Predictive Input Methods

- Anish Patil

RedHat i18n team

Agenda:

1. What/Why?
2. Language models
3. Projects
4. Demonstration

fedora

Need

- 1.21 Billion population (India)
- 74\% literate (read \& write any language)
- Still only 5-6\% understand English
- 51% youth in 1.21 Billion
- Diversity in India
- 22 Officially recognized languages
- 9 Major scripts

Rest of the world

- List of extinct language's
- http://en.wikipedia.org/wiki/List_of_extinct_la nguages_of_Europe
- http://www.unesco.org/culture/languagesatlas/en/atlasmap.html

Problems with Natural

 Languges- Ambiguous
- Exceptions!
- Humans- Ignore!

How to predict next word?

- Statistical Techniques
- Probability

Probabilities

- Bayes' theorem
- $p(A \mid B)=p(A) * p(B \mid A) / p(B)$
- Max has two coins in his pocket, a fair coin (head on one side and tail on the other side) and a two-headed coin. He picks one at random from his pocket, tosses it and obtains head. What is the probability that he flipped the fair coin?


```
P}(\mathrm{ head ) = P(head |fair coin) P(fair coin) +P(head |unfair coin )P(unfair coin)
    = 支}\cdot\frac{1}{2}+1\cdot\frac{1}{2
    = }\frac{1}{4}+\frac{2}{4}=\frac{3}{4
```

$\mathrm{P}($ fair coin \mid head $)$	$=\frac{\mathrm{P}(\text { head } \mid \text { fair coin }) \mathrm{P}(\text { fair coin })}{\mathrm{P}(\text { head })}$
	$=\frac{\frac{1}{2} \cdot \frac{1}{2}}{\frac{3}{4}}$
	$=\frac{1}{4} \cdot \frac{4}{3}=\frac{1}{3}$

Language Model

- Lot of words in one language but what is the probability that one word follow another word?
- Simple model:- number of occurrence of word/Number of words in the language

Language Model

- A language model consists of a finite set V , and a function $\mathrm{p}(\mathrm{x} 1, \mathrm{x} 2, \ldots \mathrm{xn}$) such that:

1. For any $x 1 \ldots x n \in V \dagger, p(x 1, x 2, \ldots$ xn) ≥ 0
2. In addition,

$$
\begin{aligned}
& \operatorname{Sum}(p(x 1, x 2, \ldots x n))=1 \\
& x 1 \ldots x n \in V+
\end{aligned}
$$

Hence $p(x 1, x 2, \ldots, x n)$ is a probability distribution over the sentences in Vfedoraf

Markov Models

- The probability of a word depends only on the probability of a limited history
- The probability of a word depends only on the probability of the n previous words
- Unigrams, Bigrams,Trigrams...

Markov Models cont..

- English words W = w1, w2, w3, ..., wn
- p(w1, w2, w3, ..., wn) = p(w1) p(w2|w1) p(w3|w1, w2)...p(wn|w1, w2, ...wn-1)
- Bigram model:- p(w1, w2, w3, ..., wn) = p(w1) p(w2|w1) p(w3|w2)...p(wn|wn-1)
- wn-1 is called the history
- For example, the dog barks STOP
$p($ the dog barks STOP $)=p\left(\right.$ the ${ }^{*}$, *) $\times p(\mathrm{dog} \mid *$, the $) \times p$ (barks|the, dog) $\times p($ STOP|dog, barks)

Markov Models cont..

- maximum likelihood estimation
- p(w2|w1) = count(w1,w2) / count(w1)

Example

- Training Set:

START ASIA IS AWESOME STOP START GNOME IS AWESOME STOP START GNOME ASIA IS AWESOME STOP

- $\mathrm{v}=$ \{START, GNOME,.Asia,IS,AWESOME, END\}
- Unigram Model:- p(ASIA) $=2 / 10=0.2$

Example cont..

- Trigram Model:P (GNOME/START,START) $=\mathrm{P}(2 / 3)$

P(START GNOME ASIA IS AWESOME STOP) $=P($ GNOME/START,START) $*$ P(ASIA/GNOME,START) * P(IS/GNOME,ASIA) * P(AWESOME/ASIA,IS) * P(STOP/IS,AWESOME) $=(2 / 3) *(2 / 3) *(2 / 1) *(3 / 1) *(3 / 2)$

Training

- Data??
- Testing?

How to evaluate a L.M?

- Perplexity
- H(W) $=1 / n \log p(W)$
- Lower is the perplexity higher is accuracy of your language model

Unseen Sentences

- GNOME SHELL is AWESOME
- Smoothing?
- Discounting?

Smoothing

- Zero probabilities of unigram costs zero probabilities of entire sentence
- For unigrams add 1 to every word and adjust the count and divide it by size vocabulary to normalize it
- Original $P(w)=c / N$
- New $P(w)=(c+1) /(V+N)$

Linear Interpolation

- qM L (w|u, v) $=c(w, u, v) / c(u, v)$
- $q M L(w \mid v)=c(v, w) / c(v)$
- $\mathrm{qM} L(w)=c(w) / c()$
$\cdot q(w \mid u, v)=\lambda 1 \times q M L(w \mid u, v)+\lambda 2 \times q M$ $L(w \mid v)+\lambda 3 \times q M L(w)$
- $\lambda 1 \geq 0, \lambda 2 \geq 0, \lambda 3 \geq 0$ and $\lambda 1+\lambda 2+\lambda 3$
$=1$

Libyokan and libyokan-

 data- https://gitorious.org/yokan-data-mr-in

Ibus-typing-booster

- https://fedorahosted.org/ibus-typingbooster/

Demo

Thank you!!

- Anish.developer@gmail.com
- apatil@redhat.com
- Irc: anish,__anish

