. If the value is
not null, the code can go forward; but if it is null, we need to do something. Think of a good
strategy for handling this case.

Launcher
Launcher is the place where a user runs an application by clicking on its icon. In GNOME Shell
the launcher is accessible in the Applications tab, in the Activities menu. The applications are
listed categorically, showing the icons, the title, and the descriptions of the application. The
title and the descriptions are nicely localized. The applications can also be filtered by searching.

In the previous version of GNOME or in the GNOME Fallback mode, the launcher is in the
GNOME panel. The applications are also listed categorically and the title and the descriptions
are also localized.

We have seen the way to list the applications in Chapter 9, Deploying HTML5 Applications
with GNOME, although not exactly in the same order with GNOME Shell or GNOME panel.
The essential part of the experiment was to load the information contained in the desktop
files. So, in order to make an application's icon appear in the launcher, we need to create a
desktop file for it.

Time for action – putting our application in the launcher
Now let's try to create a launcher for our previous application:

1. Rename session.js as session-tester (without any extension).

2. Modify the UI loader part to open /usr/share/session-manager-test/
session.ui, and modify the following line:

ui.add_from_file("session.ui");

Chapter 10

[241]

3. Modify it to:

ui.add_from_file("/usr/share/session-manager-test/session.ui");

4. Prepare a new text file, name it as session-manager-test.desktop, and fill it
with the following code:

[Desktop Entry]
Name=Session Manager Test
Comment=Testing the interaction with GNOME session manager
OnlyShowIn=GNOME;
Exec=session-tester
Icon=help-browser
StartupNotify=true
Terminal=false
Type=Application
Categories=GNOME;GTK;Settings

5. Install the UI file into the /usr/share/session-manager-test directory
(create the directory if you have not done so!), the desktop file to /usr/share/
applications, and the session-tester script into /usr/bin.

6. Open the Activities menu in GNOME Shell, navigate through the Applications tab,
and look for Session Manager Test, you'll find it!

Desktop Integration

[242]

What just happened?
What we did was a simple modification to the script to load the UI file in the system-wide
configuration. This process must be done in all deployments of our applications, but this
is a pretty bad example because we hardcode the path of the UI file. One way to avoid
hardcoding the path is to keep a configuration file. Revisit Chapter 4, Using GNOME Core
Libraries, to access the configuration system.

Next, we created a desktop file. It is started with the following line:

[Desktop Entry]

Then, we specify the name of the application. The following is the text which will be
displayed in the launcher:

Name=Session Manager Test

Comment=Testing the interaction with GNOME session manager

OnlyShowIn defines the launcher in which this application would appear. If, for example,
we add Unity, the application would only appear in Unity and GNOME.

OnlyShowIn=GNOME;

Next, we define the name of the executable. This is the name of the application that we
install into /usr/bin.

Exec=session-tester

Then, we define the icon which is used in the launcher. Here, we just steal an icon from the
help-browser application. In real applications, we should provide our own icon.

Icon=help-browser
StartupNotify=true

After that, we specify that we don't need a terminal to run our application. If we provide,
for example, bash script; we may need to ask the terminal to open it if there is no hashbang
or missing the executable permission.

Terminal=false

Next, we define our application as, of course, Application:

Type=Application

Finally, we tell the launcher that our application should fall into these categories. In
the launcher, we can simply see our application reside in System Tools which maps
to Settings.

Categories=GNOME;GTK;Settings

Chapter 10

[243]

The launcher normally listens for any changes that we did in all files in /usr/share/
applications. So whenever we put a new file or modify the existing one, the changes
will automatically be seen almost instantly in the launcher, so we don't need to restart
the desktop.

You can find the formal specification of the contents of desktop files at http://
standards.freedesktop.org/desktop-entry-spec/latest/index.html.

GNOME keyring
Many use cases of real-life applications involve storing passwords, secret data, or keys.
Implementing the storage for this kind of data is hard and requires special skills in the
security field. GNOME Keyring is the secret data storage infrastructure available on the
GNOME platform. Applications that use GNOME Keyring can save passwords, secret data,
or keys in the keyring and retrieve them later when needed.

The keyring is protected and associated with the user account. It can be configured so
that whenever a user logs in to the system, the keyring is automatically available to the
application and when the user logs out, the keyring is also closed. Otherwise, the keyring
can be opened using a password.

The keyring has an accompanying application called Seahorse. It is an application which can
display the stored secret data within the user's session. The integration which we aim for is
not to replace Seahorse, but just to keep the data secure in the keyring. However, we could
still inspect the data using Seahorse.

Time for action – storing passwords securely
Unfortunately, we will do this only with Vala, as gir-1.2 which is required by Seed doesn't
include the necessary function to store the password easily.

1. Create a new empty Vala object without GtkBuilder, let's call it keyring.

2. Open configure.ac and find this line: PKG_CHECK_MODULES(KEYRING,
[gtk-3.0]). Modify the whole line to look like the following code:

PKG_CHECK_MODULES(KEYRING, [gnome-keyring-1])

3. Open src/Makefile.am and find the following line:

keyring_SOURCES = \
 keyring.vala config.vapi

keyring_VALAFLAGS = \
 --pkg gtk+-3.0

Desktop Integration

[244]

4. Modify the whole line to look like the following:

keyring_SOURCES = \
 keyring.vala config.vapi gnome-keyring.vapi

keyring_VALAFLAGS = \
 --pkg gnome-keyring-1

5. Create a new file in the src/ directory, call it gnome-keyring.vapi, and fill it with
the following lines:

[CCode (cprefix = "GnomeKeyring", lower_case_cprefix = "gnome_
keyring_")]
namespace GnomeKeyringOverrides {
[Compact]
public struct PasswordSchemaAttribute {
 public unowned string name;
 public GnomeKeyring.AttributeType type;
 }

 [Compact]
 [CCode (cheader_filename = "gnome-keyring.h")]
 public struct PasswordSchema {
 public GnomeKeyring.ItemType item_type;
 [CCode(array_length = false)]
 public PasswordSchemaAttribute[] attributes;
 }
 [CCode (cheader_filename = "gnome-keyring.h")]
 public static void* store_password (GnomeKeyringOverrides.
PasswordSchema schema,
string? keyring, string display_name, string password, owned
GnomeKeyring.OperationDoneCallback callback, ...);

 [CCode (cheader_filename = "gnome-keyring.h")]
 public static void* find_password (GnomeKeyringOverrides.
PasswordSchema schema,
owned GnomeKeyring.OperationGetStringCallback callback, ...);
}

6. Open src/keyring.vala and use the following code:

using GnomeKeyring;

public class Main : Object
{
 private const GnomeKeyringOverrides.PasswordSchema secretData =
{
 ItemType.GENERIC_SECRET,
 {

Chapter 10

[245]

 { "name", AttributeType.STRING },
 { null, 0}
 }
 };

 public void returning_password_callback(Result result, string?
password) {
 if (result == Result.OK) {
 stdout.printf ("Password is: %s\n", password);
 } else {
 stdout.printf ("Failed, code: %d\n",(int) result);
 }
 }

 public void store_password_callback(Result result) {
 if (result == Result.OK) {
 GnomeKeyringOverrides.find_password (
 secretData,
 returning_password_callback,
 "name", "myuser",
 null);
 } else {
 stdout.printf ("Failed, code: %d\n",(int) result);
 }
 }

 public Main ()
 {
 GnomeKeyringOverrides.store_password (
 secretData,
 null,
 "My Application Password",
 "this-is-a-password",
 store_password_callback,
 "name", "myuser",
 null);
 }

 static int main (string[] args)
 {

 var app = new Main ();

 var loop = new MainLoop();
 loop.run ();
 return 0;
 }
}

Desktop Integration

[246]

7. Build the application, but don't run it just yet!

8. Open the Activities menu in GNOME Shell, find the Seahorse application, and run it.
You should see some entries inside (or even empty), but no entry with the name My
Application Password. Exit Seahorse.

9. Run our application, it will display the following:

Password is: this-is-a-password

10. It keeps running, but after a while you can kill it by pressing the Ctrl + C keys
combination.

11. Run Seahorse again, we should see an entry called My Application Password. If we
click it, we should be able to see the password, which is this-is-a-password.

What just happened?
What we did was we saved a user password into the GNOME Keyring system. This password
can be recovered later when we need it, as demonstrated by the application in the previous
section. Do you use the "remember password" feature in a web browser? When we use
this feature, the browser prefills the password field with the saved password. But instead
of keeping the password to ourselves, we store this in GNOME Keyring.

Chapter 10

[247]

Unfortunately, the Vala function and class mapping of GNOME Keyring distributed in many
popular distributions have wrong information, so we can't use them as it is. In Chapter 9,
Deploying HTML5 Applications with GNOME, we tried to replace the original .vapi file with
a custom .vapi file. But now, we put an override file which fixes the incorrect information
rather than replacing the whole file. The override file, which we call gnome-keyring.vapi
is included in the build phase as shown in point 4 of our previous action in the Time
for action – storing passwords securely section.

The content of the override is the functions and class member that replace the original
version, which was wrongly written. Here, we have the overrides for the store_password
and find_password functions, and the PasswordSchema structure. We can't just replace
the original version, but we need to use a different namespace. In this example, we use the
GnomeKeyringOverrides namespace.

So whenever we want to use the original version, we use GnomeKeyring, and when we
want to use the overridden version, we use the GnomeKeyringOverrides namespace.

Before using the store_password and find_password functions, we need to define the
structure of the data that we want to keep. In the following code snippet, we describe a
structure which we call secretData. The data only has one field, which we call name. What
we want to do with this data is that we want to store a password associated with a name.
We end the structure with a pair of null and 0 as the end-of-structure mark.

 private const GnomeKeyringOverrides.PasswordSchema secretData = {
 ItemType.GENERIC_SECRET,
 {
 { "name", AttributeType.STRING },
 { null, 0}
 }
 };

In the previous example, we use the asynchronous version of the store and find password
functions. It means that when we call this function, it returns from the function immediately.
We process the success of the function in another callback function. If we choose the
synchronous version (the function names end with the sync postfix) and there is something
heavy running in the GNOME Keyring side, our application could freeze until the operation is
completed; but this won't happen with the asynchronous calls.

Desktop Integration

[248]

As said, we need to prepare a couple of callback functions. The first one is for the
find_password function. We get the result in the result variable, and the password in
the password variable. Note the question mark in the type definition of password which
means that the content may be null. This is true whenever the result is not the value of
Result.OK. The function is used to just simply print the password or the error code when it
fails. In real applications, this should inject the returned password into a field or some other
element which requires the password content.

 public void returning_password_callback(Result result, string?
password) {
 if (result == Result.OK) {
 stdout.printf ("Password is: %s\n", password);
 } else {
 stdout.printf ("Failed, code: %d\n",(int) result);
 }
 }

Then we have the callback for the store_password function. It checks the result value,
and if it is a successful one, we just try to get the password with the find_password
function. In real applications, this could just simply show a notification that the password
has been saved or just quietly do something else.

 public void store_password_callback(Result result) {
 if (result == Result.OK) {
 GnomeKeyringOverrides.find_password (
 secretData,
 returning_password_callback,
 "name", "myuser",
 null);
 } else {
 stdout.printf ("Failed, code: %d\n",(int) result);
 }
 }

In main function, we simply store the this-is-a-password password in an area called
My Application Password. We associate the password with the myuser string. In real
applications, the association could be extended. For example, for a network password, the
additional data needed could be extended to the server name, port number, service path,
and so on. We end the function with null to mark it as the end of the data. If we have the
extended data structure, we should keep passing the needed data as the parameter of the
function, according to the order defined in the structure, and end it with null.

 public Main ()
 {
 GnomeKeyringOverrides.store_password (

Chapter 10

[249]

 secretData,
 null,
 "My Application Password",
 "this-is-a-password",
 store_password_callback,
 "name", "myuser",
 null);
 }

Notification system
An application may need to inform users about an event which is happening. When the
application is active and the user is currently using it, the information may be simply
displayed inside the application. But what happens if the application is currently running
but stays in the background or is being minimized? The user would not be able to see the
information. This is not good, especially when the piece of information is a very important
one. For this purpose we should use the notification system, which is available to users at
all times.

GNOME has libnotify as its notification system. The main process runs as a daemon,
a program that never quits and only exits when the desktop is closed. It listens to all
application requests to display the notifications. Upon receiving the request, it displays the
notification text at the bottom of the screen. Application simply uses the library to send
the notification to the daemon.

Time for action – sending notifications
Let's now try to send some notification:

1. Create a new Seed script called notification.js.

2. Fill it with the following code:

#!/usr/bin/env seed

GLib = imports.gi.GLib;
Notify = imports.gi.Notify;
GObject = imports.gi.GObject;

Main = new GType({
 parent: GObject.Object.type,
 name: "Main",
 init: function() {
 Notify.init('Test Application');
 var n = new Notify.Notification({

Desktop Integration

[250]

 summary: 'This is a notification text',
 body: 'This is a longer version of the notification text',
 });
 n.add_action('ok-button', 'OK', function() { n.close()});
 n.show();
 }
});

var main = new Main();
var context = GLib.main_context_default();
var loop = new GLib.MainLoop.c_new(context);
loop.run();

3. Run it. Note that the notification text is truncated. It is shown momentarily at the
bottom of the screen and if we move our mouse close to the text, the container of
the text will expand, showing all the portions of the text. It will also display the OK
button. But as soon as we move out from the area, the text will disappear. If we do
not press the OK button, the notification will stay at the bottom-right corner of
the screen.

Chapter 10

[251]

What just happened?
What we did was just a simple function call to libnotify. First we need to declare it by
performing an import from Notify:

Notify = imports.gi.Notify;

Before calling any function from libnotify, we must call the init function. Otherwise no
other function can be called successfully.

 Notify.init('Test Application');

Then we create a new notification object. One object can hold one notification text. We set
the text, the summary, and the body in the constructor. The summary section is the short
text that would appear initially on the screen. The body section is the longer text that is
displayed by placing the mouse cursor inside the notification area. With Seed, we could pass
these texts in an object.

 var n = new Notify.Notification({
 summary: 'This is a notification text',
 body: 'This is a longer version of the notification text',
 });

Then we add an OK button. We simply close the notification whenever the button is clicked.
The action is attached with an anonymous function as defined here.

 n.add_action('ok-button', 'OK', function() { n.close()});

When we want to show the notification, we can just call the show function:

 n.show();

Our notification would remain in the notification area—even when our program is
closed—until the OK button is pressed.

Have a go hero – displaying an icon
Let's try to display an icon inside our notification. It's very easy to do, we could just put an
icon name in the icon field of the object we pass in the constructor.

Desktop Integration

[252]

Summary
In this chapter we have learned about integration to some important parts of the desktop,
namely the session management, launcher, keyring, and notification system. We introduced
ourselves to D-Bus. Then we discussed about accessing the features using the D-Bus API as
well as the usual library API.

We now know that we can create an application which can initiate a logout or shutdown
process and we also know how to inhibit the Session Manager from continuing the process.
We know how to make our application visible in the launcher by installing the desktop file
into the /usr/share/applications directory. We learned how to store sensitive data
into the keyring and retrieve it when we need it. Finally we discussed how to display a
notification that is displayed by the desktop. With these experiences, we can leverage
our applications to be fully integrated with the GNOME desktop.

We also learned the trick to overcome wrong .vapi supplied by many popular distributions
by creating an override file.

The next chapter discusses the aspects that we have to pay attention to when our
application goes global. So if we want our application to be successful on an international
level, we must not miss it.

11
Making Our Applications

Go International

GNOME has a very good track record as far as internationalization is concerned
(often abbreviated as i18n), which is a method of designing applications
that can be adapted in various languages and regional settings without any
engineering changes. Since its early versions, GNOME already supported many
languages and regions. This provides us with a good choice to also make our
applications ready to be deployed anywhere in the world.

This chapter is very important if we aim to distribute our applications in countries outside
the United States. Why? Because, by default, GNOME (and other subsystems) uses English as
the interface language and uses the U.S. date, time, number, and monetary formats. When
we target our market outside the U.S., we need to follow the steps discussed in this chapter.
Specifically, this chapter is about understanding the following topics:

 � Locale introduction

 � Bootstrapping an i18n infrastructure

 � Translating the UI text

 � The localization process

Now, let's start!

Making Our Applications Go International

[254]

Understanding locale
Internally, GNOME uses the Portable Operating System Interface (POSIX) locale system to
make i18n work. A locale contains a set of cultural parameters written in a specified script in
a particular variant of a language spoken in a certain territory. The parameters include the
character set used in the locale, the language code, and the presentation of date and time,
number, currency, address, telephone, and measurement.

Each locale is identified with a locale code. This code is defined in the following format:

language[_territory][.codeset][@modifier]

For example, the locale of the Aceh language spoken in Indonesia, which is written in
the Jawi script in a UTF-8 character set, is coded as ac_ID.UTF-8@Jaw. The parts in
square brackets are sometimes omitted when it is less ambiguous. The language part
of the code is coded in ISO-639, the territory is coded in ISO-3166, and the script is
coded in ISO-15924 standards.

Each parameter can have a different locale assigned to it. For example, we can use
a fully Dutch-translated desktop, but use a Western Arabic numeric format and U.S.
measurement and monetary settings. However, GNOME only provides limited settings
to reduce confusion.

The settings are applied to the system usually when the user logs in to the desktop. If the
user did not choose a locale during installation, the system usually uses a C locale (also known
as the POSIX locale). POSIX itself is an international standard issued by IEEE for maintaining
compatibility between operating systems. The standard includes the POSIX locale, which is
the base locale that then can be extended to support other cultural preferences.

Chapter 11

[255]

The preceding diagram shows an illustration on how an application uses a locale. On the
right-hand side we have a collection of data. Source string is the text from the source code,
which is intended to be shown in the application, be it a label text, a header, a caption
of an image, an information text, and so on. Translations are a set of translations of the
source string in many human languages and dialects, such as U.S. English, British English,
Indonesian, Japanese, and so on. Locale data affects the formatting (for example, the
number and the date presentation) and the content of the text (such as displaying the day of
the week in the target language). The source string is then passed into the API in the middle
and then transformed into the final string, which is then displayed on the right-hand side.

