
PROGRAM CASPER
USER GUIDE

Edición / Issue: 1
Revisión/Revision: 0

Pág./Page 1 de/of 20

Table of Contents
1.ABSTRACT...1

2. DEFINITIONS...2

3. SCOPE...2

4.INTRODUCTION...2

5.CASPER LIBRARIES..2

5.1Object oriented modelling..2

5.1.1Encapsulation..2

5.1.2Inheritance...3

5.1.3Polymorphism..3

5.2Organization in libraries...3

5.3General Library..3

5.4How to build new libraries...4

6.INTERFACE WITH dia PROGRAM...5

6.1CASPER and dia...5

6.1.1How to load our library...6

6.1.2Adding components...8

6.1.3Connecting components..8

6.3.5Saving the model...10

7.CASPER KERNEL..10

7.1Basis ..10

7.2Input syntax...10

7.2.1Loading the model...10

7.2.2Setting unknowns...11

7.2.3Setting limits...11

7.2.4Setting equations...11

7.2.5Setting data...12

7.2.6Analysis keywords...12

7.2.7Output file..13

7.2.8Other keywords..13

7.2.9Example...13

1.ABSTRACT

This document tents to be the user guide and reference for program CASPER.

PROGRAM CASPER
USER GUIDE

Edición / Issue: 1
Revisión/Revision: 0

Pág./Page 2 de/of 20

2. DEFINITIONS

CASPER Code for Auxiliary Systems and PERformance
YACC Yet Another Compiler Compiler

3. SCOPE
The present document is focused to program CASPER developers, physical modellers.
The program features described are the most advanced coded so far. Future
developments will be based on this program version. It is also the basis for people in
charge to create new components libraries for new modelling areas. Finally is also the
reference for those users that are interested uniquely in the simulation of existing physical
components.

4.INTRODUCTION
This is an in house and multi-purpose tool in multiplatform philosophy. Its libraries have
been programmed in C++.

5.CASPER LIBRARIES

5.1Object oriented modelling
Object-Oriented modelling is a powerful and intuitive paradigm for building models that can
outlive the future changes of the growth and ageing of any dynamic system. It provides the
modeller with powerful features as encapsulation, inheritance and polymorphism.

Modular development allows a system to be modelled bottom-up. Basic library components
can be combined to create complex components by combining two methods:

• Extension by inheritance from existing components
• Instantiation and connection of existing components

Moreover, unlike some other object-oriented programming languages, C++ makes a clear
distinction between a class, which is a user-defined type, and an object, which is an instance
thereof.

5.1.1Encapsulation
With a conventional object-oriented language such as C++, the public interface is the data and
methods declared public. A class provides a distinct separation between its internal
implementation (the part is more likely to change) and its public interface. In CASPER a
component’s public interface consists of its ports, construction parameters and data. These

PROGRAM CASPER
USER GUIDE

Edición / Issue: 1
Revisión/Revision: 0

Pág./Page 3 de/of 20

elements are unique and are visible from outside during modelling, reinforcing encapsulation
and favouring reuse the component.

5.1.2Inheritance
Inheritance enables a derivate class to reuse the functionality and interface of its base class.
The advantages of reuse are enormous and it gives CASPER a tremendous power. This
allows the creation of libraries based on parent components with a linear rather than
geometric order or complexity. A new component based on another parent will include all its
data and behaviours. C++ provides multiple inheritance, i.e. a component can inherit data and
behaviour from one or many components that have previously been designed and tested.

5.1.3Polymorphism
Polymorphism is the capability of different objects to react in an individual manner to the same
message and it is the most powerful tool in object-oriented programming. Polymorphism in
object-oriented programming means that the interpretation of a message (an action) depends
on the object.

5.2Organization in libraries
Libraries are a mechanism used to organise design information. They are a natural way to
group components, functions, etc that are related to a discipline. Libraries are the basic
elements around which CASPER manipulates the information. These libraries must be
programmed in C++ and their basic purpose is to store a set of related elements.

