
BuildStream Architectural Overview (v2.2)

What is BuildStream ?

 BuildStream is a flexible and extensible framework for the modelling of build and CI pipelines in a
declarative YAML format, written in python.

BuildStream defines a pipeline as abstract elements related by their dependencies, and stacks to
conveniently group dependencies together. Basic element types for importing SDKs in the form of
tarballs or ostree checkouts, building software components and exporting SDKs or deploying
bootable filesystem images will be included in BuildStream, but it is expected that projects forge their
own custom elements for doing more elaborate things such as running custom CI tests or deploying
software in special ways.

The build pipeline is a sort of flow based concept which operates on filesystem data as input and
output. An element's input is the sum of it's dependencies, sources and configuration loaded from the
YAML, while the output is something on the filesystem which another element can then depend on.

Project Requirements

● Limited Scope and Maximum Extensibility. By providing limited built-in Element implementations, we externalize
the problem of supporting every deployment (or export) method under the sun. By allowing users to implement their
own Elements, we are best prepared to handle use cases that we did not foresee.

● Backwards Compatibility. By providing an API surface that is limited and stable, and restricting how the
underlying YAML format changes, we ensure as a rule that future versions of BuildStream remain usable with older
projects, even when those projects provide custom Elements.

● Limited scope of builds. Instead of mandating that an entire operating system be bootstrapped and built from the
ground up, we allow building a pipeline on top of a different base, or on top of another pipeline output, using the
concept of imports. An import need only be an Element which creates an artifact from an abstract source:
● A tarball SDK (such as KC sysroots delivered by Intel or any other binary blob SDK)
● A flatpak SDK (essentially a signed OSTree commit)
● An artifact output of a separate build pipeline (allowing for recursive building of pipelines)

● Project Modularity. Projects can be combined with one another by way of recursive pipelines. When building an
entire OS, one should be combining multiple projects. Downstream projects have control of exactly what version of
stacks they consume. Hosting all build instructions for an entire OS in the same git repository is not encouraged.

● Build Configuration. A default configuration is shipped with BuildStream, defining sane defaults for variables such
as prefix, execprefix, sysconfdir, localstatedir, etc. Commands for configuration used by various build systems are
also defined using these defaults. A BuildStream project configuration file may override some of these values so
that the entire pipeline is built differently.

● Developer Convenience. It should be possible to integrate workspaces into the build, so that developers may
make stack-wide modifications and build and test the results before having to stage any commits. We should also
be able to easily shell into a build environment and run, debug, manually build programs and run them at will.

● Varied Build Planning Options. This concerns the decision that BuildStream makes about what needs to be
rebuilt or rebuilt. In the usual context the build is deterministic, cache keys determine what needs to be rebuilt and
every element which depends on a changed element needs to be rebuilt. In the non-deterministic case, we need a
build plan which only rebuilds elements who’s cache key has changed since the last invocation, but not elements
which depend on that element (This is in consideration of GNOME Continuous CI).

● Deterministic, Repeatable and Reproducible Builds. Not entirely in the scope of BuildStream itself but
something we make possible. Host tooling is only ever used to obtain sources or by a BuildStream project which
bootstraps a base runtime, after this point only tools from within the sandbox can be used. Repeatability is a matter
of ensuring one relies on minimal standard tools for the bootstrap process. Reproducibility is considered by
BuildStream when collecting build output (file mtime) and when implementing the Sandbox, but is also sometimes
a matter of how the sources are actually written.

Import (tarball)
SDK Sysroot Tarball

 The YAML format is a method for the modeling of Pipelines, a Pipeline is a collection of Elements
which can be assembled and deployed. Elements in a pipeline are related by depending on previous
elements in the pipeline. While all elements implement the same abstract interface, for practical
purposes we can assert that elements fall into the following basic categories:

● Build Element: Runs tooling provided by dependencies in the sandbox to produce an artifact
● Stack Element: Depends on build elements which it contains, all of which depend on the

group element’s dependencies themselves (this element is treated as a special case)
● Import Element: Imports some external source, converting it into a local artifact
● Export Element: Turns it’s dependencies into something useful, like a bootable system image
● Transform Element: Processes it’s dependencies in some way to produce a new transformed

artifact, such as running system integration commands or filtering by artifact splitting rules