Translations and locale data should be prepared for all target market areas of the application.
They may be missing. In this case, the source string is displayed without any transformation,
meaning whatever is written in the source code will be displayed without any translations or
formatting changes.

Time for action – getting the available locales
We can see a list of the available locales on our system easily. This should be our first
command, which we must master in order to make our life easier later when we need
to debug why our application can't get translated. Let's see how to do this:

1. Open a terminal.

2. Run the following command:

locale -a.

3. We will be presented with a list of the locales available in our system (the actual
output in your own computer may vary). Here is a sample list:

C

C.UTF-8

en_US.utf8

POSIX

What just happened?
In the previous list, we see that we have four locales installed in the system. We have C, both
in Universal Character Set and UTF-8, POSIX, and English-US in UTF-8 locales. It means that
we can only have four different translations of an application. C and POSIX usually are not
used at all for translations and are only used by the source language, which is the language
used in the source code (the human language used in the textual presentation, not the
programming language). With this fact, it means that we can only have one translation,
which is the English-US.

Making Our Applications Go International

[256]

The character set affects how the data is presented on the screen, in the storage, and
during data transfers. It is a mapping between an integer number, called a code point, to a
character, the presentation of a letter, number, symbol, and many other types of characters.
GNOME uses UTF-8 internally, so we will stick to this character set.

Have a go hero – exploring the locale parameters
Try to run locale without any parameter to see all the locale parameters. The parameters
are affected by setting the locale environment variables (prefixed with LC_). Can you
somehow guess which parameter is represented by which variable?

Time for action – adding a locale
If you only see English-US in the available locale list, let's add a locale to the system. If you
see a locale other than English-US, you can skip this action. Let's add an Indonesian locale
with an Indonesian territory, so the code for it is id_ID. Of course, you can use a different
locale depending on your preference.

1. Edit the /etc/locale.gen file as a superuser.

2. Find a line that shows id_ID.UTF-8.

3. Remove the comment mark, which is the hash mark in front of the line.

4. Save the file.

5. Open a terminal and run the sudo locale-gen command.

6. Depending on the content of the /etc/locale.gen file, the output may vary.
But if you only uncomment Indonesian and English-US, then you will see the
following output:

Generating locales (this might take a while)...

 en_US.UTF-8... done

 id_ID.UTF-8... done

Generation complete.

7. To check whether our command has succeeded, let's type locale -a in the
terminal again.

8. We should see the id_ID.utf-8 locale in the list, as shown here:

C

C.UTF-8

en_US.utf8

id_ID.utf8

POSIX

Chapter 11

[257]

What just happened?
The locale information for many cultures already exists within the system. However, they are
still in the textual form and not enabled. What we did with the locale-gen command was
generate the binary representation and enable the locales that are listed without a comment
in the /etc/locale.gen file. With this command, it is enabled system wide. Hence, we
need a root privilege and we used sudo to accomplish the task (note that locale -a does
not need this privilege).

Time for action – getting different outputs with different locales
Ok, so now that we have a locale other than English-US, what's next? Let's start with a very
simple one, the date program.

1. Open a terminal.

2. Type the following:

LC_ALL=C date

3. See the output, as shown here:

Sun Oct 28 15:41:38 EET 2012

4. Then type the following command (don't forget to change id_ID.utf8 to the
locale that you have enabled previously).

LC_ALL=id_ID.utf8 date

5. Check the output; it will be similar to the one shown here:

Min Okt 28 15:41:45 EET 2012

What just happened?
In this action, we configured the settings manually by using the LC_ALL environment
variable. By setting the LC_ALL variable to any locale identifier, the POSIX system would
immediately use the specified locale to transform the output of the application. As
mentioned earlier, the system has many parameters that we can set. The LC_ALL
variable is the magic parameter that sets all of the parameters with a single value.

Actually, the output of the date program is purely date and time data. So, the parameter
affected is LC_TIME.

Have a go hero – using a bogus local identifier
As we can see, the output is translated into Indonesian just after we set the locale. Try to
provide any bogus locale identifier (or try to make a typo!) and you will see that it no longer
works. Also, if you have other locales installed, try them all!

Making Our Applications Go International

[258]

i18n in a Vala project
To make i18n work in Vala, there are several steps needed to be done. Let's create a Vala
project and do the i18n steps one by one.

Time for action – bootstrapping the infrastructure
The first thing we need to do is prepare the build infrastructure. This step is quite tricky
because if you miss even a single detail, you could get lost for hours trying to find out why
everything does not work. But don't be afraid, let's jump into the freezing water and get a
fish out of it!

1. Create a Vala project with GtkBuilder support; let's call it hello-i18n.

2. Edit the configure.ac file and alter this file by referencing the following code.
What you need to do is insert the highlighted lines between the lines that are not
highlighted. If you worry about not getting it properly, you can just copy and paste
the whole file.

AC_INIT(hello_i18n, 0.1)
AC_CONFIG_HEADERS([config.h])
AM_INIT_AUTOMAKE([1.11])
AM_SILENT_RULES([yes])
AC_PROG_CC

LT_INIT
IT_PROG_INTLTOOL()

AH_TEMPLATE([GETTEXT_PACKAGE], [Package name for gettext])
GETTEXT_PACKAGE=hello-i18n

AC_DEFINE_UNQUOTED([GETTEXT_PACKAGE], ["$GETTEXT_PACKAGE"],
 [The domain to use with gettext])
AC_SUBST(GETTEXT_PACKAGE)
AM_GLIB_GNU_GETTEXT

PACKAGE_LOCALE_DIR=[${datadir}/locale]
AC_SUBST(PACKAGE_LOCALE_DIR)

dnl Check for vala
AM_PROG_VALAC([0.10.0])

dnl Development mode
AC_ARG_ENABLE(development,

Chapter 11

[259]

 AS_HELP_STRING([--enable-development],[enable development
mode]),
 enable_development="$enableval",
 enable_development=no)
if test "x$enable_development" = "xyes"; then
 DEVELOPMENT_MODE="yes"
fi

AC_SUBST(DEVELOPMENT_MODE)
AH_TEMPLATE([DEVELOPMENT_MODE], [Whether in development mode or
not])
AC_DEFINE_UNQUOTED([DEVELOPMENT_MODE], ["$DEVELOPMENT_MODE"],
 [Development mode])

PKG_CHECK_MODULES(HELLO_I18N, [gtk+-3.0])

AC_OUTPUT([
Makefile
src/Makefile
po/Makefile.in

])

3. Create a folder named po in the top folder of the project.

4. Create a new file called POTFILES.in inside the po folder; fill this file with the
following code:

[type: gettext/glade]src/hello_i18n.ui

5. Also create a new file called LINGUAS inside the po folder; fill this file with the
language code that we want to support. To continue with the previous example,
let's add Indonesian into the file by adding the following:

id

6. If you are using another locale, you can just put the language code, not the whole
locale identifier.

7. We need to set up an initial translation template inside this new folder. We need to
open a terminal and run the following command inside the po folder:

intltool-update --pot

8. The result of this command is a file called hello-i18n.pot. This is an empty
translation file and we will use this as the base of the translation.

Making Our Applications Go International

[260]

9. Duplicate the hello-i18n.pot file by copying it and naming it id.po. Again, if
you are using a different language, adjust the filename to reflect the code of the
language. The .po extension marks it as a portable object file, a translation file
format that is very popular in the open source world. For now, keep the id.po file
as it is, we will use it later.

10. Edit Makefile.am in the top folder; alter its content by referring to the following
code. Only the parts that are highlighted were added or modified from the original
generated file:

 SUBDIRS = src po

hello_i18ndocdir = ${prefix}/doc/hello_i18n
hello_i18ndoc_DATA = \
 README\
 COPYING\
 AUTHORS\
 ChangeLog\
 INSTALL\
 NEWS

EXTRA_DIST = \
 $(hello_i18ndoc_DATA) \
 intltool-extract.in \
 intltool-merge.in \
 intltool-update.in

DISTCLEANFILES = \
 intltool-extract \
 intltool-merge \
 intltool-update \
 po/.intltool-merge-cache \
 $(NULL)

Remove doc directory on uninstall
uninstall-local:
 -rm -r $(hello_i18ndocdir)

11. Edit the src/config.vapi file and add this line to the namespace:

public const string DEVELOPMENT_MODE;

12. Edit src/Makefile.am and append --Xcc='--include config.h' to the
hello_i18n_VALAFLAGS declaration so that the entire code will look like
the following:

hello_i18n_VALAFLAGS = \
 --pkg gtk+-3.0 --Xcc='--include config.h'

Chapter 11

[261]

13. Still in the same file, insert -include config.h into the AM_CPPFLAGS
declaration, so that the entire code declaration will look like the following:

AM_CPPFLAGS = \
 -DPACKAGE_LOCALE_DIR=\""$(localedir)"\" \
 -include config.h \
 -DPACKAGE_SRC_DIR=\""$(srcdir)"\" \
 -DPACKAGE_DATA_DIR=\""$(pkgdatadir)"\" \
 $(HELLO_I18N_CFLAGS)

14. Edit src/hello_i18n.vala and add the following code in the main function:

 if (Config.DEVELOPMENT_MODE == "yes") {
 Intl.bindtextdomain(Config.GETTEXT_PACKAGE, "src/po");
 } else {
 Intl.bindtextdomain(Config.GETTEXT_PACKAGE, Config.PACKAGE_
LOCALE_DIR);
 }

 Intl.bind_textdomain_codeset(Config.GETTEXT_PACKAGE, "UTF-8");
 Intl.textdomain(Config.GETTEXT_PACKAGE);

15. Configure the project by clicking Configure Project... in the Build menu, and in the
upcoming dialog window add --enable-development in Configure Options.

16. Let's build the project.

17. We won't see anything particular in this first step, but our build should
be successful.

What just happened?
We had to do the infrastructure setup by ourselves as Anjuta does not do this for us.
What we did was basically set the autotools to include gettext and intltool into the build
pipeline. Gettext is a library that helps us to translate our applications into the target's
local languages, and intltool is a library that helps prepare the data required for the
translation system.

We also prepared the basic folder for the translation files. This po folder will contain
translations of the UI texts. For now, though, it has nothing useful.

The other important thing we did was to add the code configuration filesystem. In
configure.ac, we specify GETTEXT_PACKAGE and DEVELOPMENT_MODE to be
configurable by the code. What we did was insert the following lines:

AH_TEMPLATE([DEVELOPMENT_MODE], [Whether in development mode or not])
AC_DEFINE_UNQUOTED([DEVELOPMENT_MODE], ["$DEVELOPMENT_MODE"],
 [Development mode])

Making Our Applications Go International

[262]

The result is a file called config.h that will be generated when building the application, and
these two variables would be available in that file. Then, the source code (config.vapi
and the generated C-language code) would be able to access the values. We will discuss this
further in the next action.

Last but not least, we put translation initialization steps in the main function.

if (Config.DEVELOPMENT_MODE == "yes") {
 Intl.bindtextdomain(Config.GETTEXT_PACKAGE, "src/po");
} else {
 Intl.bindtextdomain(Config.GETTEXT_PACKAGE, Config.PACKAGE_LOCALE_
DIR);
}

Intl.bind_textdomain_codeset(Config.GETTEXT_PACKAGE, "UTF-8");
Intl.textdomain(Config.GETTEXT_PACKAGE);

The bindtextdomain function sets the lookup folder of the translation catalog (in Gettext
terms, it is called domain) to point to the specified folder. The catalog's name and the folder
are specified in the arguments. A catalog contains mapping between the source language
(usually written in English) and the target language. The function basically tells us that the
translations are available in the folder, and the files to look at have the names as specified
by the catalog name.

We have two branches in this part depending on the DEVELOPMENT_MODE value. If it is
in the DEVELOPMENT_MODE mode, the translations are set to be in the src/po folder,
otherwise it is set to the system folder (usually /usr/share/locale). The DEVELOPMENT_
MODE value itself is set when we pass –enable-development in the project configuration.

The bind_textdomain_codeset part tells that we are using a UTF-8 character set. And
finally, textdomain attaches the catalog into the current process, so any gettext function
after this initialization assumes that the catalog would be in use.

These are all the steps that we have to follow to have multilingual support in our applications.
But no worries, you only need to do this once, during the start of the development.

One important thing is that we must remove --enable-development from the project's
configuration dialog, because with this flag set, the code will look for the translation in the
source code tree, and not in the system.

Chapter 11

[263]

Time for action – creating a UI
After the infrastructure is ready, now let's move on and create the UI.

1. Open the hello_i18n.ui file.

2. Put a Box widget and split it into five items.

3. In the first four items, put five Label controls inside each of the items.

4. For the last item, put a Button control.

5. Edit the labels. For each label, assign a text from the following list:

This is a label
Today's date is %x
The price is %^=#6n
The weight is %.3f %s

6. For the button, set See you later as the text.

7. When editing the labels, press the ellipsis button that is on the right-hand side
of the textbox. We will be presented with the following dialog:

Making Our Applications Go International

[264]

8. For all the labels (including the button's label), make sure the Translatable checkbox
is checked. This is essential, because without this, we can't have our application
translated at all.

9. Modify the hello_i18n.vala file to look like the following code snippet:

using GLib;
using Gtk;

public class Main : Object
{
 /*
 * Uncomment this line when you are done testing and building a
tarball
 * or installing
 */
//const string UI_FILE = Config.PACKAGE_DATA_DIR + "/" + "hello_
i18n.ui";
const string UI_FILE = "src/hello_i18n.ui";
 /* ANJUTA: Widgets declaration for hello_i18n.ui - DO NOT REMOVE
*/
 Builder builder = null;

 public Main ()
 {
 try
 {
 builder = new Builder ();
 builder.add_from_file (UI_FILE);
 builder.connect_signals (this);

 var window = builder.get_object ("window") as Window;
 /* ANJUTA: Widgets initialization for hello_i18n.ui - DO NOT
REMOVE */
 window.show_all ();
 }
 catch (Error e) {
 stderr.printf ("Could not load UI: %s\n", e.message);
 }

 var b = builder.get_object ("button1") as Button;
 b.clicked.connect(()=>{
 Gtk.main_quit();
 });

 var dateData = new Date();

Chapter 11

[265]

 char buffer[100];
 Time t = Time.local (time_t ());

 var date = builder.get_object ("label_date") as Label;
 t.strftime (buffer, date.label);
 date.label = (string) buffer;

 var priceData = 9.99;
 var price = builder.get_object ("label_price") as Label;
 Monetary.strfmon(buffer, price.label, priceData);
 price.label = (string) buffer;

 weak string measurement = LangInfo.get_info(LangInfo.Item.
MEASUREMENT);
 bool metric = (measurement[0] == 1);

 var weightData = 11.24;
 var weight = builder.get_object ("label_weight") as Label;
 weight.label = weight.label.printf(metric ? weightData :
weightData * 2.20462, metric ? "Kg" : "Lb");

 }

 [CCode (instance_pos = -1)]
 public void on_destroy (Widget window)
 {
 Gtk.main_quit();
 }

 static int main (string[] args)
 {
 Gtk.init (ref args);
 if (Config.DEVELOPMENT_MODE == "yes") {
 Intl.bindtextdomain(Config.GETTEXT_PACKAGE, "src/po");
 } else {
 Intl.bindtextdomain(Config.GETTEXT_PACKAGE, Config.PACKAGE_
LOCALE_DIR);
 }
 Intl.bind_textdomain_codeset(Config.GETTEXT_PACKAGE, "UTF-8");
 Intl.textdomain(Config.GETTEXT_PACKAGE);

 var app = new Main ();

 Gtk.main ();

 return 0;
 }
}

Making Our Applications Go International

[266]

10. If you notice in the preceding code block, we need the LangInfo.get_info and
Monetary.strfmon functions that are not available anywhere in the system.
Actually, we wrap the original nl_langinfo and strfmon values from glibc in
the two files we need to add, that is, langinfo.vapi and monetary.vapi. So
first, let's create a new empty file and name it langinfo.vapi and fill it with
the following code:

[CCode (cprefix = "", lower_case_cprefix = "", cheader_filename =
"langinfo.h")]
public class LangInfo {
 public enum Item
 {
 [CCode (cname="_NL_MEASUREMENT_MEASUREMENT")]
 MEASUREMENT
 }

 [CCode (cname="nl_langinfo")]
 public static weak string get_info (Item type);

}

11. Next, create an empty monetary.vapi file and fill this file with the following code:

[CCode (cprefix = "", lower_case_cprefix = "", cheader_filename =
"monetary.h")]
public class Monetary {

 public static ssize_t strfmon(char[] s, string format, double
data, ...);

}

12. Edit src/Makefile.am and add monetary.vapi and langinfo.vapi into the
hello_i18n_SOURCES declaration, so that the code will be as follows:

hello_i18n_SOURCES = \
 hello_i18n.vala config.vapi monetary.vapi langinfo.vapi

13. Rebuild and run the application. We should see the following window:

Chapter 11

[267]

What just happened?
The important part in this action is to make the labels translatable. This will enable intltool to
pick up the text in the hello_i18n.ui file.

The next important things are the (re) introduction of the Monetary.strfmon and
LangInfo.get_info functions. Monetary.strfmon is a wrapper of the strfmon function
and is used to format monetary data as a string. The monetary data should be displayed
completely with the currency symbol according to the locale. This function is wrapped by
providing a .vapi file stating the corresponding C header filename and the function name,
which we wrap. In this case, it is a straightforward wrapping, which means the original
function's name (strfmon) is the same as the wrapper function's name (also called strfmon).

Then, we have the LangInfo.get_info function, which is a wrapper of the nl_langinfo
function. This function takes a locale setting item and converts that into a pointer or a
string. A locale item is an item that describes a particular locale setting in a locale file. In
this case, we wrap two parts. The first is the locale item, which we wrap as an enumeration
and name it Item. We only need the LC_MEASUREMENT item, so we only wrap it inside the
enumeration. If you need other items, you can wrap and put it in the enumeration as well.
The enumeration order is no longer important as we directly map the enum member with
the actual C-language enum member by using the following code:

[CCode (cname="_NL_MEASUREMENT_MEASUREMENT")]
MEASUREMENT

This means that LangInfo.MEASUREMENT in Vala is exactly the same as _NL_
MEASUREMENT_MEASUREMENT in C.