As well as keeping work organized, working with libraries allows the modelling environment to
provide other services, such as:

• Checking for obsolete units (components, ports, etc) that should be recompiled
• Encapsulation of elements, allowing different libraries to contain elements with the

same name

A CASPER library can contain the following type of elements:

• Components
• Ports types
• Extern functions
• Global variables and constants
• Global enumeration types
• Directives for using other libraries (#include statements)

5.3General Library
General Library is the base library, i.e. all the new defined-user libraries must be based on
General Library. This contains all the elements (functions and variables) that are used for other
derived libraries. The GL scheme is the following:

PROGRAM CASPER
USER GUIDE

Edición / Issue: 1
Revisión/Revision: 0

Pág./Page 4 de/of 20

•

5.4How to build new libraries
CASPER allows the user manipulate the libraries in two possible ways:

• Create a new library. The user creates all the required elements for the new library.
• Use an existing library. In this case the library is already created and is available to be

used. An example of an existing library is the GENERAL library.

We will explain the first point in this chapter.

Previously we have seen how to create new components and ports. Usually we need several
components for the same system. For example, in an electronic system, we should create a
different component for each element: capacitor, resistor, transistor, etc. They must be included
within a same library.

Firstly a new file called Interface.cpp is required. Once we have created all the components we
must include into this file all the header files (using #include statements) and the component’s
names as follows:

//GLOBAL LIBRARY INCLUDE
#include <GENERAL.h>
#include <INTERFACE.h>

//component include
#include <component_1.h>
#include <component_2.h>
…
#include <component_n.h>

Root

Component Port

Derived
components Derived ports

Map

Derived maps

PROGRAM CASPER
USER GUIDE

Edición / Issue: 1
Revisión/Revision: 0

Pág./Page 5 de/of 20

LIBRARY(name_of_library, "library_description")
component(name_of_library, name_of_Component_1)
component(name_of_library, name_of_Component_2)
…
component(name_of_library, name_of_Component_n)

END_LIBRARY

For example, for our AIRFLOW library we could write the following Interface.cpp:

//GLOBAL LIBRARY INCLUDE
#include <GENERAL.h>
#include <INTERFACE.h>

//component include
#include <tank.h>
#include <pipe.h>

LIBRARY(AIRFLOW, "AIRFLOW system library")
component(AIRFLOW, Tank)
component(AIRFLOW, Pipe)

END_LIBRARY

It is very convenient to create a new file which contains all #include statements. This file will
be very useful if we decide to use this library in the future for other libraries. Normally, you should
call this file either AIRFLOW.h or Airflow.h (name_of_library.h) and must contain:

//component include
#include <tank.h>
#include <pipe.h>

Well, from this point we should be able to compile our library.

6.INTERFACE WITH dia PROGRAM

6.1CASPER and dia
Once we have created our library we can use it to model our system using its components.
Previously we said that components are connected between them through ports. Well, Dia is
the tool that we use to create a diagram to show how our system works. For that, we must
connect several components using links. Link is a special component which is defined in Dia by
default.

It is very easy modelling using Dia. You only have to link your components conveniently. In the
following example we can see a single example of an air system:

PROGRAM CASPER
USER GUIDE

Edición / Issue: 1
Revisión/Revision: 0

Pág./Page 6 de/of 20

6.1.1How to load our library
Dia needs to know where our library is. For this, we must install our library in the path indicated
by DIA_LIB_PATH variable. In the other hand, we have to create a new sheet file for our library
where we must indicate which components of the library we want to load and also where are
their icons. This file is a xml file and must be in the path indicated by DIA_SHEET_PATH variable.