Example Visualizations of Plausible Build Pipelines

Build some things on top of a sysroot tarball and deploy some rpms

Build Element
Kernel + Forward Ported

Vendor Patches

Export (custom)
Deploy RPMs

Build Element
Some kernel module

Build Element
Upstream Mesa

Build Element
Wayland

Import (ostree)
Yocto built base

SDK

Build Flatpak SDK or Runtime on top of another Flatpak SDK

Export (ostree)
Deploy Flatpak

SDK

Build Element
orc

Build Element
gstreamer

Build Element
wayland

Build Element
SDL2

Transform (s-i)
System Integration

Commands

Export (ostree)
Deploy Flatpak
Runtime only

Transform (split)
Filter out non

runtime related files

Graphics Stack

BSP Stack

Build a minimal bootable base linux system

Build Element
coreutils

Transform (s-i)
Run System Integration

Commands

Build Element
sed

Build Element
diff

Build Element
stage1-binutils

Build Element
stage1-gcc

Build Element
stage2-glibc

Build Element
...

Build Element
make

Build Element
gcc

Build Element
nasm

Build Element
syslinux

Build Element
linux

Build an extended bootable linux system

Build Element
libX11

Build Element
X Server

Build Element
Other stuff...

Import (pipeline)
GNU/Linux Coreutils

Import (pipeline)
GNU/Linux BSP

Transform (s-i)
Run System Integration

Commands

Bootstrap Stack

Core Stack BSP Stack

Graphics Stack

Export (image)
Deploy Bootable Image

Export (image)
Deploy Bootable Image

Elements

 This abstract element is the root of all evil in the Build Stream architecture, every element must
conform to this interface, custom elements may be written to implement exotic elements.

The concrete type used to construct an element is depicted by the kind attribute specified in the
YAML for the specified element. All data specified for the given entity in the YAML (except for sources
and dependency specifications) is given to the element instance as a dictionary and is considered to
be exclusively in the domain of the given element type. Dependency information remains in the
domain of the Pipeline itself. Sources, which are abstract objects of themselves, are constructed
separately and handed over to the Element separately from the rest of the dictionary. Additional
public domain data may be assigned to any Element. An Element can access the domain data of all
of the elements on which it depends at assembly time.

Anatomy of Element Data

Element

kind: build
name: foo
description: Optional description about foo
depends:
- gtk+
- clutter
sources:
- kind: git
 track: master
 uri: upstream:foo.git
 ref: bbf775301a08b9a578ef7f647bc35fe13e816241

build-system: autotools
configure-commands:
- ${configure} --enable-flying-ponies

domain-data:
- integration:
 commands:
 - update-flying-pony-cache -f ${datadir}/ponies
- products:
 - artifact: foo-libs
 include:
 - (usr/)?lib/flyingponymodules/*

Pipeline Private Data

The pipeline creates the abstract Source objects and
hands over the name, description and Source
objects to the Element at construction time, the
Element type is derived from the specified kind.
Knowledge of how dependencies are expressed is in
the domain of the pipeline, while name, description
are public, and build sources are shared with the
element itself.

Element Configuration Data

The element is in control of it’s own configuration
data which is private for a given element. This is
used to configure how an element operates on it’s
inputs to create it’s output.

Public Domain Data

Extra data can be declared on an element, this data
is visible to the element itself, and all elements which
depend on the element later in the pipeline. This can
be useful for custom elements to consume later, or
for the same element type to consume from other
instances.

This layout is chosen with API stability and extensibility in mind:

● The dependency information belongs strictly to the pipeline core which is responsible for
parsing the YAML initially and constructing the dependency tree of Elements. This allows some
measure of freedom in how dependency information can be expressed in future versions of the
format.

● Element private data is defined exclusively by the element itself. First class citizen element
formats may evolve with revisions of the main BuildStream format, but an element must
continue to understand and be backwards compatible with older formats.

● Public data categorized by domain names allow elements to read domain specific data on all
the elements which they depend. This also allows developers of custom elements to add extra
annotations across the entire pipeline which can be processed by their elements.