After that, we wrap the wrap nl_langinfo function as LangInfo.get_info.

[CCode (cname="nl_langinfo")]
public static weak string get_info (Item type);

We opt to use get_info rather than nl_langinfo, because a wrapper with a nl_ prefix
makes no sense here in Vala; so, get_info reflects what the function does. We use the weak
keyword in the function to denote that the returned string should not be managed by Vala.

Time for action – translating UI texts
The next step is to actually translate the UI text. We will see how to extract the texts from
the UI file and translate them.

1. Go to the po folder using a terminal.

2. Update the id.po file, which we duplicated from the first part of the action, by
typing the following command:

intltool-update id

Making Our Applications Go International

[268]

3. From the GNOME Activities menu, launch the Gtranslator program.

4. During the first launch, we need to fill the profile. Provide a name to the profile and
fill your name and e-mail address. The next window will ask you about the language
properties that you are going to translate into. Make sure the language code is
correct (refer to ISO-639). Enter UTF-8 and 8bit as the character set and transfer
the encoding values respectively. Team email is the e-mail address used by the
translators of this language. The Plural forms option determines how a word should
use its plural form. In the Indonesian language, the number of plurals is two, and a
word should use the plural form when the count of the object referred by the word
is greater than one. Hence we choose the option nplurals=2; plural=(n>1). For the
Indonesian language, it would look like this:

5. Click Continue, finish the setup of GTranslator, and go ahead and open the id.po
file using its menu.

6. After this file is opened, we are now ready to translate. Click on each text in the list
and enter its translation in the Translated textbox. All formatting marks such as %x,
%s, and others must not be modified or changed by translators except when it is
requested to do so (for example, when adjusting the date format). The order of
the appearance of these formats must not be changed as well.

7. Translate the text by referring to the following translation table:

Original text Translated text

This is a label Ini adalah label

Today's date is %x Tanggal hari ini adalah %x

The price is %^=#6n Harganya %^=#6n

The weight is %.3f %s Beratnya %.3f %s

See you later Sampai jumpa

Chapter 11

[269]

8. Save the file.

9. Rebuild our application.

10. In the terminal, create a po folder inside the src folder. Inside the po folder, create
an id folder. After that, create the LC_MESSAGES folder inside id. So, altogether
we should have a new folder called src/po/id/LC_MESSAGES.

11. Then rename the id.gmo file, which was produced after the rebuild, to hello-
i18n.mo into the folder we created in the previous step. Notice the hello-i18n
name must be exactly the same as the value of the GETTEXT_PACKAGE variable,
which we set earlier.

12. Go to the top folder of the project by using the terminal and run the application
with the Indonesian language, as shown here:

LANGUAGE=id LC_ALL=id_ID.utf8 src/hello-i18n

13. The application window should look like the one shown in the following screenshot.
Be amazed!

What just happened?
This part is where the UI text is generated and translated. The resulting .po files are then
taken to the translators' hand and then into the translation queue. This must be done
whenever we update any text in the source code. This is exactly done by just entering
the following command:

intltool-update id

Note that this will only update the id.po file; any remaining files must be updated
individually. What this command actually does is it extracts new text from the files stated in
the POTFILES file and merges them with the existing id.po file. If there is an ambiguity,
the translator would be notified in GTranslator by being shown the text in a fuzzy state.
The translator can then fix this issue by providing a new translation for those fuzzy texts.

Making Our Applications Go International

[270]

After all the strings inside the .po files are translated, all translated .po files must be
returned back to the po folder. We then perform a build here. Actually, what the build
does is it simply issues the following command:

msgfmt -cv id.po -o id.gmo

This step converts id.po from a text form to id.gmo in a binary form. The application can
only take the binary form, hence we need this step. The bindtextdomain function in the
application sets the folder to the src/po/ folder whenever we are in the development
mode. Actually, it will look for the binary .gmo files in the src/po/<language-code>/
LC_MESSAGES folder. The language code is the code specified in the LANGUAGE environment
variable. If this variable is not specified, it will look for the language code in the LANG,
LC_MESSAGES, and at last LC_ALL variables consecutively.

The command we execute to run the application is as follows:

LANGUAGE=id LC_ALL=id_ID.utf8 src/hello-i18n

This sets the bindtextdomain function to look for the translation in src/po/id/LC_
MESSAGES (because the LANGUAGE variable is set to id) and otherwise use id_ID.utf8
as the locale setting. The result is that the UI texts are translated to Indonesian, and the
monetary, number, and measurement parameters are also set to Indonesian.

Have a go hero – installing another locale
If you have another locale installed to try, here is a good chance. For example, try to set
LC_MEASUREMENT to en_US.utf8 (United States), LC_MONETARY to de_DE.utf8
(German), and LC_TIME to ar_SA.utf8 (Saudi Arabia). Would you be able to get
an output similar to the one shown in the following screenshot?

Chapter 11

[271]

The localization process
From the actions we did, we know that we need a process to do the localization. Localization
(often abbreviated as L10n) is a further step after internationalization. It is where the actual
work specific to the target market area is done. We need this process as it involves the
translators who usually can't even build the application.

implemented in

U Design

UI Designers

.po files

extracted as

translated

Source code

released

Product build

Customer

Developers
and Testers

Translators

The previous diagram shows a very simplified L10n process. The source code is produced
by the developers according to the UI design. The design could be in formal documents or
mockups. During the development, the developers add text into the source code and UI files.
These texts are then extracted to .po files for each language of the target markets.

Here, the translators own the files until they are fully translated. The translated files are then
handed over back to the developers. The developers and testers could make a build to test.
Whenever a milestone is due, the product build is created along with the translation and
delivered to the customer.

We need to set up a good infrastructure to make our life easier. The whole scenario
described previously should be done in an automated way, so no delay should be
produced between the steps.

Making Our Applications Go International

[272]

In reality, before a build is delivered to the customer, a series of tests with each locale must
be carried out thoroughly. Most of the time, the translators could easily get lost without
a context while translating the UI text. This error can be minimized by using comments in
the translation file; however, there is another issue that makes the test important. This is
about how the text is displayed. There must be a check to find whether they are truncated
in the translation or not. If it is, then check whether an engineering process must be carried
out (for example, to resize the text size) or the translator must figure out an alternative
translation. The tester should also check whether the text is rendered correctly or not. If the
target market involves countries with Asian languages, or languages that are written in both
the left and right direction, then the test must be carried out even more carefully.

Summary
This chapter discussed about preparing our application to be both internationalized and
localized. The difference between the two is that the i18n part makes sure that our software
is capable of displaying multilingual and multicultural information, whereas L10n is the
actual effort to deliver the language and culture settings into the application. In short, i18n
makes our software L10n ready.

We started the chapter by introducing ourselves with locale. We now know how to get the
list of available locales in our system as well as how to enable a locale.

Then, using a Vala project, we learned to bootstrap the i18n architecture. This process must
be done during the initial stage of a project. After that, we learned how to prepare the
source code to get the UI text translated and were exposed to some of the i18n functions
to get time, monetary, and measurement data to be localized. Then, we learned how the
translators work with the translation files.

Finally, we discussed an example of the L10n process. This example can be adjusted
depending on how the organization arranges the engineering process.

In the next chapter, we will discuss about quality control in our application. We will apply
the best practices in software engineering in a GNOME way.

12
Quality Made Easy

Software quality is not checked before releasing the product into the market.
It is done way before that. Many software developers even check the quality
before a single piece of code is written. Tested, well-written, and well-kept code
along with a set of well-defined rules together are the essentials for software
development. How to do this all in the GNOME development environment?
Let's find out.

Unit testing, among other testing required for a software, is sometimes tricky to write.
This chapter will concentrate on performing unit tests. We will use the testing framework
provided by GLib, GTK+, and Gdk. In this chapter, we use command lines intimately instead
of Anjuta so that we can get the intuition on how to automate the testing easily. For the
actions, we will use old code from previous chapters and add unit testing to them.

Specifically we will dig out:

 � The concept of unit testing

 � Stubbing library

 � Testing GUI modules

Now, let's get rolling.

Quality Made Easy

[274]

Reasons for performing unit testing
Unit tests are localized and are specific tests carried out for a specific object in our source
code. We need to make sure that the test really tackles each of the functionalities. To do
unit testing, we simply do the following:

 � Test each function.

 � Test each branch in the function; for example, if the function contains if and else
statements, or switch and case statements.

 � The previous rules are to make sure that we cover all places in the source code so
that there are no surprises, especially a bad one, waiting for us when we deliver
the program to the customer.

 � To test the functions, we need to pass data in the argument list. We should craft the
data and, if necessary, repeat the test using different sets of data to make sure the
second rule is fulfilled.

 � Unit testing should be performed whenever a piece of code is written. Many
software developers use the Test-Driven Development (TDD) methodology by
creating the unit tests even before they write the code! This has an advantage in
that we would know what to expect from the code so that we can focus on what
the function should deliver. This is especially important when we write libraries, so
we know exactly what the API looks like and how to use them, by creating the unit
test first.

 � Unit testing must be deterministic, meaning that we must know exactly what the
output is by giving a certain input. To achieve this, the data we inject into the testing
must not be random and the behavior of the API we use also must be deterministic.

Time for action – creating our first unit test
For our first action, let's revisit our old code where we have our first encounter with Vala,
the hello-vala program from the Getting to know Vala section in Chapter 3, Programming
Languages. We have two objects, Book and Bookstore, which we will create unit tests for.

1. Let's reopen the hello_vala.anjuta file from Anjuta.

2. Open the configure.ac file in the top directory of the project. Find the output
section as shown in the following code:

AC_OUTPUT([
Makefile
src/Makefile
tests/Makefile
])

Chapter 12

[275]

3. Make changes as shown in the following code:

AC_OUTPUT([
Makefile
src/Makefile
tests/Makefile
])

4. Open the Makefile.am file in the top directory of the project and find the
SUBDIRS section.

SUBDIRS = src

5. Make changes as shown in the following code:

SUBDIRS = src tests

6. Create a directory called tests in the top directory.

7. Create a new Makefile.am file inside the tests directory and fill it with this code:

AM_CPPFLAGS = \
 -DPACKAGE_LOCALE_DIR=\""$(localedir)"\" \
 -DPACKAGE_SRC_DIR=\""$(srcdir)"\" \
 -DPACKAGE_DATA_DIR=\""$(pkgdatadir)"\" \
 $(HELLO_VALA_CFLAGS) \
 $(atk_CFLAGS) \
 $(gee-1.0_CFLAGS)

AM_CFLAGS =\
 -Wall\
 -g

TESTS=test_book test_bookstore

check_PROGRAMS = test_book test_bookstore

test_book_SOURCES = \
 test_book.vala ../src/book.vala

test_book_VALAFLAGS = \
 --pkg gtk+-3.0 \
 --pkg gee-1.0

test_book_LDFLAGS = \
 -Wl,--export-dynamic

test_book_LDADD = $(HELLO_VALA_LIBS) \
 $(atk_LIBS) \
 $(gee-1.0_LIBS)

Quality Made Easy

[276]

test_bookstore_SOURCES = \
 test_bookstore.vala ../src/book.vala ../src/bookstore.vala

test_bookstore_VALAFLAGS = \
 --pkg gtk+-3.0 \
 --pkg gee-1.0

test_bookstore_LDFLAGS = \
 -Wl,--export-dynamic

test_bookstore_LDADD = $(HELLO_VALA_LIBS) \
 $(atk_LIBS) \
 $(gee-1.0_LIBS)

8. Create a new Vala code called test_book.vala inside the tests directory. Fill it
with this code:

public class TestBook {
 static void test_isbn ()
 {
 var b = new Book("1", "title");
 assert(b.isbn == "1");
 }

 static void test_title ()
 {
 var b = new Book("1", "title");
 assert(b.title == "title");
 }

 static void test_add_author()
 {
 var b = new Book("1", "title");
 b.addAuthor("author1");
 b.addAuthor("author2");
 b.addAuthor("author3");
 assert(b.authors.size == 3);
 }

 static int main (string[] args)
 {
 Test.init (ref args);

 Test.add_func ("/test-isbn", test_isbn);
 Test.add_func ("/test-title", test_title);
 Test.add_func ("/test-add-author", test_add_author);

Chapter 12

[277]

 Test.run ();

 return 0;
 }
}

9. Create a new Vala file called test_bookstore.vala and also put it inside the
tests directory. Copy this code into that file:

public class TestBookStore {
 static void test_add_stock()
 {
 var b = new Book("1", "title");
 var s = new BookStore(b, 1.0, 12);
 s.addStock(13);
 assert(s.getStock() == 25);
 assert(s.isAvailable() == true);
 }

 static void test_remove_stock()
 {
 var b = new Book("1", "title");
 var s = new BookStore(b, 1.0, 12);
 s.addStock(13);
 s.removeStock(10);
 assert(s.getStock() == 15);
 assert(s.isAvailable() == true);
 }

 static void test_stock_alert()
 {
 var b = new Book("1", "title");
 var s = new BookStore(b, 1.0, 12);
 var alert_emitted = false;

 s.stockAlert.connect(() => {
 alert_emitted = true;
 });

 s.removeStock(1);
 assert(alert_emitted == false);
 s.removeStock(10);
 assert(alert_emitted == true);
 }

 static void test_price_alert()
 {

Quality Made Easy

[278]

 var b = new Book("1", "title");
 var s = new BookStore(b, 1.0, 12);
 var alert_emitted = false;

 s.priceAlert.connect(() => {
 alert_emitted = true;
 });

 s.setPrice(2.5);
 assert(alert_emitted == false);
 s.setPrice(0.5);
 assert(alert_emitted == true);
 }

 static int main (string[] args)
 {
 Test.init (ref args);

 Test.add_func ("/test-add-stock", test_add_stock);
 Test.add_func ("/test-remove-stock", test_remove_stock);
 Test.add_func ("/test-stock-alert", test_stock_alert);

 Test.run ();

 return 0;
 }
}

10. Open src/book.vala and find this piece of code in the file:

private string title;
private string isbn;
private ArrayList<string> authors;

11. Replace the previous code with this:

 internal string title;
 internal string isbn;
 internal ArrayList<string> authors;

12. In the project's top directory, issue this command on a terminal:

./autogen.sh

13. Make sure everything still works fine by building the project and typing the
following command:

make all

Chapter 12

[279]

14. Build and run the unit tests by issuing this command:

make check

15. Make sure you see an output that looks similar to these lines:

/test-isbn: OK

/test-title: OK

/test-add-author: OK

PASS: test_book

/test-add-stock: OK

/test-remove-stock: OK

/test-stock-alert: OK

PASS: test_bookstore

==================

All 2 tests passed

==================

What just happened?
Wow! That was a busy action, wasn't it?

The end result is that we have unit tests checking the validity of our code by showing the test
paths and test results. We saw from the previous section that we got all OKs from all of our
test paths. It also had a statistic of the tests.

What we did first was we prepared the autotools infrastructure by modifying configure.
ac and Makefile.am and then created a new Makefile.am file in the tests directory. We
introduced the tests directory both into the output section of configure.ac and the
SUBDIRS section of Makefile.am. Without these, the tests directory is unknown to the
autotools and the rest of the build infrastructure.

Then we have the test files. In Makefile.am, we have these lines:

TESTS=test_book test_bookstore

check_PROGRAMS = test_book test_bookstore

These tell the autotools that we have two programs, which are test programs; they are
test_book and test_bookstore. The first line makes the autotools run the specified
programs when we issue the make check command. The second line tells the autotools
to create binaries with the specified names.

Quality Made Easy

[280]

Then we have sections for both test_book and test_bookstore. The interesting part
of the section for test_book is this:

test_book_SOURCES = \
 test_book.vala ../src/book.vala

It tells autotools that the source code files for the test_book program are test_book.
vala and book.vala, which are inside the ../src/ directory. The same goes for the
test_bookstore program. It is a common practice to compile together the source code
being tested and the unit test.

Now let's see how a unit test is written. First, take a look at test_book.vala.

public class TestBook {

For each unit test, we have a class that tests a particular object. We name the class by
prepending the word Test before the name of the object. In this case we have a Book
object, so our unit test's name is TestBook. It is a plain class.

Then, we define the tests that we want to carry out against the object we want to test in
static functions. The functions are static because in the unit test we will not instantiate
the object of the test class.

One test should test all relevant cases. In our first test, we want to test whether the ISBN is
correctly set. Here, we create the Book object with the ISBN value of 1, and we test it with
the assert function to check whether the isbn member really has a value of 1.

 static void test_isbn ()
 {
 var b = new Book("1", "title");
 assert(b.isbn == "1");
 }

We might think that this is rather silly. Why would we want to check the obvious like this?
For our human eyes, we think this kind of check would always pass. But believe me, when
our code becomes larger and larger, and when we intentionally or accidentally make any
slight changes in the code, it could make this test fail. To emphasize my argument, let's see
the actual code of book.vala:

 public Book(string isbn, string title) {
 this.isbn = isbn;
 this.title = title;
 authors = new ArrayList<string>();
 }

Chapter 12

[281]

Our code in the test checked the isbn member immediately after instantiating the object.
Imagine that we somehow modify the constructor to look like this:

 public Book(string isbn, string title) {
 isbn = isbn;
 title = title;
 authors = new ArrayList<string>();
 }

Note that we may accidentally remove this from the previous lines. The code still runs,
but the result is wrong. Without the test, we could overlook this and what we end up with
is some unhappy customer calling to say that our program produces bad calculations!
Now, really try to make the previous error and run make check again. We will be notified
immediately, as you can see from the following screen output:

/test-isbn: **

ERROR:test_book.c:100:test_book_test_isbn: assertion failed: (g_strcmp0
(_tmp1_, "1") == 0)

/bin/bash: line 5: 9305 Aborted ${dir}$tst

FAIL: test_book

/test-add-stock: OK

/test-remove-stock: OK

/test-stock-alert: OK

PASS: test_bookstore

===================

1 of 2 tests failed

===================

We see from this that the test_isbn function correctly points out the error just as we
expected. Now, imagine again that we don't have test_isbn.