The sheet file must be called name_of_library.sheet and must contain the following:

<?xml version="1.0" encoding="UTF-8"?>
<sheet xmlns="http://www.lysator.liu.se/~alla/dia/dia-sheet-ns">
 <name>name_of_library</name>
 <description>description_of_library</description>
 <contents>
 <object name="Link">
 <description>Link</description>
 <icon>Link.xpm</icon>
 </object>
 <object name="name_of_library – Component1">
 <description>description_of_Component1</description>
 <icon>Component1_icon</icon>
 </object>
 <object name="name_of_library – Component2">
 <description>description_of_Component2</description>
 <icon>Component2_icon</icon>
 </object>
 …
 <object name="name_of_library – Component_n">
 <description>description_of_Component_n</description>
 <icon>Component_n_icon</icon>
 </object>
 </contents>

PROGRAM CASPER
USER GUIDE

Edición / Issue: 1
Revisión/Revision: 0

Pág./Page 7 de/of 20

</sheet>

For example, for the AIRFLOW library the AIRFLOW.sheet file should be:

<?xml version="1.0" encoding="UTF-8"?>
<sheet xmlns="http://www.lysator.liu.se/~alla/dia/dia-sheet-ns">
 <name>AIRFLOW</name>
 <description>Cp constant airflow library</description>
 <contents>
 <object name="Link">
 <description>Link</description>
 <icon>Link.xpm</icon>
 </object>
 <object name="AIRFLOW - Tank">
 <description>Tank</description>
 <icon>AIRFLOW/Tank.xpm</icon>
 </object>
 <object name="AIRFLOW - PP">
 <description>Pipe</description>
 <icon>AIRFLOW/PP.xpm</icon>
 </object>
 <object name="AIRFLOW - PL">
 <description>P_loss</description>
 <icon>AIRFLOW/PL.xpm</icon>
 </object>
 <object name="AIRFLOW - Node">
 <description>Airflow Node</description>
 <icon>AIRFLOW/Node.xpm</icon>
 </object>
 </contents>
</sheet>

Once we have created the sheet file, we will be able to load our library using Dia. You can start
Dia by going into the Applications on the Main menu and clicking in the Dia icon or you can type
dia in your shell. In the main menu you should see our library:

PROGRAM CASPER
USER GUIDE

Edición / Issue: 1
Revisión/Revision: 0

Pág./Page 8 de/of 20

6.1.2Adding components
To add component to the canvas, click on an component in the toolbox and click on the canvas.
The selected component will appear (see the following figure). The object can be manipulated by
clicking and dragging on the corner buttons.

6.1.3Connecting components
The powerful feature of Dia is its ability of creating connections between components. For this,
click on Link object and then drag on one link point up to one component port. If they are linked
the joint point will appear in red colour.

PROGRAM CASPER
USER GUIDE

Edición / Issue: 1
Revisión/Revision: 0

Pág./Page 9 de/of 20

Note that in the link appears an arrow indicating the direction of the information.

6.3.4 Editing components
In the canvas you can double-click on your component and to view its properties. A new window
will appear, which contains all data of the component (that were introduced by AddData functions
within the component constructor). All of them are input of our system and therefore you can give
a value for them. These data have a value by default. If you want to modify someone of them,
you must introduce the value into the corresponding field.

In the General tab you can change the name and other properties (font, size, colour, etc.) of the
component:

PROGRAM CASPER
USER GUIDE

Edición / Issue: 1
Revisión/Revision: 0

Pág./Page 10 de/of 20

6.3.5Saving the model
When we have finished our model, we should save it into the analysis folder. By default, the file’s
extension is .dia and we can save in a compress or not compress format. Dia generates a xml
file, which can be understood by CASPER.

7.CASPER KERNEL

7.1Basis

7.2Input syntax
CASPER needs an input file (with .cmp extension) where we have to specify all the closure
equations in the model and the unknowns. We also can give initial values for input data. This file
is also called COMPO.

7.2.1Loading the model
Once we have generated our model by Dia, we must specify the dia file within COMPO using
the following syntax:

MODEL=”name_of_model.dia”

PROGRAM CASPER
USER GUIDE

Edición / Issue: 1
Revisión/Revision: 0

Pág./Page 11 de/of 20

7.2.2Setting unknowns
Now we have to set which our unknowns are. We only can use variables that we have added by
AddUnknown and the port variables. The rest can not be used in COMPO like unknowns. The
syntax is the following:

UNKNOWNS = n {
1 unknown_1 initial_value_1
2 unknown_2 initial_value_2
…
n unknown_n initial_value_n
}

where n is the number of unknowns.