Default Configuration Data

 When defining an Element type, the element will provide a class-wide dict which expresses the
default Element Configuration Data (as defined on the previous page). This means that in a user
project, what the user specifies in YAML is not the sum total of the data given to the Element at
instantiation time. Instead, the dictionary used to configure an element is composed in three stages:

1) First a copy of the Element class-wide default dictionary is made.
2) The project configuration is read, which can override the default data of a given element type

by composing a similar dictionary.
3) Finally the dictionary parsed from the Element declaration YAML is used to override the above.

Element Base Class Methods

 Some basic knowledge about Element inputs and outputs are handled by the base Element class
from which all Element implementations derive. These methods are generally used by Element
plugins at assemble time but also useful for general pipeline operations.

● dict = element domain_data (domain)→

Fetches the public domain data on the element for the specified domain.

● element stage (sandbox, directory=None)→

Stages the element itself in the sandbox, by consulting the artifact cache for an artifact with the
correct cache key for the given element and asking the sandbox to stage it. If directory is
specified, stage to that sandbox relative directory, otherwise assume “/”.

● element stage_dependencies (sandbox, directory=None)→

Stages the dependencies of the element, by simply walking the dependency tree from the
base of the pipeline up to the element, not including the element, and calling the stage method
on each of these elements in the correct order.

● element stage_sources (sandbox, directory)→

Stages the element’s sources in the sandbox, by iterating over the element’s sources and
asking the sandbox to stage them.

● element integrate (sandbox)→

Runs integration commands for the element on the sandbox. By fetching the “integration”
domain data and running the commands specified.

● element integrate_dependencies (sandbox)→

Like element→stage_dependencies(), but runs the integrate method.

Element Abstract Methods

Below is a draft of what the Element’s abstract methods will probably look like:

● new Element (dict, sources[])

 The element constructor is given its dictionary which is parsed from the YAML, along with 0 or
more Source objects. The base element class initializer takes care of holding a reference
to the passed Source delegate objects so that they are attached and available at any time.

● cacheKey = element enrichCacheKey (cacheKey)→

The element is responsible for tracking what parts of it’s configuration data may effect the build
output, and also uses it’s Source delegates to assist in enriching a cache key. The passed
cacheKey is at first the context of the build itself (target architecture, build environment
variables, and anything else) and then an accumulation of the given element’s dependencies.

● directory = element assemble (sandbox)→

The juice of the element implementation is a matter of producing some output, the element is
given an initialized sandbox object and the element may then use the stage_dependencies()
and stage_sources() methods to prepare the sandbox.

Note that some deployment related elements may choose to stage the dependencies of
a different target at the root and stage it’s own dependencies in a subdirectory, this is to
ensure that we may always use tooling that we’ve built and never rely on host tooling to
perform a deployment or “export”.

Here the element should interpret it’s configuration data and operate on the prepared
sandbox to produce output. Normally the element will use sandbox→run() to run programs
within the sandbox in order to create the output.

After output is generated inside the given sandbox, the element returns the sandbox relative
path indicating what should be the root of the produced artifact. This is typically

 “/${element_name}.inst” for a Build Element and “/” for a Transform Element.

Source

kind: git

track: master
uri: upstream:foo.git
ref: bbf775301a08b9a578ef7f647bc35fe13e816241

stage: sub/dir

Pipeline Private Data

The pipeline recognizes the kind attribute at parse
time and uses that to determine what type of
Source to instantiate.

Common Data

Every Source has the stage attribute in common,
this can usually be omitted but indicates the
staging relative directory where the source should
be placed when staging multiple sources for a
given Element. The jury is out on whether this
needs to be public or not.

Source Configuration Data

Like an Element, the Source is in control of
defining what attributes are necessary to fetch the
source files. In the case that the Source type
represents a VCS of sorts, it should use a track
parameter to indicate a symbolic name of a
branch from which it can update it’s own ref. As a
matter of convention, Source implementations
should use the words track, uri and ref if at all
possible.

Aliases

 A brief note about aliases is in order. Note in the above YAML the word “upstream” is used instead
of specifying the full URI for a given git repository. The Source object will use a utility function in the
BuildStream core to resolve a full URI based on a URI which used such a prefix.