We use assert to check the truth value of the expression we pass into the function. The
assert function will terminate the program immediately when the value is not true, and
we know that something is wrong when this happens.

We needed to modify the Book class so that it looks like this:

 internal string title;
 internal string isbn;
 internal ArrayList<string> authors;

Quality Made Easy

[282]

We changed all private members to internal. Vala opens the internal members of all
the classes in the same package. It means our unit test can access the member directly.
Otherwise, our unit test would not be able to access, for example, the authors member.
This is a quite annoying limitation as Vala does not have anything analogous to friend
classes in C++ where we can keep the member as private yet allow the friend classes
to still access them.

Next in line, we have a test to check the title value.

 static void test_title ()
 {
 var b = new Book("1", "title");
 assert(b.title == "title");
 }

It works the same as the test_isbn test. Then we have a test to check whether the
addAuthor function works as it should.

 static void test_add_author()
 {
 var b = new Book("1", "title");
 b.addAuthor("author1");
 b.addAuthor("author2");
 b.addAuthor("author3");
 assert(b.authors.size == 3);
 }

Here, we check the authors array list. It should have a value of 3 after adding three authors
into the Book object with the addAuthor function. In the Book object, we don't have
anymore functions that need to be tested. The rest of the functions only output data
to the screen. So, let's move on to the main function of the unit test.

 static int main (string[] args)
 {
 Test.init (ref args);

We can see that we first call the Test.init function. This is the initialization function from
the GLib.Test class.

Then we register all the functions that we defined previously and assign them with test
paths. Test path is a hypothetical name that we want to route the actual test function to. The
GLib.Test class requires that each function be represented by a test path. Then we call the
Test.run function to run all the paths starting from the root path. The root path is just like
the root directory, the top-most path in the hierarchy.

 Test.add_func ("/test-isbn", test_isbn);
 Test.add_func ("/test-title", test_title);

Chapter 12

[283]

 Test.add_func ("/test-add-author", test_add_author);

 Test.run ();

 return 0;

Have a go hero – checking the actual value
In some cases we need to check the actual value that we put into a data structure, such as
the authors array list in the Book class. In test_add_author, we only checked the length
of the array but we did not check the actual value. The check is even required when we craft
the data structure by ourselves or when the data structure is complex; for example, when
the order of data after insertion is important. We could also check this by using more than
one data set.

Now imagine that we have our own data structure; so now it is your task to check whether
the data we enter is really entered as it should be.

Stubbing our tests
In our code, sometimes we use an external library that may give nondeterministic behavior,
which is bad for unit testing. To avoid this, we use a stubbing technique. This technique
involves creating a new library that mimics the function and API of the original library. In our
unit test, we use this new fake library instead of the original library so that we can control
the output of the API we use in our code.

Time for action – creating stubs
Now, let's bring back the core_settings project from Chapter 4, Using GNOME Core
Libraries. It is an experiment of getting and setting GSettings with some value.

1. Open the project with Anjuta.

2. Prepare the infrastructure just as we did in our previous action, that is, create the
tests directory and introduce it to configure.ac and Makefile.am in the top
directory of the project.

3. Then, we need to make changes to the CoreSettings class. The original code has
the main function inside the same file with the CoreSettings class. We need to
split these two.

4. What we need to do is adjust src/Makefile.am. Modify the file specifically in the
SOURCES section. This is the code in the file:

core_settings_SOURCES = \
 core_settings.vala config.vapi

Quality Made Easy

[284]

We need to change it to this:

core_settings_SOURCES = \
 core_settings.vala main.vala config.vapi

5. Then, we modify src/core_settings.vala to this:

using GLib;
public class CoreSettings : Object
{
 Settings settings = null;
 public CoreSettings ()
 {
 settings = new Settings("org.gnome.desktop.background");
 }

 public string get_bg()
 {
 if (settings == null) {
 return null;
 }

 return settings.get_string("picture-uri");
 }

 public void set_bg(string new_file)
 {
 if (settings == null) {
 return;
 }
 if (settings.set_string ("picture-uri", new_file)) {
 Settings.sync ();
 }
 }

}

6. Then we create a new file called src/main.vala, which contains the original main
function. But now, let's put it inside a dedicated class called Main.

public class Main {
 static int main (string[] args)
 {
 var app = new CoreSettings ();
 stdout.printf("%s\n", app.get_bg());
 app.set_bg ("http://www.gnome.org/wp-content/themes/gnome-
grass/images/gnome-logo.png");
 return 0;
 }
}

Chapter 12

[285]

7. After the splitting, we move on to the tests directory. First, create Makefile.am
inside it. Use this code for the file:

AM_CPPFLAGS = \
 -DPACKAGE_LOCALE_DIR=\""$(localedir)"\" \
 -DPACKAGE_SRC_DIR=\""$(srcdir)"\" \
 -DPACKAGE_DATA_DIR=\""$(pkgdatadir)"\" \
 $(CORE_SETTINGS_CFLAGS)

AM_CFLAGS =\
 -Wall\
 -g

TESTS=test_settings

check_PROGRAMS = test_settings

test_settings_SOURCES = \
 ../src/core_settings.vala test_settings.vala stub/gsettings.vala

test_settings_VALAFLAGS = \
 --pkg gee-1.0

test_settings_LDFLAGS = \
 -Wl,--export-dynamic

test_settings_LDADD = $(CORE_SETTINGS_LIBS)

8. Next, create a new file called test_settings.vala in the tests directory.

public class TestSettings {
 static void test_set_get()
 {
 var s = new CoreSettings();
 s.set_bg("test123");
 assert (s.get_bg() == "test123");
 }

 static int main (string[] args)
 {
 Test.init (ref args);

 Test.add_func ("/test-set-get", test_set_get);

 Test.run ();

 return 0;
 }
}

Quality Made Easy

[286]

9. After that, create a directory called stub inside the tests directory.

10. Then, create a new file called gsettings.vala inside the stub directory. Use this
code for the file:

using Gee;

public class Settings : Object {
 HashMap<string,string> map;

 [CCode(cname="g_settings_new")]
 public Settings(string s) {
 map = new HashMap<string,string>();
 }

 [CCode(cname="g_settings_sync")]
 public static void sync() {
 /* do nothing */
 }

 [CCode(cname="g_settings_set_string")]
 public bool set_string(string key, string value) {
 map.set(key, value);
 return true;
 }

 [CCode(cname="g_settings_get_string")]
 public string get_string(string key) {
 return map.get(key);
 }
}

11. Rebuild the project by calling this command from the terminal:

./autogen.sh

12. Finally, execute this command:

make check

13. Make sure the test passes perfectly, showing the following message:

/test-set-get: OK

PASS: test_settings

=============

1 test passed

Chapter 12

[287]

What just happened?
After we built the infrastructure, we split the code into two parts, the CoreSettings and
Main classes. This is essentially because we can't have more than one main function in a
program, one from the code and one from the test. The other and more important reason is
that the class we want to test contains the code that belongs to the class and nothing else.
With that in place, we have a clean and organized code and it would be easier to trace when
something bad happens.

We fix this by putting the original main function into its own file with its own class. We
also rename the original Main class to CoreSettings to really reflect what it does
(using Settings from GNOME's core libraries).

Then we put the test file inside the tests directory. We also created a new subdirectory
called stub, inside the tests directory. In it, we have the gsettings.vala file. The file
contains an imitation of the GSettings class. The stub contains only the functions that we
really use in the code. We should not implement other functions that we do not use.

In our case here, we implement GSettings with a hash map implementation from Gee:

using Gee;
public class Settings : Object {
 HashMap<string,string> map;

The constructor is used in the code, hence we need to implement it. Inside, we initialize the
hash map. The argument is not important, so we don't need to keep it anywhere. Stubbing
in Vala is very tricky. This is because the functions used by Vala codes are actually the
generated C functions. So, even if we have exactly the same class and function names in the
stub with the original library, the generated class and function names are no longer the same
in the generated C file. The discrepancies in the class and function names in the stub will not
be taken into use by the test program.

To overcome this problem, we need to tell Vala to generate the names that are identical to
the stubbed library. We use the CCode attribute just before the class or function declaration
in the Vala code. In our experiment, we have this attribute followed immediately by
the constructor.

 [CCode(cname="g_settings_new")]
 public Settings(string s) {
 map = new HashMap<string,string>();
 }

This makes sure that Vala will generate the g_settings_new C function from the
Settings constructor.

Quality Made Easy

[288]

We use the Settings.sync function in the code, so we need to define the sync function.
According to the GSettings API reference, the function is static so we need to create
the same.

 [CCode(cname="g_settings_sync")]
 public static void sync() {
 /* do nothing */
 }

We need to create the function, even if we don't need the functionalities. If we skip this, the
compilation will fail because Vala won't find the sync function in gsettings.vala and it
will not try to resolve the name from the original library.

After that, we create the set_string function. In this function, we simply wrap the hash
map and insert the key and value pairs into the map:

 [CCode(cname="g_settings_set_string")]
 public bool set_string(string key, string value) {
 map.set(key, value);
 return true;
 }

The same goes with get_string. Note that we must use the CCode attribute and define
the required C function name.

 [CCode(cname="g_settings_get_string")]
 public string get_string(string key) {
 return map.get(key);
 }
}

Now let's take a look at the test code:

public class TestSettings {
 static void test_set_get()
 {
 var s = new CoreSettings();
 s.set_bg("test123");
 assert (s.get_bg() == "test123");
 }

Chapter 12

[289]

Based on the CoreSettings class' code, we only need to test the set_bg and get_bg
functions. There is no other function that offers functionalities in the class. So we straightaway
implement the main function.

 static int main (string[] args)
 {
 Test.init (ref args);
 Test.add_func ("/test-set-get", test_set_get);
 Test.run ();
 return 0;
 }
}

There we initialize the Test framework, add the test path, and run the test. Wait, where is
our stub used? Let's revisit tests/Makefile.am and unveil the mystery. Take a look at the
SOURCES section:

test_settings_SOURCES = \
 ../src/core_settings.vala test_settings.vala stub/gsettings.vala

It says that Vala must compile these three files together at the same time. Our test code
does not have any reference to GSettings, only our source code in core_settings.vala
does. So, if we take a look at core_settings.vala, we see:

 public CoreSettings ()
 {
 settings = new Settings("org.gnome.desktop.background");
 }

What it does is it actually instantiates the settings object from gsettings.vala instead
of GSettings, and here what it does is it calls get_string from gsettings.vala:

 public string get_bg()
 {
 if (settings == null) {
 return null;
 }

 return settings.get_string("picture-uri");
 }

The key to stubbing is to produce exactly the same API with the library we use. When
building, we compile the code, the tests, and the stub together. Otherwise, either Vala
will complain about using the wrong API or even if the build is successful, our stub will
not get called.

Quality Made Easy

[290]

Testing GUI modules
What we have done so far is straightforward testing of functions, which gives a result based
on the value we pass into the arguments. GUI modules, however, expect input from user
behavior, such as the click of a mouse, typing of the keyboard, and other such instances.
More generally, they react by giving a certain output based on one or more events.

When testing GUI modules, we will no longer be able to use the methods we learnt
previously. When testing GUI modules we must have the following aspects handled:

 � Setting the environment to prepare the GUI test application

 � Initialization of the graphical framework

 � Emitting and handling the UI events

 � Event loop management

We will discuss these now.

Time for action – testing a GTK+ module
Let's take our old custom_composite Vala project and put a unit test in it.

1. As usual, let's create the tests directory and include it in configure.ac and
Makefile.am in the top directory.

2. Split the code into two parts. Use this code in custom_window.vala:

using GLib;
using Gtk;

public class CustomWindow : Window
{
 Entry entry;
 Box box;
 public signal void search_updated(string value);

 void show_search_box() {
 entry.show();
 entry.has_focus = true;
 }

 void hide_search_box() {
 entry.hide();
 }

Chapter 12

[291]

 public override void add(Widget widget) {
 if (widget != box) {
 box.pack_start(widget, true, true);
 } else {
 base.add(widget);
 }
 }

 public CustomWindow ()
 {
 box = new Box(Orientation.VERTICAL, 0);
 entry = new Entry();
 box.pack_start (entry, false, true);
 box.show();

 add(box);

 key_release_event.connect((event) => {
 search_updated(entry.text);
 return false;
 });

 key_press_event.connect((event) => {
 if (!entry.get_visible()) {
 show_search_box();
 }
 return false;
 });
 }
}

3. Use this one for the main class:

using GLib;
using Gtk;

public class Main {
 static int main (string[] args)
 {
 Gtk.init (ref args);
 var window = new CustomWindow();
 var label = new Label("This is a text");

 window.add(label);
 window.resize(400,400);
 window.search_updated.connect((value) => {
 label.set_text("Searching for keyword " + value);

Quality Made Easy

[292]

 });

 label.show();
 window.show();
 Gtk.main ();

 return 0;
 }
}

4. Then, modify the Makefile.am file to include both the implementation class and
the main class.

custom_composite_SOURCES = \
 custom_composite.vala main.vala config.vapi

5. Next, let's create Makefile.am for the tests:

AM_CPPFLAGS = \
 -DPACKAGE_LOCALE_DIR=\""$(localedir)"\" \
 -DPACKAGE_SRC_DIR=\""$(srcdir)"\" \
 -DPACKAGE_DATA_DIR=\""$(pkgdatadir)"\" \
 $(CUSTOM_COMPOSITE_CFLAGS)

AM_CFLAGS =\
 -Wall\
 -g

TESTS=test_custom_window
check_PROGRAMS = test_custom_window

test_custom_window_SOURCES = \
 ../src/custom_composite.vala test_custom_window.vala

test_custom_window_VALAFLAGS = \
 --pkg gtk+-3.0

test_custom_window_LDFLAGS = \
 -Wl,--export-dynamic

test_custom_window_LDADD = $(CUSTOM_COMPOSITE_LIBS)

6. Create a new file called test_custom_window.vala inside tests and use
this code:

using Gtk;

public class TestCustomWindow {

 static void process_events()
 {

Chapter 12

[293]

 while (Gtk.events_pending ()) {
 Gtk.main_iteration_do(true);
 }
 }

 static void test_initial_child ()
 {
 var window = new CustomWindow();
 var child = window.get_child () as Box;
 window.show_now();

 assert (child != null);
 window.destroy ();
 }

 static void test_child_visibility ()
 {
 var window = new CustomWindow();
 var child = window.get_child () as Box;
 window.show_now();

 var entry_is_found = false;
 var children = child.get_children ();
 if (children != null && children.nth(0) != null) {

 var entry = children.nth_data(0) as Entry;

 assert (entry != null);
 assert (entry.visible == false);

 Gdk.test_simulate_key (window.get_window (), 1, 1, Gdk.
Key.a, 0, Gdk.EventType.KEY_PRESS);
 Gdk.test_simulate_key (window.get_window (), 1, 1, Gdk.
Key.a, 0, Gdk.EventType.KEY_RELEASE);

 process_events (); // Process events

 assert (entry.visible == true);

 entry_is_found = true;
 }

 assert (entry_is_found);
 window.destroy ();
 }

 static void test_search_updated ()
 {

Quality Made Easy

[294]

 var window = new CustomWindow();
 window.show_now();
 var search_updated_was_emitted = false;
 var search_updated_was_correct = false;

 window.search_updated.connect ((text) => {
 search_updated_was_emitted = true;
 if (text == "a") {
 search_updated_was_correct = true;
 }
 });

 Gdk.test_simulate_key (window.get_window (), 1, 1, Gdk.Key.a,
0, Gdk.EventType.KEY_PRESS);
 Gdk.test_simulate_key (window.get_window (), 1, 1, Gdk.Key.a,
0, Gdk.EventType.KEY_RELEASE);

 process_events (); // process events

 assert (search_updated_was_emitted);
 assert (search_updated_was_correct);
 window.destroy ();
 }

 static int main (string[] args)
 {
 Gtk.test_init (ref args);

 Test.add_func ("/test-search-updated", test_search_updated);
 Test.add_func ("/test-initial-child", test_initial_child);
 Test.add_func ("/test-child-visibility", test_child_
visibility);

 Idle.add (() => {
 Test.run ();
 Gtk.main_quit ();
 return true;
 });

 Gtk.main ();

 return 0;
 }
}

7. Rebuild the project by using this command:

./autogen.sh

Chapter 12

[295]

8. Set up the environment for the GUI initialization by issuing the following command:

export DISPLAY=:0

This only needs to be done once when we first run any GUI tests. This is needed
when you run the test in the terminal console. If you run the test directly inside
GNOME, you don't need this.

9. On running the test you will see a window flashing for a moment before the test
ends. Type the following command in the shell to run the test:

make check

10. Make sure all the tests are passed successfully.

/test-search-updated: OK

/test-initial-child: OK

/test-child-visibility: OK

PASS: test_custom_window

=============

1 test passed

=============

What just happened?
Now we just directly concentrate on how the unit test is done.

Let's see what the CustomWindow class does:

 � It is a window and creates a text entry inside

 � A window can only take one child and this should not remove the text entry

 � It emits the search_updated signal whenever the user presses a key in
the window

This is the base of our strategy to create unit tests.

For our first test, we check whether the constructor creates the Box object as the
placeholder for the Entry and other widgets correctly.

 static void test_initial_child ()
 {
 var window = new CustomWindow();
 var child = window.get_child () as Box;
 window.show_now();

Quality Made Easy

[296]

 assert (child != null);
 window.destroy ();
 }

Here, we simply check whether the constructor has the Box object. This test is a
straightforward test.

In the next test we check the visibility of the text entry. Initially, the text entry must be
hidden, and after we press any key, the entry must be visible.

 static void test_child_visibility ()
 {
 var window = new CustomWindow();
 var child = window.get_child () as Box;
 window.show_now();

Here, we call show_now in order to display the window immediately. If we use show,
the showing may be deferred until other events are processed.

 var entry_is_found = false;
 var children = child.get_children ();
 if (children != null && children.nth(0) != null) {

 var entry = children.nth_data(0) as Entry;

Next, we try to get the text entry. The entry is the first child of the window, so we use the
nth_data method and pass 0 to denote the element at index 0.

 assert (entry != null);
 assert (entry.visible == false);

We use Entry to cast the returned widget as an Entry widget. By using this cast, it will
return null if the widget returned is not an Entry widget. Here, we check whether the
entry variable is really a type of an Entry widget by comparing it with the null value. If
it succeeds, we continue checking whether the visibility is set to false because we want
to make sure that the initial visibility for the entry must be false.

