INTRODUCTION

dconf is a key/value storage system with
expressive types, a very simple API, and O COn
can be accessed through the D-Bus

inter-process communication system. lightweight configuration storage

With dconf you can centralize your system and user applications configuration
into a database allowing easier administration and configuration backups.
Applications can subscribe to changes in any key in the database, allowing
applications to react in real time to changes in the configuration.

KEY FEATURES

* Licensed under the LGPL version 2.1

* Simple to use API

* Key change notifications through D-Bus

* Low memory footprint

* High performance key reads and writes

* Reduced disk access for optimized energy consumption

* Support for different access levels (system, read-only, mandatory...)
* Schema based high-level API for applications (GSettings)

ARCHITECTURE —

dconf stores its configuration database
in three different files; a system wide
database, a defaults database and a
per user database. Read operations are wRrTe
performed by directly accessing the

database file which has been designed to

allow multiple reads even in the presence
of a writer. This achieves very high —
performance for read operations. —

1

N

WRITES

The writes are performed through a 'writer' service that is started on demand
when a process needs to write to the configuration database. Configuration
change notifications are sent by the writer which exits after a period of
inactivity and can be resumed later without any checkpointing.

Cedleamiilly e

GSettings

O0)
GSettings is an abstract interface to
settings storage that is on track to O @CO nf
become the standard interface for all
GNOME applications wishing to store lightweight configuration storage

settings. GSettings will soon be part
of the GLib platform.

On Free Desktop systems, GSettings uses dconf as the backend in which to
store application settings, on Windows, GSettings uses the registry as
the backend and a native backend is planned for Mac OS.

GSettings has a very strong schemas system. Schemas are mandatory and
provide very strong guarantees to the application. With GSettings, the
schema is not stored in the configuration database but is deployed as part
of the application. Application writers write one schema file and it
provides a consistent settings interface to the application regardless

of the platform on which it is running.

GSettings uses a local caching mechanism to allow for both reads and
writes to be synchronous and non-blocking, and without mainloop
reentrancy. This, coupled with its schema system, makes GSettings a
much nicer interface to program to than using dconf directly. It is for
this reason that, even in light of the GConf compatibility layer, any
new application development should target GSettings rather than the
GConf API. Some existing applications are even being ported to take
advantage of the new API.

A COMPARISON OF dconf AND GConf

For many years GConf has been seen as one of the cruftier APIs in GNOME.
A redesign has been talked about for many years, including by the

authors of GConf. GConf has meanwhile fallen into a relative lack of
maintenance.

GConf was designed to use the ORBIt remote object system, which in turn
was based on CORBA. These technologies have been marked for deprecation
in the GNOME stack for quite some time, and are now in the process of
being actively removed from use as part of the GNOME 3.0 plans.

Cedleamiilly e

O0)
A port of GConf to use D-Bus was done
some time ago, but the authors of this
port have stated that it isn't suitable O On
for use in general and it is not to be lightweight configuration storage

considered for upstream use without a
considerable rewrite.

The current plans for the GNOME 3.0 platform include dconf as a drop-in
replacement for GConf. An APl compatible replacement for libgconf using
dconf is being prepared for this purpose.

One of the strangest concepts that people approaching GConf are faced with
learning is its schema system where XML files must be hand-written and are
rather hard to deploy, many programmers avoid the use of schemas entirely.
dconf has no schemas, it is purely a database that stores key/value

pairs.

PERFORMANCE

dconf exceeds the performance of GConf by an order of magnitude or more
in most ways related to the reading of configuration data.

From a warm cache, dconf can enumerate the contents of the entire database
and load all the keys in approximately 10ms (0.01 seconds). The equivalent
operation in GConf takes approximately 482ms. This is an increase of
approximately 50 times. The reason for this is that reads from the dconf
database don't involve going out of process and making a round-trip to
another process.

For dconf to read the entire database from a laptop hard drive with a cold
cache takes 0.2 seconds. The equivalent operation in GConf on a reasonably
fresh install takes approximately 3 seconds. This length of time increases
with the age of the user's home directory since the GConf database tends to
become more fragmented over time. Anecdotally, 10 seconds or more has
been witnessed.

It is not possible to fairly compare write operations between dconf and GConf
as they operate on different writing models. With dconf all writes are written
atomically to disk and fully synced to the harddrive before the request is
finished. With GConf writes are grouped and periodically flushed. Itis
possible to write many keys at once in dconf whereas transaction support in
GConf exists in the API but is not actually implemented as such.

Cedleamiilly e

MEMORY USAGE

O0)
The dconf writer service uses
approximately 216kB of writable memory
compared to the 3.2MB used by gconfd. O On
Addltlona”y, the client-side dconf Iibrary [|9htwe|9ht Configurotion storoge
is very slim in terms of per-process
memory consumption. The majority of its memory usage comes from D-Bus
and,as D-Bus is already used by many components on a standard Linux

system, this overhead does not have a significant impact in most cases.

Perhaps the greatest benefit in memory use that comes with dconf is that
the entire configuration database is stored in a binary file format that is
memory-mapped and used directly. This means that your applications are
sharing the kernel's disk cache memory without making a duplicate copy.

An additional benefit is that the dconf writer service need not be running at
most times. During startup, when nobody is making changes to settings,
the writer isn't running. Only when someone modifies a setting is the writer
activated (by D-Bus). The writer is stateless, so it can easily be
programmed to exit after an inactivity timeout. This reduces the number of
processes that need to be running.

OVERALL COMPARAISON

GConf dconf

Warm cache read time 482ms 10ms
Cold cache read time 3s 0.2s
Daemon writeable memory size 3.2MB 216kB (or zero)

¥k All perfomance tests were made against a typical desktop configuration database containin
2428 keys. The keys were identical in both databases. The tests were made on a Core 2 Duo
laptop running at 1.87GHz and all software was compiled using GCC 4.4 with -O2.

Cedleamiilly e

GConf APl BRIDGE

Work is currently beginning on an
APl compatibility bridge between
dconf and GConf. This bridge will
provide a GConf API and possibly ABI
compatible interface to existing
applications that want to use dconf with little or no porting effort.

lightweight configuration storage

This bridge will essentially allow dconf to be used as a drop-in replacement for
GConf on any desktop or device.

FUTURE PLANS

* Improve network stored database support (NFS, CIFS...).
* Cross platform database migration.

* Support running dconf apps in the absence of D-Bus.

* Database snapshots and rollbacks for backup purposes.

FURTHER DEVELOPMENT

Codethink Ltd. is the main developer and consultant of the dconf project.

If your organisation needs assistance on the deployment and integration of
dconf in any of your applications, platforms or devices, our engineers can
help you to get the best out of this innovative configuration management
system.