Aliases are configured in a BuildStream project root in a project wide project.conf file which will have
a section for assigning base URI paths to symbolic aliases.

Sources

 Similar to the abstract Element class, the Source is an abstract interface who’s type is indicated by
the kind attribute in YAML and for which there will be some built-in implementations but third parties
are allowed to provide their own Source implementations in their own projects (although this is less
expected).

The roles of a Source consists of:
● Obtaining files from some remote location (usually source code)
● Caching the sources locally
● Calculating a cache key for the given set of sources
● Allowing the sources to be staged into a sandbox
● Tracking of remote branches or updating an sha256 sum

Anatomy of Source Data

Source Abstract Methods

This interface to implement for a Source object type is approximately:

● new Source (dict)

The build source is given a dictionary obtained from the YAML indicating some parameters,
such as a git repository and commit sha, or tarball url and sha256 sum, or whatever the given
Source might need to obtain an exact set of sources.

● cacheKey = source enrichCacheKey (cacheKey)→

Similar to the Element, and contributing to the Element’s cache key, the Source should
provide a method for enriching a cache key with some information indicating exactly what input
it provides to the Element.

● source fetch ()→

Ensure that the required files are available in the local cache directory, possibly by
mirroring a git repository, or by downloading a tarball or any other means. This would be
a no-op for a Source implementation which stages files directly from the BuildStream project
directory.

● source stage (directory)→

Stage the sources at a given directory. Regardless of whether or not the sandbox in use
needs to translate file attributes for sources to be recognized correctly in the build
environment, an entry point is required for the source to prepare a directory somewhere.

Most probably this will always be called with a directory owned by a given sandbox instance.

● source refresh (dict)→

Refresh the source ref based on it’s tracking branch, if possible.

A Source for a tarball might omit the sha256 sum or a Source for a VCS might provide a only
a named branch. This will result in a Pipeline which cannot be run, however a traversal of the
Pipeline calling the refresh method on all associated Source objects will result in updating the
parsed YAML inline so that the pipeline can then be run.

Even if the ref is currently set in the parsed YAML, the refresh method can be used at any
time to fetch the latest ref on a remote tracking branch in the case that the Source type
represents a VCS.

● source assert_host ()→

After the Pipeline has been constructed and before processing, an initial traversal of the
pipeline is made to ensure that the build host is capable of obtaining sources. This method
should assert the presence of git or svn or whatever host tooling is required to obtain sources
according to the Source implementation, raising an informative exception if the required
host tools are lacking.

Pipeline

 The Pipeline represents a parsed pipeline definition in YAML and is the owner of all elements in
the pipeline, exposing some methods to obtain elements or to iterate over them in useful ways.

The knowledge of how Elements and Stacks come together by relation of their dependencies, and
how Elements are included in Stacks, is entirely in the domain of the Pipeline object. In other words,
moving forward; if and when the overall YAML format for expressing dependencies changes, the
charge of understanding previous formats for expressing dependencies and such element relations
lies on the Pipeline.

The pipeline is also the main outward facing API for running pipelines, as such it will have an entry
point for running all the commands which the CLI frontend offers.

The user facing API is approximately:

● new Pipeline (directory, target, arch)

Where directory is the toplevel directory of a given pipeline project, target is the directory
relative path to the target element definition to build, and arch is the architecture to build for.

Note that when the user invokes the build-stream program on the command line for a given
activity, a pipeline will be created for the target every time. As such, the target of a pipeline
remains in context for the lifetime of a given pipeline object.

● pipeline->run ()

Assembles the elements in the pipeline. This may grow some additional arguments,
such as whether the pipeline should be run interactively, or how to react to failure conditions.

● pipeline->refresh ()

Iterates over all the Source objects associated to Elements in the pipeline and calls the
refresh method on those sources. The pipeline must keep a cached version of the original
parsed yaml dictionary and pass the Source yaml fragments to their respective sources
here.

After traversing the dependency tree, if no error is encountered, the resulting YAML is rewritten
using a round-tripping YAML implementation such as ruamel.