 Gdk.test_simulate_key (window.get_window (), 1, 1, Gdk.Key.a, 0,
Gdk.EventType.KEY_PRESS);
 Gdk.test_simulate_key (window.get_window (), 1, 1, Gdk.Key.a, 0,
Gdk.EventType.KEY_RELEASE);

Then we simulate a key press followed with a key release by using test_simulate_key
from the Gdk class. We send these events to the window object. The function requires Gdk.
Window, so we use get_window to pass Gdk.Window from the window object. The usage
of show_now for showing the window object is essential here, because if we use show and
the showing is not yet performed, then the get_window function will return null and our
test will fail.

Chapter 12

[297]

We can use any location of the press and release events. Here, we use the (1,1) coordinate.
The key we send is the a key, so we use Gdk.Key.a without any other key modifier. We send
the press event first and then follow it with a release event.

 process_events (); // Process events
 assert (entry.visible == true);

 entry_is_found = true;
 }
 assert (entry_is_found);
 window.destroy ();
 }

Just after we send the key, we need to process the pending events by calling the
process_events function. Then after that, we can check the visibility. Without calling
process_events, the key events may not be processed by the system so the visibility of
the entry object has not changed yet. We then destroy the window afterwards.

Here is what the process_events function does:

 static void process_events()
 {
 while (Gtk.events_pending ()) {
 Gtk.main_iteration_do(true);
 }
 }

It basically processes any pending events in the queue. When it finds them, it simply
executes the main loop by calling main_iteration_do and we allow GTK+ to complete
the operation even when it is blocking by providing the true argument.

Next, we check whether the signal is emitted properly with the correct value.

 static void test_search_updated ()
 {
 var window = new CustomWindow();
 window.show_now();
 var search_updated_was_emitted = false;
 var search_updated_was_correct = false;

 window.search_updated.connect ((text) => {
 search_updated_was_emitted = true;
 if (text == "a") {
 search_updated_was_correct = true;
 }
 });

Quality Made Easy

[298]

Here, we connect the search_updated signal. We record the success of the handler with a
local variable. We check whether the text from the signal is a, which is the key event that we
send into the window.

 Gdk.test_simulate_key (window.get_window (), 1, 1, Gdk.Key.a, 0,
Gdk.EventType.KEY_PRESS);
 Gdk.test_simulate_key (window.get_window (), 1, 1, Gdk.Key.a, 0,
Gdk.EventType.KEY_RELEASE);

 process_events (); // process events

After we send the key events, we call process_events. This is to make sure that our signal
handler is called so that we can assert the result.

 assert (search_updated_was_emitted);
 assert (search_updated_was_correct);
 window.destroy ();

In our main function, we first call the Gtk.test_init function. This is to set up the
environment to be suitable for testing. Next, we add the test paths.

 static int main (string[] args)
 {
 Gtk.test_init (ref args);

 Test.add_func ("/test-search-updated", test_search_updated);
 Test.add_func ("/test-initial-child", test_initial_child);
 Test.add_func ("/test-child-visibility", test_child_visibility);

We still need Gtk.main to get the GTK+ system up and running. When we run the test
outside GNOME, we need to run the X11 server and set up the environment so that the
test can run. We do this by setting the DISPLAY environment variable to our X11 display
number. Typically the value is :0. This is a bit of a cumbersome setup especially if we do
the test remotely.

However, once it is running, we need to ensure that our tests are run. To do this, we
need to set up an idle handler. Inside the handler we simply run the test and then exit
the GTK+ system.

 Idle.add (() => {
 Test.run ();
 Gtk.main_quit ();
 return true;
 });

 Gtk.main ();

Chapter 12

[299]

Have a go hero – adding missing tests
In our previous test, we only checked for the existence of the Box object inside the window
object. We missed another essential test to check:

 � Whether Entry is really created

 � Whether Entry can coexist when we add a new widget into the window object.

Figure it out and let's create some tests!

Summary
We have now seen how to do unit testing in our GNOME code. The most tricky part for
a beginner is mainly to figure out the tests that must be written. We have to discuss this
by first identifying the functionalities provided by the code that we want to test. Then we
narrow down to each existing branch in the code by giving different arguments so that the
code path will be visited in all cases.

We know that we must create a deterministic test and we realize that the library (or even
our own code) we use may give nondeterministic behavior. To solve this problem, we need
to create a stub for each library, which potentially gives nondeterministic values. We also
need to do stubbing when the library we use is too complex or requires a heavy setup when
we run the unit test.

Finally, we know how to test our GUI modules by using GTK+'s own initialization function.
We also need to process all pending events before asserting something. We also learnt that
we need to use the show_now function to get the Gdk window immediately set up.

The tests we wrote must be run on every change we make to the code. This is to make sure
that we will not see regressions in the code. Many software developers run the test before
they send the code to the source code repository and they set up a nightly test by running
all test cases in the suite.

In our final chapter, we will learn how to do two big projects, a browser and a twitter client.
We will use all of our techniques that we learnt in the previous chapters, so brace yourself!

13
Exciting Projects

After spending so much time learning how to develop not so useful
applications, it is time to move on to the next level. Now we will develop a web
browser and a Twitter client. The applications we are going to make are simple
yet useful. You can also use them as the basis for enhanced versions, if you
decide to make them.

In this chapter, we will revisit most of the topics we have learnt so far, but with adding
complexities and exploring them in more depth. Specifically, we will obtain more knowledge
in these areas:

 � Implementing a web browser using WebKitGTK

 � Doing path hardcoding using the configure script

 � Developing a multiscript Seed application

So, let's start with our first project.

Part I – web browser
The first application we will develop is a web browser. We aim for a basic browser that is
simple enough to develop. The browser includes a set of navigation buttons and the ability
to open pages from the Internet.

Exciting Projects

[302]

To make the whole development easier, we create a mockup version of our browser. This
is simply a drawing showing how our web browser will look. Based on this mockup, we will
derive a UI layout, done in the Anjuta/Glade tool.

First, let's familiarize ourselves with the structure of the UI of our browser. The main window
is split into two parts. The area which displays the web page occupies most of the window
area. The top-most part is used by the navigation buttons and the URL entry.

The navigation buttons are independent buttons and represent the back, forward, and
stop/reload actions, respectively. There is an additional button hidden beside the URL entry,
which is the go button. The button is shown when the URL entry is being filled in.

That's it; it's just as simple as that. By the way, in GUI design terminology, the UI hosting the
navigation buttons and the URL entry is called chrome.

Time for action – designing our UI
Now let's fire up Anjuta and design our UI. A Glade designer does not have GtkWebUI in its
palette, so here is what we are going to do:

1. Create a new Vala project and call it web-browser. Use GtkBuilder for the UI.

2. Open web_browser.ui with Glade designer by just double-clicking the file in
the Project dock.

3. Put a vertical Box object in the window with two items.

Chapter 13

[303]

4. Put another Box object, this time a horizontal one, on the top part of the vertical
Box object, leaving the bottom part empty. Split the horizontal Box object into
five elements by filling the Number of elements option with 5.

5. Put a button on each empty box element, except the third one. On each button,
activate the Stock button option and fill it with gtk-go-back, gtk-go-forward,
gtk-refresh, and gtk-ok stock buttons on each button respectively.

6. Give the buttons names, use btn_back, btn_forward, btn_refresh, and
btn_go. Put the name in each Name option of the button.

7. Put an Entry object on the third empty box and give url_entry as its name. Go to
the Packing tab and make sure the Expand option is set to Yes.

8. Put a Scrolled Window object (it's in the Containers section) into the bottom empty
box. Make sure the Expand option is set to Yes.

9. Set both the Horizontal Scrollbar Policy and Vertical Scrollbar Policy values
to Never.

10. We should have the UI file ready and it should look like this:

What just happened?
What we did was create the UI layout for our web browser. As we can see, it is a
straightforward translation from the mockup. One thing is still missing though; the web page
area is still empty. However, we have ScrolledWindow as the container for the WebView
object later. The objective of using the ScrolledWindow container is to make sure that the
window is not resizing depending on the content because the sizing is already handed over
to ScrolledWindow. We disable the scroll bars on vertical and horizontal axes because
WebView already handles the scroll bars on its own.

Exciting Projects

[304]

Browser interaction
Now let's inspect the interaction design of our browser. At the initial stage, we have an
idle browser, having all navigation buttons disabled and the URL entry empty. At this point,
our web view only contains the Welcome text (or the translated word of Welcome if it is
localized to another language). The next possible move by the user is to fill in the URL entry.

When a user starts to type something, the go button appears. All navigation buttons are
still disabled as we don't have any content displayed. Then, either the user keeps typing or
decides to complete the process by clicking on the go button. When this happens, the web
view starts to load the requested URL.

Chapter 13

[305]

When the page is being loaded, the refresh button changes itself into a stop button. When
the user presses this button, the loading is immediately stopped, cancelling everything. Then
the stop button changes back into the refresh button. Either way, the browser stays at the
idle state.

Whenever the user continues to interact with the loaded web page, the navigation button's
states are updated accordingly. If the browser can go back, it means the back button is
active. Same thing happens with the forward button.

Based on the previous description, we have four states which are applied to our browser.
It is idle when it waits for the user to start the interaction. Then it is in the typing url state
when the user starts to type something. Another possibility is to enter the Clicking link state
whenever the user clicks on any link on a page. After that, the state is in the loading state
when some page is being loaded. The final state would be the idle state again.

With this design in our hands now, we are ready to implement the code.

Time for action – preparing the build infrastructure
Let's now modify the project we created earlier and improve it with i18n
(internationalization) and test the build infrastructure:

1. Modify the configure.ac file and make it look like this:

AC_INIT(web_browser, 0.1)
AC_CONFIG_HEADERS([config.h])
AM_INIT_AUTOMAKE([1.11])
AM_SILENT_RULES([yes])
AC_PROG_CC

LT_INIT
IT_PROG_INTLTOOL()

Exciting Projects

[306]

AH_TEMPLATE([GETTEXT_PACKAGE], [Package name for gettext])
GETTEXT_PACKAGE=web-browser

AC_DEFINE_UNQUOTED([GETTEXT_PACKAGE], ["$GETTEXT_PACKAGE"],
 [The domain to use with gettext])
AC_SUBST(GETTEXT_PACKAGE)
AM_GLIB_GNU_GETTEXT

dnl Check for vala
AM_PROG_VALAC([0.10.0])

dnl Development mode
AC_ARG_ENABLE(development,
 AS_HELP_STRING([--enable-development],[enable development
mode]),
 enable_development="$enableval",
 enable_development=no)
if test "x$enable_development" = "xyes"; then
 DEVELOPMENT_MODE="yes"
 PACKAGE_LOCALE_DIR=[${PWD}/locale]
 PACKAGE_UI_DIR=[${PWD}/src]
else
 PACKAGE_LOCALE_DIR=[${datadir}/locale]
 PACKAGE_UI_DIR=[${datadir}/web-browser]
fi

AC_SUBST(PACKAGE_LOCALE_DIR)
AC_SUBST(PACKAGE_UI_DIR)
AH_TEMPLATE([PACKAGE_UI_DIR], [Location of the .ui file])
AC_DEFINE_UNQUOTED([PACKAGE_UI_DIR], ["$PACKAGE_UI_DIR"],
 [Location of the .ui file])

AC_SUBST(DEVELOPMENT_MODE)
AH_TEMPLATE([DEVELOPMENT_MODE], [Whether in development mode or
not])
AC_DEFINE_UNQUOTED([DEVELOPMENT_MODE], ["$DEVELOPMENT_MODE"],
 [Development mode])

PKG_CHECK_MODULES(WEB_BROWSER, [gtk+-3.0 webkitgtk-3.0])
PKG_CHECK_MODULES(TEST_WEB_BROWSER, [gtk+-3.0])

AC_OUTPUT([
Makefile
src/Makefile
tests/Makefile
po/Makefile.in
])

Chapter 13

[307]

2. Modify the Makefile.am file, and fill it with this:

SUBDIRS = src tests po

web_browserdocdir = ${prefix}/doc/web_browser
web_browserdoc_DATA = \
 README\
 COPYING\
 AUTHORS\
 ChangeLog\
 INSTALL\
 NEWS

EXTRA_DIST = \
 $(web_browserdoc_DATA)
 intltool-extract.in \
 intltool-merge.in \
 intltool-update.in

DISTCLEANFILES = \
 intltool-extract \
 intltool-merge \
 intltool-update \
 po/.intltool-merge-cache \
 $(NULL)

Remove doc directory on uninstall
uninstall-local:
 -rm -r $(web_browserdocdir)

3. Modify the src/Makefile.am file, and use this whole file:

uidir = $(PACKAGE_UI_DIR)
ui_DATA = web_browser.ui

AM_CPPFLAGS = \
 -DPACKAGE_LOCALE_DIR=\""$(localedir)"\" \
 -DPACKAGE_SRC_DIR=\""$(srcdir)"\" \
 -DPACKAGE_DATA_DIR=\""$(pkgdatadir)"\" \
 $(WEB_BROWSER_CFLAGS)

AM_CFLAGS =\
 -Wall\
 -g

bin_PROGRAMS = web_browser

Exciting Projects

[308]

web_browser_SOURCES = \
 main.vala web_browser.vala config.vapi

web_browser_VALAFLAGS = \
 --vapidir . \
 --pkg gtk+-3.0 \
 --pkg webkit-1.0 \
 --pkg libsoup-2.4 \
 --Xcc='--include config.h'

web_browser_LDFLAGS = \
 -Wl,--export-dynamic

web_browser_LDADD = $(WEB_BROWSER_LIBS)

EXTRA_DIST = $(ui_DATA)

Remove ui directory on uninstall
uninstall-local:
 -rm -r $(uidir)
 -rm -r $(pkgdatadir)

4. Create the po directory.

5. Add po/POTFILES.in with this content:

[type: gettext/glade]src/web_browser.ui
src/web_browser.vala

6. Add po/POTFILES.skip with this content:

src/web_browser.c
tests/web_browser.c

7. Add the po/LINGUAS file and fill it with the language code that we support,
for example to support the Indonesian language, we put:

id

8. Populate the translation template by running this command inside the po directory:

intltool-update –pot

9. Copy the resulting web-browser.pot to id.po (or any other file, depending on
the content of the LINGUAS file) and revisit Chapter 11, Making Our Applications
Go International, on how to handle the po file.

10. Create the tests directory.

Chapter 13

[309]

11. Add tests/Makefile.am using this content:

AM_CPPFLAGS = \
 -DPACKAGE_LOCALE_DIR=\""$(localedir)"\" \
 -DPACKAGE_SRC_DIR=\""$(srcdir)"\" \
 -DPACKAGE_DATA_DIR=\""$(pkgdatadir)"\" \
 -I. \
 $(WEB_BROWSER_CFLAGS)

AM_CFLAGS =\
 -Wall\
 -g

TESTS=test_web_browser
check_PROGRAMS = test_web_browser

test_web_browser_SOURCES = \
 ../src/config.vapi webkit.vala ../src/web_browser.vala test_web_
browser.vala

test_web_browser_VALAFLAGS = \
 --pkg gtk+-3.0 \
 --Xcc='--include config.h'

test_web_browser_LDFLAGS = \
 -Wl,--export-dynamic

test_web_browser_LDADD = $(TEST_WEB_BROWSER_LIBS)

12. Add tests/test_web_browser.vala and fill it with this code:

using Gtk;

public class TestWebBrowser {

 static void process_events()
 {
 while (Gtk.events_pending ()) {
 Gtk.main_iteration_do(true);
 }
 }
 static int main (string[] args)
 {
 Gtk.test_init (ref args);

 Idle.add (() => {
 Test.run ();
 Gtk.main_quit ();
 return true;

Exciting Projects

[310]

 });

 Gtk.main ();

 return 0;
 }
}

13. Add tests/webkit.vala and use this content:

using Gtk;

[CCode (lower_case_cprefix = "webkit_")]
namespace WebKit {

 [CCode (cheader_filename="webkit/webkit.h")]
 public class WebFrame : Object {
 }

 [CCode (cheader_filename="webkit/webkit.h")]
 public class WebView : Viewport {

 public WebView() {
 }

 [CCode (cname="webkit_web_view_load_string")]
 public void load_string (string content, string mime, string
encoding, string base_uri) {
 }

 }
}

14. Put the webkit-1.0.vapi file which accompanies this book into the src directory.

15. Use the following code for the src/web_browser.vala file:

using GLib;
using Gtk;
using WebKit;

public class WebBrowser : Object
{
 internal Builder builder = null;
 WebView view = null;
 const string UI_FILE = Config.PACKAGE_UI_DIR + "/" + "web_
browser.ui";

 public WebBrowser ()
 {

Chapter 13

[311]

 Gtk.Settings.get_default ().gtk_button_images = true;
 try
 {
 builder = new Builder ();
 builder.add_from_file (UI_FILE);

 view = new WebView();
 view.load_string("<h1>" + _("Welcome") + "</h1>", "text/
html", "UTF-8", "/");
 var box = builder.get_object ("webhost") as Container;
 box.add(view);

 var window = builder.get_object ("window") as Window;
 window.show_all ();

 window.destroy.connect(() => {
 Gtk.main_quit();
 });

 }
 catch (Error e) {
 stderr.printf (_("Could not load UI: %s\n"), e.message);
 }
 }
}

16. Create src/main.vala and use this content:

using GLib;
using Gtk;

public class Main : Object
{
 static int main (string[] args)
 {
 Gtk.init (ref args);
 var app = new WebBrowser ();
 Gtk.main ();
 return 0;
 }
}

17. Modify src/config.vapi to look like this:

[CCode (cprefix = "", lower_case_cprefix = "", cheader_filename =
"config.h")]
namespace Config {
 public const string DEVELOPMENT_MODE;

Exciting Projects

[312]

 public const string GETTEXT_PACKAGE;
 public const string SPRITE_DIR;
 public const string BACKGROUND_DIR;
 public const string PACKAGE_DATA_DIR;
 public const string PACKAGE_UI_DIR;
 public const string PACKAGE_LOCALE_DIR;
 public const string PACKAGE_NAME;
 public const string PACKAGE_VERSION;
 public const string VERSION;
}

18. Build using the --enable-development option by running:

./autogen.sh --enable-development

19. Alternatively, put the option in the Configure Options field in the Configure
Project... submenu in the Build menu.

20. Go to the console and type this command:

make check

21. You should check this output to see whether the unit tests pass or not.

22. You should also be able to run the application and it should display this UI without
any possible interaction except closing it.