7.2.3Setting limits
We can set limits for our variables (unknowns or data). We can specify if a variable must be
greater (GE) or lower (LE) than a given limit:

LIMITS = number_of_limits {
1 variable_1 [LT|GT|LE|GE|EQ|NE] limit_1
2 variable_2 [LT|GT|LE|GE|EQ|NE] limit_2
…
n variable_n [LT|GT|LE|GE|EQ|NE] limit_n
}

It is not necessary to set limits if they are not required.

• LE or GE: lower or equal, greater or equal than a given value, respectively.
• LT or GT: lower, greater than a given value, respectively.
• EQ: equal to a value.
• NE: not equal to a value.

7.2.4Setting equations
In this part we set all the closure equations. Obiously, the number of these must be equal to the
number of unknowns and they must be independent, or else the system should be singular and it
could not be solved.

The syntax is as follows:

EQUATIONS = {
1 [s|c] equation_1
2 [s|c] equation_2
…
n [s|c] equation_n
}

PROGRAM CASPER
USER GUIDE

Edición / Issue: 1
Revisión/Revision: 0

Pág./Page 12 de/of 20

where we use s (single equation) if the equation is a single function or c (complex equation) if
there are several expresions for the same function.

7.2.5Setting data
How we have said we can set data values into COMPO file. That also was possible in Dia
openning the data tab in the component properties. However, if you want to modify some value
you can do it in COMPO file. For that, you must specify the data name and then its value.

Tank.initmass=20

In the other hand, CASPER allows to define new variables into COMPO file. For example, you
could write within COMPO file:

MASS=20

or even

MASS=Tank.initmass

These values can be used within the closure equations.

7.2.6Analysis keywords
CASPER allows three different analysis: DEBUG, STEADY and TRANSIENT.

• DEBUG: It is a steady analysis. However, this type allows you to view every step of the
analysis. This option is very useful when CASPER is not able to found a convergent
solution:

DEBUG()

• STEADY: it is the same DEBUG analysis, but now you only can view the convergent
solution:

STEADY()

• TRANSIENT: for transient analysis. We must indicate at which integration should stop an
the interval to produce output results of simulation:

TRANSIENT(to, tf, delta_t)

For example, if we want to analyze in transient our problem from 0 up to 30 seconds,
using an interval of 1 second, the syntax should be:

TRANSIENT(0, 30, 1)

PROGRAM CASPER
USER GUIDE

Edición / Issue: 1
Revisión/Revision: 0

Pág./Page 13 de/of 20

7.2.7Output file
CASPER creates a file in binnary code that contains the data results from the analysis. We must
specify the name of this file using the following syntax:

REPORT=”file.bin”

7.2.8Other keywords

• exit: stops the program.

7.2.9Example
Now we will see an example of COMPO file. How we have seen, the closure equations can not
be used like equations within the Continuous block because the global equation system that
results should be singular.

For the generation of COMPO file we must know our model from beginning to end. Now, we will
create an electric library called ELEC and we will show you how to write the COMPO file for our
model. It will have three components and one port type.

a) Creation of components: battery, resistor, inductor

File: battery.h

#ifndef _BATTERY_H_
#define _BATTERY_H_
#include <GENERAL.h>
#include "elec_ports.h"

class Battery : public Component {

public:
Battery();
elec_p e1;
elec_p e2;

protected:
double Vb;

public:
void Continuous();
void Discrete(){}

};

#endif

File: battery.cpp

#include "battery.h"

PROGRAM CASPER
USER GUIDE

Edición / Issue: 1
Revisión/Revision: 0

Pág./Page 14 de/of 20

Battery::Battery() {

//Port definitions
AddPort(&e1, "e1", "Electrical point 1", INPUT);
AddPort(&e2, "e2", "Electrical point 2", OUTPUT);