● pipeline->shell ()

Runs the Element’s methods to stage the dependencies and run the integration commands
of the pipeline target, and then runs a shell from the given sandbox. This method might
take an argument to distinguish whether the target element itself should be staged or only
it’s dependencies.

Error out if the target’s dependencies have not yet been assembled.

Project Configuration

 We have made reference to a project wide configuration file several times now, lets take a brief
look at what goes in here, although this is likely subject to changes and possibly will grow with time.

The purpose of a project configuration file is to define aspects particular to the given project, not the
context in which possible pipelines in the given project will be run. User preferences do not go in this
file.

● Aliases: The project itself makes use of aliases to define source URIs conveniently in
shorthand, these are defined here.

● Element Overrides: The project configuration may include an optional section which defines
overrides for the default dictionaries declared on Element class-wide data. This allows the
author of a project to augment the default behavior of elements within that project.

● Environment Overrides: This allows one to augment the default Sandbox environment for the
entire project.

Element Implementations

Here we give a bit of a brief overview on the different element types to be implemented as first class
citizens and how they work.

Build
The Build Element is the one who’s dictionary consists of command lists such as

configure-commands, build-commands and install-commands. These have defaults according to the
specified build-system which is also a value in the domain of the Build element.

This element assembles it’s artifact by staging all dependencies into the sandbox’s root directory,
staging the sources into a build directory and running the commands found in it’s dictionary.

Stack
The Stack Element is treated as a special case by the BuildPipeline, when the pipeline

encounters a Stack element, it causes every element which is contained in the group to also depend
on the Elements or other Stacks which the given Stack depends on itself. The Stack itself then
depends on it’s contents in the underlying pipeline.

Asides from the matter of how dependencies are sorted, the Stack is mostly just a symbolic element
which makes a statement that it’s contents have been built, it’s assemble implementation simply
creates an artifact with some metadata describing it’s content.

ImageExport
The ImageExport Element’s dictionary specifies some information such as what filesystem

type should be used and what size the resulting image should be, whether it should be a bootable
image, etc. Additionally it must specify an element in the pipeline which guarantees the presence of
the tooling required to deploy the image, utilities such as mkfs and syslinux.

To implement the export, the ImageExport element will first stage the required tooling element and it’s
dependencies in the root of the given Sandbox, and then it will stage it’s own dependencies into a
build subdirectory. The element will then proceed to run commands in the sandbox to deploy the build
subdirectory as an image in the output directory.

OSTreeExport
Similar to the ImageExport, except that it will require staging of an element or group which includes
ostree and will use the built ostree to deploy it’s own dependencies to an output OSTree repository.

It may take a GPG signing key as one of it’s parameters in it’s own dictionary.

IntegrationTransform
The IntegrationTransform element will stage all of it’s dependencies at the root of the given Sandbox
and run system integration commands from each of it’s dependencies, in order of dependency,
directly in the root of the sandbox. The output of this Element is the root directory of the sandbox
itself.

RawImport
This is an import type of Element which is used for constructing the base of a Pipeline, this one

specifically is used for importing SDKs in tarball form to be built on top of, but we call it a RawImport
since it is perfectly capable of importing anything for which there exists a BuildSource
implementation.

The RawImport assemble implementation is performed simply by staging its BuildSource directly into
the sandbox root directory and reporting the root directory as output, resulting in an artifact being
created which contains the imported payload.

For the purpose of importing OSTree checkouts as a base to build on top of, a BuildSource should be
implemented. OSTree imports can then use the same RawImport Element.

PipelineImport
This element provides a way for chaining multiple pipelines together. It will use an arbitrary

BuildSource to stage a foreign BuildStream project and then instantiate a new Pipeline to build that
project while passing any user preferences and invocation context, such as user configuration and
target architecture.

It should be noted here that only one pipeline should ever be running at once in a given invocation
context, when the invoking Pipeline recurses into a child Pipeline, the parent is effectively slaved to
the child Pipeline and relinquishes control while the child pipeline is processing.

The Sandbox

Up until here we have covered most if not all of the legwork. What remains is the Sandbox and
the Artifact staging and collection, this still requires a bit more thought and investigation in order to
ensure we get the minimal public API right the first time around.