What just happened?
Wow, that was a somewhat heavy series of actions, wasn't it?

We have just set up the build infrastructure which includes i18n and unit testing. We left
the functionalities unimplemented. We also kept the implementation minimal, just enough
to get the build process successful. Now let's take a look at this more closely.

Chapter 13

[313]

The first thing we did was to set up the configure.ac file. It is quite similar to what we had
in the previous chapters, but there are a couple interesting new things introduced here. Here
is the first one:

dnl Development mode
AC_ARG_ENABLE(development,
 AS_HELP_STRING([--enable-development],[enable development mode]),
 enable_development="$enableval",
 enable_development=no)
if test "x$enable_development" = "xyes"; then
 DEVELOPMENT_MODE="yes"
 PACKAGE_LOCALE_DIR=[${PWD}/locale]
 PACKAGE_UI_DIR=[${PWD}/src]
else
 PACKAGE_LOCALE_DIR=[${datadir}/locale]
 PACKAGE_UI_DIR=[${datadir}/web-browser]
fi

This snippet shows the addition of the --enable-development option to the configure
script. It looks pretty familiar except that we added the definition of PACKAGE_LOCALE_DIR
and PACKAGE_UI_DIR. The values of these variables depend on the addition or omission
of the --enable-development option from the parameter of the configure script.
PACKAGE_LOCALE_DIR holds the location of the LOCALE directory as we have discussed
in Chapter 11, Making Our Applications Go International. PACKAGE_UI_DIR holds the
location of the .ui file.

This is a very good improvement compared to our approach in previous chapters regarding
the ability to tell the code where to look for the .ui and translation files. One of the major
improvements is that we do not need to detect whether it is in development mode or not in
the source code. The locations are hardcoded automatically depending on whether we give
the --enable-development option to the configure script or not.

If we did give the option, PACKAGE_UI_DIR points to the src directory while if we did not,
PACKAGE_UI_DIR points to the /usr/share/web-browser directory. This is done at
compile time, so don't forget to omit the --enable-development option before building
the deployment version.

In order to get the value of PACKAGE_UI_DIR accessible from the code, we insert the value
into the config.h file. And this is how we do it in the configure script:

AC_SUBST(PACKAGE_UI_DIR)
AH_TEMPLATE([PACKAGE_UI_DIR], [Location of the .ui file])
AC_DEFINE_UNQUOTED([PACKAGE_UI_DIR], ["$PACKAGE_UI_DIR"],
 [Location of the .ui file])

Exciting Projects

[314]

Then, we need to make it accessible from the Vala code by adding this into the
src/config.vapi file:

public const string PACKAGE_UI_DIR;

And the variable can then be used as Config.PACKAGE_UI_DIR.

The next interesting thing is that we have these lines:

PKG_CHECK_MODULES(WEB_BROWSER, [gtk+-3.0 webkitgtk-3.0])
PKG_CHECK_MODULES(TEST_WEB_BROWSER, [gtk+-3.0])

The first line will export new variables of WEB_BROWSER_CFLAGS and WEB_BROWSER_LIBS
automatically, while the second one will export the TEST_WEB_BROWSER_CFLAGS and
TEST_WEB_BROWSER_LIBS variables. We use the first variable in src/Makefile.am
to compile the application, as shown in the following snippets:

AM_CPPFLAGS = \
 -DPACKAGE_LOCALE_DIR=\""$(localedir)"\" \
 -DPACKAGE_SRC_DIR=\""$(srcdir)"\" \
 -DPACKAGE_DATA_DIR=\""$(pkgdatadir)"\" \
 $(WEB_BROWSER_CFLAGS)

and

web_browser_LDADD = $(WEB_BROWSER_LIBS)

It means that the build system picks up the flags and header files needed for compilation
as well as the library names required for linking the application. All of these are required
to make the stub compilation successful.

We have the webkit.vala code to stub the WebKit to make unit testing easier to carry
out. As we can see from tests/Makefile.am, we compile the test files with TEST_WEB_
BROWSER_LIBS to exclude the original WebKit library being linked into our unit test. With
this, we are sure that our source code in src will be compiled with WebKit, and the source
code in the tests directory will be compiled with our stub.

However, in our unit test, we still use WEB_BROWSER_CFLAGS and not TEST_WEB_
BROWSER_CFLAGS in order to use the original WebKit header files. The original
header is needed to compile the generated C source code.

Now, let's move on to the i18n part.

Chapter 13

[315]

We put our Vala code, which is src/web_browser.vala and the .ui file, into the
translatable files by putting them into po/POTFILES.in. We don't need to add all files,
but only hand picked selected files which contain translatable text. Next, we add all
generated C code into po/POTFILES.skip to mark them as non-translatable. This is
to avoid double translation.

The rest is pretty straightforward, so let's move on to the meat.

Time for action – finishing up
Now we are going to complete the implementation by following the user interaction design
that we have discussed. Make sure you have src/web_browser.vala, which is distributed
in this book.

1. Fill in tests/test_web_browser.vala with these lines:

using Gtk;

public class TestWebBrowser {

 static void process_events()
 {
 while (Gtk.events_pending ()) {
 Gtk.main_iteration_do(true);
 }
 }

 static void test_initial_state ()
 {
 var web = new WebBrowser();
 process_events();
 assert (web.state == WebBrowser.State.IDLE);
 }

 static void test_typing_url ()
 {
 var web = new WebBrowser();
 var window = web.builder.get_object ("window") as Window;
 window.show_now ();
 web.url_entry.show_now ();

 assert (web.btn_go.visible == false);

 var entry_w = web.url_entry.get_window ();
 web.url_entry.focus(0);

Exciting Projects

[316]

 assert (web.state == WebBrowser.State.IDLE);
 Gdk.test_simulate_key (entry_w, 5, 5, Gdk.Key.a, 0, Gdk.
EventType.KEY_PRESS);
 Gdk.test_simulate_key (entry_w, 5, 5, Gdk.Key.a, 0, Gdk.
EventType.KEY_RELEASE);

 process_events ();
 assert (web.state == WebBrowser.State.TYPING_URL);
 assert (web.btn_go.visible == true);

 var btn_w = web.btn_go.get_window ();
 web.btn_go.focus(0);
 Gdk.test_simulate_key (btn_w, 5, 5, Gdk.Key.Return, 0, Gdk.
EventType.KEY_PRESS);
 Gdk.test_simulate_key (btn_w, 5, 5, Gdk.Key.Return, 0, Gdk.
EventType.KEY_RELEASE);

 process_events ();
 assert (web.state == WebBrowser.State.LOADING);

 }
 static int main (string[] args)
 {
 Gtk.test_init (ref args);

 Test.add_func ("/test-initial-state", test_initial_state);
 Test.add_func ("/test-typing-url", test_typing_url);

 Idle.add (() => {
 Test.run ();
 Gtk.main_quit ();
 return true;
 });

 Gtk.main ();

 return 0;
 }
}

2. Open the tests/webkit.vala stub file and use this code:

using Gtk;

[CCode (lower_case_cprefix = "webkit_")]
namespace WebKit {

 [CCode (cheader_filename="webkit/webkit.h")]
 public class WebFrame : Object {

Chapter 13

[317]

 }

 [CCode (cheader_filename="webkit/webkit.h")]
 public class WebView : Viewport {
 public bool _can_go_back;
 public bool _can_go_forward;
 public signal void load_started (WebFrame frame);
 public signal void load_finished (WebFrame frame);
 WebFrame frame;

 public WebView() {
 frame = new WebFrame ();
 }

 [CCode (cname="webkit_web_view_can_go_back")]
 public bool can_go_back() {
 return _can_go_back;
 }

 [CCode (cname="webkit_web_view_can_go_forward")]
 public bool can_go_forward() {
 return _can_go_forward;
 }

 [CCode (cname="webkit_web_view_go_back")]
 public void go_back () {
 }

 [CCode (cname="webkit_web_view_go_forward")]
 public void go_forward () {
 }

 [CCode (cname="webkit_web_view_load_uri")]
 public void load_uri (string uri) {
 load_started (frame);
 }

 [CCode (cname="webkit_web_view_load_string")]
 public void load_string (string content, string mime, string
encoding, string base_uri) {
 }

 [CCode (cname="webkit_web_view_stop_loading")]
 public void stop_loading () {
 }

 [CCode (cname="webkit_web_view_reload")]
 public void reload () {
 }
 }
}

Exciting Projects

[318]

3. Build and run the application.

What just happened?
As we already have our infrastructure set up, we can concentrate on what this project is
really about. Let's open this with the WebBrowser object.

 const string UI_FILE = Config.PACKAGE_UI_DIR + "/" + "web_browser.
ui";

In this line, we just get the exact location of the .ui file by getting the Config.PACKAGE_UI_
DIR value, appended with the filename. Because the location is already hardcoded in the build
system, we don't need to put an extra if branch code to check whether this is in development
mode or not, like we did in Chapter 11, Making Our Applications Go International.

 internal Button btn_back = null;
 internal Button btn_forward = null;
 internal Button btn_go = null;
 internal Button btn_refresh = null;
 internal Entry url_entry = null;

Chapter 13

[319]

Those are the navigation buttons and our URL entry widget. We mark them as internal in
order to be able to access them from our unit test.

 internal enum State {
 IDLE,
 TYPING_URL,
 LOADING
 }

These are the states that we have discussed earlier. One state is missing, which is the clicking
link state. We explicitly remove the state from the enum loop because the clicking is handled
directly within WebKit, while the other states we handle by ourselves. So, in order to avoid
cluttering, the enum value which we will not use, will not be put in.

However, it is not a good practice to just remove the value. It is better to put some
comments in the code explaining the rationale of the removal.

First, we initialize the initial state to be in idle state.

 internal State state = State.IDLE;

Then we have the function which will be called whenever the state has changed. In this
function, we will update the appearance or any other properties of the affected components.

 void update_state()

The following code is to make sure that the builder object exists:

 if (builder == null) {
 return;
 }

In the idle state, we hide the go button and we use the refresh icon and label for the
refresh button.

 switch (state) {
 case State.IDLE:
 btn_go.hide ();
 btn_refresh.label = "gtk-refresh";
 break;

When we type the URL, we show the go button.

 case State.TYPING_URL:
 btn_go.show ();
 break;

Exciting Projects

[320]

In the loading state, we simply hide the go button again and change the refresh button to a
stop button.

 case State.LOADING:
 btn_go.hide ();
 btn_refresh.label = "gtk-stop";
 break;

Then, depending on whether we can go forward or not, we set the forward button to be
enabled or disabled.

 if (view.can_go_forward ()) {
 btn_forward.sensitive = true;
 } else {
 btn_forward.sensitive = false;
 }

Similarly, depending on whether we can go backward or not, we set the back button to be
enabled or disabled.

 if (view.can_go_back ()) {
 btn_back.sensitive = true;
 } else {
 btn_back.sensitive = false;
 }

Then, let's see the constructor where we set up the whole interaction of the components.

 public WebBrowser ()

Here, we use the image for the buttons rather than text only.

 Gtk.Settings.get_default ().gtk_button_images = true;

In the following code, we simply open the .ui file and insert it into the builder object:

 builder = new Builder ();
 builder.add_from_file (UI_FILE);

The following snippet shows where we instantiate the web view and display the Welcome
text. We enclose the text with underscore function of gettext to make it translatable. We
skip the translation of the HTML heading markup because it's not relevant. We are only
interested in the actual text which is displayed rather than the formatting itself.

 view = new WebView();
 view.load_string("<h1>" + _("Welcome") + "</h1>", "text/html",
"UTF-8", "/");

Chapter 13

[321]

Then, we connect the load_started signal of the view. This is actually called when a link is
clicked, which maps to the clicking link state. But just after this is called, the state is moved
into loading state. We then update the appearance of the UI by calling the update_state
function.

 view.load_started.connect(() => {
 state = State.LOADING;
 update_state();
 });

However, note that this is also called whenever any other resource is loaded from the
Internet such as images, scripts, and any other files.

The load_finished signal is called whenever the loading has finished. In this case,
we return back to the idle state.

 view.load_finished.connect(() => {
 state = State.IDLE;
 update_state();
 });

Here, we handle the key press event in the URL entry. As we designed earlier, whenever
we type something, we will update the state to the typing url state. So this is the place
we do that.

 url_entry = builder.get_object ("url_entry") as Entry;
 url_entry.key_press_event.connect(() => {
 state = State.TYPING_URL;
 update_state();
 return false;
 });

The following code simply inserts the view into the container that we prepared in
the .ui file:

 var box = builder.get_object ("webhost") as Container;
 box.add(view);

Then, we handle the click signal of the back button. When the button is clicked, we ask the
view to go back by one page.

 btn_back = builder.get_object ("btn_back") as Button;
 btn_back.clicked.connect(() => {
 view.go_back ();
 });

Exciting Projects

[322]

And the same for the forward button.

 btn_forward = builder.get_object ("btn_forward") as Button;
 btn_forward.clicked.connect(() => {
 view.go_forward ();
 });

Our refresh button has dual functionalities, so here we check first whether it is in refresh role
or stop role. We call reload on the view if it is the former role and stop_loading if it is
the latter role.

 btn_refresh = builder.get_object ("btn_refresh") as Button;
 btn_refresh.clicked.connect(() => {
 if (btn_refresh.label == "gtk-refresh") {
 view.reload ();
 } else {
 view.stop_loading ();
 }
 });

The go button needs to be clicked or activated (by pressing Enter). Both actions lead to the
loading of the address typed in the URL entry.

 btn_go = builder.get_object ("btn_go") as Button;
 btn_go.activate.connect(() => {
 view.load_uri (url_entry.text);
 });

 btn_go.clicked.connect(() => {
 view.load_uri (url_entry.text);
 });

This simply shows the window:

 var window = builder.get_object ("window") as Window;
 window.show_all ();

And as usual, this will exit the application whenever the window is closed:

 window.destroy.connect(() => {
 Gtk.main_quit();
 });

We call update_state to initialize the state:

 update_state();

Chapter 13

[323]

The code is quite simple, isn't it? What we are going to do next is test the update_state
function in our unit test and prepare a stub of the view. Let's take a look at the test first.
Here, we declare all tests inside the TestWebBrowser class.

public class TestWebBrowser {

The first function is the process_events function. This function is exactly the same as we
had in Chapter 12, Quality Made Easy. It simply processes all pending events in the queue
and explicitly waits until all are done.

 static void process_events()
 {
 while (Gtk.events_pending ()) {
 Gtk.main_iteration_do(true);
 }
 }

Then we test the initial state of the browser in this test function. We simply create the
WebBrowser object and check whether the state is really in idle state. Next, we test the
typing url state.

 static void test_initial_state ()
 {
 var web = new WebBrowser();
 process_events();
 assert (web.state == WebBrowser.State.IDLE);
 }

In this function, we create the WebBrowser object and immediately show the window
as well as the URL entry with show_all. This is to ensure that the widgets can be
used immediately.

 static void test_typing_url ()
 {
 var web = new WebBrowser();
 var window = web.builder.get_object ("window") as Window;
 window.show_now ();
 web.url_entry.show_now ();

Then, we check whether the go button is visible or not. It must be hidden as we designed.

 assert (web.btn_go.visible == false);

Here, we prepare the URL entry by putting the mouse focus into it, so that we can type in it.

 var entry_w = web.url_entry.get_window ();
 web.url_entry.focus(0);

Exciting Projects

[324]

Before checking anything, we make sure that it is in idle state.

 assert (web.state == WebBrowser.State.IDLE);

Then we simulate the pressing (and releasing) of the a key:

 Gdk.test_simulate_key (entry_w, 5, 5, Gdk.Key.a, 0, Gdk.EventType.
KEY_PRESS);
 Gdk.test_simulate_key (entry_w, 5, 5, Gdk.Key.a, 0, Gdk.EventType.
KEY_RELEASE);

Note that we must call this earlier on to make sure that the events are really sent to the
widget and the handlers are properly called.

 process_events ();

Here, we check that the state now must be in the typing url state:

 assert (web.state == WebBrowser.State.TYPING_URL);

Also we check that the go button must be now visible.

 assert (web.btn_go.visible == true);

Then, after typing, we move the focus to the go button.

 var btn_w = web.btn_go.get_window ();
 web.btn_go.focus(0);

And we press the Enter key on the button.

 Gdk.test_simulate_key (btn_w, 5, 5, Gdk.Key.Return, 0, Gdk.
EventType.KEY_PRESS);
 Gdk.test_simulate_key (btn_w, 5, 5, Gdk.Key.Return, 0, Gdk.
EventType.KEY_RELEASE);

 process_events ();

The state should now change to loading state, because now the web view is loading
the page.

 assert (web.state == WebBrowser.State.LOADING);

So far, we have two tests. And it is time to see the main function. Here, we initialize the test
suite framework:

 static int main (string[] args)
 {
 Gtk.test_init (ref args);

Chapter 13

[325]

And we register the two tests that map to the functions defined previously:

 Test.add_func ("/test-initial-state", test_initial_state);
 Test.add_func ("/test-typing-url", test_typing_url);

After that, we set up the idle handler so the test can be run just after we call Gtk.main.
We immediately quit the application after running all the tests:

 Idle.add (() => {
 Test.run ();
 Gtk.main_quit ();
 return true;
 });

Here, we start the event loop and hand it over to GTK.

 Gtk.main ();

Note that we don't use any network connection to run the test. As we talked about this
earlier, we don't even use the WebKit. Instead, we use our own stub to take WebKit's place
during the testing.

