Predictive Input Methods

Anish Patil

RedHat i18n team

Agenda:

What/Why?
 Language models
 Projects
 Demonstration

Need

1.21 Billion population (India)

- 74% literate (read & write any language)
- Still only 5-6% understand English
- 51% youth in 1.21 Billion
- Diversity in India
 - 22 Officially recognized languages
 - 9 Major scripts

Rest of the world

- List of extinct language's
 - http://en.wikipedia.org/wiki/List_of_extinct_la nguages_of_Europe
 - http://www.unesco.org/culture/languagesatlas/en/atlasmap.html

Problems with Natural Languges Ambiguous Exceptions! Humans- Ignore!

How to predict next word?

Statistical TechniquesProbability

Probabilities

- Bayes' theorem
- p(A | B) = p(A) * p(B | A) / p(B)
- Max has two coins in his pocket, a fair coin (head on one side and tail on the other side) and a two-headed coin. He picks one at random from his pocket, tosses it and obtains head. What is the probability that he flipped the fair coin?

$$P(\text{head} | \text{fair coin}) = \frac{1}{2}$$
$$P(\text{head} | \text{unfair coin}) = 1$$
$$P(\text{fair coin}) = \frac{1}{2}$$
$$P(\text{unfair coin}) = \frac{1}{2}$$

P(head) = P(head|fair coin)P(fair coin) + P(head|unfair coin)P(unfair coin)

$$= \frac{1}{2} \cdot \frac{1}{2} + 1 \cdot \frac{1}{2}$$
$$= \frac{1}{4} + \frac{2}{4} = \frac{3}{4}$$

$$P(\text{fair coin}|\text{head}) = \frac{P(\text{head}|\text{fair coin})P(\text{fair coin})}{P(\text{head})}$$
$$= \frac{\frac{1}{2} \cdot \frac{1}{2}}{\frac{3}{4}}$$
$$= \frac{1}{4} \cdot \frac{4}{3} = \frac{1}{3}$$

Language Model

- Lot of words in one language but what is the probability that one word follow another word?
- Simple model:- number of occurrence of word/Number of words in the language

Language Model

- A language model consists of a finite set V, and a function p(x1, x2, ... xn) such that:
 - 1. For any x1... xn \in V † , p(x1 , x2 , ... xn) \geq 0 2. In addition,
 - Sum(p(x1, x2, ..., xn) = 1x1...xn $\in V \uparrow$

Hence p(x1, x2, ... xn) is a probability distribution over the sentences in V**fedoro**

Markov Models

- The probability of a word depends only on the probability of a limited history
- The probability of a word depends only on the probability of the n previous words
 Unigrams, Bigrams, Trigrams...

Markov Models cont..

- English words W = w1, w2, w3, ..., wn
- op(w1, w2, w3, ..., wn) = p(w1) p(w2|w1)
 p(w3|w1, w2)...p(wn|w1, w2, ...wn-1)
- Bigram model:- p(w1, w2, w3, ..., wn) = p(w1) p(w2|w1) p(w3|w2)...p(wn|wn-1)

fedoro^f

wn-1 is called the history

- For example, the dog barks STOP
- p(the dog barks STOP) = p(the|*, *)×p(dog|*, the)×p(barks|the, dog)×p(STOP|dog, barks)

Markov Models cont..

maximum likelihood estimation
p(w2|w1) = count(w1,w2) / count(w1)

Example

Training Set: START ASIA IS AWESOME STOP START GNOME IS AWESOME STOP START GNOME ASIA IS AWESOME STOP • $v = \{START, GNOME, Asia, IS, AWESOME, \}$ END} • Unigram Model:- p(ASIA) = 2/10 = 0.2

Example cont..

Trigram Model:-

P(GNOME/START, START) = P(2/3)

P(START GNOME ASIA IS AWESOME STOP) = P (GNOME/START, START) * P(ASIA/GNOME, START) * P(IS/GNOME, ASIA) * P(AWESOME/ASIA, IS) * P(STOP/IS, AWESOME)

=(2/3) * (2/3) * (2/1) * (3/1) * (3/2)

Training

Data??Testing?

How to evaluate a L.M?

- Perplexity
- H(W) = 1/n log p (W)
- Lower is the perplexity higher is accuracy of your language model

Unseen Sentences

- GNOME SHELL is AWESOME
- Smoothing?
- Discounting?

Smoothing

- Zero probabilities of unigram costs zero probabilities of entire sentence
- For unigrams add 1 to every word and adjust the count and divide it by size vocabulary to normalize it
- Original P(w) = c / N
- New P(w) = (c+1) / (V+N)

Linear Interpolation

- qM L(w|u, v) = c(w,u,v) / c(u, v)
- qM L(w|v) = c(v, w) / c(v)
- qML(w) = c(w) / c()
- $q(w|u, v) = \lambda 1 \times qM L(w|u, v) + \lambda 2 \times qM L(w|v) + \lambda 3 \times qM L(w)$
- $\lambda 1 \ge 0$, $\lambda 2 \ge 0$, $\lambda 3 \ge 0$ and $\lambda 1 + \lambda 2 + \lambda 3 = 1$

Libyokan and libyokandata • https://gitorious.org/libyokan

https://gitorious.org/yokan-data-mr-in

Ibus-typing-booster

 https://fedorahosted.org/ibus-typingbooster/

Demo

Thank you!!

Anish.developer@gmail.com

Irc: anish, __anish__

apatil@redhat.com