//Data definitions
AddData(&Vb, "Vb", DOUBLE, "V", "Voltage");
Vb = 0;

}

void Battery::Continuous() {

e2.I = e1.I;
e2.V = e1.V + Vb;

}

File: resitor.h

#ifndef _RESISTOR_H_
#define _RESISTOR_H_
#include <GENERAL.h>
#include "elec_ports.h"

class Resistor : public Component {

public:
Resistor();
elec_p e1;
elec_p e2;

protected:
double R; //Resistance (ohm)

public:
void Continuous();
void Discrete(){}

};

#endif

File: resistor.cpp

#include "resistor.h"

Resistor::Resistor() {

//Port definitions
AddPort(&e1, "e1", "Electrical point 1", INPUT);
AddPort(&e2, "e2", "Electrical point 2", OUTPUT);

PROGRAM CASPER
USER GUIDE

Edición / Issue: 1
Revisión/Revision: 0

Pág./Page 15 de/of 20

//Data definitions
AddData(&R, "R", DOUBLE, "ohm", "Resistance");
R = 0;

}

void Resistor::Continuous() {

e2.I = e1.I;
e2.V = e1.V - e1.I*R;

}

File: inductor.h

#ifndef _INDUCTOR_H_
#define _INDUCTOR_H_
#include <GENERAL.h>
#include "elec_ports.h"

class Inductor : public Component {

public:
Inductor();
elec_p e1;
elec_p e2;

protected:
double L;
double Vind;
double Il;
double dIdt;

public:
void Continuous();
void Discrete(){}

};

#endif

File: inductor.cpp

#include "inductor.h"

Inductor::Inductor() {

//Port definitions
AddPort(&e1, "e1", "Electrical point 1", INPUT);
AddPort(&e2, "e2", "Electrical point 2", OUTPUT);

//Data definitions
AddData(&L, "L", DOUBLE, "--", "Inductance");
L = 0;
//Unknown definitions

PROGRAM CASPER
USER GUIDE

Edición / Issue: 1
Revisión/Revision: 0

Pág./Page 16 de/of 20

AddUnknown(&Vind, "Vind", "V", "Inductor voltage");
AddUnknown(&dIdt, "dIdt", "V", "Inductor voltage");
dIdt=0;

//Derivate definitions
AddDerivate(&dIdt, &Il, "dIdt", "Il", "A", "Derivate of Il");

}

void Inductor::Continuous() {

dIdt = Vind/L;

e2.I = e1.I;
e2.V = e1.V - Vind;

}

b) Creation of ports: elec_p

File: elec_ports.h

#ifndef _ELECPORTS_H_
#define _ELECPORTS_H_
#include <GENERAL.h>

class elec_p : public Port {

public:
elec_p();
double V;
double I;

public:
void Continuous();

};

class Node : public Component {

public:
Node();
elec_p node;
void Continuous(){}
void Discrete(){}

};

#endif

File: elec_ports.cpp

#include "elec_ports.h"

elec_p::elec_p() {

PROGRAM CASPER
USER GUIDE

Edición / Issue: 1
Revisión/Revision: 0

Pág./Page 17 de/of 20

AddInformation(&V, "V", DOUBLE, "V", "Electric potential");
V = 10;
AddInformation(&I, "I", DOUBLE, "A", "Intensity");
I = 0;

}

void elec_p::Continuous() {

double I_sum = 0;

for(int i=0; i<ENTRY_SIZE; i++) {
if(!i) {

I = GET_ENTRY_VAL(I, i);
V = GET_ENTRY_VAL(V, i);

}
else

I += GET_ENTRY_VAL(I, i);
}

for(int i=0; i<EXIT_SIZE; i++) {
SET_EXIT_VAL(V, i, V);
if(!i)

I_sum = I;
if(i!=(EXIT_SIZE-1))

I_sum -= GET_EXIT_VAL(I, i);
else

SET_EXIT_VAL(I, i, I_sum);
}

}

Node::Node() {

AddPort(&node, "node", "Electric node", NODE);