In our stub, we must use exactly the same name of the object that we want to stub. Here, we
also declare the WebKit namespace so that we can use the using WebKit; clause in our
code. We ask Vala to generate the C code with the webkit_ prefix. Without this, Vala will
generate the web_kit_ prefix (note the underscore in between the words).

[CCode (lower_case_cprefix = "webkit_")]
namespace WebKit {

This is a helper class that is used in the load_started and load_finished signals.

 [CCode (cheader_filename="webkit/webkit.h")]
 public class WebFrame : Object {
 }

Then we declare the variables and the signals.

 [CCode (cheader_filename="webkit/webkit.h")]
 public class WebView : Viewport {
 public bool _can_go_back;
 public bool _can_go_forward;
 public signal void load_started (WebFrame frame);
 public signal void load_finished (WebFrame frame);
 WebFrame frame;

Exciting Projects

[326]

Here, we simply initialize the frame object.

 public WebView() {
 frame = new WebFrame ();
 }

The rest are pretty straightforward and do not require a detailed discussion as we already
talked about this in Chapter 12, Quality Made Easy. They are only empty functions while in
the stub, we only define functions which are really used in the implementation code.

Have a go hero – creating more tests
As you have noticed, we only tested two functionalities. We did not test all of the possible
states. Now, please go ahead and craft more tests!

Part II – A Twitter client
Now let's move on to the next project, a twitter client. The feature of this application is to
display a stream of tweets with the text that we search for. This is simpler than the web
browser, as we are going to use Seed to develop it.

The UI is once again not complex. We basically have two parts of the screen—the Content
area and the search area. The search area is divided into two parts, the Search box and the
Search button. Whenever we click on the button, the Content area is updated with a stream
of tweets with the search text.

Chapter 13

[327]

Time for action – implementing the Twitter client
We will have three Seed scripts and we need to put them in a directory. Don't forget that we
need an Internet connection to run the application.

1. Create a new script called tweet-feed.js and fill it with this code:

#!/usr/bin/env seed

Gtk = imports.gi.Gtk;
Gdk = imports.gi.Gdk;
GObject = imports.gi.GObject;

f = imports.feedEntry;
t = imports.twitter;

var twitter = new t.Twitter();

Gtk.init(Seed.argv);
var window = new Gtk.Window();
window.resize(400,400);
window.title = "Tweet Feed";
var box = new Gtk.Box({orientation: Gtk.Orientation.VERTICAL});
window.add(box);

var scroll = new Gtk.ScrolledWindow();
var viewport = new Gtk.Viewport();
box.pack_start(scroll, true, true);

var search_box = new Gtk.Box({orientation: Gtk.Orientation.
HORIZONTAL});
var entry = new Gtk.Entry();
entry.placeholder_text = "Enter your search topic";

search_box.pack_start(entry, true, true);
var search_button = new Gtk.Button({label: "gtk-find"});
search_button.use_stock = true;
search_button.signal.clicked.connect(function() {
 twitter.search(entry.text);
});
search_box.pack_start(search_button, false, false);

box.pack_start(search_box, false, false);

var entries = new Gtk.Box({orientation: Gtk.Orientation.
VERTICAL});
scroll.add(viewport);
viewport.add(entries);

Exciting Projects

[328]

window.show_all();

twitter.signal.connect("data-available", function(object) {
 entries.foreach(function(content) {
 entries.remove(content);
 });
 for (var i = 0; i < twitter.data.results.length; i ++) {
 var entry = new f.FeedEntry(twitter.data.results[i]);
 entries.pack_start(entry, false, false);

 }
});

Gtk.main();

2. Add a new file called feedEntry.js and use this code:

Gtk = imports.gi.Gtk;
Gdk = imports.gi.Gdk;
GObject = imports.gi.GObject;

FeedEntry = new GType({
 parent: Gtk.TextView.type,
 name: "FeedEntry",
 properties: [
 {
 name: 'from_user_name',
 type: GObject.TYPE_STRING,
 default_value: "",
 flags: (GObject.ParamFlags.CONSTRUCT
 | GObject.ParamFlags.READABLE
 | GObject.ParamFlags.WRITABLE),
 }

 , {
 name: 'from_user',
 type: GObject.TYPE_STRING,
 default_value: "",
 flags: (GObject.ParamFlags.CONSTRUCT
 | GObject.ParamFlags.READABLE
 | GObject.ParamFlags.WRITABLE),
 }
 , {
 name: 'text',
 type: GObject.TYPE_STRING,
 default_value: "",

Chapter 13

[329]

 flags: (GObject.ParamFlags.CONSTRUCT
 | GObject.ParamFlags.READABLE
 | GObject.ParamFlags.WRITABLE),
 }
],

 class_init: function(klass, prototype) {
 prototype.update_data = function() {
 var writer_tag = new Gtk.TextTag({
 name: "writer",
 size_points: 12,
 weight: 700,
 style: 3,
 foreground:"#000000"});
 this.buffer.tag_table.add(writer_tag);

 var user_tag = new Gtk.TextTag({
 name: „user",
 style: 0,
 foreground:"#888888"});
 this.buffer.tag_table.add(user_tag);

 var content_tag = new Gtk.TextTag({
 name: „content",
 size_points: 12,
 style: 0,
 weight: 400,
 foreground: „#000000"
 });
 this.buffer.tag_table.add(content_tag);

 this.buffer.insert_at_cursor (this.text + „\n", -1);
 var start_iter = this.buffer.get_start_iter ();
 var end_iter = this.buffer.get_end_iter ();
 this.buffer.apply_tag_by_name („content", start_iter.iter,
end_iter.iter);

 var cursor_pos = this.buffer.cursor_position;
 this.buffer.insert_at_cursor (this.from_user_name + " ",
-1);
 var start_iter = this.buffer.get_iter_at_offset(cursor_pos);
 var end_iter = this.buffer.get_end_iter ();
 this.buffer.apply_tag_by_name ("writer", start_iter.iter,
end_iter.iter);

Exciting Projects

[330]

 var cursor_pos = this.buffer.cursor_position;
 this.buffer.insert_at_cursor ("@" + this.from_user + "\n",
-1);
 var start_iter = this.buffer.get_iter_at_offset(cursor_pos);
 var end_iter = this.buffer.get_end_iter ();
 this.buffer.apply_tag_by_name ("user", start_iter.iter, end_
iter.iter);
 }
 },
 init: function(self) {
 self.wrap_mode = Gtk.WrapMode.WORD;
 self.editable = false;
 self.update_data();
 self.show_all();
 }
});

3. Add another new file called twitter.js and fill it with this code:

Gio = imports.gi.Gio;
GObject = imports.gi.GObject;

Twitter = new GType({
 parent: GObject.Object.type,
 name: "Twitter",
 signals: [
 {
 name: "data-available",
 parameters: []
 }
],
 class_init: function(klass, prototype) {
 prototype.search = function(keyword) {
 var url = "http://search.twitter.com/search.json?q=" +
keyword;
 var data_source = Gio.file_new_for_uri(url);
 var self = this;
 data_source.read_async(0, null,
 function(source, result) {
 var input = source.read_finish(result);
 var stream = new Gio.DataInputStream.c_new(input);
 self.data = JSON.parse(stream.read_until("", 0));
 self.signal["data-available"].emit();
 }

Chapter 13

[331]

);

 }
 },

 init: function(self) {
 this.data = {};
 }
});

4. Give executable permission on the tweet-feed.js file, for example, by typing the
following command in the shell:

chmod +x tweet-feed.js

5. Run it, type any search text, and press the Find button.

What just happened?
Here, we employ the knowledge of reading a resource from the network as well as the
skill of extending an existing widget. We also learn how to develop a Seed application
with multiple scripts to modularize and simplify the development.

We divide the application into three modules. The first one is for the main application,
another one for reading the twitter data, and the last one is for the newly derived widget
to display the tweets.

Exciting Projects

[332]

Let's start from the last one, that is, the FeedEntry widget. First, we derive a new widget
from the TextView widget:

FeedEntry = new GType({
 parent: Gtk.TextView.type,
 name: "FeedEntry",

This is because we want the text wrapping functionality, which is available in TextView.
Here, we define some properties with the names that exactly follow the data that comes
from the Twitter API.

 properties: [
 {
 name: 'from_user_name',
 type: GObject.TYPE_STRING,
 default_value: "",
 flags: (GObject.ParamFlags.CONSTRUCT
 | GObject.ParamFlags.READABLE
 | GObject.ParamFlags.WRITABLE),
 }

In the API, we have from_user_name, from_user and text which contains the full name
of the tweep (the person who posted the tweet), the username, and the tweet itself. So we
just use a direct map between the Twitter API and the properties in our new widget.

Then, we define the update_data function in the prototype. It means that the function is
available in the class.

 class_init: function(klass, prototype) {
 prototype.update_data = function() {

Then, we define a few tags. The tags are used to style text that we enter into the text buffer.

 var writer_tag = new Gtk.TextTag({
 name: "writer",
 size_points: 12,
 weight: 700,
 style: 3,
 foreground:"#000000"});
 this.buffer.tag_table.add(writer_tag);

We want to use a normal style for the tweet, bold style for the name of the tweep, and a
lighter one for the twitter user ID. But before using the tags, we need to add them into the
tag table and we do this for all tags. Then, we insert the tweet first, followed by a newline.

 this.buffer.insert_at_cursor (this.text + "\n", -1);

Chapter 13

[333]

Here, we remember the start location of the text by getting the Iter object. The Iter
object is used to point to a certain place in the text buffer. We can think of this with an
analogy of text selection.

 var start_iter = this.buffer.get_start_iter ();

And here, we mark the end of the text selection:

 var end_iter = this.buffer.get_end_iter ();

Then, we apply the tag with the specified name to the text which is covered by the start and
end iters.

 this.buffer.apply_tag_by_name ("content", start_iter.iter, end_
iter.iter);

Back to the selection analogy, we can think of this like giving a formatting style to the
selected text in a text document.

Here, we can no longer use the get_start_iter function to get the start of the
Iter object.

 var cursor_pos = this.buffer.cursor_position;

Instead, we get the current cursor position to mark as the start of the text which will be
inserted below.

Then, we get the start iter by pointing the cursor position that we recorded earlier.

 this.buffer.insert_at_cursor (this.from_user_name + " ", -1);
 var start_iter = this.buffer.get_iter_at_offset(cursor_pos);

This one is the same as the previous one; we just get the end of the text to get the end iter.

 var end_iter = this.buffer.get_end_iter ();

Then we apply the tag into the text in between the iter parameters.

 this.buffer.apply_tag_by_name ("writer", start_iter.iter, end_
iter.iter);

Naturally, TextView is for editing text, but here, we disable the editing during the
instantiation of the object:

 init: function(self) {
 self.wrap_mode = Gtk.WrapMode.WORD;
 self.editable = false;

Exciting Projects

[334]

During initialization, we immediately update the data which in turns renders the data.

 self.update_data();
 self.show_all();

That's it. Now let's take a look at the twitter.js file which functions as the data source.

Here we define our Twitter object as a simple GObject object.

Twitter = new GType({
 parent: GObject.Object.type,
 name: "Twitter",

We have a signal called data-available and it is called without any parameters.

 signals: [
 {
 name: "data-available",
 parameters: []
 }
],

The signal is called whenever we have new data in the JSON format coming from the Twitter
API. This is the search function which we make available in the class. What it does is it
simply gets the stream from the mentioned URL, and appends it with the keyword. We
use Gio to open the stream.

 class_init: function(klass, prototype) {
 prototype.search = function(keyword) {
 var url = "http://search.twitter.com/search.json?q=" + keyword;
 var data_source = Gio.file_new_for_uri(url);
 var self = this;

Then, we read the stream asynchronously so it will not disturb the UI while loading the
data from the Internet. When the data is ready, we enter a function which we put as
a closure at the end of the read_async function. There, the stream is converted into
a DataInputStream instance and we parse the data into a JavaScript object. When
everything is ready, we emit the data-available signal.

 data_source.read_async(0, null,
 function(source, result) {
 var input = source.read_finish(result);
 var stream = new Gio.DataInputStream.c_new(input);
 self.data = JSON.parse(stream.read_until("", 0));
 self.signal["data-available"].emit();
 }
);

Chapter 13

[335]

Our initialization function is as simple as this. It just initializes the data member as an
empty object.

 init: function(self) {
 this.data = {};
 }

Then let's see the main application code in tweet-feed.js. Here, we import the other two
scripts and make them accessible from the f and t variables:

f = imports.feedEntry;
t = imports.twitter;

This could become one of the bad examples when the code base gets larger. Something like
feedEntryScript or twitterScript could be a better name to use.

In the following line, we instantiate a Twitter object:

var twitter = new t.Twitter();

Then we initialize Gtk and create the window. We set the initial size and we give it a title:

Gtk.init(Seed.argv);
var window = new Gtk.Window();
window.resize(400,400);
window.title = "Tweet Feed";

We have a Box object to be used as a layout and we put it in the window.

var box = new Gtk.Box({orientation: Gtk.Orientation.VERTICAL});
window.add(box);

Now, we can add more than one widget into it.

Here, we have a new ScrolledWindow object called scroll, created together with
viewport. This is required so that we can scroll the tweets when they overflow the
size of the window.

var scroll = new Gtk.ScrolledWindow();
var viewport = new Gtk.Viewport();
box.pack_start(scroll, true, true);

Then, we add a new horizontal box to be put at the bottom of the screen. This would be the
place of the text entry and the search button.

var search_box = new Gtk.Box({orientation: Gtk.Orientation.
HORIZONTAL});

Exciting Projects

[336]

Here, we create the text entry for the user to type the search text into. We use a place
holder text as a hint to the user to tell him or her what to do. Then we pack the entry
into the horizontal box.

var entry = new Gtk.Entry();
entry.placeholder_text = "Enter your search topic";
search_box.pack_start(entry, true, true);

Here, we create the search button. It is a simple button with a stock item, so we
don't need to create a label ourselves. Then we connect the clicked signal by calling
the twitter.search function and initiating the stream downloading.

var search_button = new Gtk.Button({label: "gtk-find"});
search_button.use_stock = true;
search_button.signal.clicked.connect(function() {
 twitter.search(entry.text);
});
search_box.pack_start(search_button, false, false);

Furthermore, we create a vertical box to host all the incoming tweets. The box is then put
into the viewport, which is inside the scrolled window.

var entries = new Gtk.Box({orientation: Gtk.Orientation.VERTICAL});
scroll.add(viewport);
viewport.add(entries);

This is the data-available signal handler. As we discussed earlier, the signal is emitted
when we receive the entire Twitter stream.

twitter.signal.connect("data-available", function(object) {
 entries.foreach(function(content) {
 entries.remove(content);
 });
 for (var i = 0; i < twitter.data.results.length; i ++) {
 var entry = new f.FeedEntry(twitter.data.results[i]);
 entries.pack_start(entry, false, false);

 }
});

So what we do here is we first remove existing entries, if any. Then we iterate all the
tweets we have in the twitter.data.results array. For each tweet, we simply create
a FeedEntry object. We pass the entry structure directly as the members of the structure
are already mapped in the FeedEntry class. Then, we add the entry object inside the
entries array.

Chapter 13

[337]

Summary
Now, we have two real applications on our hands. However, there are still missing pieces
here and there. And they are waiting for you to fix them.

In our first project, we learnt a new trick to avoid making code to check whether it is now in
development mode or not, by hardcoding the path directly from the configure script. We
discussed how to load a web page and interact with the rest of chrome.

Later on, in our second project, we learnt how to extend a widget and a multiple-scripts
application. This is important to know as in the real world, our application would resemble
this situation.

Then in both projects, we discussed the logic and UI building separation by putting the
non-UI code in a dedicated class. This way, we can easily add more complex business
processes and not get confused because it got mixed with the UI codes.

Congratulations, you have reached the end of this book! But, what's next?

After reading this book, of course, we still need to dig the details of the skin of knowledge we
read so far. However, as we already get the essentials, it would be easy for you to learn those
details. One thing which is important to remember is that the GNOME platform is an open
source project. Like any other project, it is awesome because of the contributions of hackers
around the world. Now, you are more than capable of doing the same!

Pop Quiz Answers

Chapter 2, Preparing Our Weapons

Pop quiz – naming a signal

Q1 A. server_on_connection_started. This is because the first
word refers to the class (server) and the rest followed by on means that
there is some kind of event happening.

Chapter 3, Programming Languages

Pop quiz – how to fix this?

Q1 A. public, because we want to access it from Main class which is
outside the Book class.

Pop quiz – what is the value now?

Q1 A. JavaScript will think this is an error because we try to access
.length from an undefined value. This is because JavaScript can't get
a property value from an undefined value.

Pop Quiz Answers

[340]

Pop quiz – can you see the difference now?

Q1 A. Circle is a class because it has the definition, and circle is
an object, instantiated from the Circle class.

Pop quiz – how to make it global

Q1 A. Just add printAuthor in the Book class prototype, and then
all objects created from Book will have the function. If we put the
method in every instantiated object, it would be too cumbersome
to do it, while having it on prototype guarantees that the method is
always created.

Chapter 4, Using GNOME Core Libraries

Pop quiz – why the value of zero is printed out

Q1 A. Both answers are right. The default value is set in the
construction phase.

Chapter 5, Building Graphical User Interface
Applications

Pop quiz

Q1 A. Slightly to the left.

This is because 0.3 is less than 0.5. The value of 0.0 means the
alignment is totally on the left.

Q2 A. None of the provided answers is right, the correct one is
slightly to the top

This is because 0.3 vertically means it is closer to the top which has
the value of 0.0.

Appendix

[341]

Chapter 10, Desktop Integration

Pop quiz – a good example application

Q1 A. A battery system tray applet. This is because the data
are posted all the time meaning it is good for monitoring
applications such as the system tray applet. A battery checker
usually just polls the data once or when needed, not all the time.