Tentative API draft:

● setupSandboxBackend (targetArch)

Depending on some criteria, like if we are cross compiling and have a VM ready to perform
builds inside of, or whether we have tooling present to virtualize being root (such as fakeroot
and or bubblewrap) the engine can decide which sandbox backend is appropriate.

If compiling on the same arch, nothing special is needed, chroot with root permissions or
bubblewrap will suffice. If compiling for a host compatible architecture, i.e. when targeting a
32bit arch on a 64bit host, then `linux32` or similar should also be employed automatically
when running commands in the sandbox. If cross compiling, then a bootstrapped qemu
image, kernel and cross compiler for distcc would be required, or a scratchbox2 environment
might be an alternative.

● new Sandbox (bootstrap=False)

Setup a new build directory on the host which can be accessed by the sandboxed
environment, either by chrooting directly into it, or providing an nfs or virtfs mount point
to share the directory.

If the bootstrap option is specified, then the sandbox should be usable without a runtime,
using host tooling to allow the user to at least run a shell. Depending on the Element which
requested a bootstrap sandbox, some host tooling assertions should be made to ensure
the required host tools are available for the Element to assemble itself.

● sandbox cleanup ()→

Remove the content of the sandbox from existence.

● sandbox stage_source (source, relative_directory)→

Stages the Source in the sandbox in such a way that the sandbox environment understands
the content in the same way it appears inside the artifact (i.e. this must handle sandbox
environment specific details, like when staging files on a share directory accessible in
a VM with a virtfs mount).

In most cases this can simply be implemented by requesting the Source to stage itself
at a given path.

● sandbox stage_artifact (artifact_filename, relative_directory)→

Similar to stage_source(), except that here we deal with an artifact. For convenience the
sandbox may maintain a cache of extracted artifacts who’s content can be hardlinked into the
target sandbox. This operation must however respect the file attributes as recorded in the
artifact tarball so that they appear the same when viewed from the sandbox, even if they may
not appear the same way to the regular user on the host system.

● sandbox run (mode, cwd, environment[], command)→

Runs command in the specified sandbox relative working directory cwd and with the specified
environment variables set.

The mode parameter here indicates what permissions should be given to the sandbox. This
can either be permissive, with network accesses for the purpose of running and testing
programs built inside the sandbox, or it can be sealed, which is what we want to use for
deterministic builds.

● sandbox shell (mode, cwd, environment[])→

In some sandbox environments, this may be equivalent to simply running an interactive shell
with sandbox->run(). However this API is special because it must ensure that the calling
terminal is connected to the sandbox environment. This will particularly require extra legwork
when running a VM sandbox for a virtualized cross build.

The above should hopefully provide everything we need for operating within the sandbox. As we
cannot assume the outer environment has permission to create device nodes; creating those must be
implemented by running tools staged and accessible from within the sandbox (mknod). Also since we
ditch the concept of “extensions” in favor of extensible build Elements which can themselves make
use of a sandbox, we should not really have need for executing any commands in the host
environment in a sandbox directory.

Artifact Cache

The remaining piece of the puzzle is yet to fall in place, the Sandbox code itself clearly needs
to be responsible for the creation of artifacts from a sandbox and for the staging of an artifact in the
sandbox, and that is most of the trouble. What remains is only managing the artifacts and
downloading them from a shared server so that not everything needs to be built on everyone’s host.

This may be a private utility inside the BuildStream package, and may be invoked by way of some
common code on the general Element class, possibly the artifact can attempt to be downloaded
before ever calling element assemble ()→ , we’ll have to just see what is most practical, it should
however remain a hidden implementation detail and not exposed in our APIs.

One thing worth consideration is killing away the kbas server entirely, and using an apache hosted
OSTree repository instead to cache the artifacts. This would let us remove one more custom moving
part in favor of something moderately widely used and equally easy to setup; with the added benefit
that GPG keys can be used to sign officially built artifacts and verify them at download time for free.

NOTE: In order to use ostree in place of an artifact server, we would either need to have the artifact
server pull from dedicated build machines in order to populate the cache (which might be a good
idea, preventing random developers from uploading their own artifacts), or alternatively, we would
need complete the ostree work to support the ostree push semantics.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