}

c) Setting the library

File: Interface.cpp

//GENERAL INCLUDE
#include <GENERAL.h>
#include <INTERFACE.h>

//GLOBAL LIBRARY INCLUDE
#include "resistor.h"
#include "elec_ports.h"
#include "inductor.h"
#include "battery.h"

LIBRARY(ELEC, "ELECTRICAL Library")
component(ELEC, Battery)
component(ELEC, Resistor)

PROGRAM CASPER
USER GUIDE

Edición / Issue: 1
Revisión/Revision: 0

Pág./Page 18 de/of 20

component(ELEC, Inductor)
component(ELEC, Node)

END_LIBRARY

d) Compiling the library
e) Creation of sheet file

File: ELEC.sheet

<?xml version="1.0" encoding="UTF-8"?>
<sheet xmlns="http://www.lysator.liu.se/~alla/dia/dia-sheet-ns">
 <name>ELEC</name>
 <description>ELECTRIC library</description>
 <contents>
 <object name="ELEC - Link">
 <description>Link</description>
 <icon>Link.xpm</icon>
 </object>
 <object name="ELEC - Battery">
 <description>ELEC Battery</description>
 <icon>ELEC/battery.xpm</icon>
 </object>
 <object name="ELEC - Resistor">
 <description>ELEC Resistor</description>
 <icon>ELEC/resistor.xpm</icon>
 </object>
 <object name="ELEC - Inductor">
 <description>ELEC Inductor</description>
 <icon>ELEC/inductor.xpm</icon>
 </object>
 <object name="ELEC - Node">
 <description>ELEC Node</description>
 <icon>ELEC/node.xpm</icon>
 </object>
 </contents>
</sheet>

f) Modelling with dia

File: elec.dia

PROGRAM CASPER
USER GUIDE

Edición / Issue: 1
Revisión/Revision: 0

Pág./Page 19 de/of 20

Remember that you have to introduce the data values double-clicking on every
component.

g) Creation of COMPO file. Now we must decide which the boundary conditions are. Viewing
our model, the BC should be: V0.e1.V and V0.e1.I. In function of these, we have to write
the closure equations. Thus our COMPO file should be as follows:

MODEL="elec.dia"

UNKNOWNS = 4 {
1 V0.e1.V 0
2 V0.e1.I 0
3 N1.I 0
4 L1.Vind 0
}

LIMITS = 0 {
}

EQUATIONS {
1 s (R2.e2.V-R1.e2.V)/100
2 s (N2.V-V0.e1.V)/100
3 s (V0.e1.V-TIERRA)/100
4 s (L1.dIdt)/10
}

TIERRA = 0

REPORT="elec05.bin"
STEADY()

V0.Vb = 20
L1.Il = L1.e1.I

EQUATIONS {
4 s (L1.Il - L1.e1.I)/1

PROGRAM CASPER
USER GUIDE

Edición / Issue: 1
Revisión/Revision: 0

Pág./Page 20 de/of 20

}

TRANSIENT(0,1,0.1)

Note that the equation number 4 has been modified in transient mode.

	1.ABSTRACT
	2. DEFINITIONS
	3. SCOPE
	4.INTRODUCTION
	5.CASPER LIBRARIES
	5.1Object oriented modelling
	5.1.1Encapsulation
	5.1.2Inheritance
	5.1.3Polymorphism

	5.2Organization in libraries
	5.3General Library
	5.4How to build new libraries

	6.INTERFACE WITH dia PROGRAM
	6.1CASPER and dia
	6.1.1How to load our library
	6.1.2Adding components
	6.1.3Connecting components
	6.3.5Saving the model

	7.CASPER KERNEL
	7.1Basis
	7.2Input syntax
	7.2.1Loading the model
	7.2.2Setting unknowns
	7.2.3Setting limits
	7.2.4Setting equations
	7.2.5Setting data
	7.2.6Analysis keywords
	7.2.7Output file
	7.2.8Other keywords
	7.2.9Example