Index
A
access specifiers, Vala

about 68
internal 68
private 68
protected 68
public 68

actors 126
Add/Remove Software tool 13
address book

accessing 189-198
setting up 188, 189
used, for saving data 198

add_watch function 169
Advanced Linux Sound Architecture (ALSA) 163
alert function 208
animations

playing with 129
Anjuta

about 11, 24, 25
features 25
IDE layout 25, 26
program, running 29-31
Vala project, creating 24, 25

Anjuta, features
code completion 25
line numbering 25
syntax highlighting 25

anonymous function 78
Application Programming Interface (API) 41
array

manipulating 51, 52

ATK 11
audio

playing, programmatically 164-168
audioconvert element 162, 163

B
bindtextdomain function 262
block

commenting 28, 29
uncommenting 29

bogus local identifier
using 257

bookmarks tool 26
breakpoints tool 26
browser interaction

build infrastructure, preparing 305-314
user interaction design, implementing 315-326

build infrastructure
preparing 305-314

buttons
icons, adding to 115, 116

C
C 43, 255
C# 43
C++ 43
Cairo 11
calendar data source

setting up 188, 189
CamelCase 56
capabilities, Gee 72-75

[344]

chrome 302
class 56
client-side JavaScript

GNOME, connecting with 211-223
running, with JavaScriptCore 204, 205

closure function 78
Clutter

about 11, 107, 121, 202
used, for implementing mockup 121-128

code
porting, without GtkBuilder 117

code point 256
command line

used, for accessing GStreamer pipeline 162
comment block 28
compatibility

maintaining 144
composite widget

creating 136-143
configuration files

about 91
reading 91-93

connect_signals method 39
constructors

about 55
using 54, 55

core libraries, GNOME
GIO 10
GLib 10
GObject 10

custom widget
implementing 145-151

CustomWindow class 144

D
daemon 249
data

presenting, with TreeView 180
saving, to address book 198

data storage, GNOME
Evolution Data Storage (EDS) 11

data types
JavaScript, playing with 47-49

data types, Vala 68-71

D-Bus
about 225, 226
listening to 226, 227
URL, for info 226

Debian Testing
about 18
GNOME, installing 18
SDK, installing 18

desktop architecture, GNOME 3 9, 10
Desktop Entry Specification document 93
development requisites, GNOME 3 9
Devhelp 11, 23
docks 25
domain 262
draw function 149

E
echo server

about 102
creating 102

elements
about 160
states 161

elements, states
null 161
paused 161
playing 161
ready 161

End Of Stream (EOS) 170
error

creating, in program 32
events

handling 168-170
Evolution Data Server (EDS)

about 179, 188
architecture 188

F
Fedora 17

about 12
GNOME, installing 12, 13
SDK, installing 12, 13

files
accessing 94-97

[345]

files tool 26
frames per second (fps) 150
freedesktop.org 217, 225
frontend

Vala object, calling from 205-210
functionalities

adding, to widgets 136-143
functions, GLib main loop 80-83

G
GDataOutputStream class 101
Gdk 273
Gee

about 71
capabilities 72-75
members, initializing 75

Gee library
adding, to project 71, 72

generics programming 74
Gettext 261
GFile API 96
GFileInputStream object 97
GIMP toolkit 11
GIO

about 10, 79, 94
files, accessing 94-97
used, for accessing network 97-101

Gjs 44
Glade 11, 25, 34
GLib

about 10, 13, 79, 273
configuration files, reading 91-93

glib2-devel package 13
GLib main loop

about 80
functions 80-83

GLib properties
about 86
accessing 86-90

GNOME
about 7, 225, 254
and SDK 12
connecting, with client-side JavaScript 211-223
core libraries 10
data storage 11

multimedia libraries 11
programming, with JavaScript 44
tools 11
URL, for platform reference 10
user interface libraries 11

GNOME 3
about 7, 43
desktop architecture 9, 10
development requisites 9
system requisites 8

GNOME core libraries 79
GNOME, installing

in Debian Testing 18
in Fedora 17 12, 13
in openSUSE 12 15, 17
in Ubuntu 12.04 20

GNOME. Manokwari 223
GNOME Panel/Fallback 8
GNOME session manager

about 228
talking to 228-240

GNOME Shell 8
GObject 10
GObject signals

about 84
handling, in JavaScript 84-86

GSettings
about 102, 103
accessing, programmatically 104, 105

GSettings API 103
gst-launch tool 162, 163
GStreamer

about 11, 160
architecture 160, 161
audio, playing 164-168
events, handling 168-170
video media, playing 170, 171
video, playing 171-177

GStreamer pipeline
accessing, with command line 162
testing 162, 163

GTK+ 11, 107, 273
GTK+ application

creating 108, 109
icon placement, adjusting 117
icons, adding to buttons 115, 116

[346]

mockup, implementing 109-115
Vala version, creating 115
WebKit, embedding 202-204

Gtk+ custom widget
implementing 144-151

GtkDrawingArea class 147
GtkLabel 109
GTK+ module

testing 290-298
GtkRadioButton 109
GtkWindow 109
Gtranslator 11, 269
Gtranslator program 268
GUI modules

testing 290-298

H
HTML5 201

I
i18n infrastructure

bootstrapping 258-262
i18n (internationalization) 253, 305
i18n, in Vala project

about 258
infrastructure, bootstrapping 258-262
UI, creating 263-267
UI texts, translating 267-269

icon placement
adjusting 117

icons
adding, to buttons 115, 116

IDE layout 25
index.html file 224
installation, GNOME

in Debian Testing 18
in Fedora 17 12, 13
in openSUSE 12 15, 17
in Ubuntu 12.04 20

installation, locale 270
installation, SDK

in Debian Testing 18
in Fedora 17 12, 13
in openSUSE 12 15, 17
in Ubuntu 12.04 20

Integrated Development Environment (IDE) 23
interaction design

inspecting, of browser 304, 305
interaction flow 109
interprocess communication (IPC) 225
intltool 261
iteration

controlling, steps 49, 50

J
JavaScript

about 43, 47
GObject signals, handling 84-86
iteration, controlling 49, 50
playing, with data types 47-49
used, for programming GNOME 44

JavaScript code
trying 45

JavaScriptCore
about 204
used, for running client-side JavaScript 204, 205

JavaScript Object Notation. See JSON
JavaScript objects

constructing 54, 55
using 52, 53

JavaScript prototypes
using 56-58

Jawi script 254
JQuery 202
JQuery Mobile 202
JSON 54, 202

K
keyring 243

L
L10n 271
launcher

about 240
creating, for application 240-243

libebook 11
libecal 11
libnotify 249

[347]

library
creating 152-156
widgets, maintaining 151-156

link_filtered function 167
locale

about 254
adding, to system 256, 257
installing 270
obtaining 255
output, obtaining with 257

locale data 255
locale-gen command 257
locale parameters

exploring 256
localization process 271, 272
loosely typed language 47

M
member access specifiers

about 65
defining 65, 67

messages 26
mockup

about 35
implementing 109-115
implementing, raw GTK+ programming used

117-121
implementing, with Clutter 121-128

Model-View-Controller (MVC) 180
modularization 61
MPEG codecs 159
multimedia

third-party library 159, 160
multimedia capabilities 159
multimedia libraries, GNOME

GStreamer 11

N
navigation

between tabs 27, 28
network

accessing, GIO used 97-101
new operator 56
notifications

sending 249, 251
notification system 249

O
object

about 56
constructing 54, 55
prototypes, modifying 59, 60

object-oriented programming. See OOP
Ogg demultiplexer 171
OOP

with JavaScript 52
openSUSE 12

about 15
GNOME, installing 15, 17
SDK, installing 15, 17

outputs
obtaining, with locales 257

override keyword 143

P
packages

marking 14
pads 161
pallete 34
Pango 11
passwords

storing, securely 243-248
Portable Operating System Interface. See POSIX
POSIX 254
printCounter function 82
private bus 225
program

modularizing 61, 62
running, Seed used 45-47

project
Gee library, adding 71, 72

project tool 26
properties, GLib

about 86
accessing 86-90

prototype
modifying, of object 59, 60
using 56-58

Python 43

[348]

R
raw GTK+ programming

used, for implementing mockup 117-121
read function 97
read_name() function 218
remote procedure call (RPC) 225
responsive button

about 37
creating 37-39

S
SDK

and GNOME 12
SDK, installing

in Debian Testing 18
in Fedora 17 12, 13
in openSUSE 12 15, 17
in Ubuntu 12.04 20

SDK packages
marking 17, 19

Seahorse 243
seed 11
Seed

about 44
used, for running program 45-47
working 44

session bus 225
session manager, GNOME

about 228
talking to 228-240

set_title function
about 132
overriding 132-135

signal
naming 39

signals, GObject
about 84
handling 84-86

sink 161
Software Development Kit. See SDK
source 161
source string 255
Spidermonkey 44
stream 97
stubbing technique 283

stubs
creating 283-289

subclassing 132
symbols

about 40
tracking 40, 41

symbols tool 26
system

locale, adding to 256, 257
system bus 225, 226
system requisites, GNOME 3 8

T
tabs

navigating between 27, 28
terminal 27
Test-Driven Development (TDD) 274
tests

stubbing 283
tools, GNOME

Anjuta 11
Devhelp 11
Glade 11
Gtranslator 11
seed 11
vala 11

translations 255
TreeView

about 180
used, for presenting data 180
using 181-187

tweep 332
twitter client

about 326
implementing 327-336

U
Ubuntu 12.04

GNOME, installing 20
SDK, installing 20

Ubuntu Software Center tool 21
UI layout

creating, for web browser 302, 303
UI texts

translating 267-269

[349]

unit testing
about 273
procedure 274
reasons, for performing 274

unit tests
about 274
creating 274-282

Unity 20
Universal Character Set 255
User Experience (UX), GNOME 3

about 8
GNOME Panel/Fallback 8
GNOME Shell 8

user interaction design
implementing 315-326

user interface
creating 263-267
editing 33, 34

user interface libraries, GNOME
ATK 11
Cairo 11
Clutter 11
Gtk+ 11
Pango 11
WebKit 11

UTF-8 256

V
Vala

about 11, 43, 63
access specifiers 68
data types 68-71
entry point, to program 64
signals, emitting 75-77
signals, watching 75-77

Vala object
calling, from frontend 205-210

Vala project
creating 24, 25

Vala version
creating 115

var directive 47
video

playing 171, 172
playing, programmatically 173-177

video media
playing 170, 171

VirtualBox 9
vorbis plugin 171

W
watches tool 26
web browser

implementing, WebKitGTK used 301, 302
interaction design, inspecting 304, 305
UI layout, creating for 302, 303

WebKit
about 11, 202
embedding, inside Gtk+ application 202-204

WebKitGTK
used, for implementing web browser 301, 302

WebKitGTK+ 201
WebView widget 204
Wheezy. See Debian Testing
widget properties

modifying 36
widgets

about 34
button, adding 35, 36
functionalities, adding to 136-143
label, adding 35, 36
maintaining, in library 151-156
overriding 132-135
properties, modifying 36

X
ximage sink 171

Y
Yet another Setup Tool (YaST) 16

Thank you for buying

GNOME 3 Application Development Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

VMware View 5 Desktop Virtualization Solutions
ISBN: 978-1-84968-112-4 Paperback: 288 pages

A complete guide to planning and designing solutions
based on VMware View 5

1. Written by VMware experts Jason Langone and
Andre Leibovici, this book is a complete guide to
planning and designing a solution based on VMware
View 5

2. Secure your Visual Desktop Infrastructure (VDI)
by having firewalls, antivirus, virtual enclaves,
USB redirection and filtering and smart card
authentication

3. Analyze the strategies and techniques used to
migrate a user population from a physical desktop
environment to a virtual desktop solution

LiveCode Mobile Development Beginner's Guide
ISBN: 978-1-84969-248-9 Paperback: 246 pages

Create fun-filled, rich apps for Android and iOS
with LiveCode

1. Create fun, interactive apps with rich media features
of LiveCode

2. Step by step instructions for creating apps and
interfaces

3. Dive headfirst into mobile application development
using LiveCode backed with clear explanations
enriched with ample screenshots

Please check www.PacktPub.com for information on our titles

Getting Started with Talend Open Studio for Data
Integration
ISBN: 978-1-84951-472-9 Paperback: 320 pages

Develop system integrations with speed and quality
using Talend Open Studio for Data Integration

1. Develop complex integration jobs without
writing code

2. Go beyond "extract, transform and load" by
constructing end-to-end integrations

3. Learn how to package your jobs for production use

web2py Application Development Cookbook
ISBN: 978-1-84951-546-7 Paperback: 364 pages

Over 110 recipes to master this full-stack Python
web framework

1. Take your web2py skills to the next level by dipping
into delicious, usable recipes in this cookbook

2. Learn advanced web2py usage from building
advanced forms to creating PDF reports

3. Written by developers of the web2py project
with plenty of code examples for interesting and
comprehensive learning

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing GNOME 3 and SDK
	System requirements
	The GNOME Shell
	GNOME Panel/Fallback
	Development requirements

	GNOME 3 desktop architecture
	GNOME and the SDK
	Time for action – installing GNOME and SDK in Fedora 17
	Marking packages to be installed
	Ready to install the packages

	Time for action – installing GNOME and SDK in openSUSE 12
	Marking SDK packages
	Starting the installation

	Time for action – installing GNOME and SDK in Debian Testing
	Marking SDK packages
	Applying the installation

	Time for action – installing GNOME and SDK in Ubuntu 12.04
	Continue installing the SDK

	Summary

	Chapter 2: Preparing Our Weapons
	Firing up Anjuta
	Time for action – creating a new Vala project
	The IDE layout
	Bookmarks
	Files
	Project
	Symbols
	Watches
	Breakpoints
	Messages
	Terminal

	Navigation between tabs
	Time for action – navigating between tabs
	Comment block
	Time for action – commenting/uncommenting a block
	Time for action – running the program for the first time
	Make an error and see how it works

	Editing UI
	Time for action – editing UI
	Palette
	Widgets

	Time for action – adding a label and a button
	 Time for action – changing widget properties
	A responsive button
	Time for action – making the button responsive
	Tracking symbols
	Time for action – finding a symbol
	Getting help
	Summary

	Chapter 3: Programming Languages
	Programming GNOME with JavaScript
	Time for action – saying hello to Seed
	Time for action – running our program with Seed
	Loosely typed language

	Time for action – playing with data types
	Controlling iteration

	Time for action – controlling Iteration
	Time for action – manipulating an array
	Object-oriented programming (OOP) with JavaScript

	Time for action – using the JavaScript object
	With great power comes great responsibility
	Constructing objects

	Time for action – playing with constructors
	Class and object
	Using prototypes

	Time for action – adding prototypes
	Time for action – modifying the prototype of an object
	Modularization

	Time for action – modularizing our program
	Getting to know Vala
	Time for action – entry point to our program
	Member access specifier

	Time for action – defining member access
	The access specifiers
	Basic data types

	Time for action – experiment with data types
	Gee, what is it?

	Time for action – adding the Gee library
	Time for action – Gee in action
	Initializing members when declaring

	Time for action – watching for signals
	Summary

	Chapter 4: Using GNOME Core Libraries
	Before we start
	The GLib main loop
	Time for action – playing with the GLib main loop
	GObject signals
	Time for action – handling GObject signals
	GLib properties
	Time for action – accessing properties
	Configuration files
	Time for action – reading configuration files
	GIO, the input/output library
	Time for action – accessing files
	Network access with GIO
	Time for action – accessing a network
	Understanding GSettings
	Time for action – learning GSettings
	GSettings API
	Time for action – accessing GSettings programmatically
	Summary

	Chapter 5: Building Graphical User Interface Applications
	Before we start
	Creating a basic GTK+ application
	Time for action – implementing the mockup
	Time for action – adding icons to the buttons
	Porting the code without GtkBuilder
	Time for action – programming with raw GTK+
	GUI programming with Clutter
	Time for action – implementing the mockup with Clutter
	Summary

	Chapter 6: Creating Widgets
	Before we take off
	Overriding the widget's standard functions
	Time for action – overriding the set_title function
	Adding new functionalities
	Time for action – making a composite widget
	Maintaining compatibility
	Implementing a Gtk+ custom widget
	Time for action – implementing the custom widget
	Maintaining widgets in a library
	Time for action – creating a library
	Summary

	Chapter 7: Having Fun with Multimedia
	Packages required
	Understanding the basic concept of GStreamer
	Accessing the GStreamer pipeline with the
command line
	Time for action – testing the pipeline
	Time for action – programmatically playing the audio
	Time for action – handling the events
	Playing a video media
	Time for action – playing video
	Time for action – programmatically playing the video
	Summary

	Chapter 8: Playing with Data
	Presenting data with TreeView
	Time for action – using TreeView
	The Evolution Data Server (EDS) architecture
	Time for action – setting up the address book and the calendar data source
	Time for action – accessing the address book
	Have a go hero – saving data to the address book
	Summary

	Chapter 9: Deploying HTML5 Applications with GNOME
	Before we start
	Embedding WebKit
	Time for action – embedding WebKit
	Runtime with JavaScriptCore
	Time for action – calling the Vala object from the frontend
	Time for action – connecting GNOME with client-side JavaScript
	Summary

	Chapter 10: Desktop Integration
	Talking to each other with D-Bus
	Time for action – listening to D-Bus
	The GNOME session manager
	Time for action – talking to the session manager
	Launcher
	Time for action – putting our application in the launcher
	GNOME keyring
	Time for action – storing passwords securely
	Notification system
	Time for action – sending notifications
	Summary

	Chapter 11: Making Our Applications Go International
	Understanding locale
	Time for action – getting the available locales
	Time for action – adding a locale
	Time for action – getting different outputs with different locales
	i18n in a Vala project
	Time for action – bootstrapping the infrastructure
	Time for action – creating a UI
	Time for action – translating UI texts
	The localization process
	Summary

	Chapter 12: Quality Made Easy
	Reasons for performing unit testing
	Time for action – creating our first unit test
	Stubbing our tests

	Time for action – creating stubs
	Testing GUI modules
	Time for action – testing a GTK+ module
	Summary

	Chapter 13: Exciting Projects
	Part I – web browser
	Time for action – designing our UI
	Browser interaction

	Time for action – preparing the build infrastructure
	Time for action – finishing up
	Part II – A Twitter client
	Time for action – implementing the Twitter client
	Summary

	Pop Quiz Answers
	Index

